7/139529 A1 I AT 0 00O

—

20

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T OO0 OO

International Bureau

(43) International Publication Date
6 December 2007 (06.12.2007)

(10) International Publication Number

WO 2007/139529 Al

(51) International Patent Classification:
GOG6F 12/08 (2006.01)

(21) International Application Number:
PCT/US2005/018252

(22) International Filing Date: 24 May 2005 (24.05.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/574,040
11/135,838

Us
Us

24 May 2004 (24.05.2004)
23 May 2005 (23.05.2005)
(71) Applicant (for all designated States except US): SUN MI-
CROSYSTEMS, INC. [US/US]; 4120 Network Circle,
Santa Clara, CA 95054 (US).

(72) Inventors: JACOBSON, Quinn, A.; 598 Sunnymount
Ave., Sunnyvale, CA 94087 (US). CHAUDHRY, Shailen-
der; 255 King Street #530, San Francisco, CA 94107 (US).
(74) Agents: GUNNISON, Forest et al.; Gunnison, McKay &
Hodgson, L.L..P., 1900 Garden Road, Suite 220, Monterey,
CA 93940 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN,
YU, ZA, 7ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, S1, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: TRANSLATING LOADS FOR ACCELERATING VIRTUALIZED PARTITION

501_1
- : 502 1 502 k 503 _m
501§ - y; 503_1 -
App pp App App App App
« ¥ ,
QOperating Operating Operating
o0 e eoe A5 10J
System T~510_1 System | o 02 System
>
A Hypervisor 520
4
570 /
MMU ¥
560_t 1560 n
Core Core
1 see N
4tTE -
TLB T 551 4350
P -
]
/ i tfranslating Load Instruction]
575 Processor Memory ~555
(Hardware)

(57) Abstract: A system (500), which includes a processor (550) that includes a plurality of cores (560_1, 560_n), generates an
address translation when there is a miss in a translation lookaside buffer (TLB) (575). A hypervisor (520) utilizes a translating load
instruction (551) that upon execution on processor (550) generates a data portion of a TLB entry. Execution of translating load
instruction (551) utilizes information from a real-to-physical address translation table entry and information provided in the call to
the translating load instruction (551) to synthesize the data portion of the new virtual-to-physical translation table entry.

WO 2007/139529 PCT/US2005/018252

Translating Loads for Accelerating Virtualized

Partition

RELATED APPLICATION

[0001] This application claims the benefit of U.S.
Provisional Application No. 60/574,040 filed May 24,
2004 entitled "Translating Loads for Accelerating
Virtualized Partition" and naming Quinn A. Jacobson and
Shailender Chaudhry as inventors, which is incorporated

herein by reference in its entirety.
BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The present invention relates generally to
memory management in computer systems, and more
particularly to accelerating address translations

following a translation lookaside buffer miss.

Description of Related Art

[0003] Virtual memory and the addresses used to
locate information in the virtual memory is an old
concept. Historically, virtual addresses were used to
provide a large memory space to applications by a
processor. The processor converted the virtual
addresses to a physical address. To reduce the
overhead in mapping a virtual address to a physical
address, a translation lookaside buffer 100 (Fig. 1)
was used.

[0004] Translation lookaside buffer 100 was a cache

for holding recently used mappings from virtual

-1~

WO 2007/139529 PCT/US2005/018252

addresses to physical addresses. Typically, a virtual
address had two parts an offset and a virtual page
identifier. The offset was the same for both the
virtual address and the physical address.

[0005] Thus, the virtual address in Fig. 1 that was
presented to translation lookaside buffer (TLB) 100 was
the virtual page identifier. Translation lookaside
buffer 100 checked to see if the virtual page
identifier was stored in the cache and if it was,

TLB 100 returned the physical address, which was the
base address of the page in physical memory. However,
if TLB 100 did not contain the virtual page identifier,
a more detailed mapping was required using stored
memory mapping tables and the TLB was updated as
appropriate.

[0006] This approach was sufficient for a single
operating system handling multiple applications, e.g.,
contexts. However, in main frames a further
abstraction was introduced, e.g., virtual hardware.
[0007] As illustrated in Fig. 2, a plurality of
operating systems 210_1, 210_2, e.g., different
instances of the same operating system, or
alternatively different operations systems, used a
hardware processor 250. Each operating system
supported a plurality of applications, e.g., operating
system 210 1 supported applications 201_1, 201_2 and
operating system 210_2 supported

applications 202 1, 202_2.

[oo08] In system 200, the hardware is logically
partitioned. Logical partitioning allows multiple
copies of a single operating system (OS) or multiple
heterogeneous operating systems to simultaneously run
on a single data processing system platform. A logical
partition, within which an operating system image runs,
is assigned a non-overlapping sub-set of the platform's

resources. These platform allocable resources include

-2~

WO 2007/139529 PCT/US2005/018252

one or more architecturally distinct processors with
their interrupt management area, regions of system
memory, and I/0 adapter bus slots.

[0009] Hypervisor 210, typically implemented as
firmware, performed a number of functions and services
for operating systems 210_1, 210_2 to create and
enforce the logical partitions. Hypervisor 210 owned
all system resources and provided an abstraction layer
through which device access and control was arbitrated.
[0010] Hypervisor 210 and firmware handled the
mapping of memory, CPUs and adapters for each logical
partition. Applications were generally unaware of
where the partition's memory was located, which CPUs
had been assigned, or which adapters were in use.
[ool1] Each application had it owns virtual address
space. The operating system associated with a
particular application converted a virtual address to a
real address. As far as the operating system was
concerned the real address started at zero and went to
a predetermined maximum value. Hypervisor 220 managed
the physical memory addresses.

[0012] Fig. 3 is a conceptual illustration of a two-
part translation loockaside buffer 300 that could be
used in the translation from a virtual address to a
physical address. A first table 310 includes mappings
from virtual addresses to real addresses and a second
table 320 includes mappings from real addresses to
physical addresses.

[0013] However, TLB 300 required serialization and
so typically, the logic equivalent of tables 310, 320
was implemented. In TLB 400, a first portion 401 was a
field with a value that identified whether the address
was a virtual address or a real address, a second
portion 402 included either the virtual address or the
read address, and a third portion 403 contained the
mapping to the corresponding physical address. Thus,

\

-3~

WO 2007/139529 PCT/US2005/018252

with TLB 400, it was possible to go directly from a
virtual address to the corresponding physical address,
or alternatively from a real address to the
corresponding physical address.

