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(57) ABSTRACT 

A system, method, and computer program product are pro 
vided for applying a callback function to data values. In use, 
a plurality of data values and a callback function are identi 
fied. Additionally, the callback function is recursively applied 
to the plurality of data values in order to determine a result. 
Further, the result is returned. 

c 

EYMSGA RAY OF AAAES ANA Y 
CAACK FOON 

KERSEY AYNG E CA-3ACK 
FUNCTION TO THE PLURALITY OF DATA walu ES IN 

OER O EERNE ARES 

RERNG E RES 

  



Patent Application Publication Sep. 18, 2014 Sheet 1 of 4 US 2014/0282313 A1 

ENYNG A KAY OF AA AES ANA -N 
CABACK FCON W 192 

RECRSWEY AYN E CABACK 104 
FUNCTION TO THE PLURALITY OF DATA VALUES IN NU 

OER DEERNE A. ES 

S 

KERNNG E RES 

FIGURE 

  



Patent Application Publication Sep. 18, 2014 Sheet 2 of 4 US 2014/0282313 A1 

RECEWNG AN EN CAON OF AN NARY -N 
CON \ 22 

24. 
CREATING ACOMPUTE CONSTRUCT, UTILIZING THE / 

ENE NARY FNCON 

28 
PRFORVNG ONE OR OR OPERATIONS, 

NG E COE CONSC 

FGURE 2 

  



Patent Application Publication Sep. 18, 2014 Sheet 3 of 4 US 2014/0282313 A1 

3. 

32 S. 
388 

REusABLE compoNENT GENERATORs 

386 
FNCONS Y - 

388 
HARWARE DESCRON ANGAGE 
EBEE NSCRN AGAE 

336 
iG-LEVE. G. WAWEFOR 

EBGGER 

on.'...noonoomorror SRCE 

AABASE 
343. 

ARCARE 

&ODELDATABASE R 

328 33 
ERG WCS Sf 

323 

Cdr R CA 

FRE3 

  

    

    

    

  



Patent Application Publication Sep. 18, 2014 Sheet 4 of 4 US 2014/0282313 A1 

s 

CENTRAL 
PROCESSOR 

401 

EORY 

- 404 
SECONDARY 
SORAGE 

BUS 
Ef CES 

RACS 
ROCESSOR 

£8 

SAY 

40s 

FGRE 4. 

    

  

  

  

  

  

    

  

  



US 2014/02823 13 A1 

SYSTEM, METHOD, AND COMPUTER 
PROGRAMI PRODUCT FORAPPLYINGA 
CALLBACK FUNCTION TODATA VALUES 

FIELD OF THE INVENTION 

0001. The present invention relates to hardware designs, 
and more particularly to hardware design components and 
their implementation. 

BACKGROUND 

0002 Hardware design and verification are important 
aspects of the hardware creation process. For example, a 
hardware description language may be used to model and 
Verify circuit designs. However, current techniques for 
designing hardware have been associated with various limi 
tations. 
0003 For example, many elements of current hardware 
design may involve logic that addresses a single specific case. 
This specific logic may be difficult to produce and analyze. 
There is thus a need for addressing these and/or other issues 
associated with the prior art. 

SUMMARY 

0004. A system, method, and computer program product 
are provided for applying a callback function to data values. 
In use, a plurality of data values and a callback function are 
identified. Additionally, the callback function is recursively 
applied to the plurality of data values in order to determine a 
result. Further, the result is returned. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 shows a method for applying a callback func 
tion to data values, in accordance with one embodiment. 
0006 FIG. 2 shows a method for creating a compute con 
struct, utilizing an N-ary function, inaccordance with another 
embodiment. 
0007 FIG. 3 shows an exemplary hardware design envi 
ronment, in accordance with one embodiment. 
0008 FIG. 4 illustrates an exemplary system in which the 
various architecture and/or functionality of the various pre 
vious embodiments may be implemented. 

