

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2010249330 B2

(54) Title
Vaccines against Herpes Simplex Virus type 2: compositions and methods for eliciting an immune response

(51) International Patent Classification(s)
A61K 39/245 (2006.01) **A61P 31/22** (2006.01)

(21) Application No: **2010249330** (22) Date of Filing: **2010.05.24**

(87) WIPO No: **WO10/135747**

(30) Priority Data

(31)	Number	(32)	Date	(33)	Country
	61/180,784		2009.05.22		US
	61/240,626		2009.09.08		US
	61/235,628		2009.08.20		US
	61/305,918		2010.02.18		US
	61/240,587		2009.09.08		US

(43) Publication Date: **2010.11.25**
(44) Accepted Journal Date: **2015.11.05**

(71) Applicant(s)
Genocea Biosciences Inc.

(72) Inventor(s)
Long, Deborah;Flechtner, Jessica;Skoberne, Mojca;Siber, George R.

(74) Agent / Attorney
Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art

LANGENBERG A. G. M., et al, Annals of Internal Medicine, 1995, vol 122, pages 889-898
US 5851533 A
ASHLEY R., et al, Journal of Virology, 1985, vol 56, pages 475-481
WO 2005/028496 A2
WO 1995/016779 A1
WO 2003/099860 A2
STRASSER J. E., et al, The Journal of Infectious Diseases, 2000, vol 182, pages 1304-1310
MESEDA C. A., et al, The Journal of Infectious diseases, 2002, vol.186, pages 1065-1073
WO 2008/085486 A1
WO 2003/086308 A2
WO 2008/030560 A2
WO 2004/009021 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 November 2010 (25.11.2010)

(10) International Publication Number
WO 2010/135747 A1

(51) International Patent Classification:
A61K 39/245 (2006.01) *A61P 31/22* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2010/035998

(22) International Filing Date:
24 May 2010 (24.05.2010)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/180,784 22 May 2009 (22.05.2009) US
61/235,628 20 August 2009 (20.08.2009) US
61/240,626 8 September 2009 (08.09.2009) US
61/240,587 8 September 2009 (08.09.2009) US
61/305,918 18 February 2010 (18.02.2010) US

(71) Applicant (for all designated States except US): **GENO-CEA BIOSCIENCES INC.** [US/US]; 161 First Street, Suite 2C, Cambridge, MA 02142 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

Published:

(75) Inventors/Applicants (for US only): **LONG, Deborah** [US/US]; 1865 Lakes Road, Monroe, NY 10950 (US). **FLECHTNER, Jessica** [US/US]; 30 Old Mill Road, Maynard, MA 01754-2406 (US). **SKOBERNE, Mojca** [US/US]; 7 Rutland Street, Apt. #2, Cambridge, Massachusetts 02139 (US).

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(74) Agents: **VARMA, Anita** et al.; Ropes & Gray LLP, One International Place, Boston, MA 02110 (US).

(54) Title: VACCINES AGAINST HERPES SIMPLEX VIRUS TYPE 2: COMPOSITIONS AND METHODS FOR ELICITING AN IMMUNE RESPONSE

(57) Abstract: Herpes Simplex Virus-2 (HSV-2) infection is a major health concern. The present disclosure provides, *inter alia*, certain highly effective vaccines and immunogenic compositions against HSV-2. The antigens can be used therapeutically or prophylactically.

WO 2010/135747 A1

Vaccines Against Herpes Simplex Virus Type 2: Compositions and Methods for Eliciting an Immune Response

Related Applications

5 This application claims the benefit of the filing date of U.S. Provisional Application No. 61/180,784, filed on May 22, 2009, U.S. Provisional Application No. 61/235,628, filed on August 20, 2009, U.S. Provisional Application No. 61/240,587, filed on September 8, 2009, U.S. Provisional Application No. 61/240,626, filed on September 8, 2009, and U.S. Provisional Application No. 10 61/305,918 filed on February 18, 2010. The entire teachings of the referenced applications are expressly incorporated herein by reference.

I. Background

Herpes simplex virus type 2 (HSV-2) is the leading cause of genital herpes. 15 HSV-2 is most often transmitted by sexual contact, and infection with the virus typically leads to recurring outbreaks of lesions on the genitals and perianal regions, combined with shedding of virus particles into the genital tract. Viral shedding can also occur in the absence of lesions or other symptoms. HSV-2 also establishes latency in sensory ganglia. HSV-2 infection causes physical discomfort and 20 psychosexual morbidity in affected patients, and introduces additional health risks. In particular, patients infected with HSV-2 are at increased risk for contracting HIV, and pregnant mothers infected with HSV-2 can vertically transmit HSV-2 to their fetuses. In immunocompromised individuals or in neonates, HSV-2 infections can be fatal. Currently, there is no cure for HSV-2 infection.

25 HSV-2 infection is widespread, with one study estimating that nearly 20% of the population worldwide is infected (Looker et al., 2008, Bulletin of the World Health Organization, October 2008, 86(10)). More women than men are infected, and the prevalence of the disease increases with age. High numbers of adolescents diagnosed with HSV-2 indicate that the prevalence across the population will 30 continue to rise, as HSV-2 infection is lifelong.

Treatment options for HSV-2 symptoms are limited. Antiviral therapy, using compounds such as famciclovir, valaciclovir, or aciclovir, limits the duration of symptoms and, in some cases, speeds healing of lesions and reduces incidence of viral shedding. Antiviral drugs are not curative, however, and do not prevent 5 recurrence of outbreaks or clear the virus completely. In addition, use of antiviral drugs requires patients to recognize symptoms of HSV-2 infection, then obtain a confirmative diagnosis, and ultimately, comply with the antiviral regimen. These requirements may be untenable in regions of the world where antiviral drugs are not readily available. In addition, patients are often unaware that they are infected, 10 either because they do not present symptoms, or because the symptoms of the initial infection subside, suggesting recovery from the disease.

To address the medical and social problems associated with HSV-2, it is highly desirable to develop pharmaceutical compositions to inhibit or counteract infection by HSV-2. An effective composition may be used to elicit an enhanced 15 immune response against HSV-2, thereby preventing initial infection, blocking the ability of the virus to establish latency in sensory ganglia, eliminating recurrence of outbreaks, and/or preventing viral shedding. The immune system is known to mount a defense against HSV-2, as evidenced by recurrent infections which manifest with fewer, less intense symptoms and decreased frequency over time.

20 While the ultimate goal of an HSV vaccine would be long-lasting protection from viral infection, the suppression of disease symptoms would also provide significant health benefits. One of the current goals for either a prophylactic or therapeutic vaccine is to reduce clinical episodes and viral shedding from primary and latent infections. Three categories of prophylactic vaccines have been tested in 25 clinical trials with disappointing results i) whole virus, ii) protein subunit and iii) gene-based subunit vaccines (Stanberry et al., Clinical Infect. Dis., 30(3):549-566, 2000). In the 1970s a number of killed virus vaccines were explored, none of which were efficacious. More recently an attenuated HSV was found to be poorly immunogenic. Subunit vaccines based on two recombinant glycoproteins have been 30 clinically evaluated in combination with different adjuvant formulations. One developed by Chiron contains truncated forms of both glycoprotein D (gD2) and glycoprotein B (gB2) of HSV-2, purified from transfected Chinese Hamster Ovary

(CHO) cells and formulated in the adjuvant MF59. Another developed by Glaxo-Smithkline (GSK) contains a truncated gD2 formulated with adjuvants alum and 3-O-deacylated monophosphoryl lipid A (MPL). Both vaccines were immunogenic and well tolerated in phase I/II trials. However in phase III analyses, the Chiron 5 vaccine showed no overall efficacy against HSV-2 seroconversion and work was discontinued. The GSK vaccine showed significant efficacy (73-74%) in HSV-1, HSV-2 seranegative women volunteers but no efficacy in men.

While even limited vaccine efficacy would beneficially impact HSV 10 sufferers, these trials are testing only a small number of vaccine possibilities. This is because the vaccine discovery has not been systematic. Pursuance of a whole-virus vaccine assumes that presentation of the pathogen itself to the immune system will generate optimal immunity. Indeed the breadth and duration of immune responses to whole pathogen vaccines historically have been better than subunit vaccines. 15 However, pathogenicity of the vaccine strain must be considered. Subunit vaccines, to date, have been selected for vaccine testing based on their assumed importance in disease pathogenesis and immunogenicity during infection. These approaches have identified one candidate against HSV with limited efficacy in some but no efficacy in other formulations. Thus, new and improved methodologies for herpesvirus 20 vaccine discovery are needed to protect against herpes diseases.

-II. Summary of the Invention

Infection and transmission of HSV-2 is a major health concern. The present disclosure provides, *inter alia*, certain highly effective vaccines against HSV-2. 25 Such vaccines can be used either therapeutically or prophylactically. The present disclosure also provides specific antigens and methods for using the antigens to elicit an immune response against HSV-2.

In one aspect, the present disclosure describes a vaccine formulation comprising a pharmaceutical-acceptable carrier and at least one polypeptide 30 consisting of SEQ ID NOS: 2, 3, 4 and 5 or an immunogenic fragment thereof, and optionally further comprising SEQ ID NO:1 or an immunogenic fragment thereof.

The vaccine formulation may comprise a first polypeptide consisting of one of the above SEQ ID NOS, and a second polypeptide consisting of another one of the above SEQ ID NOS.

Another aspect of the present invention provides a vaccine formulation
5 comprising a pharmaceutically acceptable carrier, an adjuvant comprising one or more purified fractions of quillaja saponins, and at least one polypeptide comprising any of SEQ ID NOS: 2, 3, 4 and 5 or an immunogenic fragment thereof, and optionally further comprising SEQ ID NO:1 or an immunogenic fragment thereof.

A further aspect of the present invention provides a vaccine formulation
10 comprising a pharmaceutically-acceptable carrier and a polypeptide consisting of SEQ ID NO: 2 or an immunogenic fragment thereof. Residues may be truncated from SEQ ID NO:2. The polypeptide may be glycosylated, or may be unglycosylated.

In still a further aspect, the present invention provides a vaccine formulation
15 comprising a pharmaceutically-acceptable carrier and a polypeptide comprising SEQ ID NO:5, wherein the polypeptide lacks all or at least an 8 contiguous amino acid residue portion of the transmembrane domain spanning residues 340-363.

Accordingly, one aspect of the present invention provides a vaccine formulation comprising a pharmaceutically-acceptable carrier and a polypeptide comprising SEQ
20 ID NO:4. The polypeptide may be glycosylated, or may be unglycosylated.

Still another aspect of the present invention provides a vaccine formulation comprising a pharmaceutically-acceptable carrier, a polypeptide comprising SEQ ID NO:5. The polypeptide may be glycosylated, or may be unglycosylated.

Yet another aspect of the present invention provides a vaccine formulation
25 comprising a pharmaceutically-acceptable carrier, a polypeptide comprising SEQ ID NO:3. The polypeptide may be glycosylated, or may be unglycosylated.

In some embodiments, polypeptides in the vaccine formulations that may be conjugated to an immunogenic carrier, for example keyhole limpet hemocyanin. In other embodiments, the vaccine formulations further comprise an adjuvant. The
30 adjuvant may be one or more purified fractions of quillaja saponins.

The invention provides methods or treating a subject suffering from or susceptible to HSV-2 infection by administering an effective amount of a vaccine formulation disclosed herein. In some embodiments, the method inhibits HSV-2 symptoms, for example by reducing the number of herpetic lesions, reducing the 5 number of days a subject experiences herpetic lesions, reducing infection by HSV-2 in an uninfected subject, increasing the IgG titer and/or T cell response to one or more HSV-2 antigens, and/or reducing the number of herpetic lesions at the onset of HSV-2 infection.

In another aspect, the present disclosure describes the results of a high-10 throughput system for in vitro screening of libraries of efficacious T cells to identify their specific target antigens from the complete proteome of HSV-2. This technology allowed the identification of individual antigens, likely to be effective in vivo, as either a prophylactic or therapeutic composition. In one aspect, herein are provided several critical protective T cell antigens that can be incorporated into 15 protein-based compositions that elicit an immune response.

One aspect of the present invention provides pharmaceutical compositions comprising two or more isolated polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

20 In another aspect, the invention provides vaccine formulations that include a pharmaceutically-acceptable carrier and a polypeptide comprising at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof. In certain embodiments, the polypeptide consists of at least one of SEQ ID NOS: 1-38.

Another aspect of the present invention provides a method of inducing an 25 immune response in a subject, comprising administering to said subject an effective amount of a vaccine formulation or a pharmaceutical composition comprising an effective amount of two or more isolated polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

30 Yet another aspect of the present invention provides a method of reducing one or more symptoms of HSV-2 infection in a subject, comprising administering to

said subject an effective amount of a vaccine formulation or a pharmaceutical composition comprising two or more isolated polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof. In some embodiments, the symptoms of

5 HSV-2 infection comprise one or more of lesion formation, pain, irritation, itching, fever, malaise, headache, viral shedding, and prodrome.

A further aspect of the present invention provides a method of inhibiting the onset of HSV-2 infection, comprising administering an effective amount of a vaccine formulation or a composition comprising two or more isolated HSV

10 polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

Applicants disclose another aspect of the present invention, which provides a method of inhibiting development of a latent HSV-2 infection in a subject exposed to HSV-2, comprising administering an effective amount of a vaccine formulation or

15 a composition comprising two or more isolated HSV-2 polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

In a related aspect, the present invention provides a method of reducing viral shedding in a subject infected with HSV-2, comprising administering an effective

20 amount of a vaccine formulation or a composition comprising two or more isolated HSV-2 polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

Further, an aspect of the present invention provides a method of reducing recurrence of outbreaks in a subject infected with HSV-2, comprising administering

25 an effective amount of a vaccine formulation or a composition comprising two or more isolated HSV-2 polypeptides selected from polypeptides having an amino acid sequence of at least one of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

An additional aspect of the present invention provides a method of producing

30 any of the pharmaceutical compositions described above, comprising expressing said two or more polypeptides; and isolating said two or more polypeptides.

Applicants further disclose an aspect of the present invention which provides a method for diagnosing severity of symptoms in a subjected infected with HSV-2, comprising (i) measuring activation of T cells in response to autologous antigen presenting cells (APC) pulsed with one or more isolated HSV-2 polypeptides selected from polypeptides set forth in SEQ ID NOS: 1-38, or an immunogenic fragment thereof, and (ii) comparing said levels to reference levels obtained from infected subjects experiencing frequent outbreaks; whereby a significant increase in said responses relative to reference levels indicates that said subject has less severe symptoms (e.g., the subject is asymptomatic). A significant increase in response can, for example, comprise a 1.5-fold or greater, 2-fold or greater, 3-fold or greater, 5-fold or greater, 10-fold or greater or even 20-fold or greater increase.

Another aspect of the present invention provides a method for diagnosing severity of symptoms in a subjected infected with HSV-2, comprising (i) measuring activation of T cells from naturally infected or virus-exposed subjects in response to APC presenting one or more isolated HSV-2 polypeptides selected from polypeptides set forth in SEQ ID NOS: 1-38, or an immunogenic fragment thereof, and (ii) comparing said levels to reference levels obtained from infected subjects experiencing frequent outbreaks; whereby a significant decrease in said activation relative to reference levels indicates that said subject has more severe symptoms (e.g., frequent outbreaks).

Another aspect of the present invention provides pharmaceutical compositions comprising an antibody that binds to one or more isolated HSV polypeptides selected from the list consisting of SEQ ID NOS: 1-38, or an immunogenic fragment thereof.

Moreover, a different aspect of the present invention provides a method of identifying immunogenic compositions for HSV-2 by testing two or more polypeptides selected from polypeptides having an amino acid sequence of any one of SEQ ID NOS. 1-38, or an immunogenic fragment thereof, for ability to promote cytokine production in a mammalian T cell, wherein an immunogenic composition is one that elevates levels of a cytokine significantly above the levels of that cytokine produced by a naïve mammalian T cell. A significant increase in cytokine

levels is typically one that is at least 1.5-fold, 2-fold, 3-fold, 5-fold, 10-fold or even 20-fold the level produced by a naïve cell.

Still another aspect of the present invention provides a method of detecting HSV-2 in a sample from a subject, said method comprising (i) contacting said sample with one or more antibodies raised against one or more polypeptides having an amino acid sequence of SEQ ID NOS: 1-38 or an immunogenic fragment thereof, and (ii) detecting said one or more antibodies bound to said one or more HSV-2 polypeptide from the sample.

Finally, one aspect of the present invention provides pharmaceutical compositions comprising two or more isolated polynucleotides, selected from nucleotide SEQ ID NOS: 1-38, or fragments encoding immunogenic peptides thereof.

III. Brief Description of the Drawings

Figures 1A and B are graphs showing, respectively, CD4⁺ and CD8⁺ T cell responses following immunization with gD2 full-length protein, gD2ΔTMR, or gD2 truncated immediately upstream of the transmembrane domain (denoted 306t).

Figures 2A and B are graphs showing, respectively, CD4⁺ and CD8⁺ T cell responses following immunization with pooled, overlapping peptides spanning gL2, ICP4.1, or ICP4 fragments encoded by RS1.1, RS1.3.1 and RS1.3.2.

Figure 3A and B are graphs showing, respectively, CD4⁺ and CD8⁺ T cell responses following immunization with gD2ΔTMR, or gD2ΔTMR and ICP4.2.

IV. Detailed Description

This application describes vaccines and immunogenic compositions against HSV-2. Vaccine formulations may include a polypeptide comprising a sequence from Table 1 or an immunogenic fragment thereof, or a combination of at least two polypeptides comprising sequences from Table 1 or immunogenic fragments thereof. In certain embodiments, the polypeptide(s) of the vaccines comprise the

entire sequence of at least one of SEQ ID NOS: 1-26 or consist of the entire sequence of any one of SEQ ID NOS: 1-26. Immunogenic compositions may include a polypeptide comprising a sequence from Table 1 or Table 2 or an immunogenic fragment thereof or a combination of at least two polypeptides

5 comprising sequences from Table 1 or Table 2, or immunogenic fragments thereof. In certain embodiments, the polypeptide(s) of the immunogenic compositions comprise the entire sequence of any one of SEQ ID NOS: 1-38 or consist of the entire sequence of SEQ ID NO: 1-38. The polypeptides in Tables 1 or 2 may be encoded by SEQ ID NOS: 39-46 and 117-134 as indicated and/or by cDNA

10 sequences publically available on <http://www.ncbi.nlm.nih.gov/sites/entrez>. cDNA and protein sequences may also be obtained from any known strains of HSV-2, including HG52, 333, and Strain G. Accordingly, cDNA sequences may be accessed by gene or protein name from genomic sequence at NC_001798.1, and may be approximately 97% conserved with sequences disclosed at NC_001798.1).

15 As described herein, the polypeptides may be referred to by protein name, by SEQ ID NO, and/or by the name of the gene encoding the protein.

The polypeptides can be prepared in a variety of expression systems. Suitable expression systems include *E. coli* and Baculovirus-based expression systems (e.g., in insect cells). Polypeptides prepared using *E. coli* are typically full-length and unglycosylated, although truncated variants can be prepared. In certain embodiments, these truncated variants retain all or part of the signal domain. Polypeptides prepared using a Baculovirus system typically lack the N-terminal signal sequence, but are fully or partially glycosylated.

25

Table 1. HSV-2 antigens for vaccines or immunogenic compositions

Protein SEQ ID No.	DNA SEQ ID No.	Gene Name Protein Name	Gene ID No.	GenBank Accession Nos.
1	39	RS1 ICP4	1869897	NP_044530.1
2	117	RS1.2 ICP4 internal fragment (ICP4.2)		RS1.2 corresponds to an internal fragment of the RS1 sequence

Protein SEQ ID No.	DNA SEQ ID No.	Gene Name Protein Name	Gene ID No.	GenBank Accession Nos.
3	118	UL1 gL2 cytoplasmic	1487292	NP_044470.1
4	40	US6ΔTMR gD2 internal deletion (gDΔTMR)	9629336	NP_044536.1 US6ΔTMR corresponds to gD2 with a deletion of amino acids 340-363
5		US6 gD2		
6	41	RL1 ICP34.5	9629329	NP_044529.1
7	42	RL2 ICP0	109676722	NP_044528.2
8	121	RS1.1 ICP4 internal fragments	1869897	NP_044530.1 RS1.1 corresponds to residues 1-400 of RS1
9	122	RS1.3.1 ICP4 internal fragments	1869897	NP_044530.1 RS1.3.1 corresponds to residues 750-1024 of RS1
10	123	RS1.3.2 ICP4 internal fragments	1869897	NP_044530.1 RS1.3.2 corresponds to residues 1008-1319 of RS1
11	124	RS1.3 ICP4 internal fragments	1869897	NP_044530.1 RS1.3 corresponds to residues 750-1319 of RS1
12	125	RS1.4 ICP4 internal fragments	1869897	NP_044530.1 RS1.4 corresponds to residues 340-883 of RS1
13	126	RS1.5 ICP4 internal fragments	1869897	NP_044530.1 RS1.5 corresponds to residues 775-1318 of RS1
14	127	RS1.6 ICP4 internal fragments	1869897	NP_044530.1 RS1.6 corresponds to residues 209-1318 of RS1
15	128	RS1.7 ICP4 internal fragments	1869897	NP_044530.1 RS1.7 has a deletion of residues 391-544 of RS1
16	129	RS1.8 ICP4 internal fragments	1869897	NP_044530.1 RS1.8 has a deletion of residues 786-864 of RS1
17		UL2 uracil DNA glycosylase		
18		UL11 myristylated		

Protein SEQ ID No.	DNA SEQ ID No.	Gene Name <i>Protein Name</i>	Gene ID No.	GenBank Accession Nos.
		<i>tegument protein</i>		
19	119	UL1 <i>gL2 secreted</i>	1487292	NP_044470.1
20		UL19 <i>VP5</i>		
21	120	UL19ΔTEV <i>VP5</i>	9629288	NP_044488.1 UL19ΔTEV is lacking the last 5 amino acids from the C-terminal end of UL19
22		UL36 <i>ICP1/2</i>		
23	43	UL36.3.4.1 <i>ICP1/2 internal fragments</i>	1487322	NP_044506.1 UL 36.3.4.1 corresponds to residues 1318-2280 of UL36
24	44	UL36.4.2.5 <i>ICP1/2 internal fragments</i>	1487322	NP_044506.1 UL 36.4.2.5 corresponds to residues 2253-3122 of UL36
25		UL40 <i>ribonucleoside reductase</i>		
26	45	US12 <i>ICP47</i>	9629343	NP_044543.1

Table 2. Additional HSV-2 antigens for immunogenic compositions

Protein SEQ ID No.	DNA SEQ ID No.	Gene Name <i>Protein Name</i>	Gene ID No.	GenBank Accession Nos.
27	134	UL10 <i>gM2</i>	9629279	NP_044479.1
28		UL15 <i>DNA cleavage/packaging protein</i>		
29		UL26.5 <i>ICP35</i>		
30		UL30 <i>DNA-directed polymerase</i>		
31		UL5		

Protein SEQ ID No.	DNA SEQ ID No.	Gene Name <i>Protein Name</i>	Gene ID No.	GenBank Accession Nos.
		<i>DNA helicase/primase complex</i>		
32		UL8 <i>DNA helicase/primase complex</i>		
33		UL15.5 <i>unknown</i>		
34		UL32 <i>cleavage and packaging protein</i>		
35		UL36.4.2 <i>ICP1/2 fragment</i>		
36		UL54 <i>ICP27</i>		
37	133	UL49.5 <i>Membrane associated virion protein</i>	1487337	NP_044520.1
38	46	US4 <i>gG2</i>	9629334	NP_044534.1

A. Immunogenic HSV-2 polypeptides

Immunogenic polypeptides or polynucleotides as indicated in Table 1 and/or Table 2 may be used in pharmaceutical compositions. The invention provides

5 pharmaceutical compositions containing immunogenic polypeptides or polynucleotides encoding these immunogenic polypeptides together with a pharmaceutical carrier. Antigens from HSV-2 may be identified by screening immune cells from patients infected with HSV-2. Briefly, a library of HSV-2 antigens was expressed by bacteria and mixed with antigen presenting cells (APCs).

10 The APCs, in turn, processed and presented HSV-2-derived polypeptides to lymphocytes that had been isolated from human patients infected with HSV-2. The patients belonged to several populations: (1) exposed to HSV-2 but seronegative for infection, (2) infected with HSV-2 but asymptomatic, (3) infected with HSV-2 and experiencing infrequent outbreaks, (4) infected with HSV-2 and experiencing

frequent outbreaks, (5) naïve and (6) seronegative for HSV-2 (HSV-2⁻) but seropositive for HSV-1 (HSV-1⁺). Lymphocyte responses from each population were compared for reactivity to HSV-2-derived polypeptides, and the screen detected antigens that induced reactive lymphocytes with greater frequency in one 5 patient population as compared to the others. Infected but asymptomatic, and exposed but seronegative patients may activate protective immune responses that patients who experience frequent outbreaks do not; in particular, exposed but seronegative patients are presumed to have mounted sterilizing immunity to HSV-2 infection. It is believed that a unique set of polypeptides will activate lymphocytes 10 from these patient populations. Thus, the present invention contemplates compositions of the specific HSV-2 polypeptides that activate the lymphocytes of infected but asymptomatic, or exposed but seronegative patients or a combination of these polypeptides for inhibiting or counteracting infection by HSV-2.

15 Antigens identified on the basis of their immunogenicity in infected but asymptomatic, or exposed but seronegative patients are similarly expected to be immunogenic in any subject.

20 In some embodiments, a polypeptide may induce an innate immune response, a humoral immune response, or a cell-mediated immune response. The cell-mediated immune response may involve T_H1 cells, and in certain embodiments, the immune response involving T_H1 cells is an immune response in which T_H1 cells 25 are activated. In some embodiments, an immunogenic polypeptide avoids induction of T_H2 cytokines. In some embodiments, the cell-mediated immune response may involve T_H17 cells, and in certain embodiments, the immune response involving T_H17 cells is an immune response in which T_H17 cells are activated.

30 Polypeptides (or immunogenic fragments thereof) in compositions of the invention may induce T cell responses in multiple individuals, regardless of the HLA haplotype of the individuals. Specifically, epitopes on the polypeptides may induce T cell responses in individuals with one or more of the following HLA supertypes: HLA-A2, -A3, -A24, -A1, -B7, -B8, -B27, -B44, -B58, and B62, and HLA-DQB01, -DQB02, -DQB03, -DQB-04, and -DQB05.

In some embodiments, one or more, e.g. two, three, four, or more polypeptides from Table 1 and/or Table 2 (or immunogenic fragments thereof) are provided in a composition of the invention. In some embodiments, two polypeptides from Table 1 and/or Table 2 are provided in a composition of the invention. In other 5 embodiments, three polypeptides from Table 1 and/or Table 2 are provided in a composition of the invention.

In some embodiments, two, three, four, or more polypeptides from Table 1 and/or Table 2 (or immunogenic fragments thereof) are provided together as a conjugate. In some embodiments, two polypeptides from Table 1 and/or Table 2, or 10 three polypeptides from Table 1 and/or Table 2, are provided as a conjugate. In some embodiments, two, three, four, or more polypeptides from Table 1 and/or Table 2 are covalently bound to each other, e.g., as a fusion protein. In some embodiments, two, three, four, or more polypeptides from Table 1 and/or Table 2 are covalently bound to each other, e.g., as a fusion protein. In some embodiments, 15 two polypeptides from Table 1 and/or Table 2, or three polypeptides from Table 1 and/or Table 2, are covalently bound to each other, e.g. as a fusion protein.

In some embodiments, the compositions comprise two or more polypeptides selected from the group consisting of SEQ ID Nos. 1-38, and may contain or may not contain any other HSV-2 polypeptides.

20 In certain embodiments, Applicants provide polypeptides that are at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to a polypeptide encoded by a gene in Table 1 and/or Table 2, or a portion of said polypeptide. In certain embodiments, the homologous polypeptide is at least 8, 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 350, 400, 450, or 25 500 amino acids in length. In some embodiments, such as those described immediately above, the polypeptide is no more than 300, 350, 400, 450, or 500 amino acids in length.

An immunogenic composition may also comprise portions of said polypeptides and genes, for example deletion mutants, truncation mutants, 30 oligonucleotides, and peptide fragments. In some embodiments, the portions of said proteins are immunogenic.

The immunogenicity of a portion of a protein or a homolog thereof can be readily determined using the same assays that are used to determine the immunogenicity of the full-length protein. In some embodiments, the portion of the protein has substantially the same immunogenicity as the full-length proteins. In 5 some embodiments, the immunogenicity is no more than 10%, 20%, 30%, 40%, or 50% less than that of the full-length protein. The protein fragments may be, for example, linear, circular, or branched. In some embodiments, a protein or protein fragment comprises one or more non-natural amino acids (e.g. an amino acid other than the 20 typically found in natural proteins). A non-natural amino acid may have 10 an atypical side chain. In addition, peptidomimetics may be used; these may incorporate alterations to the peptide backbone.

Some embodiments of the polypeptide composition described herein include an immunogenic polypeptide that contains a membrane translocating sequence (MTS), to facilitate introduction of the polypeptide into the mammalian cell and 15 subsequent stimulation of the cell-mediated immune response. Exemplary membrane translocating sequences include hydrophobic region in the signal sequence of Kaposi fibroblast growth factor, the MTS of α -synuclein, β -synuclein, or γ -synuclein, the third helix of the Antennapedia homeodomain, SN50, integrin β 3 h-region, HIV Tat, pAntp, PR-39, abaecin, apidaecin, Bac5, Bac7, *P. berghei* CS 20 protein, and those MTSs described in US Patents 6,248,558, 6,432,680 and 6,248,558.

In certain embodiments, the immunogenic polypeptide is conjugated (i.e. covalently bound) to another molecule. This may, for example, increase the half-life, solubility, bioavailability, or immunogenicity of the antigen. Molecules that 25 may be conjugated to an immunogenic polypeptide include a carbohydrate, biotin, poly(ethylene glycol) (PEG), polysialic acid, N-propionylated polysialic acid, nucleic acids, polysaccharides, and PLGA. There are many different types of PEG, ranging from molecular weights of below 300 g/mol to over 10,000,000 g/mol. PEG chains can be linear, branched, or with comb or star geometries.

30

B. Immunogenic HSV-2 polypeptides and nucleic acids for use in vaccines

In certain embodiments, one or more, e.g. two, three, four, or more immunogenic fragments or variants thereof are provided in a mixture. For example, a vaccine formulation may comprise any one or more of SEQ ID NOS: 1-26.

In certain embodiments, a vaccine formulation may comprise any one, two, or three of ICP4, ICP4.2, gL2, gD2 Δ TMR and gD2 (SEQ ID NOS: 1-5), or immunogenic fragment(s) thereof. In certain embodiments, combinations contain polypeptides or immunogenic fragments from only one of ICP4 (SEQ ID NO 1) and ICP4.2 (SEQ ID NO 2). In other embodiments, combinations contain polypeptides or immunogenic fragments from only one of gD2 Δ TMR (SEQ ID NO:4) and gD2 (SEQ ID NO:5).

Exemplary combinations of ICP4, ICP4.2, gL2, gD2 Δ TMR and gD2 include:

Two antigen combinations	
ICP4 SEQ ID NO: 1	gL2 SEQ ID NO: 3
ICP4 SEQ ID NO: 1	gD2 Δ TMR SEQ ID NO: 4
ICP4 SEQ ID NO: 1	gD2 SEQ ID NO: 5
ICP4.2 SEQ ID NO: 2	gL2 SEQ ID NO: 3
ICP4.2 SEQ ID NO: 2	gD2 Δ TMR SEQ ID NO: 4
ICP4.2 SEQ ID NO: 2	gD2 SEQ ID NO: 5
gL2 SEQ ID NO: 3	gD2 Δ TMR SEQ ID NO: 4
gL2 SEQ ID NO: 3	gD2 SEQ ID NO: 5

Three antigen combinations		
ICP4 SEQ ID NO: 1	gL2 SEQ ID NO: 3	gD2 Δ TMR SEQ ID NO: 4
ICP4.2 SEQ ID NO: 2	gL2 SEQ ID NO: 3	gD2 Δ TMR SEQ ID NO: 4
ICP4 SEQ ID NO: 1	gL2 SEQ ID NO: 3	gD2 SEQ ID NO: 5
ICP4.2 SEQ ID NO: 2	gL2 SEQ ID NO: 3	gD2 SEQ ID NO: 5

The individual antigens and combinations described above can also include additional peptides from or derived from HSV-2, such as polypeptides comprising sequences selected from SEQ ID NO:6-26 or immunogenic fragments thereof.

5 **1. *ICP4 (SEQ ID NO: 1) encoded by RS1***

RS1 encodes ICP4, a transcriptional transactivator that may interact with and recruit specific components of the general transcription machinery to viral promoters and stabilize their formation for transcription initiation. ICP4 contains distinct domains for transactivation/phosphorylation (approximately spanning acid residues 10 150-200 of SEQ ID NO:1), DNA binding (approximately spanning residues 380-540 of SEQ ID NO:1), nuclear localization (approximately spanning residues 630-730 of SEQ ID NO:1), and late regulatory transactivation (approximately spanning residues 1220-1319 of SEQ ID NO:1). The DNA and protein sequence of RS1 may be found by searching for RS1 in the publicly available database, Entrez Gene (on the NCBI 15 NIH web site on the World Wide Web, at www.ncbi.nlm.nih.gov/sites/entrez?db=gene), in the Human herpesvirus 2 complete genome.

In some embodiments, vaccines against HSV-2 include a polypeptide containing at least 20 consecutive amino acid residues selected from residues 383-20 766 of ICP4 (SEQ ID NO: 1), but no more than 1000 amino acids of ICP4 (SEQ ID NO: 1). The polypeptide may also be a variant of the at least 20 residue fragment.

In certain embodiments, the polypeptide includes no more than 950, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450 or even 400 consecutive amino acids from ICP4. Exemplary polypeptides correspond approximately to amino acids 25 residues of full-length ICP4 as follows: 383-766 (RS1.2); 1-400 (RS1.1); 750-1024 (RS1.3.1); 1008-1319 (RS1.3.2); 750-1319 (RS1.3); 280-785 (RS1.4 comprising the full DNA binding region); 680-1319 (RS1.5 comprising the glycosylase/C-terminal region); 208-1319 (RS1.6 which may also comprise a Met residue at the N-term end); 1-380 plus 545-1319 (RS1.7, in which a region spanning approximately 30 residues 381-544 is deleted, removing the DNA binding regions); 1-785 plus 870-1319 (RS1.8, in which a region spanning approximately residues 786-869 is deleted,

removing the nuclear localization domain), or 1-766, 383-1318, 100-750, 400-1300, 250-766, 383-900 of ICP4 (SEQ ID NO. 1) and the like.

2. ICP4 internal fragment ICP4.2 (SEQ ID NO: 2) encoded by RS1.2

5 RS1.2 encodes a 391 amino acid fragment of ICP4, denoted ICP4.2.

In specific embodiments, vaccines against HSV-2 include a polypeptide containing from 50 to all 391 amino acids residues of ICP4.2 (SEQ ID NO: 2), such as from 100 to 391, 200 to 391 or 250 to 350 residues. In particular embodiments, the polypeptide includes all of ICP4.2 (SEQ ID NO: 2) or is ICP4.2 (SEQ ID NO: 2) 10 itself. These polypeptides may, for example, include the full length or fragments of ICP4.2 (SEQ ID NO:2) described herein with amino acids residues 1-382 or 767-1318 of ICP4 (SEQ ID NO. 1) or fragments thereof, which, in certain embodiments, are consecutive with the amino acid residues of ICP4.2 being used. Exemplary 15 fragments that combine the residues of SEQ ID NO:2 with select residues from 1-382 or 767-1318 of SEQ ID NO:1 are described above.