[0014] An area of emphasis has been on how to
minimize the penalty when there is a miss in TLB 400
for a virtual address. Two translations are required;
one from the virtual to the real address; and one from
the real address to the physical address. The second
translation is the one that has received most of the
attention.

[0015] Either the operating system, or the
hypervisor using the operating system state can perform
the virtual-to-real address translation. Typically, to
do the translation from the real address to physical
addresg translation base and bounds table, a coarse

grain translation has been used.

SUMMARY OF THE INVENTION

[0016] In one embodiment of the present invention, a
method generates a virtual-to-real-to-physical address
translation more rapidly than the prior art methods.

In particular, the real-to-physical address portion of
the translation is accelerated using a translating load
operation, which in turn accelerates virtualized
partitions.

[0017] In one example, hardware determines whether a
translation lookaside buffer miss occurred for a
virtual address. If a miss occurred, a translating
load instruction is executed. Successful execution of
the translating load instruction generates a new data
portion for a virtual-to-physical address translation
table entry.

[0018] The execution of the translating load
instruction searches a table of translation lookaside

buffer entries for a real-to-physical address

-4

WO 2007/139529 PCT/US2005/018252

translation table entry including a real address
associated with the virtual address. If such a real-
to-physical address translation table entry is found,
the execution of the translating load then determines
whether permissions and size information in the real-
to-physical address translation table entry are
compatible with, e.g., are equal to, or a superset of,
permissions and size information associated with the
real address. If the permissions and size information
in the real-to-physical address translation table entry
are equal to, or a superset of, permissions and size
information associated with the real address, the
execution of the translating load instruction creates
the new data portion for the virtual-to-physical
address translation table entry.
[0019] In one embodiment, the table of translation
table entries is a hardware translation lookaside
buffer. 1In another embodiment, the table of
translation table entries is a translating load table.
[0020] In one embodiment, a processor includes a
hardware table of translation table entries including
real-to-physical translation table entries and a
translating load instruction stored in a memory wherein
execution of the translating load instruction generates
a method as described above. A system includes this
processor and a memory coupled to the processor. In
one embodiment, the system 1s a stand-alone computer
system, and in another embodiment, the system is a
client-server system.
[0021] In still another embodiment, a structure
includes:

means for determining whether a translation

loockaside buffer miss occurred for a virtual
address;
means for executing a translating load

instruction, following the determining finding the

-5-

WO 2007/139529 PCT/US2005/018252

translation lookaside buffer miss occurred, to
generate a new data portion for a virtual-to-
physical address translation table entry;

means for searching a table of translation
lookaside buffer entries for a real-to-physical
address translation table entry including a real
address associated with the wvirtual address;

means for determining, following the means
for searching finding the real-to-physical address
translation table entry, whether permissions and
size information in the real-to-physical address
translation table entry are compatible with
permissions and size information associated with
the real address; and

means for creating the new data portion for
the virtual-to-physical address translation table
entry following the means for detérmining finding
that the permissions and size information in the
real-to-physical translation table entry are
compatible with the permissions and size

information associated with the real address.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Fig. 1 is a block diagram of a prior art
translation lookaside buffer used for mapping a virtual
address to a physical address.

[0023] Fig. 2 is a block diagram of a prior art
computing platform that utilized logical partitions and
so had virtual addresses, real addresses, and physical
addresses.

[0024] Fig. 3 is a block diagram of a prior art
translation lookaside buffer used for mapping a virtual
address to a real address and the real address to a
physical address.

[0025] Fig. 4 is a block diagram of a prior art

translation lookaside buffer used for mapping a virtual

-6-

WO 2007/139529 PCT/US2005/018252

address to a physical address and for mapping a real
address to a physical address.

[0026] Fig. 5 is a block diagram of a computing
platform that includes a translating load instruction,
and means for executing the translating load
instruction, according to one embodiment of the present
invention.

[0027] Fig. 6 is a process flow diagram for a method
of generating a virtual-to-physical address translation
table entry for the computing platform of Fig. 5,
according to one embodiment of the invention.

[0028] Fig. 7A is an illustration of a memory
structure that is a virtual-to-real address translation
table entry used in one embodiment of the present
invention.

[0029] Fig. 7B i1s an illustration of a memory
structure that is a data portion of theé virtual-to-real
address translation table entry of Fig. 7A and is
passed as an argument in the translating load
instruction in one embodiment of the present invention.
[0030] Fig. 8 is a diagram of translation table
entries in a translation lookaside buffer in one
embodiment of the present invention.

[0031] Fig. 9 is a more detailed diagram of the
translations table entries of Fig. 8, according to one
embodiment of the present invention.

[0032] Fig. 10 is a more detailed illustration of a
memory structure that is a virtual-to-real address
translation table entry used in one embodiment of the
present invention.

[0033] Fig. 11 is a more detailed illustration of a
memory structure that is translation table entry used
in a translation lookaside buffer and in a translating

load table according to one embodiment of the present

invention.

WO 2007/139529 PCT/US2005/018252

[0034] Fig. 12 is a block diagram of a computing
platform that includes a translating load instruction,
and means for executing the translating load
instruction and a translating load table used in the
execution, according to one embodiment of the present
invention.

[0035] Fig. 13 is a diagram of a system and of
systems that utilize the processor with the translating
load instruction according to various embodiments of
the present invention.

[00361] In the drawings and the detailed description,
elements with the same reference numeral are the same
or equivalent elements. Also, for three digit
reference numerals, the first digit of the reference
numeral is the figure number in which the corresponding
element first appears. For four digit reference
numerals, the first two digits of the reference numeral
are the figure number in which the corresponding

element first appears.

DETAILED DESCRIPTION

[0037] In one embodiment of the present invention, a
system 500, which includes a processor 550 that
includes a plurality of cores 560_1 to 560_n, generates
an address translation more efficiently than prior art
processors when there is a miss in a translation
lookaside buffer (TLB) 575. Hypervisor 520 utilizes a
translating load instruction that upon execution on
processor 550 generates a data portion of a TLB entry.
Execution of the trarslating load instruction utilizes
information from a real-to-physical address translation
table entry and information provided in the call to the
translating load instruction to synthesize the data
portion of a new virtual-to-physical translation table

entry.