DETAILED DESCRIPTION 

0009 FIG. 1 shows a method 100 for applying a callback 
function to data values, in accordance with one embodiment. 
As shown in operation 102, a plurality of data values and a 
callback function are identified. In one embodiment, each of 
the plurality of data values may include a data flow. For 
example, the plurality of data values may include Subflows 
within a numerical hierarchy data flow (e.g., a hierarchical 
data flow containing a plurality of Subflows, etc.). In another 
embodiment, each data flow may represent a flow of data 
through a hardware design. 
0010. In another embodiment, each data flow may include 
one or more groups of signals. For example, each data flow 
may include one or more groups of signals including implicit 
flow control signals. In yet another embodiment, each data 
flow may be associated with one or more interfaces. For 
example, each data flow may be associated with one or more 
interfaces of a hardware design. In still another embodiment, 
the plurality of data values and the callback function may be 
passed as parameters of a function. 
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0011 Additionally, in one embodiment, each of the plu 
rality of data values may include a bit value. For example, 
each of the plurality of data values may be included as bits 
within a leaf data flow (e.g., a data flow containing raw bits, 
etc.). In another embodiment, the callback function may 
include a Subroutine reference (e.g., a reference within a code 
block to a subroutine, etc.). In yet another embodiment, the 
callback function may be able to perform one or more opera 
tions on the plurality of data values. In yet another embodi 
ment, the plurality of data values and the callback function 
may be received from a user. For example, the user may 
identify the data values and the callback function as param 
eters to a function call. 
0012. Further, in one embodiment, as shown in operation 
104, the callback function is recursively applied to the plu 
rality of data values in order to determine a result. In one 
embodiment, applying the callback function to the plurality 
of data values may include performing a reduction operation 
on the plurality of data values. In another embodiment, apply 
ing the callback function to the plurality of data values may 
include identifying each of the plurality of data values as leaf 
nodes of a tree-based data structure (e.g., a simulation of a 
hierarchical tree structure including a set of linked nodes, 
etc.). For example, the tree-based data structure may be cre 
ated, and each of the plurality of data values may be assigned 
as leaf nodes (e.g., nodes without children) of the tree-based 
data structure. In yet another embodiment, applying the call 
back function to the plurality of data values may include 
identifying one or more levels of the tree-based data structure. 
0013 Further still, in one embodiment, applying the call 
back function to the plurality of data values may include 
recursively performing one or more leaf node comparisons. 
For example, applying the callback function to the plurality of 
data values may include performing a first round of compari 
sons. For instance, the first round of comparisons may include 
a plurality of comparisons. Additionally, each comparison 
may be made between two or more unique data values by the 
callback function. 
0014. Also, in one embodiment, performing the first round 
of comparisons may result in one or more outputs. For 
example, each comparison performed by the callback func 
tion may produce an output. In one embodiment, the output 
may include an indication of a data value. In another embodi 
ment, the output may include a plurality of information ele 
ments (e.g., data associated with the comparison, node iden 
tification, result information, etc.). In yet another 
embodiment, the output may be returned as a data structure 
(e.g., a hash, etc.). 
0015. In addition, in one embodiment, the first round of 
comparisons may be performed at a first level of the tree 
based data structure (e.g., the lowest level of the tree, travel 
ling from children to parent, etc.). In another embodiment, 
applying the callback function to the plurality of data values 
may include performing a second round of comparisons, 
utilizing the callback function. For example, the second round 
of comparisons may include a plurality of comparisons. For 
instance, each comparison of the second round of compari 
Sons may include a comparison of two or more outputs result 
ing from the first round of comparisons. 
0016 Furthermore, in one embodiment, performing the 
second round of comparisons may result in one or more 
outputs. For example, each comparison performed by the 
callback function may again produce an output. In another 
embodiment, the second round of comparisons may be per 
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formed at a second level of the tree-based data structure (e.g., 
the next highest level of the tree, etc.). 
0017. Further still, in one embodiment, consecutive 
rounds of comparisons may be performed by the callback 
function at each level of the tree-based structure until a single 
output is produced for a particular round of comparisons. In 
another embodiment, the result may include the single output. 
In yet another embodiment, the recursive application of the 
callback function to the plurality of data values may be done 
using logN levels of logic. In this way, the recursive applica 
tion may be performed in one hardware cycle. 
0018. Also, as shown in operation 106, the result is 
returned. In one embodiment, the result may include a hash of 
information. For example, the result may include a hash of 
per-node information, a hash of multiple pieces of informa 
tion about each partial result during each round of compari 
Sons, etc. In another embodiment, the result may be stored 
(e.g., in a database, in memory, etc.). In yet another embodi 
ment, the result may be provided to a function (e.g., a function 
that passed the plurality of data values and the callback func 
tion, etc.), to a user, etc. 
0019. Additionally, in one embodiment, applying the call 
back function to the plurality of data values may be performed 
by a function (e.g., a function that is passed the plurality of 
data values and the callback function, etc.), utilizing a pro 
cessor. In another embodiment, the function may include a 
tree function. In yet another embodiment, the tree function 
may be included within a compute construct. For example, 
the compute construct may include an entity (e.g., a module, 
etc.), implemented as part of a hardware description lan 
guage, that receives one or more data flows as input and 
creates one or more output data flows, based on the one or 
more input data flows. 
0020. Further, in one embodiment, the tree function may 
be utilized by another function. For example, the tree function 
may be utilized by a Min() function that returns a minimum 
value from a hierarchical data flow with multiple numerically 
named Subflows. In another example, the tree function may be 
utilized by a Max() function that returns a maximum value 
from a hierarchical data flow with multiple numerically 
named Subflows. In yet another example, the tree function 
may be utilized by a Prio Min() function that returns a 
minimum priority value from a numerical hierarchy data flow 
containing priority values. In still another example, the tree 
function may be utilized by a Prio Max() function that 
returns a maximum priority value from a numerical hierarchy 
data flow containing priority values. 
0021. Further still, in one embodiment, the tree function 
may be utilized by a scatter-gather function. In another 
embodiment, the other function utilizing the tree function 
may be included within a compute construct. In this way, the 
tree function may provide an organized framework for 
enabling tree-structured combinatorial algorithms and asso 
ciated functions. 