An immunogenic fragment of ICP4.2 comprises at least one immunogenic portion, as measured experimentally or identified by algorithm. Peptides identified by such methods include the following:

	GLAHVAAAV (SEQ ID NO:47)
20	FISGSVARA (SEQ ID NO:48)
	QYALITRLL (SEQ ID NO:49)
	RYDRAQKGF (SEQ ID NO:50)
	GYAMAAGR (SEQ ID NO:51)
	PPHADAPRL (SEQ ID NO:52)
25	KPAAAAAPL (SEQ ID NO:53)
	SEAAVAAV (SEQ ID NO:54)
	FGWGLAHV (SEQ ID NO:55)
	YALITRLLY (SEQ ID NO:56)
	ALPRSPRLL (SEQ ID NO:57)
30	DLLFQNQSL (SEQ ID NO:58)
	ADLLFQNQS (SEQ ID NO:59)

ARNSSSFIS (SEQ ID NO:60)
QACFRISGA (SEQ ID NO:61)
FVRDALVLM (SEQ ID NO:62)
FDGDLAAVP (SEQ ID NO:63)
5 GLGDSRPGL (SEQ ID NO:64)
WAPELGDA (SEQ ID NO:65)
ECLAACRG (SEQ ID NO:66)
RAWLRELRF (SEQ ID NO:67).

10 Thus, in some aspects, this application provides an immunogenic fragment of ICP4.2. The fragments, in some instances, are close in size to the full-length polypeptide. For example, they may lack at most one, two, three, four, five, ten, or twenty amino acids from one or both termini. In other embodiments, the fragment is 100-391 amino acids in length, or 150-391, or 200-391, or 250-391 amino acids in 15 length. Other exemplary fragments are amino acid residues 1-350, 1-300, 1-250, 1-200, 1-150, 1-100, 1-50, 50-391, 50-350, 50-300, 50-250, 50-200, 50-150, 50-100, 100-391, 100-350, 100-300, 100-250, 100-200, 100-150, 150-391, 150-350, 150-300, 150-250, 150-200, 200-391, 200-350, 200-300, 200-250, 250-391, 250-350, 250-300, 300-391 and 350-391. The fragments described above or sub-fragments 20 thereof (e.g., fragments of 8-50, 8-30, or 8-20 amino acid residues) preferably have one of the biological activities described below, such as increasing the T cell response by at least 1.5 fold or 2 fold. A fragment may be used as the polypeptide in the vaccines described herein or may be fused to another protein, protein fragment or a polypeptide.

25 In certain aspects, this application provides immunogenic polypeptides with at least 90%, 95%, 97%, 98%, 99%, or 99.5% identity to ICP4.2 or an immunogenic fragment thereof.

3. Glycoprotein L-2 (SEQ ID NO: 3) encoded by UL1

30 UL1 encodes Glycoprotein L-2 (gL2), a heterodimer glycoprotein that is required for the fusion of viral and cellular membranes and enables the virus to enter

the host cell. The DNA and protein sequence of UL1 may be found by searching in the publicly available database, Entrez Gene (on the NCBI NIH web site on the World Wide Web, at www.ncbi.nlm.nih.gov/sites/entrez?db=gene), in the Human herpesvirus 2 complete genome.

5 In some embodiments, vaccines against HSV-2 include a polypeptide containing at least 20 consecutive amino acid residues selected from residues 1-224 of gL2 (SEQ ID NO: 3), but no more than 224 amino acids of gL2 (SEQ ID NO: 3). The polypeptide may also be a variant of the at least 20 residue fragment.

10 In some embodiments, the polypeptide is at least 85% identical to a fragment of 200-250 amino acids of SEQ ID NO: 3.

In certain embodiments, the polypeptide includes no more than 200 or 100 consecutive amino acids from gL2. Exemplary polypeptides are amino acids residues 1-20, 21-40, 41-60, of 61-80, 81-100, 101-120, 121-140, 141-160, 161-180, 181-200, 201-221 of gL2 (SEQ ID NO. 3) and the like.

15 In other aspects, this application provides an immunogenic fragment of gL2. An immunogenic fragment of gL2 comprises at least one immunogenic portion, as measured experimentally or identified by algorithm. Peptides identified by such methods include the following:

AYLVNPFLF (SEQ ID NO: 100)
20 PFLFAAGFL (SEQ ID NO: 101)
TEYVLRSVI (SEQ ID NO: 102)
GSQATEYVL (SEQ ID NO: 103)
RIDGIFLRY (SEQ ID NO: 104)
FLEDLSHSV (SEQ ID NO: 105)
25 YVLRSVIAK (SEQ ID NO: 106)
YVLRSVIAK (SEQ ID NO: 107)
AYLVNPFLF (SEQ ID NO: 108)
ETTTRRALY (SEQ ID NO: 109)
RIDGIFLRY (SEQ ID NO: 110)
30 YLVNPFLFA (SEQ ID NO: 111)
FVCLFGLVV (SEQ ID NO: 112)

LYKEIRDAL (SEQ ID NO: 113)
GLDTFLWDR (SEQ ID NO: 114)
RVS PTRGRR (SEQ ID NO: 115)
YVLR SVIAK (SEQ ID NO: 115)
5 GLDTFLWDR (SEQ ID NO: 116)
DILRVPCM (SEQ ID NO: 117)
DRHAQRAYL (SEQ ID NO: 118)

4. **Glycoprotein D-2 (SEQ ID NO: 5) encoded by US6 and internally-deleted**
10 **Glycoprotein D-2 (SEQ ID NO:4) encoded by US6ΔTMR**

US6 encodes envelope glycoprotein D-2 (gD2), an envelope glycoprotein that binds to host cell entry receptors and may trigger fusion of the virus with the host membrane. The gD2 protein has several distinct domains, including a signal domain (amino acid residues 1-25) which is cleaved from the mature protein, and a 15 transmembrane domain (spanning approximately amino acids residues 340-363). The DNA and protein sequence of US6 may be found by searching in the publicly available database, Entrez Gene (on the NCBI NIH web site on the World Wide Web, at www.ncbi.nlm.nih.gov/sites/entrez?db=gene), in the Human herpesvirus 2 complete genome.

20 In some embodiments, vaccines against HSV-2 include a polypeptide comprising gD2 that is missing all or part of the transmembrane domain (which spans approximately amino acids residues 340-363 inclusive) as well as the signal sequence. In other embodiments, the deleted region may additionally include 5-10 amino acids of the sequence flanking the transmembrane domain. The deleted 25 region may also comprise a portion of the transmembrane domain, for example at least 3 amino acids between residues 340-363. In some embodiments, at least one residue in the transmembrane domain has been modified, deleted or substituted, such that the transmembrane domain is no longer functional. For example, a variant may have its internal deletion begin at amino acid residue 336, 337, 338, 339, 340, 341, 30 342, 343, 344, 345 or 346 and end at amino acid residue 358, 359, 360, 361, 362, 363, 364, 365, 366, 367 or 368.

A construct encoding gD2 which is missing amino acid residues 340-363 (the transmembrane domain) is called US6 Δ TMR (SEQ ID NO: 40). The corresponding protein is denoted gD2 Δ TMR (SEQ ID NO:4). In other

5 deletion in a portion of the transmembrane domain, and/or may comprise a deletion in the flanking sequence outside of the transmembrane domain.

In other aspects, this application provides an immunogenic fragment of gD2 or gD2 Δ TMR. An immunogenic fragment of gD2 or gD Δ TMR comprises at least one immunogenic portion, as measured experimentally or identified by algorithm.

10 Peptides identified by such methods include the following:

ALAGSTLAV (SEQ ID NO.68)

LLEDPAGTV (SEQ ID NO.69)

VIGGIAFWV (SEQ ID NO.70)

TVYYAVLER (SEQ ID NO.71)

15 KYALADPSL (SEQ ID NO.72)

AFETAGTYL (SEQ ID NO.73)

APSNPGLII (SEQ ID NO.74)

IPITVYYAV (SEQ ID NO.75)

APPSHQPLF (SEQ ID NO.76)

20 FLMHAPAFE (SEQ ID NO.77)

FSAVSEEDNL (SEQ ID NO.78)

VYYAVLER (SEQ ID NO.79)

IGMLPRFI (SEQ ID NO.80)

25 FLMHAPAFE (SEQ ID NO.82)

NLGFLMHAP (SEQ ID NO.83)

VIGGIAFWV (SEQ ID NO.84)

GIAFWVRRR (SEQ ID NO.85)

30 RTOPRWSYY (SEQ ID NO 87)

IAFWVBRRA (SEQ ID NO 88)

J VIGGIAEW (SEQ ID NO 89)

FWVRRRAQM (SEQ ID NO.90)
PYTSTLLPP (SEQ ID NO.91)
VGTAAALLVV (SEQ ID NO.92)
TAALLVVAV (SEQ ID NO.93)
5 TSTLLPPEL (SEQ ID NO.94)
GTVSSQIPP (SEQ ID NO.95)
TAGTYLRLV (SEQ ID NO.96)
GTVVDSIGM (SEQ ID NO.97)
AFWVRRRAQ (SEQ ID NO.98)
10 RVYHIQPSL (SEQ ID NO.99)

Thus, in some aspects, this application provides an immunogenic fragment of gD2 (SEQ ID NO:5) or gDΔTMR (SEQ ID NO: 4). The fragments, in some instances, are close in size to the full-length polypeptide. For example, they may lack at most one, two, three, four, five, ten, or twenty amino acids from one or both 15 termini. In other embodiments, the fragment is 100-393 amino acids in length, or 150-393, or 200-393, or 250-393 amino acids in length. Other exemplary fragments are amino acid residues 1-350, 1-300, 1-250, 1-200, 1-150, 1-100, 1-50, 50-393, 50-350, 50-300, 50-250, 50-200, 50-150, 50-100, 100-393, 100-350, 100-300, 100-250, 100-200, 100-150, 150-393, 150-350, 150-300, 150-250, 150-200, 200-383, 200-200, 200-300, 200-250, 250-393, 250-350, 250-300, 300-393 and 350-393. The 20 fragments described above or sub-fragments thereof (e.g., fragments of 8-50, 8-30, or 8-20 amino acid residues) preferably have one of the biological activities described below, such as increasing the T cell response by at least 1.5 fold or 2 fold. A fragment may be used as the polypeptide in the vaccines described herein or may 25 be fused to another protein, protein fragment or a polypeptide.

In other embodiments, the polypeptide comprises the entire sequence of SEQ ID NO: 4 or SEQ ID NO:5, or consists of the entire sequence of SEQ ID NO: 4 or SEQ ID NO:5. In certain embodiments, an immunogenic fragment of gD2 retains all or part of the signal domain (amino acid residues 1-25) and/or the transmembrane 30 domain (amino acids residues 340-363).

In certain embodiments, polypeptides have less than 20%, 30%, 40%, 50%, 60% or 70% homology with human autoantigens. Examples of such autoantigens include UL6 from HSV-1 and gK or UL53 from HSV-2.

In certain aspects, this application provides immunogenic polypeptides with 5 at least 90%, 95%, 97%, 98%, 99%, or 99.5% identity to gD Δ TMR, or an immunogenic fragment thereof.

C. Additional features of HSV-2 polypeptides

Typically, the polypeptides present in the vaccine formulations or 10 pharmaceutical compositions described herein are immunogenic, either alone or as a variant, which includes polypeptides fused to another polypeptide or mixed with or complexed to an adjuvant. Variants also include sequences with less than 100% sequence identity, as described herein. In addition, one may use fragments, precursors and analogs that have an appropriate immunogenicity.

15 These polypeptides may be immunogenic in mammals, for example, mice, guinea pigs, or humans. An immunogenic polypeptide is typically one capable of raising a significant immune response in an assay or in a subject. Alternatively, an immunogenic polypeptide may (i) induce production of antibodies, e.g., neutralizing antibodies, that bind to the polypeptide (ii) induce T_H1 immunity, (iii) activate the 20 CD8+ CTL response, for example by increasing CD8+ T cells and/or increasing localization of CD8+ T cells to the site of infection or reinfection, (iv) induce T_H17 immunity, and/or (v) activate innate immunity. In some embodiments, an immunogenic polypeptide causes the production of a detectable amount of antibody specific to that antigen.

In certain embodiments, polypeptides have less than 20%, 30%, 40%, 50%, 60% or 70% homology with human autoantigens.

A polypeptide may comprise one or more immunogenic portions and one or more non-immunogenic portions. The immunogenic portions may be identified by 5 various methods, including protein microarrays, ELISPOT/ELISA techniques, and/or specific assays on different deletion mutants (e.g., fragments) of the polypeptide in question. Immunogenic portions may also be identified by computer algorithms. Some such algorithms, like EpiMatrix (produced by EpiVax), use a computational matrix approach. Other computational tools for identifying antigenic 10 epitopes include PEPVAC (Promiscuous EPitope-based VACCine, hosted by Dana Farber Cancer Institute on the world wide web at immunax.dfci.harvard.edu/PEPVAC), MHCpred (which uses a partial least squares approach and is hosted by The Jenner Institute on the world wide web at www.jenner.ac.uk/MHCpred), and Syfpeithi, hosted on the world wide web at 15 www.syfpeithi.de/.

In some embodiments, the vaccine or pharmaceutical composition may comprise fusion proteins and/or fusion DNA constructs. The underlying DNA sequences above may be modified in ways that do not affect the sequence of the protein product. For instance, the DNA sequence may be codon-optimized to 20 improve expression in a host such as *E. coli* or an insect cell line (e.g. using the baculovirus expression system) or mammalian (e.g. Chinese Hamster Ovary) cell line. In particular embodiments, such as when smaller related polypeptides, including those having a molecular weight less than about 5000 daltons, e.g., 1500 to 5000 daltons, are used, modification may be useful in eliciting the desired 25 immune response. For example, the smaller polypeptides can be conjugated to an appropriate immunogenic carrier such as proteins from other pathogenic organisms or viruses (e.g., tetanus toxoid), large proteins (e.g., keyhole limpet hemocyanin) or the like. Conjugation may be direct or indirect (e.g., via a linker). In other particular embodiments, a fusion protein may comprise a polypeptide disclosed 30 above or an immunogenic fragment or variant thereof and a tag. A tag may be N-terminal or C-terminal. For instance, tags may be added to the nucleic acid or polypeptide to facilitate purification, detection, solubility, or confer other desirable

characteristics on the protein or nucleic acid. For instance, a purification tag may be a peptide, oligopeptide, or polypeptide that may be used in affinity purification. Examples include His, GST, TAP, FLAG, myc, HA, MBP, VSV-G, thioredoxin, V5, avidin, streptavidin, BCCP, Calmodulin, Nus, S tags, lipoprotein D, and β 5 galactosidase. In some embodiments, the fused portion is short. Thus, in some instances, the fusion protein comprises no more than 1, 2, 3, 4, 5, 10, 20, or 50 additional amino acids on one or both termini of a polypeptide described above, such as consecutive amino acids from any of the polypeptides in Table 1.

In some embodiments, tags, secretion signals, or other signal sequences may 10 be added to the C-terminal end and/or to the N-terminal end of the polypeptide. Tags may be used to aid in purification of expressed polypeptides. Exemplary tags include HHHHHH (SEQ ID NO: 130) and MSYYHHHHHH (SEQ ID NO: 131). Secretion signals may be optimized for use with non-mammalian cells, such as 15 insect cells. An exemplary secretion signal is MKFLVNVALVFMVVYISYIYA (SEQ ID NO: 132).

A detection tag may be used to detect the tag and, consequently, any amino acid sequence fused to it. Detection tags include fluorescent proteins, proteins that bind a fluorescent label, and proteins that bind an electron-dense moiety. Examples of fluorescent proteins include dsRed, mRFP, YFP, GFP, CFP, BFP, and Venus. An 20 example of a protein that binds a fluorescent or electron-dense label is FlAsH.

Another aspect disclosed herein is an antibody preparation generated against a composition of the invention (e.g., a composition comprising one or more or two or more of the polypeptides listed in Table 1). Any of a variety of antibodies are included. Such antibodies include, e.g., polyclonal, monoclonal, recombinant, 25 humanized or partially humanized, single chain, Fab, and fragments thereof, etc. The antibodies can be of any isotype, e.g., IgA, IgG, various IgG isotypes such as IgG₁, IgG₂, IgG_{2a}, IgG_{2b}, IgG₃, IgG₄, etc.; and they can be from any animal species that produces antibodies, including goat, rabbit, mouse, chicken or the like. In some embodiments, Fab molecules are expressed and assembled in a genetically 30 transformed host like *E. coli*. A lambda vector system is available thus to express a

population of Fab's with a potential diversity equal to or exceeding that of subject generating the predecessor antibody. See Huse *et al.* (1989), *Science* 246, 1275-81.

D. Components of vaccines and pharmaceutical compositions

5 In certain embodiments, the vaccines and pharmaceutical compositions comprise one or more of the polypeptides and nucleic acids described above and one or more of the following: an adjuvant, stabilizer, buffer, surfactant, controlled release component, salt, preservative, and an antibody specific to said antigen.

1. Adjuvants

10 The vaccine formulations and pharmaceutical compositions described herein may each include an adjuvant. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action: vaccine delivery systems and immunostimulatory adjuvants (see, *e.g.*, Singh *et al.*, *Curr. HIV Res.* 1:309-20, 2003). Vaccine delivery systems are often particulate formulations, *e.g.*, emulsions, 15 microparticles, immune-stimulating complexes (ISCOMs), which may be, for example, particles and/or matrices, and liposomes. In contrast, immunostimulatory adjuvants are sometimes derived from pathogens and can represent pathogen associated molecular patterns (PAMP), *e.g.*, lipopolysaccharides (LPS), monophosphoryl lipid (MPL), or CpG-containing DNA, which activate cells of the 20 innate immune system.

Alternatively, adjuvants may be classified as organic and inorganic. Inorganic adjuvants include alum salts such as aluminum phosphate, amorphous aluminum hydroxyphosphate sulfate, and aluminum hydroxide, which are commonly used in human vaccines. Organic adjuvants comprise organic molecules 25 including macromolecules. An example of an organic adjuvant is cholera toxin.

Adjuvants may also be classified by the response they induce, and adjuvants can activate more than one type of response. In some embodiments, the adjuvant induces the activation of CD4+ T cells. The adjuvant may induce activation of T_H1 cells and/or activation of T_H17 cells and/or activation of T_H2 cells. Alternately, the 30 adjuvant may induce activation of T_H1 cells and/or T_H17 cells but not activation of

T_{H2} cells, or vice versa. In some embodiments, the adjuvant induces activation of CD8+ T cells. In further embodiments, the adjuvant may induce activation of Natural Killer T (NKT) cells. In some embodiments, the adjuvant induces the activation of T_{H1} cells or T_{H17} cells or T_{H2} cells. In other embodiments, the 5 adjuvant induces the activation of B cells. In yet other embodiments, the adjuvant induces the activation of antigen-presenting cells. These categories are not mutually exclusive; in some cases, an adjuvant activates more than one type of cell.

In certain embodiments, an adjuvant is a substance that increases the 10 numbers or activity of antigen presenting cells such as dendritic cells. In certain embodiments, an adjuvant promotes the maturation of antigen presenting cells such as dendritic cells. In some embodiments, the adjuvant is or comprises a saponin. Typically, the saponin is a triterpene glycoside, such as those isolated from the bark of the Quillaja saponaria tree. A saponin extract from a biological source can be further fractionated (e.g., by chromatography) to isolate the portions of the extract 15 with the best adjuvant activity and with acceptable toxicity. Typical fractions of extract from Quillaja saponaria tree used as adjuvants are known as fractions A and C. An exemplary saponin adjuvant is QS-21, which is available from Antigenics. QS-21 is an oligosaccharide-conjugated small molecule. Optionally, QS-21 may be admixed with a lipid such as 3D-MPL or cholesterol.

20 A particular form of saponins that may be used in vaccine formulations described herein is immunostimulating complexes (ISCOMs). ISCOMs are an art-recognized class of adjuvants, that generally comprise Quillaja saponin fractions and lipids (e.g., cholesterol and phospholipids such as phosphatidyl choline). In certain embodiments, an ISCOM is assembled together with a polypeptide or nucleic acid of interest. However, different saponin fractions may be used in different ratios. In 25 addition, the different saponin fractions may either exist together in the same particles or have substantially only one fraction per particle (such that the indicated ratio of fractions A and C are generated by mixing together particles with the different fractions). In this context, "substantially" refers to less than 20%, 15%, 10%, 5%, 4%, 3%, 2% or even 1%. Such adjuvants may comprise fraction A and fraction C 30 mixed into a ratio of 70-95 A: 30-5 C, such as 70 A : 30 C to 75 A : 25 C, 75 A : 25 C to 80 A : 20 C, 80 A : 20 C to 85 A : 15 C, 85 A : 15 C to 90 A : 10 C, 90

A : 10 A to 95 A : 5 C, or 95 A : 5 C to 99 A : 1 C. ISCOMatrix, produced by CSL, and AbISCO 100 and 300, produced by Isconova, are ISCOM matrices comprising saponin, cholesterol and phospholipid (lipids from cell membranes), which form cage-like structures typically 40-50 nm in diameter. Posintro, produced by Nordic 5 Vaccines, is an ISCOM matrix where the immunogen is bound to the particle by a multitude of different mechanisms, e.g. electrostatic interaction by charge modification, incorporation of chelating groups or direct binding.

In some embodiments, the adjuvant is a TLR ligand. TLRs are proteins that may be found on leukocyte membranes, and recognize foreign antigens (including 10 microbial antigens). An exemplary TLR ligand is IC-31, which is available from Intercell. IC31 comprises an anti-microbial peptide, KLK, and an immunostimulatory oligodeoxynucleotide, ODN1a. IC31 has TLR9 agonist activity. Another example is CpG-containing DNA, and different varieties of CpG-containing 15 DNA are available from Prizer (Coley): VaxImmune is CpG 7909 (a (CpG)-containing oligodeoxy-nucleotide), and Actilon is TLR9 agonist, CpG 10101 (a (CpG)-containing oligodeoxy-nucleotide).

In some embodiments, the adjuvant is a nanoemulsion. One exemplary 20 nanoemulsion adjuvant is Nanostat Vaccine, produced by Nanobio. This nanoemulsion is a high-energy, oil-in-water emulsion. This nanoemulsion typically has a size of 150-400 nanometers, and includes surfactants to provide stability. More information about Nanostat can be found in US Patents 6,015,832, 6,506,803, 6,559,189, 6,635,676, and 7,314,624.

Adjuvants may be covalently bound to antigens (e.g., the polypeptides described above). In some embodiments, the adjuvant may be a protein which 25 induces inflammatory responses through activation of antigen-presenting cells (APCs). In some embodiments, one or more of these proteins can be recombinantly fused with an antigen of choice, such that the resultant fusion molecule promotes dendritic cell maturation, activates dendritic cells to produce cytokines and chemokines, and ultimately, enhances presentation of the antigen to T cells and 30 initiation of T cell responses (see Wu et al., Cancer Res 2005; 65(11), pp 4947-

4954). Other exemplary adjuvants that may be covalently bound to antigens comprise polysaccharides, synthetic peptides, lipopeptides, and nucleic acids.

The adjuvant can be used alone or in combination of two or more kinds.

Adjuvants may be directly conjugated to antigens. Adjuvants may also be combined 5 to increase the magnitude of the immune response to the antigen. Typically, the same adjuvant or mixture of adjuvants is present in each dose of a vaccine. Optionally, however, an adjuvant may be administered with the first dose of vaccine and not with subsequent doses (i.e. booster shots). Alternatively, a strong adjuvant may be administered with the first dose of vaccine and a weaker adjuvant or lower 10 dose of the strong adjuvant may be administered with subsequent doses. The adjuvant can be administered before the administration of the antigen, concurrent with the administration of the antigen or after the administration of the antigen to a subject (sometimes within 1, 2, 6, or 12 hours, and sometimes within 1, 2, or 5 days). Certain adjuvants are appropriate for human patients, non-human animals, or 15 both.

2. Additional components of vaccines and pharmaceutical compositions

In addition to the antigens and the adjuvants described above, a vaccine formulation or pharmaceutical composition may include one or more additional components.

20 In certain embodiments, the vaccine formulation or pharmaceutical composition may include one or more stabilizers such as sugars (such as sucrose, glucose, or fructose), phosphate (such as sodium phosphate dibasic, potassium phosphate monobasic, dibasic potassium phosphate, or monosodium phosphate), glutamate (such as monosodium L-glutamate), gelatin (such as processed gelatin, hydrolyzed gelatin, or porcine gelatin), amino acids (such as arginine, asparagine, 25 histidine, L-histidine, alanine, valine, leucine, isoleucine, serine, threonine, lysine, phenylalanine, tyrosine, and the alkyl esters thereof), inosine, or sodium borate.

In certain embodiments, the vaccine formulation or pharmaceutical composition includes one or more buffers such as a mixture of sodium bicarbonate 30 and ascorbic acid. In some embodiments, the vaccine formulation may be administered in saline, such as phosphate buffered saline (PBS), or distilled water.

In certain embodiments, the vaccine formulation or pharmaceutical composition includes one or more surfactants such as polysorbate 80 (Tween 80), Triton X-100, Polyethylene glycol tert-octylphenyl ether t-Octylphenoxypolyethoxyethanol 4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (TRITON X-100); Polyoxyethylenesorbitan monolaurate Polyethylene glycol sorbitan monolaurate (TWEEN 20); and 4-(1,1,3,3-Tetramethylbutyl)phenol polymer with formaldehyde and oxirane (TYLOXAPOL). A surfactant can be ionic or nonionic.

10 In certain embodiments, the vaccine formulation or pharmaceutical composition includes one or more salts such as sodium chloride, ammonium chloride, calcium chloride, or potassium chloride.

15 In certain embodiments, a preservative is included in the vaccine. In other embodiments, no preservative is used. A preservative is most often used in multi-dose vaccine vials, and is less often needed in single-dose vaccine vials. In certain embodiments, the preservative is 2-phenoxyethanol, methyl and propyl parabens, benzyl alcohol, and/or sorbic acid.

20 In certain embodiments, the vaccine formulation or pharmaceutical composition is a controlled release formulation.

20 E. DNA vaccines

25 In certain aspects, the vaccine comprises one of the nucleic acids disclosed herein. When a nucleic acid vaccine is administered to a patient, the corresponding gene product (such as a desired antigen) is produced in the patient's body. In some embodiments, nucleic acid vaccine vectors that include optimized recombinant polynucleotides can be delivered to a mammal (including humans) to induce a therapeutic or prophylactic immune response. The nucleic acid may be, for example, DNA, RNA, or a synthetic nucleic acid. The nucleic acid may be single stranded or double stranded.

30 Nucleic acid vaccine vectors (e.g., adenoviruses, liposomes, papillomaviruses, retroviruses, etc.) can be administered directly to the mammal for

transduction of cells *in vivo*. The nucleic acid vaccines can be formulated as pharmaceutical compositions for administration in any suitable manner, including parenteral administration.

5 In determining the effective amount of the vector to be administered in the treatment or prophylaxis of an infection or other condition, the physician evaluates vector toxicities, progression of the disease, and the production of anti-vector antibodies, if any. Often, the dose equivalent of a naked nucleic acid from a vector is from about 1 μ g to 1 mg for a typical 70 kilogram patient, and doses of vectors used to deliver the nucleic acid are calculated to yield an equivalent amount of therapeutic 10 nucleic acid. Administration can be accomplished via single or divided doses. The toxicity and therapeutic efficacy of the nucleic acid vaccine vectors can be determined using standard pharmaceutical procedures in cell cultures or experimental animals.

15 A nucleic acid vaccine can contain DNA, RNA, a modified nucleic acid, or a combination thereof. In some embodiments, the vaccine comprises one or more cloning or expression vectors; for instance, the vaccine may comprise a plurality of expression vectors each capable of autonomous expression of a nucleotide coding region in a mammalian cell to produce at least one immunogenic polypeptide. An expression vector often includes a eukaryotic promoter sequence, such as the 20 nucleotide sequence of a strong eukaryotic promoter, operably linked to one or more coding regions. The compositions and methods herein may involve the use of any particular eukaryotic promoter, and a wide variety are known; such as a CMV or RSV promoter. The promoter can be, but need not be, heterologous with respect to the host cell. The promoter used may be a constitutive promoter.

25 A vector useful in the present compositions and methods can be circular or linear, single-stranded or double stranded and can be a plasmid, cosmid, or episome. In a suitable embodiment, each nucleotide coding region is on a separate vector; however, it is to be understood that one or more coding regions can be present on a single vector, and these coding regions can be under the control of a single or 30 multiple promoters.

Numerous plasmids may be used for the production of nucleic acid vaccines. Suitable embodiments of the nucleic acid vaccine employ constructs using the plasmids VR1012 (Vical Inc., San Diego Calif.), pCMV1.UBF3/2 (S. Johnston, University of Texas) or pcDNA3.1 (InVitrogen Corporation, Carlsbad, Calif.) as the vector. In addition, the vector construct can contain immunostimulatory sequences (ISS), such as unmethylated dCpG motifs, that stimulate the animal's immune system. The nucleic acid vaccine can also encode a fusion product containing the immunogenic polypeptide. Plasmid DNA can also be delivered using attenuated bacteria as delivery system, a method that is suitable for DNA vaccines that are administered orally. Bacteria are transformed with an independently replicating plasmid, which becomes released into the host cell cytoplasm following the death of the attenuated bacterium in the host cell.

An alternative approach to delivering the nucleic acid to an animal involves the use of a viral or bacterial vector. Examples of suitable viral vectors include adenovirus, polio virus, pox viruses such as alphaviruses, vaccinia, canary pox, and fowl pox, herpes viruses, including catfish herpes virus, adenovirus-associated vector, and retroviruses. Virus-like vectors include virosomes and virus-like particles. Exemplary bacterial vectors include attenuated forms of *Salmonella*, *Shigella*, *Edwardsiella ictaluri*, *Yersinia ruckerii*, and *Listeria monocytogenes*. In some embodiments, the nucleic acid is a vector, such as a plasmid, that is capable of autologous expression of the nucleotide sequence encoding the immunogenic polypeptide.

F. Use of Vaccines

The vaccines described herein may be used for prophylactic and/or therapeutic treatment of herpes, including HSV-1 and particularly HSV-2. The subject receiving the vaccination may be a male or a female, and may be a child or adult. In some embodiments, the subject being treated is a human. In other embodiments, the subject is a non-human animal.

30 1. *Prophylactic use*

In prophylactic embodiments, the HSV-2 vaccine is administered to a subject to induce an immune response that can help protect against the establishment of HSV-2.

In some embodiments, the vaccine compositions of the invention confer protective immunity, allowing a vaccinated individual to exhibit delayed onset of symptoms or reduced severity of symptoms (e.g., reduced number of lesions at the onset of infection), as the result of his/her exposure to the vaccine (e.g., a memory response). In certain embodiments, the reduction in severity of symptoms is at least 5 25%, 40%, 50%, 60%, 70%, 80% or even 90%. Some vaccinated individuals may 10 display no symptoms upon contact with HSV-2 or even no infection by HSV-2. Protective immunity is typically achieved by one or more of the following 15 mechanisms: mucosal, humoral, or cellular immunity. Mucosal immunity is primarily the result of secretory IgA (sIgA) antibodies on mucosal surfaces of the respiratory, gastrointestinal, and genitourinary tracts. The sIgA antibodies are generated after a series of events mediated by antigen-processing cells, B and T 20 lymphocytes, that result in sIgA production by B lymphocytes on mucosa-lined tissues of the body. Humoral immunity is typically the result of IgG antibodies and IgM antibodies in serum. For example, the IgG titer can be raised by 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 50-fold, or even 100-fold or more following administration of a vaccine formulation described herein. Cellular 25 immunity can be achieved through cytotoxic T lymphocytes or through delayed-type hypersensitivity that involves macrophages and T lymphocytes, as well as other mechanisms involving T cells without a requirement for antibodies. In particular, cellular immunity may be mediated by T_H1 cells or T_H17 cells. Activation of T_H1 cells can be measured by secretion of IFN- γ , relative to the level of IFN- γ released in response to a polypeptide that does not generate an immunologic response. In 30 certain embodiments, the amount of IFN- γ released is 1.5-fold, 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 50-fold or even 100-fold greater. The primary result of protective immunity is the destruction of HSV-2 viral particles or inhibition of HSV-2's ability to replicate. In some embodiments, the protective immunity conferred by presentation of antigen before exposure to HSV-2 will reduce the likelihood of seroconversion to an HSV-2-positive status.

The duration of protective immunity is preferably as long as possible. In certain embodiments, vaccine formulations produce protective immunity lasting six months, one year, two years, five years, ten years, twenty years or even a lifetime.

2. Therapeutic use

5 In therapeutic applications, the vaccine comprising a polypeptide or nucleic acid of the invention may be administered to a patient suffering from HSV-2, in an amount sufficient to treat the patient. Treating the patient, in this case, may refer to delaying or reducing symptoms of HSV-2 in an infected individual. In some embodiments, treating the patient refers to reducing the duration of lesions, reducing

10 the number of lesions, reducing the duration of symptoms per episode, and/or otherwise reducing the intensity of symptoms per episode. In certain embodiments, the vaccine reduces the duration or severity of mild symptoms; in some embodiments, the vaccine reduces the duration or severity of serious symptoms. In some embodiments, the vaccine reduces viral shedding and therefore the

15 transmissibility of HSV-2 from the vaccinated patient. In certain embodiments, the reductions described above are at least 25%, 30%, 40%, 50%, 60%, 70%, 80% or even 90%. In certain embodiments, the reductions described above include the complete cessation of symptoms, viral shedding and/or future outbreaks (e.g., by blocking the ability of the virus to establish latency in sensory ganglia).

20 In therapeutic embodiments, the HSV-2 vaccine is administered to an individual post-infection. The HSV-2 vaccine may be administered shortly after infection, e.g. before symptoms manifest, or may be administered during or after manifestation of symptoms. In some embodiments, the HSV-2 may prevent endogenous reactivation of earlier infection. In some embodiments, a postinfection vaccine could be administered to patients in high-risk groups.

The duration of therapeutic effects of a vaccine formulation disclosed herein is preferably as long as possible. In certain embodiments, vaccine formulations produce therapeutic effects lasting one month, two months, three months, six months, one year, two years, five years, ten years, twenty years or even a lifetime.

30 ***3. Assaying vaccination efficacy***

The efficacy of vaccination with the vaccines disclosed herein may be determined in a number of ways.

Vaccine efficacy may be assayed in various model systems. Suitable model systems used to study HSV-2 include a guinea pig model and a mouse model, as 5 described in the examples below. Briefly, the animals are vaccinated and then challenged with HSV-2 or the vaccine is administered to already-infected animals. The response of the animals to the HSV-2 challenge or the vaccine is then compared with control animals, using one of the measures described above. A similar assay could be used for clinical testing of humans. The treatment and prophylactic effects 10 described above represent additional ways of determining efficacy of a vaccine.

