
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0282313 A1

Alfieri

US 201402823 13A1

(43) Pub. Date: Sep. 18, 2014

(54)

(71)

(72)

(73)

(21)

(22)

SYSTEM, METHOD, AND COMPUTER
PROGRAMI PRODUCT FORAPPLYINGA
CALLBACK FUNCTION TODATA VALUES

Applicant: NVIDIA CORPORATION, Santa
Clara, CA (US)

Inventor: Robert Anthony Alfieri, Chapel Hill,
NC (US)

Assignee: NVIDIA CORPORATION, Santa
Clara, CA (US)

Appl. No.: 13/844,437

Filed: Mar 15, 2013

Publication Classification

(51) Int. Cl.
G06F 17/50 (2006.01)

(52) U.S. Cl.
CPC G06F 17/5045 (2013.01)
USPC .. 71.6/106

(57) ABSTRACT

A system, method, and computer program product are pro
vided for applying a callback function to data values. In use,
a plurality of data values and a callback function are identi
fied. Additionally, the callback function is recursively applied
to the plurality of data values in order to determine a result.
Further, the result is returned.

c

EYMSGA RAY OF AAAES ANA Y
CAACK FOON

KERSEY AYNG E CA-3ACK
FUNCTION TO THE PLURALITY OF DATA walu ES IN

OER O EERNE ARES

RERNG E RES

Patent Application Publication Sep. 18, 2014 Sheet 1 of 4 US 2014/0282313 A1

ENYNG A KAY OF AA AES ANA -N
CABACK FCON W 192

RECRSWEY AYN E CABACK 104
FUNCTION TO THE PLURALITY OF DATA VALUES IN NU

OER DEERNE A. ES

S

KERNNG E RES

FIGURE

Patent Application Publication Sep. 18, 2014 Sheet 2 of 4 US 2014/0282313 A1

RECEWNG AN EN CAON OF AN NARY -N
CON \ 22

24.
CREATING ACOMPUTE CONSTRUCT, UTILIZING THE /

ENE NARY FNCON

28
PRFORVNG ONE OR OR OPERATIONS,

NG E COE CONSC

FGURE 2

Patent Application Publication Sep. 18, 2014 Sheet 3 of 4 US 2014/0282313 A1

3.

32 S.
388

REusABLE compoNENT GENERATORs

386
FNCONS Y -

388
HARWARE DESCRON ANGAGE
EBEE NSCRN AGAE

336
iG-LEVE. G. WAWEFOR

EBGGER

on.'...noonoomorror SRCE

AABASE
343.

ARCARE

&ODELDATABASE R

328 33
ERG WCS Sf

323

Cdr R CA

FRE3

Patent Application Publication Sep. 18, 2014 Sheet 4 of 4 US 2014/0282313 A1

s

CENTRAL
PROCESSOR

401

EORY

- 404
SECONDARY
SORAGE

BUS
Ef CES

RACS
ROCESSOR

£8

SAY

40s

FGRE 4.

US 2014/02823 13 A1

SYSTEM, METHOD, AND COMPUTER
PROGRAMI PRODUCT FORAPPLYINGA
CALLBACK FUNCTION TODATA VALUES

FIELD OF THE INVENTION

0001. The present invention relates to hardware designs,
and more particularly to hardware design components and
their implementation.

BACKGROUND

0002 Hardware design and verification are important
aspects of the hardware creation process. For example, a
hardware description language may be used to model and
Verify circuit designs. However, current techniques for
designing hardware have been associated with various limi
tations.
0003 For example, many elements of current hardware
design may involve logic that addresses a single specific case.
This specific logic may be difficult to produce and analyze.
There is thus a need for addressing these and/or other issues
associated with the prior art.

SUMMARY

0004. A system, method, and computer program product
are provided for applying a callback function to data values.
In use, a plurality of data values and a callback function are
identified. Additionally, the callback function is recursively
applied to the plurality of data values in order to determine a
result. Further, the result is returned.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 shows a method for applying a callback func
tion to data values, in accordance with one embodiment.
0006 FIG. 2 shows a method for creating a compute con
struct, utilizing an N-ary function, inaccordance with another
embodiment.
0007 FIG. 3 shows an exemplary hardware design envi
ronment, in accordance with one embodiment.
0008 FIG. 4 illustrates an exemplary system in which the
various architecture and/or functionality of the various pre
vious embodiments may be implemented.