0022. More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented, per the desires of the user. It should be strongly noted 
that the following information is set forth for illustrative 
purposes and should not be construed as limiting in any 
manner. Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described. 
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0023 FIG. 2 shows a method 200 for creating a compute 
construct, utilizing an N-ary function, in accordance with one 
embodiment. As an option, the method 200 may be carried out 
in the context of the functionality of FIG.1. Of course, how 
ever, the method 200 may be implemented in any desired 
environment. It should also be noted that the aforementioned 
definitions may apply during the present description. 
0024. As shown in operation 202, an identification of an 
N-ary function is received. In one embodiment, the N-ary 
function may include a function that has N significant condi 
tions, where N is a positive integer greater than one. In 
another embodiment, the identification of the N-ary function 
may be performed by a user, utilizing a code block. For 
example, the identified N-ary function may be called within a 
general purpose code block, where such code block may 
include hardware design statements mixed with Scripting lan 
guage Statements. 
0025. Additionally, in one embodiment, the identified 
N-ary function may be input by the user into a subroutine of 
a programming language used to draft code associated with 
the compute construct. In still another embodiment, the N-ary 
function may be created and stored, and the identification of 
the N-ary function may include a reference to the stored N-ary 
function. 

0026. Further, in one embodiment, the identified N-ary 
function may include code that is implemented in hardware 
time or simulation-time. In another embodiment, the identi 
fied N-ary function may be received in association with stan 
dard Scripting language code. For example, the identified 
N-ary function may be included within one or more hardware 
code components that are interspersed with one or more stan 
dard Scripting language Statements (e.g., Perl Statements, 
etc.). 
0027. Further still, as shown in operation 204, a compute 
construct is created, utilizing the identified N-ary function. In 
one embodiment, the code block provided by the user con 
taining the identification of the N-ary function may be used to 
create the control construct, Such that the compute construct 
includes the N-ary function. In another embodiment, the 
compute construct may include an entity (e.g., a module, 
etc.), implemented as part of a hardware description lan 
guage, that receives one or more data flows as input, where 
each data flow may represent a flow of data. 
0028. For example, each data flow may represent a flow of 
data through a hardware design. In another embodiment, each 
data flow may include one or more groups of signals. For 
example, each data flow may include one or more groups of 
signals including implicit flow control signals. In yet another 
embodiment, each data flow may be associated with one or 
more interfaces. For example, each data flow may be associ 
ated with one or more interfaces of a hardware design. See, 
for example, U.S. patent application Ser. No. (Attor 
ney Docket No. NVIDP801/DU-12-0791), filed Mar. 15, 
2013, which is hereby incorporated by reference in its 
entirety, and which describes examples of creating a compute 
COnStruct. 

0029. Also, as shown in operation 206, one or more opera 
tions are performed, utilizing the compute construct. In one 
embodiment, one or more activated data flows may be 
received by the compute construct, and one or more output 
data flows may be output from the compute construct. In 
another embodiment, the N-ary function may include a tree 
based logN combinational function. For example, the N-ary 
function may include a tree function (e.g., Tree(), etc.) that 
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performs a bottom-up, recursive traversal of data at build 
time. For example, a numerical hierarchical data flow with N 
subflows named 0...N-1 may be passed to the tree function, 
where each subflow may form the leaves of the tree. In 
another example, a leaf data flow (e.g., raw bits, etc.) may be 
passed to the tree function, in which case the individual bits 
may be treated as the leaves of the tree. 
0030. Further, in one embodiment, a callback function 
may also be passed to the tree function. For example, for each 
node in the tree of logic, the tree function may call the call 
back function. In another embodiment, the tree may be 
binary, but an optional argument may be passed to the tree 
function that specifies a different N-ary-ness, (e.g., 3, 4, etc.). 
This may be used by the tree function to group nodes in each 
callback. 
0031. In one example, N-ary may equal 2. Additionally, in 
the first iteration, each callback instance of the callback func 
tion may be passed these arguments: the current level in the 
tree (0 for first iteration), the starting leaf index in the original 
data flow (0.2, 4, etc.), the number of original leaves covered 
by the call (2 for level 0), and up to 2 outputs from the previous 
level of the tree (which will be the leaves for level 0). In one 
embodiment, if the original data flow does not have an even 
number of leaves, then the last callback may not cover 2 
leaves. 
0032. Further still, within the tree function, during the next 
iteration (e.g., the next level up, level 1), a callback may be 
made with starting leaf index 0 and count 4, then with starting 
index 4 and count 4, etc. Additionally, the return values from 
each pair of adjacent callbacks from level 0 may be passed as 
arguments for this level 1 callback. The final iteration may be 
performed at the final level (e.g., level log2(N)-1) which may 
contain one callback with 2 lower-level inputs and which may 
produce the final output. In another embodiment, a user may 
control the return value of the callback. For example, the 
return value may be a data flow, a hash of multiple pieces of 
information about each partial iteration result a hash of per 
node iteration information, etc. 
0033. Also, in one embodiment, starting with the leaflevel 
which is deemed level 0, the callback function may be called 
with these arguments: the current tree level, the starting leaf 
index in the original input data flow, the number of original 
leaves covered by this call, and up to “N-ary outputs from the 
previous stage in the tree. For the first-level calls to the call 
back function, up to “N-ary leaf subflows may be passed as 
the inputs. The callback function may then return a single 
scalar entity. For the second-level calls to the callback func 
tion, the inputs may be the return values from the first-level 
callbacks, and the tree function may complete when it has 
only one callback return value left to work on, which may be 
returned as the result. 

