
US 2006O136699A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0136699 A1

Shelor (43) Pub. Date: Jun. 22, 2006

(54) APPARATUS AND METHOD FOR Publication Classification
ACCESSING REGISTERS IN A PROCESSOR

(75) Inventor: Charles F. Shelor, Arlington, TX (US) (51) Int. Cl.
G06F 5/00 (2006.01)

Correspondence Address: (52) U.S. Cl. .. 712/1
THOMAS, KAYDEN, HORSTEMEYER &
RISLEY, LLP
E.LERA PARKWAY, NW (57) ABSTRACT

ATLANTA, GA 30339-5948 (US)

(73) Assignee: VLA-Cyrix, Inc The present invention is generally directed to an apparatus
9 We and method for accessing registers within a processor. In

(21) Appl. No.: 11/314,396 accordance with one embodiment, an apparatus and method
are provided for a processor in which at least two separate

(22) Filed: Dec. 20, 2005 indicia (such as register select lines, register bank identifiers,
processor mode identifiers, etc.) are utilized to uniquely

Related U.S. Application Data identify and access a processor register. In accordance with
this embodiment, bit lines of the separate indicia are

(62) Division of application No. 10/602,813, filed on Jun. encoded into a single, mapped set of signal lines, and these
24, 2003, now Pat. No. 7,024,544. encoded signal lines are used to access the register.

160

Register File

7-138 Branch/Return O 136 i
Register
Writeback

instruction
Fetch

Logic for
Generating

Branch Signal
- - - - -

Decode
Unit

1-M

Logic for Read Data
interrupt Red. Generating

Fetch 134 interrupt Signal
Control a

V 132 Control

instructions Write
Data

Patent Application Publication Jun. 22, 2006 Sheet 1 of 6

READ
VALUE
FROM

PIPELINE
MEMORY ACCESS

RETIRE

REGISTER WRITE

50

60

FIG. 1 (Prior Art)

REGISTER

US 2006/0136699 A1

READ
VALUE
FROM

FILE

US 2006/O136699 A1

– – – – –)
| Ieußis qoueig|

eW

6ey Snes

Patent Application Publication Jun. 22, 2006 Sheet 2 of 6

Patent Application Publication Jun. 22, 2006 Sheet 3 of 6 US 2006/0136699 A1

ENCODER

5 216
N 230 N n

EXECUTE
Y COMPARE

. N LOGIC 222 -

240
MEMORY ACCESS

250
RETIRE

260
REGISTER WRITE

FIG. 3

Patent Application Publication Jun. 22, 2006 Sheet 4 of 6 US 2006/O136699 A1

— MODES —-
310 312 314 316 318 320
V Y Y v Y
SYS SUP. ABRT UND. INT. FINT.
00001 OOO 10 OO1 OO O1 OOO 10000 11111 N

1101 R14 R16 R18 R20 R23 FIQ14

REGISTER
SELECT
BITS

FIG. 4

Patent Application Publication Jun. 22, 2006 Sheet 5 of 6 US 2006/0136699 A1

BANKS —- 460
410 412 414 416 418
Y Y Y y y

BK 1 BK2 BK3 BK4 BK5
00001 00010 00100 01000 10000 r

BANK
SELECT

R4 R4 R4 R4 R4
R5 R5 R5 R5 R5

R13 IR19
R14 R20 R20 IR

R21 R2

REGISTER
SELECT
BITS

FIG. 5

Encopept------
BITS

Patent Application Publication Jun. 22, 2006 Sheet 6 of 6 US 2006/0136699 A1

580

BANK/MODE/GROUP
SELECT
BITS

ENCODED DER ENCO BITS

REGISTER
SELECT
BITS

MAP PLURALITY OF
REGISTERS INTO
REGISTER FILE

612

ENCODE A PLURALITY m OF REGISTER SELECT
BITS WITH A PLURALITY in OF BITS TO PRODUCEA

PLURALITY p OF ENCODED BITS

USINGENCODED BITS TO
UNIOUELY ACCESS

NDIVIDUAL REGISTERS IN
. . . . REGISTER FILE . . .

