woO 2007/097881 A1 |0 0 00RO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

30 August 2007 (30.08.2007) PCT WO 2007/097881 Al

(51) International Patent Classification: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GOGF 9/45 (2006.01) GOGF 17/00 (2006.01) GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
(21) International Application Number: JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
PCT/US2007/002320 LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
(22) International Filing Date: 25 January 2007 (25.01.2007) RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English (84) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available): ARIPO (BW, GH,
11/276,362 27 February 2006 (27.02.2006) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(71) Applicant (for all designated States except US): MI- European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
CROSOFT CORPORATION [US/US]; One Microsoft FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
Way, Redmond, Washington 98052-6399 (US). RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,

(72) Inventors: MILLER, James S.; One Microsoft Way, Red- GN, GQ, GW, ML, MR, NE, SN, TD, TG).

mond, wa 98052-6399 (US). QUINN, Thomas E.; One
Microsoft Way, Redmond, WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR,BW, BY, BZ, CA, CH, CN,

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: ADAPTIVE COMPILED CODE

{

t

I

1 COMPILE
1

i 405

{

\

~
-
=)

(57) Abstract: In a managed execution environ-
ment, an error may be deferred until execution of
the application, program, function, or other assem-
blage of code reaches a point at which calling the
reference to a module associated with a missing
type or type member becomes inevitable.

300
ExecutaBLE CODE REFERENCE
305 310

410

EXECUTE MACHINE LANGUAGE CODE

YES
IS REFERENCE INEVITABLE?

CONTINUE EXECUTION

CAUSE ERROR

WO 2007/097881 Al

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

WO 2007/097881 PCT/US2007/002320

ADAPTIVE COMPILED CODE

BACKGROUND

[0001] Applications, programs, functior!s, and othér assembléges of
programmable and executable code are typically written for third party (/.e., “customer”)
usage. Therefore, effective code is written in such a manner that third party usage
scenarios are enabled and meet third party expectations. However, such expectations
may be difficult to meet when an application, program, function, or other assemblage of
code that has been designed to run on an existing platform attempts to run on an older,

or otherwise different, version of the platform.

SUMMARY

[0002] When an application, program, function, or other assemblage of code
attempts to run on an older, or otherwise different, version of the platform on which it
was generated, an error associated with a missing type or type member may be deferred
until execution of the application, program, function, or other assemblage of code
reaches a point at which calling a reference to the missing type or type member becomes

inevitable.

DESCRIPTION OF THE DRAWINGS

[0003] The present description references the following figures.

[0004] FIG. 1 shows devices communicating over a network, with the devices
implementing example technologies related to adaptive compiled code.

[0005] FIG. 2 shows an example of an execution environment for implementiﬁg
example technologies related to adaptive compiled code.

[0006] FIG. 3 shows an example data structure for adaptive compiled code.

10

15

20

25

WO 2007/097881 PCT/US2007/002320

[0007] FIG. 4 shows an example data flow for implementing example

technologies related to adaptive compiled code.

DETAILED DESCRIPTION

[0008] Tools, systems, and methodologies for compiling adaptive code and
executing the adaptive compiled code are described herein. Further, the description
pertaining to at least one of compiling and executing one or more applications,
programs, functions, or other assemblage of code having at least one adaptive compiled
module, may relate to tools, systems, processes, instructions, techniques, and routines
that may be utilized to defer an error associated therewith. That is, the aforementioned
tools, systems, processes, instructions, techniques, and routines may be utilized to defer
one or more errors associated with a reference in the compiled code until a call to the
reference is, at least, statistically inevitable. The aforementioned tools, systems, and
processes may be implemented in one or more devices, or nodes, in a network
environment.

[0009] “"Module,” as described herein, may refer to separate entities such as
methods, classes, DLLs (dynamic link libraries), frameworks, etc, .that may utilize
common physical and/or logical resources.

[0010] “Assemblage,” as described herein, may refer to a unit of deployment for
code.