WO 2007/139529 PCT/US2005/018252

[0038] In this embodiment, system 500 is partitioned
into virtual processors. A processor assignment, e.9.,
one of the plurality of coxes 560_1 to 560_n, with
respect to an execution environment for a computing
application defines the virtual processor for that
computing application.

[0039] In this embodiment, system 500 includes a
plurality of applications 501_1 to 501 j, 502_1

to 502 k, and 503_1 to 503_m, a plurality of operating
systems 510 1, 510_2 to 510_p, a hypervisor 520, and a
processor 550 that in turn includes a plurality of
cores 560 1 to 560_n. A memory management unit 570 of

processor 550 includes a translation lookaside

buffer 575.
[0040] All virtual processors in processor 550 share
translation lookaside buffer 575. To assist in

defining the execution environment partition
identifiers and context identifiers are used in one
embodiment. Partition identifiers and context
identifiers are coordinated across hypervisor code and
all supervisor code respectively across all virtual
processors within processor 550.

[0041] Translation lookaside buffer 575 provides
virtual-to-physical address translations and real-to-
physical address translations. All the virtual
processors for virtual-to-physical address translations
and for real-to-physical address translations use
hardware-based translation lookaside buffer 575.

foo42] In one embodiment, when a virtual address
translation is needed, hardware in processor 550

searches TLB 575 for an appropriate translation table

entry. If such an entry is not found, a TLB miss
occurs.
[0043] Upon a TLB miss, processing transfers from

TLB miss check operation 695 (Fig. 6) to a get virtual

address to real address translation table entry

~-9-

WO 2007/139529 PCT/US2005/018252

operation 601. In one embodiment, MMU 570 also
includes a Translation Storage Buffer (TSB), which is a
translation table in memory. The TSB contains one-
level mapping information for virtual addresses to real
addresses. Hardware in processor 550 looks up the TSB
when a translation cannot be found in TLB 575. A TSB
entry is called a Translation Table Entry, or TTE.
[0044] Use of a TSB is illustrative only and is not
intended to limit the invention to this specific
embodiment. Either an operating system, or

hypervisor 520 using the state of the operating system
can generate a virtual to real address translation
using for example a page table.

[0045] Fig. 7A illustrates one embodiment of a

TTE 700 for a virtual-to-real address translation.

TTE 700 has two portions: a tag portion 710 and data
portion 720. Data portion 720 includes a real address
field 725 that contains a real address that is
associated with the virtual address in tag portion 710,
and permissions and size field 726 that contains
permissions and size information associated with the
real address.

[00456] Upon completion of operation 601, a TTE 700
is obtained for the virtual address for which there was
a TLB miss. Hypervisor 520 initiates execution of a
translating load instruction 551 that is stored in a
memory 555, e.g., in firmware. Data portion 720

(Fig. 7B) of TTE 700 is passed in the call to
translating load instruction 551.

[0047] Execution of translating load instruction 551
results in performance of method 600. Specifically, a
search table for real address in translation table
entry (TTE) data portion operation 602 is provided with
data portion 720 (Fig. 7B) that includes a real
address, in real address field 725, which is associated

with, e.g., corresponds to, the virtual address for

-10-

WO 2007/139529 PCT/US2005/018252

which the TLB miss occurred. With this real address,
operation 602 searches, for example, TLB 575A (Fig. 8)
for a real-to-physical address translation table entry
with a translation from the real address in data
portion 720 to a physical address.

[0048] In this example, TLB 575A includes a
plurality of translation table entries 801 to 803.
Fig. 9 is a more detailed illustration of one
embodiment of a translation table entry 900 that is
representative of each of the plurality of translation
table entries 801 to 803.

[0049] Translation table entry 900 includes a tag
portion 910 and a data portion 920. In this example,
tag portion 910, sometimes called tag 910, includes a
real field 928 and an address field 925. A value in
real field 928 indicates whether translation table
entry 900 is for a real-to-physical address
translation, or alternatively for a virtual-to-physical
address translation and consequently identifies the
type of address in address field 925. Data portion 920
includes a physical address field 927 that includes a
physical address associated with the address in

field 925, and a permissions and size field 926 that
containg information associated with the physical
address in field 927. Upon completion, operation 602
transfers processing to real-to-physical address
translation table entry found check operation 603

(Fig. 6).

[0050] If a real-to-physical address translation
table entry was not found for real address 725, check
operation 603 transfers processing to error

operation 604. Error operation 604 returns a
predefined value, e.g., zero, which indicates that
method 600 was not successful for the virtual address

that resulted in the TLB miss.

-11-

WO 2007/139529 PCT/US2005/018252

[0051] If a real-to-physical address translation
table entry was found for real address 725, e.g.,

entry 802 (Fig. 8), check operation 603 transfers
processing to physical address in TTE appropriate check
operation 605. Check operation 605 compares the
permissions and size information in field 726 of data
portion 720 of virtual-to-physical address TTE 700 with
the permissions and size information in field 820 of
real-to-physical address TTE 802.

[0052] If the permissions and size information in
field 826 are equal to, or a superset of, the
permissions and size information of field 726, check
operation 605 transfers processing to create data
portion of translation table entry operation 607, and
otherwise to error operation 606.

[0053] If processing transferred to error operatiomn,
the information characterizing the memory associated
with the physical address indicated that the memory was
not appropriate for use with the virtual address.
Accordingly, error operation 604 returns a value, e.g.,
zero, which indicates that method 600 was not
successful for the virtual address that resulted in
the TLB miss.

[0054] In create data portion of TTE operation 607,
a translation table entry data portion for a real-to-
physical address translation table entry is generated.
In one embodiment, permissions and size information in
field 726 is used with the physical address in TTE 802
to form a new data portion of a virtual-to-physical
address TTE. This new data portion is stored and the
translating load instruction completes.

[0055] The tag for the new virtual-to-physical
address TTE is known and is the information associated
with the original virtual address for which the TLB
miss occurred. The known tag for the new virtual-to-

physical address TTE along with the new data portion

~12-

WO 2007/139529 PCT/US2005/018252

from operation 607 are written to TLB 575A in put TTE
in TLB operation 608 to form a virtual-to-physical
address translation table entry.

[0056] The above embodiments may be used with any
processor having a TLB, and the capability to implement
the operations described. The use of a translating
load instruction to initiate method 600 is illustrative
only and is not intended to limit the invention to
initiating method 600 via execution of only a load
instruction.

