(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
(43) International Publication Date 6 May 2016 (06.05.2016)

(51) International Patent Classification:
C09C 1/44 (2006.01) C09D 7/12 (2006.01)

(21) International Application Number:
PCT/US2015/057858

(22) International Filing Date:
28 October 2015 (28.10.2015)

(54) Title: BLACK PIGMENTS COMPRISING GRAPHENIC CARBON PARTICLES

FIG. 2

(57) Abstract: Thermally produced graphene carbon particles for use as black pigments are disclosed. The pigments may be used in coatings and bulk articles to provide desirable jetness characteristics and absorbance at visible wavelengths.
Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
BLACK PIGMENTS COMPRISING GRAPHENIC CARBON PARTICLES

CROSS REFERENCE TO RELATED APPLICATION

FIELD OF THE INVENTION

[0002] The present invention relates to the use of grapheme carbon particles as black pigments.

BACKGROUND OF THE INVENTION

[0003] Specialty carbon blacks are used as black pigments for many applications. They have good electromagnetic radiation absorption across the visible spectrum and in to the infrared (IR) and ultraviolet (UV) regions, have good durability, and are relatively inexpensive. However, carbon black pigments may not provide optimal electromagnetic radiation absorbing properties.

SUMMARY OF THE INVENTION

[0004] An aspect of the invention provides a black coating comprising a resin film, and a black pigment comprising thermally produced grapheme carbon particles in an amount up to 20 weight percent based on the total dry film weight of the coating.

[0005] Another aspect of the invention provides a black coating composition comprising a solvent, a film-forming resin, and thermally produced grapheme carbon particles in an amount up to 20 weight percent of the total solids weight of the film-forming resin and the grapheme carbon particles.

[0006] A further aspect of the invention provides an article comprising a polymeric matrix, and a black pigment dispersed in the polymeric matrix comprising thermally produced grapheme carbon particles in an amount up to 20 weight percent based on the total weight of the polymeric matrix and the thermally produced grapheme carbon particles.
Another aspect of the invention provides a method of making a black coating composition comprising dispersing thermally produced graphene carbon particles and a film-forming resin in a solvent, wherein the thermally produced graphene carbon particles comprise up to 20 weight percent of the total solids weight of the film-forming resin and the thermally produced graphene carbon particles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Fig. 1 is a photograph comparing coatings of the present invention containing black pigment comprising thermally produced graphene particles in comparison with coatings containing carbon black pigment particles.

[0009] Fig. 2 is a graph of absorbance versus wavelengths within the visible region of the electromagnetic spectrum, showing increased absorbance for coatings of the present invention containing black pigment comprising thermally produced graphene particles in comparison with coatings containing carbon black pigment particles.

[0010] Figs. 3 and 4 are back-lit photographs comprising a coating of the present invention containing black pigment comprising thermally produced graphene particles in comparison with a coating containing carbon black pigment particles.

DETAILED DESCRIPTION

[0011] In accordance with embodiments of the invention, thermally produced graphene carbon particles provide favorable jetness properties when used as black pigments, i.e., the graphene carbon particle pigments provide a favorable combination of reduced light reflectance in the visible spectrum as well as a neutral visual appearance of any light throughout the visible spectrum that may be reflected from the coating or article containing the graphene carbon particles. The thermally produced graphene carbon particles provide extremely good absorption across the spectrum, e.g., stronger and more uniform than carbon blacks. Pigments comprising the graphene carbon particles therefore give hiding at substantially lower loadings than carbon black. Such opacity/hiding at lower levels than carbon black provide advantages such as weight savings and formulation freedom. In addition, the
grapheme carbon particles may be produced at relatively low cost to provide lower cost jet black pigments.

[0012] As used herein, the term "coating" includes resinous and non-resinous films, inks, waxes and the like in which thermally produced grapheme carbon particle pigments may be dispersed. The dry film thickness of the coatings may typically range from less than 0.5 microns to 100 microns or more, for example, from 1 to 50 microns. As a particular example, the cured coating thickness may range from 1 to 15 or 20 microns. However, significantly greater coating thicknesses, and significantly greater material dimensions for non-coating materials, are within the scope of the invention.

[0013] In certain embodiments, the thermally produced grapheme carbon particle pigments may be used in coatings to provide desired absorbance characteristics in the visible spectrum, e.g., wavelengths from 400 to 700 nm, and/or in the IR or UV regions. The absorbance may be measured throughout the visible range from 400 to 700 nm, the near IR range (from 780 to 3,000 nm) and/or the UV range (from 100 to 400 nm). In certain embodiments, the absorbance within a selected wavelength range may typically be at least 30 percent, at least 50 percent, at least 70 percent, at least 80 percent, at least 85 percent, or at least 90 percent. For example, when the present thermally produced grapheme carbon particles are used as black pigments in coatings, the absorbance throughout the visible range from 400 to 700 nm may be at least 80 percent, or at least 85 percent, or at least 90 percent, or at least 95 percent at all wavelengths within the visible range. Furthermore, the variation of absorbance at specific wavelengths within a particular range of wavelengths may be reduced in accordance with embodiments of the invention. For example, the highest and lowest absorbance values for specific wavelengths within the 400 to 700 nm range may be within 15 percent of each other, or within 10 percent of each other, or within 5 percent of each other.

[0014] The absorbance of coatings may be dependent on the thickness of a particular coating, and the absorbance may be defined in terms of a standard film thickness at a given loading of grapheme carbon particles. As used herein, the term "minimum absorbance" means the minimum quantity of incident electromagnetic radiation, throughout a specified wavelength range, that is neither reflected nor transmitted by the sample and is measured by a protocol as described in Example 8.
herein. As used herein, the term "minimum absorbance throughout a wavelength range of 400 to 700 nm" is defined and measured as described in Example 8 herein for a coating having a standard dry film thickness of 20 microns at a pigment particle loading of 0.5 weight percent based on the dry film weight of the standard 20 micron-thick coating. Thus, for a coating having a minimum absorbance of 80 percent throughout a wavelength of 400 to 700 nm, the absorbance is measured based on a standard coating of the same composition having a dry film thickness of 20 microns and a graphene carbon particle loading of 0.5 weight percent based on the dry film weight of the standard coating, although the actual coating may have a different thickness and/or a different graphene carbon particle loading than the standard coating.

[0015] The amount or loading of thermally produced graphene carbon particles contained in the coatings in accordance with certain embodiments may be less than 20 weight percent based on the total dry film weight of the coating. For example, the graphene carbon particles may comprise from 0.02 to 10 weight percent, or from 0.05 to 5 weight percent, or from 0.1 to 2 weight percent of the total dry film weight of the coating. In certain embodiments, the amount of graphene carbon particles contained in the coatings may be relatively low while providing the desired level of jetness. For example, the graphene carbon particles may comprise less than 5 weight percent, less than 3 weight percent, less than 2 weight percent, or less than 1 weight percent, based on the total dry film weight of the coating. The particles may be dispersed uniformly through the coating, or non-uniformly, e.g., the particles may have a graded concentration through the thickness of the film coating.

[0016] In certain embodiments, the coatings may be made from coating compositions comprising thermally produced graphene carbon particles dispersed within a curable coating composition comprising a solvent and a matrix material such as a film-forming resin or the like in amounts of from 0.01 to 20 weight percent based on the total solids of the coating composition. For example, the graphene carbon particles may comprise from 0.02 to 10 weight percent, or from 0.05 to 5 weight percent, or from 0.01 to 2 weight percent of the solids weight of the coating composition.