[0011] FIG. 1 shows example network environment 100 in which example
technologies may be implemented for compiling adaptive code and executing one or
more applications, programs, functions, other code having at least one adaptive compiled
module. However, such example technologies are not limited to network environments.
Such technologies may include, but are not limited to, tools, methodologies (e.g.,
techniques), and systems, associated with adaptive compiled code 120, as described

herein. In FIG. 1, client device 105, server device 110, and “other” device 115 may be

10

15

20

25

WO 2007/097881 PCT/US2007/002320

communicatively coupled to one another via network 125; and, further, at least one of
client device 105, server device 110, and “other” device 115 may be capable of
implementing the aforementioned technologies.

[0012] Client device 105 may represent at least one of a variety of known
computing devices, including a desktop personal computer (PC), workstation, mainframe
computer, Internet appliance, set-top box, or gaming console, that is able to implement
example technologies for at least one of producing and utilizing adaptive compiled code
120. Client device 105 may further represent at least one device that is‘ capable of being
associated with network 125 by a wired and/or wireless link, including a mobiie (ie.,
cellular) telephone, personal digital assistant (PDA), laptop computer., etc. Further still,
client device 105 may represent the client devices described above in various quantities
and/or combinations thereof. “Other” device 115 may also be embodied by any of the
above examples of client device 105.

f0013] Server device 110 may represent any device that is capable of providing
any of a variety of data and/or functionality to client device 105 or “other” device 115 in
accordance with at least one implemenftation for at least one of compiling and utilizing
adaptive compiled code 120. The data may. be publicly available or alternatively
restricted, e.g., restricted to only certain users or only if an appropriate subscription or
licensing fee is paid. Server device 110 may be at least one of a network server, an
application server, a blade server, or any combinat.ion thereof. Typically, server device
110 may represent any device that may be a content source, and client device 105 may
represent any device that may receive such content either via network 125 or in an off-
line manner. However, according to the example implementations described herein,
client device 105 and server device 110 may interchangeably be a sending node or a
receiving node in network environment 100. “Other” device 115 may also be embodied

by any of the above examples of server device 110.

10

15

20

25

WO 2007/097881 PCT/US2007/002320

[0014] “Other” device 115 may represent any further device that is capable of
compiling and/or utilizing adaptive compiled code 120 according to one or more of the
example'technologies des;ribed herein. That is, “other” device 115 may represent a
device that is capable of compili'ng code or receiving compiled code for which one or
more errors associated with a reference in the compiled code may be deferred until a call
to the reference is, at least, statistically inevitable. Thus, "other” device 115 may be a
computing or processing device having at least one of an operating system, an
interpreter, converter, compiler, or runtime execution environment implemented thereon.
These examples are not intended to be limiting in any way, and therefore should not be
construed in that manner. |

[0015] Network 125 may represent any of a variety of conventional network
topologies and types, which may include wired and/or wireless networks. Network 125
may further utilize any of a variety of conventional network protocols, including public
and/or proprietary protocols. Network 125 may include, for example, the Internet as well
at least portions of one or more local area networks (also referred to, individually, as a
“LAN"), such as an 802.11 system or, on a larger scale, a wide area network (ile,
WAN?"); or a personal area network (/.e., PAN), such as Bluetooth.

[0016] Computer architecture in at least one of devices 105, 110, and 115 has
typically defined computing platforms in terms of hardware and software. Software for
computing devices has been categoriied into groups, based on function, which may
include: a hardware abstraction layer (alternatively referred to as a "HAL"), an operating
system (alternatively referred to as “0S"), and applications.

[0017] A runtime execution environment may reside between an OS and an '
application, program, function, or other assemblage of code. The runtime execution
environment may serve as a space in w-hich the application, program, function,. or other

assemblage of code may execute specific tasks on any one or more of processing devices

10

15

20

25

WO 2007/097881 PCT/US2007/002320

105, 110, and 115. More particularly, a runtime execution environment may enhance the
reliability of the execution of an application, program, function, or other assemblage of
code on a growing range of processing devices 105, 110, and 105, including servers,
desktop computers, laptop computers, and mobile processing/communication devices by
providing a layer of abstraction and services for an application running on such devices,
and by further providing the application, program, function, or othér assemblage of code
with capabilities including memory management and configuration thereof.