0034 Additionally, in one embodiment, the N-ary func 
tion may include a function that utilizes the tree function. For 
example, the N-ary function may include a minimum func 
tion (e.g., Min()) that receives a hierarchical data flow with 
multiple numerically named Subflows and returns the mini 
mum value using the tree function. In another example, the 
N-ary function may include a maximum function (e.g., Max( 
)) that receives a hierarchical data flow with multiple numeri 
cally named Subflows and returns the maximum value using 
the tree function. 

0035. Further, in one embodiment, the N-ary function may 
include a priority minimum function (e.g., Prio Min()) that 
receives a numerical hierarchy data flow containing priority 
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values of any width, or a data flow that is a raw bitmask where 
each bit represents priority 0 or 1. The priority minimum 
function may also receive an argument representing the index 
of the subflow that should take precedence if there are ties in 
the priority values. The priority minimum function may use 
the tree function to find the minimum priority and may return 
the index of the subflow (leaf) holding that priority value. 
0036 Further still, in one embodiment, the N-ary function 
may include a priority maximum function (e.g., Prio Max()) 
that receives a numerical hierarchy data flow containing pri 
ority values of any width, or a data flow that is a raw bitmask 
where each bit represents priority 0 or 1. The priority maxi 
mum function may also receive an argument representing the 
index of the subflow that should take precedence if there are 
ties in the priority values. The priority maximum function 
may use the tree function to find the maximum priority and 
may return the index of the subflow (leaf) holding that priority 
value. In one embodiment, the priority minimum function 
and/or the priority maximum function may be used to con 
struct a priority-based round-robin arbiter. 
0037 Also, in one embodiment, the N-ary function may 
include a scatter/gather function that utilizes the tree function. 
For example, the N-ary function may include a gathered 
function (e.g., Gathered()) that receives a scattered data flow 
with N valid subflows and a corresponding sparse bitmask of 
valid indexes, then collapses the M valid subflows down into 
a data flow where contiguous indexes 0 . . . M-1 contain the 
data. In another example, the N-ary function may include a 
gathered indexes function (e.g., Gathered indexes()) that 
returns the actual gathered indexes as the resultant gathered 
data. 
0038. In addition, in one embodiment, the N-ary function 
may include a scattered index function (e.g., Scattered In 
dex()) that receives a valid mask of scattered values and a 
gathered index, then returns the scattered index correspond 
ing to what its gathered index would be. In another embodi 
ment, the N-ary function may include a gathered index func 
tion (e.g., Gathered index()) that receives a valid mask of 
scattered values and a scattered index, and returns the gath 
ered index corresponding to that scattered index. 
0039. Further, in one embodiment, the N-ary function may 
include a scatter/gather function that does not utilize the tree 
function. For example, the N-ary function may include a 
scattered function (e.g., Scattered()) that receives a pair of 
associated data flows, one containing M subflows of data with 
indexes 0... M-1; and another data flow containing the target 
scatter indexes of those data where the maximum index is 
N-1. The scattered function may then returns a data flow with 
N subflows holding the scattered data from the input data 
flow. For un-scattered indexes, the data may be undefined. In 
another embodiment, the scattered function may return a 
bitmask denoting which indexes in the scattered result are 
valid. In another example, the N-ary function may include a 
scattered indexes function (e.g., Scattered Indexes()) that 
calls the scattered function with the received indexes data 
flow also as the data data flow. In this way, the indexes them 
selves may be scattered. 
0040. In another embodiment, the compute construct may 
be created utilizing one or more N-ary operators. Table 1 
illustrates exemplary N-ary functions and operators that may 
be included within a compute construct, in accordance with 
one embodiment. The N-ary functions shown in Table 1 rep 
resent combinational functions that may be used within inte 
grated circuit designs to perform arbitration and perform 
other operations. Of course, it should be noted that the exem 
plary options shown in Table 1 are set forth for illustrative 
purposes only, and thus should not be construed as limiting in 
any manner. Also, the N-ary functions and operators in Table 
1 may not utilize a tree function. 
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Mux 

