ACQUIRING A SERVICE NUMBER AND FURTHER INFORMATION

Figure 2

1. UR sends LoST query S1

2. Server sends response S2
 PSAP <uri>, <service number>, <service boundary>, <global service boundary>, <globalservicenumbr>

3. Phone goes out of service boundary but still in global service area S3

4. phone makes emergency call S4

5. Phone makes LoST query S5

6. Server send response with <uri> of local PSAP S6

A method comprising receiving a query (51) at a server; sending a response (52) from said server, said response including service number information and information defining an area for which said service number is valid.
ACQUIRING A SERVICE NUMBER AND FURTHER INFORMATION

Field of the Invention:

The invention relates to a method in which a query is sent to a server and a response is received therefrom, a system in which a node is arranged to send a response to a server and to receive a response therefrom as well as a server for receiving a query and providing a response thereto.

Description of the Related Art:

A communication system can be seen as a facility that enables communication sessions between two or more entities such as user equipment and/or other nodes associated with the communication system. The communication may comprise, for example, communication of voice, data, multimedia and so on. A session may, for example, be a telephone call between users or multi-way conference session, or a communication session between user equipment and an application server (AS), for example a service provider server. The establishment of these sessions generally enables a user to be provided with various services.

A communication system typically operates in accordance with a given standard or specification which sets out what the various entities associated with the communication system are permitted to do and how that should be achieved. For example, the standard or specification may define if the user, or more precisely, user equipment is provided with a circuit switched service and/or a packet switched service. Communication protocols and/or parameters which shall be used for the connection may also be defined. In other words, a specific set of "rules" on which the communication can be based on needs to be defined to enable communication by means of the system.

Communication systems providing wireless communication for user equipment are known. An example of the wireless systems is the public land mobile network (PLMN) and another example is the wireless local area network (WLAN). Fixed broadband access is another type of access.
it is known to provide IP voice services to user equipment which is arranged to be mobile. In order to satisfy regulatory requirements, it is necessary to provide IP emergency communications.

The process of making an emergency call requires several steps. One step is the requirement that an end point (for example, user equipment) or a proxy finds out a PSAP (public safety answering point) which serves the current location of the end user. One known method is currently being defined in the IETF ECRI (Internet Engineering Task Force Emergency Context Resolution with Internet Technologies Working Group) is the location-to-service translation (LoST) protocol. LoST is a simple query/response protocol built on top of HTTP (hypertext transfer protocol). A host sends a query asking for piece of particular information and the response contains the information. The core of the LoST protocol consists of a <findService> query which contains the location of the user.

A <findServiceResponse> response contains, for example, a service URI (uniform resource location identifier) <URI>. This will identify the PSAP serving the location of the end point, the end point being the user. The <findServiceResponse> response also contains other pieces of information such as <service boundary> and a <service number>. The <service boundary> indicates the geographical region for which the identified PSAP is responsible. The <service number> indicates a phone number that can be dialled to reach such PSAP, for example 112, 911, or 999. The <URI> element indicates the address that the end point may use to contact the PSAP. That address may take the form of a SIP URI (Session Internet Protocol Uniform Resource Location Identifier).

When the user equipment is booted-up, the user equipment contacts a LoST server to acquire the <Service number> and other information. If the user dials the service number, e.g. 112, 999 or 911, the call is identified as an emergency call and the emergency call procedures apply.
On reception of the <findServiceResponse>, the user equipment binds <serviceBoundary> geographical area to both the local PSAP number <service number> as well as the URI associated with that PSAP <URi>.

However, this known method has some disadvantages, in some countries, the PSAP may have a boundary of operation per city area or city region. However, in some countries for example Norway, there are only a few PSAPs and each PSAP covers a large part of the country. The current method requires that the user equipment constantly checks its location against the current local PSAP boundary. Whenever the user equipment determines that the user equipment has left the service area of a particular PSAP, it will send a new LoST <findService> query to find out the new PSAP URI <URi> or even the new <service number>.

However, the service number typically has a much greater boundary of operation than the PSAP URI. For example, the service number 112 is commonly used in most European countries, whilst a PSAP URI might be valid in the limits of a city only.

