wo 20107147950 A2 I 10K OO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /’@T‘?’i‘\
International Bureau v{ ’0
&)
(43) International Publication Date N\

23 December 2010 (23.12.2010)

(10) International Publication Number

WO 2010/147950 A2

(51
eay)

(22)

(25)
(26)
(30)

(72)
1

74

31

International Patent Classification: Not classified

International Application Number:
PCT/US2010/038622

International Filing Date:
15 June 2010 (15.06.2010)

Filing Language: English
Publication Language: English
Priority Data:

61/187,584 16 June 2009 (16.06.2009) US
61/226,430 17 July 2009 (17.07.2009) US

Inventor; and

Applicant (for all designated States except US): CO-
HEN, Jonathan [US/US]; 4761 Fernridge Lane, Mercer
Island, WA 98040 (US).

Agent: PHILIPP, Adam, L.k.; Acon Law, 1525 4th
Ave., Suite 800, Seattle, WA 98101 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NL
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: DATA VISUALIZATION SYSTEM AND METHOD

' | DUERY INSTANCE 1301

N INPLIT PARRMETER 1320 -
N

!

PARAMETRIC QUERY SPECIFICATION 1328 Iﬂ’,

/
\
\

& 1300

(UERY INSTANCE 1306

COMPLETE GUERY SPECIFICATION 1327 I

RESULTS 1330
RO |
RONZ

=

COLM
1351

5
o
=

(LERY INSTANCE 1302
INPUIT PARAMETER 1321 <

%,
4
| {"%_,1 NPT PARAMETER 822 |-~

o =1

PARAMETRIC QUERY SPECIFICATION 1326 F:/

'
’

TJHV)W;//ﬂ

(UERY INSTANCE 1304

RESULTS 1332

i
\

| 1313
4 .

COL 1

ROW1

1352

&
\\\\m"*l DUERY INSTANCE 1305

ROWN

(2
| %,

%
{"I [UERY INSTANCE 1303

78

Fig.13

(57) Abstract: A data visualization system and method are provided herein.

WO 2010/147950 PCT/US2010/038622

DATA VISUALIZATION SYSTEM AND METHOD

CROSS REFERENCE TO RELATED APPLICATIONS
[Para 01] This application claims the benefit of priority to Provisional Application
No. 61/187,584, filed June 16, 2009, titled “Data Visualization System and Method,”
having Attorney Docket No. VSEY-2009002, and naming inventor Jonathan Cohen. This
application also claims the benefit of priority to Provisional Application No. 61/226,430,
filed July 17, 20009, titled “Heirarchical Diagram System and Method,” having Attorney
Docket No. VSEY-2009003, and naming inventor Jonathan Cohen. The above-cited
applications are incorporated herein by reference in their entireties, for all purposes.
[Para 02] Provisional Application No. 61/226,430, mentioned above, is also
included as Appendix A to this application. Appendix A discloses systems and methods
for constructing diagrams of deeply hierarchical data such as may be used to implement

one embodiment of the data visualization system disclosed herein.

FIELD
[Para 03] The present disclosure relates to electronic databases, and, more
particularly, to systems and methods for visualizing relationships among data in a

database.

BACKGROUND
[Para 04] People often want to select, view, and/or interact with data in a database in
a visual, structured manner. Various programs, such as Microsoft Excel, from Microsoft
Corporation of Redmond Washington, allow a user to show data in a statistical manner,
but that type of graph does not allow the viewer to see the structure of the data within the
database.
[Para 05] In other cases, the visualization does show the structure, but in a relatively
flat way. For example, the data visualization tool Many Eyes, provided by International
Business Machines Corporation of Armonk NY, provides several types of visualizations,

including a “network diagram,” which depicts an interconnected graph of nodes. For

WO 2010/147950 PCT/US2010/038622

another example, the graphing tool Gruff, provided by Franz Inc. of Oakland, CA, allows
a user to enter a standard, complete textual query and place the results in a graph. The
user can click on a graphed result and see the objects from the database that are related to
that result via predefined relationships.

[Para 06] In some cases, it is possible to create more detailed visualizations, for
example, by manually constructing a diagram, using a drawing software program, and/or
writing special-purpose software to obtain a particular set of data and layout a graph. For
example, a software program such as Visio, provided by Microsoft Corporation of
Redmond WA, may enable a user to manually lay out a graph of objects with object
labels populated with data from a data source, such as a database. There are also products
that provide database graphing and report generation facilities.

[Para 07] However, existing solutions may fail to enable a user to easily explore the
structure of the data in relational database, including following particular items of data
and/or comparing various branching pathways throughout various tables in a database or

set of databases.

BRIEF DESCRIPTION OF THE DRAWINGS
[Para 08] Figure 1 is a system diagram showing a number of interconnected devices
in accordance with one embodiment.
[Para 09] Figure 2 is a block diagram of a device that provides an exemplary
operating environment for various embodiments.
[Para 10] Figure 3 illustrates an exemplary data visualization user interface in
accordance with one embodiment.
[Para 11] Figure 4 illustrates an exemplary query pane user interface in accordance
with one embodiment.
[Para 12] Figure 5 illustrates an exemplary linkage pane user interface in accordance

with one embodiment.

[Para 13] Figure 6 illustrates a number of exemplary queries in accordance with one
embodiment.
[Para 14] Figure 7 illustrates a number of exemplary linkages in accordance with

one embodiment.

WO 2010/147950 PCT/US2010/038622

[Para 15] Figure 8 illustrates an exemplary visualization graph in accordance with
one embodiment.

[Para 16] Figure 9 illustrates an exemplary data visualization routine in accordance
with one embodiment.

[Para 17] Figure 10 illustrates an exemplary reusable static or parametric query
definition subroutine in accordance with one embodiment.

[Para 18] Figure 11 illustrates an exemplary query instance execution subroutine in
accordance with one embodiment.

[Para 19] Figure 12 illustrates an exemplary query explosion subroutine in
accordance with one embodiment.

[Para 20] Figure 13 illustrates a conceptual reusable parametric query visualization

graph in accordance with one embodiment.

DESCRIPTION
[Para 21] The detailed description that follows is represented largely in terms of
processes and symbolic representations of operations by conventional computer
components, including a processor, memory storage devices for the processor, connected
display devices and input devices. Furthermore, these processes and operations may
utilize conventional computer components in a heterogeneous distributed computing
environment, including remote file servers, computer servers, and/or memory storage
devices. Each of these conventional distributed computing components is accessible by
the processor via a communication network.
[Para 22] The phrases “in one embodiment,” “in various embodiments,” “in some
embodiments,” and the like are used repeatedly. Such phrases do not necessarily refer to
the same embodiment. The terms “comprising,” “having,” and “including” are
synonymous, unless the context dictates otherwise.
[Para 23] Reference is now made in detail to the description of the embodiments as
illustrated in the drawings. While embodiments are described in connection with the
drawings and related descriptions, there is no intent to limit the scope to the embodiments
disclosed herein. On the contrary, the intent is to cover all alternatives, modifications and

equivalents. In alternate embodiments, additional devices, or combinations of illustrated

WO 2010/147950 PCT/US2010/038622

devices, may be added to, or combined, without limiting the scope to the embodiments
disclosed herein.

[Para 24] Various embodiments of a data visualization system, as disclosed herein,
may display data from a database as a visualization graph of parametric query nodes and
links. In one embodiment, instances of reusable query objects specify result nodes in the
visualization graph, and instances of linkage objects specify links between query
instances in the result graph. In some embodiments, each node in the visualization graph
may be an instance of a unique query object. In other embodiments, more than one node
may be an instance of a single query object. Similarly, linkage instances in the result
graph may or may not share linkage objects.

[Para 25] For example, Figure 13 conceptually illustrates a visualization graph 1300
in accordance with one embodiment. Nodes in graph 1300 are query instances 1301-
1306, and edges in graph 1300 are linkages 1310-1314.

[Para 26] Each of query instances 1301-1306 is an instance of a particular reusable
query object (not shown). Every query object comprises a query specification (either
parametric or complete) and one or more identified output columns. A complete query
specification represents a database query that is fully defined and may be executed
without additional data. For example, a complete query specification might represent a
query such as “SELECT FOO FROM BAR WHERE BAT = 3”. A query object having a
complete query specification is referred to herein as a “static query,” and instances
thereof are referred to as *“static query instances.” For example, static query instance 1306
includes a complete query specification 1327, which can be executed as-is to obtain result
rows 1331.

[Para 27] By contrast, a parametric query specification includes one or more input
parameters. For example, a parametric query specification might represent a query such
as “SELECT FOO FROM BAR WHERE BAT =[-]”, where [-] indicates an input
parameter, whose value must be supplied from a linkage or from another source before
the query can be executed. A query object having a parametric query specification is
referred to herein as a “parametric query,” and instances thereof are referred to as

“parametric query instances.” Query instances 1301-1305 are parametric query instances.

WO 2010/147950 PCT/US2010/038622

[Para 28] In some cases, a parametric query instance may obtain a literal value for
an input parameter. Some embodiments may provide a graphical control (not shown, but
see Figure 8, discussed below) with which a user may type, select, or otherwise enter a
number or string to be provided as an input parameter to a parametric query instance. The
parametric query instance may then substitute the provided number or string for the input
parameter in the parametric query specification and execute the query. For example,
parametric query instance 1301 obtains literal value 1360 for input parameter 1320 to
complete parametric query specification 1325, which can then be executed to obtain
result rows 1330.

[Para 29] More pertinently, in other cases, a parametric query instance may obtain a
value for an input parameter via a linkage, such as linkages 1310-1314. Put simply, a
linkage maps an output column of a source query object (which may be a static query or a
parametric query) directly to an input parameter of a destination query object (which can
only be a parametric query). For example, parametric query instance 1302 obtains a value
for input parameter 1321 via linkage 1312 from result field 1350 of static query

instance 1306, and parametric query instance 1302 obtains a value for input

parameter 1322 via linkage 1311 from result field 1351 of static query instance 1301.
Using the provided values, parametric query specification 1326 can be completed and
executed to obtain result rows 1332. Similarly, linkages 1310 and 1313-1314 respectively
provide values from fields 1354 and 1352-1353 to input parameters (not shown) of
parametric query instances 1303-1305.

[Para 30] In some cases, reusable linkage objects may be defined and individually
instantiated for each linked query instance pair. For example, linkages 1313 and 1314
may be individual instantiations of the same reusable linkage object (not shown). In other
cases, singleton linkages may be defined for a particular linked query instance pair.

[Para 31] Thus, visualization graph 1300, with its query instance nodes and linkage
edges, may provide a visualization of relationships between various data records. A
visualized data record may come from a single table, from multiple tables, and/or from
tables in multiple databases. There are typically many relationships between data records
in a database, and various embodiments may facilitate flexible selection of particular

relationships for exploration and/or visualization.

WO 2010/147950 PCT/US2010/038622

[Para 32] In some embodiments of a data visualization system, an icon-based and/or
point-and-click mechanism may enable a user to identify, visualize, and/or explore data
relationships of interest without requiring the user to read or write Structured Query
Language (“SQL”) or other textual database computer language.

[Para 33] Figure 1 illustrates a number of interconnected devices in accordance with
one embodiment. Data visualization device 200 is connected to one or more local and/or
remote databases 105. In various embodiments, database 105 may comprise a database
management system (“DBMS”). In an exemplary embodiment, database 105 may
comprise a relational database management system (“RDBMS”) database such as Oracle
Database, provided by Oracle Corporation of Redwood Shores California; Microsoft
SQL Server, provided by Microsoft Corporation of Redmond Washington; MySQL
provided by MySQL AB of Uppsala Sweden and Cupertino California; and the like. In
other embodiments, alternate DBMS may also be used, such as an object database
(“ODBMS”), column-oriented DBMS, correlation database DBMS, and the like.

[Para 34] Figure 2 illustrates several components of an exemplary data visualization
device 200. In some embodiments, data visualization device 200 may include many more
components than those shown in Figure 2. However, it is not necessary that all of these
generally conventional components be shown in order to disclose an illustrative
embodiment. As shown in Figure 2, data visualization device 200 includes a database
interface 230 for connecting to database 105. Database interface 230 includes the
necessary circuitry, drivers, authentication credentials, and/or program code for such a
connection and is constructed for use with an appropriate protocol. In some
embodiments, database interface 230 may comprise a network interface.

[Para 35] Data visualization device 200 also includes a processing unit 210, a
memory 250, and a display 240, all interconnected, along with database interface 230, via
bus 220. Memory 250 generally comprises a random access memory (“RAM”), a read
only memory (“ROM?”), and/or a permanent mass storage device, such as a disk drive.
Memory 250 stores program code for reusable parametric query visualization

routine 900, reusable static or parametric query definition subroutine 1000, query
instance execution subroutine 1100, and reusable parametric query explosion

subroutine 1200. In addition, memory 250 also stores an operating system 255.

WO 2010/147950 PCT/US2010/038622

[Para 36] In some embodiments, memory 250 also includes one or more session
files 265, which may be used to save a user’s work. In one embodiment, a saved session
may be organized into one or more files contained in a directory. Some embodiments
may provide a user interface for managing, sharing, and/or reusing queries, linkages,
and/or result graphs stored in a session file or files.

[Para 37] These and other software components may be loaded from a computer
readable storage medium 295 into memory 250 of data visualization device 200 using a
drive mechanism (not shown) associated with a non-transient computer readable storage
medium 295, such as a floppy disc, tape, DVD/CD-ROM and other optical media,
memory card, and the like. In some embodiments, software components may also be
loaded via a network interface (not shown) or other non-storage media.

[Para 38] Figure 3 illustrates an exemplary data visualization user interface 300 in
accordance with one embodiment. Data visualization user interface 300 includes control
pane 305, which in some embodiments may display a list of object types, objects, and the
like. In one embodiment. detail pane 310 may display details related to the active object,
as well as a field to enter notes, a description, and/or other information associated with
the active object.

[Para 39] Data visualization user interface 300 also includes error pane 320, which
in one embodiment, displays a descriptive list of errors that may have occurred (if any).
In some embodiments, when an error-causing condition is corrected, the corresponding
error display may be removed.

[Para 40] Data visualization user interface 300 includes query pane 330. An
exemplary query pane is illustrated in Figure 4 and discussed below in greater detail.
Data visualization user interface 300 includes linkage pane 325. An exemplary linkage
pane is illustrated in Figure 5 and discussed below in greater detail. Data visualization
user interface 300 also includes result pane 315. An exemplary result pane is illustrated in
Figure 8 and discussed below in greater detail.

[Para 41] Figure 4 illustrates an exemplary query pane user interface 400 in
accordance with one embodiment. In some embodiments, a query pane may display a

graph with two kinds of vertices: table vertices (e.g., vertices 434, 435) and parameter

WO 2010/147950 PCT/US2010/038622

vertices (e.g. vertex 440). The displayed query graph may visually indicate a complete or
partial query specification of a reusable static or parametric query.

[Para 42] For example, the illustrated query pane 400 includes table vertices 434
and 435, each of which includes a table control 410, 415 by which a user may specify
which database table(s) the reusable parametric query will access (e.g. from

database 105). Table vertices 434, 435 also include one or more column controls 420,
425, 430, from which a user may select one or more columns to be retrieved (e.g. from
database 105) when the query is run.

[Para 43] In one embodiment, a query graph that includes more than one table
vertex (e.g., vertices 434, 435) represents a query specification including a JOIN
operation. In one embodiment, such a join operation is visually indicated via a join
control 405 connecting table nodes 434 and 435. In one embodiment, an inner join is
performed by default, but a user may specify alternate joins using a join definition user
interface (not shown).

[Para 44] In one embodiment, table vertices 434, 435 may also include one or more
“nickname” fields (not shown), by which a user may provide descriptive names for tables
and/or columns. In some embodiments, a query object may further comprise formatting
information for columns of data returned by the query. In some embodiments, a query
object may further comprise default query and/or linkage information to facilitate
explosion operations, as discussed below.