[0017] The resinous coating compositions can comprise any of a variety of thermoplastic and/or thermosetting compositions known in the art. For example, the
coating compositions can comprise film-forming resins selected from epoxy resins, acrylic polymers, polyester polymers, polyurethane polymers, polyamide polymers, polyether polymers, bisphenol A based epoxy polymers, polysiloxane polymers, styrenes, ethylenes, butylenes, copolymers thereof, and mixtures thereof or waxes. Generally, these polymers can be any polymers of these types made by any method known to those skilled in the art. Such polymers may be solvent borne, water soluble or water dispersible, emulsifiable, or of limited water solubility. Furthermore, the polymers may be provided in sol gel systems, may be provided in core-shell polymer systems, or may be provided in powder form. In certain embodiments, the polymers are dispersions in a continuous phase comprising water and/or organic solvent, for example emulsion polymers or non-aqueous dispersions.

[0018] Thermosetting or curable coating compositions typically comprise film forming polymers or resins having functional groups that are reactive with either themselves or a crosslinking agent. The functional groups on the film-forming resin may be selected from any of a variety of reactive functional groups including, for example, carboxylic acid groups, amine groups, epoxide groups, hydroxyl groups, thiol groups, carbamate groups, amide groups, urea groups, isocyanate groups (including blocked isocyanate groups and tris-alkylcarbamoyltriazine) mercaptan groups, styrenic groups, anhydride groups, acetoacetate acrylates, uretidione and combinations thereof.

[0019] Thermosetting coating compositions typically comprise a crosslinking agent that may be selected from, for example, aminoplasts, polyisocyanates including blocked isocyanates, polyepoxides, beta-hydroxyalkylamides, polyacids, anhydrides, organometallic acid-functional materials, polyamines, polyamides, and mixtures of any of the foregoing. Suitable polyisocyanates include multifunctional isocyanates. Examples of multifunctional polyisocyanates include aliphatic diisocyanates like hexamethylene diisocyanate and isophorone diisocyanate, and aromatic diisocyanates like toluene diisocyanate and 4,4'-diphenylmethane diisocyanate. The polyisocyanates can be blocked or unblocked. Examples of other suitable polyisocyanates include isocyanurate trimers, allophanates, and uretdiones of diisocyanates. Examples of commercially available polyisocyanates include DESMODUR N3390, which is sold by Bayer Corporation, and TOLONATE HDT90, which is sold by Rhodia Inc. Suitable aminoplasts include condensates of amines and/or amides with aldehyde. For
example, the condensate of melamine with formaldehyde is a suitable aminoplast. Suitable aminoplasts are well known in the art. A suitable aminoplast is disclosed, for example, in U.S. Pat. No. 6,316,19 at column 5, lines 45-55, incorporated by reference herein. In certain embodiments, the resin can be self crosslinking. Self crosslinking means that the resin contains functional groups that are capable of reacting with themselves, such as alkoxysilane groups, or that the reaction product contains functional groups that are coreactive, for example hydroxyl groups and blocked isocyanate groups.

[0020] In addition to the resin and thermally produced graphene carbon particle components, the coating compositions and cured coatings may include additional components conventionally added to coating or ink compositions, such as cross-linkers, pigments, tints, flow aids, defoamers, dispersants, solvents, UV absorbers, catalysts and surface active agents.

[0021] In addition to their use as pigments in coatings, the present thermally produced graphene carbon particles may also be used as black pigments in thermoplastic and/or thermoset plastic bulk articles. In this embodiment, the thermally produced graphene carbon particles may be dispersed uniformly or non-uniformly in a matrix of the thermoplastic or thermoset plastic bulk material. The particles may typically comprise from 0.01 to 20 weight percent of the total combined weight of the thermoplastic and/or thermoset plastic and the thermally produced graphene carbon particles of the bulk article. For example, from 0.05 to 5 weight percent or from 0.1 to 2 weight percent.

[0022] Suitable bulk thermoplastic materials in which the present thermally produced graphene carbon particles may be dispersed as a black pigment include polyethylene, polypropylene, polystyrene, polymethylmethacrylate, polycarbonate, polyvinylchloride, polyethyleneterephthalate, acrylonitrile-butadiene-styrene, polyvinylbutyral, and polyvinylacetate and the like. In certain embodiments, the thermoplastic may comprise polycarbonate, polyethylene and/or polyvinylchloride.

[0023] In certain embodiments, the plastic material in which the thermally produced graphene carbon particles are dispersed as black pigments include thermoset plastics such as polyurethane, melamine, phenolics, acrylics, polyesters and
the like. For example, the thermoset plastic may comprise melamine, acrylics and/or polyurethane.

[0024] As used herein, the term "grapheme carbon particles" means carbon particles having structures comprising one or more layers of one-atom-thick planar sheets of sp²-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. The average number of stacked layers may be less than 100, for example, less than 50. In certain embodiments, the average number of stacked layers is 30 or less, such as 20 or less, 10 or less, or, in some cases, 5 or less. The grapheme carbon particles may be substantially flat, however, at least a portion of the planar sheets may be substantially curved, curled, creased or buckled. The particles typically do not have a spheroidal or equiaxed morphology.

[0025] In certain embodiments, the grapheme carbon particles have a thickness, measured in a direction perpendicular to the carbon atom layers, of no more than 10 nanometers, no more than 5 nanometers, or, in certain embodiments, no more than 4 or 3 or 2 or 1 nanometers, such as no more than 3.6 nanometers. In certain embodiments, the grapheme carbon particles may be from 1 atom layer up to 3, 6, 9, 12, 20 or 30 atom layers thick, or more. In certain embodiments, the grapheme carbon particles have a width and length, measured in a direction parallel to the carbon atoms layers, of at least 25 nanometers, such as more than 100 nanometers, in some cases more than 100 nanometers up to 500 nanometers, or more than 100 nanometers up to 200 nanometers. The grapheme carbon particles may be provided in the form of ultrathin flakes, platelets or sheets having relatively high aspect ratios (aspect ratio being defined as the ratio of the longest dimension of a particle to the shortest dimension of the particle) of greater than 3:1, such as greater than 10:1.

[0026] In certain embodiments, the grapheme carbon particles have relatively low oxygen content. For example, the grapheme carbon particles may, even when having a thickness of no more than 5 or no more than 2 nanometers, have an oxygen content of no more than 2 atomic weight percent, such as no more than 1.5 or 1 atomic weight percent, or no more than 0.6 atomic weight, such as about 0.5 atomic weight percent. The oxygen content of the grapheme carbon particles can be determined using X-ray Photoelectron Spectroscopy, such as is described in D. R. Dreyer et al, Chem. Soc. Rev. 39, 228-240 (2010).
In certain embodiments, the grapheme carbon particles have a B.E.T. specific surface area of at least 50 square meters per gram, such as 70 to 1000 square meters per gram, or, in some cases, 200 to 1000 square meters per grams or 200 to 400 square meters per gram. As used herein, the term "B.E.T. specific surface area" refers to a specific surface area determined by nitrogen adsorption according to the ASTMD 3663-78 standard based on the Brunauer-Emmett-Teller method described in the periodical "The Journal of the American Chemical Society", 60, 309 (1938).

In certain embodiments, the grapheme carbon particles have a Raman spectroscopy 2D/G peak ratio of at least 1:1, for example, at least 1.2:1 or 1.3:1. As used herein, the term "2D/G peak ratio" refers to the ratio of the intensity of the 2D peak at 2692 cm\(^{-1}\) to the intensity of the G peak at 1,580 cm\(^{-1}\).