In addition, efficacy may be evaluated by *in vitro* immunization of naïve human peripheral blood mononuclear cells (PBMC), where APCs are exposed to the vaccine and then the APCs are co-cultured with naïve T cells from the same donor to evaluate the primary response to immunization in a test tube. An activation of the T- 15 cells by 1.5 fold, 2-fold, 5-fold, 10-fold, 20-fold, 50-fold or 100-fold or more relative to activation of T-cells using APCs not exposed to a vaccine, in certain embodiments, is considered an adequate response.

Vaccine efficacy may further be determined by viral neutralization assays. Briefly, animals are immunized and serum is collected on various days post- 20 immunization. Serial dilutions of serum are pre-incubated with virus during which time antibodies in the serum that are specific for the virus will bind to it. The virus/serum mixture is then added to permissive cells to determine infectivity by a plaque assay. If antibodies in the serum neutralize the virus, there are fewer plaques compared to the control group.

25

G. Uses of Pharmaceutical Compositions

1. *Defense against HSV infection*

The pharmaceutical compositions of the present disclosure are designed to 30 elicit an immune response against HSV-2. Compositions described herein may stimulate an innate immune response, an antibody response or a cell-mediated immune response, or a combination of these responses, in the subject to which it is administered. In some embodiments, the composition stimulates immune cells at

the peripheral site of infection or sensory ganglia, such as neutrophils, macrophages, and NK cells. The composition may stimulate infiltration by macrophages; production of antiviral compounds, such including nitric oxide, TNF- α , interferons (IFN), and interleukin 12 (IL-12) by neutrophils; and/or stimulation of NK cells to 5 produce IFN- γ . IL-2, IFN- α and IFN- β production may also be triggered by the polypeptides of the present composition, and are believed to aid in controlling infection.

In some embodiments, the composition comprises antigens that stimulate production of neutralizing antibodies. Neutralizing antibodies may target the 10 glycoproteins of the viral envelope, which mediate the interaction of virions with host cell and are responsible for attachment, binding, and entry of HSV-2 into cells. Accordingly, an exemplary composition comprises one or more glycoproteins described above or encoded by nucleic acids described above. Immunogenic antigens and/or epitopes as described herein may be administered separately, in 15 series, or in combination with one another.

In some embodiments, the composition elicits a cell-mediated response, which may involve CD4+ T cells, CD8+ T cells and/or production of antiviral cytokines. The composition may trigger IFN- γ secretion, for example through the 20 activation of the innate immune response, and mediate CD8+ T cell clearing of the virus. IFN- γ is also secreted by T_H1 cells, (T_H17 cells?) T_C cells, dendritic cells, and NK cells, and the composition may trigger IFN- γ secretion by any of these cell types. Such activity of CD8+ T cells may be cytolytic, or, alternately, may be 25 regulated by inhibitor molecules on the surface of the neurons which prevent neuronal killing. CD4+ and/or CD8+ T cells may play a role in maintaining latency of the virus, thus preventing reactivation. In some embodiments, the composition boosts a CD4+ T cell response and/or a CD8+ T cell response that prevents reactivation of the virus from its latent state.

In some embodiments, the composition blocks the ability of HSV to evade 30 the host immune response, or, alternately, boosts immune responses normally evaded by HSV. In some embodiments, the composition inhibits HSV-2 from shifting the immunological balance towards tolerance of HSV antigens. HSV-2 may

mediate tolerance through T_{H2} cells. First, HSV-2 may induce suppressor T cells, such as CD4+ CD25+ cells and Tr1 cells that secrete IL-10, a T_{H2} cytokine. T_{H2} cytokines downregulate costimulatory molecules and inhibit the maturation and function of antigen-presenting dendritic cells. In addition, infection with HSV-2 5 inhibits the maturation and migration of dendritic cells, which are essential for efficient CTL priming. Notably, T_{H2} cytokines are produced during recurrence of HSV-2 infection, in contrast to T_{H1} cytokines, which are produced during recurrence-free episodes. Thus, in certain embodiments, the compositions of the invention repress suppressor T cells and/or induce maturation or migration or both 10 of dendritic cells.

In some embodiments, methods of inducing an immune response against HSV-2 in a mammal comprise administering the compositions described above. The composition may be used to induce an immune response at different time points, such as before exposure to HSV-2, after initial infection with HSV-2, before 15 or after HSV-2 has established latency, before or after HSV-2 shedding occurs, and/or before or after recurrent outbreaks occur. In some embodiments, an immune response against HSV-2 may be induced at one or more of the timepoints above. The composition may induce a T_{H1} response and/or a T_{H17} response but not a T_{H2} response, or may activate the responses at the same time or at different times.

20 In some embodiments, administration of the composition reduces symptoms associated with initial infection, latency, or recurrent infection with HSV. Such a composition may reduce incidence and/or severity of lesions, sores, pain, irritation, itching, fever, malaise, headache, viral shedding, or prodromes associated with HSV infection or outbreak.

25 In some embodiments, one or more antibodies to antigens of HSV-2 may be administered to individuals in order to produce passive immunity. Passive immunity results from the transfer of active humoral immunity in the form of ready-made antibodies, from one individual to another. Passive immunization may be used when there is a high risk of infection and insufficient time for the body to develop its 30 own immune response, or to reduce the symptoms of ongoing or immunosuppressive diseases. Adoptive transfer of T cells may provide another

method of eliciting an immune response to HSV-2 antigens in patients. In one embodiment, autologous T cells may be expanded on APCs presenting the antigens derived from the polypeptides described above. Subsequently, the expanded HSV-2-specific T cells are transferred back into the patient from which the T cells were 5 derived.

2. Diagnostic uses

This application provides, *inter alia*, a rapid, inexpensive, sensitive, and specific method for detection of HSV-2 in patients. In this respect it should be useful to hospitals and physicians examining and treating patients with or at risk for 10 HSV-2 infection. As used herein, “patient” refers to an individual (such as a human) that either has an HSV-2 infection or has the potential to contract an HSV-2 infection.

In some embodiments, one may use an antibody against one of the polypeptides described herein, such as those of Table 1 and/or Table 2, to detect 15 HSV-2 in an individual. The instant disclosure also provides a method of phenotyping biological samples from patients suspected of having a HSV-2 infection that involves: (a) rendering a biological sample amenable to immunoassay, if necessary; (b) contacting the sample with an appropriate HSV-2-specific antibody or antigen-binding portion thereof under conditions that allow for binding of the 20 antibody or antigen-binding portion to an epitope of HSV-2; and (c) determining if the sample shows the presence of HSV-2 as compared to a control tissue; where if the test tissue shows the presence of HSV-2, the patient is identified as likely having a HSV-2 infection.

Alternatively, one may use the polypeptides described above to detect anti- 25 HSV-2 antibodies in an individual. The instant disclosure also provides a method of phenotyping biological samples from patients suspected of having a HSV-2 infection: (a) rendering a biological sample amenable to an affinity assay such as ELISA, if necessary; (b) contacting the sample with a HSV-2-specific antigen or portion thereof under conditions that allow for binding of the antigen to any host 30 antibodies present in the sample; and (c) determining if the sample shows the presence of HSV-2 as compared to a control tissue; wherein if the test tissue shows

the presence of HSV-2, the patient is identified as likely having a HSV-2 infection. The aforementioned test may be appropriately adjusted to detect other viral infections, for instance by using a homolog (from another viral species) of the proteins described above, such as in Table 1 and/or Table 2.

5 A number of methods for measuring antibody-antigen binding are known in the art, including ELISA (enzyme-linked immunosorbent assay), Western blotting, competition assay, and spot-blot. The detection step may be, for instance, chemiluminescent, fluorescent, or colorimetric. One suitable method for measuring antibody-protein binding is the Luminex xMAP system, where peptides are
10 conjugated to a dye-containing microsphere. Certain systems, including the xMAP system, are amenable to measuring several different markers in multiplex, and could be used to measure levels of antibodies at once. In some embodiments, other systems are used to assay a plurality of markers in multiplex. For example, profiling may be performed using any of the following systems: antigen microarrays, bead
15 microarrays, nanobarcodes particle technology, arrayed proteins from cDNA expression libraries, protein in situ array, protein arrays of living transformants, universal protein array, lab-on-a-chip microfluidics, and peptides on pins. Another type of clinical assay is a chemiluminescent assay to detect antibody binding. In some such assays, including the VITROS Eci anti-HCV assay, antibodies are bound
20 to a solid-phase support made up of microparticles in liquid suspension, and a surface fluorometer is used to quantify the enzymatic generation of a fluorescent product.

In other embodiments, one may use the polypeptides described above, such as those of Table 1 and/or Table 2, to detect T cells that are specific to HSV-2. The
25 instant disclosure provides a method of phentoyping biological samples from patients suspected of having a HSV-2 infection, involving (a) rendering a biological sample amendable to an assay for activation of T cells, if necessary, (b) contacting the sample with a HSV-2-specific polypeptide or portion thereof under conditions that allow APCs to process the polypeptide, and (c) determining activation of the T
30 cells in response to the HSV-2-specific polypeptide, where an elevated T cell activation relative to an uninfected patient indicates HSV-2 infection. This diagnostic assay is intended to detect the presence of HSV-2-specific T cells in any

patients, including those patients who have been exposed to HSV-2 but have not seroconverted to produce detectable levels of anti-HSV-2 antibodies.

T cell activation may be measured using many proliferation assays, including cytokine-specific ELISA, cell proliferation measured by tritiated thymidine incorporation or membrane intercalating (PKH-67) or cytoplasmic (CFSE) dyes, ELISPOT, flow cytometry, and bead arrays. In addition, one may measure the T cell response in T cell lines or in T cell hybridomas from mice or humans that are specific for the antigens. Readouts for activated T cells include proliferation, cytokine production, or readout of a surrogate enzyme expressed by the hybridoma that is induced when the T cell or T cell hybridoma is activated in response to an antigen. For example, activation of a T cell response may be detected by T cell hybridoma that is engineered to produce β -galactosidase. β -galactosidase may be detected through the use of colorimetric β -galactosidase substrates such as chlorophenyl red β -D galactopyranoside (CPRG).

15 Infection with HSV-2 may be acute or latent. In some embodiments, if the biological sample shows the presence of HSV-2, one may administer a therapeutically effective amount of the compositions and therapies described herein to the patient. The biological sample may comprise, for example, blood, semen, urine, vaginal fluid, mucus, saliva, feces, urine, cerebrospinal fluid, or a tissue sample. In some embodiments, the biological sample is an organ intended for transplantation. In certain embodiments, before the detection step, the biological sample is subject to culture conditions that promote the growth of HSV-2.

20 The diagnostic tests herein may be used to detect HSV-2 in a variety of samples, including samples taken from patients and samples obtained from other sources. For example, the diagnostic tests may be used to detect HSV-2 on objects such as medical instruments. In some embodiments, the tests herein may be performed on samples taken from animals such as agricultural animals (cows, pigs, chickens, goats, horses and the like), companion animals (dogs, cats, birds, and the like), or wild animals. In certain embodiments, the tests herein may be performed 25 on samples taken from cell cultures such as cultures of human cells that produce a

therapeutic protein, cultures of bacteria intended to produce a useful biological molecule, or cultures of cells grown for research purposes.

The invention also includes a method of determining the location of a HSV-2 infection in a patient comprising: (a) administering a pharmaceutical composition comprising a labeled HSV-2 antibody or antigen-binding portion thereof to the patient, (b) detecting the label, and (c) determining if the patient has HSV-2 compared to a control. In certain embodiments, the method further comprises, if the patient has an HSV-2 infection, administering a therapeutically effective amount of a composition described herein to the patient. The method may further comprise 10 determining the infected cell types and/or volume of the HSV-2 in the patient. This method may be used to evaluate the spread of HSV-2 in the patient and determine whether a localized therapy is appropriate.

In some embodiments, the polypeptides described herein may be used to make a prognosis of the course of infection. In some embodiments, T cell or 15 antibody responses specific for the polypeptides herein may be detected in a sample taken from a patient. If antibodies or T cells are present at normal levels, it would indicate that the patient has raised an effective immune response against the pathogen. If antibodies or T cells are absent, or present at reduced levels, it would indicate that the patient is failing to raise a sufficient response against the pathogen, 20 and a more aggressive treatment would be recommended. In some embodiments, antibody or T cells present at reduced levels refers to responses that are present at less than 50%, 20%, 10%, 5%, 2%, or 1% the typical level in a patient with a protective immune response. T cell responses may be detected by methods known in the art such as T cell proliferation, ELISPOT or ELISA, and antibodies may be 25 detected by affinity for any of the antigens described herein, using methods known in the art such as ELISA.

In some embodiments, detection of T cells specific for HSV-2 antigens may be used to predict the progress and symptoms of HSV-2 infection in a patient. After infection with HSV-2, some patients remain asymptomatic, although the virus may 30 establish latency. Other patients exhibit symptoms of HSV-2 infection, and may experience recurrent outbreaks. The HSV-2 antigens found in asymptomatic

patients may differ from those antigens found in patients who present symptoms and/or recurrent outbreaks. Accordingly, the detection methods of the present invention may be used to distinguish between subgroups within the population of patients infected with HSV-2. Subgroups may be further divided into patients who 5 experience frequent outbreaks and those who infrequently or never experience outbreaks, or patients who shed high levels of virus and those who shed low levels or do not shed. The categorization of patients, based on the presence and levels of T cell responses to certain HSV-2 antigens but not others, may help health care practitioners to determine appropriate treatment regimens. Similarly, differences in 10 the magnitude of T cell responses and/or differences in the combination and levels of cytokines produced by T cells may also be used to predict the progress and symptoms of HSV-2 infection in a patient. Thus, an infected patient whose complement of HSV-2 antigens to which T cells respond predicts severe symptoms, frequent outbreaks, and/or high levels of viral shedding may require more intensive 15 antiviral therapy and/or a longer course of therapeutic treatment than a patient whose complement of HSV-2 antigens predicts an asymptomatic infection.

It will be understood by one of skill in the art that the methods herein are not limited to detection of HSV-2. Other embodiments include the detection of related viruses including viruses with proteins homologous to the proteins described above, 20 such as those in Table 1 and/or Table 2. Such related viruses include, for example, other members of the *Herpesviridae* family. Depending on the homology, these related viruses may also include viruses that are not members of the *Herpesviridae* family.

3. Use in groups with increased risk for infection by HSV-2

25 Essentially any individual has a certain risk of infection with HSV-2. However, certain sub-populations have an increased risk of infection. In some embodiments, patients receiving the composition for HSV-2 are immunocompromised.

30 An immunocompromising condition arising from a medical treatment is likely to expose the individual in question to a higher risk of infection. It is possible to treat an infection prophylactically in an individual having the

immunocompromised condition before or during treatments known to generate such a condition. By prophylactically treating with the antigen before or during a treatment known to generate such a condition it is possible to prevent a subsequent infection or to reduce the risk of the individual contracting an infection due to the 5 immunocompromised condition. Should the individual contract an infection, e.g., following a treatment leading to an immunocompromised condition, it is also possible to treat the infection by administering to the individual an antigen composition.

10 In certain embodiments, the compositions are administered to children or adult patients. In other embodiments, compositions are appropriate for pregnant women who were infected before becoming pregnant, or who became infected during pregnancy, such as to inhibit infection of a fetus or baby. The compositions may also be administered to neonates and infants who became infected in utero or during delivery.

15

H. Doses and Routes of Administration

1. Dosage amounts and timing

The amount of antigen in each vaccine dose is selected as an effective amount, which induces an prophylactic or therapeutic response, as described above, 20 in either a single dose or over multiple doses. Preferably, the dose is without significant adverse side effects in typical vaccinees. Such amount will vary depending upon which specific antigen is employed. Generally, it is expected that a dose will comprise 1-1000 µg of protein, in some instances 2-100 µg, for instance 4-40 µg. An optimal amount for a particular vaccine can be ascertained by standard 25 studies involving observation of antibody titers, T cell activation levels, and other responses in subjects. In some embodiments, the appropriate amount of antigen to be delivered will depend on the age, weight, and health (e.g., immunocompromised status) of a subject. When present, typically an adjuvant will be present in amounts from 1 µg – 250 µg per dose, for example 50-150 µg, 75-125 µg or 100 µg.

In some embodiments, only one dose of the vaccine is administered to achieve the results described above. In other embodiments, following an initial vaccination, subjects receive one or more boost vaccinations, for a total of two, three, four or five vaccinations. Advantageously, the number is three or fewer. A 5 boost vaccination may be administered, for example, about 1 month, 2 months, 4 months, 6 months, or 12 months after the initial vaccination, such that one vaccination regimen involves administration at 0, 0.5-2 and 4-8 months. It may be advantageous to administer split doses of vaccines which may be administered by the same or different routes.

10 The pharmaceutical compositions described herein may take on a variety of dosage forms. In certain embodiments, the composition is provided in solid or powdered (e.g., lyophilized) form; it also may be provided in solution form. In certain embodiments, a dosage form is provided as a dose of lyophilized composition and at least one separate sterile container of diluent.

15 In some embodiments, the antigen is delivered to a patient at an amount of 1 μ mol per dose. In some embodiments, the antigen is delivered at a dose ranging from 10 nmol to 100 nmol per dose. The appropriate amount of antigen to be delivered may be determined by one of skill in the art. In some embodiments, the appropriate amount of antigen to be delivered will depend on the age, weight, and 20 health (e.g., immunocompromised status) of a subject.

Pharmaceutical compositions disclosed herein are (in some embodiments) administered in amounts sufficient to elicit production of antibodies as part of an immunogenic response. In some embodiments, the composition may be formulated to contain 5 mcg/0.5 mL or an amount ranging from 10 mcg/1mL to 200mcg/1 mL 25 of an antigen. In other embodiments, the composition may comprise a combination of antigens. The plurality of antigens may each be the same concentration, or may be different concentrations.

In some embodiments, the composition will be administered in a dose escalation manner, such that successive administrations of the composition contain a 30 higher concentration of composition than previous administrations. In some embodiments, the composition will be administered in a manner such that successive

administrations of the composition contain a lower concentration of composition than previous administrations.

5 In therapeutic applications, compositions are administered to a patient suffering from a disease in an amount sufficient to cure or at least partially arrest the disease and its complications.

Therapeutic applications of a composition described herein include reducing transmissibility, slowing disease progression, reducing viral shedding, or eliminating recurrent infections in patients that have been infected with HSV-2, such as by 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% or 10% of the levels at which they would 10 occur in individuals who are not treated with the composition. The composition may also reduce the quantity of HSV-2 shed by infected individuals, inhibit the expression of proteins required for reactivation of HSV-2 from the latent stage in infected patients, and/or inhibit replication of HSV-2 in neurons of infected patients, such as by 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the levels at 15 which they would occur in individuals not treated with the composition.

In prophylactic embodiments, compositions are administered to a human or other mammal to induce an immune response that can inhibit the establishment of an infectious disease or other condition. In some embodiments, a composition may partially block the virus from establishing latency or reduce the efficiency with 20 which latency is established.

In some embodiments, only one dose (administration) of the composition is given. In other embodiments, the composition is administered in multiple doses. In various embodiments, the composition is administered once, twice, three times, or more than three times. The number of doses administered to a subject is dependent 25 upon the antigen, the extent of the disease or the expected exposure to the disease, and the response of a subject to the composition.

In some embodiments, the compositions are administered in combination with antimicrobial molecules. Antimicrobial molecules may include antiviral molecules. Many antiviral molecules are currently known in the art, and target one 30 or more stage of the viral life cycle, including viral attachment to host cells, release of viral genes and/or enzymes into the host cell, replication of viral components

using host-cell machinery, assembly of viral components into complete viral particles, and release of viral particles to infect new hosts.

2. Routes of administration

The vaccine formulations and pharmaceutical compositions herein can be delivered by administration to an individual, typically by systemic administration (e.g., intravenous, intraperitoneal, intramuscular, intradermal, subcutaneous, transdermal, subdermal, intracranial, intranasal, mucosal, anal, vaginal, oral, sublingual, buccal route or they can be inhaled) or they can be administered by topical application.

10 In some embodiments, the composition may be administered directly to the likely sites of infection. In female patients, the composition may be applied topically to mucosal membranes, or delivery vaginally or rectally using devices and methods known in the art. The vaginal and rectal routes of delivery permits extended, continuous or pulsed delivery and administration of composition dosages, 15 and may be administered either before or after exposure to HSV, depending on the use of a prophylactic or therapeutic composition. In male patients, the composition may be applied topically to the skin or mucosal membranes, or delivered rectally. In both patient populations, the composition may also be targeted to the sensory ganglia.

20 An HSV-2 vaccine or pharmaceutical composition is often administered via the intramuscular route. Typically, in this route, the vaccine is injected into an accessible area of muscle tissue. Intramuscular injections are, in some embodiments, given in the deltoid, vastus lateralis, ventrogluteal or dorsogluteal muscles. The injection is typically given at an approximately 90° angle to the surface of the skin, 25 so the vaccine penetrates the muscle.

An HSV-2 vaccine may also be administered subcutaneously. The injection is typically given at a 45° angle to the surface of the skin, so the vaccine is administered to the subcutis and not the muscle.

30 In some embodiments, the HSV-2 vaccine is administered intradermally. Intradermal administration is similar to subcutaneous administration, but the injection is not as deep and the target skin layer is the dermis. The injection is

typically given at a 10-15° angle to the surface of the skin, so the vaccine is delivered just beneath the epidermis.

3. Formulations

The vaccine formulation may be suitable for administration to a human patient, and vaccine preparation may conform to USFDA guidelines. In some embodiments, the vaccine formulation is suitable for administration to a non-human animal. In some embodiments, the vaccine is substantially free of either endotoxins or exotoxins. Endotoxins include pyrogens, such as lipopolysaccharide (LPS) molecules. The vaccine may also be substantially free of inactive protein fragments.

10 In some embodiments, the vaccine has lower levels of pyrogens than industrial water, tap water, or distilled water. Other vaccine components may be purified using methods known in the art, such as ion-exchange chromatography, ultrafiltration, or distillation. In other embodiments, the pyrogens may be inactivated or destroyed prior to administration to a patient. Raw materials for

15 vaccines, such as water, buffers, salts and other chemicals may also be screened and depyrogenated. All materials in the vaccine may be sterile, and each lot of the vaccine may be tested for sterility. Thus, in certain embodiments the endotoxin levels in the vaccine fall below the levels set by the USFDA, for example 0.2 endotoxin (EU)/kg of product for an intrathecal injectable composition; 5 EU/kg of

20 product for a non-intrathecal injectable composition, and 0.25-0.5 EU/mL for sterile water.

In some embodiments, the vaccine comprising a polypeptide contains less than 5%, 2%, 1%, 0.5%, 0.2%, 0.1% of other, undesired unpolyptides, relative to the amount of desired polypeptides. In some embodiments, the vaccine contains less than 5%, less than 2%, less than 1%, less than 0.5%, less than 0.2%, or less than 0.1% DNA and/or RNA.

It is preferred that the vaccine has low or no toxicity, within a reasonable risk-benefit ratio.

The formulations suitable for introduction of the pharmaceutical composition vary according to route of administration. Formulations suitable for parenteral administration, such as, for example, by intraarticular (in the joints), intravenous,

intramuscular, intradermal, intraperitoneal, intranasal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous 5 sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The formulations can be presented in unit-dose or multi-dose sealed containers, such as ampoules and vials.

10 Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. Cells transduced by the packaged nucleic acid can also be administered intravenously or parenterally.

Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the polypeptides or packaged nucleic acids suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, 15 solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions. Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, tragacanth, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, 20 diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers. Lozenge forms can comprise the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in 25 addition to the active ingredient, carriers known in the art. The pharmaceutical compositions can be encapsulated, e.g., in liposomes, or in a formulation that provides for slow release of the active ingredient.

30 The antigens, alone or in combination with other suitable components, can be made into aerosol formulations (e.g., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

Suitable formulations for vaginal or rectal administration include, for example, suppositories, which consist of the polypeptides or packaged nucleic acids with a suppository base. Suitable suppository bases include natural or synthetic triglycerides or paraffin hydrocarbons. In addition, it is also possible to use gelatin 5 rectal capsules which consist of a combination of the polypeptides or packaged nucleic acids with a base, including, for example, liquid triglycerides, polyethylene glycols, and paraffin hydrocarbons. The formulation may be suitable for administration to a human patient, and the preparation may conform to US FDA guidelines. In some embodiments, the formulation is suitable for administration to a 10 non-human animal. In some embodiments, the composition is substantially free of either endotoxins or exotoxins. Endotoxins may include pyrogens, such as lipopolysaccharide (LPS) molecules. The composition may also be substantially free of inactive protein fragments which may cause a fever or other side effects. In some embodiments, the composition contains less than 1%, less than 0.1%, less than 15 0.01%, less than 0.001%, or less than 0.0001% of endotoxins, exotoxins, and/or inactive protein fragments. In some embodiments, the composition has lower levels of pyrogens than industrial water, tap water, or distilled water. Other components may be purified using methods known in the art, such as ion-exchange chromatography, ultrafiltration, or distillation. In other embodiments, the pyrogens 20 may be inactivated or destroyed prior to administration to a patient. Raw materials for compositions, such as water, buffers, salts and other chemicals may also be screened and depyrogenated. All materials in the composition may be sterile, and each lot of the composition may be tested for sterility. Thus, in certain embodiments the endotoxin levels in the composition fall below the levels set by the USFDA: 0.2 25 endotoxin (EU)/kg of product for an intrathecal injectable composition; 5 EU/kg of product for a non-intrathecal injectable composition, and 0.25-0.5 EU/mL for sterile water.

In certain embodiments, the preparation comprises less than 50%, 20%, 10%, or 5% (by dry weight) contaminating protein. In certain embodiments, the desired 30 molecule is present in the substantial absence of other biological macromolecules, such as other proteins (particularly other proteins which may substantially mask, diminish, confuse or alter the characteristics of the component proteins either as

purified preparations or in their function in the subject reconstituted mixture). In certain embodiments, at least 80%, 90%, 95%, 99%, or 99.8% (by dry weight) of biological macromolecules of the same type present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 5000, 5 can be present).

It is preferred that the composition has low or no toxicity, within a reasonable risk-benefit ratio. In certain embodiments, the composition comprises ingredients at concentrations that are less than LD₅₀ measurements for the animal being treated with the composition. LD₅₀ measurements may be obtained in mice or 10 other experimental model systems, and extrapolated to humans and other animals. Methods for estimating the LD₅₀ of compounds in humans and other animals are well-known in the art. A composition, and any component within it, might have an LD₅₀ value in rats of greater than 100 g/kg, greater than 50g/kg, greater than 20 g/kg, greater than 10 g/kg, greater than 5 g/kg, greater than 2 g/kg, greater than 1 15 g/kg, greater than 500 mg/kg, greater than 200 mg/kg, greater than 100 mg/kg, greater than 50 mg/kg, greater than 20 mg/kg, or greater than 10 mg/kg. In some embodiments, the therapeutic index of the composition (measured as the toxic dose for 50% of the population (TD₅₀) divided by the minimum effective dose for 50% of the population (ED₅₀)), is greater than 1, greater than 10, or greater than 100.

20

I. Preparation and Storage of Vaccines Formulations and Immunogenic Compositions

The HSV-2 vaccines described herein may be produced using a variety of techniques. For example, a polypeptide may be produced using recombinant DNA 25 technology in a suitable host cell. A suitable host cell may be bacterial, yeast, mammalian, or other type of cell. The host cell may be modified to express an exogenous copy of one of the relevant polypeptide genes. Typically, the gene is operably linked to appropriate regulatory sequences such as a strong promoter and a polyadenylation sequence. In some embodiments, the promoter is inducible or 30 repressible. Other regulatory sequences may provide for secretion or excretion of the polypeptide of interest or retention of the polypeptide of interest in the cytoplasm or

in the membrane, depending on how one wishes to purify the polypeptide. The gene may be present on an extrachromosomal plasmid, or may be integrated into the host genome. One of skill in the art will recognize that it is not necessary to use a nucleic acid 100% identical to the naturally-occurring sequence. Rather, some alterations to 5 these sequences are tolerated and may be desirable. For instance, the nucleic acid may be altered to take advantage of the degeneracy of the genetic code such that the encoded polypeptide remains the same. In some embodiments, the gene is codon-optimized to improve expression in a particular host. The nucleic acid may be produced, for example, by PCR or by chemical synthesis.

10 Once a recombinant cell line has been produced, a polypeptide may be isolated from it. The isolation may be accomplished, for example, by affinity purification techniques or by physical separation techniques (e.g., a size column).

15 In a further aspect of the present disclosure, there is provided a method of manufacture comprising mixing one or more polypeptides or an immunogenic fragment or variant thereof with a carrier and/or an adjuvant. In some embodiments, the adjuvant is one that stimulates a $T_{H}1$ cell response.

20 In some embodiments, antigens for inclusion in compositions of the invention may be produced in cell culture. One method comprises providing one or more mammalian expression vectors and cloning nucleotides encoding two or more polypeptides selected from polypeptides having an amino acid sequence of any one of SEQ ID NOS: 1-38, then expressing and isolating the polypeptides.

25 The immunogenic polypeptides described herein, and nucleic acid compositions that express the polypeptides, can be packaged in packs, dispenser devices, and kits for administering nucleic acid compositions to a mammal. For example, packs or dispenser devices that contain one or more unit dosage forms are provided. Typically, instructions for administration of the compounds will be provided with the packaging, along with a suitable indication on the label that the compound is suitable for treatment of an indicated condition, such as those disclosed herein.

30

V. Examples

Example 1. Identification of HSV-2 antigens.

A library of HSV-2 antigens (from HSV-2 Strain G, Lot # 7C0013, from Advanced Biotechnologies Inc, Maryland) was prepared and screened with peripheral blood mononuclear cells (PBMC) from human donors. Briefly, a library 5 of HSV antigens was expressed by bacteria and mixed with antigen presenting cells (APCs). The APCs, in turn, presented HSV-derived peptides to lymphocytes that had been isolated from human patients infected with HSV-2. The patients belonged to several populations, as described below. Lymphocyte responses from each population were compared for reactivity to each expressed protein, and the screen 10 detected antigens that induced reactive lymphocytes with greater frequency in one patient population as compared to the others. Infected but asymptomatic, and exposed but seronegative patients may activate protective immune responses that patients who experience frequent outbreaks do not; in particular, exposed but seronegative patients are presumed to have mounted sterilizing immunity to HSV-2 15 infection. It is believed that a unique set of polypeptides will activate lymphocytes from these patient populations.

The release of IFN- γ from CD4 $^{+}$ T cells and CD8 $^{+}$ T cells from each population was measured by ELISA following exposure to candidate antigens. Antigens were selected on the basis of the fold increase of IFN- γ released, relative to 20 the level of IFN- γ released by frequent recurrences who experience more than four outbreaks per year, as well as the frequency of responders in the infected but asymptomatic, or exposed but seronegative populations, compared to frequent and less-frequent recurrences.

25 **A. Identification of antigens encoded by UL10, UL19, UL40, US4, US6, RS1 (RS1.1, RS1.2, RS1.3), UL 36 (UL36.3, UL36.4, UL36.5), UL32, and RL2**

Lymphocytes were isolated from patients belonging to several populations: infected but asymptomatic (n=40), exposed but seronegative (n=40), frequent 30 recurrences who experience 4 or more outbreaks per year (n=43), less-frequent recurrences who experience less than 4 outbreaks per year (n=19), naïve (n=10), and HSV-2 $^{-}$ /HSV-1 $^{+}$ (n=10). Table 3 shows the frequency analysis for thirteen HSV-2 antigens encoded by UL10, UL19, UL40, US4, US6, RS1 (RS1.1, RS1.2, RS1.3),

UL36 (UL36.3, UL 36.4, UL36.5), UL32, and RL2 in the exposed patient cohort compared to the recurrer cohorts (frequent and less-frequent recurrers combined).

5 Table 3. Frequency analysis for antigens encoded by UL10, UL19, UL40, US4, US6, RS1 (RS1.1, RS1.2, RS1.3), UL36 (UL36.3, UL36.4, UL36.5), UL32 and RL2

HSV-2 Gene	Protein Name	Frequency Analysis (HSV-1/HSV-2 seronegative)	
		% response from exposed donors	fold increase over recurrer response
UL10	gM	23%	1.4
UL19	VP5	-	-
UL40	ribonucleotide reductase	36%	3.0
Us4	gG	24%	1.6
Us6	gD	27%	1.9
RS1	ICP4		
RS1.1		54%	3.0
RS1.2		46%	2.3
RS1.3		23%	1.2
UL36	Major tegument protein		
UL36.3		46%	2.3
UL36.4		46%	4.2
UL36.5		31%	1.9
UL32	DNA cleavage & packaging protein	-	-
RL2	ICP0	45%	1.6

B. Identification of antigens encoded by UL1, UL49.5, and UL54

10 Lymphocytes were isolated from patients belonging to several populations: infected but asymptomatic (n=40), exposed but seronegative (n=40), frequent recurrers who experience 4 or more outbreaks per year (n=43), less-frequent recurrers who experience less than 4 outbreaks per year (n=19), naïve (n=10), and HSV-2-/HSV-1⁺ (n=10).

15 Table 4 shows the frequency analysis for three HSV-2 antigens encoded by UL1, UL49.5 and UL54, in the exposed patient cohort compared to the recurrer cohorts (frequent and less-frequent recurrers combined).

Table 4. Frequency analysis for antigens encoded by UL1, UL49.5, and UL54

HSV-2 Gene	Protein Name	Frequency Analysis (HSV-1/HSV-2 seronegative)	
		% response from exposed donors	fold increase over recurrer response
UL1	gL2	64%	2.7
UL49.5	(virion p)	37%	2.1
UL54	ICP27	22%	5.8

C. Identification of antigens encoded by RL1, UL2, and UL11

Lymphocytes were isolated from patients belonging to several populations: 5 infected but asymptomatic (n=40), exposed but seronegative (n=40), frequent recurrers who experience 4 or more outbreaks per year (n=43), less-frequent recurrers who experience less than 4 outbreaks per year (n=19), naïve (n=10), and HSV-2⁻/HSV-1⁺ (n=10).

Table 5 shows the frequency analysis for three HSV-2 antigens encoded by 10 RL1, UL2, and UL11 in the exposed patient cohort compared to the recurrer cohorts (frequent and less-frequent recurrers combined).

Table 5. Frequency analysis for HSV-2 antigens encoded by RL1, UL2, and UL11

HSV-2 Gene	Protein Name	Frequency Analysis (HSV-1/HSV-2 seronegative)	
		% response from exposed donors	fold increase over recurrer response
RL1	ICP34.5	45%	1.3
UL2	DNA glycosylase	23%	1.4
UL11	tegument protein	21%	<1.0

15 Example 2. In vivo data

A. [Protocol A] Guinea pig therapeutic vaccination protocol

Female Hartley guinea pigs were challenged intravaginally with HSV-2 strain MS at 5×10^5 pfu to establish a genital tract infection. Animals were monitored for infection by vaginal swab on day 1 post-infection, and acute disease between 20 days 3 and 14 post-infection. On day 14, after resolution of primary disease, the animals were randomized into groups of 12 and immunized subcutaneously with

antigen (HSV-2 polypeptide at 15 µg dose) plus adjuvant (50 µg dose of an ISCOM matrix with a 91:9 mixture of Quillaja saponin fractions A and C). Each group received a total of 3 vaccinations, on days 14, 21, and 34 post-infection. Genital swabs were collected during the vaccination period to monitor viral shedding, and 5 daily observations were recorded. Symptoms were scored on a scale from 0 to 4 based upon severity, 0 = no symptoms; 1 = redness or swelling; 2 = a few small vesicles; 3 = several large vesicles; 4 = several large vesicles with maceration. In addition, animals with lesions intermediate in severity between the above scores were given a score of 0.5, 1.5, 2.5, or 3.5.