US 2006/013.6699 A1

APPARATUS AND METHOD FOR ACCESSING
REGISTERS IN A PROCESSOR

FIELD OF THE INVENTION

0001. The present invention generally relates to proces
sors, and more particularly to an apparatus and method for
identifying and accessing registers in a processor.

BACKGROUND

0002 Processors (e.g., microprocessors) are well known
and used in a wide variety of products and applications, from
desktop computers to portable electronic devices, such as
cellular phones and PDAs (personal digital assistants). As is
known, Some processors are extremely powerful (e.g., pro
cessors in high-end computer workstations), while other
processors have a simpler design, for lower-end, less expen
sive applications and products.
0003. Further still, most processor architectures are reg
ister based. A register-based processor architecture utilizes a
set of registers for carrying out various operations. In this
regard, data values are moved from memory into registers
and operations are performed on registers. For example, the
following (commented) sequence of instructions may be
performed to add the value of 8 to the contents of the data
stored at memory location A238.
0004 LOAD A, 8: (Comment: load register A with the
value 8)
0005 LOAD B, A238); (Comment: load register B with
the data value at address A238)
0006 ADD C, A, B: (Comment: add the contents of
registers A and B and store the result in register C
0007. The structure and operation of such register-based
processors are well known, and need not be described
herein.

0008. As is also known, many processor architectures
maintain their register base in a location referred to as a
register file. Further, many register files contain more indi
vidual registers than that which are available at any given
time (or to any given instruction). That is, in many processor
architectures, only a Subset of registers are available (or
visible) to any given instruction. This instruction availability
may depend on a variety of factors. Such as the current mode
of operation. Thus, in Some processors, individual registers
may be identified through a combination of register-select
bits and mode-identifying bits.
0009. As is known, many processors have pipelined
architectures to increase instruction throughput. In theory,
Scalar pipelined processors can execute one instruction per
machine cycle (and more in Super-scalar architectures) when
executing a well-ordered, sequential instruction stream. This
is accomplished even though an instruction itself may impli
cate or require a number of separate micro-instructions to be
effectuated. Pipelined processors operate by breaking up the
execution of an instruction into several stages that each
require one machine cycle to complete. For example, in a
typical system, an instruction could require many machine
cycles to complete (fetch, decode, ALU operations, etc.).
0010 Reference is made to FIG. 1, which is a block
diagram illustrating the organization and flow of information

Jun. 22, 2006

in a pipelined processor capable of operating in a plurality
of operating modes. In the pipelined architecture of FIG. 1,
there is illustrated a decode stage 10, a read stage 20, an
execute stage 30, a memory access stage 40, a retire stage
50, and a register write stage 60. The structure and operation
of these various pipeline stages, are known and understood
by persons skilled in the art, and therefore need not be
described herein. As is known, in the decode stage 10,
circuitry from a decoder or decode logic decodes an encoded
instruction and generates control signals for the circuitry of
the processor to execute (or carry out) the decoded instruc
tion. In the illustrated figure, there are six sets of signal lines
11 illustrated as passing from the decode stage 10 to down
stream stages. Each group of signal lines uniquely identifies
a register of the processor. As is known, although not
specifically illustrated in FIG. 1, a processor includes a
plurality of registers into which data from memory may be
imported (or into which calculated data or results may be
written). Frequently, a processor contains a number of
physical registers, with only a Subset of the registers acces
sible at any given time. In this regard, registers may be
banked. Such that registers from a given bank are available
at a particular time. Alternatively, processors may be con
figured to operate in a plurality of modes, such that only a
Subset of the physical registers are available during a par
ticular mode of operation.
0011. As illustrated in FIG. 1, the decode stage 10 may
include circuitry (in the form of a register or otherwise)
having a plurality of bits that identify a register, and a second
plurality of bits that identify a processor mode of operation.
Alternatively, although not specifically illustrated, a second
grouping of bits may be provided to identify a register bank
(instead of a processor mode), for processors that have
registers organized in groups or banks. In the illustrated
embodiment, there are four signal lines 14 that operate as
register-select signal lines, and five signal lines 15 that
identify a mode of operation. Collectively, these make up
nine signal lines (e.g., 12) that uniquely identify a processor
register. The embodiment of FIG. 1 illustrates a processor
having thirty-two physical registers, with only sixteen reg
isters available at a given time.
0012. In the embodiment illustrated in FIG. 1, there are
six groups of signal lines 11 generated by the decode stage
10. Of course, there may be additional, or fewer, such groups
of Such signal lines. Each Such group (e.g., 12 and 13)
uniquely identifies a particular register. In the illustrated
embodiment four groups of these signal lines (e.g., 12)
identify source registers, while two groups (e.g., 13) identify
destination or target registers. The numbers of these group
ings is, of course, processor dependent. Thus, in the embodi
ment illustrated in FIG. 1, certain instructions may implicate
up to four source registers and two destination registers. Of
course, for any given instruction, fewer than six registers
may be implicated. In connection with instructions such as
those implicating fewer than six registers, certain groups of
the signal lines will simply be ignored by downstream stages
of the processor pipeline.