[Para 45] Query pane 400 also includes a parameter vertex 440. In one embodiment,
parameter vertices specify which rows from the indicated table(s) will be included in the
result graph. In one embodiment, a user can enter a static literal value, such as a customer
number, into a parameter vertex 440. The user may further create a parameter link 445 to
connect the parameter node (e.g. 440) to one of the indicated columns (e.g. 425). In one
embodiment, a parameter link 445 represents by default an Equals condition between the
columns, but a user may select other relations conditions using a parameter definition
user interface (not shown).

[Para 46] In some embodiments, in addition to merely holding a static value,
parameter vertex 440 can also hold an arbitrary query language statement. In other

embodiments, parameter vertex 440 can represent an “input parameter.” As discussed

WO 2010/147950 PCT/US2010/038622

above, an input parameter stands in place of a value that is required by a partial query
specification to return a value. In various embodiments, a user can provide a static literal
parameter value in a visualization graph, and/or a parameter value can be obtained from
another query node.

[Para 47] Figure 5 illustrates an exemplary linkage pane user interface 500 in
accordance with one embodiment. In one embodiment, linkage definition interface 505
defines or maps how to pass selected values from the result column of a particular source
query (indicated by source query control 550) to a particular input parameter of a
particular destination query (indicated by destination query control 555). In some
embodiments, when a user creates a new linkage, one or both of the query controls 510,
515 may be pre-populated with contextually-determined likely query identifiers. If the

pre-populated query identifiers are not what the user intended, he or she may select other
queries using query controls 510, 515.

[Para 48] In some embodiments, a linkage 505 could define more than one source
query to support gathering values from multiple source results. In some embodiments, a
defined linkage may be re-used in many different places in a result graph.

[Para 49] Source query control 550 displays one or more source query output
columns 520, 525, 530, 535, one or more of which may be used as data sources for an
input parameter of the selected destination query 555. Similarly, destination query
control 555 displays one or more input parameters 540 of the selected destination query.
To complete the linkage specification, a user uses a link control 560 to specify a source
output column 535 and a destination input parameter 540. In one embodiment, link
control 560 may be created by dragging with a pointing device from a source column
drag source 545 to a destination column drag sink 565. Alternatively, in some
embodiments, the user may enter a value for some or all destination query

parameters 540.

[Para 50] In some embodiments, a user may further specify an operation to be
performed with data passing via the defined linkage. For example, a user may specify that
data passing via a linkage be converted from one unit of measure to another and/or be

tested for a validity condition. In some embodiments, a linkage may further be specified

WO 2010/147950 PCT/US2010/038622

to warn a user if, for example, the linked source result values are not appropriate for the
destination query parameter.

[Para 51] Figure 6 illustrates query definition panes 605, 610, 615 corresponding to
parametric query instances illustrated in Figure 8. Figure 7 illustrates linkage definition
panes 705, 710 corresponding to linkages illustrated in Figure 8.

[Para 52] Figure 8 illustrates an exemplary visualization graph 800, such as may be
displayed in result pane 315, in accordance with one embodiment. In the illustrated
embodiment, objects defined in query definition panes 605, 610, 615 and linkage
definition panes 705, 710 provide information necessary to obtain a visualization

graph 800. In some embodiments, visualization graph 800 comprises one or more query
nodes 840-843 connected by linkages indicated by linkage controls 850-852. Each of
query nodes 840-843 corresponds to an instance of a parametric query (see query
definition panes 605, 610, 615, illustrated in Figure 6).

[Para 53] In the illustrated visualization graph 800, query nodes 840-843 are labeled
with parenthetical descriptive identifiers merely to help clarify the description of
visualization graph 800. For example, query node 841 is parenthetically identified as a
“parent” node, which reflects its relationship to the “explosion child” nodes 842-843. (In
some embodiments, an “explosion” routine, e.g. routine 1200 as illustrated in Figure 12
and discussed below, may automatically create “explosion child” nodes such as

nodes 842-843.) Similarly, query node 840 is parenthetically identified as a
“specification” node, which reflects its relationship to “parent” node 841 (namely that
result field 855 provides a value for input parameter 826 of node 841, thereby completing
the specification of parametric query 811). However, these descriptive identifiers do not
limit the functional roles that may be played by nodes 840-843. For example, via further
linkage and/or explosion operations (not shown), “child” nodes 843 and/or 843 could
further function as “parent” nodes to one or more explosion children nodes (not shown).
[Para 54] In the illustrated embodiment, query nodes 840-843 include graphical
query selection controls 815-818, by which a user can select a static or parametric query
to instantiate for the node via a query selection interface (not shown, e.g., a drop-down
menu, text entry field, or the like). As illustrated in Figure 8, node 840 corresponds to an

instance of parametric query 810, node 841 corresponds to an instance of parametric

10

WO 2010/147950 PCT/US2010/038622

query 811, node 842 corresponds to an instance of parametric query 812, and node 843
corresponds to an instance of parametric query 813. In one embodiment, when a new
static or parametric query is selected for a given node, visualization graph 800 may
automatically update to reflect the new query selection.

[Para 55] In the illustrated embodiment, query nodes 840-843 include graphical
input parameter controls 825-828, by which a user can specify one or more values for the
node’s parametric query instance. For example, using graphical input parameter

control 825, a user has specified a literal string value (“Robert Williams”) for the
CUSTOMER_NAME input parameter of the parametric query instance to which

node 840 corresponds. Values for the input parameters in nodes 841-843 are specified via
linkages, which are graphically indicated by linkage controls 850-852, respectively.
Therefore, in the illustrated embodiment, graphical input parameter controls 826-828
display the current value provided via the indicated linkage. In some embodiments, a user
may indicate, define, and/or specify a linkage using a graphical connection control (e.g.
connection controls 860-865) corresponding to a result row. Once a linkage has been
specified, in some embodiments, a user may edit and/or change a linkage using an
interface (not shown) accessed via linkage controls 850-852.

[Para 56] For a node corresponding to a parametric query node (e.g. nodes 840-843),
result rows (e.g. result rows 830-835) can be obtained once values are provided for all of
the parametric query instance’s input parameters to complete the instance’s partial query
specification. Each result row (e.g. result rows 830-835) includes one or more values for
one or more fields corresponding to one or more output columns (e.g. output

columns 870-879) defined in the corresponding static or parametric query. In other
embodiments, a node may graphically depict is result rows in a non-tabular format.

[Para 57] In various embodiments, visualization graph 800 and/or any of nodes 840-
843 may include additional controls (not shown). For example, In one embodiment, a
graphical node may include one or more display/hide controls (not shown) to enable a
user to selectively determine how much information is displayed in the node, which may
enable to user to hide details that he or she does not wish to focus on and/or to save space

in visualization graph 800.

11

WO 2010/147950 PCT/US2010/038622

[Para 58] Thus, as illustrated in Figures 3-8 and discussed above, various
embodiments may be utilized to generate visualization graphs from database records.
Concomitantly, various user interface tools may facilitate providing correct data to
queries and interchanging various queries, parameters, and/or linkages to enable a user to
interactively investigate and/or explore structured data.

[Para 59] Figure 9 illustrates one possible exemplary flow of a portion of a
visualization routine 900, such as may be used to create a visualization graph (e.g.

graph 800) in accordance with one embodiment. In various embodiments, the illustrated
steps may be performed in a different order than indicated and/or similar steps may be
added (or omitted), according to directions received from a user.

[Para 60] In subroutine block 1000A, routine 900 defines a first static or parametric
query according to subroutine 1000 (see Figure 10). In block 905, routine creates an
instance of the first static or parametric query. In subroutine block 1100A, routine 900
obtains one or more result rows for the first static or parametric query instance according
to subroutine 1100 (see Figure 11). In block 915, routine 900 displays a graphical query
node corresponding to the first static or parametric query instance. For example, in

block 915, routine 900 may display a query node such as node 840 in Figure 8, discussed
above.

[Para 61] In subroutine block 1000B, routine 900 defines a second parametric query
according to subroutine 1000 (see Figure 10, discussed below). In block 905, routine 900
creates an instance of the second parametric query. In block 925, routine 900 links an
input parameter of the second parametric query instance to an output column of the first
static or parametric query instance. In some embodiments, linking these query instances
may include defining and instantiating a reusable linkage object mapping an input
parameter of the second parametric query to an output column of the first static or
parametric query.

[Para 62] In subroutine block 1100B, routine 900 obtains one or more result rows
for the second parametric query instance according to subroutine 1100 (see Figure 11,
discussed below). In block 930, routine 900 displays a graphical query node
corresponding to the second parametric query instance. For example, in block 930,

routine 900 may display a query node such as node 841 in Figure 8, discussed above. In

12

WO 2010/147950 PCT/US2010/038622

some embodiments, routine 900 may also display a linkage control, such as linkage
control 850 (see Figure 8, discussed above), indicating the link between the input
parameter of the second parametric query instance and the output column of the first
static or parametric query instance.

[Para 63] In block 1200, routine 900 performs an explosion routine, such as

routine 1200, illustrated in Figure 12 and discussed below, to automatically create “child”
or “explosion” nodes corresponding to the one or more result rows for the second
parametric query instance obtained in block 1100B. For example, in block 1200,

routine 900 may automatically create and display one or more explosion query nodes,
such as nodes 842-843 in Figure 8, discussed above. In some embodiments, routine 900
may also automatically display one or more linkage controls, such as linkage

controls 851-852 (see Figure 8, discussed above), indicating the link between explosion
query nodes and the second parametric query node. In various embodiments, the user
may continue drilling down into the data thus revealed and/or may otherwise continue to
explore the data.

[Para 64] Figure 10 illustrates an exemplary subroutine 1000 for defining a reusable
static or parametric query in accordance with one embodiment. The blocks illustrated in
Figure 10 represent one possible sequence of operations comprising subroutine 1000,
presented herein for clarity. However, in many embodiments, some or all of the
illustrated operations may take place out of the illustrated sequence, possibly in response
to directions from a user.

[Para 65] In block 1005, subroutine 1000 obtains a query specification for the
reusable static or parametric query object being defined. For example, in one
embodiment, a graphical query definition pane such as pane 400 (see Figure 4, discussed
above) may be employed to obtain the query specification.

[Para 66] In decision block 1010, subroutine 1000 determines whether the obtained
query specification is complete or partial. As discussed above, a complete query
specification represents a database query that is fully defined and may be executed
without additional data. If the obtained query specification is complete, then the query
object being defined is a static query specification, and routine 900 skips to block 1055,

discussed below.

13

WO 2010/147950 PCT/US2010/038622

[Para 67] By contrast, a partial query specification requires one or more additional
values before the query can be executed. If the obtained query specification is partial,
then the query object being defined is a parametric query specification, and routine 900
proceeds to block 1015, in which one or more input parameters required to complete the
partial query specification are defined. For example, in one embodiment, using a
graphical query definition pane such as pane 400, a user may define an input parameter
such as input parameter 440 (see Figure 4, discussed above).

[Para 68] In block 1055, subroutine 1000 identifies output columns in the query
specification. For example, in one embodiment, using a graphical query definition pane
such as pane 400, output columns 420 and 425 may be identified (see Figure 4, discussed
above). Beginning in block 1060, subroutine 1000 processes each output column. In
block 1065, subroutine 1000 optionally defines a default explosion query and/or default
explosion linkage for the current output column. If no default is set for an output column,
a user may be prompted to determine an appropriate linkage and/or query when an
explosion operation is performed on an instance of the query object being defined. In
ending loop block 1070, subroutine 1000 iterates back to block 1060 to process the next
output column (if any). Subroutine 1000 ends in block 1099.

[Para 69] Figure 11 illustrates an exemplary execution subroutine 1100 for a subject
query instance in accordance with one embodiment. In decision block 1105,

subroutine 1100 determines whether a current set of result rows for the subject query
instance already exist and/or have been cached. If so, subroutine 1100 skips to

block 1199, returning the result rows. If not, in decision block 1110, subroutine 1100
determines whether the subject query instance is a static query instance. If so,

subroutine 1100 skips to block 1145 to execute the static query instance’s fully-specified
or complete query.

[Para 70] If in decision block 1110, subroutine 1100 determines that the subject
query instance is a parametric query instance, then beginning in loop block 1115,
subroutine 1100 processes each of the subject query instance’s input parameters.

[Para 71] In block 1120, subroutine 1100 determines whether the current input

parameter is linked to a specification query instance, which will provide an input value

14

WO 2010/147950 PCT/US2010/038622

according to one of its output fields. In some embodiments, this determination may
involve prompting the user to provide a linkage or to provide a literal input value.

[Para 72] If in decision block 1120, subroutine 1100 determines that a value for the
current input parameter is not provided by a link to a specification query instance, then in
block 1125, subroutine 1100 obtains a literal value for the input parameter. For example,
in some embodiments, subroutine 1100 may prompt the user to enter and/or select a
literal value for the parameter.

[Para 73] On the other hand, if in decision block 1120, subroutine 1100 determines
that a value for the current input parameter is to be provided by a link to a specification
query instance, then in block 1135, subroutine 1100 obtains an input value from the
linked field of the specification query instance. In some embodiments, obtaining such a
linked value may include transforming the value in the linked field. For a simple
example, the linked value may be transformed from one unit to another unit before being
provided to the subject query instance as the current input parameter.

[Para 74] In ending loop block 1140, subroutine 1100 loops back to block 1115 to
process the next input parameter (if any). Once all input parameters have been processed,
the parametric query’s partial query specification can be completed and executed to
obtain a set of result rows, which are returned to the caller when subroutine 1100 ends in
block 1199. In some embodiments, subroutine 1100 may additionally perform other
operations, such as caching the result rows for re-use, for example.

[Para 75] Figure 12 illustrates an exemplary subroutine 1200 for exploding a subject
query instance in accordance with one embodiment. Beginning in loop block 1205,
subroutine 1200 processes each result row of the subject query instance in turn. (It will be
appreciated that in some embodiments, subroutine 1200 may only process a user-
indicated subset of the result rows of the subject query instance.)

[Para 76] In block 1210, subroutine 1200 instantiates a determined “explosion”
parametric query for use in the explosion operation. In some embodiments, the explosion
parametric query may be identified by the subject query instance (or by its parent object)
as a “default” explosion query. In other embodiments, the explosion parametric query
may be identified by the subject query instance (or by its parent object) according to a

“default” reusable linkage object, as discussed further below. Such a “default”

15

WO 2010/147950 PCT/US2010/038622

assignments may allow the user to quickly expand and/or explore a tree data structure. In
still other embodiments, the user may provide the explosion parametric query at
explosion-time. In one embodiment, the explosion parametric query may be determined
in accordance with a user-selected property associated with the subject query instance
and/or the query object from which it was instantiated.

[Para 77] In some embodiments, the same explosion parametric query object may
be instantiated for each subject result row. In other embodiments, different explosion
parametric query objects may be instantiated for some or all of the subject result row.
[Para 78] In block 1215, subroutine 1200 links a result field of the explosion
parametric query instance to an input parameter of the explosion parametric query
instance. In some embodiments, a “default” linkage may be identified by the subject
query instance (or by its parent object). In one embodiment, a linkage may be determined
in accordance with a user-selected property associated with the subject query instance
and/or the query object from which it was instantiated.

[Para 79] It will be appreciated that although subroutine 1200 illustrates a relatively
simple explosion embodiment (for clarity of explanation), in which a single result field is
linked to a single input parameter, more complex embodiments may involve a greater
number of links and/or input parameters. In such embodiments, subroutine 1200 may be
modified accordingly.

[Para 80] In subroutine block 1100, subroutine 1200 obtains one or more result rows
for the explosion parametric query instance according to subroutine 1100, as illustrated in
Figure 11 and discussed above. In block 1225, subroutine 1200 automatically displays a
“child explosion” node according to the explosion parametric query instance, the link
established in block 1215, and the result rows obtained in subroutine block 1100. For
example, referring to Figure 8, discussed above, subroutine 1200 may display node 842
and linkage 851 on one iteration of block 1225, and may display node 843 and

linkage 852 on a subsequent iteration of block 1225.