10 **1. Results of therapeutic vaccination studies with ICP4.2, gD2ΔTMR, and gD2**

The results of the studies are presented below in Tables 6-10. The IgG titer was determined at day 41 post-infection and 7 days after third immunization using an average of 4 out of the 12 animals in each group. The mean recurrent lesion 15 scores and mean lesion days were each determined from day 15 to day 63 post-infection. The lesion scores represent total lesions for each group from day 15 to 60 and then a mean was calculated. Mean lesion days represent the mean number of days post-infection that immunized or non-immunized animals had herpetic lesions present. Vaginal-swab samples were collected from all animals for 12 days between 20 days 20-59 post-infection and stored at -80°C until assayed for virus shedding titers by quantitative real-time PCR.

Table 6. Results of therapeutic vaccination studies with ICP4.2 (SEQ ID NO: 2): lesions

Groups N=12	Dose	gD2 IgG Titer	Mean Recurrent Lesion Score	% Reduction	Mean Lesion Days	% Reduction
Phosphate- Buffered Saline	-	1:263	8.1	-	9.0	-
adjuvant only	50 µg x 3	1:331	7.1	14	8.5	6

ICP4.2 + adjuvant	15 µg x 3	1:1079	4.3	47	5.1	44
-------------------	-----------	--------	-----	----	-----	----

Table 7. Results of therapeutic vaccination studies with ICP4.2 (SEQ ID NO: 2): viral shedding

Groups	No. of animals with no detectable viral shedding/total	Mean number of days viral shedding detected ±SEM	% Reduction	P value*
Phosphate- Buffered Saline	0/11	4.5 ± 0.8	-	-
Adjuvant only	0/12	4.4 ± 0.7	2	0.971
ICP4.2 + adjuvant	5/11	1.5 ± 0.5	67	0.004

5 Table 8. Results of therapeutic vaccination studies with gD2ΔTMR (SEQ ID NO:4): lesions

Groups	Mean Recurrent Lesion Score	% Reduction	Mean Lesion Days	% Reduction
Adjuvant only	8.7	-	11.7	-
gD2ΔTMR + adjuvant	5.7	34	8.6	26

Table 9. Results of therapeutic vaccination studies with gD2 (SEQ ID NO: 5): lesions

Groups	Dose	gD2 IgG	Mean Recurrent	%	Mean Lesion	%
--------	------	---------	----------------	---	-------------	---

N=12		Titer	Lesion Score	Reduction	Days	Reduction
Phosphate- Buffered Saline	-	1:263	8.1	-	9.0	-
Adjuvant only	50 µg x 3	1:331	7.1	14	8.5	6
gD2 + adjuvant	15 µg x 3	>1:6400	4.0	51 (p=0.04)	5.0	45

Table 10. Results of therapeutic vaccination studies with gD2 (SEQ ID NO: 5): viral shedding

Groups	No. of animals with no detectable viral shedding/total	Mean number of days viral shedding detected ±SEM	% Reduction	P value*
Phosphate- Buffered Saline	0/11	4.5 ± 0.8	-	-
Adjuvant only	0/12	4.4 ± 0.7	2	0.971
gD2 + adjuvant	4/12	2.4 ± 0.6	47	0.047

5 B. [Protocol B] Murine prophylactic vaccination protocol

Female C57BL/6 mice from 6 to 8 weeks of age were immunized subcutaneously with antigen (HSV-2 polypeptide) plus adjuvant (12 µg dose of an ISCOM matrix with a 82:18 mixture of Quillaja saponin fractions A and C) on day 0 and day 9. On day 11, estrous cycles were synchronized with depo provera and then the mice were challenged on day 16 via intravaginal deposition of 10 times the LD₅₀ of HSV-2 strain 333 while under anaesthesia. All animals were monitored for morbidity (clinical score) and mortality, and body weights and vaginal swabs were

collected between days 17 and 28 post-infection. Clinical scores were recorded using the following scale: 0 = no symptoms, 1 = vaginal erythema, 2 = vaginal erythema and edema, 3 = vaginal herpetic lesions, 4 = unilateral paralysis or severe genital ulceration, and 5 = bilateral paralysis or death.

5

1. Results of murine prophylactic vaccination studies with ICP4.2, VP5, gD2 Δ TMR and gD2 Δ TMR and ICP4.2

In the experimental group, mice were immunized subcutaneously with either 5 μ g or 10 μ g of antigen plus adjuvant (12 μ g dose of an ISCOM matrix with a 10 82:18 mixture of Quillaja saponin fractions A and C) on day 0 and day 9. Control animals received phosphate buffered saline (PBS) only, or adjuvant only.

Mice receiving PBS only or adjuvant only all died by day 9 post-challenge (no survivors). In contrast, mice receiving antigen largely survived to day 9, and 20-75% survived to day 12 post-challenge. The severity of disease symptoms (genital 15 and neurological disease) were also scored at either day 9 or 10 post-challenge.

Mice immunized with ICP4.2, VP5, gD2 Δ TMR, or gD2 Δ TMR and ICP4.2 with ISCOM adjuvant showed a significant decrease in disease symptoms compared to the PBS only or adjuvant only groups.

Table 11. Results of murine prophylactic vaccination studies

20

Groups	Mean Disease Score Day 10	% Reduction	P value*	% Survival Day 12
PBS only/adjuvant only	5.00/4.81	-	--	0%
ICP4.2	3.6	28	--	2.0%

			0.146	3.8%
VP5 + adjuvant	3.13	35		
gD2ΔTMR + adjuvant	1.44	70	0.023	7.5%
gD2ΔTMR + ICP4.2 + adjuvant	0.75	84	0.020	8.8%

*Student's t test

C. [Protocol C] Guinea pig prophylactic vaccination protocol

Female Hartley guinea pigs from 250-350 grams (weight) were immunized 5 subcutaneously with 15 µg of antigen plus adjuvant (50 µg dose of an ISCOM matrix with a 91:9 mixture of Quillaja saponin fractions A and C) on day 0 and day 14-21. Sera were collected by toenail clip 2-3 weeks after the boost and then the guinea pigs were challenged via intravaginal deposition of 5×10^5 PFU of HSV-2 strain MS. Vaginal-swab samples were collected from all animals on days 30 and 32 and stored at -80°C 10 until assayed for virus titers by quantitative real-time PCR. Guinea pigs were evaluated daily (day 1-14), and primary genital skin disease was quantified using a lesion severity score scale from 1-4. Numerical scores were assigned to specific disease signs as follows: 0, no disease; 1, redness or swelling; 2, a few small vesicles; 3, several large vesicles; 4, several large vesicles with maceration. At the end of the study, the guinea 15 pigs were euthanized, and the dorsal root ganglia (DRG) were harvested, stored at -80°C until they were processed for quantitative real-time PCR analysis.

Table 12. Results of guinea pig prophylactic vaccination studies with gD2ΔTMR and VP5

Groups	Viral titer, PFU/ml Day 2	Total mean acute lesion score	% Reduction	Copies HSV-2 DNA/ 1 µg DRG DNA	% Reduction
Adjuvant only	2.3×10^6	22.6	-	959	-
gD2ΔTMR + Adjuvant	1.7×10^6	7.7	66%	274	71%
VP5 + adjuvant	5.9×10^5	18.2	17%	283	70%

D. [Protocol D] Immunogenicity assay I (standard)

Mice were immunized subcutaneously in the scruff of the neck with a 100 µl injection of 5 µg antigen plus adjuvant (12 µg dose of an ISCOM matrix with a 5 82:18 mixture of Quillaja saponin fractions A and C) in saline. The mice received one or two injections, 7 days apart. Analysis of the immunogenicity of the injection occurred 7 days after the final injection.

The immunogenicity assay was an *ex vivo* IFN- γ ELISPOT. CD4 $^{+}$ and CD8 $^{+}$ T cells were enriched from the spleen and analyzed separately. For the ELISPOT 10 assay, membrane plates were prepared by coating them overnight with capture antibody and subsequently blocked by supplemented medium for a minimum of 2 hours at 37 °C. The mice were euthanized and their spleens harvested. The T cells were then prepared by sorting the splenocytes for CD4 $^{+}$ and CD8 $^{+}$ T cells using magnetic beads. The blocking solution was washed out from ELISPOT plates and 15 the T cells were plated out onto the blocked plates. The plates were returned to the incubator to allow the T cells to settle. APCs were prepared by pulsing naïve T-depleted splenocytes with antigen for 2 hours at 37°C. For CD4 $^{+}$ ELISPOTs, APCs were pulsed with whole protein. For CD8 $^{+}$ ELISPOTs, APCs were pulsed with *E. coli* expressing protein plus cLLO. A medium control was APCs incubated for 2 20 hours at 37 °C with no additional antigen. The pulsed APCs were irradiated, washed

and adjusted to 2×10^6 cells/ml. The APCs were added to appropriate wells of plates containing T cells. Then phorbol myristate acetate (PMA) and ionomycin were added to control wells as a positive control. The plates were allowed to incubate for 18 hours at 37°C under 5% CO₂. The plates were then developed using a secondary 5 biotinylated antibody, horseradish peroxidase (HRP) and 3-amino-9-ethylcarbazole (AEC) substrate.

1. Results of immunogenicity assay I with ICP4.2

The immunogenicity assay I showed a robust immunogenic response for both the one and two injection regimens with ICP4.2. For the one injection regimen, 10 the number of IFN- γ spots per 200,000 T cells were 8 and 101 for CD4⁺ and CD8⁺ cells, respectively. For the two injection regimen, there were 50 and 70 spots, respectively. In contrast, less than 15 spots were observed for media or adjuvant alone in either CD4⁺ or CD8⁺ cells.

2. Results of immunogenicity assay I with gD2 Δ TMR and gD2

15 Results of immunogenicity assay I are shown in Figure 1A and B. Robust CD4⁺ and CD8⁺ T cell responses were obtained for both full-length gD2 and for gD2 Δ TMR. In contrast, gD2 antigen truncated immediately upstream of the transmembrane domain (denoted 306t in Figure 1) showed significantly reduced responses.

20

E. [Protocol E] Immunogenicity assay II (rapid)

Recombinant *E. coli* from Genocea's proprietary library of HSV-2 orfeome 25 were induced to express gL2 or fragments of ICP4 protein (ICP4.2, and polypeptides encoded by RS1.1, RS1.3.1 and RS 1.3.2). The protein was retained within bacterial cells. The bacteria were then fixed with PFA, washed extensively with PBS and stored at -80C until used for immunization.

Three mice per group were immunized with 1×10^8 bacteria in PBS per mouse by intraperitoneal injection. Mice received 1-2 additional boosters at 1 week intervals. Seven days after last boost, sera were collected and analyzed in an HSV-2 neutralization assay. Five-fold serial dilutions were prepared for plasma or serum samples in a 96-well round-bottom plate, followed by the addition of 50 PFUs HSV-2 (strain 333) to each well. The plates were covered and incubated at 37°C for 1 30

hour. 200 μ l of virus-serum dilution was transferred in duplicate to Vero cells grown in a 48-well tissue culture plate and incubated for 1 hour at 37°C. 300 μ l of DMEM containing 2% FBS was then added to each well and the plates were incubated for 48 hours at 37°C. To visualize virus plaques the plates were stained with crystal violet.

5 Table 13. Results of HSV-2 neutralization assay with gL2, ICP4.2, and polypeptides encoded by RS1.1, RS1.3.1 and RS1.3.2

Immunogen	HSV-2 Neutralization IgG Titer*
E coli//gL2	1:50
Ecoli//RS1.1	<1:20
Ecoli//ICP4.2	<1:20
E.coli//RS1.3.1	1:100
E.coli//RS1.3.2	<1:20
Positive control (DL11 Mab)	1:2500
Negative control (Naïve mouse serum)	<1:20

* Serum dilution that inhibits 50% of virus control

10

F. [Protocol F] Immunogenicity assay III (overlapping peptide pools)

Mice were immunized with 2 μ g/mouse of pooled, overlapping peptides (OLP) spanning the entire sequence of gL2, ICP4, and ICP4 fragments encoded by RS1.3.1 and RS1.3.2. OLPs were formulated in TiterMax adjuvant (Alexis Biochemical) in a total volume of 100 μ l per mouse where adjuvant represented 1/3 of the subcutaneous dose. Mice were immunized on day 0, boosted on day 6 and spleens and blood were collected on day 11. Single cell suspensions were prepared from spleens and erythrocytes were lysed. The splenocyte suspensions were then divided into halves. The first half was separated into antigen presenting cells, CD4 $^{+}$ and CD8 $^{+}$ T cells; 200,000 T cells were seeded per well of IFN-gamma ELISPOT plate and stimulated with 100, 000 APCs and OLP pool corresponding to immunization, irrelevant peptide, positive and negative control. Cells were incubated in plates overnight after which the plates were developed and spots per well were counted. The second half of each splenocyte suspension was run as

unseparated splenocytes (400,000/well), pulsed with peptides, and assayed as described above.

Results are shown in Figure 2A and B as magnitude of response per immunization group.

5

G. [Protocol G] Vaccination with at least two antigens

Example 1. Immunogenicity of gD2ΔTMR and ICP4 or ICP4.2 in C57BL/6 mice

Purified protein was mixed with adjuvant and immunized into naïve mice to 10 evaluate the ability to make CD4⁺ and CD8⁺ T cell responses to the protein antigens. Briefly, antigen alone (gD2ΔTMR (5μg)) or combinations of antigens (gD2ΔTMR and ICP4.2 (10μg)) were mixed with adjuvant (12μg dose of an ISCOM matrix with a 82:18 mixture of Quillaja saponin fractions A and C) and administered 15 subcutaneously to mice, twice, 9 days apart. Seven days after the second immunization, mice were euthanized and spleens were harvested for *ex vivo* IFN γ ELISPOT assays. CD4⁺ and CD8⁺ T cells were sorted out of the splenocyte population using antibody-coated magnetic beads and then co-cultured on IFN γ -specific antibody-coated membranes in 96-well plates with naïve splenocytes that 20 were pulsed with specific or non-specific antigens (as described) and irradiated with an x-ray irradiator. After 18 hours of incubation, captured IFN γ was detected with a 25 biotinylated secondary IFN γ -specific antibody and visualized with horseradish peroxidase and 3-amino-9-ethylcarbazole substrate. Data are reported as the number of IFN- γ spot forming units per 2×10^5 T cells \pm standard deviation of three mice per group. Figure 3 shows the number of IFN- γ spot forming units per 2×10^5 CD4⁺ or CD8⁺ T cells \pm standard deviation of three mice per group. As seen in Figures 3A and B, the number of IFN- γ spot forming units per CD4⁺ T cells or CD8⁺ T cells is increased in mice immunized with gD2ΔTMR antigen combined with ICP4.2 compared to gD2ΔTMR antigen alone.

30 ***Example 2. Combinations of gD2 and ICP4.2 plus adjuvant immunization reduced disease symptoms and mortality in mice.***

The ability to trigger protective immunity after immunization with the ICP4.2 protein in combination with gD2 plus adjuvant was evaluated in a lethal HSV-2 challenge mouse model. Briefly, eight C57BL/6 mice per group were immunized with either gD2 (2 μ g) or ICP4.2 (10 μ g) plus adjuvant individually or 5 with both antigens mixed together plus adjuvant. Formulations were administered subcutaneously in the scruff of the neck twice, 9 days apart. Estrus cycles were synchronized with depo provera 5 days prior to virus infection, and animals were challenged intravaginally 7 days after the second immunization with 20 times the LD₅₀ of HSV-2 strain 333. Disease symptoms were scored post-infection, and 10 survival monitored. Disease severity scores were as follows: 0= no symptoms, 1= redness, 2= redness and swelling, 3= herpetic lesions, 4=severe ulceration or unilateral paralysis, and 5= bilateral paralysis or death.

15 Table 14. Effect of HSV-2 proteins gD2 and ICP4.2 on disease symptoms, viral replication and mortality

Antigen (+ adjuvant) N=8	Mean disease score Day 7	Reduction in disease score	P value**	Reduction in virus titer	% Survival Day 11
PBS	3.5 \pm 0.3	---	---	---	0%
gD2* (2 μ g) ICP4.2 (10 μ g) gD2 (2 μ g) + ICP4.2 (10 μ g)	2.5 \pm 0.2 1.7 \pm 0.4 1.3 \pm 0.3	29% 51% 63%	0.016 0.005 0.0004	0% 0% 20%	25% 13% 50%

*EC; **Student's t-test

Example 3. Combinations of gD2 Δ TMR and ICP4.2 plus adjuvant immunization reduced disease symptoms and mortality in mice.

20 Mice immunized with a combination of gD2 Δ TMR and ICP4.2 antigens showed a lower mean disease score at ten days after virus challenge compared to animals receiving the individual antigen with adjuvant.

25 Table 15. Effect of HSV-2 proteins gD2 Δ TMR and ICP4.2 on disease symptoms and survival rate in mice

Groups	Mean Disease Score Day 10	% Reduction	P value*	% Survival Day 12
Adjuvant only	4.81	-	-	00%
gD2ΔTMR + adjuvant	1.44	70	0.023	75%
gD2ΔTMR + ICP4.2 + adjuvant	0.75	84	0.020	88%

Example 4. Combination of gD2 and ICP4.2 plus adjuvant immunization reduces severity of recurrent lesions when administered therapeutically to HSV-2 infected guinea pigs

5 The ability to affect HSV-2 reactivation in infected guinea pigs after therapeutic immunization with antigens plus adjuvant was evaluated. Briefly, guinea pigs were infected intravaginally with 5×10^5 pfu of HSV-2 strain MS, monitored for primary disease for 14 days, and then randomized into immunization 10 groups (N=15). Animals were immunized three times subcutaneously on day 14, 21, and 35 post-infection with antigen (15 μ g) plus adjuvant (50 μ g) or adjuvant alone, or vehicle control and scored daily for local disease severity. The scoring 15 system was as follows: 0= no symptoms, 1= redness, 2=single lesions, 3= large or fused lesions, 4=severe ulceration or unilateral paralysis, and 5=bilateral paralysis or death.

Table 16 shows the data as the mean recurrent lesion score for each week after the 20 guinea pigs recovered from their acute disease. The guinea pigs treated with a combination of gD2 and ICP4.2 antigens showed a reduction in the mean lesion score at 7 (day 42) and 14 (day 49) days after their last immunization compared to animals receiving the individual antigens with adjuvant.

Table 16. Effect of HSV-2 proteins gD2 and ICP4.2 vaccine on recurrent genital skin disease

Mean Recurrent Lesion Score Post HSV-2 Infection					
Antigen + Adjuvant	Day 15-21	Day 22-28	Day 29-35	Day 36-42	Day 43-49
PBS	2.00 ± 0.45	1.17 ± 0.35	1.50 ± 0.50	0.87 ± 0.28	1.33 ± 0.33
gD2	1.00 ± 0.30	0.67 ± 0.24	0.80 ± 0.19	0.83 ± 0.26	0.77 ± 0.28
ICP4.2	1.97 ± 0.38	1.07 ± 0.29	1.03 ± 0.33	0.53 ± 0.16	0.83 ± 0.29
gD2 & ICP4.2	1.43 ± 0.32	0.80 ± 0.27	1.07 ± 0.33	0.43 ± 0.19	0.70 ± 0.27

Throughout this specification and the claims, unless the context requires otherwise, the word “comprise” and its variations, such as “comprises” and “comprising,” will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that such art forms part of the common general knowledge in Australia. Further, the reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that such art would be understood, ascertained or regarded as relevant by the skilled person in Australia.

Sequences

SEQ ID NO: 1 = ICP4, full-length

5 SAEQRKKKTTTQGRGAEVAMADEDGGRLRAAAETGGPGSPDPADGPPPTPNPDR
RPAARPGFGWHGGPEENEDEADDAADADAEAAPSGEAVDEPAADGVVSPRQLALLASMVDEAVRT
I PSSPERDGAQEEAARSPSPRTPSMRADYGEENDDDDDDDDDRAGRWVRGPETTSAVRGAYPD
PMASLSPRPPAPRRHHHHHRRRAPRRSAASDSSKGSSSSASSASSSSASSASSSSAASSSSDDDD
DDAARAPASAADHAAGGTLGADDEEAGVPARAPGAAPRSPPRAEPAPARTPAATAGRLERRARAAB
AGRDATGRFTAGRPRRVELDADAASGAFYARYRDGYVSGEPWPGAGPPPPGRVLYGGLGDSRPGLWGA
10 PEAEEARARFEASGAPVWAPELGDAQQYALITRLLYTPDAEAMGWLQNPRVAPGDVALDQACFRI
SGAARNSSSFISGSVARAVPHLGYAMAAGRFGWGLAHAAAAMSRRYDRAQKGFLLTSLRRAYAPLL
ARENAALTGARTPDGGDANRHGDDARGKPAAAAPLSAAASPADERAVPAGYGAAGVLAALGRLS
AAPASAPAGADDDDDDDGAGGGGGRRAEAGRVAECLAACRGILEALAEFGFDGLAAVPGLAGARPA
APPRPGPAGAAAPPADAPRLRAWLRELRFVRDALVLMRLRGDLRVAGGSEAAVAVRAVSJVAGALG
15 PALPRSPRLSSAAAAADLLFQNQSLRPLLADTVAAADS LAAPASAPREARKRKPAPARAPPAGAP
RPPKKSRADAPRPAAPPAGAAPPAPPTPPPRPPRAALTRRPAEGPDFPQGGWRRQPPGPSHTPAPSA
AALEAYCAPRAVAELTDHPLFPAPWRLPALMFDPRALASLAARCAAPPPGAPAAFGPLRASGPLRRAA
AWMRQVPDPEDVRVVIYLSPLPGEDLAAAGRAGGGPPPEWSAERGGLSCLLAALGNRLCPATAAWAGN
WTGAPDVSALGAQGVLLLSTRDLAFAGAVEFLGLLAGACDRRLIVNAVRAADWPADGPVVSROHAYL
20 ACEVLPAVQCRAWRPAARDLRRTVLASGRVFGPGV FARVEAAHARLYPDAPPLRLCRGANVRYVRTR
FGPDTLVPMSPREYRRAVLPALDGRAAASGAGDAMAPGAPDFCEDEAHSHRACARWGLGAPLRPVYVA
LGRDAVRGGPAELRGPRREFCARALLEPDGDAPPLVLRDDADAGPPPQIRWASAAGRAGTVLAAAGGG
VUVVGTAAJLATPPRREPVDMDAFLFDDDDGJL.FGE

25 SEQ ID NO: 2 = ICP4 internal fragment

MVLYGGLGDSRPGLWGAPEAEEARARFEASGAPAVWAPELGDAQQYALITRLLYTP
DAEAMGWLQNPRVAPGDVALDQACFRISGAARNSSFISGSVARAVPHLGYAMAAGRFGWGLAHVAAA
VAMSRRYDRAQKGFLLTSLLRAYAPLLARENAALTGARTPDGGDANRRDGDDARGKAAAAAPLPSA
AASPADERAVPAGYGAAGVLAALGRLSAAPASAPAGADDDDDDDGAGGGGGGGGGRRAEAGRVA
30 VECLAACRGILEALAEGFDGLAAVPGLAGARPAAPPRPGPAGAAAPPHADAPRLRAWLRELRFVRDA
LVLMLRLRGDLRVAGGSEAAVAARAVSLVAGALGPALPRSPLLSSAAAAADLLFQNQSL

SEQ ID NO: 3 = gL2 cytoplasmic

MGFVCLFGLVVMGAWGAWGGSQATEYVLRVIAKEVGDILRVP CMRT PADDV SWRYEA
35 PSVIDYARI DGI FLRYHCPGLDTFLWDRHAQRAYLVNPFLFAAGFLEDLSHHSVFPADTOETTRALY

KEIRDALGSRKQAVSHAPVRAGCVNFDYSRTRRCVGRRDLRPANTTSTWEPPVSSDDEASSQSKEPLAT
QPPVLALSNAPPRRVSPTRGRRRHTRLRRN

SEQ ID NO: 4 = gD2 internal deletion

5 NRWKYALADPSLKMADPNRFRGKNLPVLDQLTDPPGVKRVYHIQPSL
EDPFQPPSIPITVYYAVLERACRSVLLHAPSEAPQIVRGASDEARKHTYNLTIAWYRMDNCAIPITV
MEYTECPYNKSLGVCPIRTQPRWSYYDSFSAVSEDNLGFLMHAPAFETAGTYLRLVKINDWTEITQFI
LEHRARASCKYALPLRIPPAACLTSKAYQQGVTVDSIGMLPRFIPENQRTVALYSLKIAGWHGPKPYY
TSTLLPPELSDTTNATQPELVPEDPEDSALLEDPAGTVSSQIIPPNWHI PSI QDVAPHAPAAPSNNPRR
10 RAOMAPKRLRLPHIRDDDAPPShQPLFY

SEQ ID NO: 5 = predicted gD2 sequence

MGRLTSGVGTAA LLVVAVGLRVVCAKYALADPSLKMADP NRFRGK NLPVLDQ LTDPPGVK RVYHI QPS
LEDPFQPPSIPITVYYAVLERACRSVLLHAPSEAPQIVRGASDEARKHTYNLTIAWYRMDNCAIPIT
15 VMEYTECPYNKSLGVCPIRTQPRWSYYDSFSAVSEDNLGFLMHAPAFETAGTYLRLV KIN DWTEITQF
ILEHRARASCKYALPLRIPPAACLTSKAYQQGVTVDSIGMLPRFIPENQRTVALYSLKIA GWHGP KPP
YTSTLLPPELSDTTNATQPELVPEDPEDSALLEDPAGTVSSQI PPNWHIPS IQDVAPHAPAAPSNG
LIIGALAGSTLAVL VIGGIAFWVRRRAQMAPKRLRLPHIRDDA APPSHQPLFY

20 SEQ ID NO: 6 = ICP34.5

MSRRRGPRRRGPRRRPRGAPAVPRGAPAVPRPGALPTADSQMVPAYDGTAVESA
PAASSLLRRWL
LVPQADDSDADYAGNDAEWANSPPSEGKKAPEA
PHAA
PAAACPPPPRKERGPQRPLPPHLALRL
RTTTEYLARLSLRRRPPASPPADAPRGKVCFS
PRVQVRHLVA
WETA
ARLARRG
SWA
RERAD
RDRFRR
RVA
AAEAVIGPCLE
PEARARARARAHEDGGPA
EEEEAAAARGSSAAGPGRRAV

25

SEQ ID NO: 7 = ICP0

MEPRPGTSSRADPGPERPPRQTPGTQPAAPHAWGMLNDMQWLASSDSEEETEVGISDD
DLHRDSTSEAGSTDTEMFEAGLMDAATPPARPPAERQGSPTPADAQGSCGGGPVGEEEAEAGGGGDVC
AVCTDEIAPPLRCQSFPCLHPFC1PCMKTWIPLRNTCPLCNTPVAYLIVGVTASGSFSTIPIVNDPRT
30 RVEAEAAVRAGTAVDFIWTGNPRTAPRSLSLGGHTVRALSPTPPWPGTDDEDDDLADVDYVPPAPRRA
PRRGGGGAGATRGTSPQAATRAPPAGPRSSSSGGAPLRAVGSGSGGGPAAAVVPRVSLPPAAGG
GRAQARRVGEDAAAEGRTPPARQPRAAQEPPIVISDSSPPSPRRPAGPGPLSFVSSSSAQVSSGPGG
GGLPQSSGRAARPRAAVAPVRSPPRAAAAPVVSASADAAGPAPPAPVDAHRAPRSRMTQAQTDTQA
QSLGRAGATDARGSGGGPAEGGPGVPRGTNTPGAAPHAEGAAARPRKRGSIDSGPAASSSSASSSAAP

RSPLAPQGVGAKRAAPRRAPDSDGDRGHGPLAPASAGAAPPSASPSSQAAVAASSSSASSSSASSSS
 SASSSSASSSSASSSSASSSSASSSAGGAGGSVASASGAGERRETSLGPRAAAPRGPRKCARKTRHAE
 GGPEPGARDPAPGLTRYLPIAGVSSVALAPYVNKTGDCLPVLDMETGHIGAYVVLVDQGTGNVADL
 LRAAAPAWSRRTLLPEHARNCVRPPDYPTPPASEWNSLWMTPVGNMLFDQGTLVGALDFHGLRSRHPW
 5 SREQGAPAPAGDAPAGHGE

SEQ ID NO: 8 = ICP4 internal fragments (RS1.1, #1-400)

msaeqrkkkttttqgrgaevamadedggrrlaaaettggpgspdpadgppptpn
 pdrrpaarpfgwhggpeenedeaddaadadeaapasgeavdepaadgvvspr
 10 qlallasmvdeavrtipsppperdgaqeeaarspspprtpsrradygeenddddd
 ddddrdrdagrwvrgpettsavrgaypdpmaslsprppaprrhhhhrrraprr
 rsaasdssksgssssassassssassssasassssdddddhaarapasaadhaagg
 tlgaddeeagvparapgaaprpssppraepapartpaatagrlerrraraavagrda
 tgrftagrprrveldadaasgafyaryrdgyvsgepwpgagppppgrvlyggldgs
 15 rpglwgap

SEQ ID NO: 9 = ICP4 internal fragments (RS1.3.1, #750-1024)

ssaaaaaadllfqnqslrplladtvaaadslaapasaprearkrkspaparappg
 aprppkksradaprpaaappagaappapptpprpprpaaltrrpaegpdppqggwr
 rqppgpshtpapsaaaleaycapravaeltdhplfpapwrpalmdpralaslaar
 20 caapppggapaaafgplrasgplrraaawmrqvpdpedvrvvilysplpgedlaagr
 agggpppewsaergglscllaalgnrlcgpataawagnwtgapdvsalgaq

SEQ ID NO: 10 = ICP4 internal fragments (RS1.3.2, #1008-1319)

wagnwtgapdvsalgaqqvllstrdlafagaveflglagacdrrlivnavraa
 25 dwpadgpvvsrqhaylacevlpavqcavrwpaardlrrtvlasgrvfgpgvfarve
 aaharlypdapplrlcrganvryrvtrfpdtlvpmspreyrravlpaldgraaa
 sgagdamapgapdfcedeahshracarwglgaplrpvvalgrdavrggpaelrgp
 rrefcarallepdgdapplvlrddadagpppqirwasaagraptvlaaagggvevv
 gtaaglatpprrepvdmdaeleddddgfge

30

SEQ ID NO: 11 = ICP4 internal fragments (RS1.3, #750-1319)

Saaaaaaaaadllfqnqslrplladtvaaadslaapasaprearkrkspaparappg
 aprppkksradaprpaappagaappaptppprpprpaaltrrpaegpdqpggwr
 rqppgshtpapsaaaleaycapravaeltdhplfpapwrpalmdpralaslaar
 caapppgapaaafgplrasgplrraaawmrqvpdpedrvvvilysplpgedlaagr
 5 agggpppewsaergglscllaalgnrlcgpataawagnwtgapdvsalgaqgvll
 strdlafagaveflgllagacdrrliivnavraadwpadgpvvsrqhaylacevlp
 avqcavrwpaardlrrtvlasgrvfgpgvfarveaaharlypdapplrlcrganvr
 yrvttrfgpdtlpmspreyrravlpaldgraaasgagdamapgapdfcedeahsh
 racarwglgaplrvyvalgrdavrggpaelrgprrefcarallepdgdapplvlr
 10 ddadagpppqirwasaagragtvlaaagggvevvgtaaaglatpprepvdmaele
 ddddglfge

SEQ ID NO: 12 = ICP4 internal fragments (RS1.4, #340-883)

tagrprrveldadaasgafyaryrdgyvsgepwpgagppppgrvlyggldsrpql
 15 wgapeaearfeasgapapvwapelgdaaqyqyalitrllytpdaeamgwlnqpr
 vapgdvaldqacfrisgaarnsssfisgsvaravphlygamaagrfgwglahvaaa
 vamsrrydraqkgfltslrrayapplarenaaltgartpddggdanrhgddarg
 kpaaaaaplpsaaaspaderavpagygaagvlaalgrlsapagaddddddd
 gaggggggrraeagrwaveclaacrgilealaegfdglaavpglagarpaapprp
 20 gpagaaapphadaprlrawlrelnrvrdalvlmlrlrgdlrvaggseaavaavrvs
 lvagalgpalprsprllssaaaaadllfqnqslrplladtvaaadslaapasapr
 earkrkspaparappggaprppkksradaprpaappagaappaptppprpprpa
 altrrpaegpdqpggwrqppgshtpapsaaaleayca

25 SEQ ID NO: 13 = ICP4 internal fragments (RS1.5, #775-1318)

aaadslaapasaprearkrkspaparappggaprppkksradaprpaappagaap
 papptpprpprpaaltrrpaegpdqpggwrqppgshtpapsaaaleaycapra
 vaeltdhplfpapwrpalmdpralaslaarcaapppgapaaafgplrasgplrra
 aawmrqvpdpedrvvvilysplpgedlaagragggpppewsaergglscllaalgn
 30 rlcgpataawagnwtgapdvsalgaqgvllstrdlafagaveflgllagacdrrl
 ivnavraadwpadgpvvsrqhaylacevlpavqcavrwpaardlrrtvlasgrv

gpgvfarveaaharlypdapplrlcrganvryrvrtrfqpdtlvpmspreyrravl
 paldgraaasgagdamapgapdfcedeahshracarwglgaplrpyvalgrdavr
 ggpaelrgprrefcarallepdgdapplvlrddadagpppqirwasaagragtvla
 aagggvevvgtaaaglatpprrepvdmdaeledddg1fge

5

SEQ ID NO: 14 = ICP4 internal fragments (RS1.6, #209-1318)

hrrrraprrrsaasdssksgssssassassssassssasassssddddd
 aarapasaadhaaggtlgaddeeagvparapgaaprpssppraepapartpaatagr
 lerrraraavagrdatgrftagrprrveldadaasgafyaryrdgyvsgepwpgag
 10 ppppgrvlyggldsrpqlwgapeaeeeararfeasgapapvwapelgdaaqyali
 trllytpdaeamgwqlqnprvapgdvaldqacfrisgaarnsssfisgsvaravphl
 gyamaagrgfwglahvaaavamsrrydraqkgflltslrrayapplarenaaltga
 rtpddggdanrhgdargkpaaaaplsaaaspaderavpagygaagvlaalgr
 lsaapasapagadddddggagggggrraeagravaveclaacrgilealaegfdg
 15 dlaavpglagarpaapprpgpagaaapphadaprlrawlrelrfvrdalvlmrlrg
 dlrvaggseaavaavrvavslvagalgpalprsprlssaaaaadllfqnqslrpl
 ladtvaaadslaapasaprearkrspaparappggaprppkksradaprpaapp
 agaappapptpprpprpaaltrrpaegpdpqggwrrqppgshtpapsaaaleay
 capravaeltdhplfpapwrvpalmdpralaslaarcaapppggapafgplrasg
 20 plrraaawmrqvpedrvvvilysplpgedlaagrarrggppewsaergglscll
 aalgnrlcgpataawagnwtgapdvsalgaqgvllstrdlafagaveflglaga
 cdrrlivnavraadwpadgpvvsrqhaylacevlpavqcavrwpaaardlrrtvla
 sgrvfgpgvfarveaaharlypdapplrlcrganvryrvrtrfqpdtlvpmsprey
 rravlpaldgraaasgagdamapgapdfcedeahshracarwglgaplrpyvalg
 25 rdavrggpaelrgprrefcarallepdgdapplvlrddadagpppqirwasaagra
 gtvlaaaggvevvgtaaaglatpprrepvdmdaeledddg1fge