0013 Thus, the decode stage 10 operates to decode an
instruction. In connection with this decode operation, Source
and destination registers are uniquely identified by a plural
ity of signal lines. In the illustrated embodiment, nine signal
lines are used to uniquely identify each register in the
embodiment of FIG. 1. These, or similar signal lines, are

US 2006/013.6699 A1

passed between each stage of the processor pipeline to
identify processor registers as needed at each stage of the
pipeline. Similar signal lines 70 are fed back from each
downstream stage of the pipeline to the read stage 20, to
accommodate data forwarding. As is known, data forward
ing is a technique used to ensure that proper values are
placed in processor registers. For example, if a processor
instruction calls for the storage of a value of a given register
to a certain memory location, and the value of that register
has been changed by an immediately preceding instruction
(but not yet written back to the register file), then the read
stage of the pipeline 20 should read into the identified
register the value from the downstream pipeline stage hav
ing the current value of that register, as opposed to reading
the value of that register from the register file. In this regard,
and as is known, the register file (not specifically illustrated
in FIG. 1) is not updated until the register write stage 60.
Prior to this time, if the read stage 20 of the pipeline requires
a register value that exists in one of the intermediate pipeline
stages 30, 40, 50, or 60, then the value should be read from
that intermediate pipeline stage, and is so read through data
forwarding lines 70.

0014. In this regard, and as illustrated, the read stage 20
includes compare logic 22 for comparing the nine signal
lines for identifying a register output from the decode stage
10 with comparable signal lines within the data forwarding
path 70. If there is a match (indicating that the same register
has been implicated and its current value is in a downstream
stage of the pipeline), then data is read into that register (at
the read stage 20) by a data forwarding path 70. If, however,
no such register match is identified, then the value associated
with the identified register is read in from the register file.
0.015 Unfortunately, the pipelined architecture illustrated
in FIG. 1 is, in Some respects, extremely complex and logic
intensive. Specifically, comparisons for purposes accommo
dating data forwarding are cumbersome and complex. In a
processor, for example, having only sixteen registers avail
able or accessible at a given time, the comparisons-required
among the nine signal lines that uniquely identify a given
register are excessively complex. This comparison 25 is
carried out in any of a variety of manners. One way of
carrying out this comparison is simply to do a straight
comparison of all nine bits. When there is an exact match,
then the associated register is identified as having an inter
mediate value in a downstream pipeline stage. The logic,
however, required to perform nine-bit comparisons is sig
nificant. Another way in which this comparison may be
performed is by comparing the four bits 14 that identify the
register within a given bank or mode of operation. If and
when there is a match on these four bits, then a second level
comparison may be made of the five bits 15 that identify the
register bank or processor mode of operation. Again, unfor
tunately, this requires excess logic and levels of complica
tion in carrying out the comparison.
0016. Accordingly, it is desired to provide an improved
architecture for accessing processor registers and imple
menting data forwarding.