[Para 81] In ending loop block 1235, subroutine 1200 loops back to block 1205 to
process the next subject result row (if any). In block 1240, subroutine 1200 automatically
lays out the explosion nodes thus created. In some embodiments, the explosion nodes

may be algorithmically laid out so that they do not overlap with existing nodes on a

16

WO 2010/147950 PCT/US2010/038622

visualization graph. In other embodiments, some or all result nodes in a visualization
graph may be rearranged when an explode operation is performed. In some embodiments,
the user may be able to select a positioning configuration for the explosion nodes. For
example, the user may select a configuration in which the explosion nodes are arranged
vertically, horizontally, surrounding their parent result node, or the like. Additional
details regarding automatic node layout may be found in Appendix B to this application.
[Para 82] In some embodiments, a set of explosion nodes may be “unexploded.” In
other words, some embodiments may provide a facility to automatically delete explosion
nodes and/or their associated links.

[Para 83] In various embodiments, via a combination of explode and unexploded
operations, a user may be able to essentially jump from node to node, changing queries as
desired, to easily traverse a database structure.

[Para 84] An exploded tree structure may provide advantages over a tabular display
that ordinarily results from a database query. Exemplary advantages may include some or

all of the following:

® The user may be able to select which parts of the tree to expand, reducing the total

amount of data displayed and/or highlighting important data.

® The user may be able to identify rows of interest in a complex dataset more quickly
and with fewer errors than by crafting a query to explicitly select only rows of

interest.

® An exploded tree display may highlight intermediate structures within the data that
would otherwise be hidden in a tabular display. For example, a tabular display may

hide the fact that many rows are coming from one or a few partial results.

® The linkage mechanism described herein may allow different queries to run on
different databases, even if the databases do not support an equivalent cross-database

Join.

® An exploded tree display may simplify and clarify logical relationships between
pieces of data. By contrast, in a tabular display, intermediate table data values in a

complex join are typically repeated many times.

17

WO 2010/147950 PCT/US2010/038622

[Para 85] In some embodiments, an explode operation may not create a new
exploded result node if an existing node with the same values already exists. Instead, a
link may be created to the pre-existing node. The resulting diagram may no longer be a
tree, but a general graph. This may further allow the user to recognize a structure in the
data that may not be readily apparent in a tabular presentation of the results.

[Para 86] In various embodiments, a data visualization system as disclosed herein

may be used in some or all of the following exemplary scenarios:

® Record lookup. A data visualization system as disclosed herein may be useful for
prototyping, system development, and/or problem solving. For example, a user may
be able to investigate related events (e.g., customer events, order events, and the like)

even before production screens have been developed.

® Understanding the data. A user may be able to easily follow a chain of thought to see

various relationships in a database.

® (onstructing charts that present structured data. Such a chart may show the
organization of the database along with data at each level of the database structure.
Alternatively, the structure may be within a single table or group of tables. For
example, a user may desire a diagram that shows how a series of states occurred,
along with the event record that occurred between the states. A user could create a
one-off chart with a drawing program, but it would likely require much tedious and
error-prone manual data transfer. By contrast, a data visualization system as disclosed
herein may reliably and easily create a chart that can be re-used and/or updated with

new data at a later time.

® (Comparing the data in different databases. During system development, a user may
wish to compare a complex series of related data items in different databases. Using
one or more linkages, a user may be able to quickly generate result nodes showing

related items from different databases.

Analyzing an application or process. There are several ways of documenting how an
application or process is structured. a data visualization system as disclosed herein
allows a user to build a diagram that shows the sequence of operations in an

application and the data that is used at each step. For example, a user may enter a

18

WO 2010/147950 PCT/US2010/038622

specific customer id at the initial step, for example, and see the rest of the diagram
updated to show the data used at that part of the process. Each step can be labeled
with a description and label, and the user may quickly navigate to that step be
selecting from a list.
[Para 87] Although specific embodiments have been illustrated and described
herein, a whole variety of alternate and/or equivalent implementations may be substituted
for the specific embodiments shown and described without departing from the scope of
the present disclosure. This application is intended to cover any adaptations or variations

of the embodiments discussed herein.

19

VS

WO 2010/147950

APPENDIX A

20

PCT/US2010/038622

WO 2010/147950 PCT/US2010/038622

VS

HIERARCHICAL DIAGRAM SYSTEM AND METHOD

FIELD
[0001] The present disclosure relates to computer-based diagramming tools, and, more

particularly, to systems and methods for constructing diagrams of deeply hierarchical data.

BACKGROUND
[0002] Creating a software program that includes the ability to display structured data in a
diagram format is currently a time-consuming and complex activity. Many programs are
available to draw complex diagrams, and many programs are available for constructing
reports from a structured data source such as a database. Programs that do both are
uncommon, because it is difficult to do both, and when it is done the resulting program is
typically not reusable with other data structures or with other diagram formats.
[0003] Several products are available to help with developing diagram-based tools. For
example, the Graphical Editing Framework provided by the Eclipse Foundation, Inc. of Ottawa,
Ontario, Canada, is a framework for constructing diagram-based environments. Another such
product is JGraph, provided by JGraph, Ltd. Of Northampton, England. Constructing a diagram-
based tool with these frameworks requires writing complex software to access the framework
application programming interface (“API”) to create the displayed objects and send and
receive several types of low level notifications. The galleries that are displayed for those
products show that what is ordinarily done with those frameworks is constructing interfaces
consisting of simple line drawings of nodes and links with limited text and annotations on the
nodes. Working at that low level of an abstraction to produce a complex diagram is very time
consuming and error prone.
[0004] Existing frameworks may not be suitable for rapidly constructing deeply
hierarchical diagrams that can be bound in a simple way to complex data. They may not
provide building blocks that can be combined in a graphical environment to build an
application that also builds deeply hierarchical diagrams. Existing frameworks may not be
suitable for rapidly developing applications containing nested diagrams where the links in the
diagrams can cross the hierarchical boundaries, such that the objects in diagrams are mapped
to an underlying data source that is not simply a representation of the diagram itself. Existing

frameworks may lack the ability to rapidly construct applications that contain several multi-

21

WO 2010/147950 PCT/US2010/038622

VS

level diagrams with different structures where changes made to the data objects via one

diagram are automatically displayed in the diagrams with the other structures.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] Figure Al is a diagram illustrating the structure of a software application that has
been implemented in accordance with one embodiment.
[0006] Figure A2 is a diagram illustrating the structure of component definitions in
accordance with one embodiment.
[0007] Figure A3 is a diagram illustrating the expansion of a component definition in
accordance with one embodiment.
[0008] Figure A4 is a diagram illustrating various classes used to build component
definition contents in accordance with one embodiment.
[0009] Figure A5 is a diagram illustrating a software facility to assemble components in
accordance with one embodiment.
[0010] Figure A6 is a diagram illustrating structures used to perform change notification in
accordance with one embodiment.
[0011] Figure A7 is a diagram illustrating a software workbench for assembling
applications in accordance with one embodiment.
[0012] Figure A8 is a flow diagram illustrating an exemplary hierarchical diagram creation
routine in accordance with one embodiment.
[0013] Figure A9 illustrates a hierarchical diagram, such as may be created using one

embodiment.

DESCRIPTION
[0014] The detailed description that follows is represented largely in terms of processes
and symbolic representations of operations by conventional computer components, including
a processor, memory storage devices for the processor, connected display devices and input
devices. Furthermore, these processes and operations may utilize conventional computer
components in a heterogeneous distributed computing environment, including remote file
Servers, computer Servers and memory storage devices. Each of these conventional
distributed computing components is accessible by the processor via a communication

network.

22

WO 2010/147950 PCT/US2010/038622

VS

» o » o

[0015] The phrases “in one embodiment,” “in various embodiments,” “in some
embodiments,” and the like are used repeatedly. Such phrases do not necessarily refer to the
same embodiment. The terms “comprising,” “having,” and “including” are synonymous, unless
the context dictates otherwise.

[0016] Reference is now made in detail to the description of the embodiments as illustrated
in the drawings. While embodiments are described in connection with the drawings and
related descriptions, there is no intent to limit the scope to the embodiments disclosed herein.
On the contrary, the intent is to cover all alternatives, modifications and equivalents. In
alternate embodiments, additional devices, or combinations of illustrated devices, may be
added to, or combined, without limiting the scope to the embodiments disclosed herein.
[0017] Various embodiments are described of a system that allows a user to develop
software applications that may contain hierarchical diagram tools, where the diagrams may be
bound to structured data from external sources. The hierarchical diagrams produced by the
applications resulting from this system allow users to show connections between data objects
visually, even when the relationships are between data objects at different levels in the
structure. The applications may be built using a library of component building blocks that
handle data binding and change propagation. The user can develop new components and so,
for example, build a library of domain-specific diagrammatic components.

[0018] Anembodiment of the system shown in Figure Al allows the user to construct a
software application by creating and assembling component definitions A120. The assembly
facility A125 may include a library of component definitions A120 and may provide the
capability for users to create new component definitions A120. Using an embodiment of the
system, a user may connect those component definitions A120 together by making references
to other component definitions A120. An embodiment of a target application that is built using
the system may run by creating an initial component instance A105 that recursively creates
additional component instances A105 according to the component definitions A120 through a
process called selective expansion A115.

[0019] Components instances A105 may interact with external data and events A110 and
may control internal objects A100. The external objects A110 may be instances of classes that
are provided as part of a graphical system that makes the application visible to an end user.
Internal objects A100 allow data to be transformed before it is rendered in the output. The

selective expansion A115 process maps the structure of component definitions A120 into a

23

WO 2010/147950 PCT/US2010/038622

VS

structure of component instances A105 in accordance with the state of internal objects A110.
When objects in the system change their state, change notifiers A135 notify other objects
throughout the system so that they may update their state accordingly.

[0020] In one embodiment, each object may be a region of computer memory and a set of
functions that are associated with the class of object. Other objects, even within the same
embodiment, may have one region of memory for some data values and additional regions of
memory for other values.

[0021] A class may inherit from another class, which means that the derived class may
provide different implementations of functions of the same name that appear on the class it
inherits from (which is called the base class) and/or additional functions. Objects of the
derived class may use additional amounts of memory. When a function takes an argument that
is a member of base class, a function on a base class also works with a member of a derived
class, unless noted otherwise.

[0022] In these figures, each square box represents a class of objects or a group of related
classes. The explanations of the figures often refer to representative objects by their class
names. The elements shown in Figure A1 are part of the underlying structure of the system
and are implicitly present in all the figures. Reference will be made back to Figure Al for
these elements.

[0023] In the following figures, the notation “0.*” on arrows indicates zero or more
occurrences of the class of object shown at the head of the arrow can occur for each
occurrence of the class of object shown at the tail end of the arrow. An embodiment may
implement the arrows shown in these figures using a data structure that supports a number of
features, including the ability to follow references in both the forward and reverse direction
and the ability provide a list of all the objects that reference a given object in the context of a
given relationship. The arrows on the figure are meant to illustrate the major relationships. An
embodiment may need additional relationships described in the narrative.

[0024] Anembodiment may use the data structures that implement the arrows to notify
affected objects when the state of various objects has changed, such as objects being added or
removed from a set. Because each object may be referenced in many relationships, an
embodiment may maintain a tag value on objects that indicates for example, when an object is
being deleted, so that the deletion code is not executed more than once on the same object.

[0025] COMPONENT DEFINITIONS

24

WO 2010/147950 PCT/US2010/038622

VS

[0026] To explain how component definitions A120 work, it may be useful to consider how
a function call works. Many programming languages share a fundamental pattern wherein a
function with parameters is defined and expressions are created which call that function and
which provide argument expressions. At run time, argument expressions are evaluated and
the resulting values are passed to the corresponding function parameters. When the function
call is completed, then control returns to the calling function, and resources associated with
the function call are released.

[0027] Anembodiment of Figure A2 may have objects that are similar to expressions and
parameters and structure, but unlike a function call, these objects remain active as long as the
component instance (not shown) that invokes the component expression A210 is valid. In
particular, when the value of an expression on a component argument A230 changes, the
embodiment may pass the updated value to the corresponding component parameter A225
even after the call has been activated. Figure A2 shows the static relationship of objects that
make up a component expression A210. Figure A3, described below, will show the objects
used in an invocation.

[0028] In one embodiment, objects such as component definitions A120 A and B and
related objects may be created using an ordinary text editor. (See Figure A5, discussed below).
Alternative embodiments may provide a graphical environment for creating those objects.
(See Figure A7, discussed below).

[0029] In Figure A2, there are two component definitions A120A and A120B. These are
analogous to how, in a conventional programming language, one function can call another
function. A component expression A210 is the object that provides the argument expressions
whose value is passed in an invocation of a component definition A120 B or component type
A200. In an embodiment, such an invocation results in the creation of the component
instances A105 (see Figure Al).

[0030] A user that develops a component definition A120B may define component
parameters A225 that describe the parameter values that need to be provided when a
component expression A210 refers to that component definition A120B. Component types
A200 also have component parameters A225, but in that case the parameters correspond to
the public data members and/or setter functions that may called on external objects and
events A110 (see Figure A1). The difference between component types A200 and component

definitions A120B is that component types A200 describe object classes that are defined

25

WO 2010/147950 PCT/US2010/038622

VS

outside this system, whereas component definitions A120A are defined using an embodiment
of this system. A component instance A105 created for a component type A200 may have a
pointer to a conventionally implemented object, whereas a component instance A105 created
for a component definition A120A will not.

[0031] Each particular component definition A120A may create a list of zero or more
component expressions A210. An embodiment may create this list by evaluating an expression
that is stored on the component definition A120A. Techniques for the creation of a component
expression list as indicated by arrow A205 will be described later in relation to arrows A270
and A285.

[0032] In this discussion, the term component expression is used because it is an extension
of the concept of a function call expression in a conventional programming language. There
many other places in this system where the term expression is used. Those expressions refer
to some embodiment of the conventional concept of a section of source code that is executable
and returns a value. As in certain programming languages such as Lisp, the concept of an
expression includes nested control structures. Many expressions may contain references to
definitions made elsewhere. An embodiment may provide a searchable collection for those
definitions so that a name can be used as an expression, or an element of one, to refer to a
named definition. An embodiment may place definitions in multiple files, and use compound
names to refer to a location and a definition in that location.

[0033] At thislevel of abstraction, the programmer can rely on the embodiment of change
notifiers A135 (see Figure A1) to ensure that the component argument A230 expressions are
re-evaluated as needed when a change occurs in the state of the internal objects A100 (see
Figure A1) they depend on. The resulting values are forwarded by change notifiers A135 to
provide updated values to other objects that originally relied on the out of date values. In
particular, an updated value provided to a component parameter A225 for a component type
A200 may to be applied by the embodiment to the corresponding external object associated
with the component instance A105.

[0034] The component types A200 describe the interface used by an embodiment to access
external objects and events A110. An embodiment may obtain the details of the interface to
those objects by parsing the source code or other computer generated data for each class of
external object and storing the interface information by creating component type A200 and

component parameter A225 objects.

26

WO 2010/147950 PCT/US2010/038622

VS

[0035] The response A235 objects hold the programming statements that are executed in
when an event is received from external objects and events A100. The response action is
typically is to update one of the properties of the internal objects A100 that were passed to the
component instance A105 when the component instance A105 was created. As illustrated in
Figure A3, that update will propagate back through all of the affected component instances
A105 and through them the external objects and events A110 will reflect the new state of the
internal objects A100.

[0036] The purpose of component expressions is to create objects. Binding expressions
A240 are oriented towards making connections between existing objects. Each binding
expression A240 may have a pair of expressions that refer to objects that need to be connected
via a relationship when a component instance A105 is created. Those objects may also be
disconnected when the component instance A105 is deleted. A binding expression A240 may
hold a reference to a binding definition A250 that may hold the references to the functions to
connect and disconnect. The object expressions on a binding expression A240 may be
evaluated by an embodiment to direct references to the objects being controlled, or they may
evaluate to be references to the component instances A105 from which the controlled objects
are obtained. An embodiment may provide that if one of the pair is missing that it is an
implicit reference to the component instance A105 that is being expanded at that time.