[0057] In one embodiment, the call to the

translating load instruction is of the form:
TL [Source Reg] [Destination Reg] where,

Source register holds the data portion of a
virtual-to-real address TTE; and

a data portion for a new virtual-to-physical
address TTE is returned in the destination
register if execution if successful and otherwise
a predefined value is loaded in the destination

register.

Thus, in this embodiment, the destination register
is tested upon completion of operation 607 and if the
destination register does not contain the predefined
value, operation 608 is performed. If the destination
register does contain the predefined value, the
virtual-to-physical address translation can be
performed using the prior art methods for example.
[0058] Fig. 10 illustrates a more detailed
embodiment of a wvairtual-to-real address TTE 1000 with a
tag portion 710A znd a data portion 720A. In this
embodiment, data portion 720A is used as the source in
the translating load instruction TL. Table 1 is one

embodiment of definitions of the fields in TTE 1100

-13-

WO 2007/139529 PCT/US2005/018252

and the data contained in the fields. 1In column Bit, a
T is used to denote the tag portion and a D is used to
denote the data portion. 1In the Field Names, bold is
used to denote the characters used as the reference

numeral for that field in Fig. 10.

TABLE 1
Bit Field Description
T-63:48 | Context If R is 1, this entry maps a

real address to a physical
address and the context
information is ignored. If R
is 0, this entry maps a

virtual address to a real

address.
T-47:42 Reserved
T-41:00 |Virtual Virtual Address Tag. The
Address virtual page number. Bits 21

through 13 are not maintained
in the tag because these bits
index the minimally sized,
direct mapped TSB of 512

entries.
D-63 Valid If this valid bit is set
to 1, this TTE is a wvalid
entry
D-62 Non-Faulting | If this non-faulting only bit
only is set to 1, this TLB entry

is intended to match only
non-faulting address space

identifiers

D- SwW Software usable bits
61 :N+1

D-N:13 Real Address | This field provides support

-14-

WO 2007/139529 PCT/US2005/018252

Bit Field Description
for 47 bits of real address.
For page sizes larger than 8
KB, the lower order address
bits below the page size are
ignored.

D-12 Invert

Endianness
D-11 Side Effect If this side effect bit is

set, speculative loads trap
for addresses within the
page. Non-cacheable memory
addresses, other than block
loads and stores are strongly
ordered against other side
effect bit accesses and non-
cacheable stores are not
merged. This bit should be
set for pages that map I/O

devices having side effects.

The side effect bit does not
prevent normal instruction
prefetching. This bit has no
effect for instruction

fetches.

The side effect bit does not
force non-cacheable access.
It is expected, but not
required that the CP and CV
bits are cleared to zero
along with the side effect
bit. If both the CP and CV
bits are set to one along
with the side effect bit, the

-15-

WO 2007/139529

PCT/US2005/018252

Bit Field

Description

regult is undefined.

The side effect bit and the
NFO bit are mutually
both bits should

never be get in any TTE.

exclusive:

D-10:9 Cacheable
Physical and
Cacheable

Virtual

These two bits are passed to
the cache memory sub-system
on any access and determine
the cacheability of that
accegs as follows:
If CP is set to 1, the mapped
data or instructions may be
cached in any physically

indexed cache;

If CP and CV are both set
to 1,

instructions may be cached in

the mapped data or

any physically or wvirtually
index cache; and

If CP ig cleared to 0, the
contents of the mapped page

are non-cacheable.

Privileged

If this privileged bit is set
to one, this mapping only
matches in the TLB if the
processor 1s in the

privileged mode.

EXecute

If this execute bit is set to
one, instructions may be

fetched and executed from

-16-

WO 2007/139529

PCT/US2005/018252

Bit Field Degcription
this page.

D-6 Writable If this writable bit is set
to one, data mapped by this
page may be written to.

D-5 Readable If this readéble bit is set
to one, data mapped by this
page may be read from.

D-4 SW Software usable bit

D-3: - - Reserved

D-2:0 Page Size 000=8KB, 001=64KB, 010=512KBE,
011=4MB, 100=32MB, 101=256MB,
110=2GB, 111=16GB

[00591] Fig. 11 illustrates one embodiment of a

TTE 1200 for TLB 575A with a tag portion 910A and a

data portion 920A.

Table 2 is one embodiment of

definitions of the fields in TTE 1100 and the data

contained in the fields.

Iin column Bit, a UT is used

to denote an upper part of the tag portion; a LT is

used denote a lower part of the tag portions; and a D

is used to denote the data portion. In the Field

Names, bold is used to denote the characters used as

the reference numeral for that field in Fig. 11.

TABLE 2
Bit Field Description
UT-63 Real If R is 1, this entry maps a

real address to a physical
address and the context
information is ignored. If
is 0, this entry maps a

virtual address to a real

address.

R

-17-

WO 2007/139529

PCT/US2005/018252

Bit

Field

Description

uT-
62:40

uT-
39:32

Partition

8-bit Partition ID used for

all translation matches

UT-
31:25

UT-24

Select

1-bit Select field to
determine which wvirtual
processor context value to
compare TLB Entry context
against for a
primary/secondary context
translation. For nucleus
context translations, the
Context Field should be zero
and the value of Select
should be set to 00.

real address to physical

For a

address translation, Context
Field should be zero and the
value of Select should be set
to 0.

0 = Compare context against
primary/secondary context.

1 = Compare context against
primary/secondary shared

context.

uT-
23:16

UT-15:0

Context

A 16-bit context identifier
associated with this TLB

entry. For a real address to
physical address translation

thig field should be set to

zero, otherwise the behavior

-18-

WO 2007/139529

PCT/US2005/018252

Bit

Field

Description

of the match is undefined.

LT-
63:13

Address

If R=1, Real Address Tag. If
R=0, Virtual Address Tag.

For page sizes larger than 8
KB, the appropriate lower
order bits are ignored for
tag compares and reads to
these lower order bits are

undefined.

LT-
12:00

D-63

Valid

If this valid bit is set
to 1, this TLB entry is a

valid entry.

Non-Faulting
Oonly

If this non-faulting only bit
is set to 1) this TLB entry
is intended to match only

loads using the non-faulting

ASTIs.

D-62

PIO address

space

If this PIO address space bit
is gset to 1, this TLB entry
corresponds to the PIO
address space. If this PIO
address space bit is set to
0, this TLB entry corresponds

to the memory address space.