SUMMARY OF THE INVENTION

0017 Certain objects, advantages and novel features of
the invention will be set forth in part in the description that
follows and in part will become apparent to those skilled in

Jun. 22, 2006

the art upon examination of the following or may be learned
with the practice of the invention. The objects and advan
tages of the invention may be realized and obtained by
means of the instrumentalities and combinations particularly
pointed out in the appended claims.
0018 To achieve certain advantages and novel features,
the present invention is generally directed to an apparatus
and method for accessing registers within a processor. In
accordance with one embodiment, an apparatus and method
are provided for a processor in which at least two separate
indicia (such as register select lines, register bank identifiers,
processor mode identifiers, etc.) are utilized to uniquely
identify and access a processor register. In accordance with
this embodiment, bit lines of the separate indicia are
encoded into a single, mapped set of signal lines, and these
encoded signal lines are used to access the register.
0019. In one particular embodiment, a method is pro
vided for individually accessing any of w total registers in a
processor. The method encodes a mode value carried on a
plurality n of mode-identifying bits with a register value
carried on a plurality m of register-select bits to produce a
mapped value carried on a plurality p of bits, wherein p is
less than the sum of n+m. The method then uses the encoded
plurality of bits to uniquely access any of the w registers.

DESCRIPTION OF THE DRAWINGS

0020. The accompanying drawings incorporated in and
forming a part of the specification illustrate several aspects
of the present invention, and together with the description
serve to explain the principles of the invention. In the
drawings:
0021 FIG. 1 is a block diagram illustrating certain
processing stages within a pipelined processor, as is known
in the prior art.
0022 FIG. 2 is a block diagram of a five-stage pipelined
processor architecture.
0023 FIG. 3 is a block diagram illustrating stages in a
pipelined processor similar to FIG. 1, constructed in accor
dance with an embodiment of the invention.

0024 FIG. 4 is a diagram illustrating the mapping of a
plurality of registers available in a plurality of processor
modes into a register file.
0025 FIG. 5 is a diagram, similar to FIG. 4, illustrating
the mapping of a plurality of registers available in a plurality
of register banks into a register file.
0026 FIG. 6 is a block diagram illustrating an encoder
for performing the encoding of processor registers into bits
identifying the registers within the mapped register file.
0027 FIG. 7 is a flowchart illustrating the top-level
functional operation of an embodiment of the invention.

DETAILED DESCRIPTION

0028. Having summarized various aspects of the present
invention, reference will now be made in detail to the
description of the invention as illustrated in the drawings.
While the invention will be described in connection with
these drawings, there is no intent to limit it to the embodi
ment or embodiments disclosed therein. On the contrary, the
intent is to cover all alternatives, modifications and equiva

US 2006/013.6699 A1

lents included within the spirit and scope of the invention as
defined by the appended claims.

0029. It is noted that the drawings presented herein have
been provided to illustrate certain features and aspects of
embodiments of the invention. It will be appreciated from
the description provided herein that a variety of alternative
embodiments and implementations may be realized, consis
tent with the scope and spirit of the present invention.
0030) Referring to FIG. 2, a block diagram depicts a five
stage pipeline processor architecture for executing instruc
tions. Alternative pipeline architectures, having more or
fewer pipeline stages, may be implemented consistent with
concepts and teachings of the present invention. In the
architecture of FIG. 2, illustrated are an instruction fetch
unit 110, a decode unit 120, an execute unit 130, a memory
access unit 140, and a register writeback unit 150. Except as
otherwise described herein, the operation of these units (or
logic blocks) is conventional, known by persons skilled in
the art, and need not be further described herein.