[0037] A programmer may use component expressions A210 for maintaining many kinds of
relationships. For example, the objects in a graphical display are typically arranged in a tree
data structure and so in those cases the component definitions A120 need to make calls on the
graphic library (represented here by external objects and events A110) to maintain the
required tree structure by adding and removing controlled objects at the necessary location in
that tree. In addition, the component instances A105 themselves form a network and so when
a component instance A105 is expanded to create lower level component instances A105, the
embodiment may be add those lower level component instances A105 to a network data
structure.

[0038] In addition to the tree structure and component instance A105 networks described
above, an application typically requires that additional logical relationships also be
implemented. To keep the component definitions A120 tractable, an embodiment may provide
additional data structures to assist in the creation of the list of component expressions A210

indicated by arrow A205. One approach to this is represented by view entry A280. An

27

WO 2010/147950 PCT/US2010/038622

VS

embodiment of a view entry A280 may be a component definition A120. The set of component
expressions A295 that a view entry A280 creates, shown by arrow A285, may be determined
by invoking a function that is defined on a view item A265 and returned to the view entry as
shown on arrow A270.

[0039] In order to improve the reusability of view items A265, an embodiment may use
arrangements A260 to provide specific values that are provided to a shared view item A265.
Details on how an embodiment can use view items A265 and arrangements A260 are shown
below in Figure A4.

[0040] INSTANTIATION

[0041] Figure A3 shows how the component definitions may be recursively expanded.
Parent component instance A105A represents a component instance A105 that has been
created for a particular component definition A120. The set of component expressions A210
created for a component definition A120 shown as arrow A205 is intended by the abstraction
to be mapped into a set of components instances A105B. An embodiment may use a mapping
A305 object to control that expansion.

[0042] Anembodiment of mapping A305 may use the structure shown in Figure A6,
described below, so that if the internal objects A100 (see Figure A1) that are accessed during
the expansion are later changed, the set of component instances A105B that resulted from the
expansion may be enlarged or reduced, and/or its members updated. Such a change could
occur because an application changed the state of the internal objects A100 or because the
user made an edit to the component definition A120.

[0043] A componentparameter instance A315 is an object that represents an occurrence of
a component parameter A225 (see Figure A2). Referring back to Figure A2, there are two
cases to consider, depending on whether the component instance A105B resulted from a
component type A200 or a component definition A120B. If the component parameter instance
A315 is associated with a component type A200, then, when a value is obtained from the
component argument A230, that value may be applied to an external object. To do that, an
embodiment may use the setter function stored on the corresponding component parameter
A225. If the component parameter instance A315 is associated with a component definition
A120B, then when a value is obtained from the expression on the component argument A230,
that value may be accessed by the expressions that occur in the expansion of the component

definition A120B. An embodiment may make those values accessible by implementing a

28

WO 2010/147950 PCT/US2010/038622

VS

symbol table associated with each component instance A105, such that when a symbol
reference is made from within a component argument A230 expression, for example, using the
name of a component parameter instance A315.

[0044] Referring again to Figure A3, the response objects A235 are where the user puts the
code that is to be executed when an event is send to a component instance A105. An
embodiment may create responder A320 objects and register them with the external objects
and events A110 (see Figure A1). When an event occurs, the external objects and events A110
system may call a function on a listener object that is created and registered by an
embodiment of responder A320. That listener may pass control back to the responder A320,
which may execute the code that is associated with the corresponding response A235. An
embodiment may use automatic code generation to create the code for the listener object that
is actually registered. That way the code can conform to the interface needed by the external
objects and events A100 without burdening the user with the need to write that low level
code.

[0045] Recall that a binding expression may be used to connect objects together. An
embodiment may create binding instances A325 to implement occurrences of the binding
expression A240 objects that correspond to a particular component instance A105.

[0046] Anembodiment of a componentinstance A105 may use instances of the mapping
A305 to maintain the sets of component parameter instance A315, responder A320, and
binding instance A325 in accordance with their corresponding expression objects.

[0047] To simplify locating component instances A105, an embodiment may register them
in register tables A310 that are indexed by some type of id assigned to each component
instance A105. For example, an embodiment may use an automatically generated unique
name to identify them. This allows a reference to a component instance A105 to be made even
before that object is created, provided the component instance A105 is eventually registered
under that key by the time the reference needs to be resolved. An embodiment may use a
similar table to register component instances A105 under a key that is, for example, three
objects that can be called a scope, a tag, and a basis. In this example a scope may refer to some
kind of diagram that is being constructed, as identified perhaps by a particular arrangement
A260 used to implement that diagram. A tag would optionally refer to some value to indicate
how the particular component instance A105 is to be used, such as for example, for an input

versus an output connection point. The basis may be a reference to some object for which that

29

WO 2010/147950 PCT/US2010/038622

VS

occurrence of a diagram is being created. Later when, for example, a user is using an
application to draw a link to the input or output connection point, an embodiment would have
the information it needs to locate correct component instance A105 using the register table
A310.

[0048] SELECTIVE EXPANSION

[0049] Figure A2 introduced the view item A265 to reduce the complexity of component
definitions A120A. Figure A4 shows the relationship among several classes derived from view
item A265 that an embodiment may provide. These different subclasses will each use
additional parameters. To help specific view items A265 be more reusable, an embodiment
may store some or all those parameter values on arrangement A260 objects.

[0050] As each of these objects is expanded first into component expressions A210 (see
Figure A2) and those into component instances A105B (see Figure A3), there may be some
particular internal object A100 (see fig 1) where displayed data will come from and on whose
state run-time decisions are based on. That object is called the “basis.” The various parts of an
application may have a different basis, and the basis of each part may change as the result of
user input or other events. To allow the expansion to not have to be repeated every time a
different basis is selected, an embodiment may avoid references to the basis except on certain
objects.

[0051] Referring now to Figure A4, an embodiment may keep a reference to the basis on
the controller A400 instead of being on arrangements A260 or view items A265. If a new
component instance A105 (see Figure A1) needs to refer to a different basis, then during
expansion an embodiment may construct a new controller A400 to refer to that other basis.
These controllers A400 may be organized into a tree, and when needed, an embodiment may
traverse up the tree to find needed information that is stored at a higher level.

[0052] An embodiment may initiate the process of expansion of a view item A265 by
constructing a view entry A280 and passing to it a controller A400 that may hold a reference
to an arrangement A260 or view item A265. An embodiment may also pass a view item A265
to a view entry A280 to override the view item A265 that would otherwise be obtained from
the controller A400 and yet otherwise use the controller A400 for its position in the tree of
controllers A400.

[0053] Anembodiment may inform a view entry A280 where generated component

instances A105 are to appear in various structures. For example, the component instances

30

WO 2010/147950 PCT/US2010/038622

VS

A105 that control graphic objects may need to obtain a reference the component instance
A105 that controls the parent of the graphic object. The embodiment may also organize the
component instances A105 into a hierarchy in order to support memory management
functions. In both of those cases, an embodiment may pass to the view entry A280 a unique
identifier to identify a particular component instance A105 that has not been created yet. The
actual component instance A105 can be located later by looking up the unique identifier,
provided that the embodiment registers each new component instance A105 with its unique
identifier(s).

[0054] The following paragraphs describe various specialized versions of the view item
A265 that an embodiment may provide. In the following discussion, one or more
arrangements A260 may be mentioned, but an embodiment may find a view item A265 a more
convenient object to use in some cases.

[0055] A view tree A405 has view tree contents A407, which are view items A265 or
arrangements A260, and optionally a manager A406, which may be an arrangement A260. An
embodiment of a view tree A405 may construct a list of view entries A280 for the view tree
contents A407, and if needed, for the manager A406. The embodiment may generate unique
placement identifier for the manager A406 which it passes to the view entries A280 generated
from the view tree contents A407. This is so that the component instances A105 that are
generated for view tree contents A407 are able to use the placement identifier to locate the
component instance A105 that is generated for the manager A406.

[0056] In some cases, the manager A406 may result in the creation of multiple component
instances A105. An embodiment may control which one of those gets the placement identifier
as follows. Referring to Figure A3, an embodiment may pass the placement identifier to the
functions that perform the expansion A205 so that the component instance A105B that is
assigned to get that placement identifier is the one where child component instances A105B
should connect their controlled objects to as their parent. Component definitions A120 that
generate more than one component expression A210 (see Figure A2) may pass the placement
identifier to the particular component expression that is to control the object that is to be the
container for the objects controlled by the component instances A105B generated from the
view tree contents A407 (referring back to Figure A4).

[0057] A view conditional A410 takes a list of clauses, one of which is selected to be

expanded. A clause may hold a reference to an expression that is evaluated to determine if that

31

WO 2010/147950 PCT/US2010/038622

VS

is the clause to be expanded. Once selected, the contents of the clause may be expanded in a
manner similar to a view tree A405.

[0058] A view single A415 may be used to build a single component expression A210 (see
Fig. 2). To reduce repetition, an embodiment may gather commonly occurring component
arguments A230 (Figure A2) that are to appear in the resulting component expression A210.
One way that an embodiment may do that is to put executable code for producing the
component arguments A230 on behavior definitions A425. To use the behavior definitions
A425, the embodiment make defined one or more behavior instances A420 to reference that
behavior definition A425 and also may identify the type of object that the component instance
A105 (Fig. 1) should create by referencing a component type A200 or a component definition
A120.

[0059] A view reference A440 provides a way to shift the expansion to a different basis
object and/ or a different arrangement A260. An embodiment may obtain expressions from
the view reference A440 and evaluate them to return the new basis object or arrangement
A260. An embodiment of a view reference A440 may provide additional arrangements A260
to be selected for expansion in special conditions such as if the expression does not return a
basis object or if an error is encountered. A controller reference A430 is a class derived from
controller A400. The purpose of a controller reference A430 is to choose which arrangement
A260 to be expand depending on whether the basis expression returns a value, null, or an
error is encountered.

[0060] The view mapping A445 provides a way to expand an arrangement A260 once for
each member of a base list. The base list may be obtained by accessing a list type attribute
value from the basis object, where the attribute is identified by an expression that is obtained
from the view mapping A445. An embodiment may use a mapping A205 (see Figure A2) and
change notifiers A135 (see Figure A1) so that when objects are added or removed from the
base list value then the embodiment will expand the arrangement A260 on the view mapping
A445 or remove the previous expansion, respectively. If a change occurs to one or more
properties of an object that is a member of the base list, then the mapping A205 may isolate
the change to the corresponding member of the expanded arrangements and so avoid having
to re-expand the arrangement A260 for the other objects in the base list. An embodiment may

implement that isolation by creating a transaction A610 (described below in Figure A6) for

32

WO 2010/147950 PCT/US2010/038622

VS

each element of the base list and a dependency A605 (see Figure A6) that refers to the
corresponding element of the base list.

[0061] The view grid A450 provides another way to expand the elements in the list. The
difference from a view mapping A445 is that instead of expanding a single arrangement A260
once for each element of the base list, a view grid A450 has list of arrangements A260 that an
embodiment may expand for each item. An embodiment may implement the expansion of a
view grid A450 by using two component definitions A120. The first uses a mapping A205 for
the base list value and a second mapping A120 for the arrangement A260 list. The first
mapping expands into a list of component expressions A210 that refer to the second
component definition A120. The embodiment may expand the second component definition
A120 by expanding the list of arrangements A260 on the view grid A450 in the same way as
was described for a view tree A405. The embodiment may expand the view grid A450 into
component instances A105 that result in the creation of a flat list of graph objects and rely on
the graphics library to arrange the resulting object instances into the desired format such as a
grid. An embodiment may use a binding expression A240 (see Figure A2) to create an object to
hold the parameters to the graphics library object that controls the layout. The binding
definition A250 (see Figure A2) may hold references to the functions that need to be called to
attach the layout object to the graphics library object that contains the grid objects.

[0062] Anembodiment ofa view grid A450 may need a way to connect the graphic
container object and the layout manager required by the graphics system. An embodiment
may walk up the tree of controllers A400 to find the controller A400 that is tagged as being the
controller where the view grid A450 is expanded. Since the embodiment of each branch of the
expansion is able to access to the same controller A400, those component instances A105 are
able to place information on that controller and in this way the embodiment is able to connect
the container graphic, the layout manager, and the child graphic objects.

[0063] The view column A455 extends the concept of the view grid A450 by using a list of
descriptors A460 instead of a list of arrangements A260. A descriptor A460 is an object that an
embodiment may use to hold values such as heading text and an attribute value. The
embodiment may provide a second level component definition A120 (see Figure A1), in a
similar manner to how the view grid A450 is implemented. The second level component

definition A120 for the view column A455 may construct a list of arrangements A260 using

33

WO 2010/147950 PCT/US2010/038622

VS

the information from the list of descriptors A450. At that point, the view column A455 may
follow the description given for the view grid A450.

[0064] A possible usage of the view grid A450 and view column A455 is to construct a table.
An embodiment of a table may create a pair of view grid A450 or view column A455 with one
resulting in the creation of a row of graphic objects for table headings and the other a series of
rows of detail graphic objects, with one row for each object in the base list. The embodiment
may place the pair of view grids A450 or view columns A455 in the view tree contents A407 of
the same view tree A405, and since both the header and detail items share the same manager
A406, they will appear in the same graphic container object. An embodiment may use a
standard grid layout manager to align the corresponding heading and detail objects.

[0065] The view formation A465 provides the ability to use a list of descriptors A460 such
as used for a view column A455 but applying it to the basis directly instead of to a list attribute
of the basis. An embodiment may implement this by providing a component definition A120
that is similar to that used for the second level of a view column A455.

[0066] The arrangements A260 that an embodiment constructs for each descriptor A460 in
a list that is referenced by a view column A455 or view formation A465 may be embedded in a
wrapper arrangement A260. This may be used for example to display a label to identify each
field. An embodiment may implement the creation of the wrapper arrangement A260 with a
function that is called for each descriptor A460. That function would create a copy of a base
arrangement A260 for the label and construct a view tree A405 to enclose both the label
arrangement A260 and the arrangement A260 that is constructed using the information from
the descriptor A460.

[0067] The view selector A470 is an alternative to the view conditional A410 that is
specialized for selecting a clause based on some property of the basis. In one embodiment, a
selector definition is created and is referenced by the view selector A470. Then the
embodiment may define clauses that, when they are constructed, call a function to register
with the selector definition along with an expression for the condition. The expansion for the
view selector A470 may then proceed for each registered clause in the same manner as for a
view conditional A410.

[0068] ASSEMBLY FACILITY

[0069] Figure AS shows details of the assembly facility A125 (see Figure A1) and shows a

structure that may be used for internal objects A100 (see Figure A1). Internal objects A100

34

WO 2010/147950 PCT/US2010/038622

VS

may be broken into smaller parts so that change notifiers A135 can operate on those parts in
such a way that a change to one part does not require redoing calculations that depend only
on different parts.

[0070] The model A500 represents an interface that describes objects that have a number
of attributes, where each attribute has a name and value, and a number of functions. An
embodiment may implement this interface on several types of classes so that features that
expression evaluation can work all of the implementation classes in the same way.

[0071] Anembodiment of a model A500 may use the data definition features of the
implementation programming language to take advantage off the shelf support for compiler
type checking, syntax directed editing, and debugging. An embodiment may also use an
internally defined data structure in order to perhaps simplify how a user is able to create new
model definitions at run time.

[0072] Anembodiment may use a model definition A505 as place to store functions that are
needed to access an implementation of the model A500 interface. The embodiment of a model
definition A505 may extend another model definition A505 in order to provide inheritance as
described in standard object-oriented programming.

[0073] Anembodiment of a part definition A515 provides a place to store details about
data members associated with a model definition A505, such as name, type, default value
expression, identification used in external files, whether the value of the data member is to be
written to files, and the like. The part definition A515 may identify functions to call when a
data member described by that part definition A515 needs to be created, deleted, or modified.
The part definition A515 may also have an inverse, which is a different part definition A515
that may belong to a different model definition A505. Of the two part definitions A515 that are
in an inverse relationship, one is single valued and the other is list valued. The list may be
implemented using the inverse A635 (see Figure A6) chain.