[0018] A runtime execution environment may serve as at least one of a
programming and an execution platform. As a programming platform, a runtime
execution environment may compilg one or more targeted applications, programs,
functions, or other assemblages of code, which may be written in one of multiple
computing languages, into an intermediate language (hereafter “IL”) or bytecode. IL is
typically independent of the platform, and the central processing unit (hereafter "CPU")
executes IL. In fact, IL is a higher leve! language than many CPU machine languages.

[0019] As an execution platform, a runtime execution environment may
interpret compiled IL into native machine instructions. A runtime execution environment
may utilize either an interpreter or a compiler (e.g., "just-in-time," alternatively “JIT,”
compiler) to execute such instructions. Regardless, the native machine instructions may
then be directly executed by the CPU. Since IL is CPU-independent, IL. may execute on
any CPU platform as long as the OS running on that CPU platform hosts an appropriate
runtime execution environment.

[0020] Alternatively, at least portions of applications, programs, functions, or
other assemblages of code may be preeompiled and loaded as one or more native image
files in the runtime execution environment, thus circumventing CPU consumption
required for compilation. Effectively, the precompiled portions are software modules that

are distributed in an IL format (e.g., assemblies, methods, or types) rather than in a

10

20

25

WO 2007/097881 PCT/US2007/002320

native platform execution format. A source of such precompiled IL may be disposed in
either of a non-managed execution environment or a separate implementation of a
runtime execution environment on a same or separate one of devices 105, 110, and 115.
The source may deploy the precompiled IL during or before install time for the
application, program, method, function, or other assemblage of code to which the
precompiled IL corresponds.

[0021] Regardiess, examples of runtime environments, in which technologies
for compiling and/or utilizing adaptive compiled code 120 may be implemented, include:
Visual Basic runt.ime environment; Java® Virtual Machine runtime environment that is
used to run, e.g., Java® routines; or Common Language Runtime (CLR) to compile, e.g.,
Microsoft .NET™ applications into machine language before executing a calling routine.
However, this listing of runtime environments provides examples only. The example
technologies described herein are not limited to just these managed execution
environments. More particularly, the example implementations are not just limited to
managed execution environments, for one or more examples may be implemented within
testing environments and/or unmanaged execution environments.

[0022] An application, program, function, or other assemblage of code
compiled into IL may be referred to as "managed code,” and that is why a runtime
execution environment may be alternatively referred to as a “managed execution

. \
environment.”

It is noted that code that does not utilize a runtime execution
environment to execute may be referred to as a native code application.

[0023] FIG. 2 shows an example of runtime execution environment 200 in which
example technologies may be implemented for compiling adaptive code 120 (see FIG. 1)

and executing one or more applications, programs, functions, other code having at least

one adaptive compiled module.

10

15

20

25

WO 2007/097881 PCT/US2007/002320

[0024] In the description of the modules of FIG. 2, which may also be referred
to by the descriptions of FIGS. 3 and 4, various operations may be described as being
performed by different components of runtime execution environment 200. The
operations that are described with respect to a particular component may be carried out
by the particular components itself, by the particular component in cooperation with
another of the components of runtime execution environment 200, or by the particular
components in cooperation with a processing component from an unmanaged execution
environment. Thus, the descriptions provided herein pertain to example
implementations, and are not intended to be limiting in any manner.

[0025] Accordingly, runtime execution environmentA 200 may facilitate
execution of managed code for either of an application programming or application
execution platform. Managed code may be considered to be part of a.core set of
application-development technologies, and may further be regarded as code that is
compiled for execution on runtime execution environment 200 to provide a
corresponding service to the comphting device platform. In addition, runtime execution
environment 200 may translate managed code at an interpretive level into instructions
that may be proxied and then executed by a processor. A framework for runtime
execution environment 200 also provides class libraries, which may be regarded as
software building blocks for managed abplications.