0031. As is known, an instruction fetch unit 110 performs
instruction memory fetches. This unit is configured to deter
mine the value or contents of a program counter (within the
register file 160) for in order instruction execution, as well
as exception vectors, branches, and returns. The instruction
fetch unit 110 is also configured to determine the return
address for all exceptions and branch-link instructions, and
write or store that return address into an appropriate register
within the register file 160. Consistent with the invention,
addressing of instruction fetches may be through physical
addresses directly to memory, or through an instruction
cache (not shown) using physical or virtual addresses.
Although the internal architecture of the register file 160 is
not shown, the register file 160 includes various registers
utilized by the processor. As is known, Such registers may
include general-purpose registers or special-purpose regis
ters (such as status registers, a program counter, etc.).
Further, the registers within the register file 160 may be
banked or unbanked. As is known, an unbanked register
refers to a single physical register that is available in all
processor modes of operation. Typically, unbanked registers
are completely general-purpose, having no special uses
implied by the architecture. Of course, it would be up to the
programmer to ensure that the contents of these registers are
saved (e.g., pushed to a stack) when changing modes of
operation (or when processing branch routines or other
Subroutines), and restored when returning from a changed
mode of operation. In contrast, banked registers are separate,
but essentially configured in a parallel fashion, such that
only one register (within a bank) is available in a given mode
of operation. A common example of bank registers includes
registers available for fast interrupt exception handling.
Providing a set of banked registers for this purpose avoids
the need to expend the time to save and restore register State
for those registers. Instead, upon the invocation of a fast
interrupt handling routine, the banked registers for that
mode may be immediately accessed and utilized, while the
original register contents are preserved.

0032. The decode unit 120 operates to decode instruc
tions passed to it from the instruction fetch unit 110 and
generate the necessary control signals for the execute unit
130 to carry out the execution of the particular instruction.
The specific architecture of decode units (like decode unit

Jun. 22, 2006

120) are processor dependent, but the operation and orga
nization of such will be understood by persons skilled in the
art. Likewise, the structure and operation of the execute unit
130 are processor dependent, but will be understood by
persons skilled in the art. Generally, an execute unit includes
circuitry to carry out the execution of instructions as deter
mined by the control signals generated from the decode unit
120.

0033) As illustrated in FIG. 2, the execute unit 130 of the
illustrated embodiment may include logic 132 for generating
one or more interrupt signals 134, as well as logic 136 for
generating one or more branch signals 138. As the names
imply, the interrupt signal 134 indicates an interrupt condi
tion (e.g., IRQ, FIRQ, etc.). Likewise, the branch signal 138
indicates a branch condition (or may also indicate a return
from a branch). Indirectly, these signals indicate ensuing
out-of-order instructions.

0034. The memory access unit 140 interfaces with exter
nal data memory for reading and writing data in response to
the instruction being executed by the execute unit 130. Of
course, not all instructions require memory accesses, but for
those that do, the memory access unit 140 carries out the
requisite access to external memory. Consistent with the
invention, such memory access may be direct, or may be
made through a data cache using either physical or virtual
addressing.
0035 Finally, the register writeback unit 150 is respon
sible for storing or writing contents (resulting from instruc
tion execution), where appropriate, into registers within the
register file 160. For example, consider the execution of an
instruction that adds the contents of two general-purpose
registers and stores the contents of that addition into a third
general-purpose register. After execution of Such an instruc
tion, the register writeback unit 150 causes the value
obtained in the summation to be written into the third
general-purpose register.

0036) Again, it should be appreciated that the present
invention, as described herein, may be implemented in a
wide variety of pipelined processor architectures, and the
architecture illustrated in FIG. 2 is intended to serve only as
an illustrative architecture. Consequently, the illustration of
FIG. 2 should not be deemed as limiting upon the archi
tecture or environment of the present invention.
0037 Reference is now made to FIG. 3, which is a
diagram similar to FIG. 1, but illustrating an improvement
thereof realized by an embodiment of the present invention.
In this regard, an embodiment of the present invention
includes an encoder 280 that operates to encode a plurality
of register-identifying bits into a smaller number of bits. In
the embodiment illustrated in FIG. 3, nine bits are encoded
into five bits. Of course, consistent with the scope and spirit
of the present invention, differing degrees of encoding and
differing number of bits may be realized. In the illustrated
embodiment, the processor has a total of thirty-two internal
registers, sixteen of which are accessible at any given time
(e.g., during any given mode of operation or in connection
with any given instruction). As illustrated in connection with
the prior art of FIG. 1, four bits 214 are used as register
select bits, to identify the particular register accessible
during a given mode of operation, and five bits 215 are used
to identify the processor mode. It is recognized that thirty
two total registers may be uniquely identified with five bits