When the user equipment is in the idle state, each time the user equipment moves out of its service boundary limits, that is out of the current PSAP service area, the user equipment sends a LoST query to find out if the service number 112 has changed. Usually, the service number has not changed, even if the local PSAP itself has changed.

This leads to an inefficient operation. The user equipment has to make LoST queries when the user equipment traverses the PSAP service area boundaries in order to learn both the new PSAP URI but also to determine if the service number has changed. Usually, the service number will be unchanged since the service number typically is valid throughout at least one country, and in the case of Europe across many countries. This leads to a wasting of battery resources in the case of portable user equipment as well as the wasting of network resources and radio resources.
Some embodiments of the present invention aim to address or at least mitigate this,

SUMMARY OF THE INVENTION:

According to an aspect of the present invention, there is provided a method comprising receiving a query at a server; sending a response from said server, said response including service number information and information defining an area for which said service number is valid.

According to further aspect of the present invention, there is provided a method comprising sending a query to a server from user equipment; receiving a response from said server, said response including service number information and information defining an area for which said service number is valid.

According to another aspect of the present invention, there is provided a server configured to receive a query and to send a response, said response including service number information and information defining an area for which said service number is valid.

According to another aspect of the present invention, there is provided a user equipment configured to send a query to a server and to receive a response from said server, said response including service number information and information defining an area for which said service number is valid.

BRIEF DESCRIPTION OF THE DRAWINGS:

For better understanding of the invention, reference will now be made by way of example to the accompanying drawings in which:

Figure 1 shows a communication system wherein the invention may be embodied;
Figure 2 shows a signal flow in embodiments of the invention; and
Figure 3 shows the server and user equipment in more detail.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

Embodiments of the present invention relate particularly but not exclusively to IP internet Protocol networks. Examples of IP networks with which embodiments of the present invention may be used include the Internet, or a wireless communication system such as the 3GPP (third generation partnership project) IMS (IP Multimedia Subsystem) or other closed mobile IP networks. Typical access technologies that can carry IP based communications and therefore are relevant to embodiments of the invention include WLAN, WIMAX, CDMA and 3GPP radio access technologies like GSM, WCDMA and LTE. Embodiments of the invention may also be applied to fixed broadband and cable access networks.

Embodiments of the present invention are particularly applicable to those arrangements which can be used with the location to service translation (LoST) protocol which is being standardised in the IETF.

Reference is made to Figure 1 which shows a communication system with which embodiments of the present invention can be used. The system shown in Figure 1 shows two user equipment 10, but embodiments of this invention can be used with any number of user equipment in a network.

The user equipment 10 can take any suitable form and may by way of example only comprise a mobile telephone, a portable computer, a personal data assistant or the like. Embodiments of the present invention are applicable to user equipments which are able to make an emergency call either by a voice connection or by a data or text connection. The user equipment in preferred embodiments of the invention is wireless.

The user equipment 10 communicates via a wireless connection with a suitable access node 12. In the system shown in Figure 1, the user equipment 10 are each connected to different access nodes 12. However, it should be appreciated that in practice a relatively large number of user equipment can be associated with each
access node. The access node 12 can take any suitable format and may for example be a base transceiver station, node b or the like.

The access nodes 12 are connected to a core network 14. The connection between the access nodes and the core network are typically via radio links or wired connections. The core network 14 effectively allows access to the Internet 20.

The core network 14 is also connected to a LoST server 18. The server may be part of the core network or separate therefrom. The LoST server 18 may be connected to the core network directly or via the internet.

The core network 14 is connected to one or more PSAPs 16 and the core network routes the emergency service to the PSAP directly or via a PSTN interworking function.

Embodiments of the present invention decouple the service number from the PSAP boundary and add the description of the boundary of the service number. Two alternatives for achieving this are now described.

Reference is now made to Figure 2. This shows a flow diagram of an embodiment of the invention,

In the first stage S1, the user equipment sends a LoST query. This LoST query is sent when the phone boots up. It should be appreciated that the user equipment may also send a LoST query for example when the user equipment determines that it has moved outside the PSAP service boundary.