[0026] According to a further example implementation, runtime execution
environment 200 may provide at least partial functionality that may otherwise be
expected from a kernel, which may or may not be lacking from a computing device
platform depending upon resource constraints for the particular one of device 105, 110,
and 115. Thus, at least one example of runtime execution environment 200 may
imptement the following: input/output (hereafter “I/O") routine management, memory

management, compilation, and service routine execution. Thus, runtime execution

10

15

20

25

WO 2007/097881 PCT/US2007/002320

environment 200 may include 1I/O module 205, compiler 210, loader 215, memory
management component 220 (alternatively referred to as a virtual machine), and service
routine manager 225. These components are to be described in further detail below, and
are provided only as examples, and may be implemented in examples of runtime
execution environment 200 in various combinations and configurations thereof. The
examples are not intended to be limiting to any particular implementation of a runtime
execution environmer;t, and no such inference should be made.

[0027] 1/O module 205 of runtime execution environment 200 may provide
asynchronous access to data sources (ie., processor and peripherals) associated with
either of an application praogramming or application execution platform.b More
particularly, 1/O module 205 may provide runtime execution environment 200 with
robust system throughput and further s;(reamline performance of code from which an 1/O
request originates.

[0028] Compiler 210 may refer to a module within runtime execution
environment 200 that may interpret compiled IL into native machine instructions for
execution in runtime execution environment 200 by, e.g., execution module 230 or,
alternatively, for execution by a CPU in a non-managed execution environment.

[0029] Loader 215 may refer to an assembly manager that may be invoked to
locate and read assemblies as needed. Loader 215 may be disposed in execution
environment 200, although at least one implementation of an unmanaged execution
environment (/e., 0OS) may include loader 215 therein. Loader 215 may garner
precompiled IL during deployment or install time, for loading into runtime execution
environment 200. Thus, according to at least one alternative implementation of runtime
execution environmen.t 200, loader 215 may effectively serve as an entry point for

precompiled IL into runtime execution environment 200.

10

15

20

25

WO 2007/097881 PCT/US2007/002320

[0030] Memory management component 220 may be regarded as a "garbage
collector.” Garbage collection may be regarded as a robust feature of managed code
execution environments by which an object is automatically freed (/.e., de-allocated) if an
object is no longer used by any applications, upon a sweep or scan of a memory heap. In
at least one example of memory management component 210, a sweep of free memory
heap may be implemented as a linear search. Such implementation may be well-suited
for an example of a computing device platform for which memory size is constrained and
for which a delay in completion of a sweep may be perceived by a user of a
corresponding device.

[0031] Further functions implemented by mefnory management component 220
may include: managing one or more contiguous blocks of finite volatile RAM (ie,
memory heap) storage or a set of contiguous blocks of memory amongst the tasks
running on the computing device platform; allocating memory to at least one application .
running on the computing device pla_tform; freeing at least portions of memory on
request by at least one of the applications; and preventing any of the applications from
intrusively accessing memory space that has been allocated to any of the -other
applications.

[0032] Administrator 225 may refer to a module within runtime execution

-environment 200 that serves to receive, verify, and administer execution of at least a

portion of an application, program, method, function, or other assemblage of code in
runtime execution environment 200. In accordance with at least one example
implementation of technologies associated with compiled adaptive code 120,
administrator 225 may control the behavior of the application, program, method,
function, or other assemblage code in runtime execution environment 220 without
touching or affecting any executable portion thereof, at compile time, initial runtime, or

at any time thereafter during execution of an application. More particularly,

10

15

20

25

WO 2007/097881 PCT/US2007/002320
10

administrator 225 may enforce type matching for code compiled by compiler 210 or
loaded by loader 215. That is, administrator 225 may compare types or members of
types requested by at least a portion of the code to the types or members of types used
to satisfy those requests, in searching of satisfying matches. In the event that such a
match does not exist for a respective request, administrator 225 may instruct execution
module 230 to proceed with execution of the code compiled by compiler 210 or loaded
by loader 215 until a request for the missing type or member of the milssing type is at
least statistically inevitable.