US 2006/013.6699 A1

(i.e., 2=32). Therefore, an encoding of bits is performed to
map each of the thirty-two processor registers into a register
file, such that each register is uniquely identified by the five
encoded bits 216. Only one encoder 280 is illustrated in
FIG. 3. However, in one implementation, a separate encoder
may be provided for each of the six sets of signal lines used
for identifying the source and destination registers.
0038. It should also be appreciated and understood that
more or fewer sets or groups of signal lines may be provided,
consistent with the present invention. In this regard, and as
mentioned above, the number of groupings of signal lines
for identifying registers is dependent upon the instruction set
implemented by the processor architecture. The architecture
of the illustrated embodiment supports instructions that
implicate as many as four source registers and two target or
destination registers. After performing the encoding by the
encoder 280, each processor register may be uniquely iden
tified by the five encoded bits throughout all stages of the
processor pipeline 220, 230, 240, 250, and 260. Conse
quently, the incorporation of the encoder 280 realizes several
distinct and significant advantages over Systems of the prior
art. First, such a system provides easier access to the
processor registers by reducing the number of bits required
to identify a given register. In this regard, it simplifies logic
that would otherwise compare nine bits in order to access a
register, or the logic that would implement a two-stage
comparison (first comparing the register-select bits, and then
comparing the bank or operational mode bits). Another
advantage realized by the present invention is a significant
reduction in data forwarding complexity, timing, and power.
As previously described, commensurate prior art systems
performed a nine-way comparison (comparing all nine bits)
or performed a two-stage comparison in the compare logic
of the read stage. The compare logic 222 of the read stage
of the embodiment of FIG. 3 is greatly simplified by
requiring a comparison of only five bits instead of nine,
which significantly simplifies the data forwarding and com
parison logic. Further, as illustrated by the data forwarding
paths 270, the encoding of the register identification signals
significantly reduces the number of bits and signal lines
passed throughout the processor pipeline, which reduces
logic and power consumed by the processor. Since the
enhancement of the present invention is preferably embod
ied in the decode stage 210 using encoder 280 (or commen
Surate logic), details regarding circuitry or logic for imple
menting data forwarding and other aspects and features that
are known in the art need not be described herein.

0039) Reference is now made to FIG. 4, which is a
diagram illustrating the mapping and encoding of registers
in accordance with one embodiment of the invention. In this
embodiment, up to sixteen registers may be accessed at any
given time, and are identified through register-select bits. As
illustrated, there are four such register-select bits that deter
mine the register accessed or selected in any given mode of
operation. As illustrated by the table, in the illustrated
embodiment there are six modes of operation. These include
a system mode 310, a supervisory mode 312, an abort mode
314, an undefined mode 316, an interrupt mode 318, and a
fast interrupt mode 320. Processors having similar register
configurations are known.
0040 For example, one existing processor architecture in
which the present invention could be readily implemented is
known as the ARM architecture, which is a 16/32-bit embed

Jun. 22, 2006

ded RISC processor. Significant information is publicly
available about the structure and operation of the ARM
architecture, including, for example, the ARM “Architecture
Reference Manual.” Second Edition, by David Seal. Addi
son-Wesley Publisher, 1996-2000. As is known, the ARM
processor has a total of 37 registers, of which 31 are
general-purpose registers, including a program counter. In
addition, there are six status registers, and the processor is
configured to operate in different operational modes. The
register/mode table on the left-hand side of FIG. 4 closely
resembles the structure of the ARM processor. Accordingly,
reference may be made to publicly available information on
the ARM processor to gain a better understanding of the
architecture of the illustrated embodiment of FIG. 4.

0041 As illustrated in the table on the left side of FIG.
4, each unique register is identified by a unique register
label. As illustrated, registers R1 through R8 are available in
all modes of operation. However, in the fast interrupt mode
320, a set of registers FIO9 through FIO15 are available. As
illustrated by the table, these registers are not available in
any other mode of operation. Therefore, when the processor
responds to a fast interrupt, these registers may be presumed
to be immediately available, without having to first save
their state (e.g., push values onto a stack). A program counter
register (PC) is also available in all modes of operation. As
can be readily identified from the register labels provided in
the table of FIG. 4, there are thirty-two unique registers.