In certain embodiments, the grapheme carbon particles have a relatively low bulk density. For example, the grapheme carbon particles are characterized by having a bulk density (tap density) of less than 0.2 g/cm\(^3\), such as no more than 0.1 g/cm\(^3\). For the purposes of the present invention, the bulk density of the grapheme carbon particles is determined by placing 0.4 grams of the grapheme carbon particles in a glass measuring cylinder having a readable scale. The cylinder is raised approximately one-inch and tapped 100 times, by striking the base of the cylinder onto a hard surface, to allow the grapheme carbon particles to settle within the cylinder. The volume of the particles is then measured, and the bulk density is calculated by dividing 0.4 grams by the measured volume, wherein the bulk density is expressed in terms of g/cm\(^3\).

In certain embodiments, the grapheme carbon particles have a compressed density and a percent densification that is less than the compressed density and percent densification of graphite powder and certain types of substantially flat grapheme carbon particles such as those formed from exfoliated graphite. Lower compressed density and lower percent densification are each currently believed to contribute to better dispersion and/or rheological properties than grapheme carbon particles exhibiting higher compressed density and higher percent densification. In certain embodiments, the compressed density of the grapheme carbon particles is 0.9 or less, such as less than 0.8, less than 0.7, such as from 0.6 to 0.7. In certain
embodiments, the percent densification of the grapheme carbon particles is less than 40%, such as less than 30%, such as from 25 to 30%.

[0031] For purposes of the present invention, the compressed density of grapheme carbon particles is calculated from a measured thickness of a given mass of the particles after compression. Specifically, the measured thickness is determined by subjecting 0.1 grams of the grapheme carbon particles to cold press under 15,000 pounds of force in a 1.3 centimeter die for 45 minutes, wherein the contact pressure is 500 MPa. The compressed density of the grapheme carbon particles is then calculated from this measured thickness according to the following equation:

Compressed Density (g/cm³) = \(\frac{0.1 \text{ grams}}{n \ast (1.3\text{cm/2})^{2\ast}(\text{measured thickness in cm})} \)

[0032] The percent densification of the grapheme carbon particles is then determined as the ratio of the calculated compressed density of the grapheme carbon particles, as determined above, to 2.2 g/cm³, which is the density of graphite.

[0033] In certain embodiments, the grapheme carbon particles have a measured bulk liquid conductivity of at least 100 microSiemens, such as at least 120 microSiemens, such as at least 140 microSiemens immediately after mixing and at later points in time, such as at 10 minutes, or 20 minutes, or 30 minutes, or 40 minutes. For the purposes of the present invention, the bulk liquid conductivity of the grapheme carbon particles is determined as follows. First, a sample comprising a 0.5% solution of grapheme carbon particles in butyl cellosolve is sonicated for 30 minutes with a bath sonicator. Immediately following sonication, the sample is placed in a standard calibrated electrolytic conductivity cell (K=1). A Fisher Scientific AB 30 conductivity meter is introduced to the sample to measure the conductivity of the sample. The conductivity is plotted over the course of about 40 minutes.

[0034] The morphology of the grapheme carbon particles may also be measured in terms of a dibutyl phthalate absorption number (DBPA) in accordance with the standard ASTM D2414 test. DBP absorption may be used to measure the relative structure of grapheme carbon particles by determining the amount of DBP a given mass of grapheme carbon particles can absorb before reaching a specified viscous paste. In accordance with certain embodiments, the DBPA of the thermally
produced grapheme carbon particles may typically be at least 200, for example, from 200 to 800, or from 300 to 500.

[0035] In accordance with certain embodiments, percolation, defined as long range interconnectivity, occurs between the conductive grapheme carbon particles. Such percolation may reduce the resistivity of the coating compositions. The conductive grapheme particles may occupy a minimum volume within the coating such that the particles form a continuous, or nearly continuous, network. In such a case, the aspect ratios of the grapheme carbon particles may affect the minimum volume required for percolation.

[0036] In certain embodiments, at least a portion of the grapheme carbon particles to be dispersed in the compositions of the present invention are may be made by thermal processes. In accordance with embodiments of the invention, thermally produced grapheme carbon particles are made from carbon-containing precursor materials that are heated to high temperatures in a thermal zone such as a plasma. As more fully described below, the carbon-containing precursor materials are heated to a sufficiently high temperature, e.g., above 3,500°C, to produce grapheme carbon particles having characteristics as described above. The carbon-containing precursor, such as a hydrocarbon provided in gaseous or liquid form, is heated in the thermal zone to produce the grapheme carbon particles in the thermal zone or downstream therefrom. For example, thermally produced grapheme carbon particles may be made by the systems and methods disclosed in U.S. Patent Nos. 8,486,363 and 8,486,364.

[0037] In certain embodiments, the thermally produced grapheme carbon particles may be made by using the apparatus and method described in U.S. Patent No. 8,486,363 at [0022] to [0048] in which (i) one or more hydrocarbon precursor materials capable of forming a two-carbon fragment species (such as n-propanol, ethane, ethylene, acetylene, vinyl chloride, 1,2-dichloroethane, allyl alcohol, propionaldehyde, and/or vinyl bromide) is introduced into a thermal zone (such as a plasma), and (ii) the hydrocarbon is heated in the thermal zone to form the grapheme carbon particles. In other embodiments, the thermally produced grapheme carbon particles may be made by using the apparatus and method described in U.S. Patent No. 8,486,364 at [0015] to [0042] in which (i) a methane precursor material (such as a material comprising at least 50 percent methane, or, in some cases, gaseous or liquid methane of at least 95 or 99 percent purity or higher) is introduced into a thermal zone.
(such as a plasma), and (ii) the methane precursor is heated in the thermal zone to form the graphene carbon particles. Such methods can produce graphene carbon particles having at least some, in some cases all, of the characteristics described above.

[0038] During production of the graphene carbon particles by the thermal production methods described above, a carbon-containing precursor is provided as a feed material that may be contacted with an inert carrier gas. The carbon-containing precursor material may be heated in a thermal zone, for example, by a plasma system. In certain embodiments, the precursor material is heated to a temperature of at least 3,500°C, for example, from a temperature of greater than 3,500°C or 4,000°C up to 10,000°C or 20,000°C. Although the thermal zone may be generated by a plasma system, it is to be understood that any other suitable heating system may be used to create the thermal zone, such as various types of furnaces including electrically heated tube furnaces and the like.

[0039] The gaseous stream may be contacted with one or more quench streams that are injected into the plasma chamber through at least one quench stream injection port. The quench stream may cool the gaseous stream to facilitate the formation or control the particle size or morphology of the graphene carbon particles. In certain embodiments of the invention, after contacting the gaseous product stream with the quench streams, the ultrafine particles may be passed through a converging member. After the graphene carbon particles exit the plasma system, they may be collected. Any suitable means may be used to separate the graphene carbon particles from the gas flow, such as, for example, a bag filter, cyclone separator or deposition on a substrate.

[0040] In certain embodiments, at least a portion of the thermally produced graphene carbon particles as described above may be replaced with graphene carbon particles from commercial sources, for example, from Angstron Materials, XG Sciences and other commercial sources. However, due to the high electromagnetic radiation absorbance of black pigments comprising the thermally produced graphene carbon particles of the present invention, their substitution with commercially available graphene carbon particles may not be optimal for many applications. In such embodiments, the commercially available graphene carbon particles may comprise exfoliated graphite and have different characteristics in comparison with the
thermally produced grapheme carbon particles, such as different size distributions, thicknesses, aspect ratios, structural morphologies, oxygen contents, and chemical functionalities at the basal planes/edges. For example, when thermally produced grapheme carbon particles are combined with commercially available grapheme carbon particles in accordance with embodiments of the invention, a bi-modal distribution, tri-modal distribution, etc. of grapheme carbon particle characteristics may be achieved. The grapheme carbon particles contained in the compositions may have multi-modal particle size distributions, aspect ratio distributions, structural morphologies, edge functionality differences, oxygen content, and the like.