[0033] Execution module 230 may enable execution of managed code (ie.,
compiled native code) for the computing device platform. Execution module 230 may be
regarded as a module in which execution of the code compiled by compiler 210 or
loaded by loader 215 may be implemented in runtirﬁe execution environment 200, and in .
which runtime s:ervices (e.g., device access and memory management) may be provided.

[0034] FIG. 3 shows example data structure 300 in accordance with one or
more example technologies associated with adaptive compiled code 120 (see FIG. 1).
More particularly, data structure 300 may represent at least a portion of compiled code
corresponding to an application, program, or function that includes a reference to a type
or member of a type that is missing. Aécording to implementations of adaptive compiled
code 120, an error associated with the missing type, or missing type member, may be
deferred until a call to the reference is, at least, statistically inevitable. This
implementation scenario may occur, typically though by no means exclusively, when the
application, program, function, or other assemblage of code to which data structure 300
corresponds attempts to run on an older, or otherwise different, version of the platform
on which it is generated, and is subjected to a verification process at compile time, initial
runtime, or at any time thereafter during execution of the application, program, function,

or assembiage of code to which data structure 300 corresponds.

10

15

20

25

WO 2007/097881 PCT/US2007/002320
11

[0035] Module 305 may refer to one or more modules of exequtable
instructions corresponding to an application, program, function, or other assemblage of
code being executable in accordance with, e.g., executidn component 230 in runtime
execution environment 200 (see FIG. 2). More particularly, moduie 305 may refer to an
entity such as methods, classes, DLLs (dynamic link libraries), frameworks, etc. Module
305 may be compiled by compiler 210 or loaded into runtime execution environment
200 by loader 215. That is, module 305 may be native code (/e., machine-readable
code). |

[0036] However, module 305 is not limited to the examples of native code only.
Rather, alternative implementations of the technologies describéd herein may be
application to code that is not compiled, and therefore be relevant to intermediate
language code or other code written in any one of a variety of known languages for which
at least one of multiple syntactic characteristics and construct properties may be
sampled.

[0037] Module 310 may refer to a reference that is associated with module 305.
More partix;ularly, the reference of module 310 may be to a type or a member of a type
that is not included in the application, program, function, or assemblage of code to which
data structure 300 corresponds. However, in keeping with the example scenario in which
implementations of adaptive compiled code 120 are presently described, it may be
assembled for descriptive purposes only that the type, or at least one member of the
type, to which the reference of module 310 corresponds is missing; Further, the
referenced types, or members thereof, may be, but are by no means limited to, an
integer, a floating point, a string, logical, or binary.

{0038] FIG. 4 shows example data flow 400 for producing and utilizing at least

one example implementation of compiling and/or utilizing adaptive compiled code 120

(see FIG. 1).

10

15

20

25

WO 2007/097881 PCT/US2007/002320
12

[0039] In the following description, various operations will be described as
being performed on or for one or more modules of data structure 300 (see FIG. 3) by
components associated with runtime execution environment 200 (see FIG. 2). The
operations that are described with respect to any particular one of these components
may be carried out by the component itself, in combination with other components
associated with the tool, or by the particular component in cooperation with one or more
components of runtime execution environment 200. In addition, the operations may be
executed by a processor or processors and implemented as hardware, firmware, or
software, either singularly or in various combinations together. Further still, the
operations may occur, typically though by no means exclusively, when the applicatioﬁ,
program, function, or other assemblage of code to which data structure 300 corresponds
attempts to run on a different version of the platform on which it is generated, and is
subjected to a verification process at compile time, initial runtime, or at any time
thereafter during execution of the appli;:ation, program, function, or assemblage of c<;de
to which data structure 300 corresponds.

[0040] Block 405 may refer to the compiling of code that results in data
structure 300.

[0041] Environment 410 may be a managed execution environment, and block
405 may refer to a compiler interpreting IL into native machine instructions for execution
in the managed execution environment or, alternatively, for execution by a CPU in a non-
managed execution environment.

[0042] Environment 410 may, alternatively, refer to block 405 may refer to the
compiling of at least a portion of an application, program, function, or other assemblage
of code that is then loaded as one or more nati.ve image files in ‘the aforementioned

managed execution environment, thus circumventing CPU consumption required for

" compilation.