SEQ ID NO: 15 = ICP4 internal fragments (RS1.7, deletion of 391-544)

msaeqrkkkttttqgrgaevamadedgggrlraaaettggpgspdpadgppptpn
 30 pdrrpaarpqfghggpeenedeaddaaadadeaapasgeavdepaadgvvspr
 qlallasmvdeavrtipsppperdgaqeeaarpspspprpsmradygeendddd

ddddrdagrwvrgpettsavrgaypdpmaslsprppaprrhhhhrrraprr
 rsaasdssksgsrssassassssassssasassssdddaarapasaadhaagg
 tlgaddeeagvparapgaaprpssppraepapartpaatagrleraavaagrda
 tgrftagrprrveldadaasgafyaryrdgyvsgepwpgagppppgrvlyggigar
 5 tpddggdanrhgddargkpaaaaalpsaaaspaderavpagygaagvlaalgrl
 saapasapagadddddggagggggrraeagraveclacrgilealaegfdgd
 laavpglagarpaapprpgpagaaapphadaprlrawlrelnrvrdalvilmrlrgd
 lrvaggseaavaavavslvagalgpalsprlssaaaaadllfqnqslrpl1
 adtvaadslaapasaprearkrksparapppgaprppkksradaprpaappa
 10 gaappapptppprpprpaaltrrpaegpdqggwrrqppgpshtpapsaaaleayc
 apravaeltdhplfpapwrmfdpralaslaarcaappggapaafgplrasgp
 lrraaawmrqvpedvrvvilysplpgedlaagrargggpppewsaergglsclla
 algnrlcgpataawagnwtgapdvsalgaqgvllstrdlafagaveflgllagac
 drrlivvnavraadwpadgpvvsrqhaylacevlpavqcavrwpaardlrrtvlas
 15 grvfgpgvfarveaaharlypdapplrlcrganvryrvtrfgpdtlvpmspreyr
 ralpaldgraaasgagdamapgapdfcedehshracarwglgaplrvpyvalgr
 davrgpaelrgprrefcarallepdgdapplrldadagpppqirwasaagrag
 tvlaaaggvevvgttaaglatpprrepvdmaeldddg1fge

20 SEQ ID NO: 16 = ICP4 internal fragments (RS1.8, deletion of 786-864)

msaeqrkkkttttqrgaevamadedggrlraaaettggpgspdpadgppptpnppdrrpaarpqf
 whggpeenedeaddaaadadadeaapasgeavdepaadgvvsprqlallasmvdeavrtipsppperd
 gaqeeaaarspspprtpsmradygeenddddddddragrwvrgpettsavrgaypdpmaslspr
 paprrhhhhrrraprrsaasdssksgsrssassassssasassssdddaarapas
 25 aadhaaggtlgaddeeagvparapgaaprpssppraepapartpaatagrleraavaagrdatgrf
 tagrprrveldadaasgafyaryrdgyvsgepwpgagppppgrvlyggldsrpglwgapeaearar
 feasgapavwapelgdaaqyaylitrlytpdaeamgwlnqnprvapgdvaldqacfrisgaarnsss
 fisgsvaravphlyamaagrgfwglahvaaavamsrrydraqkgfltsrrayapllarenaaltg
 artpddggdanrhgddargkpaaaaalpsaaaspaderavpagygaagvlaalgrlsapapasapag
 30 adddddddgagggggrraeagraveclacrgilealaegfdgllaavpglagarpaapprpgpag
 aaapphadaprlrawlrelnrvrdalvilmrlrgdlrvaggseaavaavavslvagalgpalspr
 lssaaaaadllfqnqslrpl1adtvaaadslaapastpapsaaaleaycapravaeltdhplfpapw
 rpalmfdpralaslaarcaappggapaafgplrasgplrraaawmrqvpedvrvvilysplpged
 laagragggpppewsaergglscllaalgnrlcgpataawagnwtgapdvsalgaqgvllstrdlaf

5 agaveflglagacdrrlivvnavraadwpadgpvvsrqhaylacevlpavqcavrvpaardlrrtv
 asgrvfgpgvfarveeaharlypdapplrlcrganvryrvrtrfpdtlvpmspreyrravlpaldgr
 aaasgagdmapgapdfcedeahshracarwglgaplrvyvalgrdavrggpaelrgprrefcaral
 lepdgdapplvlrddadagpppqirwasaagragtvlaaagggevvgttaaglatpprrepvdmael
 5 eddddglfge

SEQ ID NO: 17 = predicted sequence for uracil DNA glycosylase (encoded by UL2)

10 MFSASTTPEQPLGLSGDATPPLPTSVPLDWAFFRAFLIDDAWRPLLEPELANPLTARLLAEDRRCQ
 TEEVLPPREDVFSWTRYCTPDDVRVVIIGQDPYHHPGQAHGLAFSVRADVPVPPSLRNVLAAVKNCYP
 10 DARMMSGRCLEKWARDGVLLNTLTVKRGAAASHSKLGWDRFVGGVQRLAARRPGLVFMLWGAHAQ
 NAIRPDPRQHYVLKFHSHPSPLSKVPFGTCQHFLAANRYLETRDIMPIDWSV

SEQ ID NO: 18 = predicted sequence for tegument protein encoded by UL11

15 MGLAFSGARPCCCRHNVITTDGEVVS LTAEFDVV DIESEEEGNFYVPPDVRVVTRAPGPQYRRASD
 PPSRHTRRRDPDVARPPATLTPPLSDSE

SEQ ID NO: 19 = gL2 secreted

20 NRWGFVCLFGLVVMGAWGAWGGSQATEYVLRSVIAKEVGDILRVP
 RTPADDVSWRYEAPSVIDYARIDGIFLRYHCPGLDTFLWDRHAQRAYLVNPFLFAAGFLEDLSHSVFP
 ADTQETTTRRALYKEIRDALGSRKQAVSHAPVRAGCVNFYSRTRRCVGRRLRPANTTSTWEPPVSS
 DDEASSQSPLATQPPVLA SNAPP RRVSPTRGRRRHTRLRRN

SEQ ID NO: 20 = predicted sequence for VP5 encoded by UL19

25 DYDIPPTENLYFQGMAAPARDPPGYRYAAAMVPTGSILSTIEVASHRRLFDFFARVRS
 DENS LYDVEFDALLGSYCNTLSLVRFLELGLSVACVCTKFP E LAYMNEGRVQFEVHQPLIARDGPHPV
 EQPVHNYMTKVIDRRALNAAFSLATEAIAIALLTGEALDGTGISLHRQLRAIQQLARNVQAVLGA FERGT
 ADQMLHVLL EKAPPLALLPMQRYLDNGRLATRVARATLVAELKRSFC DTSFFLGKAGHRREAIEAWL
 VDLTTATQPSVAVPRLTHADTRGRPV DGVLVTTAAIKQRLLQSFLKV E DTEADVPV TYGEMVNGANL
 30 VTALVMGKAVRS LDDVGRHLLEMQEEQLEANRETLD ELESAPQTTRVRADLVAIGDRLV FLEALEKRI
 YAATNVPYPLVGAMDLTFVLPLGLFN PAMERFAAHAGDLVPAPGHPEPRAFPPRQLFFWGKDQVRL
 SMENAVGTVCHPSLMNIDA AVGGVNHD PVEAANPYGAYVAAPAGPGADMQQRFLNAWRQRLAHGRVRW
 VAECQMTAEQFMQPDNANLALELHPAFDFFAGVADVELPGGEVPPAGPGAIQATW RVVNGN LPLALCP
 VAFRDARGLELGVGRHAMAPATIAAVRGAFEDRSYPAVFYLLQAAIHGSEHVF CALARLVTQCITSY

NNTRCAAFVNDYSLVSYIVTYLGGDLPEECMAVYRDLVAHVEALAQLVDDFTLPGPELGGQAQAELNH
 LMRDPALLPPLVWDCDGLMRHAALDRHRDCRIDAGEHEPVYAAACNVATADFNNDGRLLHNTQARAA
 DAADDRPHRPADWTVHHKIYYYVLVPAFSRGRCCTAGVRFDRVYATLQNMVVPEIAPGEECPSPDVTD
 PAHPLHPANLVANTVNAMFHNGRVVVDGPAMLTQVLAHNMAERTTALLCSAAPDAGANTASTANMRI
 5 FDGALHAGVLLMAPQHLDHTIQNGEFYVLPVHALFAGADHVNAPNFPPALRDLARHVPLVPPALGA
 NYFSSIRQPVVQHARESAAGENALTYALMAGYFKMSPVALLYHQLKTLHPGFGFTVVRQDRFTENVL
 FSERASEAYFLGQLQVARHETGGGSFTLTQPRGNVDLGVGYTAVAATATVRNPVTDMGNLPQNFYLG
 RGAPPLLDNAAAVYLRNAVAVAGNRLGPAQPLPVFGCAQVPRRAGMDHGQDAVCEFIATPVATDINYFR
 RPCNPRGRAAGGVYAGDKEGDVIALMYDHGQSDPARPFAATANPWAQRFSYGDLLYNGAYHLNGASP
 10 VLSPCFKFFTAADITAKHRCLERLIVETGSAVSTATAASDVQFKRPPGCRELVEDPCGLFQEAYPITC
 ASDPALLRSARDGEAHARETHFTQYLIYDASPLKGLSL

SEQ ID NO: 21 = VP5 encoded by UL19ΔTEV

MAAPARDPPGYRYAAAMVPTGSILSTIEVASHRRLFDFFARVRSDENSLYDVEFDALL
 15 GSYCNTLSLVRFLELGLSVACVCTKFPELAYMNEGRVQFEVHQPLIARDGPHPVEQPVHNMTKVIDR
 RALNAAFSLATEAIALLTGEALDGTGISLHQLRAIQQLARNVQAVLGAFERGTADQMLHVLEKAPP
 LALLLPMQRYLDNGRLATRVARATLVAELKRSFCCTSFFLGKAGRREAAIEAWLVDLTTATQPSVAVP
 RLTHADTRGRPVDGVLVTTAAIKQRLLQSFLKVEDTEADVPVTYGEMVLNGANLVTALVMGKAVRSLD
 DVGRHLLEMQEEQLEANRETLDELESAPQTRVRADLVAIGDRLVLEALEKRIYAATNVPYPLVGAM
 20 DLTFLVPLGLFNPAMERFAAHAGDLVPAPGHPEPRAFPQRQLFFWGKDHQVRLSMENAVGTVCHPSL
 MNIDAAGGVNHDPEAANPYGAYVAAPAGPGADMQQRFLNAWRQRLAHGRVRWVAECQMTAEQFMQP
 DNANLALELHPAFDF FAGVADVELPGGEVPPAGPGAIQATWRVVNGNLPLALCPVAFRDARGLELGVG
 RHAMAPATIAAVRGAFEDRSYPAVFYLLQAIHGSEHVF CALARLVTQCITSYWNNTRCAAFVNDYSL
 VSYIVTYLGGDLPEECMAVYRDLVAHVEALAQLVDDFTLPGPELGGQAQAELNHLMRDPAALLPPLVWD
 25 CDGLMRHAALDRHRDCRIDAGEHEPVYAAACNVATADFNNDGRLLHNTQARAAADAADDRPHRPADWT
 VHHKIYYYVLVPAFSRGRCCTAGVRFDRVYATLQNMVVPEIAPGEECPSPDVTDPAHPLHPANLVANT
 VNAMFHNGRVVVDGPAMLTQVLAHNMAERTTALLCSAAPDAGANTASTANMRIFDGALHAGVLLMAP
 QHLDHTIQNGEFYVLPVHALFAGADHVNAPNFPPALRDLARHVPLVPPALGANYFSSIRQPVVQHA
 RESAAGENALTYALMAGYFKMSPVALLYHQLKTLHPGFGFTVVRQDRFTENVLFSERASEAYFLGQL
 30 QVARHETGGGSFTLTQPRGNVDLGVGYTAVAATATVRNPVTDMGNLPQNFYLG RGA PLLDNAAAVY
 LRNAVAVAGNRLGPAQPLPVFGCAQVPRRAGMDHGQDAVCEFIATPVATDINYFRRPCNPRGRAAGGVY
 AGDKEGDVIALMYDHGQSDPARPFAATANPWAQRFSYGDLLYNGAYHLNGASPVLSPCFKFFTAADI
 TAKHRCLERLIVETGSAVSTATAASDVQFKRPPGCRELVEDPCGLFQEAYPITCASDPALLRSARDGE
 AHARETHFTQYLIYDASPLKGLSL

35

SEQ ID NO: 22 = predicted sequence for ICP1/2 encoded by UL36

MIPAALPHPTMKRQGDRDIVVTGVRNQFATDLEPGGSVSMRSSLFLSLLFDVGPRDVLSAEAIEGC
 LVEGGEWTRAAGSGPPRMCSIIELPNFLEYPAARGGLRCVFSRVYGEVFFFGEPTAGLLETQCPAHT
 FFAGGPWAMRPLSYTLLTIGPLGMGLYRSGDTAYLFDPHGLPAGTPAFIAKVRAGDVYPYLTYAHDRP
 KVRWAGAMVFFVPSGPGAVAPADLTAAALHLYGASETYLQDEPFVERRVAITHPLGEIGGLGALFVG
 5 VVPRGDGEKGSPVVPALPAPTHVQTPGADRPEAPRGASGPDPQAGHPNRPDDVWAAALEGTPPA
 KPSAPDAAASGPPHAAPPQTAGDAAEAEADLRVLEVGAVPVGRHRARYSTGLPKRRPTWTPSSV
 EDLTSGERPAPKAPPACKKSAPKKKAPVAAEVPASSPTPIAATVPPAPDTPPQSGQGGGDDGPASP
 SSPSVLETLGARRPEPPGADLAQLFEVHPNVAATAVRLAARDAALEVAACSQLTINALRSPYPAH
 PGLLELCVIFFFERVLAFLIENGARTHTQAGVAGPAAALLDFTLRLMLPRKTAVGDFLASTRMSLADVA
 10 AHRPLIQHVLDENSQIGRLALAKLVLVARDVIRETDAFYGDLADLDLQLRAAPPANLYARLGWELLER
 SRAHPNLTFAPATPTHPEPLLHRIQALAQFARGEEMRVEAEAREMREALDALARGVDSVSQRAGPLTV
 MPVPAAPGAGGRAPCPPALGPEAIQARLEDVRIQARRAIESAVKEYFHRCGAVYSAKALQASDHDCRF
 HVASAAVVPVMQVLLESLPAFDQHTRDVAQRAALPPPPLATSPQAIILRDLLQRGQPLDAPELAAWL
 SVLTDAAATQGLIERKPLEELARSIHGINDQQARRSSGLAEQRFDALDAALAQQLDSDAAFVPATGPA
 15 PYVDGGGLSPEATRMAEDALRQARAMEAKMTAELAPEARSRLRERAHCALEMLNDARERAKVAHDAR
 EKFLHKLQGVLRPLPDFVGLKACPAVLATLRASLPAGWTDLADAVRGPPPEVTAALRADLWGLLGQYR
 EALEHPTPDTATALAGLHPAFVVLKTLFADAPETPVLVQFFSDHAPTIAKAVSNAINAGSAAVATAS
 PAATVDAAVRAHGALADAVSALGAAARDPASPLSFLAVLADSAAGYVKATRLALEARGAIDELETTLGS
 AAADLVVQARRACAQPEGDHALIDAAARATTAARESLAGHEAGFGGLLHAEGTAGDHSPSGRALQEL
 20 GKVIAGATRRRADELEAAVADLTAKMAAQRARGSSERWAAGVEALDRVENRAEFDVVELRRQLAGT
 HGYNPRDFRKRAEQALAAANEAVTLALDTAFAFNPyTPENQRHPMLPPLAAIHRLGWSAAFHAAAETY
 ADMFRVDAEPLARLLRIAEGLLEMAQAGDGFIDYHEAVGRLADDMTSVPGLRRYVPFFQHGYADYVEL
 RDRLDIAIRADVHRAALGGVPLDAAAAEQISAARNDPEATAELVRTGVTLPSEDALVACAAALERVD
 QSPVKNTAYAEYVAFVTRQDTAEKDAVVRKAQQRAEATERVMAGLREALAARERRAQIEAEGLANLK
 25 TMLKVVAVPATVAKTLDQARSVAEIADQVEVLLDQTEKTRELDVPAPIWLEHAQRTFETHPLSAARGD
 GPGPLARHAGRLGALFDTRRVDALRRSLEEEAEAWDEVWGFRGFRVGGAWKSPEGFRAMHEQLRALQ
 DTTNTVSGLRAQPAYERLSARYQGVLGAKGAERAEAVEELGARVTKHTALCARLDEVVRRVPWEMNF
 DALGGLLAEFDAAAALPWAEEFRGARELIQYRMGLYSAYARAGGQTGAGAESAPAPLLVDLRALD
 ARARASSSSPEGHEVDPQLLRRGEAYLRAAGDPGLVLRLEAVSALDLPFATSFLADGTPLQYALCFP
 30 AVTDKLGALLMRPEAACVRPPLPTDVLESAPVTAMYVLTVVNRQLALSDAQAAQANFQLFGRFVRHQ
 ATWGASMDAAAELYVALVATTLTREFGCRWAQLGWASGAAAPRPPPGRGSQRHCVAFNENDVLVALV
 AGVPEHIYFWRLDLVRQHEYMHHTLERAFEDAAEMLFVQRLTPHPDARIRVLPTFLDGGPTRGLL
 FGTRLADWRRGKLSETDPLAPWRSALELGTQRRDVPALGKLSPAQALAAVSVLGRMCLPSAALAALWT
 CMFPDDYTEYDSFDALLAARLESQTLGPAGGREASLPEAPHALYRPTGQHVAVLAATHRTPAARVT
 35 AMDLVLAVALLGAPVVVALRNTTAFSRESELELCFLDSRPGGPDAALRDVVSSDIETWAVGLLHTD
 LNPIENACLAALQPLRSALIAERPLADGPPCLVLVDISMTPVAVLWEAPEPPGPPDVRVGSEATEEL
 PFVATAGDVLAASAADADPFFARAILGRPFDASLLTGELFPGHPVYQRPLADEAGPSAPTAARDPRDL
 AGGDGGSGPEDPAAPPARQADPGVLAPTLTDAATTGEPVPPRWMWIHGLEELASDDAGGPTPNPAPA
 LLPPPATDQSVPTSQYAPRPIGPAATARETRPSVPPQQNTGRVPVAPRDDPRSPPTPSPPADAALPP

PAFSGSAAAFSAAVPRVRRSRRTRAKSRAPRASAPPEGWRPPALPAPVAPVAASARPPDQPPTPESAP
 PAWVSALPLPPGPASARGAFPAPTLAPIPPPAEGAVVPGGDRRRQTTAGPSPTPPRGPAAGPPR
 RLTRPAVASLSASLNSLPSRDPADHAAAVSAAAAPPSPGLAPPTSAVQTSPPLAPGPVAPSEPL
 CGWVVPGGPVARRPPQSPATKPAARTRIRARSVPQPPLPQPPLPQPPLPQPPLPQPP
 5 LPQPPLPQPPLPQPPLPQPPVTRTLPQSRDSVPTPESPTHTNTHLPVSAVTWASSLALHVDSA
 PPPASLLQTLHISSDDEHSADSLRFSDSDDEALDPLPPEPHLPPADEPPGPLAADHLQSPHSQFGP
 LPVQANAVLSRRYVRSTGRSALAVLIRACRRIQQQLQRTTRRALFQRSNAVLTSLHHVRMLLG

SEQ ID NO: 23 = ICP1/2 internal fragments encoded by UL36.3.4.1

10 AAQRARGSSERWAAGVEAALDRVENRAEFDVVELRRLQALAGTHGYNPRDFRKRAEQA
 LAANAEAVTLALDTAFAFNPYTPENQRHMLPPLAAIHRLGWSAAFHAAAETYADMFRVDAEPLARLL
 RIAEGLLEMAQAGDGFIDYHEAVGRLADDTSVPGLRVPFFQHGYADYVELRDRLDIARADVHRL
 GGVPLDLAAAEEQISAARNDPEATAELVRTGVTLPSCPSEDALVACAAALERVDQSPVKNTAYAEGYVAF
 VTRQDTAETKDAVVRAKQQRAEATERVMAGLREALAARERRAQIEAEGLANLKTMLKVVAVPATVAKT
 15 LDQARSVAEIAQVEVLLDQTEKTRELDVPAPIWLEHAQRTFETHPLSARGDGPGLARHAGRLGAL
 FDTRRRVDALRRSLEEAEAEWDEVWGRFGRVRRGAWKSPEGFRAMHEQLRALQDTNTVSGLRAQPAY
 ERLSARYQGVLGAKGAERAEAVEELGARVTKHTALCARLRDEVVRRVPWEMNFDALGGLAEFDAAAA
 DLAPWAVEEFRGARELIQYRMLYSAYARAGGQTGAGAESA PAPLLVLDRALDARARASSSPEGHEVD
 PQLLRRGEAYLRAGGDPGPLVIREAVSALDLPFATSFLAPDGTPQYALCFPAVTDKLGALLMRPEA
 20 ACVRPPLPTDVLESAPVTAMYVLTVVNRQLQALSDAQAANFQLFGRFVRHRQATWGASMDAAAELYV
 ALVATTLTREFGCRWAQLGWASGAAAPRPPGPGRGSQRHCVAFNENDVLVALVAGVPEHIYNFWRLDL
 VRQHEYMHLTLEAFEDAAESMLFVQRLTPHDARIRVLPFLDGGPPTRGFLFGTRLADWRRGKLSE
 TDPLAPWRSALELGTQRRDVPALGKLSPAQALAAVSVLGRMCLPSAALAALWTCMFPDDYTEYDSFDA
 LLAARLESGQTLGPAGGREASL

25

SEQ ID NO: 24 = ICP1/2 internal fragments encoded by UL36.4.2.5

EYDSFDALLAARLESGQTLGPAGGREASLPEAPHALYRPTGQHVAVLAAATHRTPAAR
 VTAMDLVLAVALLGAPVVALRNNTAFSRESELELCCLTLFDSRPGPDAALRDVVSSDIETWAVGLLH
 TDLNPIENACLAQLPLSALIAERPLADGPPCLVLVDISMTPVAVLWEAPEPPGPPDVRFGSEATE
 30 ELPFVATAGDVLAASAADADPFFARAILGRPFDaslltGELFPGHPVYQRPLADEAGPSAPTAARDPR
 DLAGGDGGSGPEDPAAPPARQADPGVLAPTLTDATTGEPVPPRMWAWIHGLEELASDDAGGPTPNPA
 PALLPPPATDQSVPTSQYAPRPIGPAATARETRPSVPPQNTGRVPVAPRDDPRSPPTSPSPADAAL
 PPPAFSGSAAAFSAAVPRVRRSRRTRAKSRAPRASAPPEGWRPPALPAPVAPVAASARPPDQPPTPES
 APPAWVSALPLPPGPASARGAFPAPTLAPIPPPAEGAVVPGGDRRRQTTAGPSPTPPRGPAAGP
 35 PRRRLTRPAVASLSASLNSLPSRDPADHAAAVSAAAAPPSPGLAPPTSAVQTSPPLAPGPVAPSE
 PLCGWVVPGGPVARRPPQSPATKPAARTRIRARSVPQPPLPQPPLPQPPLPQPPLPQPPLPQ
 PPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQPPLPQ

SAPP PAS LLQ TLH I SS DDE HSDA DSL RFSD SDD TEAL DPL PPE PHL PPA DEPP GPL AADH LQSP HSQF
GPL PVQ A NAVL SRRY VRST GRSA LA VL I RAC RRI QQQL QRTR RALF QRS NAVL TS LH VRL LLG

SEQ ID NO: 25 = predicted sequence for reductase encoded by UL40

5 MDP AVSPASTDPLDTHASGAGAAPIPVCP TPERYF YTSQCPDINHLRSLSI LNRWLET
ELF VFG DEEDV SKLSE GEGL GFYRFLFAFLSAADDLVTENLGGL SGLF EQKDILH YYVEQECIEVVHSR
VYNIIQLVLFHNNDQARRAYVARTINHPAIRVKVDWLEARVRECDSIPEKFILMILIEGVFFAASFAA
IAYLRTNLLR VTCQSNDLISRDEAVHTTASCYIYN NYLGGHAKPEA R VYRLFREAVDIEIGFIRSQ
APTDSSILSPGALAAIENYVRFSA DRLLGLIHMQPLYSAPADASFPLS LMSTDKHTNFFECRSTS YA
10 10 GAVVN DL

SEQ ID NO: 26 = ICP47 encoded by US12

MSWALKTTDMFLDSSRCTHRTYGDVCAEIH KREREDREAARTAVTDPELPLLCPDVRS DPASRNPTQ
QTRGCARSNERQDRV LAP

15

SEQ ID NO: 27 = gM2 encoded by UL10

MGRRA PRGSPEA PGAD VAPGARA AWWVWC VQVAT FIVSAICVVGLL VLA SVFRDRF PC LYAPAT SYA
KANATVEVRGGVAVPLRLDTQSLLATYAITSTLLLAAVYAAVGAVTS RYERALDAARRLAARMAMP
HATLIAGNVCAWLLQITVLLLAHRISQLAH LIYV LHFACLVYLA AHFCTRGVLS GTYLRQVHGLIDPA
20 PTHH RIVGPVRAVMTN ALLG TLCTAAA VSLNTIA ALNF NFSAPSMLICLTTLFALLV VSLLV E
GVLCHYV RVLVGP HLGIA AATGIV GLACEH YHTGGY YVVEQQWPGA QTGV RVAL VAA FALAM A VLR
CTR A LYHRRH HTKFV RMRDTRH RAHS ALR VRSSM RGSR RGGPPGDPG YAE TPYASV SHAEIDRY
GDS DGDPIYDEVAPDHEAELYARVQ RGP VPDAEPIYDTVEGYAPRSAGEPVY STVRRW

25 SEQ ID NO: 28 = predicted sequence for cleavage/package protein encoded by
UL15

MFGQQLASDVQQYLERLEKQRQQKVG VDEASAGLTLGGDALRVPFLDFATATPKRHQTVVPGVGT LHD
CCEHSPLFSAVARLLFNSLVP AQLRGRDFGGDHTAKLEFLA PELVRAV ARLRFRECA PEDAVPQRNA
YYSVLNTFQALHRSEAFRQLVHFVRDFAQLLKT SFRASSLAETTGPKKRAKVDVATHGQTYGTLELF
30 QKMI LMHATYFLAAVLLGDHAEQVNTFLRLVFEIPLFSDTA VRHFRQRATVFLVPRRHGKTWFLVPLI
ALSLASFRGIKIGYTAHIRKATEPVFDEIDACLRGWF GSSRVDHVKG ETISFSFPDGSRSTIVFASSH
NTNGIRGQDFNLLFVDEANFIRPAVQTIMGFLNQANCKIIFVSSTNTGKASTSFLY NL RGA ADELLN
VV TYICDDHMPRVVTHTNATACSCYI LNKPVF ITMDGAVRRTADLFLPDSFMQEII GGQARETGDDRP
VLTKSAGERFLLYRPSTTNSGLMAPELYVYVDP AFTANTRASGTGIAVVGRYRDDFIIIFALEHFFLR

ALTGSAPADIARCVVHS LAQVLALHPGAFRSVRVAEGNSSQDSA VAIATHVTEMH RILA SAGANGP
GPELLFYHCEPPGGAVLYPFFLLNKQKTPAF EYFIKKFNSGGVMASQELVSVT VRLQ TD PVEYLSEQL
NNL IETVSPNTDVRM YSGKRN GAA DDL MVA VIMA IYLA PPTGIPPAFFPITRTS

5 SEQ ID NO: 29 = predicted sequence for ICP35 encoded by UL26.5

MNPVSASGAPAPPPPGDGSYLWI PASHYNQLVTGQSAPRHPLTACGLPAAGTVAYGHPGAGPSPHYP
PPPAHPYPGMLFAGPSPLEAQIAALVGAIAADRQAGGLPAAAGDHGIRGSAKRRRHEVEQPEYDCRD
EPDRDFPYYPGEARPEPRPVD SRR AARQASGP HETITALVGA VTS LQQE LAHMRAR THA PYGPYPPVG
PYHHPHADTETPAQPPRYPAKAVYLPPPHIAPPGPPLSGAVPPPSYPPVAVTPGPAPPLHQPSPAH
10 PPPPPPGPTPPAASLPQPEAPGAEAGALV NASSAAHVNVDTARAADLFV SQMMGS R

SEQ ID NO: 30 = predicted sequence for polymerase encoded by UL30

MFCAAGGPASPGGKPAARAASGFFAPHNPRGATQTAPPCRRQNFYNPHLAQTGTQPKALGPAQRHTY
YSECDEFRFIA PRSLDE DAPAEQRTGVHDGRLR RAPK VYCGGDERDVL RVGPEGFW PRR LRLWGGADH
15 APEGFDPTVTVFHVYDILEHVEHAYSMRAAQLHERFMDA IT PAGTVITLLGLTPEGH RVAHVY GTRQ
YFYMNKAEVDRHLQCRA PRDLCERLAA ALRES PGASFRG ISADHFEA VVERADVYYETRPTLYYRV
FVRSGRALAYLCDNFCPAIRKYEGGV DATTRFILDNPGFVTFGWYRLKPG RGNAPA QPRPPTA FGTSS
DVEFNCTADNLAVEGAMCDLPAYKLMCFDIECKAGGEDELAFPVAERPEDLVIQI SCLLYDLSTTALE
HILLFSLGSCDLPESHLSDLASRGLPAPVVLEFDSEFEMLLAFMTFVKQYGPEFVTGYN IINF DWP FV
20 LTKLTEIYKVPLDG YGRMN GRGVFRVWDIGQSHFQ KRS KIKVNGMV NIDMYGI ITDKVKLSSYKLN A
AEAVLKD KKKDLSYRD I PAYYASGP AQRGVIGEYCVQDSLLVGQLFFKFLPHLELSA VARLAGIN ITR
TIYDGQ QIRVFTCLLRLAGQKGFILPDTQGRFRGLDKEAPKRPAPRGEGERPGDGNGDEDK DDE DEDG
DEDG DERE EVA RETGGRHVGYQGARVLDPTSGFHVDPVVVFDFASLYPSIIQAHNLCFSTLSRPEAV
AHLEADRDYLEIEVGGRR LFFVKAHVRESLLSILLRDWLAMRKQIRSRI PQSTPEEAVLLDKQQAAIK
25 VVCNSVYGF TG VQHGLLPC LHVAATVTTIGREMLLATR AYVHARWAEFDQ LADFPEAGMRAPGPYS
MRIIYGD TDSI FVLCRGLTAAGLVAMGDKMASHI SRALFLPPIKLECEKTFK LLLIAKKYIGVICG
GKMLIKGV DVLVRKNNCAF INRTS RALV DLLFYDDT VSGAAA ALAERPAEEWLARPLPEGLQAFGAVLV
DAHRRITDPERDIQDFVLTAELSRHPRAYTNKRLAHLTVYYKLMARRAQVPSIKDRIPYVIV AQTREV
EETVARLAALREL DAAAPGDEPAPPA ALPSPAKRP RETPSHADPPGASKPRKLLV SELAEDPGY AIA
30 RGVPLNTDYYFSHLLGAACVTFKALFGNNAKITESLLKRFI PETWHP PDDVAARLRAAGFGPAGAGAT
AEETRRMLHRAFD TLA

SEQ ID NO: 31 = predicted sequence for helicase/primase complex encoded by
UL5

MAASGGEGSRDVRAPGPPPQQPGARPAVRFRDEALNFTSMHGVQPIIARIRELSQQQLDVTQVPRLO
 WFRDVAALEVPTGLPLREFPFAAYLITGNAGSGKSTCVQLNEVLDCCVTGATRIAQAQNMVKLSGAF
 LSRPINTIFHEFGFRGNHVQAQLGQHPTLASSPASLEDLQRRLTYYWEILDITKRALAAHGGEDA
 RNEFHALTALEQTLGLGQGALTRLASVTHGALPAFTRSNIIVIDEAGLLGRHLLTVVYCWMMINALY
 5 HTPQYAGRLRPVLVCVGSPTQTASLESTFEHOKLRCVRQSENVLTYLICNRTLREYTRLHWSWAIPI
 NNKRCVEHEFGNLMKVLEYGLPIEEHMQFVDRFVVPESYITNPANLPGWTRLFSSHKEVSAYMAKLH
 AYLKVTRGEFVVFTLPVLTFVSVKEFDEYRRLTQQPTLTMEKWITANASRITNYSQSQDQDAGHVRC
 EVHSKQQLVVARNDITYVLNSQAVTARLRKMVFGFDGTFRTFEAVLRRDSFVKTQGETSVEFAYRFL
 SRLMFGLIHFYNFLQRPGLDATQRTLAYGRLGELTAELLSLRRDAAGASATRAADTSDRSPGERAFN
 10 FKHLGPRDGGPDDFPDDLDVIFAGLDEQQLDVFYCHAYEEPETTAAVHAQFGLLKRAFLGRYLILR
 ELFGEVFESAPFSTYVDNVIFRGCELLTGSPRGGLMSVALQTDNYTLMGTYTRVFAFAEELRRRHAT
 AGVAEFLLESPLPYIVLRDQHGFMSVVNTNISEFVESIDSTELAMAINAODYGISSKLAMTITRSQGLS
 LDKVACFTPGNLRLNSAYVAMSRTSSEFLHMNLNPLRERHERDDVISEHILSALRDPNVVIVY

15 SEQ ID NO: 32 = predicted sequence for helicase/primase complex encoded by
 UL8
 MEAPGIVVVEESVSAITLYAVWLPPRTRDCLHALLYLVCRDAAGEARARFAEVSVGSSDLQDFYGS
 VSAPGAVAAARAATAPASPLEPLGDP TLWRALYACVLAALERQTGRWALFVPLRLGWDPTGLVV
 ERASWGPPAAPRAALLDVEAKVDVDPLALSARVAEHPGARLAWARLAIIRDSPQCASSASLAVTITR
 20 TARFAREYTTLAFPPTRKEGAFADLVEVCEVGLRPRGHPQRVTARVLLPRGYDYFVSAGDGF
 SAPALV
 ALFRQWHTTVHAAPGALAPVFAFLGPGFEVRGGPVQYFAVLGFGWPTFTVPAAAA
 ESARDLVRGAA
 ATHAACLGAWPAVGARVVLPPRAWPAVASEAAGRLLPAFREAVARWHPTATTIQLLDPP
 AAVGPVWTA
 RFCFSGLQAQLLAALAGLGEAGLPEARGRAGLERLDALVAAAPSE
 PWARAVLERLVPD
 CADACPALRQ
 LLGGVMAAVCLQIEQTASSVKFAVCGGTGAAFWGLFNVDPGD
 DAAAHGAIQDARRALEAS
 VRVLSAN
 25 GIRPRLAPS LAPEGVYTHVVTWSQTGA
 FWNSRDDTDFLQGFPLRG
 AAAYAAA
 EVMRD
 ALRRILRRPA
 AGP
 PEEAVCAARGVM
 MEDACDRFV
 LDAFGRR
 LDAEYWS
 VLT
 PPG
 EAD
 DPL
 P
 QTA
 FRGG
 ALL
 DAEQY
 WRR
 VVR
 CPG
 GGE
 S
 VGP
 VD
 LY
 PR
 PL
 VLP
 P
 VD
 CA
 H
 L
 RE
 I
 L
 RE
 I
 Q
 LV
 FT
 GV
 LEG
 V
 W
 GEG
 GS
 F
 V
 Y
 P
 F
 DE
 K
 I
 R
 FL
 FP