0042. As is further illustrated in FIG. 4, the processor
mode of operation is identified by mode-select bits. In the
illustrated embodiment, five bits are used to identify the
mode of operation. The system mode may be identified by
mode-select bits having value 00001, while the supervisory
mode of operation 312 may be identified by mode-select bits
having value 00010. Other operational modes may be iden
tified by the mode-select bits, as illustrated in the drawing.
To illustrate how certain registers may be identified, in
accordance with prior art techniques, register FIQ9 is iden
tified by register-select bits having a value 1000 and mode
select bits having value 11111. Likewise, register 13 in the
supervisory mode is identified by register-select bits 1100
and mode-select bits of 00010.

0043. In accordance with the invention, the individual
registers are uniquely mapped into a register file 360. Since
there are thirty-two unique and individual registers, the
register identification may be encoded into five bits (since
2=32). Consistent with the invention, any of a variety of
unique mappings or orderings of the registers within the
register file may be implemented, and the organization or
mapping illustrated in FIG. 4 is merely one embodiment. As
mentioned above, in a prior art processor, the FIO9 register
would have been identified with register-select bits of 1000
and mode-select bits of 11111. The mapped FIQ9 register,
however, of FIG. 4 may be uniquely identified by encoded
bits having a value 11001.

0044 Since certain registers are available in various
processor modes of operation, it will be up to the program
mer to ensure that register values are saved or stored, as
necessary or appropriate, when the processor changes
between modes. In this regard, the pipelined architecture
illustrated in FIG. 3 illustrates the register-identification bits
as being passed between the various functional stages. It
should be appreciated, however, that bits identifying the

US 2006/013.6699 A1

current processor mode of operation will also be passed
among the various stages of the processor pipeline as
appropriate. It should be appreciated that the concepts and
teachings of the present invention are not limited to proces
sors operating in multiple modes. Instead, the broader con
cepts of the present invention apply to processors having
only a Subset of registers accessible or available to a given
instruction. The Subset of registers that are so available may
be limited or defined by processor modes of operation or
otherwise. One such alternative way of identifying a subset
of registers would be to organize the processor registers into
banks or groups of registers. In this regard, reference is made
to FIG. 5, which is a diagram similar to FIG. 4, but
illustrating the organization of processor registers in banks.
Specifically illustrated are five banks of registers: bank
1410, bank 2412, bank 3414, bank 4416, and bank 5418. As
in the embodiment of FIG. 4, register-select bits are pro
vided to uniquely identify the registers accessible or avail
able in any given register bank, and register bank bits are
provided for uniquely identifying the register bank. As
illustrated in the table, register R25, for example, is grouped
so that it is accessible in either register bank 3 or register
bank 4. When accessed in connection with register bank 3.
register R25 is identified by register-select bits 1000 and
bank select bits of 00100. Likewise, when accessed in
connection with register bank 4, register R25 is identified by
register-select bits 1000 and bank select bits of 01000.
Register R25, however, is encoded into register file 460 and
is uniquely identified by encoded bits 11001. Of course, the
organization and layout of registers within a given processor
will vary from processor to processor, depending upon the
particular needs and design goals of that processor. The
present invention is applicable to a wide variety of processor
architectures.

0045 Referring to FIG. 6, a diagram is illustrated show
ing an encoder 580 constructed in accordance with the
present invention. In this regard, the encoder operates to
encode a plurality n of bank-selection bits (or mode-selec
tion bits or group-selection bits) with a plurality m of
register-select bits to produce a plurality p of encoded bits.
In accordance with the invention, the plurality p of the
encoded bits is fewer than the sum of the plurality of n+m
bits otherwise used to identify a unique register. By reducing
the overall number of bits required to uniquely identify and
access a register, processor logic, including data forwarding
logic, is simplified.