[0041] In certain embodiments, the grapheme carbon particles are functionalized. As used herein, "functionalized", when referring to grapheme carbon particles, means covalent bonding of any non-carbon atom or any organic group to the grapheme carbon particles. The grapheme carbon particles may be functionalized through the formation of covalent bonds between the carbon atoms of a particle and other chemical moieties such as carboxylic acid groups, sulfonic acid groups, hydroxyl groups, halogen atoms, nitro groups, amine groups, aliphatic hydrocarbon groups, phenyl groups and the like. For example, functionalization with carbonaceous materials may result in the formation of carboxylic acid groups on the grapheme carbon particles. The grapheme carbon particles may also be functionalized by other reactions such as Diels-Alder addition reactions, 1,3-dipolar cycloaddition reactions, free radical addition reactions and diazonium addition reactions. In certain embodiments, the hydrocarbon and phenyl groups may be further functionalized. If the grapheme carbon particles already have some hydroxyl functionality, the functionality can be modified and extended by reacting these groups with, for example, an organic isocyanate.

[0042] In certain embodiments, coating compositions or other types of compositions in which the present black pigments are dispersed may be produced by initially dispersing the grapheme carbon particles in a carrier. Such dispersions may comprise: (a) grapheme carbon particles such as any of those described above; (b) a carrier that may be selected from water, at least one organic solvent, or combinations of water and at least one organic solvent; (c) at least one polymeric dispersant, such as the copolymer described generally below; and, optionally, (d) at least one resin as described above or other additives.
Certain compositions comprise at least one polymeric dispersant. In certain embodiments, such a polymeric dispersant comprises a tri-block copolymer comprising: (i) a first segment comprising grapheme carbon affinic groups, such as hydrophobic aromatic groups; (ii) a second segment comprising polar groups, such as hydroxyl groups, amine groups, ether groups, and/or acid groups; and (iii) a third segment which is different from the first segment and the second segment, such as a segment that is substantially non-polar, i.e., substantially free of polar groups. As used herein, term "substantially free" when used with reference to the absence of groups in a polymeric segment, means that no more than 5% by weight of the monomer used to form the third segment comprises polar groups.

Suitable polymeric dispersants include acrylic copolymers produced from atom transfer radical polymerization. In certain embodiments, such copolymers have a weight average molecular weight of 1,000 to 20,000.

In certain embodiments, the polymeric pigment dispersant has a polymer chain structure represented by the following general formula (I),

\[\Phi-(G)_p-(W)_q-(Y)_s-T \]

(1)

wherein \(G \) is a residue of at least one radically polymerizable ethylenically unsaturated monomer; \(W \) and \(Y \) are residues of at least one radically polymerizable ethylenically unsaturated monomer with \(W \) and \(Y \) being different from one another; \(Y \) is optional; \(\Phi \) is a hydrophobic residue of or derived from an initiator and is free of the radically transferable group; \(T \) is or is derived from the radically transferable group of the initiator; \(p, q \) and \(s \) represent average numbers of residues occurring in a block of residues; \(p, q \) and \(s \) are each individually selected such that the polymeric dispersant has a number average molecular weight of at least 250.

The polymeric dispersant may be described generally as having a head and tail structure, i.e., as having a polymeric head portion and a polymeric tail portion. The polymeric tail portion may have a hydrophilic portion and a hydrophobic portion, particularly at the terminus thereof. While not intending to be bound by any theory, it is believed that the polymeric head portion of the polymeric dispersant can be associated with the grapheme carbon particles, while the polymeric tail portion aids in
dispersing the graphene carbon particles and can be associated with other components of an ink or coating composition. As used herein, the terms "hydrophobic" and "hydrophilic" are relative to each other.

[0047] In certain embodiments, the polymeric dispersant is prepared by atom transfer radical polymerization (ATRP). The ATRP process can be described generally as comprising: polymerizing one or more radically polymerizable monomers in the presence of an initiation system; forming a polymer; and isolating the formed polymer. In certain embodiments, the initiation system comprises: a monomeric initiator having a single radically transferable atom or group; a transition metal compound, i.e., a catalyst, which participates in a reversible redox cycle with the initiator; and a ligand, which coordinates with the transition metal compound. The ATRP process is described in further detail in International Patent Publication No. WO 98/40415 and U.S. Pat. Nos. 5,807,937, 5,763,548 and 5,789,487.

[0048] Catalysts that may be used in the ATRP preparation of the polymeric dispersant include any transition metal compound that can participate in a redox cycle with the initiator and the growing polymer chain. It may be preferred that the transition metal compound not form direct carbon-metal bonds with the polymer chain. Transition metal catalysts useful in the present invention may be represented by the following general formula (II),

\[\text{M}^{n+}\text{X}_n \]

(II)

wherein M is the transition metal; n is the formal charge on the transition metal having a value of from 0 to 7; and X is a counterion or covalently bonded component. Examples of the transition metal M include, but are not limited to, Cu, Fe, Au, Ag, Hg, Pd, Pt, Co, Mn, Ru, Mo, Nb and Zn. Examples of X include, but are not limited to, halide, hydroxy, oxygen, Cl-C6-alkoxy, cyano, cyanato, thiocyanato and azido. In one specific example, the transition metal is Cu(I) and X is halide, for example, chloride. Accordingly, one specific class of transition metal catalysts is the copper halides, for example, Cu(I)Cl. In certain embodiments, the transition metal catalyst may contain a small amount, for example, 1 mole percent, of a redox conjugate, for example, Cu(II)Cl₂ when Cu(I)Cl is used. Additional catalysts useful in preparing the polymeric dispersant are described in U.S. Pat. No. 5,807,937 at column 18, lines 29
through 56. Redox conjugates are described in further detail in U.S. Pat. No.
5,807,937 at column 11, line 1 through column 13, line 38.

[0049] Ligands that may be used in the ATRP preparation of the polymeric
dispersant include, but are not limited to, compounds having one or more nitrogen,
oxygen, phosphorus and/or sulfur atoms, which can coordinate to the transition metal
catalyst compound, for example, through sigma and/or pi bonds. Classes of useful
ligands include, but are not limited to, unsubstituted and substituted pyridines and
bipyridines; porphyrins; cryptands; crown ethers; for example, 18-crown-6;
polyamines, for example, ethylenediamine; glycols, for example, alkylene glycols,
such as ethylene glycol; carbon monoxide; and coordinating monomers, for example,
styrene, acrylonitrile and hydroxyalkyl (meth)acrylates. As used herein, the term
"(meth)acrylate" and similar terms refer to acrylates, methacrylates and mixtures of
acrylates and methacrylates. One specific class of ligands are the substituted
bipyridines, for example, 4,4'-dialkyl-bipyridyls. Additional ligands that may be used
in preparing polymeric dispersant are described in U.S. Pat. No. 5,807,937 at column
18, line 57 through column 21, line 43.

[0050] Classes of monomeric initiators that may be used in the ATRP
preparation of the polymeric dispersant include, but are not limited to, aliphatic
compounds, cycloaliphatic compounds, aromatic compounds, polycyclic aromatic
compounds, heterocyclic compounds, sulfonyl compounds, sulphenyl compounds,
esters of carboxylic acids, nitrites, ketones, phosphonates and mixtures thereof, each
having a radially transferable group, and preferably a single radially transferable
group. The radially transferable group of the monomeric initiator may be selected
from, for example, cyano, cyanato, thiocyanato, azido and halide groups. The
monomeric initiator may also be substituted with functional groups, for example,
oxyranyl groups, such as glycidyl groups. Additional useful initiators are described in
U.S. Pat. No. 5,807,937 at column 17, line 4 through column 18, line 28.