The LoST query comprises the location of the user equipment if available to the user equipment and is sent to the LoST server 18. Effectively, the communication between the user equipment and the LoST server will be via the access nodes 12, the core network 14 and alternatively or additionally via the Internet 20.
The LoST server sends a response in the second stage, S2 which consists of the following information:

1. The local PSAP URI. In other words, information identifying the local PSAP for the user equipment is sent. In the example shown, the address information or identity information comprises the URI. The information identifying the local PSAP can take any other suitable format. It should be appreciated that the server is provided with location information associated with the user equipment in order to make a determination as to the local PSAP. The location information can be provided from a separate location server, from the user equipment itself, or from any suitable source.

2. The response also includes the service number, which is the number that needs to be dialled in an emergency call. So, for example, in some countries in Europe, the emergency number would be 112 whilst in the United States, the emergency number would be 911.

3. The response also includes service boundary information of the local PSAP. The service boundary area is defined in such a way that the user equipment can determine what geographical area is served by the identified local PSAP in question. One example way of describing the service boundary area of the PSAP is the so-called defined area concept standardised by 3GPP, see TS 23.171. In this embodiment, no further geographical service area definition mechanisms (ADD) are described. However the user equipment is such that it is able to determine whether it is within the service boundary area of a given PSAP.

4. Additionally, the response also includes a global service number and a global service boundary. This indicates the global number for the service, i.e. emergency service and the area for which that number is valid. This is independent of the area of the local PSAP. The global service boundary area is typically one country and the user equipment is typically aware of in which country it is. The global service boundary may be smaller than a country; for example a city (e.g. in Russia). In some embodiments the global service boundary could cover two or more countries.
In this stage, S3, it is determined whether or not the phone is still within the global service area S3. So long as the user equipment remains within the limits of the global service area for example a country or group of countries, it does not need to repeat the LoST query to get updated information about the valid emergency number.

In the event of an emergency call, as shown in stage S4, the user will make an emergency call by dialling the emergency service number. The user equipment detects that this is an emergency call, due to the dialled emergency service number and the user equipment may also be able to determine the geographical location where the phone is located.

It should be appreciated that at this point the phone, as illustrated in stage S5 will make a newLoST query. The purpose of this LoST query is to find out the URI of the local PSAP.

The server in the stage S6, as in stage S2 sends various information which will include the URI of the local PSAP.

Thus, even when the user equipment moves out of the known service area boundaries associated with a local PSAP, there is no need to make a new LoST query directly because the URI of a local PSAP is not needed before the phone makes an IP emergency call. Since emergency calls are not very common, some embodiments of the invention may minimize the number of signalling traffic (in particular the number of LoST queries and responses) in most network configurations.

It should be appreciated that in some embodiments of the present invention, in step S2, the response sent only includes the global service boundary and the global service number, omitting items 1. to 3. Information relating to the local PSAP is only obtained when it is required for example when there is an emergency call in response to a specific query for the PSAP.
This embodiment can be modified. In this embodiment, a service number boundary element is provided, instead of the global service boundary and the global service number. This service number boundary defines the boundary associated with that service number. Thus, in this embodiment, the response in stage S2 consists of the PSAP URI, the service number, the service boundary of the PSAP and the service number boundary, which is the boundary of the area for which the service number is valid.

Reference is made to an example of a LoST response, such as will be received in the first embodiment of the invention in stage S2. As can be seen, the embodiments of the invention provide two new XML (extended mark-up language) elements to the LoST response: <global service number> and <global service number boundary>". Additionally, since the LoST protocol permits the describing of a service boundary by reference, a third new XML element called the global service boundary reference is also added. Using this reference the user equipment can look up from a suitable location the extent and definition of the service area associated with the service number. That location can be on the user equipment, on the UICC-card (SIM) (UMTS (Universal Mobile Telecommunications System) Integrated Circuit Card (Subscriber Identity Module)) in the user equipment, in the core network, on a separate server, on a location server or any other suitable location. It is noted that the local PSAP service boundary area can be communicated to the user equipment in the same manner as described above also using LoST.