0046 Reference is now made briefly to FIG. 7, which is
a flowchart illustrating the top-level operation of a method
of an embodiment of the present invention. In this regard, a
method of one embodiment operates to map a plurality of
processor registers into a register file (step 610). As illus
trated in FIGS. 4 and 5, and discussed herein, the register
file will consist of each individual register accessible within
the processor. The method then encodes a plurality m of
register-select bits with a plurality n of bits that identify a
register bank, group, or processor mode of operation, to
produce a plurality p of encoded bits (where p is fewer than
the sum of n+m) (Step 612). Finally, the method uses the
encoded bits within the various stages in the processor
pipeline, to uniquely access individual registers within the
register file (step 614).
0047 The foregoing description is not intended to be
exhaustive or to limit the invention to the precise forms

Jun. 22, 2006

disclosed. Obvious modifications or variations are possible
in light of the above teachings. In this regard, the embodi
ment or embodiments discussed were chosen and described
to provide the best illustration of the principles of he
invention and its practical application to thereby enable one
of ordinary skill in the art to utilize the invention in various
embodiments and with various modifications as are Suited to
the particular use contemplated. All Such modifications and
variations are within the scope of the invention as deter
mined by the appended claims when interpreted in accor
dance with the breadth to which they are fairly and legally
entitled.

1-7. (canceled)
8. A processor comprising:
a plurality w of registers arranged in a banked configu

ration, Such that fewer than w registers are program
accessible to any single instruction operation;

logic configured to carry a register-select value defined by
m bits:

logic configured to carry a register-bank value defined by
in bits; and

encoder logic configured to encode register-select value
with the register-bank value to generate a mapped value
defined by p bits output from the encoder logic, where
p is less than m+n, wherein a mapped value carried on
the p bits uniquely identifies a register among the
plurality w of registers.

9. The processor of claim 8, further comprising circuitry
for passing the mapped value to different pipelined stages of
the processor along with data from a register uniquely
identified by the mapped value.

10. The processor of claim 8, further comprising data
forwarding logic configured to compare the mapped value
output from the encoder logic with at least one mapped value
from a Subsequent pipeline stage.

11. The processor of claim 10, wherein the data forward
ing logic includes logic for reading a data value associated
with the mapped value output from the encoder from a
register file, responsive to the logic configured to compare,
if the mapped value output from the encoder logic does not
match with the at least one mapped value from a Subsequent
pipeline stage.

12. The processor of claim 10, wherein the data forward
ing logic includes logic for reading a data value associated
with the mapped value output from the encoder from a
Subsequent pipeline stage, responsive to the logic configured
to compare, if the mapped value output from the encoder
logic does match with the at least one mapped value from a
Subsequent pipeline stage.

13. The processor of claim 8, wherein the logic having in
bits comprises a component selected from the group con
sisting of a register, a memory device, and a latch.

14-18. (canceled)
19. In a processor having w registers arranged in a banked

configuration, Such that fewer than w registers are accessible
to any single instruction operation, a method comprising:

encoding a bank-select value carried on a plurality n of
bank-identifying bit with a register value carried on a
plurality m of register-select bits to produce a mapped
value carried on a plurality p of bits, wherein p is less
than the Sum of n+m; and

US 2006/013.6699 A1

using the encoded plurality of bits to uniquely access any
of the w registers.

20. The method of claim 19, further comprising passing
the mapped value to different pipelined stages of the pro
cessor along with data from a register uniquely identified by
the mapped value.

21. The method of claim 19, further comprising compar
ing the mapped value output from the encoder logic with at
least one mapped value from a Subsequent pipeline stage.

22. The method of claim 21, wherein the step of com
paring further comprises reading a data value associated

Jun. 22, 2006

with the mapped value, if the mapped value output from the
encoding step does not match with the at least one mapped
value from a Subsequent pipeline stage.

23. The method of claim 21, further comprising reading a
data value associated with the mapped value output from the
encoder from a Subsequent pipeline stage, if the mapped
value output from the encoder logic does match with the at
least one mapped value from a Subsequent pipeline stage.