[0051] In certain embodiments, the monomeric initiator is selected from 1-
halo-2,3-epoxypropane, p-toluenesulfonyl halide, p-toluensulfenyl halide, C6-C20-
alkyl ester of alpha-halo-C2-C6-carboxylic acid, halomethylbenzene, (1-
haloethyl)benzene, halomethylnapthalene, halomethylnaphthalene and mixtures
thereof. Examples of C2-C6-alkyl ester of alpha-halo-C2-C6-carboxylic acids include,
hexyl alpha-bromopropionate, 2-ethylhexyl alpha-bromopropionate, 2-ethylhexyl
alpha-bromohexionate and icosanyl alpha-bromopropionate. As used herein, the term "monomeric initiator" is meant to be distinguishable from polymeric initiators, such as polyethers, polyurethanes, polyesters and acrylic polymers having radically transferable groups.

[0052] In the ATRP preparation, the polymeric dispersant and the amounts and relative proportions of monomeric initiator, transition metal compound and ligand may be those for which ATRP is most effectively performed. The amount of initiator used can vary widely and is typically present in the reaction medium in a concentration of from 10^{-4} moles/liter (M) to 3 M, for example, from 10^{-3} M to 10^{-1} M. As the molecular weight of the polymeric dispersant can be directly related to the relative concentrations of initiator and monomer(s), the molar ratio of initiator to monomer is an important factor in polymer preparation. The molar ratio of initiator to monomer is typically within the range of 10^{-4}:1 to 0.5:1, for example, 10^{-3}:1 to 5×10^{-3}:1.

[0053] In preparing the polymeric dispersant by ATRP methods, the molar ratio of transition metal compound to initiator is typically in the range of 10^{-4}:1 to 10:1, for example, 0.1:1 to 5:1. The molar ratio of ligand to transition metal compound is typically within the range of 0.1:1 to 100:1, for example, 0.2:1 to 10:1.

[0054] The polymeric dispersant may be prepared in the absence of solvent, i.e., by means of a bulk polymerization process. Often, the polymeric dispersant is prepared in the presence of a solvent, typically water and/or an organic solvent. Classes of useful organic solvents include, but are not limited to, esters of carboxylic acids, ethers, cyclic ethers, C5-C10 alkanes, Cs-Cs cycloalkanes, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, amides, nitrites, sulfones, sulfones and mixtures thereof. Supercritical solvents, such as CO2, C1-C4 alkanes and fluorocarbons, may also be employed. One class of solvents is the aromatic hydrocarbon solvents, such as xylene, toluene, and mixed aromatic solvents such as those commercially available from Exxon Chemical America under the trademark SOLVESSO. Additional solvents are described in further detail in U.S. Pat. No. 5,807,937, at column 21, line 44 through column 22, line 54.

[0055] The ATRP preparation of the polymeric dispersant is typically conducted at a reaction temperature within the range of 25°C to 140°C, for example,
from 50°C to 100°C, and a pressure within the range of 1 to 100 atmospheres, usually at ambient pressure.

[0056] The ATRP transition metal catalyst and its associated ligand are typically separated or removed from the polymeric dispersant prior to its use in the polymeric dispersants of the present invention. Removal of the ATRP catalyst may be achieved using known methods, including, for example, adding a catalyst binding agent to the mixture of the polymeric dispersant, solvent and catalyst, followed by filtering. Examples of suitable catalyst binding agents include, for example, alumina, silica, clay or a combination thereof. A mixture of the polymeric dispersant, solvent and ATRP catalyst may be passed through a bed of catalyst binding agent. Alternatively, the ATRP catalyst may be oxidized in situ, the oxidized residue of the catalyst being retained in the polymeric dispersant.

[0057] With reference to general formula (I), G may be a residue of at least one radically polymerizable ethylenically unsaturated monomer, such as a monomer selected from an oxirane functional monomer reacted with a carboxylic acid which may be an aromatic carboxylic acid or polycyclic aromatic carboxylic acid.

[0058] The oxirane functional monomer or its residue that is reacted with a carboxylic acid maybe selected from, for example, glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl(meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl(meth)acrylate, allyl glycidyl ether and mixtures thereof. Examples of carboxylic acids that may be reacted with the oxirane functional monomer or its residue include, but are not limited to, napthoic acid, hydroxy napthoic acids, para-nitrobenzoic acid and mixtures thereof.

[0059] With continued reference to general formula (I), in certain embodiments, W and Y may each independently be residues of, include, but are not limited to, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, iso-butyl (meth)acrylate, tert-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, 3,3,5-trimethylcyclohexyl (meth)acrylate, isocane (meth)acrylate, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, butyl (meth)acrylate, methoxy poly(ethylene glycol) mono(meth)acrylate, poly(ethylene glycol) mono(meth)acrylate, methoxy
poly(propylene glycol) mono (meth)acrylate, poly(propylene glycol) mono (meth)acrylate, methoxy copoly(ethylene glycol/propylene glycol) mono (meth)acrylate, copoly(ethylene glycol/propylene glycol) mono (meth)acrylate.

[0060] In general formula (I), in certain embodiments, W and Y may each independently be residues of monomers having more than one (meth)acryloyl group, such as (meth)acrylic anhydride, diethyleneglycol bis(meth)acrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 4,4'-isopropylidenediphenol bis(meth)acrylate (Bisphenol A di(meth)acrylate), alkoxylated 4,4'-isopropylidenediphenol bis(meth)acrylate, trimethylolpropane tris(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, and copoly(ethylene glycol/propylene glycol) di(meth)acrylate.

[0061] The numerals p, q and s represent the average total number of G, W and Y residues, respectively, occurring per block or segment of G residues (G-block or G-segment), W residues (W-block or W-segment) and Y residues (Y-block G or Y-segment), respectively. When containing more than one type or species of monomer residue, the W- and Y-blocks may each have at least one of random block (e.g., di-block and tri-block), alternating, and gradient architectures. Gradient architecture refers to a sequence of different monomer residues that change gradually in a systematic and predictable manner along the polymer backbone. For purposes of illustration, a W-block containing 6 residues of butyl methacrylate (BMA) and 6 residues of hydroxy propyl methacrylate (HPMA), for which q is 12, may have di-block, tetra-block, alternating and gradient architectures as described in U.S. Pat. No. 6,642,301, col. 10, lines 5-25. In certain embodiments, the G-block may include about 5-15 residues of glycidyl(meth)acrylate reacted with an aromatic carboxylic acid (such as 3-hydroxy-2-napthoic acid), the W-block may be a random block of about 20-30 BMA and HPMA residues and the Y-block may be a uniform block of about 5-15 butyl acrylate (BA) residues.

[0062] The order in which monomer residues occur along the polymer backbone of the polymeric dispersant is typically determined by the order in which the corresponding monomers are fed into the vessel in which the controlled radical polymerization is conducted. For example, the monomers that are incorporated as residues in the G-block of the polymeric dispersant are generally fed into the reaction
vessel prior to those monomers that are incorporated as residues in the W-block, followed by the residues of the Y-block.

[0063] During formation of the W- and Y-blocks, if more than one monomer is fed into the reaction vessel at a time, the relative reactivities of the monomers typically determines the order in which they are incorporated into the living polymer chain. Gradient sequences of monomer residues within the W- and Y-blocks can be prepared by controlled radical polymerization, and, in particular, by ATRP methods by (a) varying the ratio of monomers fed to the reaction medium during the course of the polymerization, (b) using a monomer feed containing monomers having different rates of polymerization, or (c) a combination of (a) and (b). Copolymers containing gradient architecture are described in further detail in U.S. Pat. No. 5,807,937, at column 29, line 29 through column 31, line 35.