D-60:47

D-46:13

Physical
Address

This physical address field
provides support for 47 bits
of physical address. For

page sizes larger than 8 KB,
the lower order address bits

below the page size are

ignored.

~19-

WO 2007/139529 PCT/US2005/018252
Bit Field Degcription
D-12 Invert
Endianness
D-11 Side Effect If this side effect bit is

set, speculative loads trap
for addresses within the
page. Non-cacheable memory
addresses, other than block
loads and stores are ordered
against other side effect bit
accesses and non-cacheable
stores are not merged. This
bit should be set for pages
that map I/0 devices having

side effects.

The side effect bit does not
prevent normal instruction
prefetching. This bit has no
effect for instruction

fetches.

The side effect bit does not
force non-cacheable access.
It is expected, but not
required that the CP and CV
bits are cleared to zero
along with the side effect
bit. If both the CP and CV
bits are set to one along
with the side effect bit, the

resgsult is undefined.

The gide effect bit and the
NFO bit are mutually
exclusive: both bits should

-20-

WO 2007/139529

PCT/US2005/018252

Bit

Field

Description

never be set in any TLB

entry.

Cacheable
Physical

The state of this bit
determines the cacheability

of the access as follows:

IF the cacheable physical bit
is set to 1, the mapped data
or instructiong may be cached
in any of the processor
caches, because in this
embodiment all caches in the
processor are physically-

indexed physically tagged.

Cacheable

Virtual

This bit is hardwired to
zero, because in this
embodiment all caches in the
processor are physical. The
bit is read as a zero and is

write ignore.

Privileged

If this privileged bit is set
to one, this mapping only
matches in the TLB if the
processor is in the

privileged mode.

EXecute

If this execute bit is set to
one, instructions may be
fetched and executed from

this page.

Writable

If this execute bit is set to
one, data mapped by this page

may be written to.

Readable

If this execute bit is set to
one, data mapped by this page

may be read from.

-271-

WO 2007/139529 PCT/US2005/018252

Bit Field Description
D-4:3 - - -
D-2:0 Page Size 000=8KB, 001=64KB, 010=512KB,

011=4MB, 100=32MB, 101=256MB,
110=2GB, 111=16GB

[0060] In this embodiment, shared TLB 575A has 8K
entries (2713) and supports page sizes from 8 KB
through 16 GB. TLB 575A is used for both virtual
address to physical address translation and real
address to physical address translation. In one
embodiment, TLB 575A is banked into four physical
banks. The TLB is 16-way set associative. Thus, each
bank has 2048 entries organized as 128 sets.

[0061] For accessing TLB entries a set of three
buffer registers are used. These three registers hold
the TLB entries upper tag portion, lower tag portion
and data portion, respectively. There is a TLB access
operation that reads a TLB entry into the three buffer
registers and a TLB access operation that writes the
two tag registers plus the data of the store into a TLB
entry.

{00621 A small, per micro-core table of TLB entries,
called a translating load table 1275 (Fig. 12), is used
to accelerate the two step translation required for
virtual-to-real-to-physical translation, as illustrated
in Fig. 6 in one embodiment. Either the full TLB or a
smaller dedicated table can be used in method 600.
Here, a smaller table is used to achieve better
performance. In one embodiment, translating load

table 1275 is a small fully associative table of
sixteen entries containing TLB entries for real-to-
physical address translation. The table is only used
for translating load operations.

[0063] The execution of the translating load

instruction performs a lookup in the special

-22-

WO 2007/139529 PCT/US2005/018252

translating load table in operation 602. The 64-bit
address used for this load operation is interpreted as
being the TTE data portion of a virtual-to-real TTE.
The TLB is accessed in operation 602 to look for a
corresponding TLB entry that performs the real-to-
physical address translatiomn.

[0064] For performing the TLB lookup, the upper two
bits, bits 63 and 62, of data portion 702A are masked
to zero to form a real address. This real address is
sent to the TLR in accordance with a Real Address Page
Size Register. If a TLB miss occurs the Real-to-
Physical translating load returns the value zero. If a
TLB hit is found, e.g., TTE 1100 has the correct real
address in the tag, the following set of checks are

performed in operation 605:

Address.Sz <= TLBentry.S5z
Address.R <= TLBentry.R
Address.W <= TLBentry.W
Address.X <= TLBentry.X

Address.CP == TLBentry.CP

address.E == TLBentry.E

Address.IE == TLBentry.IE
[0065] Here, "Address" refers to the data
portion 720A of TTE 1000 (Fig. 10), and "TLBentry"
refers to data portion 920A of TTE 1100 (Fig. 11). The

letter after a period is the reference numeral in

Fig. 10 or Fig. 11. Thus, the gize, the readability,
the writeablity, the execution ability, Endiannes, side
effect, and cacheabliity are checked. If the real-to-
physical TTE has properties that are equal to or a
superset of those in the virtual-to-real address TTE
the data portion for a new virtual-to-physical address

TTE is returned in operation 607, as described above.

-23-

WO 2007/139529 PCT/US2005/018252

[0066] In one embodiment, processor 550A is included
in a hardware configuration 1310 like a personal
computer or workstation. In this embodiment, the
applications and operating system(s) are included in
memory 1312 or a memory coupled to processor 550A via
the Internet for example. Hardware configuration 1310
includes, but is not limited to, an I/O interface 1314,
a display 1316, a keyboard 1314, and a mouse 1318.
[0067] However, in another embodiment, system 1310
is part of a client-server computer system 1300. In
this embodiment, server system 1380 includes a
processor 500B as well as a display 1381, memory 1384,
and a network interface 1383.

[00681] For either a client-server computer

gystem 1300 or a stand—alone‘computer system 1310,
memory 1312 typically includes both volatile memory,
such as main memory, and non-volatile memory, such as
hard disk drives. While memory 1312 is illustrated as
a unified structure in Fig. 13, this should not be
interpreted as requiring that all memory in memory 1312
is at the same physical location. All or part of
memory 1312 can be in a different physical location
than processor 550A.

[0069] More specifically, processor 550, in one
embodiment, can be included in a portable computer, a
workstation, a server computer, or any other device.
similarly, in another embodiment, system 1300 can be
comprised of multiple different computers, wireless
devices, server computers, or any desired combination
of these devices that are interconnected to perform the
operations, as described herein.