10

15

20

25

WO 2007/097881 PCT/US2007/002320
13

[0043] Data structure 300, as described above, may represent at least a portion
of compiled code corresponding to an application, program, or function that includes a
reference to a type or member of a type that is missing.

[0044] Module 305 may refer to one or more modules of executable
instructions corresponding to an application, program, function, or other assemblage of
code being executable in accordance with a managed execution environment. Module
305 may refer to an entity such as methods, classes, DLLs (dynamic link libraries),
frameworks, etc

[0045] Module 310 may refer to a reference to a type or a member of a type
that is not included in the application, program, function, or assemblage of code to which
data structure 300 corrésponds.

[0046] Block 410 may refer to execution module 230 of runtime (/.e., managed)
execution environment 200 executing executable code 305 corresponding to data
structure 300.

[0047] Decision 415 may refer to administrator 225 implementing a verification
process with regard to the application, program, function, or assemblage of code to
which data structure 300 corresponds. More pafticularly, administrator 225 may
compare the types and members of types that may be requested during execution of
executable code 305 to determine whether such requests are to be satisfied by the types
and members of types found in the application, program, function, or assemblage 6f
code to which data structure 300 corresponds.

[0048] The verification process implemented by administrator 225 may take
place at compile time, initial runtime, or at any time thereafter during execution of the
application, program, function, or assemblage of code to which data structure 300
corresponds. The;—efore, at least portiéns of the functionality of administrator may occur

at any point during data flow 400, and thus data flow 400, as depicted in FIG. 4 aﬁd

10

15

20

25

WO 2007/097881 PCT/US2007/002320
14

described herein, is provided as an example only. That is, alternative implementations of
data flow 400 are not beholden to the order shown and described here.

[0049] Regardless, as the verification process reveals that a type or a member
of a type that is subject to reference 310 is not included in the application, program,
function, or assemblage of code to which data structure 300 corresponds, reference 310
may be flagged or otherwise noted without requiring an interruption to the execution of
the application, program, function, or assemblage of code to which data structure 300
corresponds. Further, according to at least one implementation of data flow 400,
administrator 225 may statistically determine a likelihood or probability that reference
310 to the missing type or type member may be called as other modules of executable
code are executed. '

[0650] Negative decision 420 may result in the continued execution of
executable code 305 and other executable code modules associated with the application,
program, function, or assemblage of code to which data structure 300 corresponds. That
is, even though reference 310 is to a type or member of a type that is not present in the
application, program, function, or assemblage of code to which data structure 300
corresponds, reference 310 does not cause an error according to implementations of
technologies associated with adaptive compiled code 120.

[0051] Positive decision 425 may result as a statistical inevitability, as
determined by administrator 225, dufing the execution .of the application, program,
function, or assemblage of code to which data structure 300 corresponds, or simply as a
result of reference 310 to a missing type or type member being called.

[0052] That is, if the execution of modules of executable code for tﬁe
application, program, function, or assemblage of code to which data structure 300, and
therefore reference 310, corresponds reaches a point of statistical inevitability that

reference 310 to a missing type or type member is to be called, the managed execution

10

20

25

WO 2007/097881 PCT/US2007/002320
15

environment may cause an error. Alternatively, the managed execution environment may
cause an error simply when reference 310 to a missing type or type member is called. A
non-limiting example of such error may be throwing an exception.

[0053] Thus, by the descriptipn above, pertaining to FIGS. 1 - 4, an error
associated with a reference to a missing type or type member may be deferred until
runtime, when a reference to a missing type or type member may actually be called.

[0054] However, the example implementations described herein are not limited
to just the environment of FIG. 1, components of FIG. 2, modules of FIG. 3, or the process
of FIG. 4. Technologies (e.g., tools, methodologies, and systems) associated with
adaptive compiled code 120 (see FIG. 1) may be implerﬁented by various combinations of
the features described with reference to FIGS. 2 - 4.