None 

One 

Wrapped Add 

Wrapped Sub 

Partial product 

Wallace Tree 

Sum 

Example 

Sel->Mux(SExpr0, 
Expr1, SExpr2, SExpr4) 

ExprO->Any(SExpr1, 
Expr2, SExpr3) 

ExprO->None(SExpr1, 
Expr2, SExpr3) 

ExprO->One(SExpr1, 
Expr2, SExpr3) 

Expr0->Wrapped Add( 
Expr1, 5) 

ExprO->Wrapped Sub( 
Expr1, 5) 

ExprO->Partial product( 
Expr1, 
partial prod width) 

SExpr0->Wallace Tree( 
SExpr1, SExpr2 ) 

SExprO->Sum(SExpr1, 
SExpr2 ) 

TABLE 1 

Out Width 

width0+width1+width2 

max(width), ...) 

width0 

width0 

2*Spartial prod width 

2 * (max(width 0, ...) + arg count - 1) 

max(width), ...) + arg count - 1 

Description 

concatenation; each 
SExprO may be a 
hierarchical flow, 
but the final result is 
always a Uint() leaf. 
The “of replication 
operator may be 
used, for example 
{< 3 of SExpro >}, 
and of can be used 
outside of a 
concatenation, 
mux operator; $Sel 
must have width of 
og2(arg count); if 
an expression is 
missing, its value is 
assumed to be O 
{< SExpro == 
Expr1, SExprO == 

->Is One Hot() 
Computes SExpr0+ 
Expr1. If the result 

is >= 5, subtracts 5 
Computes SExprO 
Expr1. If the result 

is < 0, adds 5 
Multiplies SExpr1 * 
Expr1 and returns 

Lwo carry-save 
partial products 
each with width 
partial prod width. 

These are 
concatenated. These 
may be passed to a 
Wallace Tree() 
below 
Takes N arguments 
SExpr0, etc. and 
adds them together, 
producing two 
carry-save sums 
each large enough 
to hold the sum. 
These 2 outputs are 
each (max(width 0, ...) + 
arg count - 1) 
wide and are 
concatenated in the 
output. The two 
Partial product() 
outputs and an 
additional addend 
may be passed to 
this call, each Zero 
extended to 
(max(width 0, ...) + 
arg count - 1) bits 
If an Expr is not a 
leaf, if may be 
expanded into its 
leaves. 
Same as 

Wallace Tree, 
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Min 
Max 

Prio Min 
Prio Max 

Scattered 

Scattered Indexes 

Gathered 

Gathered Indexes 

Example 

SValues->Min() 
SValues->Max() 

SValues->Prio Mint 
(SPrio Index) 
SValues->Prio Max( 
SPrio Index) 
SIndexes->Scattered ( 
SValues, SVId Count, 
Smax count) 

SIndexes-> 
Scattered Indexes.( 
SVId Count, Smax count) 

SVId Mask->Gathered.( 
SValues) 

SVId Mask-> 
Gathered Indexes() 

TABLE 1-continued 

Out Width 

(log2(SValues->name count()), 
SValues->{O}->width.()) 

(Smax count SValues->{O}-> 
width (), 
Smax count) 

(Smax count log2(Smax count), 
Smax count) 

(SVId Mask->width ( )*SValues-> 
{O}->width.(), 
value bitwidth (SVId Mask-> 
width ()) 

(SVId Mask-> 
width ()*log2(SVId Mask-> 
width ()), 
value bitwidth (SVId Mask-> 
width ()) 

Description 

except produces one 
resolved Sum. 
If an Expr is not a 
leaf, it will expand it 
into its leaves. 
Returns the 
minimum/maximum 
of SValues, which 
must be a numeric 
hierarchy with 
leaves. Uses Tree() 
below. 

Takes a numeric 
hierarchy flow 
SIndexes with at 
least SVId Count 
gathered index 
values and a set of 
gathered SValues, 
then scatters the 
SVId Count SValues 
into a new hierarchy 
flow with 
Smax count entries 
and each value at 
its respective index. 
An optional forth 
0/1 argument 
denotes whether 
you want 
Scattered() to also 
return a sparse 
SVId Mask bitmask, 
in which case 
Scattered() returns 
a list of two items, 
with the second 
being the VId Mask. 
Equivalent to 
Indexes-> 

Scattered (SIndexes, 
VId Count, 
max count) 

Takes a bitmask of 
valid values 
VId Mask (can also 

be a hierarchy flow 
with 1-bit leaves) 
and some scattered 
Values, then 

returns two values 
in a list: 1) the valid 
Values with 

corresponding bits 
set in the 
VId Mask all 

collapsed down (i.e., 
he first valid value 
occupies index 0, 
etc), and 2) a count 
of the number of 
bits set in 
SVId Mask. 