[0070] Herein, a computer program product comprises
a medium configured to store or transport computer
readable code or in which computer readable code for a
method is stored. Some examples of computer program

products are CD-ROM discs, ROM cards, floppy discs,

-24-

WO 2007/139529 PCT/US2005/018252

magnetic tapes, computer hard drives, servers on a
network and signals transmitted over a network
representing computer readable program code.
[0071] Herein, a computer memory refers to a
volatile memory, a non-volatile memory, or a
combination of the two. Similarly, a computer input
unit 1316 and a display unit 1315 refer to the features
providing the reqguired functionality to input the
information described herein, and to display the
information described herein, respectively, in any one
of the aforementioned or equivalent devices.
[0072] In view of this disclosure, the translating
load functionality can be implemented in a wide variety
of computer system configurations using an operating
system and computer programming language of interest to
the user.
[0073] While the translating load héreinbefore has
been explained in connection with one embodiment
thereof, those skilled in the art will readily
recognize that modifications can be made to this
embodiment without departing from the spirit and scope
of the present invention.
[0074] For example, in one embodiment, a structure
includes:
means for determining whether a translation
lookagide buffer miss occurred for a virtual
address;
means for executing a translating load
instruction, following the determining finding the
translation lookaside buffer miss occurred, to
generate a new data portion for a virtual-to-
physical address translation table entry;
means for searching a table of translation
lookaside buffer entries for a real-to-physical
address translation table entry including a real

address associated with the wvirtual address;

-25-

WO 2007/139529 PCT/US2005/018252

means for determining, following the means
for searching finding the real-to-physical address
translation table entry, whether permissions and
size information in the real-to-physical address
translation table entry are compatible with
permissions and size information associated with
the real address; and
means for creating the new data portion for
the virtual-to-physical address translation table
entry following the means for determining finding
that the permissions and size information in the
real-to-physical translation table entry are
compatible with the permissions and size
information associated with the real address.
[0075] In still yet another embodiment, a structure
includes:
means for determining whether a translation
lookaside buffer miss occurred for a virtual
address;
means for finding, following the means for
determining finding the translation lockaside
buffer miss occurred, a virtual-to-real address
translation table entry for the virtual address
wherein the virtual-to-real address translation
table entry comprises a data portion including (i)
the real address; and (ii) permissions and size
information;
means for executing a translating load
instruction having the data portion as an argument
to generate a new data portion for a virtual-to-
physical address translation table entry; and
means for using the new data portion in a
virtual-to-physical address translation table
entry for the virtual address.
[0076] This disclosure provides exemplary

embodiments of the present invention. The scope of the

-26-

WO 2007/139529 PCT/US2005/018252

present invention is not limited by these exemplary
embodiments. Numerous variations, whether explicitly
provided for by the specification or implied by the
specification, may be implemented by one of skill in

the art in view of this disclosure.

-2 -

WO 2007/139529 PCT/US2005/018252

CLAIMS

We claim:

1. A computer-based method comprising:
determining whether a translation lookaside
buffer miss occurred for a virtual address; and
executing a translating load instruction,
following the determining finding the translation
lookaside buffer miss occurred, to generate a new
data portion for a virtual-to-physical address

translation table entry.

2. The computer-based method of Claim 1 wherein
the executing the translating load instruction further
comprises:

searching a table of translation lookaside
buffer entries for a real-to-physical address
translation table entry including a real address

associated with the wvirtual address.

3. The computer-based method of Claim 2 wherein
the executing the translating load instruction further
comprises:

determining, following the searching finding
the real-to-physical address translation table
entry, whether permissions and size information in
the real-to-physical address translation table
entry are compatible with permissions and size

information associated with the real address.

4. The computer-based method of Claim 3 wherein
the executing the translating load instruction further
comprises:

creating the new data portion for the

virtual-to-physical address translation table

-28-

WO 2007/139529 PCT/US2005/018252

entry following the determining finding that the
permissions and size information in the real-to-
physical translation table entry are compatible

with the permissions and size information

associated with the real address.

5. The computer-based method of Claim 2 wherein

the table is a hardware translation lookaside buffer.

6. The computer-based method of Claim 2 wherein

the table is a translating load table.

7. A computer-based method comprising:

searching a table of translation lookaside
buffer entries for a real-to-physical address
translation table entry including a real address
associated with the virtual address for which a
translation lookaside buffer miss occurred; and

determining, following the searching finding
the real-to-physical address translation table
entry, whether permissions and size information in
the real-to-physical translation table entry are
compatible with permissions and size information

associated with the real address.

8. The computer-based method of Claim 7 further
comprising:

creating a new data portion for a virtual-to-
physical address translation table entry following
the determining finding that the permissions and
size information in the real-to-physical
translation table entry are compatible with the
permissions and size information associated with

the real address.

-29-

WO 2007/139529 PCT/US2005/018252

9. The computer-based method of Claim 7 wherein
the creating further comprises:
using a physical address from the real-to-
physical address translation table entry, and
using the permissions and size information
associated with the real address to create the new

data portion.

10. The computer-based method of Claim 7 wherein

the table is a hardware translation lookaside buffer.

11. The computer-based method of Claim 7 wherein

the table is a translating load table.

12. A computer-based method comprising:

determining whether a translation lookaside
buffer migss occurred for a virtual address;

finding, following the determining finding
the translation lookaside buffer miss occurred, a
virtual-to-real address translation table entry
for the virtual address wherein the virtual-to-
real address translation table entry comprises a
data portion including (i) a real address; and
(1i) permissions and size information;

executing a translating load instruction
having the data portion as an argument to generate
a new data portion for a virtual-to-physical
address translation table entry; and

using the new data portion in a virtual-to-
physical address translation table entry for the

virtual address.

13. The computer-based method of Claim 12 wherein
the executing the translating load instruction further

comprises:

-30~

WO 2007/139529 PCT/US2005/018252

searching a table of translation lookaside
buffer entries for a real-to-physical address
translation table entry including a real address

associated with the virtual address.

14. The computer-based method of Claim 13 wherein
the executing the translating load instruction further
comprises:

determining, following the searching finding
the real-to-physical address translation table
entry, whether permissions and size information in
the real-to-physical address translation table
entry are compatible with permissions and size
information associated with the real address

associated with the virtual address.