[0064] In certain embodiments, subscripts q and s each have a value of at least 1, such as at least 5 for general formula (I). Also, subscript s often has a value of less than 300, such as less than 100, or less than 50 (for example 20 or less) for general formula (I). The values of subscripts q and s may range between any combination of these values, inclusive of the recited values, for example, s may be a number from 1 to 100. Subscript p may have a value of at least 1, such as at least 5. Subscript p also often has a value of less than 300, such as less than 100 or less than 50 (e.g., 20 or less). The value of subscript p may range between any combination of these values, inclusive of the recited values, for example, p may be a number up to 50. The polymeric dispersant often has a number average molecular weight (Mn) of from 250 to 40,000, for example, from 1000 to 30,000 or from 2000 to 20,000, as determined by gel permeation chromatography using polystyrene standards.

[0065] Symbol Φ of general formula (I) is, or is derived from, the residue of the initiator used in the preparation of the polymeric dispersant by controlled radical polymerization, and is free of the radically transferable group of the initiator. For example, when the polymeric dispersant is initiated in the presence of toluene sulfonyl chloride, the symbol Φ, more specifically Φ- is the residue,
The symbol Φ may also represent a derivative of the residue of the initiator.

[0066] In general formula (I), T is derived from the radically transferable group of the ATRP initiator. The residue of the radically transferable group may be (a) left on the polymeric dispersant, (b) removed or (c) chemically converted to another moiety. The radically transferable group may be removed by substitution with a nucleophilic compound, for example, an alkali metal alkoxylate. When the residue of the radically transferable group is, for example, a cyano group (—CN), it can be converted to an amide group or carboxylic acid group by methods known in the art.

[0067] The polymeric dispersant is typically present in the graphene carbon particle dispersion described above in an amount of at least 0.1 percent by weight, such as at least 0.5 percent by weight, or, in some cases, at least 1 percent by weight, based on the total weight of the graphene carbon particle dispersion. The polymeric dispersant may typically be present in the graphene carbon particle dispersion in an amount of less than 75 percent by weight, or less than 50 percent by weight, based on the total weight of the graphene carbon particle dispersion. In certain embodiments, the polymeric dispersant may be present in the graphene carbon particle dispersion in an amount of less than 30 percent by weight, or less than 15 percent by weight, based on the total weight of the graphene carbon particle dispersion.

[0068] The graphene carbon particle dispersion often also comprises at least water and/or at least one organic solvent. Classes of organic solvents that may be present include, but are not limited to, xylene, toluene, alcohols, for example, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butyl alcohol, tert-butyl alcohol, iso-butyl alcohol, furfuryl alcohol and tetrahydrofurfuryl alcohol; ketones or ketoalcohols, for example, acetone, methyl ethyl ketone, and diacetone alcohol;
ethers, for example, dimethyl ether and methyl ethyl ether; cyclic ethers, for example, tetrahydrofuran and dioxane; esters, for example, ethyl acetate, ethyl lactate, ethylene carbonate and propylene carbonate; polyhydric alcohols, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, tetraethylene glycol, polyethylene glycol, glycerol, 2-methyl-2,4-pentanediol and 1,2,6-hexanetriol; hydroxy functional ethers of alkylene glycols, for example, butyl 2-hydroxyethyl ether, hexyl 2-hydroxyethyl ether, methyl 2-hydroxypropyl ether and phenyl 2-hydroxypropyl ether; nitrogen containing cyclic compounds, for example, pyrrolidone, N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone; and sulfur containing compounds such as thioglycol, dimethyl sulfoxide and tetramethylene sulfone. When the solvent comprises water, it can be used alone or in combination with organic solvents such as propylene glycol monomethylether, ethanol and the like.

[0069] The grapheme carbon particle dispersion may be prepared by the use of conventional mixing techniques such as energy intensive mixing or grinding means, such as ball mills or media mills (e.g., sand mills), attritor mills, 3-roll mills, rotor/stator mixers, high speed mixers, sonicators, and the like.

[0070] The grapheme carbon particles may be mixed with film-forming resins and other components of the compositions. For example, for two-part coating systems, the grapheme carbon particles may be dispersed into part A and/or part B. In certain embodiments, the grapheme carbon particles are dispersed into part A by various mixing techniques such as sonication, high speed mixing, media milling and the like. In certain embodiments, the grapheme carbon particles may be mixed into the coating compositions using high-energy and/or high-shear techniques such as sonication, 3-roll milling, ball milling, attritor milling, rotor/stator mixers, and the like.

[0071] The following examples are intended to illustrate various aspects of the present invention, and are not intended to limit the scope of the invention.

Example 1

[0072] A dispersion of thermally produced grapheme carbon particles was made by adding 54.15 g of solvent-born block copolymer dispersant (which comprises 43 weight % n-butyl acetate and 57 weight % block copolymer as disclosed in US
2008/0188610), 76.45 g of n-butyl acetate, and 11.20 g of thermally produced graphene carbon particles produced in accordance with the method disclosed in U.S. Patent No. 8,486,364 having a measured BET surface area of 280 m²/g. The ingredients were added to a 16 oz. glass jar. 700 g of 1.0-1.2 mm Zirconox milling media (from Jyoti Ceramic) was added into the jar. The jar was shaken for 4 hours using a Lau disperser (Model DAS 200, Lau, GmbH). The milling media were then separated from the dispersion product using paper cone paint filters. Extra n-butyl acetate was added to aid in achieving a higher yield from the filtration process. At this point the dispersion had a total solids content of 23.89 weight%, a resin solids content of 17.70 weight%, and a graphene carbon particles content of 6.19 weight%. This dispersion was then placed into a 1.25 quart stainless steel beaker, which was wrapped with a ¼ inch coil of copper tubing through which water was flowing at a low rate to achieve cooling of the beaker. 600 g of glass beads (Duraspheres, GL0179B, from MO-Sci Corporation) of diameter 40 to 80 microns were added to the beaker. A Premier mill dispersator 2000 running at 6000 RPM with a black Norblade polyethylene 1.75 inch impeller were used to further disperse the graphene carbon particles. Extra n-butyl acetate was added at intervals to maintain proper viscosity of mill base in the beaker and maintain a "rolling doughnut" shape of the mill base around the spinning milling blade. The dispersion was milled in the beaker for 15 hours. The final product was obtained by filtering off the glass beads through a nylon mesh filter bag (33-NMO 1X1R-RB, from Brown and O'Malley Co.). The final dispersion had total solids of 14.18 weight%, resin solids of 10.51 weight%, and graphene carbon particles content of 3.67 weight%.

Example 2

[0073] A dispersion of thermally produced graphene carbon particles was produced by adding 33.85 g of solvent-born block copolymer dispersant (which comprises 43 weight % n-butyl acetate and 57 weight % block copolymer as disclosed in US 2008/0188610), 29.15 g of n-butyl acetate, and 7.00 g of thermally produced graphene carbon particles produced in accordance with the method disclosed in U.S. Patent No. 8,486,364 having a measured BET surface area of 280 m²/g into an 8 oz. glass jar along with 350 g of 1.0-1.2 mm Zirconox milling media (from Jyoti Ceramic). The jar was shaken for 4 hours using a Lau disperser (Model DAS 200,
Lau, GmbH). The milling media were then separated from the dispersion product using paper cone paint filters. The final dispersion had 37.50 weight% total solids, 27.76 weight% resin solids, and 9.72 weight% graphene carbon particles.