30 SEQ ID NO: 33 = predicted sequence for unknown protein encoded by UL15.5
 MDGAVRRTADLFLPDSFMQEII
 IGGQARETGDDRPVLT
 KSAGERFLLYRP
 STTNGLMAPELYVYVDP
 AFTANTRASGTGIAV
 VGRYRDDFI
 IFALEHFFL
 RALT
 GSAPADI
 ARCVVHS
 LAQVL
 ALHPGA
 FRS
 VRV
 AVEGNSSQ
 DSAV
 IATHV
 HTEM
 HRIL
 ASAG
 ANG
 PG
 PELL
 FYH
 CE
 P
 GG
 AV
 LY
 P
 F
 L
 N
 K
 Q
 K
 T
 P
 A
 F
 EY
 F
 I
 KK
 FN
 SGG
 V
 MAS
 Q
 EL
 V
 S
 V
 T
 V
 RL
 Q
 T
 D
 P
 V
 E
 Y
 L
 S
 Q
 L
 N
 N
 L
 I
 E
 T
 V
 S
 P
 N
 T
 D
 V
 R
 M
 Y
 S
 G
 K
 R
 N
 G
 A
 A
 D
 D
 L
 M
 V
 A
 V
 I
 M
 A
 35 IYLA
 APT
 GIPPA
 AFF
 P
 I
 R
 T
 R
 S

SEQ ID NO: 34 = predicted sequence for cleavage and packaging protein encoded by UL32

MATSAPGVPSAAVREESPSSWKEGAFERPYVAFDPDLLALNEALCAELLAACHVVGVPASSALDED
 VESDVAPAPPRPRGAAREASGGRGPGSARGPPADPTAEGLLDTGPFAASVDTFALDRPCLVCRTIEL
 5 YKQAYRLSPQWVADYAFLCAKCLGAPHCAASIFVAAFEFVYVMDHHFLRTKKATLVGSFARFALTIND
 IHRHFFLHCCFRTDGGVPGRAHQKQPRPTPSGAAKVQYSNYSFLAQSATRALIGTLASGGDDGAGAG
 AGGGSGTQPSLTTALMNWKDCARLLCTEGKRGGGDCCCTRAARNGFEAAAGALAQGGEPEWAYA
 DLILLLLAGTPAVWESGPRRLAAADARRAAVSEWEAHRGARMRDAAPRFAQFAEPQPQPDLDLGPLM
 ATVLKHGRGRGRTGGECLLCNLLVRAYWLAMRRLRASVVRYSENNTSLFDCIVPVVDQLEADPEAQP
 10 GDGGRFVSSLRAAGPEAIFKHMFCDCPMAITEMEVDPWVLFGHPRADHRDELQLHAKLACGNFEGR
 VCIALRALIYTFKTYQVFVPKPTALATFVREAGALLRRHSISLLSLEHTLCTYV

SEQ ID NO: 35 = predicted sequence for ICP1/2 fragment encoded by UL36.4.2

MEYDSFDALLAARLESGQTLGPAGGREASLPEAPHALYRPTGQHVAVLAAATHRTPAARVTAMDLVLA
 15 AVLLGAPVVVALRNTAFSRESELELCFLDSRPGGPDAALRDVVSSEDIETWAVGLLHTDLPNIENA
 CLAAQLPRLSALIAERPLADGPPCLVLVDISMTPVAVLWEAPEPPGPPDVRVGSEATEELPFVATAG
 DVLAASAADADPFFARAILGRPDFASLLTGELFPGHPVYQRPLADEAGPSAPTAARDPRDLAGGDGGS
 GPEDPAAPPARQADPGVLAPTLTDATTGEPVPPRMWAWIHGLEELASDDAGGPT

20 SEQ ID NO: 36 = predicted sequence for ICP27 encoded by UL54

MATDIDMLIDLGDLSDSELEEDALERDEEGRDDPESDSSGECSSSDEDMEDPCGDGGAEAIDAAIP
 KGPPARPEDAGTPPEASTPRPAARRGADDPPPATTGVWSRLGTRRSASPREPHGGKVARIQPPSTKAPH
 PRGGRRGRRGRGRGYGPGGADSTPKPRRVSRNAHNQGGRHPASARTDGPAGTHEGARRGGEQLDVSG
 GPRPRGTRQAPPPLMALSITPPHADGRAPVPERKAPSADTIDPAVRAVLRSISERAVERISESFGRS
 25 ALVMQDPFGGMPFPAAANSPWAPVLATQAGGFDAETRRVSWETLVAHGPSLYRTFAANPRAASTAKAMR
 DCVLRQENLIEALASADET LAWCKMCIHNLPLRPQDPIIGTAAAVLENLATRLRPFLQCYLKARGLC
 GLDDLCSSRRRLSDIKDIASFVLVILARLANRVERGVSEIDYTTVGVGAGETMHFYIPGACMAGLIEIL
 DTHRQECSRVCELTASHTIAPLYVHGKYFYCNSLF

30 SEQ ID NO: 37 = virion protein encoded by UL49.5

MTGKPARLGRWVLLFVALVAGVPGEPPNAAGARGVIGDAQCGRGDSAGVVSVPGLVLP
 FYLGMTSMGVCMIAHVYQICQRALAAGSA

SEQ ID NO: 38 = gG2 encoded by US4

NRWGSVPGPINPPNSDVFPGGSPVAQYCYAYPRLDDPGPLGSADA
 GRQDLPRRVVRHEPLGRSFLTGGLVLLAPPVRGFGAPNATYAARVTYRLTRACRQPILLRQYGGCRG
 GEPPSPKTCGSYTYQGGGPPTRYALVNASLLVPIWDRAETFEYQIELGGELHVGLLWVEVGEGP
 GPTAPPQAARAEGGPCVPPVPAGRPWRSVPPWYSAPNPGRFLRFRERCLPPQTPAAPSDLPRVAFA
 5 PQSLLVGITGRTFIRMARPTEDVGVLPPHWAPGALDDGPYAPFPPRPRFRR

SEQ ID NO: 39 = nucleotide sequence for RS1 (ICP4), full-length

ATGTCGTACTACCATACCACCATCACAGTGCCAACAGCGTAAAAAGAAAAAACCACCAAC
 GACCCAAGGACGTGGAGCTGAAGTTGCTATGGCGATGAGGATGGAGGCGCTTGAGAGCTGCTGCTG
 10 AGACTACTGGAGGACCTGGATCACCGGACCCCTGCCATGGACCCCCCTACACCAAACCCGATCGT
 AGACCGGCTGCTAGACCTGGATTGGATGGCATGGAGGACCCGAGGAAAACGAGGACGAGGCGGACGA
 CGCCGCTGCCGACGCCGACGCCGATGAGGCTGCCCTGCTCTGGAGAGGCGGTAGACGAACCTGCTG
 CCGATGGAGTTGTTAGCCCTAGGCAATTGGCTTGCGAGCATGGTAGACGAGGCTGTGAGAAC
 ATCCCTTCCCTCCCCCTGAACGTGATGGAGCACAAGAGGAGGCGCTAGGAGTCCCTCACCACCCG
 15 TACACCTCTATGAGAGCGGATTACGGCGAGGAAACGACGACGACGATGATGATGACGACGATG
 ATCGTGTGCCGGACGCTGGGTTAGGGGACCTGAAACCACTTCTGCTGTCCGTGGAGCATAACCCGAT
 CCTATGGCGAGTTGAGCCCTAGACCACCTGCCCGAGGGAGACACCACCAACCCATCATAGGCG
 TAGACGTGCTCCTAGACGTGTTCTGCCGCTAGTGACTCTCCAAATCTGGCTCTTCTCATGCCT
 CTTCCGCTTCATCTCGGCCTCATCGTCCTCTCGGATCCGCTCGAGTAGTGATGATGATGATGAC
 20 GACGACGCTGCTAGAGCCCCCGCTCTGCTGCCGACCACGCTGCTGGCGGAACTTGGGAGGCCGACGA
 CGAGGAGGCGGGAGTTCTGCTCGTGGCCGGAGCTGCTCCGAGGCCTCTCCACCCGTGCTGAAC
 CTGCTCCGGCTAGAACACCGGCCGCTACTGCTGGTAGACTGGAGCGTAGACGTGCCGTGCTGTG
 GCTGGTAGAGATGCTACTGGCCGCTTACTGCTGGCGCTAGACGTGTTGAACGGACGCCGATGC
 TGCTTCTGGTGTCTTCTACGCCGTTACCGTATGGTTACGTGTCGGTGAACCTTGGCCTGGCGCTG
 25 GTCCACCTCCGCCGGACGTGACTCTACGGTGGATTGGCGATTCTGCCCTGGCTGTGGCGCT
 CGCGAGGCTGAGGAGGCTAGAGCCGTTCGAGGCTCTGGTGCCCTGCTCTGGCTCTGA
 ATTGGGCGACGCTGCTCAACAATACGCCCTCATCACACGCTTGCTGTACACTCCGACGCCGAGGCTA
 TGGGATGGCTCCAAAACCTAGAGTTGCCCTGGTATGTTGCTGGTGAACGGCTTGGCGCT
 TCCGGCGCTGCTCGTAACCTTCTCGTCATCTCCGGTCTGTGGCTAGAGCTGCTGCCTACTGGG
 30 ATACGCCATGGCCGCTGGACGTTCCGGCTGGGACTGGCTATGTTGCTGCCGCTGTAGCAATGTCTA
 GACGCTACGACCGTGCTAAAAGGATTCTTGCTACGTCACTGAGCGTGCTTACGCCCTTGTG
 GCCCGTGAAAACGCTGCCCTCACTGGCGCCCGTACCCCGATGACGGTGGCGACGCCAACGCCACGA
 TGGTGATGATGCTAGAGGCAAACCGCTGCCGCTGCTGCTCTGGCTCTGCCGCGCTTCCCGT
 CCGATGAACGTGCTGTTCTGCCGGTACGGTGCCGCTGGTGTGTTGGCTGCTTGGGACGCTTGAGT
 35 GCTGCCCGCTAGTGCCCTGGTGGCGATGACGATGACGATGACGATGGTGCTGGCGAGGCG
 TGGCGGTAGACGTGCTGAGGCTGGACGTTGCTGTTGAATGCCCTGCCGTAGAGGAATCTGG
 AGGCTCTGGCCGAGGGATTGACGGAGACTTGGCGCTGACCGGACTGGCGGAGCGAGGCCG
 GCTCCACCTGCCCGTCTGCTGGTGTGCCGCTCCCTCATGCCGACGCTCCTAGACTCCGTG

TTGGCTCCGTGAACCTCGTTCGTGACGCTTGGTCTGATGAGACTGAGAGGCGACTTGAGAG
 TGGCTGGAGGATCCGAGGCTGCTGTTGCTGCTGCTGGTCTTGGTGTGGCTGGCTTGGC
 CCTGCTTGCCGAGATCTCCCCGTTGTTGTCGAGTGCCGCGCTGCTGCCGCCATTGTTCCA
 AAACCAATCCCTCCGCCCTGCTCGCCGACACTGTTGCCGCTGCCGATTCTCTGGCTGCTCCGGCTT
 5 CTGCCCCACGTGAAGCTGTAACGTAAACGTAAATCACCGCTCCGCTCGTCTCCCTGGTGGCGCCCT
 AGACCCCCCTAAAAAATCCCCTGCGATGCCCTAGACCTGCTGCTGCTCCCCCGCTGGTGTGCTCC
 CCCCCTCCCCCTACTCCCCCCCCACGCCACCTCGTCCGCTGCCCTCACACGCCGCTGCTGAGG
 GACCCGATCCACAAGGGCTGGCGTAGACAAACCTCTGGCCCATCCCATAACACGGCACCATCTGCC
 GCTGCTTGGAGGCTACTGTGCTCCTCGTGTGGCTGAACTCACCGATCATCCGCTGTTCCCTGC
 10 TCCCTGGCGTCCCACCTCATGTCATGTCATCCTAGAGCTTGGCTCCTGGCGCTCGTTGTGCTGCC
 CTCCCCCTGGCGGTGCTCCGGCTGCTTGGCCTCTCCGTGCCCTGGTCCACTCCGCCGTGCCGCT
 GCCTGGATGAGACAAGTCCCGACCTGAGGATGTTAGAGTTGTGATCTTGACTCGCCCTGGCTGG
 CGAGGATTTGGCGCTGGTAGAGCTGGCGGTGGCCCCCCTCTGAATGGTCTGCTGAACGTGGTGGTT
 TGTCTTGCTTGGTGGCGCCCTGGAAACCGTCTGTGTGGCTCTGCTACTGCTGCTTGGCTGGAAAC
 15 TGGACTGGCGCTCCCGATGTTCTGCTCGGTGCTCAAGGAGTTTGCTGCTCTACTCGTGACTT
 GGCATTGCGTGGAGCTGTTGAATTGCGCTGGACTCTGGCTGGCGCTGTGATAGGAGACTCATCGTC
 TAAACGCTGTGAGAGCTGCCGATTGGCCTGCCGATGGCCTGTTGTGCTCGTCAACACGCTTACTTG
 GCTTGTGAAGTGTGCCCCGCTGTCATGTCGTTGCTGGCCTGCTGCTGATCTGAGGCGTAC
 TGTCTGGCTAGTGGCGTGTTCGGACCTGGTGTTCGGCTGTCGAGCTGCTCACGCTAGAC
 20 TGTACCCCGATGCCCAACCCCTCCGTTGTCGTTGGAGCAAACGTCGCTACCGTGTCCGTACTCGT
 TTCGGACCCGATACTCTGGTCCAATGTCCTCGTGAATACCGTCGCTGTTCTGCCCTCGA
 TGGACGTGCTGCCGCTCTGGCGCTGGTGACGCTATGGCCTCTGGCGCTCCGGACTCTGTGAGGATG
 AGGCTCACTCACATCGTGCCTGTGCCCCGCTGGGACTGGCGCTCCATTGAGGCGTGTACGGCA
 CTGGGCCGTGATGCTTAGAGGGCGACCCGCTGAATTGAGAGGCCCTGCTGAATTCTGTGCTAG
 25 GGCTCTGCTCGAACCCGATGGAGATGCTCCTCTGGTACTCCGTGACGACGCCATGCTGGCCTC
 CCCCCAACAAATCGTGGCTAGTGTGCTGGACGTGCTGGTACTGTATTGGCTGCTGCTGGCGTGG
 GTGAAGTTGGTACTGCCGCTGGACTCGTACACCTCCCCGCCGTGAACCTGTAGACATGGATG
 TGAACTCGAGGATGATGACGACGGATTGTCGGAGAGTAATAG

30 SEQ ID NO: 40 = US6ΔTMR
 ATGAAGTTCTCGTGAACGTGGCCCTGGTGTTCATGGGGTGTACATCAGCTACATCTACGCCAACG
 TTGGAAGTACGCTCTGGCTGACCCATCCCTGAAGATGGCTGACCCCAACCGTTCCGTGGCAAGAAC
 TGCCCGTGTGGACCAGCTGACCGACCCCCCTGGCGTGAAGCGTGTGACACATCCAGCCATCCCTC
 GAAGACCCCTCCAGCCCCCTCCATCCCCATCACCGTGTACTACGCTGTGCTGGAACGCGCTTGCG
 35 TTCCGTGCTGTCACGCTCTCCGAGGCTCCAGATCGTGCCTGGTGTACAGGATGGTGACAAC
 AGCACACCTACAACCTGACTATCGCTGGTACAGGATGGTGACAACGCGCTATCCCTATCACCGTC
 ATGGAATACACCGAGTGCCCTACAACAAGTCCCTGGCGTGTGCCCTATCGTACCCAGCCCCGTTG
 GTCCTACTACGACTCCTCAGCGCTGTGTCGGAGGACAACCTGGGTTCCGTGATGCACTGCCGCTT

TCGAGACTGCTGGCACCTACCTGCGTCTGGTCAAGATCAACGACTGGACCGAGATCACCCAGTTCATC
 CTGGAACACCGTGCTCGTCTCGTCAAGTACGCCCTGCCCTCGTATCCCTCTGCTGCTGCCT
 GACCTCCAAGGCTTACCAAGCAGGGCGTACCGTGGACTCCATCGGATGCTGCCCGTTCATCCCCG
 AGAACCGCGTACCGTGGCTCTGTACTCTGAAGATCGCTGGCTGGCACGGTCTTAAGCCCCCTAC
 5 ACCTCCACTCTGCTGCCCTGAGCTGTCCGACACCACCAACGCTACTCAGCCCGAGTTGGTGCCTGA
 GGACCCCCAGGACTCCGCTCTGTGGAGGACCCCGCTGGAACCGTGTCCCTCCAGATCCCCCCAACT
 GGCACATCCCTCCATCCAGGACGTGGCCCTCACCACGCTCCAGCTGCTCCCTCAACCCCCGTCGT
 CGTCTCAGATGGCTCCAAGCGTCTGCGTCTGCCACATCCGTGACGACGACGCTCCATCCCA
 CCAGCCCCCTGTTCTACCAACCACCATCACCAACTAA

10

SEQ ID NO: 41 = nucleotide sequence for RL1 (ICP34.5)

ATGTCTCGTCGTGGTCTCGTCGTGGTCTCGTCGTGGTCTCGTCGTCCCGTCCGGGTGCGCCGGCGGT
 ACCACGCCCGGGTGCGCCGGCAGTGCCCGTCCAGGCGCACTGCCTACCGCGGACTCTCAAATGGTGC
 CGCGTATGATTCTGGTACTGCCGTCGAATCTGCTCCGGCAGCGAGCTCCCTGCTGCGTCTGGCTG
 15 CTGGTCCCTCAGGCGGACGATTCCGATGACGCAGACTACGCAGGCAACGACGACGGAGTGGCTAA
 CAGCCCCGCAAGCGAGGGTGGTGGCAAAGCGCCGGAGGCTCCGACCGCAGCGCTGCCGAGCGTGCC
 CGCCTCCGCCCTCTGTAAGAACGTTGGCCCTAACGTCCTCTGCCCGCACCTGGCTCTGCGTCTG
 CGTACTACCAACTGAGTACCTGGCGGTCTGCTCTGCGTCCGCGCTAGCCGCCGGC
 CGATGCACCGCGTGGCAAAGTGTGCTTCTCTCCACGTGTTCAAGTTCGTCACCTGGTGGCTGGAAA
 20 CGGCTGCCGTCTGGCTGCCGTGGCAGCTGGCACGTGAGCGCGCAGACCGTGACCGCTCCGTCG
 CGTGTGGCGGCTGCTGAAGCGTTATCGGCCGTGCCCTGAAACCTGAGGCTCGCGCTCGCGCGTGC
 GCGCGCTCGTGCCACGAAGATGGCGGTCCAGCAGAGGAAGAGGGCAGCTGCAGCGCGCGTA
 GCTCCCGGGCTCGGGTCCAGGTCGTGCGCCGTA

25 SEQ ID NO: 42 = nucleotide sequence for RL2 (ICP0)

ATGTCGTACTACCACCATCACCATCACATGGAGCCACGTCTGGTACTTCTCTCGCGCTGATCC
 TGGTCTGAACGTCCGCCACGCCAGACTCCGGCACCCAGCCGGCCCTCACGCTTGGGCATGC
 TGAACGATATGCAGTGGCTGGCTCTGATTCCGAAGAGGAGACTGAGGTTGGTATCGCGATGAT
 GATCTGACCGCGACTCTACCAGCGAAGCAGGTTCACTGACACCGAAATGTTGAAGCGGGCTGAT
 30 GGATGCCCGACCCCGCCGGCTCGTCCGCCGGCTGAACGTCAGGGTAGCCCTACGCCGCGATGCGC
 AAGGCTCTGTGGTGGTCCAGTAGGCAGAGAGGAGGCTGAGGCCGGTGGCGCGGTGATGTGTT
 GCGGTTTGACCGATGAAATCGCACCGCCGCTGCGTTGTCAGTCTTCCCGTGCCTGCACCCGTTTG
 CATTCCGTGCATGAAAACCTGGATCCCCTGCGCAACACTTGCCCGTGTGCAACACTCCGGTTGCTT
 ATCTGATCGTTGGTGTAAACCGCATCTGGTCTTTCTACCATCCGATTGTCACGACCCACGTACG
 35 CGTGTGAGGCGGAGGCCTGTAACGTCAGTGGCTGGGACCTTATCTGGACCGGTAACCCGCG
 CACCGCGCCACGCTCCCTGTCCTGGGTGGCCATACGTTGCTGCTGAGGCCGACCCACCTGGC
 CAGGCACCGATGACGAAGACGACGATCTGGCTGACGTTGACTATGTTCCGCCGGCACCGCGTCGCGCA

CCACGCCGTGGTGGCGGTGGCGCCGGTGCAGCGCGGTACCTCCCAGCCGGCAGCAACTCGCCAGC
 ACCGCCGGTGCCCCCGCTTAGCAGCTCCGGTGGCGACCGCTCGTGCTGGCTGGGTTCTGGTT
 CCGGTGGTGGTCCGGCGTGGCGGTGTCGTCGGCTGTGGCTCTCTGCCACCGGAGCTGGTGGC
 GGTGCTCAAGCTCGTGTGGCGAGGACGAGCGAGGGCTGCTGAGGGCGTACTCCACCGGCCG
 5 TCAACCAGCGCAGCACAGGAACCGCGATCGTATCTCGATTCCCCGCCACCGAGCCCGCTCGC
 CGGGGGTCCGGTCCGCTGTCTTGATCCTCCAGCTCTGCTCAGGTAAGCAGCGGTCTGGCGGT
 GGCGGCCTGCCACAGTCCTCTGGCGTGTGCTCGTCCTCGTGCAGGGCGTTGCTCCTCGTACGTT
 TCCGCCACCGCCTGTCGCGCCGGTGTGCTCGCCTCGTGCAGCGGCAGGTCCGGCTCCGCTG
 CAGTTCCGGTTGATGCACACCGTGCACCGCGCTCTCGTATGACCCAGGCGCAGACTGATA
 10 CAATCCCTGGGTGCGCGGGTGGACTGACGCTCGTGGTAGCGGTGGTCCGGGCTGAAGGTGGC
 GGGTGTCCACCGGGTACTAACACTCCGGCGCTGCACACGCGCTGAAGGTGCGCTGCACGTC
 CGCGTAAACGTCGTGGTCCGACAGCGGTCCGGCTGCAAGCAGCAGCGCGAGCTTCCGTC
 CGCAGCCCGCTGGCGCCGAGGGTGTGGCGCAAGCGTGCTGCTCCCGCTGTCACCGGACTCCGA
 TTCTGGCGACCGCGGGTCACGGCCCGTGGCCCTGCTAGCGCAGGCCTGCGCCGCCATCCGCCAGCC
 15 CGTCTTCAGGCAGCTGTGGCTCGGGCGTCTCTTCCGCTAGCAGCTCTCCGCCTCTCTAGC
 AGCGCGTCCCTAGCAGCGCATCTCCCTCTTGCTTCTAGCGCTTCTAGCTCTCCCGTC
 CTCTTCCGCTGGCGGTGCGAGCGGCTCTGTTGCTTCCGCCAGCGCGCAGGTGAGCGTGT
 GCAAACGAAACCGGCCACGTGCTGTCACCGCGTGGCCCGTAAGTGTGCGCAGACCCGCCAC
 GCCTGGGCCACGTGCTGTCACCGCGTGGCCCGTAAGTGTGCGCAGACCCGCCACCGCTGAA
 GGCCTGGCGAGCCGGTGCAGCGTGTGATCCGGCTCCGGCTGACCCGTTACCTGCCGATT
 20 GTCTCCGTTGTGGCACTGGCGCCGTATGTGAACAAACTGTCACGGCGATTGCC
 ACATGGAAACCGGTCATATCGCGCTTACGTCGTTCTGGTGACCAAACCGGAACGTGGCG
 ATCTGCGTGCAGCGCTCCGGCTGGTCCCGTGTACCCGCTGCCGAACATGCTCG
 CCCACCGGATTACCAACCCCGCCGGCTCCGAGTGGACTCCCTGTGGATGACCCGGTT
 TGCTGTTGACCAAGGGCACGCTGGTGGTGTCTGGACTTCAACGGCTGCGCTCCGT
 25 TCCCGTGAGCAAGGCCTCCGGCCCTGCGGGCGATGCCCGCTGCCACGGCAGAG
 ATCATAA

SEQ ID NO: 43 = nucleotide sequence for UL36.3.4.1

ATGTCGTACTACCACCATCACCACCATCACGCCGCTAACGTGCTAGGGGATCCTCTGAACGCTGGC
 30 TGCTGGTGTGAGGCTGCTTGGATAGAGTGGAGAACCGTGCGAAATCGATGTTGAGCTGAGGA
 GACTCCAAGCTTGGCTGGTACTCAGCGTACAACCCCTCGTGTGATTCGTAACCGTGCG
 TTGGCGGAAACGCTGAGGCCGTAACATTGGCTCTGGACACTGCCTCGCTTCAACCC
 CGAAAACCAACGTCATCCTATGCTCCCACCTCTCGTGTATTACCGCCTGGGATGGAGCG
 TCCATGCTGCTGAAACTTACGCCGACATGTTCCGTGCGATGCCGAACCACTGGCT
 35 CGTATCGCTGAGGGACTGCTGGAGATGGCTAACGCTGGCGACGGATTGATACCG
 CGGTAGACTGGCGATGATATGACTCTGTGCCGGATTGAGGCGCTACGTT
 GCTACGCCGATTACGTGGAACGTGAGAGATGCCCTGGATGCTATTAGGGCG
 GCGTCCATAGAGCACTGGGTGTTCCGCTGGATTGGCGGTGCTGCC
 GACAAATTCCGCTGCTCGTAACGATCCTGAGGC

TACTGCTGAATTGGTCCGTACTGGTGTAAACATTGCCCTAGTGAGGACGCTCTCGTGGCTTGTG
 CTGCTGCCCTGGAGAGAGTCGATCAATCTCCGTAAAAACACGGCTTACGCCAATACGTTGCCCTC
 GTGACCCGTCAAGACACTGCTGAGACTAAAGACGCTGTGGTCCGTCTAAACAACAAACGTGCTGAGG
 CACTGAACGTTTATGGCTGGCTGAGAGAGGCTGGCTGCTAGAGAACGTCGTGCTCAAATTGAGG
 5 CTGAGGGATTGGCAAACCTGAAAACCATGCTCAAAGTCGTGGCTGTACCCGCTACTGTTGCTAAA
 ACTCTCGACCAAGGCTCGTAGTGTGCCGAAATTGCCATCAAGTCGAAGTGTGCTGGATCAAACCGAAA
 AACTCGTGAACGGATGTGCCCTGCTGTGATCTGGCTCGAACACGCCAAAGAACACATTGAGACACACC
 CTTTGTCTGCCGCTCGTGGTGATGGCCTGGACCCCTGGCTCGTCATGCTGCCCTCGGTGCCCTC
 TTGATACTCGTCGTAGAGTAGACGCCCTGAGGAGATCCCTGGAGGAGGCTGAGGCTGAATGGGACGA
 10 AGTTTGGGACGCTTCGGTAGAGTGAGGGCGAGCGTGGAAATCTCCGGAGGGATTCCGTGCAATGC
 ATGAGCAACTGAGGGCCCTCCAAGACACAACAAACACCGTGTCTGCCCTGAGGGCTAACCTGCTTAC
 GAACGCTTGTCTGCTCGTACCAAGGAGTACTGGAGCGAAAGGCCTGAGAGAGGCTGAGGCTGTTGA
 GGAACACTCGGTGCTCGTCACTAAACACACCGCTCTGTGCTGCTAGGCTGAGAGATGAGGCTGTCGTA
 GAGTGCCTTGGAAATGAACCTCGATGCTCTGGAGGATTGTTGGCTGAGTCGATGCCGCTGCTGCC
 15 GATTGGCACCTTGGCTGTAGAGGAATTCCGTGGTAGAGAACACTCATTCAATACCGTATGGCCT
 GTACTCTGCCCTACGCTAGAGCTGGAGGACAAACTGGTGTGGAGCTGAATCTGCTCCTGCTCCTTG
 TCGTGGATCTGAGGGCTTGGATGCTCGTGTGCTCTCTTCCCCTGAGGGACATGAAGTGGAC
 CCACAACGCTGAGGAGGCGTGGAGAGGCTACTTGAGAGCTGGCGCGACCTGGACCTCTCGTGT
 CCGTGAAGCTGTTCTGCTTGACCTGCCATTGCCACATCTTCTGGCCCCGATGGAACCTCCC
 20 TCCAATACGCTTGTGCTTCCCTGCCGTAAACGGACAAACTCGGAGCTTGCTCATGAGGCCCCAGGCC
 GCTTGTGTTAGACCTCCTTGCCTACCGATGTGCTGGAATCTGCCCAACTGTGACTGCCATGTACGT
 ACTCACTGTGGTCAACCGCCTCCAACACTGGCATTGAGTGTCAAGCGGAAACTCCAACGTTCG
 GTCGTTCGTGTCAAGGCAACCTGGGAGCGTCAATGGATGCCGCCGTGAATTGTACGTT
 GCCCTGGGGTACAACACTCTCACACGTGAATTGGTTGTCGCTGGGACAATTGGGATGGGCTAGTGG
 25 AGCTGCTGCTCCTAGACCCCCACCTGGACCCCGTGGCTACAACGTCACTGTGTGGATTCAACGAGA
 ACGATGTCCTCGTCGCTTGGTGCCGGTGTCCCAGACACATCTACAACCTCTGGCGCCTGGACTTG
 GTCCGTCAACACGAGTACATGCACCTCACACTGGAGCGTGCCTCGAGGATGCTGCCAGTCTATGCT
 CTTCGTTCAACGCCTCACTCCACATCCCGACGCTCGTATTAGAGTTGCGCACCTTGGATGGT
 GTCTCCCTACACGTGGTCTGTTGTCGGAACCCGCTGGCGGACTGGCGTGTGGTAAACTGTCTGAA
 30 ACCGACCCATTGGCCCCATGGAGATCTGCTTGGAACTCGGAACCCAAACGTCGTGACGTGCCCTGCTT
 GGGAAACTGCCCCGTCAAGCTTGGCCGTGTGCGGTACTGGCCGTATGTGCTTGCCCTCGG
 CTGCCTTGGCTGTTGTGGACCTGTATGTTCCCCGACGACTACACTGAATACGACTCATTGACGCC
 CTCTTGGGGCTGCCTGGAATCGGGACAAACATTGGGACCTGCTGGCGGTAGAGAGGCTTCATTGTA
 ATAG

35

SEQ ID NO: 44 = nucleotide sequence for UL36.4.2.5

ATGTCGTACTACCACCATCACCATCACGAATACGACTCCTTCGACGCTTGTGGCTGCTAGACT
 GGAATCTGGTCAAACCTGGGACCCGCTGGCGTAGAGAGGCTTCTTGCCCGAGGCTCCTCATGCTT

TGTACCGTCCAACCGGACAACATGTTGCTGTGGCGGCTGCTACTCATAGAACCCCTGCTGCTCGT
 GTTACTGCTATGGACCTGGCTTGGCGGCCGTTGCTGGCGCTCTGTGGTGGCGCTTGAGAAA
 CACTACTGCCTCTCCCGTAATCCGAATTGGAACTGTGCCTCACCTGTTGATTCGTCGCTCCAC
 GACCGGATGCTGCCCTGAGAGATGTGGTATCCTCCGACATTGAAACCTGGCTGTGGCTTGCTCCAC
 5 ACCGATTGAAACCTATTGAGAACGCTTGCTGGCGCTCAACTGCCACGCTTGCTGCCCTATTGC
 TGAACGTCCTTGGCCGATGGACCCCTTGGTGGTGGACATTCGATGACACCTGTCGCTG
 TTTTGTGGAGGCCCTGAACCACCTGGCCCTCCCGATGTTGCTCGGTAGCGAGGCCACTGAG
 GAATTGCTTTCGTCGCTACTGCTGGTGTGTTGGCGAGTGCTGCGATGCCGATCCTTCTT
 CGCTCGTGCATCCTGGCCGTCCTTCGATGCTCTGCTACTGGTGAACGTGTTCCCTGGTCACC
 10 CCGTTACCAACGTCCTGGCGATGAGGCTGGCTCTGCTCTACTGCCGCTGTGATCCTAGA
 GATCTGGCTGGAGGCACGGTGGATCCGGACCTGAGGATCCCGCTGCTCCACCTGCTAGACAGGCCGA
 TCCTGGTGTGCTGCTACTCTGCTACCGATGCTACTACTGGCGAACCTGTGCCACCCGTATGT
 GGGCTGGATTATGGACTGGAGGAACCTGGCTCCGATGATGCCGGCGTCTACCCCAAACCTGCC
 CCGGCTTGCTGCCCTCCTGCTACGGATCAATCTGCCCCACTTCCAATACGCCCTAGACCAAT
 15 TGGCCCGGCTGCCACTGCTAGAGAAACTCGTCCTCCGTTCCCTCAACAAAACACTGGTCGTGTC
 CTGTCGCTCCACGTGATGACCTAGACCTCCCCCTACTCCTCCCCCTGCCGATGCTGCTTTG
 CCACCTCCTGCCTCTGGTTCTGCTGCTGCTTCTCCGCTGCTGTTCCACGTGTCGTTCTAG
 GCGTACTCGTGCCAAATCCGTGCCCTCGTGCCTCTGCCCCACCCGAGGGATGGCGTCCCCCGCTT
 TGCCTGCCCTGTTGCTCTGTCGGCGCTCTGCTCGTCCCCCGATCAACCTCCTACTCCGAATCT
 20 GCTCCCCGGCTTGGGTTCCGCTCTGCCATTGCCACCCGGACCTGCTAGTGCTCGTGGTGTGCTTCCC
 TGCTCCAACCTGGCCCTATTCCCCCACCCCCCGCTGAGGGAGCTGTTCCGGTGGTGTGCTGTA
 GACGTGGTCGCCGTCAAACAACTGCTGGACCATCCCCACCGCCACGTGGCCGGCTGCTGGTCC
 CCTCGTGCCTCACTAGGCCTGCTGTTGCTAGTCTGTCGCTTGAACCTCTGCTGCCCTCCCCCG
 TGATCCTGCCGATCATGCTGCTGCCGTTCTGCTGCCGCTGCCGTACCACTCACCTGGACTGG
 25 CTCCCCCAACTCTGCTGCTCAAACCTCTCCCTCCCTGGCGCTGGCCTGTTGCCCATCTGAA
 CCTTGTGGCTGGCTGGGTTGTGCTGGAGGCCGTTGCTAGACGTCCCCCACCCAACTCTGGCTAC
 TAAACCGGCTGCTCGTACCCGTATTAGGGCTGTTCTGCCCCAACCCACCTTGGCCAAACCTCCAC
 TGCCTCAACCCCTTGCCCTCAACCCCTCTCCCCAACCTCCGCTGCCAACCTCCGCTGCCCAA
 CCTCCTTGCCCCAACCTCCTTGCCCCAACCTCCCTGGCCCAACCTCCGCTGCCAACCTCCGCT
 30 GCCACCTGTTACTCGTACACTCACTCCCCAATCTCGTACTCTGCTGCTACACCTGAGTCTCCA
 ACACAAACACCCACTGCCGTTAGTGCTGACTCTGGCTCGCCCTGGCTCTCATGTGGAT
 TCTGCCCTCCCCCTGCTTCATTGCTCAAACCTCCACATTCCGATGATGAAACACTCCGACGC
 CGACTCACTCCGCTTCTCGATTCCGATGACACTGAGGCTCTCGATCCTTGCTGCCCTGAACCTCACT
 TGCCACCTGCCGATGAAACCCCGGACCTCTGGCTGCCGACCATCTCAACACCTCACTCACAA
 35 GGTCTTGGCCGTTCAAGCGAACGCTGTTCTGCTCGTACGTGAGATCAACTGGCCGTTCTGC
 CTTGGCTGTGCTCATAGAGCTTGTGCCGTATCCAACAAACAACTCCAGCGTACTAGGAGAGCACTCT
 TCCAACGCTCAAACGCCGTGCTCACATCACTCCACCATGTCGTATGCTCTGGGATAATAG