[0074] The partbase A510 represents an interface that an embodiment may use to provide
access to objects that implement value-holding objects that are described by a part definition
A515. A single embodiment may have multiple implementations of the part base A510
interface. An embodiment may mix the implementations as needed, for example to use native
programming language features for some parts and run-time definable parts for others. An
embodiment may also provide a run-time modifiable implementation of a model A500 and/or

part bases A510 for development of an application and then use a code generator to produce a

35

WO 2010/147950 PCT/US2010/038622

VS

functionally equivalent native code implementation that is used in production use of the
application.

[0075] For anative code based implementation of data objects that are described by model
definitions A505 and part definitions A515, an embodiment may use the reflection facility of
the native environment if it provides one. For capturing additional information that cannot be
obtained from reflection, the embodiment may use an annotation capability if that is available.
In cases where neither is available, an embodiment may import A530 the model definitions
A505 and part definitions A515, as described below.

[0076] Anembodiment may use the symbolic A520 class as a base class for many its objects
that have multiple data members. An embodiment of the symbolic A520 class does not have to
implement the model interface A500 directly. Instead, several classes that extend symbolic
A520 may implement model A500 in different ways. Nevertheless, the model definition A505
and part definition A515 may be used to provide uniform access to instances to instances of
symbolic A520.

[0077] Examples of classes derived from symbolic A520 that an embodiment may provide
include the standard programming language constructs such as functions, local variables,
assignment, conditional, iteration, sequencing, and function calls. An embodiment may
provide data types and operators such as arithmetic, string and list operators. An embodiment
may also provide the model definition A505 and part definition A515 objects to provide access
to other classes.

[0078] Anembodiment of a symbolic A520 may use part instances A525 to hold the run-
time values for data members of an instance of symbolic A520. The native programming
environment may be used to hold the values, but change notifiers A135 may require
additional information for each part instance A525 and that information may be stored on a
separate object for each partinstance A525. One way to combine the benefits provided by an
off the shelf programming environment with part instances A525 is to have the embodiment
classes hold references to the part instances A525 as data members. For example, if a data
member named m_size refers to a partinstance A525, then the value may be accessed in the
Java programming language with code like m_size.get().

[0079] Each partinstance A525 may hold a reference to the part definition A515 that holds
references to functions that describe the behavior for that part. One such function in particular

is called the value method A526. If an embodiment requests a part value associated with a

36

WO 2010/147950 PCT/US2010/038622

VS

symbolic A520, and no part instance A525 exists with a valid value, the embodiment may
invoke the value method A526. Change notifiers A135 (see Figure A1) may later update that
value as shown in Figure A6. Besides a value method A526, an embodiment may hold a
reference to a function that is to be invoked when a part instance A525 is deleted. Such a
delete method may be used, for example, to delete the link objects connected to a node object
when that node object is deleted.

[0080] Anembodiment may provide a file format and a class to export A525 object
instances to that file. An embodiment may also provide a corresponding import A530 class.
An embodiment may use model definition A505 and part definition A515 objects to serialize
and de-serialize various types of object so that the embodiment can store objects in external
files A545. The objects that are imported A530 or exported A535 are not necessarily only
those described by symbolic A520 in terms of their purpose in the embodiment.

[0081] One possible embodiment of the format of external files A545 is as follows.

[0082] The file format used may be human readable and editable so text oriented merge
tools may be used resolve conflicting updates. Such a file format may use natural language
names to allow the files to be a suitable environment to develop applications in using a text
editor. The use of names helps to minimize the multi-user problem of id numbers getting out
of syncin two different file versions. The names may also be aliases to help with code
obfuscation. An embodiment may also use a file format with a compact format that is not
intended to be read by a user.

[0083] Because the data may be hierarchical, the file format may use indentation, bracket
characters, or some other way to represent nesting. An alternative is to use numeric or other
references to indicate the parent object to which imported objects are to be applied to as the
file is read. The following examples illustrate an embodiment that uses indentation.

[0084] Each line in the external file A545 may set an attribute or create an object, and in
some cases, one line does both. As an embodiment of import A530 reads an external file A545,
it constructs a tree of objects. Each time the import A530 object reads an identifier that refers
a model definition A505 it calls a function from the model definition A505 to construct the
corresponding type of object. The identifier may be the implementation language name of a
class or an alias. The identifier of the model definition A505 is indented to be at least one
character position in from its parent object. Identifiers that appear at the outermost level of

indentation means that the object is to be added to an object that represents the contents of

37

WO 2010/147950 PCT/US2010/038622

VS

the external file A545. A method that the embodiment may use to find the function to add the
objects to its parent is described below.

[0085] A partinstance A525 is represented in an external file A545 as a line of the form
“part-identifier=part-value”. The function to set the value on the part is obtained from the part
definition A515 that matches the part-identifier, within the scope of the model definition A505
if there are conflicting identifiers. The partlines are indented underneath the line for object
that the part-identifier applies to. For each model definition A505, one of its part definitions
A515 may be defined as primary. For the primary part, an embodiment may read the value
immediately after the model definition A505 identifier. The function used to convert from the
format used externally to the internal representation may be obtained from the part definition
A515.

[0086] Here is an example of a few lines from a file that would work with such an

embodiment.

ClassA valuel
Attr2=valueZ
ClassB
Attr3=value3
[0087] That would cause the creation of two objects and set three part instance A525

values. The valuel is assigned to the primary part instance A525 of the ClassA object. The
relationship between the ClassA object and the ClassB object will be described below.

[0088] Some parts are defined with a primitive type, such as string or literal. In other cases,
the value is one or more objects. In that case, the part is identified with a name called a role.
Again, one of the roles can be primary in addition to the primary primitive type part. A non-

primary role is named and followed by a colon, as in this example.

ClassA valuel
Attr2=valueZ
child:
ClassB
Attr3=value3
[0089] Thatis the same as the previous example, but the role used to add the ClassB object

to the ClassA object is given explicitly.

[0090] Anembodiment of a part definition A525 may allow the role value to be set using an
expression, which when evaluated returns a reference to an object. When the object is later
exported, it either uses the original expression or constructs a new expression. An

embodiment of a part definition A525 may indicate that the evaluation is to be done using

38

WO 2010/147950 PCT/US2010/038622

VS

symbols that are visible statically. Such a value can be cached. In other embodiments of part
definition A525, the evaluation may be done in a context that allows run-time values, which
means that those expression values may not be cached for use in other contexts.

[0091] When a part definition A515 allows a part value to be an expression, the
embodiment may provide a class that takes as its value a string that contains an expression
written in another syntax, such as infix notation, which means the operators come between
the operands as in, for example, a+b. When a function is called on that object which requires
its value, the object parses the string value and then evaluates the parsed result. An
embodiment can cache the parsed value or convert it to some other executable format.
[0092] The functions that may be stored in the model definition A505 to create instances of
objects may perform other actions as well. In some cases they may cause the object justloaded
to be evaluated immediately or after the file it appears in has been completely read.

[0093] One technique for writing a set of related definitions that may be used is to define
macros. A macro is a function that constructs a data structure that represents executable code
and then executes that code to produce its result. The data structure for a macro may use a
technique called a backquote. A backquote expression looks like an ordinary expression
except that there are places where additional executable code is placed. Those places are
identified in some programming languages by a comma. When the backquote expression is
evaluated, it creates a copy of the expression and as the copy is made, the comma expressions
are evaluated and the results for each substituted into the copied backquote expression at the
location of that comma. This standard concept of a macro can be applied in an embodiment by
recognizing comma expressions where attribute values and role objects appear. An
embodiment may save those expressions on the backquote data structure and evaluate them
when a copy is made. The resulting value is applied to the copy using the same routines that
are used for the expression or role where the comma expression was located.

[0094] Anembodiment may provide an export A535 corresponding to the import A530
behavior described above. An embodiment of export A535 may traverse a tree of symbolic
A520 objects that are to be exported. An embodiment may perform the traversal using the list
of part definitions A515 associated with the model definition A505 for the object being
exported. The conversion of a part value to an external format can use the native conversion
provided by the programming environment or by getting a conversion function from the part

definition A515. An embodiment may keep track of the indentation level needed for each

39

WO 2010/147950 PCT/US2010/038622

VS

object and insert spaces in the output file, or the embodiment may use brackets or the
techniques mentioned above in regards to import to represent the exported tree structure.
[0095] The external file A545 may be used to hold an application or application data, or
both.

[0096] An application may be a collection of component definitions A120 together with
related view item A265, arrangement A260 and other objects. A user may launch such an
application at the operating system level by invoking an embodiment of a base program which
runs the import A530 operation on an external file A545 that is identified on the command
line or other location. If that external file A545 contains a reference to an object whose model
definition A505 causes it to be evaluated during import A530, then the effect will appear to the
user as if a program is running that is defined by the contents of that external file A545. Using
a compatible file format for both data and program allows the same embodiment to both
develop applications and to run the resulting application. Alternatively, an embodiment may
use code generation to convert the symbolic A520 objects and their part instances A525 into
equivalent executable code in another programming language or directly into machine
executable code.

[0097] External files A545 using a file format as described, or similar to that, can be
manipulated with an off the shelf text editor A550. Alternatively, an embodiment may provide
a workbench A540 environment for the user. A user of the embodiment of a workbench A540
loads an application by performing a user interface operation that invokes the import A530
operation and saves an application using the export A535 operation. An embodiment of such
an application may also use the import A530 and export A535 functions to save the data and
other objects constructed by those applications. More details on the workbench A540 are
shown in Figure A7, which is described below.

[0098] CHANGE NOTIFICATION

[0099] Figure A6 illustrates the change notifiers A135 (see Figure A1) that an embodiment
may use to provide change notification. There are two approaches shown. The first uses
dependencies A605 and transactions A610. The second uses constraints A655, anchors A660,
and observers A665.

[00100] The concept behind dependencies A605 and transactions A610 is that whenever a
core A600 is created, a reference to it is added to the current transaction A610. During the

execution of a value method A526, when an access is made to a core A600, a dependency A605

40

WO 2010/147950 PCT/US2010/038622

VS

is created that references that core A600. The dependency may be added to a list of
dependencies on the current transaction A610.

[00101] When a change occurs, for example a core A600 is deleted, an embodiment may call
a notification function on all the dependencies A605 that refer to the changed core A600. An
embodiment may create a change object that has information about the change that occurred
and pass the change object to the notification function. The notification function for a
dependency may call a notification function on the transaction A610 that contains the
dependency A605. An embodiment of the transaction A610 notification function may call a
core A600 notification function on each of the core A600 objects that were created in that
transaction. The change object is passed to each notification function in this cascade of
notifications.

[00102] An embodiment of the notification function for core A600 may examine the change
object to see if it can handle the change. If the core A600 determines that it cannot handle that
change, then it returns from the notification function with an indication that the transaction
A610 needs to be deleted. If a transaction is so notified, then it may delete all the core A600
objects in its list.

[00103] When a change is made to the value of a part instance A525, one way for the
embodiment of the notification method to determine if it can handle a change is to store a
notification method on the part definition A515. A part instance A525 notification method
may examine the change object and update the existing part instance A525 value if that is
possible, or return a failure code if it cannot. When an existing part instance A525 value is
modified, the embodiment may call the notification code on all the dependencies A605 in that
case so that objects that depend on that value can be updated.

[00104] The value method A526, as described above, may be executed when there is a
request for the value of a part instance A525 on a particular symbolic A520 that does not have
a valid value. When a value method A526 is executed, it may create a part instance A525 and
store a value on it. A transaction A610 may be created at the start of the execution of the value
method to gather the dependencies related to that new part instance A525. The embodiment
may place the newly created part instance A525 on the list of objects owned by the transaction
created for the execution of the value method A526. As a result, when one of the objects
referenced by the dependencies A605 in that transaction is changed, the embodiment may call

the notification method for that dependency A605 as described above, and that may cause in

41

WO 2010/147950 PCT/US2010/038622

VS

the part instance A525 to be deleted. Consequently, the next time the value for that part is
requested, the value method A526 may be called again to compute a value using the updated
state of the other objects. Value methods A526 may create other core A600 objects besides the
requested part instance A525 whose value was requested. If during the execution of a value
method A526 another transaction needs to be created, the embodiment may save a reference
the previous transaction as a local variable and restore it to being the active transaction at the
end of the nested value method A526.

[00105] Partinstances A525 and other core objects A600 may also be created during the
response to external objects and events A110. An embodiment may create a transaction A610
at the start of the handling of each such event. For purposes of providing an undo capability,
an embodiment may place in that transaction A610 all the core A600 objects that are created
or deleted during that event handling, except those created during execution of a value
method A526.

[00106] An embodiment may provide an undo capability by keeping a list of transactions
A610 created for handling input events and then a user interface operation that calls an undo
function on the most recent of those transactions A610. When a transaction is undone, the
embodiment may delete each of the core A600 objects created in that transaction and those
objects that were deleted in the transaction are restored to a valid state. Core A600 objects
that were created in a value method A526 do not need to be saved for restoration because
they can be recreated as needed by executing the value method A526 again.

[00107] The symbolic A520 described earlier inherits from referent A615, which an
embodiment may use for an object that needs to hold a list of pointers to the objects that refer
to it. Such a list may be used when an object is deleted to remove all the references to it. A
referent A615 may also have a pointer to an owner object, such that when an object is deleted
then any referent A615 that has that object as its owner is also deleted. Referent in turn
inherits from core A600, the purpose of which is to allow other objects to be notified when
that object is modified.

[00108] The embodiment of part instance A525 objects may inherit from referent A615. The
deletion of a part instance A525 from a symbolic A520 leaves a gap. Those gaps can be used to
drive the update of a graphical display as follows.

[00109] The embodiment of component instances A105 may inherit from symbolic A520.

When an event occurs, after the response A235 (not shown) has been executed, the event

42

WO 2010/147950 PCT/US2010/038622

VS

handling code may request that affected component instances A105 be updated. An
embodiment may use a part instance A525 to indicate if each component instance A105 is up
to date. If a part instance A525 is missing, perhaps because it was deleted as a result of a
notification function, or because the component instance A105 was just created, then that
component instance A105 needs to be updated. The update code may be located in a part
value method A526 for the component instance A105, so that as that function is executed, it
will create dependency A605 objects as described above, and during the update function it will
create a part instance A525 to indicate that component instance A105 is up to date.

[00110] Referring to Figure A3, one of the operations in the update function for a component
instance A105A is to construct the list of component expressions A210 according to the
component definition A120, shown on Figure A3 by arrow A205. That construction is done in
a transaction associated with the component instance A105A so that if any internal object
A100 (see Figure A1) is accessed, a dependency A605 is created. When an accessed objectis
later modified, the dependency A605 attached to it may later notify the component instance
A105A that the list of component expressions needs to be rebuilt.

[00111] The update function for a component instance A105A may invoke as needed the
update function on subordinate component instances A105B. It may also call analogous
update functions on its component parameter instance A305 and binding instance A325
objects, which also use a similar update part instance A525. In that way, an embodiment may
request the update part for only the root level componentinstances A105A and all the lower
level objects may be updated indirectly.

[00112] The part value method A526 (not shown) for the update function on the component
parameter instance A305 may evaluate the component argument A230 expression, which may
result in side effects such as updating the external object and events A110 (not shown). The
binding instance A325 objects work in a similar fashion, with the optional addition that the
binding definition A250 object may provide a delete function to be called when the binding
instance A325 is deleted.

[00113] Returning to Figure A6, an embodiment may provide a chain A620 base class and
several derived classes so that different kinds of list behavior can be used throughout the
embodiment. An embodiment of chain A620 has the usual member functions for a list such as

insert, remove, iterate, find and so on, but is specialized for working with transactions A610.

43

WO 2010/147950 PCT/US2010/038622

VS

Specifically, the insert and remove functions may call the notification function on the
dependencies A605 that refer to the chain A620.