[0055]1 Further, the computer environment for any of the examples and
implementations described above may include a computing device having, for example,
ohe or more processors or processing units, a system memory, and a system bus to
couple various system components.

[0056] The computing device may include a variety of computen; readable
media, including both volatile and non-volatile media, removable and non-removable
media. The system memary may include computer readable media in the form of volatile
memory, such as random access memory .(RAM); and/or non-volatile memory, such as
read only memory (ROM) or flash RAM it is appreciated that other types of computer
readable media which can store data that is. accessible by a computer, such as magnetic
cassettes or other magnetic storage devices, flash memory cards, CD—RéM, digital
versatile disks (DVD) or other optical stbrage, random access memories (RAM), read only
memories (RbM), electric erasable programmable read-only mehory (EEPROM), and the

like, can also be utilized to implement the example computing system and environment.

10

15

20

WO 2007/097881 PCT/US2007/002320
16

[0057] Reference has been made throughout this specification to “an example,”

LI 13 » &

“alternative examples,” “at least one example,” “an implementation,” or “an example
implementation” meaning that a particular described feature, structure, or characteristic
is included in at least one implementation of the present invention. Thus, usage of such
phrases may refer to more than just one implementation. Furthermore, the described
features, structures, or characteristics may be combined in any suitable manner in one or
more implementations.

jo058] One skilled in the relevant art may recognize, however, that code module
initiaii'zation may be implemented without one or more of the specific details, or with
other methods, resources, materials, etc. In other instances, well known structures,
resources, or operations have not been shown or described in detail merely to avoid
obscuring aspects of the invention.

[0059] While example implementations and applications 01; the code module
i'nitialization have been illustrated and described, it is to be understood that the invention
is not limited to the precise configuration and resources described above. Vari‘ous
modifications, changes, and variations apparent to those skilled in the art may be made
in the arrangement, operation, and details of the methods and systems of the present

invention disclosed herein without departing from the scope of the invention, as both

described above and claimed below.

10

15

WO 2007/097881 PCT/US2007/002320
17

WE CLAIM

1. A computer-readable medium having a verified data structure thereon, the
data structure comprising:

an executable module; and

a reference module that makes referenge to a module associated with a type that
is rﬁissing from an assemblage of code to which the compiled data structure is

associated.

2. A computer-readable medium according to Claim 1, wherein the

executable module is a method.

3. A computer-readable medium according to Claim 1, wherein the module

associated with a type that is missing is a type.

4, A computer-readable medium according to Claim 1, wherein the module

associated with a type that is missing is a member of a type.

5. A computer-readable medium according to Claim 1, wherein a call to the

reference module throws an exception.

6. A computer-readable medium according to Claim 1, wherein the verified

data structure is compiled in a runtime execution environment. -

7. A computer-readable medium according to Claim 1, wherein the verified

data structure is received, by a runtime execution environment, in compiled form.

10

15

20

WO 2007/097881 PCT/US2007/002320
18

8. A method, comprising:

verifying source code;

compiling the verified source code into a machine language;

calling a method a}ssocfated with the machine language; and

causing an error when the calling includes a reference to a module associated

with a type that is missing from the compiled source code.

9. “ A method according to Claim 8, wherein the method is executed in a

managed execution environment.

10. A method according to Claim 8, wherein the compiling is executed
external to a managed execution environment and the calling and the causing are

executed in the managed execution environment.

11. A method according to Claim 8, wherein the reference to the module
associated with the type that is missing from the compiled source code is included in the

compiled source code.

12. A method a{ccording to Claim 8, wherein the reference to the module
associated with the type that is missing from the compiled source code is a reference to a

type.

13. A method according to Claim 8, wherein the reference to the module
associated with the type that is missing from the compiled source code is a reference to a

member of a type.

10

15

20

WO 2007/097881 PCT/US2007/002320

19

14. At least one computer-readable medium having one or more executable
instructions thereon that, when read, cause one or more processors 1o:

verify source code;

compile the verified source code into a native machine code;

execute native machine code that includes a reference to a module that is missing
from the cpmpiled code; and

cause an error when execution ‘of the native machine code is determined to

include an inevitable call to the reference.