Equivalent to 
passing the indexes 
0, 1, 2, etc. as the 
SValues in 
SVId Mask-> 
Gathered (SValues) 

Sep. 18, 2014 
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TABLE 1-continued 

Op Example Out Width 

SVId Mask-> 
Scattered Index( 
SG Index) 

Scattered Index 

Gathered Index SVId Mask-> 
Gathered Index( 
SS Index) 

user-defined 
max(width0, Swidthl) 

Tree SExprO->Tree(Scallback) 
: SSel? SExpr1 : SExprO 

0041 Further, in one embodiment, the compute construct 
may be incorporated into the integrated circuit design in 
association with the one or more data flows. In one embodi 
ment, the one or more data flows may be passed into the 
compute construct, where they may be checked at each stage. 
In another embodiment, errors may be immediately found 
and the design script may be killed immediately upon finding 
an error. In this way, a user may avoid reviewing a large 
amount of propagated errors. In yet another embodiment, the 
compute construct may check that each input data flow is an 
output data flow from some other constructoris what is called 
a deferred output. 
0042. For example, a deferred output may include an indi 
cation that a data flow is a primary design input or a data flow 
will be connected later to the output of some future construct. 
In another embodiment, it may be confirmed that each input 
data flow is an input to no other constructs. In yet another 
embodiment, each construct may create one or more output 
data flows that may then become the inputs to other con 
structs. In this way, the concept of correctness-by-construc 
tion may be promoted. In still another embodiment, the con 
structs may be Superflow-aware. For example, some 
constructs may expect Superflows, and others may performan 
implicit for loop on the superflows subflows so that the user 
doesn’t have to. 

0043. Furthermore, in one embodiment, a set of introspec 
tion methods may be provided that may allow user designs 
and generators to interrogate data flows. For example, the 
compute construct may use these introspection functions to 
perform their work. More specifically, the introspection 
methods may enable obtaining a list of field names within a 
hierarchical data flow, widths of various subflows, etc. In 
another embodiment, in response to the introspection meth 
ods, values may be returned in forms that are easy to manipu 
late by the scripting language. 
0044) Further still, in one embodiment, the compute con 
struct may include constructs that are built into the hardware 
description language and that perform various data steering 
and storage operations that have to be built into the language. 

log2(SVId Mask->width ()) 

log2(SVId Mask->width ()) 
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Description 

Given a valid mask 
and a gathered 
index, returns the 
scattered index 
corresponding to 
that gathered index. 
Given a valid mask 
and a scattered 
index (whose bit 
must be set in 
SVId Mask), returns 
the gathered index 
corresponding to 
that scattered index. 
In other words, it 
returns the number 
of ones in the 
SVId Mask to the 
right of bit position 
SS Index. 

conditiona 

In another embodiment, the constructs may be bug-free (veri 
fied) as an incentive for the user to utilize them as much as 
possible. 
0045 Also, in one embodiment, the compute construct 
may contain one or more parameters. For example, the com 
pute construct may contain a “name parameter that indicates 
abuse module name that will be used for the compute con 
struct and which shows up in the debugger. In another 
embodiment, the compute construct may contain a "com 
ment' parameter that provides a textual comment that shows 
up in the debugger. In yet another embodiment, the compute 
construct may contain a parameter that corresponds to an 
interface protocol. In one embodiment, the interface protocol 
may include a communications protocol associated with a 
particular interface. In another embodiment, the communica 
tions protocol may include one or more formats for commu 
nicating data utilizing the interface, one or more rules for 
communicating data utilizing the interface, a syntax used 
when communicating data utilizing the interface, semantics 
used when communicating data utilizing the interface, Syn 
chronization methods used when communicating data utiliz 
ing the interface, etc. In one example, the compute construct 
may include a “stallable' parameter that indicates whether 
automatic data flow control is to be performed within the 
construct (e.g., whether input data flows are to be automati 
cally stalled when outputs arent ready, etc.). For example, if 
the “stallable' parameter is 0, the user may use various data 
flow methods such as Valid() and Ready (), as well as a Stall 
statement to perform manual data flow control. 
0046 Additionally, in one embodiment, the compute con 
struct may contain an out fifo parameter that allows the user 
to specify a depth of the output FIFO for each output data 
flow. For example, when multiple output data flows are 
present, the user may supply one depth that is used by all, or 
an array of per-output-flow depths. In another embodiment, 
the compute construct may contain an out regparameter that 
causes the output data flow to be registered out. For example, 
the out reg parameter may take a 0 or 1 value or an array of 
such like out fifo. 
0047. Further, in one embodiment, the compute construct 
may contain an out rdy reg parameter that causes the output 
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data flows implicit ready signal to be registered in. This may 
also lay down an implicit skid flip-flop before the out regif 
the latter is present. In another embodiment, out fifo, out 
reg, and out rdy reg may be mutually exclusive and may be 
used in any combination. 
0048. Further still, in one embodiment, clocking and clock 
gating may be handled implicitly by the compute construct. 
For example, there may be three levels of clock gating that 
may be generated automatically: fine-grain clock gating 
(FGCG), second-level module clock gating (SLCG), and 
block-level design clock gating (BLCG). In another embodi 
ment, FGCG may be handled by synthesis tools. In yet 
another embodiment, a per-construct (i.e., per-module) status 
may be maintained. In still another embodiment, when the 
status is IDLE or STALLED, all the flip-flops and rams in that 
module may be gated. In another embodiment, the statuses 
from all the constructs may be combined to form the design 
level status that is used for the BLCG. This may be performed 
automatically, though the user may override the status value 
for any Compute() construct using the Status <value State 
ment. 