15. The computer-based method of Claim 14 wherein
the executing the translating load instruction further
comprises:

creating the new data portion for the
virtual-to-physical address translation table
entry following the determining finding that the
permissions and size information in the real-to-
physical translation table entry are compatible
with the permissions and size information
associated with the real address associated with

the virtual address.

16. A processor comprising:

a hardware table of translation table entries
including real-to-physical translation table
entries; and

a translating load instruction stored in a
memory wherein execution of the translating load

instruction generates a method comprising:

-31-~

WO 2007/139529 PCT/US2005/018252

searching the hardware table of
translation lookaside buffer entries for a
real-to-physical address translation table
entry including a real address associated
with a virtual address for which a

translation lookaside buffer miss occurred.

17. The processor of Claim 16 wherein the method
further comprises:
determining, following the searching finding
the real-to-physical address translation table
entry, whether permissions and size information in
the real-to-physical address translation table
entry are compatible with permissions and size

information associated with the real address.

18. The processor of Claim 17 wherein the method
further comprises:

creating the new data portion for a virtual-
to-physical address translation table entry
following the determining finding that the
permissions and size information in the real-to-
physical translation table entry are compatible
with the permissions and size information

associated with the real address.

19. The processor of Claim 18 wherein the

creating further comprises:
using a physical address from the real-to-
physical address translation table entry, and
using the permissions and size information
asgociated with the real address to create the new

data portion.

20. A system comprising:

a memory; and

-32-

WO 2007/139529 PCT/US2005/018252

a processor coupled to the memory wherein the
processor further comprises:

a hardware table of translation table
entries including real-to-physical
translation table entries;

a translating load instruction stored in
a memory wherein execution of the translating
load instruction generates a method
comprising:

searching the hardware table of
translation lookaside buffer entries for

a real-to-physical addréss translation

table entry including a real address

associated with a virtual address for
which a translation lookaside buffer

miss occurred.

21. The system of Claim 20 wherein the method
further comprises:
determining, following the searching finding
the real-to-physical address translation table
entry, whether permissions and size information in
the real-to-physical address translation table
entry are compatible with permissions and size

information associated with the real address.

22. The system of Claim 21 wherein the method
further comprises:

creating the new data portion for a virtual-
to-physical address translation table entry
following the determining finding that the
permissions and size information in the real-to-
physical translation table entry are compatible
with the permissions and size information

zssociated with the real address.

-33-

WO 2007/139529 PCT/US2005/018252

23. The system of Claim 22 wherein the creating
further comprises:
using a physical address from the real-to-
physical address translation table entry, and
using the permissions and size information
associated with the real address to create the new

data portiomn.

24. A structure comprising:

means for determining whether a translation
lockaside buffer miss occurred for a virtual
address; and

means for executing a translating load
instruction, following the determining finding the
translation lookaside buffer miss occurred, to
generate a new data portion for a virtual-to-

physical address translation table entry.

25. The structure of Claim 24 wherein the means
for executing the translating load instruction further
comprises:

means for searching a table of translation
lookaside buffer entries for a real-to-physical
address translation table entry including a real

address associated with the virtual address.

26. The structure of Claim 25 wherein the means
for executing the translating load instruction further
comprises:

means for determining, following the means
for searching finding the real-to-physical address
translation table entry, whether permissions and
size information in the real-to-physical address
translation table entry are compatible with
permissions and size information associated with

the real address.

~-34 -

WO 2007/139529 PCT/US2005/018252

27. The structure of Claim 26 wherein the means
for executing the translating load instruction further
comprises:

means for creating the new data portion for
the virtual-to-physical address translation table
entry following the means for determining finding
that the permissions and size information in the
real-to-physical translation table entry are
compatible with the permissions and size

information associated with the real address.

28. A structure comprising:

means for searching a table of translation
lookaside buffer entries for a real-to-physical
address translation table entry including a real
address associated with the virtual address for
which a translation lookaside buffer miss
occurred; and

means for determining, following the means
for searching finding the real-to-physical address
translation table entry, whether permissions and
size information in the real-to-physical
translation table entry are compatible with
permissions and size information associated with

the real address.

29. The structure of Claim 28 further comprising:
means for creating a new data portion for a
virtual-to-physical address translation table
entry following the means for determining finding
that the permissions and size information in the
real-to-physical translation table entry are
compatible with the permissions and size

information associated with the real address.

-35-

WO 2007/139529 PCT/US2005/018252

30. A structure comprising:

means for determining whether a translation
lookaside buffer miss occurred for a virtual
address;

means for finding, following the means for
determining finding the translation loockaside
buffer miss occurred, a virtual-to-real address
translation table entry for the virtual address
wherein the virtual-to-real address translation
table entry comprises a data portion including (i)
the real address; and (ii) permissions and size
information;

means for executing a translating load
instruction having the data portion as an argument
to generate a new data portion for a virtual-to-
physical address translation table entry; and

means for using the new data portion in a
virtual-to-physical address translation table

entry for the virtual address.

-36-

PCT/US2005/018252

WO 2007/139529

1/13

(1v Jo11g)
I K |

<—

SS2IPPY 1B01sAY(

S0SSeIPPY [BOISAUJ S9SSIPPY [ENHIA

Ioyng 9pISey 00 UOIJR|SUBL]

<

SSSIPPY
TenIIIA

PCT/US2005/018252

WO 2007/139529

2/13

((RAVAR (R P:]
¢ O

08T ——

00—

(arempieq)

108822013

1os1adAH
WRIsAg WolsAg J/

Q

SuneredQ Suneradp
ddy ddy ddy ddy
, \ ~ ,

1 01T

PCT/US2005/018252

WO 2007/139529

3/13

(v J0LI])
€ "OIA

0ce
/
$S2IPPY
ey
<= SOSSAIPPY [BOISAUJ S9SS3IPPY [eoy
SSIPPY [edIsAYd =
I9yng SPISB00] UOKR[SURL],
1 —01¢€
$98591I €0 S98SaIPPY [BNMIA
PPV [eoY] :
$SOIPPY [8oY SSOIPPY
[BNLIA
Iojyng opIsesy00] UOLE[SUBL],

e

00¢

PCT/US2005/018252

WO 2007/139529

4/13

(xy aon1y)
b "O1A

10y

<l

SSeIppYV [BIISAyq

- N A \
S3SSIPPY [B9Y
SOSSAIPPY [BOISAYJ /SPSSAIPPY [BNLIA :
SSSIPPV
[ea¥/[BNIIA
IaQyng OpISEY00T UOHE[SUBL],
00t

PCT/US2005/018252

WO 2007/139529

5/13

SO

(srempier)
566~ Aowe Iy 10S$9001g /S
uoronnsuy peo Sune(suely,
\
OWW\T MN@\ ||||||||||||||||||| A\ \\\\\\\\ me.H.
N YY) B
_ 310D B \ 210D
u Q96 I 09§ 4 \\ ONIN
0L$
—¥
0Z76—uI| IostAzedAy] N
- ..,4
wie)skg ¢ 01§ —r WoISAS I 01S | weiskg
do15—- coe e
Sunendp Suneisdo duneradp
4
#LHJ =
ddy ddy | ddy ddy ddy ¥y
e I /< :
wrgg L £0s ¥ 208 17206 f1os ™