In preferred embodiments of the present invention, one of either boundary values, that is the global service number boundary or the boundary by reference, the global service number boundary reference is used, typically not at the same time. Other embodiments of the invention may make use of both of the values. The XML response code is as follows:

```xml
<?xml version="1.0" encoding="DTP-S"?>
```
As can be shown from the above code, the global service number is, this embodiment is indicated as "112". The global service boundary profile is then described with the service boundary for a country. The examples shows one way of providing a global service number boundary reference with a source (location at
which information can be found) and a key (identifying the location or the information in the source),

As described above, there is a second modification which consists of adding a new XML element service number boundary to be LoST response. An example of using this new element is provided below. Again, since LoST allows describing a service boundary by reference, a third new element called service number boundary reference is also added. Again, either the boundary is identified by value or by reference. Typically, one or other of these references is used. Also here it is noted that the service boundary area of the local PSAP can be communicated to the user equipment in the same way.

```xml
<?xml version= "1.0" encoding="UTF-8"?>
<findServiceResp xmlns:urn= "urn:ietf:params:xml:ne:lostl " xmlns:is="http://www.opengis.net/gml">

<globalServiceNumberBoundary>
  <mapping>
    <findServiceResponse />
  </mapping>
</globalServiceNumberBoundary>
</findServiceResponse>
```
It should be appreciated that embodiments of the invention may be used with other service numbers as well as or instead of an emergency service number. For example, the service number may be that of a logistics agency or pizza delivery company.

Reference is made to Figure 3 which shows elements of the user equipment 10 and the LoST server 18 in more detail.

The user equipment 10 comprises a transmitter 30 and a receiver 34. The transmitter 30 and receiver 34 are connected to an antenna 36 for transmitting and receiving signals respectively. The user equipment 10 is also provided with a processor 32 and a memory 34.

The processor 32 is arranged to formulate a query. This query is passed to the transmitter 32 which in conjunction with the antenna 36 causes a query to be transmitted.

The receiver 34 is arranged to receive via the antenna 36 a response from the access node 12. This response is the response from the LoST server. The receiver 34 passes that response to the processor 32. The processor 32 is arranged to cause at least part of the information to be stored in the memory.

It should be appreciated that the processor is configured on the detection of boot-up of the user equipment to cause a query to be sent.

The user equipment 10 also comprises an input 40 such as a keyboard, touchscreen or the like. When a service number for example an emergency number is dialled via the input 40, this information is received by the processor 32 from the input 40. The processor is then arranged to make a LoST query, such as set out in step S5.
The user equipment may also comprise location determining circuitry 42 which determines the location of the user equipment. This location determining circuitry can take any suitable format or in the alternative may be arranged to receive location information from for example an access node.

The LoST server 18 comprises receiving circuitry 50 which is arranged to receive queries from the user equipment. The query is passed to a processor 52 of the LoST server which is able to formulate a response which is passed to transmitting circuitry 54 for transmission via various elements to the user equipment.

The server comprises a memory 56 which includes information which is to be included in the response provided by the server. That information is as listed above. The memory can take any suitable form and may comprise a number of memories. If necessary, one or more of the memories may comprise a look-up table where for example location information of a user equipment is used to select the information to be included in the response sent by the server.

Embodiments of the invention have been described in the context of a query response exchange between user equipment and the server, in alternative embodiments of the invention, the exchange may be between the server and a proxy.

It should be appreciated that embodiments of the invention may be implemented by a computer program. The computer program may be provided with one or more computer executable components for carrying out one or more steps on a suitable processor. The computer program may be provided by a computer carrying media.

Although the present invention has been described with reference to examples and the accompanying drawings, it is clear that the invention should not be regarded as being restricted thereto but can be modified in several ways within the scope of the claims.
CLAIMS

1. A method comprising:
 receiving a query at a server;
 sending a response from said server, said response including service number information and information defining an area for which said service number is valid.

2. A method as claimed in claim 1, wherein said service number comprises an emergency service number.

3. A method as claimed in any preceding claim, wherein said response is based on information about a location of a sender of said query.

4. A method as claimed in claim 3, wherein information about a location of said sender of said query is provided in said query.

5. A method as claimed in any preceding claim, wherein said service number information comprises an emergency number.

6. A method as claimed in any preceding claim, wherein said information defining an area for which said service number is valid comprises a reference by which said area is identified.

7. A method as claimed in any of claims 1 to 5, wherein said information defining an area for which said service number is valid comprises geographic information.