Example 3

[0074] A carbon black pigment dispersion was produced by making a pre-dispersion in a Premier PSM-11 basket mill, using 0.8-1.0 Zirconox milling media (from Jyoti Ceramic). The ingredients were 7.55 lbs. of solvent-born block copolymer dispersant (which comprises 43 weight % n-butyl acetate and 57 weight % block copolymer as disclosed in US 2008/0188610), 12.12 lbs. of n-butyl acetate, and 3.02 lbs. of carbon black pigment (Emperor 2000 from Cabot Corporation). It was milled for 60 minutes to a Hegman of 6.5 to 7. Another 5.0 lbs. of n-butyl acetate were added as basket mill wash. The pre-dispersion was transferred to a QM-1 mill (from Premier Mill) and was run at a mill speed of 3000 RPM with a product temperature of 121 °F with 0.3 mm YTZ milling media (from Tosoh Corporation) for 40 minutes of residence time. The final dispersion was 33.24 weight% total solids, 24.70 weight% resin solids, and 8.54 weight% carbon black pigment.

Example 4

[0075] A carbon black pigment dispersion was produced by adding 33.85 g of solvent-born block copolymer (which comprises 43 weight % n-butyl acetate and 57 weight % block copolymer as disclosed in US 2008/0188610), 29.15 g of n-butyl acetate, and 7.00 g of carbon black pigment (Monarch 1300, from Cabot Corporation) into an 8 oz. glass jar along with 350 g of 1.0-1.2 mm Zirconox milling media (from Jyoti Ceramic). The jar was shaken for 4 hours using a Lau disperser (Model DAS 200, Lau, GmbH). The milling media were then separated from the dispersion product using paper cone paint filters. The final dispersion had 36.30 weight% total solids, 28.72 weight% resin solids, and 7.61 weight% carbon black pigment.

Example 5

[0076] To evaluate the opacity and absorption of graphene carbon particles, a tinted coating was made comprising 20.00 g of solvent-born block copolymer (which comprises 40.83 weight % n-butyl acetate and 59.17 weight % block copolymer as
disclosed in US 2008/0188610), 1.64 g of the dispersion from Example 1, and 5.17 g
of n-butyl acetate. This was thoroughly mixed and then drawn down using a #44 wire
wound draw down bar (from R. D. Specialties) onto a black/white opacity chart (Chart
PA-2812, from BYK-Gardner). The film was baked in an oven for 30 minutes at 212
°F. The final dried film had a thickness of 20 microns and contained 0.5 weight% of
the grapheme carbon particles. This sample is labeled as "Example 5" in Fig. 1. The
absorption spectrum of the draw down film is shown in Fig. 2.

Example 6

[0077] To evaluate the opacity and absorption of grapheme carbon particles, a
tinted coating was made comprising 20.00 g of solvent-born block copolymer (which
comprises 40.83 weight % n-butyl acetate and 59.17 weight % block copolymer as
disclosed in US 2008/0188610), 0.60 g of the dispersion from Example 2, and 6.21 g
of n-butyl acetate. This was thoroughly mixed and then drawn down using a #44 wire
wound draw down bar (from R. D. Specialties) onto a black/white opacity chart (Chart
PA-2812, from BYK-Gardner). The film was baked in an oven for 30 minutes at 212
°F. The final dried film had a thickness of 20 microns and contained 0.5 weight% of
the grapheme carbon particles. This sample is labeled as "Example 6" in Fig. 1. The
absorption spectrum of the draw down film is shown in Fig. 2.

Example 7

[0078] A comparative example to Examples 5 and 6 was made by making a
tinted coating containing carbon black pigment. The tinted coating was made by
mixing together 20.00 g of solvent-born block copolymer (which comprises 40.83
weight % n-butyl acetate and 59.17 weight % block copolymer as disclosed in US
2008/0188610), 0.69 g of the dispersion from Example 3, and 6.13 g of n-butyl
acetate. This was drawn down using a #44 wire wound draw down bar (from R. D.
Specialties) onto a black/white opacity chart (Chart PA-2812, from BYK-Gardner).
The film was baked in an oven for 30 minutes at 212 °F. The final dried film had a
thickness of 20 microns and contained 0.5 weight% of the carbon black pigment. This
sample is labeled as "Example 7" in Fig. 1. The absorption spectrum of the draw
down film is shown in Fig. 2. Visual comparison of the draw downs (Fig. 1) and
comparison of the data (Fig. 2) show that the thermally produced grapheme carbon
particles are hiding better and are more neutrally colored (gray rather than brown) than carbon black pigment.

Example 8

[0079] A comparative example to Example 5 and 6 was made by making a tinted coating containing a carbon black pigment. The tinted coating was made by mixing together 20.00 g of solvent-born block copolymer (which comprises 40.83 weight % n-butyl acetate and 59.17 weight % block copolymer as disclosed in US 2008/0188610), 0.58 g of the dispersion from Example 4, and 6.23 g of n-butyl acetate. This was drawn down using a #44 wire wound draw down bar (from R. D. Specialties) onto a black/white opacity chart (Chart PA-2812, from BYK-Gardner). The film was baked in an oven of 30 minutes at 212 °F. The final dried film had a thickness of 20 microns and contained 0.5 weight% of the carbon black pigment. This sample is labeled as "Example 8" in Fig. 1. The absorption spectrum of the draw down film is shown in Fig. 2. Visual comparison of the draw downs (Fig. 1) and comparison of the data (Fig. 2) show that the thermally produced graphene carbon particles are hiding better and are more neutrally colored (gray rather than brown) than carbon black pigment.

[0080] Fig. 2 is a graph of absorbance versus wavelength for the films described in Examples 5 through 8. Specifically, the absorbance spectra labeled Example 5 and Example 6 in Fig. 2 were obtained using the draw down samples from Examples 5 and 6 with 20 micron-thick coatings containing 0.5 weight percent graphene carbon particles, as described in those examples. The absorbance spectra labeled Example 7 and Example 8 in Fig. 2 were obtained using the draw down samples from Examples 7 and 8 with coatings containing carbon black, as described in those examples.

[0081] The absorbance values were obtained by measuring the reflectance at wavelengths from 400 to 700 nm at 10 nm intervals using an X-Rite Color i7 spectrophotometer, of the pigmented films over the black and white portions of the substrate. In addition, the reflectance values of the black and white portions of the substrate itself were similarly measured. Using all of these reflectance values of the films and of the black and white portions of the substrate, the reflectance and transmittance of the pigmented films themselves (in the absence of a substrate) were
derived using Equation 16 from Wen-Dar Ho, Chen-Chi M. Ma, and Lieh-Chun Wu, "Diffuse Reflectance and Transmittance of IR Absorbing Polymer Film", *Polymer Engineering and Science*, October 1998, Volume 38, No. 10. Then, using Kirchoff's law ($R + T + A = 1$), where R is the reflectance, T is the transmittance, and A is the absorbance, the absorbance was calculated from the derived R and T values at each wavelength. In addition to demonstrating higher absorbances for the Example 5 and Example 6 samples throughout the visible range of 400 to 700 nm, the results shown in Fig. 2 also demonstrate that the Example 5 and Example 6 samples have less variance in their absorbances within the visible range, e.g., the highest and lowest absorbance values for specific wavelengths within the 400 to 700 nm range are well below 10 percent for the Example 5 and Example 6 samples as demonstrated by their relatively flat and horizontal plots. While the results shown in Fig. 2 correspond to wavelengths in the visible region (400 to 700 nm), it is to be understood that the use of the present graphene carbon particles in coatings and other materials may also result in improved properties in other regions, including the UV region and/or IR region.