SEQ ID NO: 45 = nucleotide sequence for US12 (ICP47)

ATGTCTTGGGCTCTGAAAACCACCGACATGTTCTGGACTCTTCTCGTTGCACCCACCGTACCTACGG
 TGACGTTGCGCTGAAATCCACAAACGTGAACGTGAAGACCGTGAAGCTGCTCGTACCGCTGTTACCG
 ACCCGGAACCTGCCGCTGCTGTGCCCGCCGGACGTTCTGACCCGGTTCTCGTAACCCGACCCAG
 CAGACCCGTGGTTGCCTCGTTCTAACGAACGTCAAGGACCGTGTCTGGCTCCGTGA

5

SEQ ID NO: 46 = nucleotide sequence for US4

ATGAAGTTCTCGTGAACGTGGCCCTGGTGTTCATGGTGGTGTACATCAGCTACATCTACGCTAACCG
 TTGGGGTTCGGCGTGCCTGGTCCCCTCAACCCCCCAACTCCGACGTGGTGTCCCCGGTGGTCCCC
 CGTGGCTCAGTACTGCTACGCTTACCCCCGCTGGACGACCTGGTCCCCTGGTGTGCTGACGCT
 10 GGTCGTCAGGACCTGCCCGTCGTGTCGTGCGTCAGGACCTGGTGTAGCTTCTGACCGGTGG
 CCTGGTGTGCTGGCTCCCCCTGTGCGCGGTTGGTGTGCTCCCAACGCTACCTACGCTGCTCGTGTGA
 CCTACTACCGTCTGACCCGTGCTGCGTCAGCCATCCTGCTGCGTCAGTACGGTGGTGCCTGGT
 GGAGAGCCCCCATCCCCAAGACCTGCGGTTCTTACACCTACACCTACCGGGTGGTGGTCCCC
 CCGTTACGCTCTGGTCAACGCTTCCCTGCTGGTGCCATCTGGGACCGTGCTGAGACTTCGAGT
 15 ACCAGATCGAGCTGGGTGGCGAGCTGACGGGGTCTGTTGGGGTGGAGAGGGTGGAGAGGGTCCCC
 GGTCTACCGCTCCTCCTCAGGCTGCTGCTGCTGAGGGTGGTCTTGCCTGCCACCCGTGCCTGCTGG
 TCGTCTTGGCGTTCCGTGCCCCCGTGTGGTACTCCGCTCCCAACCCGGTTTCCGCGGTCTGCGTT
 TCCGTGAGCGTTGCCTGCGCTCCCCAGACCCCTGCTGCTCCTTCCGACCTGCCTCGTGTGGTTTCGCT
 CCCCAGTCCCTGCTGGTATCACCGGTGCTACCTCATCCGTATGGCTCGTCCCACCGAGGGACGT
 20 GGGTGTCTGCCTCCACTGGGCTCCAGGTGCTCTGGACGACGGTCCCTACGCTCCCTCCCC
 GTCCCCGTTCCGTGTCACCACCACTACCAACTAA

SEQ ID NO: 117 = RS1.2

ATGTCGTACTACCACCATCACCATCACCATCACATGGTGCTGTACGGCGGGCTGGGCGACAGCCGGGG
 25 CCTCTGGGGGGCGCCCGAGGCGGGAGGAGGGCGCGGGCCGGTTCGAGGCCTCGGGGCCGGCGGG
 TGTGGGCGCCCGAGCTGGCGACGGCGCGCAGCAGTACGCCCTGATACGCGGCTGCTGTACACGCC
 GACCGGGAGGCGATGGGGTGGCTCCAGAACCCCGCGTGGCGCCGGGACGTGGCGCTGGACCAGGC
 CTGCTCCGGATCTCGGGCGCGCGCGAACAGCAGCTCCTCATCTCCGGCAGCGTGGCGCGGGCG
 TGCCCCACCTGGGGTACGCCATGGCGCGGGCGCTTCCGCTGGGCGACGTGGCGCCCG
 30 GTGGCCATGAGCCGCGCTACGACCGCGCGCAGAAGGGCTTCCGTGACCAAGCCTGCGCCCG
 CGCGCCCTGCTGGCGCGAGAACGCGGGCGCTGACCGGGGCGGGACCCCGACGACGGCGGCACG
 CCAACCGCCGCGACGGCGACGACGCCCGCGGAAAGCCCGCCGCCGCCGCCCCGTTGCCGCG
 CGGGCGTCCGCGCCGCGAGCGCGCGGTGCCCGCCGGTACGGCGCCGCCGGGCGACGACGAC
 GGGGCGCCTGAGCGCCCGCGCCGCCCTCCGCGCCGGCGACGACGACGACGACGACG
 35 GCGCCGGCGGTGGTGGCGGTGGTGGCGGTGGTGGCGGGCGCGCGAGGGCGGGCGCG
 GTGGAGTGCCTGGCCGCTGCCGCGGGATCTGGAGGGCGCTGGCGGAGGGCTTCGACGGCGAC
 GGCGTGCCGGGCTGGCGGGAGCCCGGGCCGCCGCCCCCGCGCCGGGCGCGGGCGCG
 GGCGTGCCGGGCTGGCGGGAGCCCGGGCCGCCGCCCCCGCGCCGGGCGCGGGCGCG

CCCCGCCGCACGCCACGCCACGCCCTGCCGCCCTGGCTGCCGAGCTGCCGTTCGTGCGCGACGCG
 CTGGTGCTGATGCCCTGCCGGGGACCTGCCGTGCCGGCAGCGAGGCCCGCTGCCGAGGCCCGCTGAGCT
 CGCGCCGTGAGCCTGGTCGCCGGGGCCTGGGCCGCCGTGCCGAGGCCCGCTGAGCT
 CCGCCGCCGCCGCCGCCGGACCTGCTTCCAGAACAGAGCCTGAGTACTAGAGGATATAA

5 SEQ ID NO: 118 = UL1(cytoplasmic),gL full length

ATGTCGTACTACCACCATCACCATCACATGGGTTCGTCTGTTGGCTTGCGTTATGGG
 AGCCTGGGGGGCGTGGGTGGGTACAGGCAACCGAATATGTTCTCGTAGTGTATTGCCAAAGAGG
 TGGGGGACATACTAAAGAGTGCCTGCATGCCGACCCCGCGGACGATGTTCTGGCGTACGAGGCC
 CCGTCCGTTATTGACTATGCCGCATAGACGGAATATTCTCGTATCACTGCCGGGGTTGGACAC
 10 GTTTTGTGGATAGGCACGCCAGAGGGCGTATCTGTTAACCCCTTCTTTGCCGGGGATT
 TGGAGGACTTGAGTCACTCTGTGTTCCGGCCACACCCAGGAACACGACGCCGGGGCCCTTAT
 AAAGAGATAACCGGATGCCGTGGGAGTCGAAACAGGCCGTCCAGCACGCCACCGTCAGGGCGGGTG
 TGTAACACTTGACTACTCACGCACCGCCTGCGTCGGGACGCGATTACGCCCTGCCAACACCA
 CGTCAACGTGGAACCGCCTGTCGTCGGGACGATGAAGCGAGCTCGAGTCGAAGCCCTGCCACC
 15 CAGCCGCCGTCCGCCCTTGAACGCCACGGCGGGCTCCCGACGCCAGGTCGGCGCC
 GCATACTCGCCTCCGACGCAACTGA

SEQ ID NO: 119 = UL1(Secreted),gL full length (preferred Ag)

ATGAAGTTCTCGTGAACGTGGCCCTGGTGTTCATGGGGTGTACATCAGCTACATCTACGCCAACCG
 20 TTGGGGGTTCGTCTGTTGGCTTGCGTTATGGGAGCCTGGGGCGTGGGTGGTCACAGG
 CAACCGAATATGTTCTCGTAGTGTATTGCCAAAGAGGTGGGGACATACTAAAGAGTGCCTTGCATG
 CGGACCCCGCGGACGATGTTCTGGCGTACGAGGCCCGTCCGTTATTGACTATGCCGCATAGA
 CGGAATATTCTCGTATCACTGCCGGGGTTGGACACGTTTGAGGAGTGGGATAGGCACGCCAGAGGG
 CGTATCTGTTAACCCCTTCTCTTGCGCGGGATTGGAGGACTTGAGTCACTCTGTGTTCCG
 25 GCCGACACCCAGGAACACGACGCCGCCCTTATAAGAGATAACCGGATGCCGTGGCAGTCG
 AAAACAGGCCGTCCAGGCCACGCACCGTCAGGGCGGGTGTAAACTTGACTACTCACGCACCG
 GCTGCGTCGGCGACCGGATTACGCCCTGCCAACACACGTCAACGTGGAACGCCCTGTGCG
 GACGATGAAGCGAGCTCGAGTCGAAGCCCTGCCACCCAGCGCCCGTCTGCCCTTCAACGC
 CCCCCCACGGCGGGCTCCCGACCGGAGGTGGCGCCGGCATACTGCCCTCCGACGCAACCATCACC
 30 ATCACCATCACTGA

SEQ ID NO: 120 UL19 delta TEV VP5 full length

ATGTCGTACTACCACCATCACCATCACATGCCGCTCCGCCGACCCCCGGTTACCGGTA
 CGCCGCCGCATGGTCCCACCGGCTCCATCCTGAGTACGATCGAGGTGGCGTCCCACCGCAGACTCT
 35 TTGATTTTCGCCCGTGCCTCCGACGAAACAGCCTGTATGACGTAGAGTTGACGCCCTGCTG
 GGGTCCTACTGCAACACCCCTGTCGCTCGTGCCTGGAGCTGCCGTGCCGTGGCGTGTG

CACCAAGTTCCCGGAGCTGGCTTACATGAACGAAGGGCGTGTGCAGTTGAGGTCCACCAGCCCCCTCA
 TCGCCCGCGACGGCCCCGACCCCGTCGAGCAGCCGTGCATAATTACATGACGAAGGTATCGACCGC
 CGGGCCCTGAACGCCGCCTTCAGCCTGGCCACCGAGGCCATTGCCCTGCTCACGGGGAGGCCCTGGA
 CGGGACGGGCATTAGCCTGCATGCCAGCTGCGGCCATCCAGCAGCTCGCGCAACGTCCAGGCCG
 5 TCCTGGGGCGTTGAGCGCGCACGGCCGACCAAGATGCTGCACGTGCTGTTGGAGAAGGCCCTCCC
 CTGGCCCTGCTGTTGCCATGCAACGATATCTCGACAACGGGCGCTGGCGACCAGGGTTGCCGGGC
 GACCCCTGGTCGCCGAGCTGAAGCGGAGCTTGCACACGAGCTTCTCCTGGCAAGGCCGACATC
 GCGCGAGGCCATCGAGGCCCTGGCTCGACGCCAGCGCAGCCGTCGGCGTGGCTGCC
 CGCCTGACGCACGCCACGCCGGCGGCGGTGACGGGTGCTGGTACCAACGCCGACATCAA
 10 ACAGCGCCTCCTGCAGTCCTTCTGAAGGTGGAGGACACCGAGGCCGACGTGCCGTGACCTACGGCG
 AGATGGTCTTGAACGGGCCAACCTCGTCACGGCGTGGTATGGCAAGGCCGTGCGGAGCCTGGAC
 GACGTGGCCGCCACTGCTGGAGATGCAAGGAGGAGCACTCGAGGCGAACCGGGAGACGCTGGATGA
 ACTCGAAAGGCCCCCCAGACAACCGCGTGCACGGGATCTGGTGCCATAGGCACAGGCTGGTCT
 TCCTGGAGGCCCTGGAGAAGCGCATCTACGCCACCAACGTGCCCTACCCCTGGTGGGCCATG
 15 GACCTGACGTTCGTCCCTGCCCTGGGCTGTTCAACCCGCCATGGAGCGTTCGCCGCGACGCCGG
 GGACCTGGTGCCGCCCGGCCACCCGGAGGCCGCGTCCATGGAGAACCGGGTGGGACCGTGTGTCATCCTCGCTC
 GAAAGGACCACCAGGTTCTGGCTGTCCATGGAGAACCGGGTGGGACCGTGTGTCATCCTCGCTC
 ATGAACATCGACGCCCGTCGGGGCGTGAACCACGACCCGTCGAGGCCGGAATCCGTACGGGC
 GTACGTCGCCCGCCCGGCCGGCGACATGCAAGCAGCTTCTGAACGCCCTGGGCCAGC
 20 GCCTCGCCCACGCCGGTCCGGTGGGCGAGTGCCAGATGACCGGGAGCAGTTCATGCAGCCC
 GACAACGCCAACCTGGCTCTGGAGCTGCACCCCGCCTCGACTTCTCGCGGGCGTGGCGACGTCGA
 GCTTCCCGCGCGAAGTCCCCCGGCCGGTCCGGGGCGATCCAGGCCACCTGGCGCGTGGTCAACG
 GCAACCTGCCCTGGCGTGTGTCGGTGGAGCTGACGCCGGGGCTGGAGCTGGCGTTGG
 CGCCACGCCATGGGCCGGTACCATAGCCCGTCCGCCGGGGCGTTGAGGACCGCAGCTACCCGGC
 25 GGTGTTTACCTGCTGCAAGCCCGATTACGGCAGCGACGTGTTCTGCCCTGGCGGGCTCG
 TGACTCAGTGCATCACCAGCTACTGGAACAACACCGCATGCGCGTCTGGAACGACTACTCGCTG
 GTCTCGTACATCGTGAACCTACCTCGGGGGCGACCTCCCCGAGGAGTGCATGGCGTGTATGGACCT
 GGTGGCCACGTCGAGGCCCTGGCCAGCTGGTGGACGACTTACCTGCCGGGGCGAGCTGGCG
 GGCAGGCTCAGGCCGAGCTGAATCACCTGATGCGCGACCCGGCGTCTGCCGCCCTCGTGTGGAC
 30 TGCGACGCCCTATGCGACACGCCCGTGCACAGTGGCGACGCCGACTTAAACCGCAACGACGCCGGCTGC
 CGAGCCCGTCTACGCCCGCGTGCACAGTGGCGACGCCGACTTAAACCGCAACGACGCCGGCTGC
 TGCACAAACCCCAGGCCCGCGGCCGACGCCGACGCCGACGCCGACGCCGACTGGAC
 GTCCACCACAAATCTACTATTACGTGCTGGTGCCTCTCGCGGGGGCGCTGCTGACCGCG
 GGTCCGCTTCGACCGCGTGTACGCCACGCTGCAGAACATGGTGGTCCGGAGATGCCCGGGCGAGG
 35 AGTGCCCGAGCGATCCGTGACCGACCCGCCACCCGCTGCATCCGCCAATCTGGTGGCCAACACG
 GTCAACGCCATGTTCCAACACGGCGCGTCTGCGACGGGCCGATGCTCACGCTGCAGGTGCT
 GGCAGCAGGCCAACATGGCCGAGCGCACGACGGCGTGTGCTCCGCCGCGGCCGACGCCGGGCC
 CCGCGTGCACGCCAACATGCCATCTGACGGGGCGTGCACGCCGGCGTGTGCTCATGCC
 CAGCACCTGGACCACACCACCAAAATGGCGAATACTTCTACGTCTGCCGTCCAGCGCTGTTGC

GGGCGCCGACCACGTGGCCAACCGGCCAACCTCCCCCGGCCCTGCGCACCTGGCGGCCACGTCC
 CCCTGGTCCCCCGGCCCTGGGGCCAACTAACCTCTCCATCCGCCAGCCCCTGGTGCAGCACGCC
 CGCGAGAGCGCGGGGGAGAACCGCCTGACCTACCGCCTCATGGGGGTACTTCAAGATGAGCCC
 CGTGGCCCTGTATCACCAGCTCAAGACGGGCCCTCACCCGGGTTGGGTTACCGTCGTGCGGAGG
 5 ACCGCTTCGTGACCGAGAACGTGCTGTTTCCAGCGCGCTGGAGGCGTACTTCTGGCCAGCTC
 CAGGTGGCCCGCCACGAAACGGGGGGGGTCAGCTTACGCTCACCGCCTACCCAGCCGCGGAAACGTGGA
 CCTGGGTGTGGCTACACCGCCGTCGCGGCCACGGCCACCGTCCGCAACCCGTTACGGACATGGCA
 ACCTCCCCAAAACCTTACCTCGGCCGCGGGCCCCCGCTGCTAGACAACCGGCCGCGGTAC
 CTGCGCAACCGGGTGTGGCGGGAAACCGGCTGGGGCCGCCCAGCCCTCCGGTCTTGGCTGCGC
 10 CCAGGTGCCGCGCGCCGGCATGGACCACGGGAGGATGCCGTGTGAGTTACGCCACCCCCG
 TGGCCACGGACATCAACTACTTCGCCGGCCCTGCAACCCGCGGGACGCGCGGCCGGCGGTGTAC
 CGGGGGACAAGGAGGGGACGTCATAGCCCTATGTACGACCACGCCAGAGCGACCCGGCGGCC
 CTTCGCGGCCACGGCCAACCGTGGCGTCGCGAGCGTTCTCGTACGGGACCTGCTGTACAACGGGG
 CCTATCACCTCAACGGGCCTGCCGTCTCAGCCCTGCTCAAGTTCTCACCGCGCCGACATC
 15 ACGGCCAACATCGCTGCCGTGGAGCGTCTTACGTTACGCGCCGCTGCTGAGCTGCTGAGGATCCACGCCACCGC
 TGCCAGCGACGTGCAGTTAACGCCCCGCCGGGTGCCGAGCTGTTAGGAAAGACCCGTGCGGCCTGT
 TTCAGGAAGCCTACCCGATCACCTGCGCCAGCGACCCGCCCTGCTACGCAGCGCCGCGATGGGGAG
 GCCCACCGCGAGAGACCCACTTACGCAGTATCTCATACGACGCCCTCCCGCTAAAGGGCTGTC
 TCTGTAA

20

SEQ ID NO: 121 = RS1.1

Atgagtgccgaacagcgtaaaaagaaaaaaaaccaccacgacccaaggacgtggagctgaagttgc
 tatggcgatgaggatggaggccgttgagagctgtctgagactactggaggacctggatcaccgg
 accctgcgtatggacccccccctacaccaaaccggatctgttagaccggctgttagacctggattcgga
 25 tggcatggaggacccggggaaaacgaggacgaggcggacgacgcccgtgccgacgcccacgcccgtatga
 ggctgcccctgttctggagaggcggttagacgaaacctgtgtccgtatggatgttagccctaggcaat
 tggtttggcgagcatgttagacgaggctgttagaaacaatccctccctccctgaacgtat
 ggagcacaagaggaggcggttaggatccctaccacccgtacacccatgttagacgaggattacgg
 cgaggaaaacgacgacgacgacgatgtatgtatgtatgtatgtatgtatgtatgtatgtatgtat
 30 gacctgaaaccacttctgtgtccgtggagcatacccgatccatggcgatgtttagccctagacca
 cctgccccgaggagacaccaccaccatcataggcgtagacgtgtccctagacgtcgttctgc
 cgcttagtgacttccaaatctggctttcatctgccttccgttcatctccgttcatctccgttcatct
 ccttccgttcatccgttccgttagtgatgtatgtatgtatgtatgtatgtatgtatgtatgtat
 35 cccgggagctgtcccgaggccttccacccgtgtgaacctgtccggctagaacaccggccgcta
 ctgtggtagactggagcgttagacgtgtccgtgtgtggatgtatgtactggccgttca
 actgtgtggccgttccatgtgtgtactggacgcccgtatgtgtgtgtttctacgcccgtta

ccgtgatggtaacgtgtctggtaacacctggcgctggccacccctccgccccgacgtgtactct
acggtggttggcgattctcgccctggtctgtggcgctccg

SEQ ID NO: 122 = RS1.3.1

tcgagtgccggcgctgctgccggcattgttccaaaaccaatccctccgcctctgctcgccga
5 cactgttgcgcgtgcgattctctggctgctccggcttgcctggccacgtgaagctcgtaaacgtaaat
caccgcgtccggctcggtctcccccgtggccgtggccctagacccctaaaaatccgtgccatgcc
cctagacctgtgtgtctcccccgtggctgtgtctcccccgtcccccgtactccccccacgccc
acctcggtcccgctgcctcacacgcgtctgtgagggacccgatccacaaggcgctggcttagac
aacctcctggccatccatcacccggcaccatctggcgtgttggaggctactgtgtccctcg
10 gctgtggctgaactcaccgatcatccgtgttccctgtccctggcgccgtccgcctcatgttcgatcc
tagagcttggcttccctggccgtcggtgtgtgtcccccctggcggtgtccggctgtttcg
gtccctccgtgcctctggccactccgcgtgcgtgcctggatgagacaagtcccgaccctgag
gatgttagagttgtgatctgtactcgccctgtggcgaggattggccgtggtagagctggcg
tggccccctctgaatggtctgtgaacgtgggtttgtcttgcgttggcccccggaaacc
15 gtctgtgtggcctgactgctgttggctggaaactggactggcgctccgatgttctgctc
ggcgtcaaa

SEQ ID NO: 123 = RS1.3.2

Tgggctggaaactggactggcgctcccgatgtttctgtctcggtgctcaaggagtttgcgtctc
tactcgtaactggcattcgctggagctgttgaattcctggactcttggctggcgctgtgatagga
20 gactcatcgtaaaacgcgtgtgagagctggcgattggcgtccgtggatggcctgttgcgtcaaa
cagcgttacttggctgtgaagtgtgcccgtgtccatgtgtgttgcgtggctgtgtca
tctgaggcgtactgttctggctagtgtgtgtgtttcgacctgggtttcgctcggtcaagctg
ctcacgcgtactgttcccgatgccccccccccgttgcgtggagcaacgttgcgtaccgt
gtccgtactcggttcccgacccgatactctggtccatgttccctcgtaataccgtcggtt
25 gcctgcctcgatggacgtgtgcgcgttctggcgctggacgtatggcctggcgctccggact
tctgtgaggatgaggctactcacatcggtccgtgtggactggcgctccattgaggcct
gtatacgtggcactggccgtatgtttagaggcgacccgctgaattgagaggccctcggtga
attctgtctagggtctgtcgaaaccgatggagatgtcccttggtagtccgtgacgacgccc
atgtctggcctccccacaaattcgctggctagtgtgtggacgtgttactgtattggctg
30 gctggcggtggcggtgaagttgtggactgtccgtggactcgctacaccccccggtaacctgt
agacatggatgctgaactcgaggatgatgacgacggattttcgagag

SEQ ID NO: 124 = RS1.3

tcgagtgccggcgctgctgccggcattgttccaaaaccaatccctccgcctctgctcgccga
35 cactgttgcgcgtgcgattctctggctgctccggcttgcctggccacgtgaagctcgtaaacgtaaat
caccgcgtccggctcggtctcccccgtggccgtggccctagacccctaaaaatccgtgccatgcc

25 SEQ ID NO: 125 = RS1.4

tgggtgttgtaatgcctggctgcctgttagaggaatcttggaggcttgccgagggattcgcacggag
 acttggccgctgtacccggactggccggagcgcaggcctgccctccacctgcggccgtctgctgg
 gctgccgcctccatgccgacgcctcaactggctccgtgaactccgtttcgatccgaggctgttg
 5 tgacgccttggtctgtgagactgagaggcacttgagagtgaggatccgaggctgttg
 ctgcgtccgtctgtttcttggtctggctttggccctgtttggccatccctccgc
 ttgtcgagtgccgcgcgtgctggccgattttccaaaaccaatccctccgc
 cgacactgttgcgcgtccgcattctggctgtccggctctgccccacgtgaagctcgtaacgt
 aatcacccgcctccggctgtgctcccccgtggccgcctagacccctaaaaatcccgcc
 10 gcccctagacctgtgtgtcccccgtggctgtgtcccccgtcccccactcccccac
 cccacctcgccgtccgcacacgcgcgtctgtgagggaccgatccacaaggcc
 gacaaacccatccatccatccatccatccatccatccatccatccatccatcc
 gtcgtccgtgtttggaggctactgtgtccctgtgtccctgtgtccctgtgt
 gtcgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggcccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 20 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 25 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 30 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 35 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac

SEQ ID NO: 126 = RS1.5

gccgcgtccgattctctggctgtccggcttctgccccacgtgaagctcgtaacgtaaatcacccgc
 15 tccggctcgctcccccgtggccgcctagacccctaaaaatcccgccatgcccctagac
 ctgcgtctgtcccccgtggccgcctagacccctaaaaatcccgccatgcccctagac
 cccgcgtccctcacacgcgcgtccgtgtgagggaccgatccacaaggcc
 tggcccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 20 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 25 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 30 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 35 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac
 tggccatccatccatccatccatccatccatccatccatccatccatccatcc
 ctgtgtccctgtgtccactccgcgtccgcgtccggatggccgtggtagacaac

SEQ ID NO: 127 = RS1.6

caccaccaccaccatcataggcgtagacgtgctcttagacgtcggtcgccgctagtgactctt
5 caaatctggctttcatctgccttccgcttcatcttcggccatcgcccttcggcatccg
cttcgagtagtgatgtatgtatgtacgacgacgacgactgtagagcccccgcttctgctgcccaccacgct
gctggcggactttggagccgacgacgaggaggcggagttcctgctcggtccccggagctgctcc
gagggcttctccaccccgctgctgaacctgctccggctagaacaccggccctactgctggtagactgg
agcgtagacgtgcccgtgctgtggctggtagagatgctactggccgcttactgctggccgtct
agacgtgttgaactggacgcccgtgcttctggcttacgcccgttaccgtatggttacgt
10 gtctggtaaccttggctggcgtggccacccggacgtgtactctacggggattggcgt
attctcgccctggctgtggggcgctccggagggctgaggaggttagagccgttgcgggttctgg
gccccctgctccctttggcttcaaaatggcgtctcaacaatacgcccctcatcacacgctt
gctgtacactcccacgcccaggctatggatggctccaaaccctagagttggccctggatgttg
ctctggatcaggctgttccgtatctccggcgtctcgtaactcttcgttcatctccggtct
15 gtggctagagctgtgcctcaactggatacgcctatggcgtggacgttgcggctggggactggctca
tggctgcccgttagcaatgtctagacgctacgaccgtctcaaaaaggattcttgcacgtcac
tgaggcgtgttacgcccccttggccgtgaaaacgctccctcaactggcgtccggatcccccgat
gacgggtggcgtccaaaccggccacgatggatgttagctagaggcaaaaccggccgtgctgctcc
tttgcctctggccggcgttccctggcgtgaacgtgctttccgtccggttacggccgtgctgg
20 tggctgctttggacgcttgagtgctgccccggtagtgcccccgctggtgccgtacgatgac
gatgacgtggctggcgaggcggtggcggttagacgtgctgaggctggacgtttgtgtgaatg
cctggctgcctgttagaggaaatcttggaggctctggcgaggattcgacggagacttggccgtgctac
cgggacttggccggagcgaggcctggcgtccacccggcttggtgctggccgtccct
catggcgtcccttagactccgtgctggctccgtgaactccgttccgtgacgcttgg
25 gatgagactgagaggcgacttgagtgaggatggctggaggatccgaggctgtttgtgtccgtgt
tttctttggtgctggctttggccctgtttccggagatctcccggttggcgactggcc
gctgctgcccggattttgtgtccaaaccatccctccggcttgcgtccggacactgttgc
tgccgattcttggctgtccggcttgcggccacgtgaactcgtaacgtaaatcacccgtccgg
ctcgtgtccctggcgtggcccttagacccctaaaaatccctggccgtacggcc
30 gctgctccccccgtggctgtgtctccccccgtccccctactccccccacggccacccgtcccg
tggccctcacacggcgtccgtgtggcccttagacccctaaaaatccctggccgtacggcc
catccctacacccggcaccatctggcgtgttggaggctactgtgtccctgtgtgg
ctcaccgatcatccgtgttccctgtccctggcgtccggccctatgttgc
ttccttggccgtcggtgtgtggccctccccctggcgtgtccggctgtttcg
35 cctctggccactccggcgtccgtgtggatgagacaagttccgaccctgaggatgttagagtt
gtatcttgactcgccctgtggcgtggaggattggccgtggtagagctggccggggccccctcc
tgaatggtctgtgaacgtgggtttgtcttgcgtgtggccctggaaaccgtctgtgtgg
ctgctactgtgttggccgtggaaactggactggcgtcccgatgtttctgtctcg
gtgtcaagga

5 gtttgctgtctactcgtaactggcattcgctggagctgttgaattcctggactcttggctgg
cgcttgcataggagactcatcgtaaacgcgtgagagctgccatggcctgcgcgtgtccctg
ttgtgtctcgtaacacgcgttacttggctgtgaagtgttgcgcgtgtccaatgtgtgttcgtgg
cctgctgtctgtatctgaggcgtaactgttctggctagtggcgtgtttcggacctgggtttcgc
5 tcgtgtcgaagctgctcacgctagactgtaccccgatgccccacccctccgttgcgtggagcaa
acggtcgtaaccgtgtccgtactcggttgcgcgtactctggtccatgtccctcgtaataac
cgtcgtgtgttctgcctgcctcgatggacgtgtccgttgcgcgtgtgacgctatggctcc
tggcgtccggacttctgtgaggatgaggctactcacatcgccgtgtccgcgtggggactggcgc
ctccattgaggcctgtatacgtggactggccgtatgttttagaggcgacccgcgtgaattgaga
10 ggccctcgtaattctgtctaggcgtctgcgaaccccgatggagatgtccctcccttggtaact
ccgtgacgacgcccgtgtgtccctcccccacaaattcgctggctagtgtgtgtggacgtgtggta
ctgtattggctgtctggcggtggcgtaaggttgttgtaactgcccgtggactcgctacacccccc
cgcccgtaacctgttagacatggatgtgtactcgaggatgtgacgacgaggattgttccggagactaa

SEQ ID NO: 128 = RS1.7

30 SEQ ID NO: 129 = RS1.8

atgagtgccgaacagcgtaaaaagaaaaaaaaccaccaccacgacccaaggacgtggagctgaagtgc
tatggcgatgaggatggaggccgcttgagagctgctgagactactggaggacctggatcaccgg
accctgcccgtatggaccccccctacaccaaaccggatcgtagaccggctgctagacctggattcgg
tggcatggaggacccgaggaaaacgaggacgaggcggacgacgcccgtggacgcccacgcccgtatga
ggctgcccctgcttctggagaggcggtagacgaacctgctggatggagttgttagccctaggcaat
tggcttggcggatggtagacgaggctgtgagaacaatccctccctccctgaacgtat
ggagcacaagaggaggcggctaggagtccctcaccacccgtacacccatgagagcggattacgg
cgaggaaaacgacgacgacgacgatgtatgacgacgatgtatcgtgatggccggacgctgggttaggg

5 gacctgaaaccacttctgtccgtggagcatacccgatcctatggcgagttgagccctagacca
 cctgccccgaggagacaccaccaccatcataggcgtagacgtgctcctagacgtcggtctgc
 cgcttagtacttccaaatctggcttctcatctgccttccgcctcatcttcggcctcatcg
 cctttcggcatccgcttcgagtagttagttagttagttagttagttagttagttagttagttag
 10 gctgccgaccacgctgtggcgaaacttgggagccgacgacgaggaggccggagttcctgctcg
 cccggagactgctccgaggcccttccaccccgctgtgaacctgctccggctagaacaccggcccta
 ctgctggtagactggagcgtagacgtgcccgtgtgtggctggtagagatgtactggccgcttc
 actgctggccgtcctagacgtgtgaactggacgcccgtgtgtttctggtagtactccggacgt
 ccgtgatggtaacgtgtctggtaaccttggcctggcgtgtccacctccggacgtgtactct
 15 acggtggttgcatttcgcatttcgccttggctgtgtggggcgctccggaggctgaggaggct
 ttcgaggcttggtgcctgtgtttggcttgcatttggcgacgtctcaacaatacgc
 cctcatcacacgcttgcgtacactccgacgcccggatggatggctccaaaccctagagtt
 cccctggatgttgcgtggatcaggcttgcgtatctccggcgtgtcgtaactcttcg
 ttcatctccggttctgtggtagagctgtgcctcaacttggatacggcatggccgtggacgtt
 20 ctggggactggctcatgttgcgtccgtgttagcaatgtctagacgtacgaccgtgctaaaaaggat
 tcttgctcacgtcaactgaggcgtgttgcgtcccttggccgtgaaaacgctgcctcaactggc
 gcccgtaccccccgtacgggtggcgtccggacggccacatggatgtgttagtgcgttagagg
 ccaaccgcgtccgt
 25 gccgtacgtacgtacgtacgtacgtacgtacgtacgtacgtacgtacgtacgtacgtacgt
 tggcgccgt
 acttggccgtgttgcgtggactggccggagcgaggccgtccgtccacccgtccgtgtgt
 gctggccgtccctccatggcgtccgtccgtccgtccgtccgtccgtccgtccgtccgt
 tgacgtttgggtctgttagagactgagaggcgttgcgttagtggctggaggatccgagg
 ctgtgtttgg
 30 ctgctgtccgtgtttttgggtctgggtctttggccctgtttggccgtttggccgtttgg
 ttgtcgagtgccgcgtgtccgtccgtccgtccgtccgtccgtccgtccgtccgtccgt
 cgacactgttgcgtccgtccgtccgtccgtccgtccgtccgtccgtccgtccgtccgt
 tggaggcttactgtgtccgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt
 cgtccgcgtccgtccgtccgtccgtccgtccgtccgtccgtccgtccgtccgtccgt
 35 tggccgtgtccggcgtcttcggcctccgtccgtccgtccgtccgtccgtccgtccgt
 tgagacaagttcccgaccctgaggatgttagagttgtgtactttgtactccgtcc
 ttggccgtggtagagactggccggggcccccctgtgtgtgtgtgtgtgtgtgt
 ctgt
 gcgctcccgatgttctgtctcggtgtcaaggagtttgcgtctactcgtacttgc
 gctggagactgttgaattccctggactcttggctggcgctgtgtataggagact
 tggagagactggccgttggccgtccgtccgtccgtccgtccgtccgtccgt
 aagtgttggccgtgtccaaatgtgtgtgtgtgtgtgtgtgtgtgtgt
 gctgtgtgtgtgtttcgacccgtgtgtgtgtgtgtgtgtgtgtgtgt
 cgatgccccaccctccgtttgtgtgtggagcaacgttgcgtaccgtgtcc
 gtactcggttccgt

ccgatactctggttccaatgtccctcgtaataccgtcgtgctgtctgcctgcctcgatggacgt
 gctgccgcttctggcgctggtaacgctatggctctggcgctccggacttctgtgaggatgaggctca
 ctcacatcgccgtgtccccgctgggactggcgctccattgaggcctgtatacggtggcactggcc
 gtgatgtgttagaggcgacccgtgaatttagagaggccctgtcgtaattctgtgcttaggctctg
 5 ctcgaacccatggagatgctcccttggtaactccgtgacgacgcccgtgctggccctccaca
 aattcgctggctagtgtctggacgtgctggtaactgtattggctgtgctggcggtggcgtgaag
 ttgttggtaactgccgtggactcgctacaccccccgtgaacctgttagacatggatgctgaactc
 gaggatgtatgacgacggattgttcggagag