DETAILED DESCRIPTION

0009 FIG. 1 shows a method 100 for applying a callback
function to data values, in accordance with one embodiment.
As shown in operation 102, a plurality of data values and a
callback function are identified. In one embodiment, each of
the plurality of data values may include a data flow. For
example, the plurality of data values may include Subflows
within a numerical hierarchy data flow (e.g., a hierarchical
data flow containing a plurality of Subflows, etc.). In another
embodiment, each data flow may represent a flow of data
through a hardware design.
0010. In another embodiment, each data flow may include
one or more groups of signals. For example, each data flow
may include one or more groups of signals including implicit
flow control signals. In yet another embodiment, each data
flow may be associated with one or more interfaces. For
example, each data flow may be associated with one or more
interfaces of a hardware design. In still another embodiment,
the plurality of data values and the callback function may be
passed as parameters of a function.

Sep. 18, 2014

0011 Additionally, in one embodiment, each of the plu
rality of data values may include a bit value. For example,
each of the plurality of data values may be included as bits
within a leaf data flow (e.g., a data flow containing raw bits,
etc.). In another embodiment, the callback function may
include a Subroutine reference (e.g., a reference within a code
block to a subroutine, etc.). In yet another embodiment, the
callback function may be able to perform one or more opera
tions on the plurality of data values. In yet another embodi
ment, the plurality of data values and the callback function
may be received from a user. For example, the user may
identify the data values and the callback function as param
eters to a function call.
0012. Further, in one embodiment, as shown in operation
104, the callback function is recursively applied to the plu
rality of data values in order to determine a result. In one
embodiment, applying the callback function to the plurality
of data values may include performing a reduction operation
on the plurality of data values. In another embodiment, apply
ing the callback function to the plurality of data values may
include identifying each of the plurality of data values as leaf
nodes of a tree-based data structure (e.g., a simulation of a
hierarchical tree structure including a set of linked nodes,
etc.). For example, the tree-based data structure may be cre
ated, and each of the plurality of data values may be assigned
as leaf nodes (e.g., nodes without children) of the tree-based
data structure. In yet another embodiment, applying the call
back function to the plurality of data values may include
identifying one or more levels of the tree-based data structure.
0013 Further still, in one embodiment, applying the call
back function to the plurality of data values may include
recursively performing one or more leaf node comparisons.
For example, applying the callback function to the plurality of
data values may include performing a first round of compari
sons. For instance, the first round of comparisons may include
a plurality of comparisons. Additionally, each comparison
may be made between two or more unique data values by the
callback function.
0014. Also, in one embodiment, performing the first round
of comparisons may result in one or more outputs. For
example, each comparison performed by the callback func
tion may produce an output. In one embodiment, the output
may include an indication of a data value. In another embodi
ment, the output may include a plurality of information ele
ments (e.g., data associated with the comparison, node iden
tification, result information, etc.). In yet another
embodiment, the output may be returned as a data structure
(e.g., a hash, etc.).
0015. In addition, in one embodiment, the first round of
comparisons may be performed at a first level of the tree
based data structure (e.g., the lowest level of the tree, travel
ling from children to parent, etc.). In another embodiment,
applying the callback function to the plurality of data values
may include performing a second round of comparisons,
utilizing the callback function. For example, the second round
of comparisons may include a plurality of comparisons. For
instance, each comparison of the second round of compari
Sons may include a comparison of two or more outputs result
ing from the first round of comparisons.
0016 Furthermore, in one embodiment, performing the
second round of comparisons may result in one or more
outputs. For example, each comparison performed by the
callback function may again produce an output. In another
embodiment, the second round of comparisons may be per

US 2014/02823 13 A1

formed at a second level of the tree-based data structure (e.g.,
the next highest level of the tree, etc.).
0017. Further still, in one embodiment, consecutive
rounds of comparisons may be performed by the callback
function at each level of the tree-based structure until a single
output is produced for a particular round of comparisons. In
another embodiment, the result may include the single output.
In yet another embodiment, the recursive application of the
callback function to the plurality of data values may be done
using logN levels of logic. In this way, the recursive applica
tion may be performed in one hardware cycle.
0018. Also, as shown in operation 106, the result is
returned. In one embodiment, the result may include a hash of
information. For example, the result may include a hash of
per-node information, a hash of multiple pieces of informa
tion about each partial result during each round of compari
Sons, etc. In another embodiment, the result may be stored
(e.g., in a database, in memory, etc.). In yet another embodi
ment, the result may be provided to a function (e.g., a function
that passed the plurality of data values and the callback func
tion, etc.), to a user, etc.
0019. Additionally, in one embodiment, applying the call
back function to the plurality of data values may be performed
by a function (e.g., a function that is passed the plurality of
data values and the callback function, etc.), utilizing a pro
cessor. In another embodiment, the function may include a
tree function. In yet another embodiment, the tree function
may be included within a compute construct. For example,
the compute construct may include an entity (e.g., a module,
etc.), implemented as part of a hardware description lan
guage, that receives one or more data flows as input and
creates one or more output data flows, based on the one or
more input data flows.
0020. Further, in one embodiment, the tree function may
be utilized by another function. For example, the tree function
may be utilized by a Min() function that returns a minimum
value from a hierarchical data flow with multiple numerically
named Subflows. In another example, the tree function may be
utilized by a Max() function that returns a maximum value
from a hierarchical data flow with multiple numerically
named Subflows. In yet another example, the tree function
may be utilized by a Prio Min() function that returns a
minimum priority value from a numerical hierarchy data flow
containing priority values. In still another example, the tree
function may be utilized by a Prio Max() function that
returns a maximum priority value from a numerical hierarchy
data flow containing priority values.
0021. Further still, in one embodiment, the tree function
may be utilized by a scatter-gather function. In another
embodiment, the other function utilizing the tree function
may be included within a compute construct. In this way, the
tree function may provide an organized framework for
enabling tree-structured combinatorial algorithms and asso
ciated functions.