0049. Also, in one embodiment, a control construct may 
be incorporated into the integrated circuit design in associa 
tion with the compute construct and the one or more data 
flows. For example, an output data flow from the control 
construct may act as an input data flow to the compute con 
struct, oran output data flow from the compute construct may 
act as an input data flow to the control construct. See, for 
example, U.S. patent application Ser. No. (Attorney 
Docket No. NVIDP800/DU-12-0790), filed Mar. 15, 2013, 
which is hereby incorporated by reference in its entirety, and 
which describes exemplary compute constructs. 
0050 FIG. 3 shows an exemplary hardware design envi 
ronment 300, in accordance with one embodiment. As an 
option, the environment 300 may be carried out in the context 
of the functionality of FIGS. 1-2. Of course, however, the 
environment 300 may be implemented in any desired envi 
ronment. It should also be noted that the aforementioned 
definitions may apply during the present description. 
0051. As shown, within a design module 302, reusable 
component generators 304, functions 306, and a hardware 
description language embedded in a scripting language 308 
are all used to construct a design that is run and stored 310 at 
a source database 312. Also, any build errors within the 
design are corrected 344, and the design module 302 is 
updated. Additionally, the system backend is run on the con 
structed design 314 as the design is transferred from the 
source database 312 to a hardware model database 316. 
0052 Additionally, the design in the hardware model data 
base 316 is translated into C++ or CUDATTM 324, translated 
into VerilogR 326, or sent directly to the hardware model 
database 336. If the design is translated into C++ or CUDATM 
324, the translated design 330 is provided to a signal dump 
334 and then to a high level debugger 336. If the design is 
translated into VerilogR.326, the translated design is provided 
to the signal dump 334 or a VCS simulation 328 is run on the 
translated design, which is then provided to the signal dump 
334 and then to the high level GUI (graphical user interface) 
waveform debugger 336. Any logic bugs found using the high 
level GUI waveform debugger 336 can then be corrected 340 
utilizing the design module 302. 
0053 FIG. 4 illustrates an exemplary system 400 in which 
the various architecture and/or functionality of the various 
previous embodiments may be implemented. As shown, a 
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system 400 is provided including at least one host processor 
401 which is connected to a communication bus 402. The 
communication bus 402 may be implemented using any Suit 
able protocol, such as PCI (Peripheral Component Intercon 
nect), PCI-Express, AGP (Accelerated Graphics Port), 
HyperTransport, or any other bus or point-to-point commu 
nication protocol(s). The system 400 also includes a main 
memory 404. Control logic (software) and data are stored in 
the main memory 404 which may take the form of random 
access memory (RAM). 
0054 The system 400 also includes input devices 412, a 
graphics processor 406 and a display 408, i.e. a conventional 
CRT (cathode ray tube), LCD (liquid crystal display), LED 
(light emitting diode), plasma display or the like. User input 
may be received from the input devices 412, e.g., keyboard, 
mouse, touchpad, microphone, and the like. In one embodi 
ment, the graphics processor 406 may include a plurality of 
shader modules, a rasterization module, etc. Each of the fore 
going modules may even be situated on a single semiconduc 
tor platform to form a graphics processing unit (GPU). 
0055. In the present description, a single semiconductor 
platform may refer to a sole unitary semiconductor-based 
integrated circuit or chip. It should be noted that the term 
single semiconductor platform may also refer to multi-chip 
modules with increased connectivity which simulate on-chip 
operation, and make Substantial improvements over utilizing 
a conventional central processing unit (CPU) and bus imple 
mentation. Of course, the various modules may also be situ 
ated separately or in various combinations of semiconductor 
platforms per the desires of the user. The system may also be 
realized by reconfigurable logic which may include (but is not 
restricted to) field programmable gate arrays (FPGAs). 
0056. The system 400 may also include a secondary stor 
age 410. The secondary storage 410 includes, for example, a 
hard disk drive and/or a removable storage drive, representing 
a floppy disk drive, a magnetic tape drive, a compact disk 
drive, digital versatile disk (DVD) drive, recording device, 
universal serial bus (USB) flash memory, etc. The removable 
storage drive reads from and/or writes to a removable storage 
unit in a well-known manner. 
0057 Computer programs, or computer control logic 
algorithms, may be stored in the main memory 404 and/or the 
secondary storage 410. Such computer programs, when 
executed, enable the system 400 to perform various functions. 
Memory 404, storage 410 and/or any other storage are pos 
sible examples of computer-readable media. 
0058. In one embodiment, the architecture and/or func 
tionality of the various previous figures may be implemented 
in the context of the host processor 401, graphics processor 
406, an integrated circuit (not shown) that is capable of at 
least a portion of the capabilities of both the host processor 
401 and the graphics processor 406, a chipset (i.e. a group of 
integrated circuits designed to work and sold as a unit for 
performing related functions, etc.), and/or any other inte 
grated circuit for that matter. 
0059 Still yet, the architecture and/or functionality of the 
various previous figures may be implemented in the context 
of a general computer system, a circuit board system, a game 
console system dedicated for entertainment purposes, an 
application-specific system, and/or any other desired system. 
For example, the system 400 may take the form of a desktop 
computer, laptop computer, server, workstation, game con 
soles, embedded system, and/or any other type of logic. Still 
yet, the system 400 may take the form of various other devices 
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m including, but not limited to a personal digital assistant 
(PDA) device, a mobile phone device, a television, etc. 
0060. Further, while not shown, the system 400 may be 
coupled to a network e.g. a telecommunications network, 
local area network (LAN), wireless network, wide area net 
work (WAN) such as the Internet, peer-to-peer network, cable 
network, etc.) for communication purposes. 
0061. While various embodiments have been described 
above, it should be understood that they have been presented 
by way of example only, and not limitation. Thus, the breadth 
and scope of a preferred embodiment should not be limited by 
any of the above-described exemplary embodiments, but 
should be defined only in accordance with the following 
claims and their equivalents. 
What is claimed is: 
1. A method, comprising: 
identifying a plurality of data values and a callback func 