10 SEQ ID NO: 130 = His tag

HHHHHH

SEQ ID NO: 131 = Tag

MSYYHHHHHH

15

SEQ ID NO: 132 = Secretion Signal

MKFNVNVALVFMVYIYIYA

SEQ ID NO: 133 = UL49.5

20 ATGTCGTACTACCACCATCACCATCACATGACGGGAAACCCGCAAGACTGGGCCGCTGGTGCT
 GCTGTTGTTCGTCGCGCTCGTCGCGGGCGTGCCTGGGAGCCGCGAACGCGGCAGGCGCACGCCG
 TTATCGGGGACGCGCAATGCCGGGCGACAGCGCCGGTGTGGTGTCCGTCCGGGGTCTGGTGC
 TTTTATCTAGGCATGACCTCGATGGCGTATGTATGATCGGCACGTGTATCAGATATGCCAGCG
 ACTGGCCGCCGGTCAGCCTGA

25

SEQ ID NO: 134 = UL10

ATGGGACGCCGGGCCCCCAGGGGATCCCCCGAGGCCGCCGGCGCCGACGTCCGCCCGGGCG
 GCGCGCGTGGTGGTCTGGTGTGCAAGTGGCGACGTTCATCGTCGCCATCTGGTGTGGG
 TCCTGGTGTGGCTCTGTGTTCCGGACAGGTTCCCTGCCTTACGCCCGCGACCTTTATGCG

30

AAGGCAGACGCCACGGTCGAGGTGCGCGGGGTGTAGCCGTCCCCCTCCGGTTGGACACGC
 GCTGGCCACGTACGCAATTACGCTACGCTTGTGCTGGCGCGCCGTACGCCCGGTGGCG
 TGACCTCGCGCTACGAGCGCGCGTGGATGCGGCCGTCGCCTGGCGCGCCGTATGGCG
 CACGCCACGCTAATGCCGGAACGTCTGCCGTGGCTTGCAGATCACAGTCCGTGCTGG
 CCA

CCGCATCAGCCAGCTGGCCACCTTATCTACGTCTGCACTTGCGTGCCTCGTGTATCTCGGGCCC
ATTTTGACCAAGGGGGTCTGAGCGGGACGTACCTGCGTCAGGTTACGGCCTGATTGACCCGGCG
CCGACGCACCATCGTATCGTCGGTCCGGTGGCGAGTAATGACAAACGCCTTATTACTGGGCACCC
CCTGTGCACGGCCGCCGCCGGTCTCGTTAACACGATGCCGCCCTGAACCTCAACTTTCCGCC
5 CGAGCATGCTCATCTGCCTGACGACGCTGTTGCCCTGCTTGTGCGCTGTTGGTGGTCGAG
GGGGTGCTGTGTCACTACGTGCGCGTGTGGTGGGCCACCTCGGGCCATGCCGCCACGGCAT
CGTCGGCCTGGCCTGCGAGCACTACCACACCGGTGGTTACTACGTGGTGGAGCAGCAGTGGCCGGGG
CCCAGACGGGAGTCCCGCTGCCCTGGCGCTCGCCGCCCTTGCCTCGCCATGGCGTGCCTCGG
TGCACGCCGCCACCTGTATCACCGCGACACCAACTAAATTTCGTGCGCATGCCGACACCCG
10 GCACCGCGCCATTGGCGCTCGACCGTACCGCAGCTCCATGCGCGTTCTAGGCCTGGCGGGCGC
CCGGAGACCCGGCTACCGGAAACCCCTACCGCAGCGTGTCCCACCACGCCGAGATCGACCGGTAT
GGGGATTCCGACGGGACCCGATCTACGACGAAGTGGCCCCGACCACGCCGAGCTACGCCCG
AGTGCAACGCCCCGGGCTGTGCCCCACGCCAGCCCATTACGACACCGTGGAGGGTATGCCCAA
GGTCCCGGGGGAGCCGGTGTACAGCACCGTTCGGCGATGGTAG

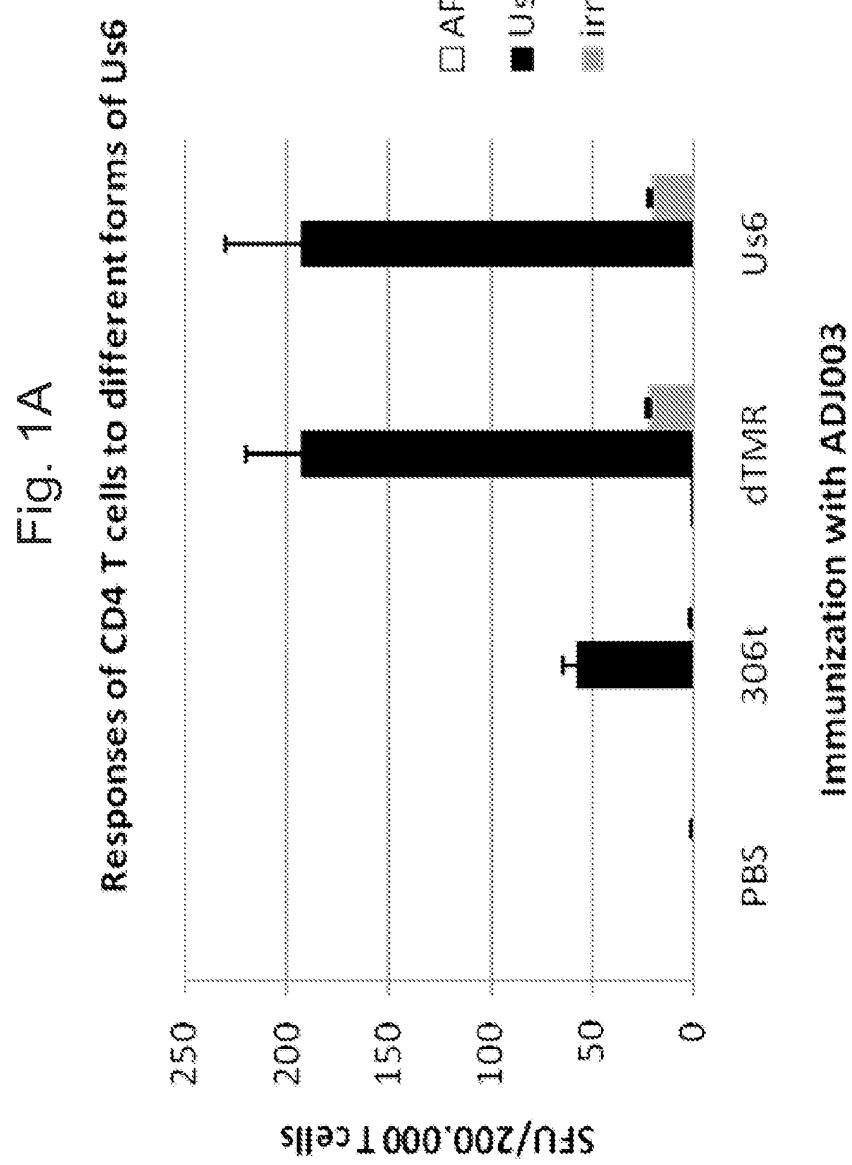
15

Claims

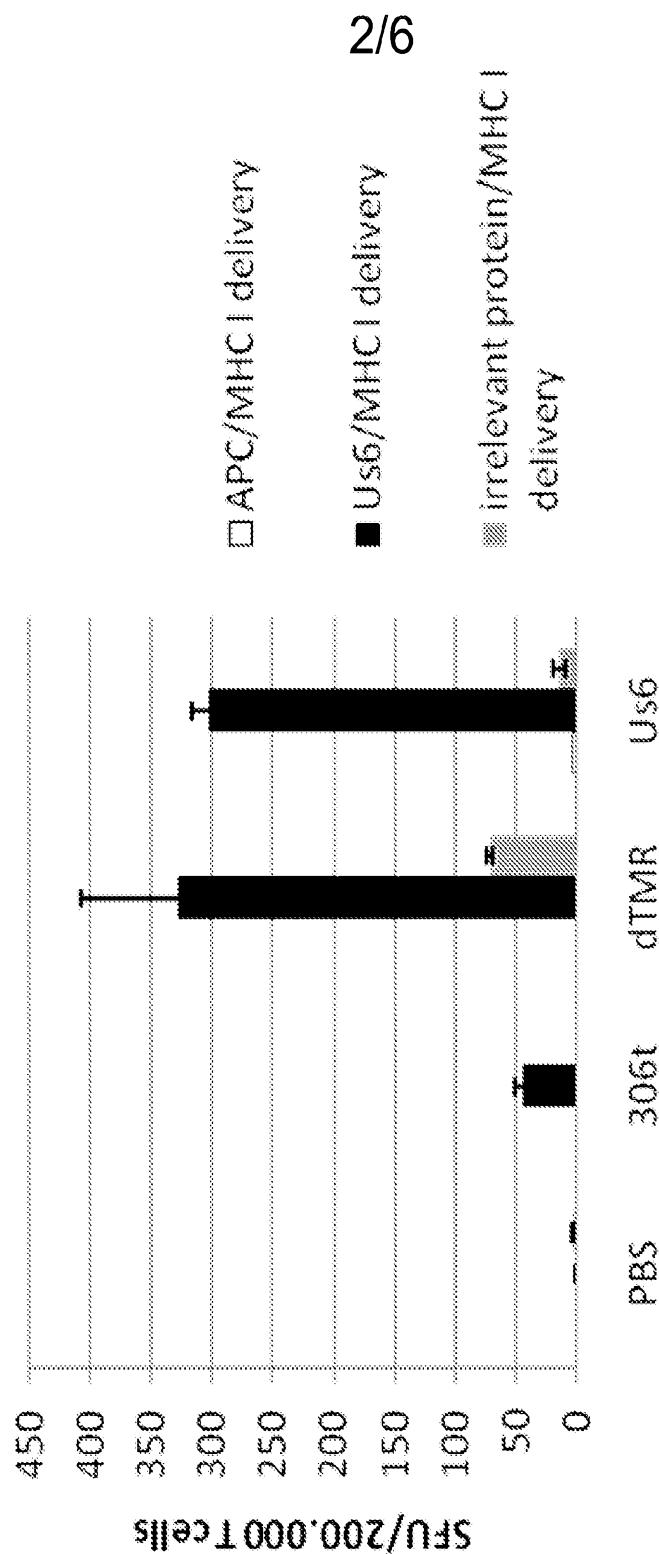
1. A vaccine formulation comprising a pharmaceutically-acceptable carrier and a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or comprising the amino acid sequence of SEQ ID NO:2 lacking 1-20 amino acids from the N-terminus, C-terminus, or both, provided that the polypeptide does not consist of the amino acid sequence of SEQ ID NO:1.
2. The vaccine formulation of claim 1, further comprising a gD2 polypeptide.
3. The vaccine formulation of claim 1, further comprising a gD2 polypeptide lacking a transmembrane domain and lacking a cytoplasmic domain.
4. The vaccine formulation of claim 1, further comprising a gD2 polypeptide lacking a transmembrane domain.
5. The vaccine formulation of claim 1, further comprising a second polypeptide consisting of the amino acid sequence of SEQ ID NO:3 or SEQ ID NO:4 or SEQ ID NO:5.
6. A vaccine formulation comprising a pharmaceutically-acceptable carrier and a polypeptide comprising an amino acid sequence having at least 90% identity to SEQ ID NO: 2, provided that the polypeptide does not consist of the amino acid sequence of SEQ ID NO:1.
7. A vaccine formulation comprising a pharmaceutically acceptable carrier and a polypeptide comprising the amino acid sequence of SEQ ID NO:2 conjugated to an immunogenic carrier, a signal sequence, or a peptide of no more than 20 amino acids at the N-terminus or C-terminus of the polypeptide, provided that the polypeptide does not consist of the amino acid sequence of SEQ ID NO:1.
8. The vaccine formulation of claim 1, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO:2 lacking 1-10 amino acid residues from the N-terminus, C-terminus, or both.

9. The vaccine formulation of any of claims 1, 6, 7, or 8, further comprising a second polypeptide comprising the amino acid sequence of SEQ ID NO:5 lacking all or at least 8 contiguous amino acid residues of residues 340-363 of SEQ ID NO:5, or comprising the amino acid sequence of SEQ ID NO:5 lacking all or at least 8 contiguous amino acid residues of residues 340-363 of SEQ ID NO:5 and lacking 1-25 amino acids from the N-terminus, C-terminus, or both.
10. The vaccine formulation of any of claims 1, 6, 7, or 8, further comprising a second polypeptide comprising the amino acid sequence of SEQ ID NO:4 or the amino acid sequence of SEQ ID NO:4 lacking 1-20 amino acids from the N-terminus, C-terminus, or both.
11. The vaccine formulation of any of claims 1, 6, 7, or 8, further comprising a second polypeptide comprising an amino acid sequence having at least 90% identity to SEQ ID NO:4.
12. The vaccine formulation of any of claims 1, 6, 7, or 8, further comprising a second polypeptide comprising the amino acid sequence of SEQ ID NO:5 or the amino acid sequence of SEQ ID NO:5 lacking 1-25 amino acids from the N-terminus, C-terminus, or both.
13. The vaccine formulation of any of claims 1, 6, 7, or 8, further comprising a second polypeptide comprising an amino acid sequence having at least 90% identity to SEQ ID NO:5.
14. The vaccine formulation of any of claims 1, 6, 7, or 8, further comprising a second polypeptide comprising the amino acid sequence of SEQ ID NO:3 or the amino acid sequence of SEQ ID NO:3 lacking 1-25 amino acid residues from the N-terminus, C-terminus, or both.
15. The vaccine formulation of any of claims 1-14, further comprising an adjuvant.
16. The vaccine formulation of claim 15, wherein the adjuvant is one or more purified fractions of quillaja saponins.

17. The vaccine formulation of claim 16, wherein the adjuvant comprises saponin fraction A and saponin fraction C.
18. The vaccine formulation of claim 17, wherein the adjuvant comprises cholesterol, phosphatidyl choline, saponin fraction A and saponin fraction C.
19. The vaccine formulation of claim 18, wherein the adjuvant is in the form of particles.
20. The vaccine formulation of claim 19, wherein particles comprising saponin fraction A are free of saponin fraction C and particles comprising saponin fraction C are free of saponin fraction A.
21. The vaccine formulation of any of claims 15-20, wherein the vaccine formulation comprises 5-200 µg of each polypeptide and 5-200 µg of the adjuvant.
22. The vaccine formulation of any of claims 1-21, wherein the vaccine formulation inhibits HSV-2 symptoms.
23. The vaccine formulation of claim 22, wherein the vaccine formulation reduces the number of herpetic lesions.
24. The vaccine formulation of claim 22, wherein the vaccine formulation reduces the number of days a subject experiences herpetic lesions.
25. The vaccine formulation of any of claims 1-21, wherein the vaccine formulation inhibits infection by HSV-2 in an uninfected subject.
26. The vaccine formulation of claim 25, wherein the vaccine formulation increases the IgG titer to one or more HSV-2 antigens.


27. The vaccine formulation of claim 25, wherein the vaccine formulation increases the T cell response to one or more HSV-2 antigens.
28. The vaccine formulation of claim 25, wherein the vaccine formulation reduces the number of herpetic lesions at the onset of HSV-2 infection.
29. The vaccine formulation of any of claims 1-21, wherein the vaccine formulation inhibits HSV-2 symptoms or inhibits infection by HSV-2 in three or fewer doses.
30. A pharmaceutical composition for treating a subject suffering from or susceptible to HSV-2 infection, comprising an effective amount of a vaccine formulation according to claims 1-21.
31. The pharmaceutical composition of claim 30, wherein the pharmaceutical composition inhibits HSV-2 symptoms.
32. The pharmaceutical composition of claim 31, wherein the pharmaceutical composition reduces the number of herpetic lesions.
33. The pharmaceutical composition of claim 32, wherein the pharmaceutical composition reduces the number of days a subject experiences herpetic lesions.
34. The pharmaceutical composition of claim 30, wherein the pharmaceutical composition inhibits infection by HSV-2 in an uninfected subject.
35. The pharmaceutical composition of claim 34, wherein the pharmaceutical composition increases the IgG titer to one or more HSV-2 antigens.
36. The pharmaceutical composition of claim 34, wherein the pharmaceutical composition increases the T cell response to one or more HSV-2 antigens.

37. The pharmaceutical composition of claim 34, wherein the pharmaceutical composition reduces the number of herpetic lesions at the onset of HSV-2 infection.
38. The pharmaceutical composition of claim 30, wherein the pharmaceutical composition treats a subject within a three dose regimen.
39. The pharmaceutical composition of claim 30, wherein the subject is a human.
40. A pharmaceutical composition comprising a first polypeptide having an amino acid sequence that is at least 90% identical to SEQ ID NO:2 and one or more additional polypeptides selected from polypeptides having an amino acid sequence that is at least 90% identical to SEQ ID NOS: 4 or 5 or 90% identical to any one of SEQ ID NOS: 1, 3, and 6-38.
41. A pharmaceutical composition for inducing an immune response in a subject comprising an effective amount of a first polypeptide having an amino acid sequence that is at least 90% identical to SEQ ID NO:2, and one or more additional polypeptides selected from polypeptides having an amino acid sequence that is at least 90% identical to SEQ ID NOS: 4 or 5 or 90% identical to any one of SEQ ID NOS: 1, 3, and 6-38.
42. The pharmaceutical composition of claim 41, characterized in that said pharmaceutical composition is administered two, three, four, or five times.
43. The pharmaceutical composition of claim 41, characterized in that said pharmaceutical composition is administered before exposure to herpes simplex virus-2 (HSV-2).
44. The pharmaceutical composition of claim 41, characterized in that said pharmaceutical composition is administered after exposure to HSV-2.
45. A pharmaceutical composition for reducing one or more symptoms of HSV-2 infection in a subject, comprising a first polypeptide having an amino acid sequence that is at least 90%


identical to SEQ ID NO:2, and one or more additional polypeptides selected from polypeptides having an amino acid sequence that is at least 90% identical to SEQ ID NOS: 4 or 5 or 90% identical to any one of SEQ ID NOS: 1, 3, and 6-38.

46. The pharmaceutical composition of claim 45, wherein the symptoms of HSV-2 infection comprise one or more of lesion formation, pain, irritation, itching, fever, malaise, headache, viral shedding, and prodrome.

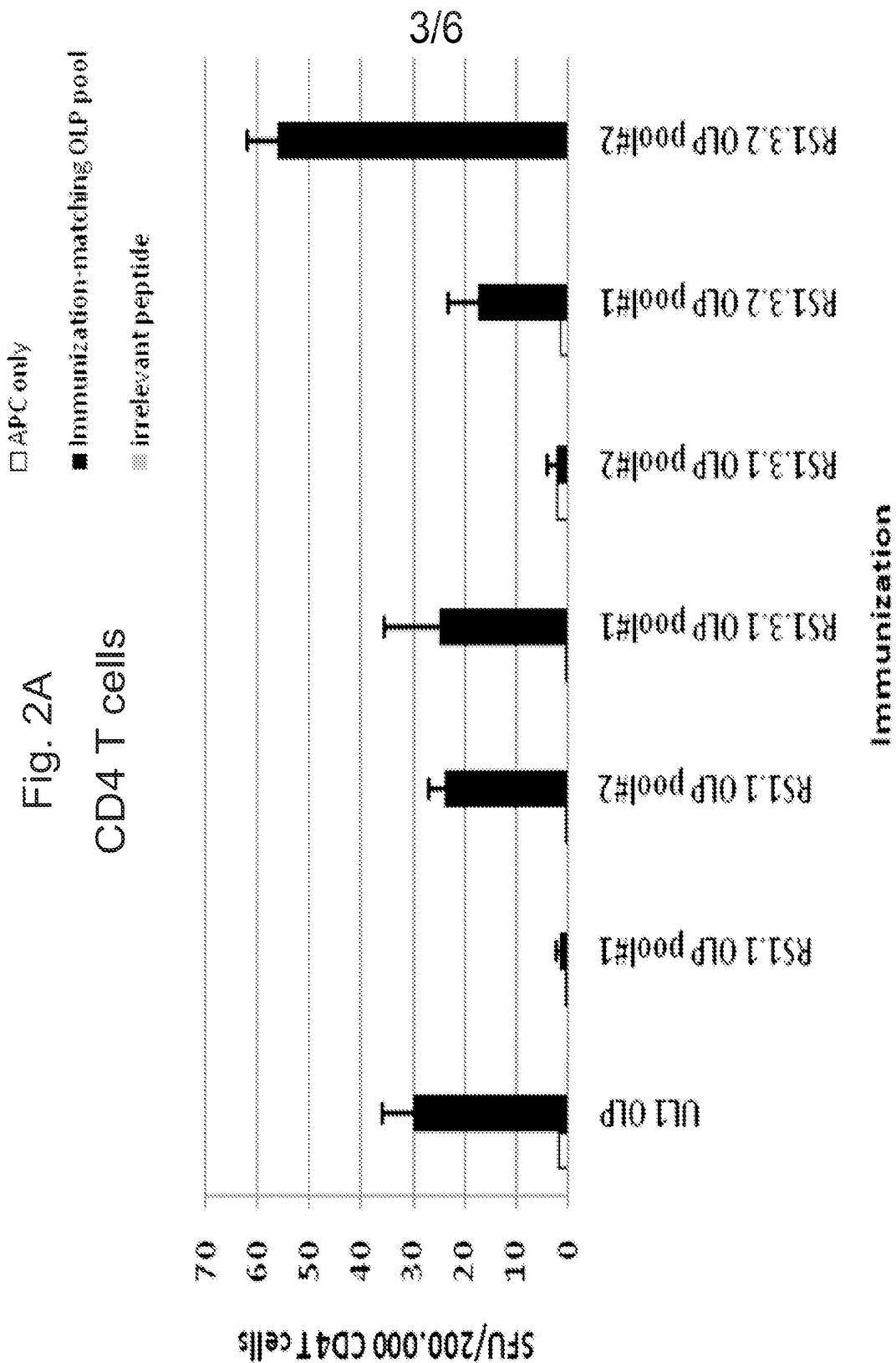
47. A pharmaceutical composition for inhibiting onset of HSV-2 infection, inhibiting development of a latent HSV-2 infection in a subject, reducing viral shedding in a subject infected with HSV-2, and/or reducing recurrence of outbreaks in a subject infected with HSV-2, comprising a first polypeptide having an amino acid sequence that is at least 90% identical to SEQ ID NO:2, and one or more additional HSV-2 polypeptides selected from polypeptides having an amino acid sequence that is at least 90% identical to SEQ ID NOS: 4 or 5 or 90% identical to any one of SEQ ID NOS: 1, 3, and 6-38.

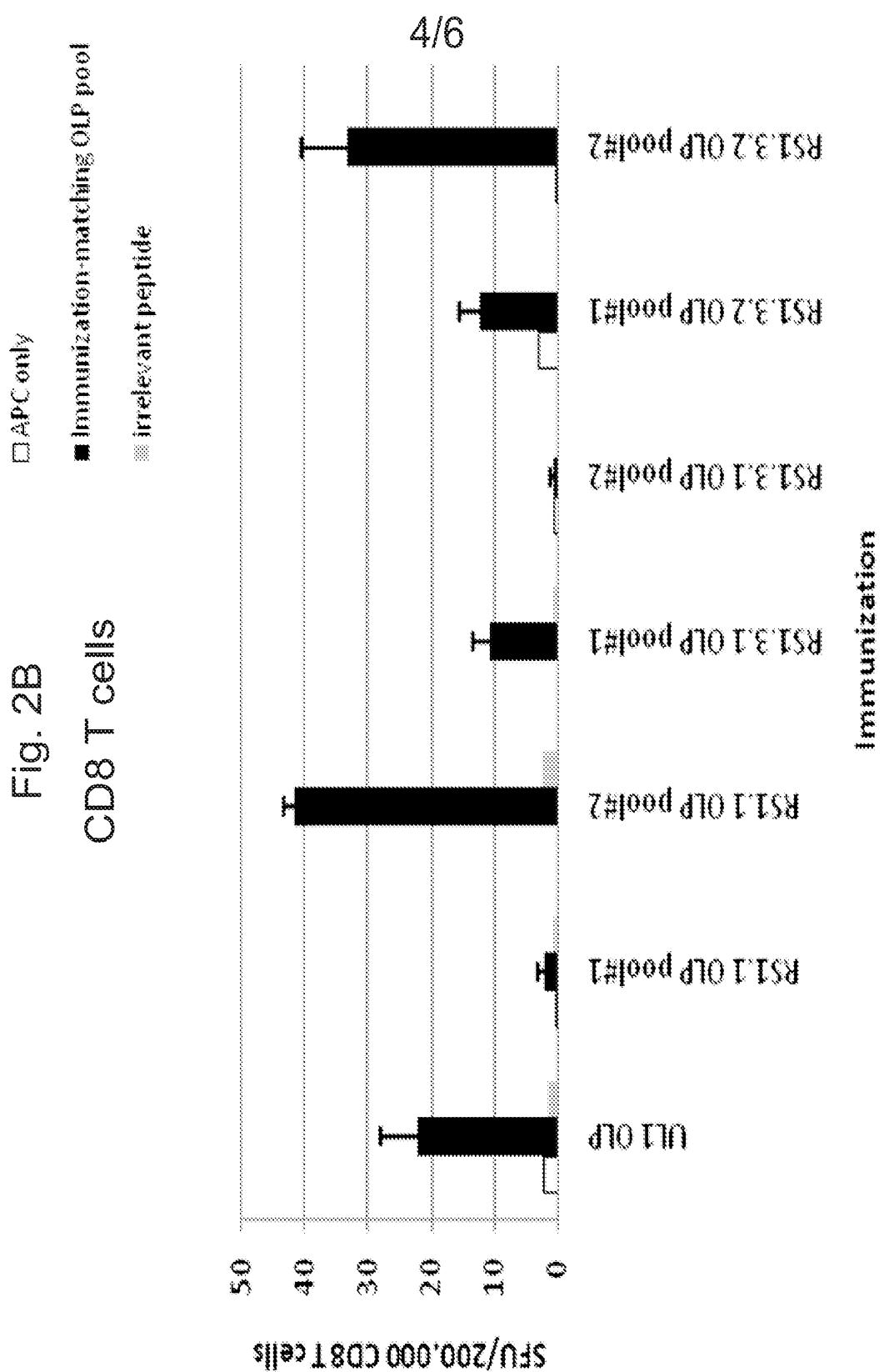
Fig. 1B
Responses of CD8 T cells to different forms of Us6

Immunization with ADJ003

306t: Us6 protein without transmembrane (TMR) or cytoplasmic region

dTMR: Us6 protein without transmembrane (TMR) region


Us6: full-length Us6 protein


All proteins were expressed in E. coli

Results are interferon-gamma spot forming units per 200,000 T cells (CD4+ or CD8+) seeded per well of Elispot plate

Fig. 2A

CD4 T cells

5/6

Fig. 3A

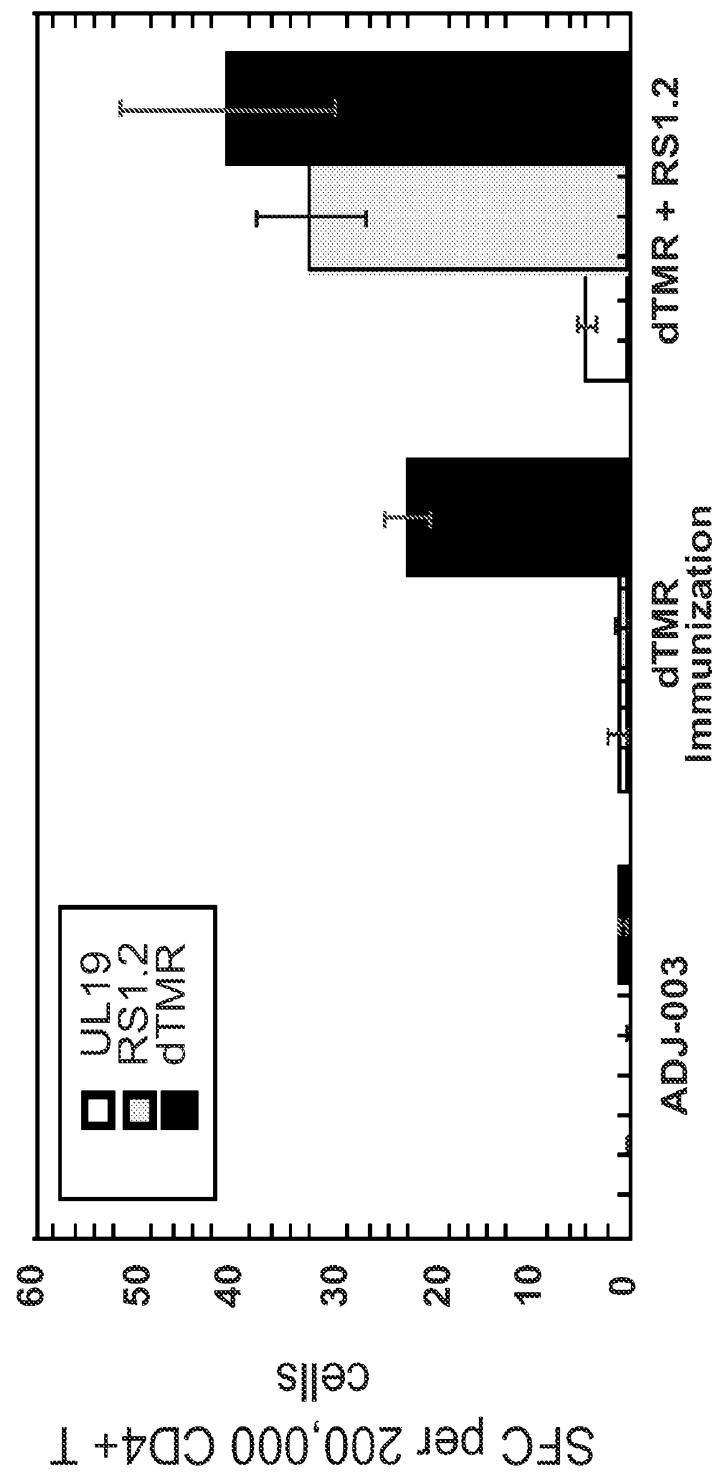
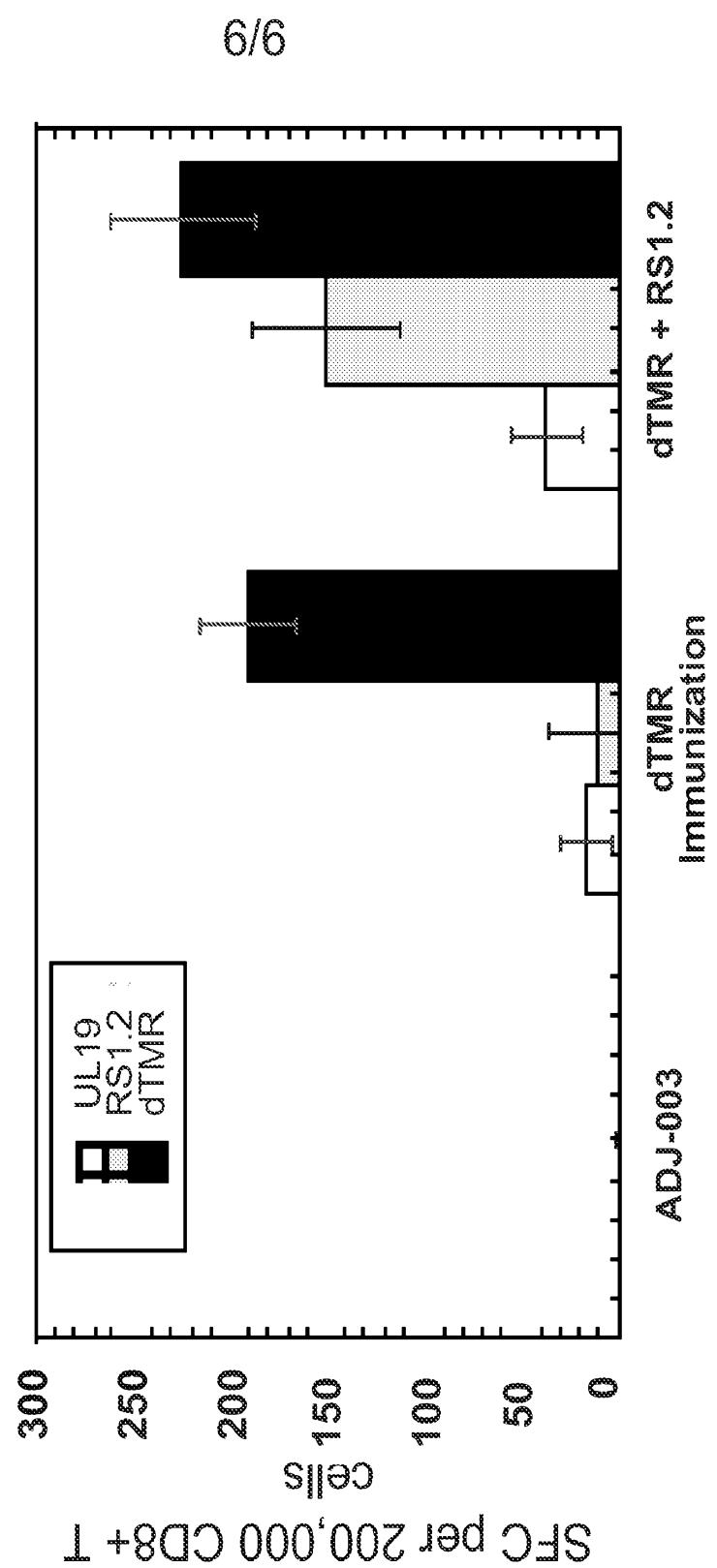



Fig. 3B