0022. More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented, per the desires of the user. It should be strongly noted
that the following information is set forth for illustrative
purposes and should not be construed as limiting in any
manner. Any of the following features may be optionally
incorporated with or without the exclusion of other features
described.

Sep. 18, 2014

0023 FIG. 2 shows a method 200 for creating a compute
construct, utilizing an N-ary function, in accordance with one
embodiment. As an option, the method 200 may be carried out
in the context of the functionality of FIG.1. Of course, how
ever, the method 200 may be implemented in any desired
environment. It should also be noted that the aforementioned
definitions may apply during the present description.
0024. As shown in operation 202, an identification of an
N-ary function is received. In one embodiment, the N-ary
function may include a function that has N significant condi
tions, where N is a positive integer greater than one. In
another embodiment, the identification of the N-ary function
may be performed by a user, utilizing a code block. For
example, the identified N-ary function may be called within a
general purpose code block, where such code block may
include hardware design statements mixed with Scripting lan
guage Statements.
0025. Additionally, in one embodiment, the identified
N-ary function may be input by the user into a subroutine of
a programming language used to draft code associated with
the compute construct. In still another embodiment, the N-ary
function may be created and stored, and the identification of
the N-ary function may include a reference to the stored N-ary
function.

0026. Further, in one embodiment, the identified N-ary
function may include code that is implemented in hardware
time or simulation-time. In another embodiment, the identi
fied N-ary function may be received in association with stan
dard Scripting language code. For example, the identified
N-ary function may be included within one or more hardware
code components that are interspersed with one or more stan
dard Scripting language Statements (e.g., Perl Statements,
etc.).
0027. Further still, as shown in operation 204, a compute
construct is created, utilizing the identified N-ary function. In
one embodiment, the code block provided by the user con
taining the identification of the N-ary function may be used to
create the control construct, Such that the compute construct
includes the N-ary function. In another embodiment, the
compute construct may include an entity (e.g., a module,
etc.), implemented as part of a hardware description lan
guage, that receives one or more data flows as input, where
each data flow may represent a flow of data.
0028. For example, each data flow may represent a flow of
data through a hardware design. In another embodiment, each
data flow may include one or more groups of signals. For
example, each data flow may include one or more groups of
signals including implicit flow control signals. In yet another
embodiment, each data flow may be associated with one or
more interfaces. For example, each data flow may be associ
ated with one or more interfaces of a hardware design. See,
for example, U.S. patent application Ser. No. (Attor
ney Docket No. NVIDP801/DU-12-0791), filed Mar. 15,
2013, which is hereby incorporated by reference in its
entirety, and which describes examples of creating a compute
COnStruct.

0029. Also, as shown in operation 206, one or more opera
tions are performed, utilizing the compute construct. In one
embodiment, one or more activated data flows may be
received by the compute construct, and one or more output
data flows may be output from the compute construct. In
another embodiment, the N-ary function may include a tree
based logN combinational function. For example, the N-ary
function may include a tree function (e.g., Tree(), etc.) that