1 10$

PCT/US2005/018252

WO 2007/139529

6/13

9 ‘314

gL W ALLING |

A1 MU € 10]

U010 Ble(] 918a1))]

SOx

b
orerrdoxddy

209 dL1vd

G09

09
uonod ee(
L1 WOL] VY 104 709
009 ojqel yoress |
T A
JLL VI<-VA BO:/
109
SO X

PCT/US2005/018252

WO 2007/139529

7/13

0CL

- w.ﬂ I>
qL 8id p _
9CL~ 271§ “
PUEB SUOISSTULIO J m SSAIpPPYV oy
uontogiveq
VL 31
0CL 01L
A o
ol —~
| sz~
o7L~ oS |
pUR SUOISSIILIDJ m §82IpPY [y
uonI0g WﬁmQ ovL

o, —7

PCT/US2005/018252

WO 2007/139529

8/13

8 "OIA

e

veld

£08
9ZIS PUB SUOISSIULID] $SOIPPY [BOISAYJ ovlL
o
°
°
o\mw
/ |
1
!
1
|
X $SOIPPY [BOISAYJ I~
9ZIS PUE SUOISSIUISJ \ OVL 208
\
I
1
1
i
1 ——
! 108
9ZIG pu® SUOISSIILISJ K $SOIPPY [BO1sAYg OV

PCT/US2005/018252

WO 2007/139529

9/13

0Z6

016

~

976~ 221§
pUE SUOISSTULIS J

LT6~ SSRIPPY [edishig

§T6~
$S2IPPY

N

006

8C6

6 811

PCT/US2005/018252

WO 2007/139529

10/13

VOTL VOIL
> |>f
o N N
0 4 ¥e 9 L 8 6 01 11 21 €} N(I+N) 09 19 29 €9 0 £9
0
A d
lo:2)zs Aim(x{d|odol g | a1 [E1:NIVY MS N|A oVl
0001 .
01 S1q

PCT/US2005/018252

WO 2007/139529

11/13

vV0T6 V016
I> \/’

- N N
Q 4 ¥S 9 L 8 601 11 21 €l oLt 09 19 79 €90 £90 £9

(

A ol|o

o) 114
EAVAS Am|Xldlodd| g a1 [£1:9v)vd - | d|N|A DVIL YdMO1 DVL ¥9ddn

0011
1819

PCT/US2005/018252

WO 2007/139529

12/13

1 O

(aremprey)
S5~ Koo 10889001
vononnsuy peo Sunesuery S[qE1 PeO1
f SLT1—T Suyejsuei],
sis T g1l
Z [X X J 1
210) \ 910D
— L—T1" — Dzz
U098 1 09§ r y
/ 0LS
4‘[
02s — | IostazedAy a
~ <
wo)shg ¢ 01§ —r woisAg I 01S L weisg
Tors—- it oo
Suneradp Sunersdp Suneiedp
4 >
ddy ddy | ddy ddy ddy d%y
wo£os 1 €0S Y Z0S .ﬁlmom r am /

1 10$

PCT/US2005/018252

WO 2007/139529

13/13

£8€1 9oegIaIU]
SJMOMISN

78E1~
AIowaIN

q0s¢ o]

10882001d

18¢1 Aepdsi

WIDISAS I0AIRS

d00¢

SI¢l GI€l
9SNOIA pIeog
-Koy]
1

91¢l
Aerdsiq

0S¢el

NI0MISN
201A2(J

S[IqON

$1€1 99.1I0M] O/]

(439!
K10

V0S¢
108$99014

01§ WwasAg temduwo))

— 0C¢l

€1 '3

INTERNATIONAL SEARCH REPORT Intemational application No.

PCT/US05/18252
A CLASSIFICATION OF SUBJECT MATTER
IPC: GOGF 12/08
USPC: 711/207

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S.:711/202, 203, 206, 207

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
USPAT, PGPUB, USOCR, FPRS, EPO, JPO, IBM TDB, Derwent

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2002/0062434 Al (CHAUVEL et al.) 23 May 2002, entire document. 1-30
US 2002/0065989 Al (CHAUVEL et al.) 30 May 2002, entire document. 1-30
A US 2005/0188175 Al (CHAUVEL et al.) 25 August 2005, entire document. 1-30
A US 2005/0188176 Al (CHAUVEL et al.) 25 August 2005, entire document. 1-30
A US 6,742,103 B2 (CHAUVEL et al.) 25 May 2004, entire document. 1-30
A US 6,742,104 B2 (CHAUVEL et al.) 25 May 2004, entire document. 1-30

[:l Further documents are listed in the continuation of Box C. L__] See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be of principle or theory underlying the invention
particular relevance
“Xr document of particular relevance; the claimed invention cannot be
“B" earlier application or patent published on or after the intemational filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to

establish the publication. date of another citation or other special reason (as “y document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is combined
with one or more other such documents, such combination being
“0” document referring to an oral disclosure, use, exhibition or other means obvious to a person skilled in the art
“p" document published prior to the intemational filing date but later than the “8&” document member of the same patent family
priority date claimed
Date of the actual completion of the intemational search Date of mailing of the international search report
04 September 2006 (04.09.2006) 31 OCT 2006
Name and mailing address of the ISA/US Aunthorized officer
Mail Stop PCT, Attn: ISA/US)
Commissioner of Patents Reginald Bragdon
P.O. Box 1450
Alexandria, Virginia 22313-1450 Telephone No. 571-272-2100
Facsimile No. (571) 273-3201

Form PCT/ISA/210 (second sheet) (July 1998)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - wo-search-report