Example 9

[0082] Fig. 3 illustrates a backlit coating sample comprising thermally produced graphene carbon particles as a black pigment, film forming resins primarily consisting of polyester and melamine, and inorganic pigments primarily consisting of TiO2 and barytes. The coating sample was spray applied on to glass at a final dry film thickness of 1.1 - 1.2 mils. The sample was backlit via LED lighting directly on to the uncoated glass side and photographed in a dark room.

[0083] Fig. 4 illustrates a backlit coating sample comprising a carbon black pigment prepared identically to the coating sample shown in Fig. 3, with the exception that the thermally produced graphene carbon particles were replaced with carbon black pigment. Sample preparation, resin formulation, film application and final dry film thickness were identical to that of the coating sample illustrated in Fig. 3. The sample was backlit via LED lighting directly on to the uncoated glass side and photographed in a dark room.
As shown by comparing the backlit coating samples in Figs. 3 and 4, the coating comprising the grapheme carbon particle black pigment exhibits superior opacity and absorption in comparison with the coating comprising carbon black.

For purposes of this detailed description, it is to be understood that the invention may assume various alternative variations and step sequences, except where expressly specified to the contrary. Moreover, other than in any operating examples, or where otherwise indicated, all numbers expressing, for example, quantities of ingredients used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard variation found in their respective testing measurements.

Also, it should be understood that any numerical range recited herein is intended to include all sub-ranges subsumed therein. For example, a range of "1 to 10" is intended to include all sub-ranges between (and including) the recited minimum value of 1 and the recited maximum value of 10, that is, having a minimum value equal to or greater than 1 and a maximum value of equal to or less than 10.

In this application, the use of the singular includes the plural and plural encompasses singular, unless specifically stated otherwise. In addition, in this application, the use of "or" means "and/or" unless specifically stated otherwise, even though "and/or" may be explicitly used in certain instances.

It will be readily appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed in the foregoing description. Such modifications are to be considered as
included within the following claims unless the claims, by their language, expressly state otherwise. Accordingly, the particular embodiments described in detail herein are illustrative only and are not limiting to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
WE CLAIM:

1. A black coating comprising:
 a resin film; and
 a black pigment comprising thermally produced grapheme carbon particles in an amount up to 20 weight percent based on the total dry film weight of the coating.

2. The black coating of Claim 1, wherein the black coating has a minimum absorbance of 80 percent throughout a wavelength range of 400 to 700 nm.

3. The black coating of Claim 2, wherein the thermally produced grapheme carbon particles comprise up to 10 weight percent.

4. The black coating of Claim 2, wherein the thermally produced grapheme carbon particles comprise from 0.01 to 5 weight percent.

5. The black coating of Claim 2, wherein the thermally produced grapheme carbon particles comprise from 0.1 to 2 weight percent.

6. The black coating of Claim 2, wherein the minimum absorbance is greater than 85 percent.

7. The black coating of Claim 1, wherein the thermally produced grapheme carbon particles have an average aspect ratio greater than 3:1 and a B.E.T. specific surface area of greater than 70 m²/g.

8. The black coating of Claim 1, wherein the resin film comprises a thermoset or thermoplastic film forming resin.

9. A black coating composition comprising:
 a solvent;
 a film-forming resin; and
 thermally produced grapheme carbon particles in an amount up to 20 weight percent of the total solids weight of the film-forming resin and the thermally produced grapheme carbon particles.

10. The black coating composition of Claim 9, wherein the black coating composition has a minimum absorbance of 80 percent throughout a wavelength range of 400 to 700 nm when cured.

11. The black coating composition of Claim 10, wherein the thermally produced grapheme carbon particles comprise up to 10 weight percent.
12. The black coating composition of Claim 10, wherein the thermally produced graphene carbon particles comprise from 0.01 to 5 weight percent.

13. The black coating composition of Claim 10, wherein the thermally produced graphene carbon particles comprise from 0.1 to 2 weight percent.

14. The black coating composition of Claim 9, wherein the thermally produced graphene carbon particles have an average aspect ratio greater than 3:1 and a B.E.T. specific surface area of greater than 70 m²/g.

15. The black coating composition of Claim 9, wherein the film-forming resin comprises a thermoset or thermoplastic film forming resin.

16. An article comprising:
 a polymeric matrix; and
 a black pigment dispersed in the polymeric matrix comprising thermally produced graphene carbon particles in an amount up to 20 weight percent based on the total weight of the polymeric matrix and the thermally produced graphene carbon particles.

17. The article of Claim 16, wherein the article has a minimum absorbance of 80 percent throughout a wavelength range of 400 to 700 nm.

18. The article of Claim 17, wherein the thermally produced graphene carbon particles comprise from 0.01 to 10 weight percent.

19. The article of Claim 17, wherein the thermally produced graphene carbon particles comprise from 0.1 to 2 weight percent.

20. A method of making a black coating composition comprising dispersing thermally produced graphene carbon particles and a film-forming resin in a solvent, wherein the thermally produced graphene carbon particles comprise up to 20 weight percent of the total solids weight of the film-forming resin and the thermally produced graphene carbon particles.

21. The method of Claim 20, wherein the thermally produced graphene carbon particles are produced by introducing a methane precursor material or a hydrocarbon precursor material capable of forming a two-carbon-fragment species into a thermal zone having a temperature of greater than 3,500°C.

22. The method of Claim 21, wherein the thermally produced graphene carbon particles are dispersed with a polymeric dispersant comprising:
a) an anchor block comprising glycidyl (meth)acrylate, 3,4-
epoxycyclohexylmethyl(meth)acrylate, 2-(3,4-epoxycyclohexyl)ethyl(meth)acrylate,
allyl glycidyl ether and mixtures thereof, reacted with a carboxylic acid comprising 3-
hydroxy-2-naphthoic acid, para-nitrobenzoic acid, hexanoic acid, 2-ethyl hexanoic
acid, decanoic acid and/or undecanoic acid; and

b) at least one tail block comprising at least one (meth)acrylic
acid alkyl ester.
FIG. 1
A. CLASSIFICATION OF SUBJECT MATTER

INV. C09C1/44 C09D7/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09C C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>paragraphs [0004], [0005], [0007] - [0045] example 1 tables 1-3</td>
<td>2,6,10, 17,22</td>
</tr>
<tr>
<td>X</td>
<td>WO 2014/070346 A1 (PPG IND OHIO INC [US]) 8 May 2014 (2014-05-08)</td>
<td>1,3-5, 7-9, 11-16, 18-21</td>
</tr>
<tr>
<td>Y</td>
<td>paragraphs [0004] - [0038] examples 1,2</td>
<td>2,6,10, 17,22</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 * A: document defining the general state of the art which is not considered to be of particular relevance
 * E: earlier application or patent but published on or after the international filing date
 * L: document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 * O: document referring to an oral disclosure, use, exhibition or other means
 * P: document published prior to the international filing date but later than the priority date claimed

T: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X: document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y: document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A: document member of the same patent family

Date of the actual completion of the international search 1 March 2016

Date of mailing of the international search report 09/03/2016

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer

Marino, Emanuela
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2014275409 Al</td>
<td>18-09-2014</td>
<td>US 2014275409 Al</td>
<td>18-09-2014</td>
</tr>
<tr>
<td>WO 2014143392 Al</td>
<td>18-09-2014</td>
<td>CA 2886691 Al</td>
<td>08-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104768872 A</td>
<td>08-07-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2900597 Al</td>
<td>05-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1207851 Al</td>
<td>12-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016500714 A</td>
<td>14-01-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150064126 A</td>
<td>10-06-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201502325S A</td>
<td>29-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014070346 Al</td>
<td>08-05-2014</td>
</tr>
</tbody>
</table>