US 2014/02823 13 A1

performs a bottom-up, recursive traversal of data at build
time. For example, a numerical hierarchical data flow with N
subflows named 0...N-1 may be passed to the tree function,
where each subflow may form the leaves of the tree. In
another example, a leaf data flow (e.g., raw bits, etc.) may be
passed to the tree function, in which case the individual bits
may be treated as the leaves of the tree.
0030. Further, in one embodiment, a callback function
may also be passed to the tree function. For example, for each
node in the tree of logic, the tree function may call the call
back function. In another embodiment, the tree may be
binary, but an optional argument may be passed to the tree
function that specifies a different N-ary-ness, (e.g., 3, 4, etc.).
This may be used by the tree function to group nodes in each
callback.
0031. In one example, N-ary may equal 2. Additionally, in
the first iteration, each callback instance of the callback func
tion may be passed these arguments: the current level in the
tree (0 for first iteration), the starting leaf index in the original
data flow (0.2, 4, etc.), the number of original leaves covered
by the call (2 for level 0), and up to 2 outputs from the previous
level of the tree (which will be the leaves for level 0). In one
embodiment, if the original data flow does not have an even
number of leaves, then the last callback may not cover 2
leaves.
0032. Further still, within the tree function, during the next
iteration (e.g., the next level up, level 1), a callback may be
made with starting leaf index 0 and count 4, then with starting
index 4 and count 4, etc. Additionally, the return values from
each pair of adjacent callbacks from level 0 may be passed as
arguments for this level 1 callback. The final iteration may be
performed at the final level (e.g., level log2(N)-1) which may
contain one callback with 2 lower-level inputs and which may
produce the final output. In another embodiment, a user may
control the return value of the callback. For example, the
return value may be a data flow, a hash of multiple pieces of
information about each partial iteration result a hash of per
node iteration information, etc.
0033. Also, in one embodiment, starting with the leaflevel
which is deemed level 0, the callback function may be called
with these arguments: the current tree level, the starting leaf
index in the original input data flow, the number of original
leaves covered by this call, and up to “N-ary outputs from the
previous stage in the tree. For the first-level calls to the call
back function, up to “N-ary leaf subflows may be passed as
the inputs. The callback function may then return a single
scalar entity. For the second-level calls to the callback func
tion, the inputs may be the return values from the first-level
callbacks, and the tree function may complete when it has
only one callback return value left to work on, which may be
returned as the result.

0034 Additionally, in one embodiment, the N-ary func
tion may include a function that utilizes the tree function. For
example, the N-ary function may include a minimum func
tion (e.g., Min()) that receives a hierarchical data flow with
multiple numerically named Subflows and returns the mini
mum value using the tree function. In another example, the
N-ary function may include a maximum function (e.g., Max(
)) that receives a hierarchical data flow with multiple numeri
cally named Subflows and returns the maximum value using
the tree function.

0035. Further, in one embodiment, the N-ary function may
include a priority minimum function (e.g., Prio Min()) that
receives a numerical hierarchy data flow containing priority

Sep. 18, 2014

values of any width, or a data flow that is a raw bitmask where
each bit represents priority 0 or 1. The priority minimum
function may also receive an argument representing the index
of the subflow that should take precedence if there are ties in
the priority values. The priority minimum function may use
the tree function to find the minimum priority and may return
the index of the subflow (leaf) holding that priority value.
0036 Further still, in one embodiment, the N-ary function
may include a priority maximum function (e.g., Prio Max())
that receives a numerical hierarchy data flow containing pri
ority values of any width, or a data flow that is a raw bitmask
where each bit represents priority 0 or 1. The priority maxi
mum function may also receive an argument representing the
index of the subflow that should take precedence if there are
ties in the priority values. The priority maximum function
may use the tree function to find the maximum priority and
may return the index of the subflow (leaf) holding that priority
value. In one embodiment, the priority minimum function
and/or the priority maximum function may be used to con
struct a priority-based round-robin arbiter.
0037 Also, in one embodiment, the N-ary function may
include a scatter/gather function that utilizes the tree function.
For example, the N-ary function may include a gathered
function (e.g., Gathered()) that receives a scattered data flow
with N valid subflows and a corresponding sparse bitmask of
valid indexes, then collapses the M valid subflows down into
a data flow where contiguous indexes 0 . . . M-1 contain the
data. In another example, the N-ary function may include a
gathered indexes function (e.g., Gathered indexes()) that
returns the actual gathered indexes as the resultant gathered
data.
0038. In addition, in one embodiment, the N-ary function
may include a scattered index function (e.g., Scattered In
dex()) that receives a valid mask of scattered values and a
gathered index, then returns the scattered index correspond
ing to what its gathered index would be. In another embodi
ment, the N-ary function may include a gathered index func
tion (e.g., Gathered index()) that receives a valid mask of
scattered values and a scattered index, and returns the gath
ered index corresponding to that scattered index.
0039. Further, in one embodiment, the N-ary function may
include a scatter/gather function that does not utilize the tree
function. For example, the N-ary function may include a
scattered function (e.g., Scattered()) that receives a pair of
associated data flows, one containing M subflows of data with
indexes 0... M-1; and another data flow containing the target
scatter indexes of those data where the maximum index is
N-1. The scattered function may then returns a data flow with
N subflows holding the scattered data from the input data
flow. For un-scattered indexes, the data may be undefined. In
another embodiment, the scattered function may return a
bitmask denoting which indexes in the scattered result are
valid. In another example, the N-ary function may include a
scattered indexes function (e.g., Scattered Indexes()) that
calls the scattered function with the received indexes data
flow also as the data data flow. In this way, the indexes them
selves may be scattered.
0040. In another embodiment, the compute construct may
be created utilizing one or more N-ary operators. Table 1
illustrates exemplary N-ary functions and operators that may
be included within a compute construct, in accordance with
one embodiment. The N-ary functions shown in Table 1 rep
resent combinational functions that may be used within inte
grated circuit designs to perform arbitration and perform
other operations. Of course, it should be noted that the exem
plary options shown in Table 1 are set forth for illustrative
purposes only, and thus should not be construed as limiting in
any manner. Also, the N-ary functions and operators in Table
1 may not utilize a tree function.