8. A method as claimed in any preceding claim, wherein said response comprises information identifying a public safety answering point associated with a location of a sender of said query.
9. A method as claimed in claim 8, wherein said response comprises information identifying a service area associated with said public safety answering point.

10. A method as claimed in any preceding claim, wherein said query and response are in accordance with the Location-to-Service Translation protocol.

11. A method as claimed in claim 10, wherein said server comprises a Location-to-Service Translation protocol server.

12. A method as claimed in any preceding claim, wherein said response comprises one or more of:
 - information identifying a public safety answering point;
 - a service number;
 - a service boundary area associated with said public safety answering point;
 - a global service number; and
 - location information associated with the global service number.

13. A method as claimed in any of claims 1 to 11, wherein said response comprises one or more of:
 - information identifying a public safety answering point; a service number;
 - a service boundary area associated with said public safety answering point;
 - and
 - location information associated with the service number.

14. A method comprising:
 - sending a query to a server from user equipment;
 - receiving a response from said server, said response including service number information and information defining an area for which said service number is valid.

15. A method as claimed 14, comprising storing in said user equipment said received information.
16. A method as claimed in claim 14 or 15, wherein said user equipment sends a query when said user equipment is booted up.

17. A method as claimed in any of claims 14 to 16, wherein said user equipment send a further query when said user equipment leaves said defined area.

18. A method as claimed in any of claims 14 to 17, comprising responsive to said service number being dialled, identifying said call as a service call.

19. A method as claimed in claim 18, comprising determining that said user equipment is not in an area defined served by a local answering point for said service number for which said user equipment has information and sending a further request for information relating to a local answering point for said service number associated with a current location of said user equipment.

20. A server configured to receive a query and to send a response, said response including service number information and information defining an area for which said service number is valid.

21. A server as claimed in claim 20, wherein said server comprises a Location-to-Service Translation protocol server.

22. A user equipment configured to send a query to a server and to receive a response from said server, said response including service number information and information defining an area for which said service number is valid.

23. A user equipment as claimed in claim 22, comprising a memory for storing in said user equipment said received information.
24. A computer program comprising programme code means arranged to perform any of the steps of any of claims 1 to 19, when the program is run on a processor.
Figure 1
UE sends LoST query S1

Server sends response S2
PSAP \(<url>, <service number>; <service boundary>; <global service boundary>; <globalservicenumber>\)

Phone goes out of service boundary but still in global service area s3

Phone makes emergency call S4

Phone makes LoST query S5

Server send response with \(<url>\) of local PSAP S6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04W4/02
ADD. H04M3/42 H04L29/08 H04W4/22

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04M H04W H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 00/41421 A (SIEMENS AG [DE]); SEDLMEIER ALEXANDER [DE]) 13 July 2000 (2000-07-13) page 1, line 28 - page 3, line 14 page 4, line 26 - page 6, line 11 page 7, line 25 - page 11, line 33 page 13, line 24 - page 14, line 33 figure 3</td>
<td>1-24</td>
</tr>
</tbody>
</table>

| Y | WO 2007/016452 A (CISCO TECH INC [US]; POLK JAMES M [US]; JENNINGS CLUEN F [US]) 8 February 2007 (2007-02-08) page 5, line 29 - page 7, line 8 page 10, line 16 - page 17, line 10 figures 6-8 | 1-24 |

Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents
A* Document defining the general state of the art which is not considered to be of particular relevance
E* Earlier document but published on or after the international filing date
L* Document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O* Document referring to oral disclosure, use, exhibition or other means
P* Document published prior to the international filing date but later than the priority date claimed

I* Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X* Document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y* Document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
X* Document member of the same patent family

Date of the actual completion of the international search 15 December 2008

Date of mailing of the international search report 19/01/2009

Name and mailing address of the ISA:
European Patent Office, P B 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel (+31-70) 340-2040, Fax (+31-70) 340-3016

Authorized officer Bosch, Michael

Fols: PCT/ISA/S1 0 (second sheet) (April 2005)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 0041421 A</td>
<td>13-07-2000</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2004071115 A</td>
<td>19-08-2004</td>
<td>AU 2003203085 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2515182 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1742502 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60310271 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1597929 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2278140 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1083410 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006514459 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05008379 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008207208 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005020270 A1</td>
</tr>
</tbody>
</table>