[00114] A simple A625 list may contain either native objects or objects that inherit from
referent A615. An append A630 may implement a list of elements that is determined by
traversing a sequence of chain A620 objects. An inverse A635 may contain all those objects
that refer to some given object via partinstances A525 that reference given part definition
A515 (see Figure A5). A filter A640 is a list that refers to a base chain A620, and a condition
that determines which of the elements of the base chain A620 are to be considered elements
of the filter A620 chain. The mapping A305 has a base chain and has a function that maps each
of the elements of the base into some other symbolic A520, and those mapped objects are
elements of the mapping A305.

[00115] The design of the system expects that when objects are modified or deleted, or
added to or removed from a base chain A620, then the chains A620 that reference those
chains A620 are updated accordingly. For a mapping A305 and filter A640, an embodiment
may construct a transaction for each member of the list, so that the entire list does not have to
be reevaluated each time a change occurs.

[00116] An alternative form of change notification may be used. For example, consider the
problem of computing the position of edges of objects a diagram. One solution is to construct
constraint objects A655 that express the relationships that need to be maintained, such as the
distance between the left or right edges of one object from the corresponding edge of another
object. Such patterns can be repeated, and so an embodiment may create layout set A650
objects that create such constraints A655 in standard patterns. Those layout sets A650 can be
referenced in an arrangement A260 (see Figure A2).

[00117] An embodiment of the constraint objects A655 may use a specialization of the
standard observer design pattern. For example, the position of the edges of graphical objects
can each be held on anchor A660 objects. An observer A665 object has a list of anchors A660
that it watches and a constraint A655 that it will notify when the anchor is modified. Unlike
the dependency A605, a constraint A655 is not deleted when notification occurs. Observers
A665 may be created when a constraint A655 is created, when the constraint A655 is deleted,
and when all of its anchors A660 are deleted. When a constraint A655 is notified of an update,
it accesses the values of the source anchors A660 it is connected to and computes a new target

value, and stores the resulting value on its target anchor A660, which then notifies its

44

WO 2010/147950 PCT/US2010/038622

VS

observers A665. The logic that a particular constraint A655 uses to compute the target value is
determined by the layout set A650 that is selected by the user. The embodiment may provide
a collection of such layout sets A650 for users to choose which may include behaviors such as
fixed offsets from a parent or child, offsets computed from the vertical or horizontal size of a
child or the maximum size appearing in the list of children. An embodiment may provide more
specialized layout sets as needed, such as for example to perform automatic layout of nodes
and links in a diagram.

[00118] BUILDING A DIAGRAM

[00119] Figure A7 illustrates the workbench A540, which is a development environment
that may be used to create applications. The workbench A540 may be used to create, view,
modify, and in some cases, execute symbolic A520 (see Figure A5) objects, which include
component definitions A120 (see Figure A1l).

[00120] A workbench A540 may contains various types of objects. The term “node” is used
to refer to an object that can be moved around by the user. One type of node may be a jig
A720. An embodiment may allow a user to add and delete nodes by providing user interface
mechanisms such as, for example, menu items. The embodiment may also provide a user
interface mechanisms for additional standard operations such as delete, move, copy, paste and
so on. Each jig A720 may reference a symbolic A520. Some of the operations may affect the jigs
A720 while others affect the objects that the jigs A720 refer to. An embodiment may also build
a list of jigs A720 based on some other list, for example the list of objects that are in a
particular external file A545, or a directory containing such files. The user interface
mechanism may be implemented using the workbench arrangement A705.

[00121] An embodiment may provide user interface elements to create a new instance of a
symbolic A520 and assign to that object a reference on a new or existing jig A720. The choices
of which classes to present as choices to create instances of may be determined by the
embodiment based on the basis object, if any, associated with the workbench A540. If the
workbench A540 has a basis, then only those objects that need to be presented would be
determined by the part definitions A515 for the model definition A505 associated with the
basis need to be presented.

[00122] An embodiment may also provide user interface elements, such as drag and drop, or
a hierarchical menu system, for example, to allow the user to select from among existing

symbolic A520 to create a reference on a jig A720 to that object. (Several of the following

45

WO 2010/147950 PCT/US2010/038622

VS

items appear on Figure A5). The embodiment may present a list of symbolic A520 objects that
may include objects in a library provided with the embodiment and also objects loaded from
other external files A545 via import A530. An embodiment may restrict the choices that are
presented based on the type of the basis object in the same manner as described for creating
new objects.

[00123] An embodiment may implement an application by providing a main routine that
loads an external file A545 that uses the format described above to import A530. When an
embodiment exports A535 a file it may arrange that one of the entries in the exported file
A545 results in the creation of a top level controller A700 that references a workbench A540
and a workbench arrangement A740 that will control the presentation of the workbench
A540. When the embodiment imports A530 an external file is A545, an embodiment may
initiate the selective expansion A115 using that top-level controller A700 as described as for
controller A400 (see Figure A4).

[00124] Reference is now made to items on Figure A4 to describe a possible embodiment of
items from Figure A7 that have already been described. The top-level controller A700 is an
instance of a controller A400, and so it may refer to a view tree A405 with a manager A406
that instructs the system to construct an application window in the host graphics system. That
view tree A405 may also hold view tree contents A407 for other user interface elements, such
as a top level menu. The following paragraphs describe a possible embodiment of the lower
level details of a workbench A540.

[00125] An embodiment of a workbench arrangement A705 may refer to a view tree A405
that contains a view mapping A445 for workbench nodes, such as jigs A720, and also a view
mapping A445 for the links that an embodiment may display between the jigs A720, or
between lower level connection points within the jigs A720. A view mapping A445 may iterate
over the list of nodes in the workbench A540 and may expand an arrangement A260 for each
node. The arrangement A260 for each node may refer to a view tree A405 that has view tree
contents A407 that determines what is to be shown for each jig A720. Those may include a
popup menu, and icons for moving the jig A720, icons for controlling the amount of detail
within each jig A720, and a border. An arrangement A260 for the border may refer to a view
tree A405 that contains a view single A415 for the border itself and a view reference A440

that switches to a jig arrangement A725 that is constructed as described below, and which is

46

WO 2010/147950 PCT/US2010/038622

VS

based on the model definition A505 (see Fig 5.) that is referenced by the basis object of the jig
A720.

[00126] An embodiment may use the nesting of these view items A265 and arrangements
A260 together with constraint A655 (see Figure A6) and related objects to maintain the size of
a border to match the size of its contents. The sequence of arrangements A260 may be used by
an embodiment to control which parts of the display appear on top of the other parts,
provided that the embodiment always redraws later objects when an earlier object is drawn.
[00127] Reference is now made to further items on Figure A7, using items on Figure A4 that
have been previously described. An embodiment may construct a jig arrangement A725 that
refers to a model view formation A710. The model view formation A710 may be a view
formation A465 that is applied to a model descriptor list A715, which is a list that contains a
descriptor A460 for some or all of the part definitions A515 in the model definition A505. An
embodiment may construct a model descriptor list A715 as follows. A part definition A515
may have a name that is a descriptor name. An embodiment may get the descriptor name
from an annotation in the embodiment source code, if the programming language provides
annotations, or it can be an attribute added to a part definition A515 that was imported.
[00128] The descriptor A460 name may be used to find a descriptor A460 with that name by
an embodiment that keeps a searchable collection of descriptor objects. An embodiment may
use a descriptor A460 that is shared between different part definitions A515 by making a copy
of the shared descriptor A460 and then storing the specifics for each part definition A515 on
the descriptor A460 copy, possibly including a reference to the part definition A515 itself.
[00129] The jig arrangement A725 that is constructed by an embodiment for a model
definition A505 may be cached and reused. That cache may be stored on an object that is
associated with a single workbench A540 or shared between multiple workbenches A540 so
that the embodiment can provide multiple representations of the same objects in different
workbenches A540 and may switch between those representations at run time.

[00130] As described earlier, an embodiment of a view formation A465 may map a list of
descriptors A460 into a list of arrangements A260. That pattern maybe applied to this case, so
that the embodiment of a model view formation A710 may create mount arrangements A725.
[00131] Reference is now made to further items on Figure A7, using items on Figures 4 and 5
that have been previously described. An embodiment may also create objects called mounts

A730 for each descriptor. A mount A730 may be used to store settings that the user has made

47

WO 2010/147950 PCT/US2010/038622

VS

so that those settings are exported A535 to an external file A545 so they can be used again
when the external file A545 is imported A530. An embodiment may find a mount A730 that
corresponds to a part definition A515 by storing the identifier of the part definition A515 on
the mount A730. The mounts A730 are associated with jigs A720 to control how information
is displayed in the jig A720. An embodiment may build up a jig arrangement A725 using a view
tree A405 that contains mount arrangements A735.

[00132] There are several kinds of mount arrangements A735 that an embodiment may
provide, depending on the type of data that the part instances A525 associated the
corresponding part definition A515 are intended to hold.

[00133] A described earlier, an embodiment may provide a function to construct an
arrangement A260 from information stored on a descriptor A460. An embodiment may build
mount arrangements A735 by calling such a function to construct an arrangement A260 from
the descriptors A460 in the model descriptor list A725. An embodiment may complete that
mount arrangement A735 by adding additional information from the descriptor A460, such as
a label and/or tooltip text for example, and the view item A265 that will be accessed to
provide the details of that part of the display.

[00134] The following paragraphs then describe how an embodiment may construct each
mount arrangement A735 from the descriptor A460 obtained from the part definitions A515.
[00135] For part definitions A515 for a primitive type, such as string or integer for example,
the descriptor A460 can provide a reference to a view single A415 that causes a text edit
graphic object to be created. The response A235 for such a type would store the input from
the text edit field on a partinstance A525 that is on the basis of the mount A730. The part
instance A525 to store the value on may be found by matching its reference to its part
definition A515 to the part definition that may be stored on the descriptor A460.

[00136] For part definitions A515 that describe a value that is a referent A615, an
embodiment may construct a mount arrangement A735 that will capture an expression that
evaluates to the referenced object. An embodiment may provide several formats, including a
textual reference, or a link object that is connected to a graphic object that may be generated
from another jig A720. Another case is when the referenced object is local to, and owned by, a
specific part instance A525. In that case, the embodiment may create a nested jig A740 that is
associated with the mount A730 that corresponds to that part definition A515. The

embodiment may then create a jig arrangement A725 for the nested jig A740 in a similar

48

WO 2010/147950 PCT/US2010/038622

VS

manner as for a jig A720 located immediately under a workbench A540. In that case, the jig
arrangement A725 may be located within the mount arrangement A735 that displays the
parent part instance A515.

[00137] For part definitions that describe a list type value, an embodiment may construct a
mount arrangement A735 that holds a reference to a workbench arrangement A705 that is
specialized for a nested workbench A745. An embodiment of a nested workbench A745 may
have a mapping A305 from the members of the list value to jigs A720 that reference those list
members.

[00138] The graphic objects that are used to display the jigs A720 may be positioned using
constraints A655 so that they form a compact list, or an embodiment may obtain the position
to display each jig A720 from a position type part instance A525 associated with that jig A720.
When the user drags the mouse over a graphic object associated with the jig A720, the
embodiment may store the updated position of the displayed object back on the position type
partinstance A525 of the jig A720. An embodiment may provide code to assign a default
position to the jigs A720 by scanning the list of jigs A720 to find a vacant space to place a new
jig A720.

[00139] Reference is now made to previously described items on Figure A6, using items on
Figures 4 and 7 that have also been previously described. If an embodiment provides links, for
example as references from a part instance A525 to another symbolic A520, it may do so by
using a view mapping A445 in the view tree A405 referenced by the workbench arrangement
A705, as described above. An embodiment may build a chain A620 of the links that need to be
displayed by building an inverse A635 that contains all the references from the objects
displayed by each of the mounts A735 where a link has been stored. An embodiment may use
a mapping A305 to generate an arrangement A260 for each of these links. The embodiment of
each link arrangement A260 may reference a view single A415 that references a behavior
instance A420 that will create a graphic object that displays a link. The link arrangement A260
may include a user interface element, such as menu item, that allows the link to be deleted.
The layout set A650 for the link may construct constraints A655 that assign the position of
each end of the link to the location assigned to the mount arrangement A735 that is associated
with the part definition A515 being displayed. An embodiment may find the display object,

and its location, for that arrangement A260 by using a register table.

49

WO 2010/147950 PCT/US2010/038622

VS

[00140] An embodiment may provide a user interface element, such as a menu item, on the
workbench arrangement A705 that invokes export A535 so that a user can save work for
reloading later or for using the saved external file A545 in an application. That exported file
A545 may contain the workbench A540, the jigs A720, mounts A730, nested jigs A740, and
nested workbenches A745 described above. The workbench A540 and associated objects may
be stored in a different external file A545 from that used for other internal objects A100.
[00141] When the symbolic A520 objects displayed in a workbench correspond to
component definitions A120 and related objects, the embodiment may provide an option to
omit the workbench A540 objects and save just the symbolic A520 objects referenced by them
to form an external file A545 that is intended to be an application file. An embodiment may
also have a user interface element that invokes a code generator that produces source or
machine executable code corresponding to those component definitions A120 and related
objects. An embodiment may produce the source code by following the same sequence
described here for interpretive execution but substituting emitting source code function and
variable declarations and executable statements to an output stream instead of executing the
steps. An embodiment may produce executable code by for example, producing source code as
described and then invoking a compiler on the resulting file.

[00142] An embodiment may choose to use a commercially available graphics toolkit to
provide the display objects or use a custom developed one. The types of display objects that
may be needed depend on the details of the user interface desired for the embodiment.
Typically the graphic elements needed for such an application include a container that
provides scrolling and zooming, a border, text editing, icons, links, and menus. The interface to
those classes may be represented in an embodiment as described on Figure A5, and the values
on the instances of those objects may be controlled as described in Figure A3.

[00143] Figure A8 illustrates an exemplary application creation routine in accordance with
one embodiment. An embodiment of an application built using this example may appear as
shown in Figure A9, which contains a hierarchical diagram. The exact nature of the steps
described below depends on the form of the embodiment. One possibility is to use a text editor
to build an external text file A545 (see Figure A5). Another possibility is to use a workbench
A540 (see Figure A5), which may be a software application where the user constructs objects
via a graphical user interface. The implementation of such a system was described in Figure

A7. In either approach, the order of steps may be flexible, and building an application may be

50

WO 2010/147950 PCT/US2010/038622

VS

an iterative process where the user builds the application incrementally and views the results
so far.

[00144] Inblock A805 a top-level controller A400 is defined. As described in Figure A4, an
embodiment may use a controller A400 to hold the arrangement A260 that is used to
construct the component instances A105 (see Figure A1) that form the application. The top-
level controller A400 may refer to the first arrangement A260 described below.

[00145] Inblock A810, data definitions are created. (See Figure A5, discussed above.) In an
exemplary embodiment, there may be a model definition A505 for the basis object for the
diagram as a whole. It may be given a name and two part definitions A515. One part definition
A515 is for the list of references to nodes and the other is for the list of links on the diagram.
There may be an additional model definition A505 for the link objects. The model definition
A505 for the nodes may be extension of the model definition A505 for the diagram as a whole,
so that nodes can contain nodes hierarchically, and may additionally have a part definition
A515 for the position.

[00146] Inblock A815, one or more diagram arrangements may be created. (See Figure A4,
discussed above.) In an exemplary embodiment, the first arrangement A260 may refer to a top
level view tree A405. A view tree A405 may take a manager A406, which in this case may refer
to a view single A415 that refers to a component type A200 that describes a main window
object in a host graphics system. The top level view tree A405 would have view tree contents
A407 that in this example may be the node and link arrangements, which are created in block
A820 (see Figure A8).

[00147] The arrangements A260 for the diagram nodes and links may each refer to a view
mapping A445. Each view mapping A445 may take an expression that refers the
corresponding list type part definition A515, described in block A810 above. Each view
mapping A445 may also take an arrangement A260 that may be mapped for each elementin
the list. In this example, the arrangement A260 for links may refer to a view single A415 that
refers to a component type A200 for a graphic object that appears as an arrow. For nodes in a
non-hierarchical diagram, the arrangement would be very similar, but the component type
A200 would refer to a box graphic.