US 2014/02823 13 A1

Mux

None

One

Wrapped Add

Wrapped Sub

Partial product

Wallace Tree

Sum

Example

Sel->Mux(SExpr0,
Expr1, SExpr2, SExpr4)

ExprO->Any(SExpr1,
Expr2, SExpr3)

ExprO->None(SExpr1,
Expr2, SExpr3)

ExprO->One(SExpr1,
Expr2, SExpr3)

Expr0->Wrapped Add(
Expr1, 5)

ExprO->Wrapped Sub(
Expr1, 5)

ExprO->Partial product(
Expr1,
partial prod width)

SExpr0->Wallace Tree(
SExpr1, SExpr2)

SExprO->Sum(SExpr1,
SExpr2)

TABLE 1

Out Width

width0+width1+width2

max(width), ...)

width0

width0

2*Spartial prod width

2 * (max(width 0, ...) + arg count - 1)

max(width), ...) + arg count - 1

Description

concatenation; each
SExprO may be a
hierarchical flow,
but the final result is
always a Uint() leaf.
The “of replication
operator may be
used, for example
{< 3 of SExpro >},
and of can be used
outside of a
concatenation,
mux operator; $Sel
must have width of
og2(arg count); if
an expression is
missing, its value is
assumed to be O
{< SExpro ==
Expr1, SExprO ==

->Is One Hot()
Computes SExpr0+
Expr1. If the result

is >= 5, subtracts 5
Computes SExprO
Expr1. If the result

is < 0, adds 5
Multiplies SExpr1 *
Expr1 and returns

Lwo carry-save
partial products
each with width
partial prod width.

These are
concatenated. These
may be passed to a
Wallace Tree()
below
Takes N arguments
SExpr0, etc. and
adds them together,
producing two
carry-save sums
each large enough
to hold the sum.
These 2 outputs are
each (max(width 0, ...) +
arg count - 1)
wide and are
concatenated in the
output. The two
Partial product()
outputs and an
additional addend
may be passed to
this call, each Zero
extended to
(max(width 0, ...) +
arg count - 1) bits
If an Expr is not a
leaf, if may be
expanded into its
leaves.
Same as

Wallace Tree,

Sep. 18, 2014

US 2014/02823 13 A1

Min
Max

Prio Min
Prio Max

Scattered

Scattered Indexes

Gathered

Gathered Indexes

Example

SValues->Min()
SValues->Max()

SValues->Prio Mint
(SPrio Index)
SValues->Prio Max(
SPrio Index)
SIndexes->Scattered (
SValues, SVId Count,
Smax count)

SIndexes->
Scattered Indexes.(
SVId Count, Smax count)

SVId Mask->Gathered.(
SValues)

SVId Mask->
Gathered Indexes()

TABLE 1-continued

Out Width

(log2(SValues->name count()),
SValues->{O}->width.())

(Smax count SValues->{O}->
width (),
Smax count)

(Smax count log2(Smax count),
Smax count)

(SVId Mask->width ()*SValues->
{O}->width.(),
value bitwidth (SVId Mask->
width ())

(SVId Mask->
width ()*log2(SVId Mask->
width ()),
value bitwidth (SVId Mask->
width ())

Description

except produces one
resolved Sum.
If an Expr is not a
leaf, it will expand it
into its leaves.
Returns the
minimum/maximum
of SValues, which
must be a numeric
hierarchy with
leaves. Uses Tree()
below.

Takes a numeric
hierarchy flow
SIndexes with at
least SVId Count
gathered index
values and a set of
gathered SValues,
then scatters the
SVId Count SValues
into a new hierarchy
flow with
Smax count entries
and each value at
its respective index.
An optional forth
0/1 argument
denotes whether
you want
Scattered() to also
return a sparse
SVId Mask bitmask,
in which case
Scattered() returns
a list of two items,
with the second
being the VId Mask.
Equivalent to
Indexes->

Scattered (SIndexes,
VId Count,
max count)

Takes a bitmask of
valid values
VId Mask (can also

be a hierarchy flow
with 1-bit leaves)
and some scattered
Values, then

returns two values
in a list: 1) the valid
Values with

corresponding bits
set in the
VId Mask all

collapsed down (i.e.,
he first valid value
occupies index 0,
etc), and 2) a count
of the number of
bits set in
SVId Mask.

Equivalent to
passing the indexes
0, 1, 2, etc. as the
SValues in
SVId Mask->
Gathered (SValues)

Sep. 18, 2014

US 2014/02823 13 A1

TABLE 1-continued

Op Example Out Width

SVId Mask->
Scattered Index(
SG Index)

Scattered Index

Gathered Index SVId Mask->
Gathered Index(
SS Index)

user-defined
max(width0, Swidthl)

Tree SExprO->Tree(Scallback)
: SSel? SExpr1 : SExprO

0041 Further, in one embodiment, the compute construct
may be incorporated into the integrated circuit design in
association with the one or more data flows. In one embodi
ment, the one or more data flows may be passed into the
compute construct, where they may be checked at each stage.
In another embodiment, errors may be immediately found
and the design script may be killed immediately upon finding
an error. In this way, a user may avoid reviewing a large
amount of propagated errors. In yet another embodiment, the
compute construct may check that each input data flow is an
output data flow from some other constructoris what is called
a deferred output.
0042. For example, a deferred output may include an indi
cation that a data flow is a primary design input or a data flow
will be connected later to the output of some future construct.
In another embodiment, it may be confirmed that each input
data flow is an input to no other constructs. In yet another
embodiment, each construct may create one or more output
data flows that may then become the inputs to other con
structs. In this way, the concept of correctness-by-construc
tion may be promoted. In still another embodiment, the con
structs may be Superflow-aware. For example, some
constructs may expect Superflows, and others may performan
implicit for loop on the superflows subflows so that the user
doesn’t have to.

0043. Furthermore, in one embodiment, a set of introspec
tion methods may be provided that may allow user designs
and generators to interrogate data flows. For example, the
compute construct may use these introspection functions to
perform their work. More specifically, the introspection
methods may enable obtaining a list of field names within a
hierarchical data flow, widths of various subflows, etc. In
another embodiment, in response to the introspection meth
ods, values may be returned in forms that are easy to manipu
late by the scripting language.
0044) Further still, in one embodiment, the compute con
struct may include constructs that are built into the hardware
description language and that perform various data steering
and storage operations that have to be built into the language.

log2(SVId Mask->width ())

log2(SVId Mask->width ())

Sep. 18, 2014

Description

Given a valid mask
and a gathered
index, returns the
scattered index
corresponding to
that gathered index.
Given a valid mask
and a scattered
index (whose bit
must be set in
SVId Mask), returns
the gathered index
corresponding to
that scattered index.
In other words, it
returns the number
of ones in the
SVId Mask to the
right of bit position
SS Index.

conditiona

In another embodiment, the constructs may be bug-free (veri
fied) as an incentive for the user to utilize them as much as
possible.
0045 Also, in one embodiment, the compute construct
may contain one or more parameters. For example, the com
pute construct may contain a “name parameter that indicates
abuse module name that will be used for the compute con
struct and which shows up in the debugger. In another
embodiment, the compute construct may contain a "com
ment' parameter that provides a textual comment that shows
up in the debugger. In yet another embodiment, the compute
construct may contain a parameter that corresponds to an
interface protocol. In one embodiment, the interface protocol
may include a communications protocol associated with a
particular interface. In another embodiment, the communica
tions protocol may include one or more formats for commu
nicating data utilizing the interface, one or more rules for
communicating data utilizing the interface, a syntax used
when communicating data utilizing the interface, semantics
used when communicating data utilizing the interface, Syn
chronization methods used when communicating data utiliz
ing the interface, etc. In one example, the compute construct
may include a “stallable' parameter that indicates whether
automatic data flow control is to be performed within the
construct (e.g., whether input data flows are to be automati
cally stalled when outputs arent ready, etc.). For example, if
the “stallable' parameter is 0, the user may use various data
flow methods such as Valid() and Ready (), as well as a Stall
statement to perform manual data flow control.
0046 Additionally, in one embodiment, the compute con
struct may contain an out fifo parameter that allows the user
to specify a depth of the output FIFO for each output data
flow. For example, when multiple output data flows are
present, the user may supply one depth that is used by all, or
an array of per-output-flow depths. In another embodiment,
the compute construct may contain an out regparameter that
causes the output data flow to be registered out. For example,
the out reg parameter may take a 0 or 1 value or an array of
such like out fifo.
0047. Further, in one embodiment, the compute construct
may contain an out rdy reg parameter that causes the output