15. At least one computer-readable medium according to Claim 14, wherein
the one or more executable instructions to compile the verified source code are executed

in a managed execution environment.

16. At least one computer—réadable medium according to Claim 14, wherein
the one or more executable instructions to compile the verified source code are executed

by a just-in-time compiler.

17. At least one computer-readable medium according to Claim 14, wherein
the one or more executable instructions to compile the verified source code are executed
in an unmanaged execution environment, and the native machine code is then received

by a managed execution environment.

18. At least one computer-readable medium according to Claim 14, wherein

the reference to a module that is missing from the compiled code is a reference to a type.

WO 2007/097881 PCT/US2007/002320
20

19, At least one computer-readable medium according to Claim 14, wherein
the reference to a module that is missing from the compiled code is a reference to a

member of a type.

20. At least one computer-readable medium according to Claim 14, wherein
the one or more instructions to cause an error when execution of the native machine
code is determined to include an inevitable call to the reference cause the one or more

processors to statistically determine the inevitability of the call.to the reference.

WO 2007/097881

1/4
100
105
i , i
P
-7
Piee - !
P I
- - ,’
j
ADAPTIVE
CowmpILED CODE
y
120
115
\
ADAPTIVE

FIG. 1

CompiLED CODE

120

PCT/US2007/002320

ADAPTIVE
CompriLED CODE

w

WO 2007/097881 PCT/US2007/002320
2/4
200 \
f
N
EXECUTION
230
J
) A) r ™
MEMORY
COMPILER LOADER MANAGER ADMINISTRATOR
210 215 220 225
y y N _J
lINPUT / OUTPUT SUBSYSTEM
205
_

FIG. 2

WO 2007/097881

3/4

PCT/US2007/002320

ExecutaBLE CODE

305

T

REFERENCE

310

FIG. 3

WO 2007/097881 PCT/US2007/002320

4/4
400
{ ‘: 410
I
: COMPILE !
[} |
I |
: 405 :
I [
§ |
L)
300 1
ExecuTtaBLE CODE REFERENCE
305 310
A
410 . h
EXECUTE MACHINE LANGUAGE CODE
y
YES
IS REFERENCE INEVITABLE?
: ~\ 420 425 :
CONTINUE EXECUTION CAUSE ERROR
J

FIG. 4

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2007/002320

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/45(20006.01)i, GOGF 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 8: GO6F

Minimum documentation searched (classification system followed by classification symbols)

Korean utility models and applications for utility models since 1975

Japanese utility models and applications for utility models since 1975

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

eKIPASS(Kipo Internal), Google, YesKisti

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

keywords: install, operating system, OS , image, setting,| configuration

C. DOCUMENTS CONSIDERED TO BE RELEVANT

See tigures 3,5 and their descriptions.

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2005/0172286 A1 (BRUMME C.W. et. al) 04 AUGUST 2005 1-20
See figure 1 and its description.
A US 2002/0169999 A1 (BHANSALI S. et. al) 14 NOVEMBER 2002 1-20
See summary, especially [20], [21],[24],[25].
A EP 1598739 A1 (ACCESS CO.,LTD.) 23 NOVEMBER 2005 1-20
See claims 1,2.
A US 2004/0268095 (SHPEISMAN T.) 30 DECEMBER 2004 1-20

|:| Further documents are listed in the continuation of Box C.

& See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

e

ey

ng"

Date of the actual completion of the international search

22 MAY 2007 (22.05.2007)

Date of mailing of the international search report

22 MAY 2007 (22.05.2007)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

YOON, Hye Sook

Telephone No. 82-42-481-8370

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2007/002320

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2005/0172286 Al 04.08.2005 NONE

US 2002/0169999 A1 14.11.2002 EP 01258805A2 20.11.2002

EP 01598739 A1 23.11.2005 CN 1751291 A 22.03.2006
JP 17502703 17.02.2004
US 2006/174235 AA 03.08.2006
WO 2004/075048 A1 02.09.2004

US 2004/0268095 Al 30.12.2004 NONE

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report