[00148] Since Figure A9 shows a hierarchical diagram A900, an extra layer is needed so that
nodes may contain nodes in a way that reflects the structure of the data model. In this case, the

arrangement A260 for the nodes may refer to a view tree A405 whose view tree contents

51

WO 2010/147950 PCT/US2010/038622

VS

A407 may include the box view single A415 mentioned above and also an arrangement A260,
which refers again to the previous view mapping A445 for the nodes. This cycle of references
in the node arrangements A260 makes the diagram hierarchical.

[00149] As described before, an embodiment of a view mapping A445 may set the basis to be
each successive object in the list that is being mapped. The position of the box may be given as
an expression that accesses the basis from the controller A400 and gets a position from that
basis using the position part definition A515 created earlier. The arrangement A260 for the
nodes may refer to a layout set A650 (see Figure A6) that provides a fixed size of the nodes
and also adds to its position value the position of the parent object. That will cause a nested
node to appear relative to its parent object. The layout set A650 for the link arrangement
A260 may reference a layout set A650 that obtains the positions of the end points of the link
from the positions obtained from the register table A310 (see Figure A3). The entries in the
register table A310 for the nodes may be created using a component argument A230 (see
Figure A2) that is added to the node arrangement A260.

[00150] In block A825, input data may be prepared. (See Figure A5, discussed above.) For
the examplary embodiment shown in Figure A9, there would be one symbolic A520 each for
the diagram, the five nodes, and the three links. Each symbolic A520 would reference the
corresponding model definition A505 constructed earlier. The symbolic A520 for the diagram
basis would have part instances A525 for both the list of nodes and the list of links. The value
of those lists may contain expressions that refer to the node and link symbolic A520 objects
being defined here. The node symbolic A520 objects would each have a partinstance A525
that holds the position value. The symbolic A520 for each of the nodes may also contain a part
instance A525 for its list of reference to nested nodes.

[00151] In block A830, the application A830 may be run. For a graphical workbench A540, as
illustrated in Figure A5 and discussed above, the user may simply push a button in the user
interface, and that button may be defined in the embodiment to expand the top-level
controller A400 (see Figure A4). For a text-based embodiment, the user may run a base
program provided by the embodiment that imports A530 the external file A545 containing the
example. When that program encounters the define top-level controller A805 object, it may
run the application by the expanding the top- level controller.

[00152] Figure A9 shows what an embodiment may look like when running the example

created by the routine illustrated in Figure A8. The nodes A910A-E shown in hierarchical

52

WO 2010/147950 PCT/US2010/038622

VS

diagram A900 correspond to the node objects and the links A905A-C correspond to the link
objects in the data model, for example. A larger application may include additional
arrangements for text and graphic annotations, a menu system, multiple diagrams, operations
to manipulate the objects, an interface to external data source and events, etc.

[00153] Although specific embodiments have been illustrated and described herein, a whole
variety of alternate and/or equivalent implementations may be substituted for the specific
embodiments shown and described without departing from the scope of the present
disclosure. This application is intended to cover any adaptations or variations of the

embodiments discussed herein.

53

WO 2010/147950 PCT/US2010/038622
AN
MO - MG)
-
INTERNAL -~
CRJECTS - > COMPONENT EXTERNAL DBJECTS AND
| s EVENTS
A
T A
/
SELECTIVE COMPONENT | _ ASSEMBLY
EXPANSION DEFINITIONS g FACILITY
< / |
- AtZ0 A2
v v r
CHANGE NOTIFIERS

54

LIRS

g"l'.g.. A

WO 2010/147950 PCT/US2010/038622

AIZOA J""
R COMPONENT
COMPONENT i
DEFINITION AZED ARRANGEMENT
0* A205
U AZES
0y
COMPONENT | AZID COMPONENT AIZ0B
EXPRESSION N DEFINITION) VIEW ITEM
0.*|g » l ”"l "
\ 4 S~
AZ70
COMPONENT COMPONENT -
ARGUMENT > PARAMETER
L VIEW
ENTRY
A230 Azzs)
0"
AZ85
> RESPONSE AZ735
.
COMPONENT
EXPRESSION
—» BINDING > BINDING AZI0
EXPRESSION DEFINITION

&Azld] AZal J

55

WO 2010/147950 PCT/US2010/038622
all5A
BARENT
COMPONENT
INSTANCE
i /A3II]
A0S
AZ0
I MAPPING
COMPONENT RETTBSLTEER
DEFINITION ™
0" :
il AZ05 AlDSR
y
i
COMPONENT COMPONENT
EXPRESSION INSTANCE
, ‘ 0.*
- L 0. AZIS , SN
COMPONENT
i”gg'fﬁ:g}“g s PARAMETER /
INSTANCE
™ EXTERNAL DBJECTS
VAl AND EVENTS
Y A3ZD—
g ”"*me
RESPONSE A735 RESPONDER <
)
47
ASZS
BINDING BINDING
—> EXPRESSION > INSTANCE -
Y
AZ40

fig. A3

56

57

WO 2010/147950 PCT/US2010/038622
AZBS \ (AZ60 (A400
VIEW ITEM <« ARRANGEMENT = CONTROLLER
A4DS MQE i
/" MANAGER AZ80
VIEW > & VIEW
ENTRY
TREE jy
- "1 VIEWTREE —
CONTENTS
wew
CONDITONAL
A4S A2 AGZS
uew BEHAVIOR —— | BEHAVIDR
SINGLE INSTANCE DEFINITION
A440 A430 v AZ00
VeW | CONTROLLER —— COMPONENT +—
REFERENCE | » REFERENCE TYPE
NG4S
T A —
MAPRING
A4S A4SS
T A — T
GRID > COLUMN 0.x* y ABO
DESCRIPTOR —
e
AT Fnﬂvhla%w A
T I
SELECTOR

Fig. AY

WO 2010/147950 PCT/US2010/038622
As0d A505
- MODEL
MODEL - DEFINITION -
ln..*
ASID AGIS
PART PART)
BASE DEFINITION
A
AS75 L
-] ASZE
)
o PART VALLE
>~ SYMBOLIC INSTANCE B METHOD
F A
Jm AS35
IMPORT EXPORT)
A
y
A4l EXTERNAL Hala TEXT
))
WURKBENC 1 EDITOR
ASSD

58

fig. AS

WO 2010/147950 PCT/US2010/038622
ABOD ABOS ABIO
)
CORE DEPENDENCY TRANSACTION
e ﬁ
A A ’ 0*
ABIS AS20
)
REFERENT SYMBOLIC
47
SIMPLE ﬁzs
ABZD
CHAIN — APPEND ﬁzu
47
INVERSE ﬁzs
FILTER ﬁtm
MAPRING 5!15
ABSO ABBS
LAV DBSERVER 3
SET
i ']
" Agss ﬁEI]
CONSTRAINT |~ ANCHOR

59

Fig. AG

PCT/US2010/038622

WO 2010/147950
TOP LEVEL \AE"" workeeng | ATO
CONTROLLER o ARRANGEMENT
i 0"
ASAL ATID
WORKBENCH | MODEL VIEW
FORMATION -
0.* A
' AT ™ ATZa
JE
JG < | ARRNGEMENT -
K Lo
AT35
MOUNT A MOUNT)
T ARRANGEMENT
> AT4T
NESTEDJIE |
S N 51 N Rl
WORKBENCH

60

MODEL A
DESCRIPTOR LIST \J
v
Aala
MODEL
OEFINITION \J
0.
: Aala
PART)
OEFINITION

Fig. AT

WO 2010/147950

8/9

OEFINE TOP-LEVEL CONTROLLER

CREATE DATA DEFINITIONS

CREATE DIAGRAM ARRANGEMENTS

CGREATE NODE AND LINK
ARRANGEMENTS

PREPARE THE INPLT DATA

AB30
RUN APPLICATION I/

61

PCT/US2010/038622

WO 2010/147950 PCT/US2010/038622

9/9

T T B AR R RATS
L M o Rl

Fig. A9

62

WO 2010/147950 PCT/US2010/038622

APPENDIX B

63

WO 2010/147950 PCT/US2010/038622

AUTOMATIC GRAPH LAYOUT
[Para 01] In various embodiments, the automatic arrangement of nodes on a
visualization graph may be controlled according to various methods. For example, in
some embodiments, nodes can be positioned manually by the user or automatically, in a
tree structure or as a directed graph.
[Para 02] As the term is used in Appendix B, a node that is the subject of an
explosion operation (e.g., a “parent” node, as referred to in the body of this application) is
referred to as an “exploded” node. In other words, a node whose results have been
exploded into one or more “child” or “explosion” nodes. Because Appendix B deals with
general graph placement (not limited to tree-structures), the terms “parent” and “child”
may be misleading, and so they are not used.
[Para 03] When node is exploded, and some or all of its explosion nodes are
themselves exploded, the result is called a tree. The need for more general graph
placement arises when multiple explosions can refer to the same node. For example, the
results for two exploded nodes may contain some rows that have the same values. In
some embodiments, the user may be able to select whether the system is to show two
different nodes or to have a single shared node that has links from the two different
exploded nodes. A graph that contains shared nodes is no longer a tree and so it needs a
more generalized method to determine the node positions.
[Para 04] A variety of tree or non-tree diagrams can be quickly created by choosing
several settings on a query or node. In one embodiment, these settings include some or all
of the following settings:
* the default query to be selected for each explosion node that results from that query;
* the default linkage to be selected for the link to each explosion node that results from
that query;
* an indication that each explosion node is also to be exploded, either recursively or
just one level,
* an indication that nodes are to be shared if an existing node refers to the same set of
query result values;
* an indication of whether the initial exploded node is to be linked to its explosion

nodes;

64

WO 2010/147950 PCT/US2010/038622

* the algorithm that is selected to be used to perform the layout of the nodes and links
* setting values used by the selected layout algorithm.

[Para 05] Some of these setting values are commonly used together and so the user
interface can present a list of collections of settings, for example for a tree or specific
styles of diagrams.

[Para 06] A general graph is constructed when the user has indicated that the each
explosion node is itself to be exploded and the result nodes are shared. This results in a
potentially large collection of nodes with an arbitrary pattern of directed links. The links
in such the diagram have the same behavior of query parameters and linkages as

described previously.

Methods for Node Placement

[Para 07] In most data visualization tools, when results are displayed graphically,
the position of the nodes is often obtained from numeric values contained in the results.
In such a case, as a part of the query, the user is presented with selections to indicate
which columns are to be used for various aspects of the visualization. These include a
large number of values such as x-axis, y-axis, z-order, node width, node height, color,
edge style, and label text.

[Para 08] Alternatively, the positioning can be assigned relatively algorithmically,
with the goal being to present the nodes in an arrangement that helps the user to see the
overall structure of the link relationships between the nodes. In the case where the user
selects an option to cause explosion nodes to not be shared, then the graph is a tree and a
simple set of parameters can be used to shape the tree, such as direction of explosion,
spread angle, the orientation and curvature of the line where the explosion nodes are
placed, and the like. In one embodiment, a layout algorithm for such a tree diagram can
walk the tree and assign positions to the nodes so that they do not overlap. Such a layout
algorithm can do this at level of the tree by computing the distance needed at the
specified angles to prevent overlap of the sub-trees of each node in the tree. Alternatively,
the user can specify a distance and have the system compute the angles, or the user can

specify both manually.

65

WO 2010/147950 PCT/US2010/038622

[Para 09] When the graph does not have a tree structure, a more complex algorithm
is needed. A commonly-used approach is called a force-directed algorithm. The basic
idea of force-directed layout is to treat each node as a particle that experiences forces, and
the algorithm moves the nodes under those forces until an equilibrium is reached. An
arbitrary initial position is assigned to each node. The links generally have an attractive
force on the nodes at either end that is a function of the length of the link. It is also very
helpful if all the forces are assigned in a balanced manner to avoid problems with drift
and spinning; i.e., each time a force is applied to one node, an opposite force is assigned
to another. A generally repulsive force between nodes is determined also as a function of
the distance between the nodes.

[Para 10] There may also be a force to a center point to keep the nodes from drifting
off. The position of the center point can be assigned in the same way as described above
for a tree type graph, in order to allow a mixed diagram with both tree and graph
structured parts. A sub-tree or other independently arranged group of nodes can be treated
as a node for the purposes of this algorithm.

[Para 11] The nodes may be arranged into clusters, such that there are no links
between different clusters. The system sums the areas of the nodes in each cluster and
performs a force-directed algorithm on the clusters as described above.

[Para 12] In some embodiments, node overlap may be avoided by scaling the
resulting diagram up, holding node size constant, until their positions no longer overlap.
In other embodiments, node overlap may be avoided by extending the standard force-
directed algorithm described above as follows.

[Para 13] The force between nodes may be adjusted to reflect the size needed for
cach node. A scale factor may be applied to the forces to have the node positions reach a
desired scale. The scale factor may be determined by finding an approximate equilibrium,
and then adjusting the scale in the direction needed for the current position to become
closer to the goal scale. Separate goal scales may be maintained for between clusters and
within clusters.

[Para 14] The system starts out with a goal of a diagram with a lot of space between
nodes and clusters. It initially allows nodes to overlap in order to find a general

arrangement. Once a non-overlapping arrangement is achieved at a large scale, the

66

WO 2010/147950 PCT/US2010/038622

system then enters into a phase where it does not allow node overlap. In this phase, the
motion of each node is constrained so that their motion stops at the point where contact is
made. An additional parameter is added to the size of the node so that the point where the
stop occurs actually leaves a margin around each node. This is for diagram clarity and to
allow links to be routed between nodes. The system repeats the above steps with smaller
and smaller goal sizes for the diagram. When there is no more movement of the nodes
because there is no more space between them, the algorithm stops.

[Para 15] The above steps may result in a diagram where the nodes are relatively
packed, but the structure of the data may not be sufficiently clear. To make the structure
clearer, the following changes may be made.

[Para 16] Instead of varying the x and y position directly, there is an additional
object called a “bar.” Each bar holds a single x or y value. Initially each node gets its own
two bars for its x and y values. When the diagram is at a large size, the system choose
nodes to share bars for either x or y. The sharing can be determined in various ways, such
as if the current position of two nodes is already close to aligned, or a series of nodes
have links to the same node and so they should share a x or y bar (chosen based on which
way they are currently position), or if a series of nodes are connected in a line. Additional
shared bars may also be used to achieve a grid or tree arrangement for some or all the
nodes in a cluster. The same force-directed logic described above is used, but forces on
the nodes are combined onto the shared bars, and the values of the bars are adjusted
instead of the nodes directly. The movement of each bar is constrained by a collision of
one of the nodes on the bar with another node, so the bars have to be moved one by one.
When two bars have collided, the forces generated on one may be transferred to the bar it
has collided with. As the process continues, those bars may become separated and
connected many times until all the forces have been effectively canceled out when each
bar is pressing up against another bar and can move no further.

[Para 17] The simplest way to route the links is in a straight line between the centers
of the nodes. The user can also choose an algorithm that will route the links orthogonally
around nodes, perhaps with rounded corners. Various algorithms for orthogonal link

placement may be employed once the node positions have been determined.

67

WO 2010/147950 PCT/US2010/038622

Claims:

Claim 1. A computer-implemented method for visualizing the structure of data in a
database via a plurality of reusable parametric queries and a plurality of graphical nodes
at a visualization computer having a graphical user interface (“GUI”), each reusable
parametric query comprising a partial query specification, an output field, and an input
parameter, each graphical node corresponding to an instance of a reusable parametric
query and comprising graphical controls corresponding to the partial query specification
of the query instance, the input parameter of the query instance, and one or more result
rows of the query instance, the method comprising:

defining, by the visualization computer, a parent reusable parametric query and a
child reusable parametric query;

obtaining, by the visualization computer, a parent-parameter value for the input
parameter of an instance of said parent reusable parametric query (“parent instance”),
said parent-parameter value completing the partial query specification of said parent
instance;

executing, by the visualization computer, said parent instance according to said
parent-parameter value to obtain a plurality of parent-result rows, each comprising a data
element corresponding to the output field of said parent instance;

displaying in the GUI a parent graphical node corresponding to said parent
instance; and

for each of said plurality of parent-result rows, performing, by the visualization
computer, an explosion operation comprising:

linking the output field of said parent reusable parametric query to the

input parameter of said child reusable parametric query;

obtaining a child-parameter value according to the linked output field of
the current parent-result row, said child-parameter value completing the partial

query specification of said current child instance;

automatically executing said current child instance to obtain at least one

child-result row; and

68

WO 2010/147950 PCT/US2010/038622

displaying in the GUI a current-child graphical node corresponding to said
current child instance, and a graphical linkage control indicating linkage between

said current parent-result row and said current-child graphical node.