US 2014/02823 13 A1

data flows implicit ready signal to be registered in. This may
also lay down an implicit skid flip-flop before the out regif
the latter is present. In another embodiment, out fifo, out
reg, and out rdy reg may be mutually exclusive and may be
used in any combination.
0048. Further still, in one embodiment, clocking and clock
gating may be handled implicitly by the compute construct.
For example, there may be three levels of clock gating that
may be generated automatically: fine-grain clock gating
(FGCG), second-level module clock gating (SLCG), and
block-level design clock gating (BLCG). In another embodi
ment, FGCG may be handled by synthesis tools. In yet
another embodiment, a per-construct (i.e., per-module) status
may be maintained. In still another embodiment, when the
status is IDLE or STALLED, all the flip-flops and rams in that
module may be gated. In another embodiment, the statuses
from all the constructs may be combined to form the design
level status that is used for the BLCG. This may be performed
automatically, though the user may override the status value
for any Compute() construct using the Status <value State
ment.

0049. Also, in one embodiment, a control construct may
be incorporated into the integrated circuit design in associa
tion with the compute construct and the one or more data
flows. For example, an output data flow from the control
construct may act as an input data flow to the compute con
struct, oran output data flow from the compute construct may
act as an input data flow to the control construct. See, for
example, U.S. patent application Ser. No. (Attorney
Docket No. NVIDP800/DU-12-0790), filed Mar. 15, 2013,
which is hereby incorporated by reference in its entirety, and
which describes exemplary compute constructs.
0050 FIG. 3 shows an exemplary hardware design envi
ronment 300, in accordance with one embodiment. As an
option, the environment 300 may be carried out in the context
of the functionality of FIGS. 1-2. Of course, however, the
environment 300 may be implemented in any desired envi
ronment. It should also be noted that the aforementioned
definitions may apply during the present description.
0051. As shown, within a design module 302, reusable
component generators 304, functions 306, and a hardware
description language embedded in a scripting language 308
are all used to construct a design that is run and stored 310 at
a source database 312. Also, any build errors within the
design are corrected 344, and the design module 302 is
updated. Additionally, the system backend is run on the con
structed design 314 as the design is transferred from the
source database 312 to a hardware model database 316.
0052 Additionally, the design in the hardware model data
base 316 is translated into C++ or CUDATTM 324, translated
into VerilogR 326, or sent directly to the hardware model
database 336. If the design is translated into C++ or CUDATM
324, the translated design 330 is provided to a signal dump
334 and then to a high level debugger 336. If the design is
translated into VerilogR.326, the translated design is provided
to the signal dump 334 or a VCS simulation 328 is run on the
translated design, which is then provided to the signal dump
334 and then to the high level GUI (graphical user interface)
waveform debugger 336. Any logic bugs found using the high
level GUI waveform debugger 336 can then be corrected 340
utilizing the design module 302.
0053 FIG. 4 illustrates an exemplary system 400 in which
the various architecture and/or functionality of the various
previous embodiments may be implemented. As shown, a

Sep. 18, 2014

system 400 is provided including at least one host processor
401 which is connected to a communication bus 402. The
communication bus 402 may be implemented using any Suit
able protocol, such as PCI (Peripheral Component Intercon
nect), PCI-Express, AGP (Accelerated Graphics Port),
HyperTransport, or any other bus or point-to-point commu
nication protocol(s). The system 400 also includes a main
memory 404. Control logic (software) and data are stored in
the main memory 404 which may take the form of random
access memory (RAM).
0054 The system 400 also includes input devices 412, a
graphics processor 406 and a display 408, i.e. a conventional
CRT (cathode ray tube), LCD (liquid crystal display), LED
(light emitting diode), plasma display or the like. User input
may be received from the input devices 412, e.g., keyboard,
mouse, touchpad, microphone, and the like. In one embodi
ment, the graphics processor 406 may include a plurality of
shader modules, a rasterization module, etc. Each of the fore
going modules may even be situated on a single semiconduc
tor platform to form a graphics processing unit (GPU).
0055. In the present description, a single semiconductor
platform may refer to a sole unitary semiconductor-based
integrated circuit or chip. It should be noted that the term
single semiconductor platform may also refer to multi-chip
modules with increased connectivity which simulate on-chip
operation, and make Substantial improvements over utilizing
a conventional central processing unit (CPU) and bus imple
mentation. Of course, the various modules may also be situ
ated separately or in various combinations of semiconductor
platforms per the desires of the user. The system may also be
realized by reconfigurable logic which may include (but is not
restricted to) field programmable gate arrays (FPGAs).
0056. The system 400 may also include a secondary stor
age 410. The secondary storage 410 includes, for example, a
hard disk drive and/or a removable storage drive, representing
a floppy disk drive, a magnetic tape drive, a compact disk
drive, digital versatile disk (DVD) drive, recording device,
universal serial bus (USB) flash memory, etc. The removable
storage drive reads from and/or writes to a removable storage
unit in a well-known manner.
0057 Computer programs, or computer control logic
algorithms, may be stored in the main memory 404 and/or the
secondary storage 410. Such computer programs, when
executed, enable the system 400 to perform various functions.
Memory 404, storage 410 and/or any other storage are pos
sible examples of computer-readable media.
0058. In one embodiment, the architecture and/or func
tionality of the various previous figures may be implemented
in the context of the host processor 401, graphics processor
406, an integrated circuit (not shown) that is capable of at
least a portion of the capabilities of both the host processor
401 and the graphics processor 406, a chipset (i.e. a group of
integrated circuits designed to work and sold as a unit for
performing related functions, etc.), and/or any other inte
grated circuit for that matter.
0059 Still yet, the architecture and/or functionality of the
various previous figures may be implemented in the context
of a general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 400 may take the form of a desktop
computer, laptop computer, server, workstation, game con
soles, embedded system, and/or any other type of logic. Still
yet, the system 400 may take the form of various other devices

US 2014/02823 13 A1

m including, but not limited to a personal digital assistant
(PDA) device, a mobile phone device, a television, etc.
0060. Further, while not shown, the system 400 may be
coupled to a network e.g. a telecommunications network,
local area network (LAN), wireless network, wide area net
work (WAN) such as the Internet, peer-to-peer network, cable
network, etc.) for communication purposes.
0061. While various embodiments have been described
above, it should be understood that they have been presented
by way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited by
any of the above-described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.
What is claimed is:
1. A method, comprising:
identifying a plurality of data values and a callback func

tion;
recursively applying the callback function to the plurality

of data values in order to determine a result; and
returning the result.
2. The method of claim 1, wherein the plurality of data

values include subflows within a numerical hierarchy data
flow.

3. The method of claim 1, wherein applying the callback
function to the plurality of data values includes performing a
reduction operation on the plurality of data values.

4. The method of claim 1, wherein applying the callback
function to the plurality of data values includes identifying
the each of the plurality of data values as leaf nodes of a
tree-based data structure.

5. The method of claim 1, wherein applying the callback
function to the plurality of data values includes performing a
first round of comparisons.

6. The method of claim 5, wherein performing the first
round of comparisons results in one or more outputs.

7. The method of claim 5, wherein the first round of com
parisons are performed at a first level of a tree-based data
Structure.

8. The method of claim 1, wherein applying the callback
function to the plurality of data values includes performing a
second round of comparisons.

9. The method of claim 8, wherein each comparison of the
second round of comparisons includes a comparison of two or
more outputs resulting from a first round of comparisons.

Sep. 18, 2014

10. The method of claim 8, wherein the second round of
comparisons are performed at a second level of the tree-based
data structure.

11. The method of claim 4, wherein consecutive rounds of
comparisons are performed by the callback function at each
level of the tree-based structure until a single output is pro
duced for a particular round of comparisons.

12. The method of claim 11, wherein the result includes the
single output.

13. The method of claim 1, wherein the result includes a
hash of information.

14. The method of claim 1, wherein applying the callback
function to the plurality of data values is performed by a tree
function included within a compute construct.

15. The method of claim 14, wherein the tree function is
utilized by one or more of a Min() function that returns a
minimum value from a hierarchical data flow with multiple
numerically named subflows and a Max() function that
returns a maximum value from a hierarchical data flow with
multiple numerically named subflows.

16. The method of claim 14, wherein the tree function is
utilized by one or more of a Prio Min() function that returns
a minimum priority value from a numerical hierarchy data
flow containing priority values and a Prio Max() function
that returns a maximum priority value from a numerical hier
archy data flow containing priority values.

17. The method of claim 1, wherein the tree function is
utilized by a scatter-gather function.

18. The method of claim 1, wherein the callback function
represents a combinational circuit function configured to
operate on an input data flow.

19. A computer program product embodied on a computer
readable medium, comprising:

code for identifying a plurality of data values and a call
back function;

code for recursively applying the callback function to the
plurality of data values in order to determine a result; and

code for returning the result.
20. A system, comprising:
a processor for identifying a plurality of data values and a

callback function, recursively applying the callback
function to the plurality of data values in order to deter
mine a result, and returning the result.

k k k k k