tion; 
recursively applying the callback function to the plurality 

of data values in order to determine a result; and 
returning the result. 
2. The method of claim 1, wherein the plurality of data 

values include subflows within a numerical hierarchy data 
flow. 

3. The method of claim 1, wherein applying the callback 
function to the plurality of data values includes performing a 
reduction operation on the plurality of data values. 

4. The method of claim 1, wherein applying the callback 
function to the plurality of data values includes identifying 
the each of the plurality of data values as leaf nodes of a 
tree-based data structure. 

5. The method of claim 1, wherein applying the callback 
function to the plurality of data values includes performing a 
first round of comparisons. 

6. The method of claim 5, wherein performing the first 
round of comparisons results in one or more outputs. 

7. The method of claim 5, wherein the first round of com 
parisons are performed at a first level of a tree-based data 
Structure. 

8. The method of claim 1, wherein applying the callback 
function to the plurality of data values includes performing a 
second round of comparisons. 

9. The method of claim 8, wherein each comparison of the 
second round of comparisons includes a comparison of two or 
more outputs resulting from a first round of comparisons. 
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10. The method of claim 8, wherein the second round of 
comparisons are performed at a second level of the tree-based 
data structure. 

11. The method of claim 4, wherein consecutive rounds of 
comparisons are performed by the callback function at each 
level of the tree-based structure until a single output is pro 
duced for a particular round of comparisons. 

12. The method of claim 11, wherein the result includes the 
single output. 

13. The method of claim 1, wherein the result includes a 
hash of information. 

14. The method of claim 1, wherein applying the callback 
function to the plurality of data values is performed by a tree 
function included within a compute construct. 

15. The method of claim 14, wherein the tree function is 
utilized by one or more of a Min() function that returns a 
minimum value from a hierarchical data flow with multiple 
numerically named subflows and a Max() function that 
returns a maximum value from a hierarchical data flow with 
multiple numerically named subflows. 

16. The method of claim 14, wherein the tree function is 
utilized by one or more of a Prio Min() function that returns 
a minimum priority value from a numerical hierarchy data 
flow containing priority values and a Prio Max() function 
that returns a maximum priority value from a numerical hier 
archy data flow containing priority values. 

17. The method of claim 1, wherein the tree function is 
utilized by a scatter-gather function. 

18. The method of claim 1, wherein the callback function 
represents a combinational circuit function configured to 
operate on an input data flow. 

19. A computer program product embodied on a computer 
readable medium, comprising: 

code for identifying a plurality of data values and a call 
back function; 

code for recursively applying the callback function to the 
plurality of data values in order to determine a result; and 

code for returning the result. 
20. A system, comprising: 
a processor for identifying a plurality of data values and a 

callback function, recursively applying the callback 
function to the plurality of data values in order to deter 
mine a result, and returning the result. 
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