Claim 2. The method of Claim 1, wherein obtaining said parent-parameter value
comprises:

performing a specification query to obtain a specification-result row comprising a
specification-result field; and

linking said specification-result field to said parent input parameter of said parent

reusable parametric query;

Claim 3. The method of Claim 2, wherein said specification query comprises a reusable
parametric query, the method further comprising displaying in said GUI a specification

graphical node corresponding to said specification query.

Claim 4. The method of Claim 3, wherein said specification graphical node is

automatically created via said explosion operation.

Claim 5. The method of Claim 2, wherein said specification query comprises a reusable

parametric query whose input parameter comprises literal data obtained via said GUI.

Claim 6. The method of Claim 1, wherein said parent reusable parametric query further
comprises a linkage indication indicating a reusable linkage linking the output field of
said parent reusable parametric query to the input parameter of said child reusable

parametric query.

Claim 7. The method of Claim 1, wherein said explosion operation further comprises

automatically laying out said child node with respect to its peer nodes in said GUI.

69

WO 2010/147950 PCT/US2010/038622

Claim 8. A computing apparatus comprising a graphical user interface (“GUI”), a
processor, and a memory having stored thereon instructions that when executed by the
processor, perform a method for visualizing the structure of data in a database via a
plurality of reusable parametric queries and a plurality of graphical nodes, each reusable
parametric query comprising a partial query specification, an output field, and an input
parameter, each graphical node corresponding to an instance of a reusable parametric
query and comprising graphical controls corresponding to the partial query specification
of the query instance, the input parameter of the query instance, and one or more result
rows of the query instance, the method comprising:

defining a parent reusable parametric query and a child reusable parametric query;

obtaining a parent-parameter value for the input parameter of an instance of said
parent reusable parametric query (“parent instance”), said parent-parameter value
completing the partial query specification of said parent instance;

executing said parent instance according to said parent-parameter value to obtain
a plurality of parent-result rows, each comprising a data element corresponding to the
output field of said parent instance;

displaying in the GUI a parent graphical node corresponding to said parent
instance; and

for each of said plurality of parent-result rows, performing an explosion operation
comprising:

linking the output field of said parent reusable parametric query to the

input parameter of said child reusable parametric query;

obtaining a child-parameter value according to the linked output field of
the current parent-result row, said child-parameter value completing the partial

query specification of said current child instance;

automatically executing said current child instance to obtain at least one

child-result row; and

displaying in the GUI a current-child graphical node corresponding to said
current child instance, and a graphical linkage control indicating linkage between

said current parent-result row and said current-child graphical node.

70

WO 2010/147950 PCT/US2010/038622

Claim 9. The apparatus of Claim 8§, wherein obtaining said parent-parameter value
comprises:

performing a specification query to obtain a specification-result row comprising a
specification-result field; and

linking said specification-result field to said parent input parameter of said parent

reusable parametric query;

Claim 10. The apparatus of Claim 9, wherein said specification query comprises a
reusable parametric query, the method further comprising displaying in said GUI a

specification graphical node corresponding to said specification query.

Claim 11. The apparatus of Claim 10, wherein said specification graphical node is

automatically created via said explosion operation.

Claim 12. The apparatus of Claim 9, wherein said specification query comprises a
reusable parametric query whose input parameter comprises literal data obtained via said

GUL

Claim 13. The apparatus of Claim 8§, wherein said parent reusable parametric query
further comprises a linkage indication indicating a reusable linkage linking the output
field of said parent reusable parametric query to the input parameter of said child reusable

parametric query.

Claim 14. The apparatus of Claim 8§, wherein said explosion operation further comprises

automatically laying out said child node with respect to its peer nodes in said GUI.

71

WO 2010/147950 PCT/US2010/038622

Claim 15. A non-transient computer-readable storage medium having stored thereon
instructions that when executed by a processor, perform a method for visualizing the
structure of data in a database via a plurality of reusable parametric queries and a
plurality of graphical nodes, each reusable parametric query comprising a partial query
specification, an output field, and an input parameter, each graphical node corresponding
to an instance of a reusable parametric query and comprising graphical controls
corresponding to the partial query specification of the query instance, the input parameter
of the query instance, and one or more result rows of the query instance, the method
comprising:
defining a parent reusable parametric query and a child reusable parametric query;
obtaining a parent-parameter value for the input parameter of an instance of said
parent reusable parametric query (“parent instance”), said parent-parameter value
completing the partial query specification of said parent instance;
executing said parent instance according to said parent-parameter value to obtain
a plurality of parent-result rows, each comprising a data element corresponding to the
output field of said parent instance;
displaying in a graphical user interface (“GUI”), a parent graphical node
corresponding to said parent instance; and
for each of said plurality of parent-result rows, performing an explosion operation
comprising:
linking the output field of said parent reusable parametric query to the
input parameter of said child reusable parametric query;
obtaining a child-parameter value according to the linked output field of
the current parent-result row, said child-parameter value completing the partial
query specification of said current child instance;
automatically executing said current child instance to obtain at least one

child-result row; and

displaying in said GUI a current-child graphical node corresponding to
said current child instance, and a graphical linkage control indicating linkage

between said current parent-result row and said current-child graphical node.

72

WO 2010/147950 PCT/US2010/038622

Claim 16. The storage medium of Claim 15, wherein obtaining said parent-parameter
value comprises:

performing a specification query to obtain a specification-result row comprising a
specification-result field; and

linking said specification-result field to said parent input parameter of said parent

reusable parametric query;

Claim 17. The storage medium of Claim 16, wherein said specification query comprises
a reusable parametric query, the method further comprising displaying in said GUI a

specification graphical node corresponding to said specification query.

Claim 18. The storage medium of Claim 17, wherein said specification graphical node is

automatically created via said explosion operation.

Claim 19. The storage medium of Claim 16, wherein said specification query comprises

a reusable parametric query whose input parameter comprises literal data obtained via

said GUL

Claim 20. The storage medium of Claim 15, wherein said parent reusable parametric
query further comprises a linkage indication indicating a reusable linkage linking the
output field of said parent reusable parametric query to the input parameter of said child

reusable parametric query.

Claim 21. The storage medium of Claim 15, wherein said explosion operation further
comprises automatically laying out said child node with respect to its peer nodes in said

GUL

73

WO 2010/147950

200 \

PCT/US2010/038622

1/13

/— 100

DATA VISUALIZATION DEVICE

DATABASE 05

WO 2010/147950 PCT/US2010/038622

2/13
' 700
730
DATBASE
INTERFACE
94]
< > DISPLAY
90
PROCESSING LNIT Izzu
795
COMPUTER-READABLE
MEDILM
\ 4

MEMORY

23 | OPERATING SYSTEM I

oo || DATA VISUALIZATION ROUTINE (SEE FIE. 9)

/7250

000 [DEFINE STATIC R PARAMETRIC REUSABLE OLEERY SUBROLTINE (SEE FIG. 10)

oo~ || ORTAIN QUERY INSTANCE RESULT ROWS SUBROUTINE (SEE FIG. 1)

200 || RELISABLE PARAMETRIC QUERY EXPLOSION SUBROUTINE (SEE FIG. 12)

SESSION FILES I
Fig.2

765

300

WO 2010/147950 PCT/US2010/038622

3/13

G R R R R it I

;;; i

OETAIL 310
RESULT 313
ERROR 320

GENIVU

CONTROL 305
(UERY 330
LINKAGE 325

fig.3

PCT/US2010/038622

WO 2010/147950

%/13

& B1L£

T

-JNVN mWM

d3LINVRVd

=¢¢\\\\\

mqq\\\\

\)O B
0eY A al Wit

O

NAMOJ

Sl (_ A SWMADY _

J18V1

SOy

qquu\

ey /|

O

A 1[IRENI

NAMOJ

A 0l o4

NAMOJ

— A St0LVY300W ?/\\

J18V1

O

B AYAMND -NOILINHIT AX3ND

==¢.|\\\

PCT/US2010/038622

WO 2010/147950

S/13

s Bifs

ovs

GIS |

085

——— ¥

-HALIWVRIVd LMdNI NOILYNILSAC
\1_ A B AN _
A0

NOILYNILS3D

E1H

eV

(

O

O _ 11111 [
O _ 01 WD RN

_ 1[IRENI [

NWMO2 128N0S

4IN [

NWMO2 128N0S

NWMO2 128N0S

_ A £ AN T/

NWMO2 128N0S

A0
~3JUMN0S

0G5

I IVINIT-NOILINIH30 JVINI

J

c0s

GEG

0ES

eTAY

02s

0Is

PCT/US2010/038622

WO 2010/147950

6/13

INYN ¥IWOLSNT

JWIN
H3LINVRIVd

O_ A 0 NIWOISna

A INYN MIW0ISNT
‘NWMIOD

NWMO2

A SYI0VIH a0
TIVL

O

O

JNVN 04 MFNOLSND -NOILINHIT AIND

_ 0l Y300 _

/

o_ A 0o

NWMO2

wu_ AIRETuTS

_ 0l ¥IWDLSNY _

-JNVN

d3LINVRVd

NWMO2

A SYI0YIH IO

318V1

O

O

JWIN
H3LINVRIVd

O— A ALINYND

NWMO2

O_ A 0 1Inaoyd

NWMO2

\vu_ A 0M¥I0N0

NWMO2

_D SW3Ll ¥3au0

O

O

O

318V1

t300 404 SWALI-NDILINIH30 A¥3ND

tIANOLSMNA 04 SHIaN0 -NOILINIHAT AYAND

g9

WO 2010/147950 PCT/US2010/038622

7/13
LINKAGE DEFINITION: LINKAGE B

710 SOURCE: DESTINATION:

e UERY: NUERY:
ELISTI]MERF[IRNAMEVI ORDERS FOR CUSTOMER vl
SOURLE COLLIMN; DESTINATION INPLIT PARAMETER:
CUSTOMER D vlqﬂ CUSTOMER D vl

SOURLE COLLIMN;
CUSTOMER_NAME vlo

LINKAGE DEFINITION: LINKAGE 3
705 | [SOURCE DESTINATION:
DUERY: DUERY:
I]RDERSF[IRELIST[IMERVI ITEMS FOR ORDER vl
SOURCE COLUMN: DESTINATION INPLT PARAMETER:
CUSTOMER D vlo /~ ORDER_ID vl
SOURCE COLUMN:
ORDER_ID vl

PCT/US2010/038622

WO 2010/147950

8/13

'/ Jd &

Z LIy G <« | “ceg

ALIINYND al Lanaoyd al ¥3au0

gg—> 88— us—> NS

cog - 828 g8 g8
(%) Y300 ¥0d SWAL
1 y3auo p NN QN LINVAV
gI8
SHILINYAIYA ANAND
(ITHI NS TA7) 300N AYINT

At

@ G 3
>

b 3

a y3gyo | O ¥awolsna
s — us— SIINS Y
)
8 ‘01 MAWOLSN]
SHILINYHYA AT
M AA vawnisno uod suaon
w AN TN AVVd

I (/A74y4) 300N Avang

708

-

AL

& C dnos y « |
f SNY3g f <«
ALIINYND al Lanaoyd al ¥3au0
ag —> cig— g —> NS
£98 - LZ8 Lig
() Y300 ¥0d SWAL
1 y3auo p NN QN LINVAV
218
SHILINYAIYA ANAND
N (ITHI NS TA7) 300N AYINT

0es

SWYITTIM

L3860y 3

INYN YINDLSND

al ¥3WoLsna

g —>

nie—2 sunsw

»SWYITIM LY3B0Y.

JNYN YINDLSNT
SUFLIWVRIVd AY3ND

A

- JWVN ¥04 ¥3WOLSND

v -AAND IR LAWY

WY T/T748) 300N AY3NT

WO 2010/147950 PCT/US2010/038622

9/13

/— a00

DEFINE FIRST UERY (STATIC OR
BARAMETRIC)
oo | (SEE FIG. D)

Y
INSTANTIATE FIRST GUERY
s !

h 4

DBTAIN FIRST QUERY INSTANCE
RESULT ROWS
nooA_~ (SEE FIE. 1)

Y
DISPLAY GRAPHICAL FIRST OUERY
o5 | NDDE

h 4

DEFINE SECOND PARAMETRIC

QUERY
oog_ (SEE FIG. 10)
\ 4

INSTANTIATE SECOND QUERY
HZI]f
LINK'SECOND QUERY INSTANCE TD

HZEf FIRST OUERY INSTANCE

h 4

DBTAIN SECOND QUERY
INSTANCE RESULT ROWS
1 (SEE FIE. 1)

\ 4
DISPLAY GRAPHICAL SECOND
an | QUERY NODE
\ 4
EXPLODE SECOND QUERY
INSTANCE
o | (SEE FIE. 17

Fig.9

WO 2010/147950 PCT/US2010/038622

10/13

OBTAIN QUERY SPECIFICATION | 1008

UMPLETE QUERY
SPECIFICATION?

ND
v T
DEFINE INPLT PARAMETER(S) | 1DIa

' T
IDENTIFY OUTPUTCOLUMNS |~ 1Daa

\ 4

' T
f FOR EACH OUTPUT COLUMN]J 1060

y
OPTTONALLY DEFNEDEFRDLT | g
EXPLOSION DUERY AND/OR LINKAGE

y
L FOR EACH OUTPUT COLUMN 1070

y
(RETURN RELSABLE QUERY V ~ 1099
Fig.10

WO 2010/147950

* PO
f FOR EACH INPUT PARAMETER]J fifa
1120

INPUT PARAMETER
ND

PCT/US2010/038622

LINKED TO SPECIFICATION
(UERY?

__f

1125

YES

OBTAIN LITERAL INPUT VALUE

A 4
MAP SPECIFICATION QUERY RESULT
FIELD TO INPUT PARAMETER .

1140

y
L FOREACH INPLT PARAMETER e

\ 4

' T
EXECUTE SPECIFIED QUERY I

' T
——— RETURN RESULT ROWS ’J 1133

Fig .17

WO 2010/147950 PCT/US2010/038622

12/13

/— 1200

(" FOR EACH SUBJECT RESULTROW)~ 120

A 4
INSTANTIATE EXPLOSION REUSABLE
PARAMETRIC QUERY -

Y
LINK RESLILT FIELD TO INPUT
PARAMETER DFEXPLOSION | 1218
PARAMETRIC GLERY INSTANCE

A 4
ELISONEATAMETR QY
INSTANCE oo

(SEE FIG. 11)

Y
AUTOMATICALLY DISPLAY CHILD o~
EXPLOSION NODE — 1225

h 4
L FOR EACH SUBJECT RESULT ROW 1233

v
(AYOUTEXPLOSIONNODES | 1240

h 4

(RETURN) /1289
Fig .12

PCT/US2010/038622

WO 2010/147950

yIg)
EME JINVLSNI AUINT
2,
%) -
N_e goel N MDY
..Eﬂmuzﬁmz;ﬁg y%/%/. 708 e :
|10 ZE8] SIS FIE] IINLEN| AT
£1gl
Ly
(3]
) el WAAH\/EM_
" \
Py, N —
» | N~ ZZ81 Y313V 1NN AJ@ %mp_ 7 MDY
\ —
~ \ — %, e G5 | MDY
TZE1 Y3LIWYY LaN] W00 | 107 | GEE SISy
\ ZET JINVISNI ANAND
V4
N_m_)\%%
] | MDY r
W01 | | 107 | TEER SLInSIy N
|

oogl —7

LZEINDILYIHIT3dS ANIND 131dWD]

0E1 JINVLSNI AMND

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings

