PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GOGF 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/54662

3 December 1998 (03.12.98)

(21) International Application Number: PCT/US98/10679

(22) International Filing Date: 26 May 1998 (26.05.98)

(30) Priority Data:

08/863,680 27 May 1997 (27.05.97) Us

(71) Applicant: ARKONA, INC. [US/US); Suite 3409, 4505 South
Wasatch Boulevard, Salt Lake City, UT 84124 (US).

(72) Inventors: ZOLLINGER, John, M.; 3563 East Wasatch Grove
Lane, Salt Lake City, UT 84121 (US). DEVINE, Johnathan;
Loft 408, 300 Beale Street, San Francisco, CA 94105 (US).

(74) Agents: STRINGHAM, John, C. et al.; Workman, Nydegger
& Seeley, 1000 Eagle Gate Tower, 60 East South Temple,
Salt Lake city, UT 84111 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S], SK, SL, TJ,
TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

1

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD, COMPUTER PROGRAM PRODUCT, AND SYSTEM FOR DISTRIBUTING CHANGES MADE IN A DATA
STORE TO REMOTE CLIENT COPIES OF THE DATA STORE

(57) Abstract

/68

A method, computer program product,
and system that allows changes made to an
original database table found on a server com-
puter to be reflected in client copies of the data-
base table based on intermittent client requests
for synchronization. A server makes periodic
updates of table differences between current ta-
ble (20) receiving database change events and
reference table (28). Each client copy of a data-
base table and update (created by the server has

a sequential version number associated there- 0~

28\

A

u .
OTHER PROGRANS

" CURRENT TABLE

l{/\az

DIFFERENCING
ENGINE

REFERENCE TABLE

VERSION
IDENTIFIER

with). The server will compare the version

number of a client copy of a database table TRANSLATOR

{{/’\—‘36

—
(o

with the most recent version number of the ta- KCOESS INFO

VAN
ﬂ

3

ble on the server to determine which updates

ORACLE IKFO

DIFFERENCES VERSION
i {GENERIG FORMAT)| 1DENTIFIER

need be applied in order to make the client copy
current. Next, the updates will be translated
from a generic format into instructions that are

0

-4

o

52

specific to the type of database engine being

<DATA BASE N>
run on the client. Finally, the instructions are INFO

56\

)

PROFILE

<:I_—“D

transmitted to the client (along with the new
version number) so that the client may operate

OATABASE

the database engine to apply the instructions
for making the database table current with the
original managed on the server.

CLIENT N |
DATABASE
ENGIKE M

CLIENT 2
DATABASE | * © ° [~
ENGINE a

48—

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR
HU
IE

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
Uz
VN
YU
VAL 4

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

1

METHOD, COMPUTER PROGRAM PRODUCT,
AND SYSTEM FOR DISTRIBUTING CHANGES
MADE IN A DATA STORE TO REMOTE CLIENT
COPIES OF THE DATA STORE

BACKGROUND OF THE INVENTION
1. The Field of the Invention

The field of the present invention pertains to distributing changes made to a
database, database table, or other data store on a server computer out to read-only copies
of the data store found on one or more client computers. More specifically, the invention
deals with distributing such database changes in a manner that efficiently uses system
resources and is quickly achieved. Another area of the present invention pertains to client
systems that are intermittently (as apposed to continuously) connected to a server system
requiring communication and synchronization of information on both systems.

2. Present State of the Art

In many situations, it is desirable to distribute an original database, database table,
or other data store on a server computer to one or more client computers at various
locations. Furthermore, when the original data store at the server is changed in some way
(e.g., the addition, deletion, or modification of a record) it is desirable to distribute those
changes out to the various client copies of the data store or database table so that the
client copies may be current with the original.

A data store is any form of information readable with the assistance of a general
purpose computer. The most common type of data store are traditional databases but any
form of data storage may require that changes made to an original data store on server to
be distributed outward to client copies of that data store. For illustration purposes, a
database table is used throughout as an example of a data store, though many other kinds
of data store exist.

The client copies of the original data store or elements thereof such as a database
table are in one respect read-only copies since any chaﬁges made by the client will not be
distributed back to the original. This differentiates the present area of the invention from
the art of data replication wherein a change made to any copy of the database must be
replicated at every other database or database table.

The usefulness of information distribution from an original data store to client
representation of the data store is manifest in applicdtions where the client is a remote
laptop computer that is only intermittently connected for brief periods of time with the

centralized server computer. The client copy of the database information may be used

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

2

on the remote laptop computer even when the computer is not connected to the server
over a communications network.

One example of such an environment arises in field servicing where a field
service representative making client visits may only connect with the home office
centralized computer system (server) in indeterminable and infrequent intervals, such as
nightly in a hotel room or a couple times per week. In this environment, the field
representative may use a parts list database that includes price information. Such a price-
list could be distributed out to the sales representative as client copies of the original
price list maintained at the home office. As the part list is changed (e.g., adding a new
part or changing the price of an existing part) such changes should be distributed out to
the remote client as the need arises so that the client copies of the parts list will be current
with the original parts list.

One way to distribute changes made to a database or database table is to download
the entire table each time a client makes a connection with the server. While practical
when a data store is relatively small, a larger database or database table will require large
amounts of bandwidth on the communications link. This will make for an expensive and
time consuming transfer that, in many instances, will be intolerable and impracticable.

Another way is to make a comparison of the client representation of the database
(or other form of data store) and the original database on the server at the time that the
client makes a connection with the server. Such dynamic comparisons require large
amounts of hand shaking and data transfer between the client and the server, but
eventually allow only the changes necessary for making the client current to be
transmitted from the server to the client which in turn will update the client database.

One major drawback of this method is the inefficient use of the servers processing
resources. Each client will synchronize at a different time and require the comparison
between the original database and the client copy of the database to be made many times.
The impact of this inefficiency increases drastically as the number of clients increase and
the frequency of the intermittent connection and request for synchronization increases.

What is generally sought in database change distribution systems described above
are ways to quickly send the minimum amount of information needed to update a remote
data store. This allows the client to quickly make a connection with the server, download
only the necessary and sufficient amount of information, and make changes to the client
copy of the data store without expending undue time or computing resources.

Another attribute of distributing a data store, such as a database or database tabie,
from a server computer to one or more clients is, in many instances, the presumption that

the exact same type of data store or database engine and format exists on the client side

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

3

as exists on the server side. This attribute and presumption can make deployment of such
systems costly by requiring the purchase of a specific type of database engine for every
client using the system. Furthermore, the original database tables or databases desired
for remote distribution may be managed by many different database engines thereby
requiring each client to use or maintain multiple database engines.

It would therefore be an advance in the art to allow client representations of a data
store to be managed by a different type of data store engine than that managing the server-
data store. This would allow a single data store engine to be found on each client that
could handle multiple data stores. such as databases or collections of documents, that are
originally created and managed on the server by different types of data store engines.
Furthermore, existing data store and database engines found on a particular client system
may be leveraged without necessitating the purchase of new or different data store
engines in order to integrate with a system of distributing copies of a data store, such as
a database table, as described previously.

SUMMARY OF THE INVENTION

The present invention quickly delivers database changes made to an original

database table on a server to a requesting client so that the client may apply the
differences to make the client copy of the database table current.

The present invention creates and stores difference updates that can be used for
quickly sending database table differences to a client for use in making a client copy of
a database table current.

In addition, the present invention translates database changes to instructions that
can be understood by a particular type of database engine residing on a client computer
thereby allowing the client to update the client copy of a particular database table in
order to make it current.

The present invention provides client copies of database tables to be managed by
different database engines and yet contain the same data and the same general
organization.

Furthermore, the present invention allows database changes to be made to a data
store located on a server to be distributed out to client copies of the data store in an
efficient and timely manner.

Additional advantages of the invention will be set forth in the description which
follows, and in part will be obvious from the description, or may be learned by the
practice of the invention. The advantages of the invention may be realized and obtained

by means of the instruments and combinations particularly pointed out in the appended
claims.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

4

To achieve the foregoing and in accordance with the invention as embodied and
broadly described herein a method, computer program product, and system for
distributing changes made in a data store to remote client copies of the data store is
provided.

The present invention creates and stores updates of table differences that are used
to make client copies of a particular database table current. Each update is made by
comparing a current copy of a database table with a reference copy of the same database-
table with the update being given a version identifier, such as a sequential version
number. The updates are created periodically as needed, thereby requiring that a database
table comparison be done only once per relevant table change regardless of how many
clients later use the updates as part of synchronizing the client copy of the database table.
Furthermore, the updates isolate only the information that has changed over time so that
a minimum amount of data may be sent to a client. Finally, the updates are stored in a
generic format so that they may be translated to specific database engine instructions
corresponding to the actual type of database engine residing on a particular client.

A client will initially receive a client copy of a database table having a particular
version identifier, such as a version number, date stamp, etc. At some later time, the
client will reconnect with the server to request synchronization of the client copy of the
database table to make it current with the original database table that is on the server.
The version identifier of the client copy of the database engine is accessed and all
intervening updates are then translated into instructions that are understood by the type
of database engine run on the client system. This allows the client copy of the database
table to be made current with the original database table found on the server by the
particular database engine running on the client system. For a sequentially numbered
version number used as a version identifier, all updates having a larger number than that
of the client copy of the database table are used to make the client copy current. The
client copy of the database table is then given the latest version identifier and is
considered current. Depending on when or how often a client connects with the server,
one or multiple updates may used in order to make the client copy of the database table
current.

In one embodiment, a profile database is used in order to validate clients and store
pertinent information regarding client status. Such client information may include the
database tables stored as copies on the client system, current version identifiers of the
database tables stored on the client system, the type of database engine running on the
client system, etc. While discussed in the context of database tables, the present invention

can be applied to any type of data store.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

5

These and other features of the present invention will become more fully apparent
from the following description and appended claims, or may be learned by the practice
of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[n order that the manner in which the above-recited invention and other
advantages of the invention are obtained, a more particular description of the invention
briefly described above will be rendered by reference to specific embodiments thereof
which are illustrated in the appended drawings. Understanding that these drawings depict
only typical embodiments of the invention and are not therefore to be considered limiting
of its scope, the invention will be described and explained with additional specificity and
detail through the use of the accompanying drawings in which:

Figure 1 is a block diagram illustrating the architecture of a system implementing
the method of the present invention wherein a server synchronizer component will
communicate intermittently with one or more clients in order to distribute changes made
to a data base table on the server out to the respective client copy of the database table
upon client request;

Figures 2A-2D are diagrams showing the state of an example database table of
employee information at four different moments in time;

Figures 3A-3B are diagrams showing the contents of two particular updates with
Figure 3A showing the changes that occurred between Figure 2A and Figure 2B while
Figure 3B shows the changes that occurred between Figure 2B and 2C;

Figure 4 is a block diagram showing the state of progression of Figures 2A-2D
correlated with the changes represented in the updates shown in Figures 3A-3B;

Figure 5 is a flow chart showing the processing steps taken by the differencing
engine of Figure 1 to create an update of differences between the current state of a
database table and a reference copy of the database table that may be used in generating
and distributing database table differences to clients having client copies of the database
table;

Figure 6 is a flow chart showing the processing steps taken by the server
synchronizer component of Figure 1 in order to distribute the appropriate database table
differences to a requesting client according to the present invention;

Figure 7 is a flow chart showing the processing steps taken by a client in order to
request and receive the correct differences from a server that may be applied to the client

copy of the database table in order to make it current.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

6
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As used herein, the term "component" or "engine" refers to computer software
instructions that achieve a particular function. Many components or functional entities
may be found within the same program or process.

As used herein, the term "server application" refers to software written according
to the client-server model and that runs on a server computer. A "server" as used herein
refers to a server application running on a server computer. A server is designed to-
communicate with, and process requests from, client software running on one or more
client computers which may be continuously or intermittently connected to a
communications network allowing communication with the server.

A client is any computer process separate from the server process that either
resides on the same computer or has a physical connection through a communications
network to the server process, whether intermittent or continuously. A "client system"”
or "client computer” as used herein refers to client software running on a client computer
corresponding to, or interacting with, a server process. The client system becomes
logically connected to a server in order to communicate requests or messages for
processing to the server. A "client" as used herein may refer to a client system or the
human operator of the client system depending on context. Note that a client and a server
may be sharing the same physical hardware allowing the client and server to
communicate using interprocess communication; they need not be on separate physical
hardware.

A "communications network" as used herein is to be interpreted broadly and
includes, but is not limited to, interprocess communication, local area networks,
telecommunications networks, wide area networks, modem connections, etc. Typically,
a communications network will comprise a physical component or physical connection
that is made up of the wiring, interface cards, and other hardware combined with a
specified information sharing protocol and associated software. Furthermore, actual
transportation of physical media, such as a floppy disk or tape, between two computers
may be used as an equivalent of a communications network.

A "storage means" is defined broadly to incorporate any type of device
interfaceable to a computer that is used to memorize information and includes both long-
term and short-term storage. Thus, storage means would include, though not be limited
to, cache memory, RAM, disk storage, tape storage, etc. Furthermore, storage means
contemplates the entire system of storage incorporated by a computer in combination so
that the RAM, cache, and disk drive together could be considered a storage means. A

storage means can also be logically partitioned so that items are stored in different media

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

7

or in different parts of the same media. For example, a storage means comprising RAM
and disk storage could be logically partitioned so that item A is stored in a portion of
RAM (first partition), item B is stored in another portion of RAM (second partition), and
item C is stored on disk (third partition).

As used herein, the term "database" or "data store" refers to any collection of
information that can be read or accessed by a program running on a general purpose
computer. While this definition entails standard database formats, such as SQL:
databases, it also contemplates other entities such as computer files that may have any
form of data contained thereon, or collections of files. For example, a set of documents,
each document being a file in the format of a standard word processor, would constitute
a data store. Furthermore, the data within a file or traditional database is unlimited as to
its meaning. In other words, the data could be sound data, video images, statistical
information, etc.

As used herein, the term "database table" or "table" refers to the row/column
organization of data in a standard SQL database. Again, the cells or elements of a
database table may contain data or information that is unlimited in its nature. Data
sources can also organize information in entity, attribute, and relationship form (in
addition to other forms).

As used herein, the term "database engine" or "data store engine" refers to a
software program that can understand and interact with a particular data store. Such a
database engine would include varieties of SQL database engines, such as Microsoft®
Access™, or Borland® Paradox™; as well as word processors, such as Microsoft® Word,
and other programs that may read or organize computer information. Traditional data
source types include, but are not limited to the following: relational, hierarchal, object-
relational, object oriented, flat files, etc. Furthermore, a database engine must be able to
process database instructions in order to change database contents and may consist of
multiple software components acting in harmony one with another. A data source type
simply identifies a particular class or implementation of an engine such as a Microsoft®
Access™ SQL database engine.

As used herein, a "database change event" is anything that changes the state of a
database, such as additions, deletions, or modification of records. Furthermore, other
types of events may make changes to a database including, by way of example and not
limitation, sorting a database, adding an extra field or column to a database table,
changing "metadata" parameters such as passwords, permissions, logins, structure, etc.

As used herein, the term "update” refers to a set of differences on a particular

database taken between two separate states of that database or database table. Generally,

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

8

there is the current copy of the database or the database table which typically has the most
recent changes and a reference database or database table that has been "frozen" so that
differences may be measured. The term "sequentially” as used herein in connection with
update creation means that updates are created one after another and that there is some
way of distinguishing the order of creation whether by a numbering system, a date or time
stamp, etc. Furthermore, some updates may be supersets or collections of other updates
and the same differences may exist in more than one update depending on-
implementation or profile.

Referring now to Figure 1, a block diagram of one embodiment of the present
invention is shown wherein a database table is maintained at a centralized location on a
server. The current table 20 may be continuously accessed and updated by other
programs 22, such as database engines and user applications as represented by arrow 24.
Because of being constantly updated by other programs 22, the current table 20 will be
in a continuously changing state.

A reference table 28 is maintained so that changes to the current table 20 may be
measured against a known state. Furthermore, a version identifier 26 is associated with
the reference table 28 that will be sequentially incremented as the reference table 28 is
changed as will be explained in more detail hereafter.

A differencing engine 30 will take as input the current table 20 as represented by
directional arrow 32 and the reference table 28 as represented by the directional arrow 34
in order to compute the differences between the two tables. The output of the
differencing engine 30, indicated by directional arrow 36, produces a series of updates
38. Each update of the series of updates 38 will contain the table differences 40 between
a particular state of the current table 20 and a particular version of the reference table 28
as well as a version identifier 42 that will correspond to the version of the reference table
28 upon which the update was made.

Preferably, the version identifier is sequentially numbered for ease in determining
which updates to apply in order to synchronize a client copy of the database table. After
an update is made and stored as part of the series of update 38, the current table 20 is
copied to the reference table 28 as indicated by arrow 44 so that the next update in the
series will contain only those changes since the previous update. Additionally, the
version identifier 26 for the reference table 28 is incremented to distinguish the various
editions of the reference table 28.

The server synchronizer component 46 is responsible for sending the initial
database copy to one or more clients and updating or synchronizing the client's copy of

the database table whenever a client connects to the server and requests such update or

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

9

synchronization. One or more clients, illustrated by the series of clients 48a-48n may
utilize the services of the server synchronizer component 46 and have contained thereon
a copy of the database table.

The block diagram of Figure 1 illustrates the invention for a single database table
for purposes of teaching the present invention and that actual implementations will likely
have many different database tables with each client "subscribing" to one or more of the
database tables. It should also be noted that the present invention extends beyond a-
database table and can be used for any form of database or stored information that would
be distributed out to clients in read-only fashion. The invention applies particularly to
clients that are only intermittently connected to the server synchronizer component 46.

One example of an intermittent connection environment would be the servicing
example explained previously. In that environment, a parts database is centrally managed
and updated but is used by field service representatives having laptop computers (i.e.,
clients). The field service representatives will only intermittently connect with the home
office server computer on a periodic and often random basis ranging from a couple of
times per day to weekly or even less frequently.

Referring back to Figure 1, note that the client computers will not necessarily
change the data in the client copies of the database table though this may occur in some
circumstances. If such changes are made to the client copy of the database tables by the
client, the changes will not be propagated back to the original table managed on the
server computer and could actually be lost when update instructions are received by one
of the clients 48a-48n.

The server synchronizer component 46 has access to the reference table 28 as
represented by arrow 50 in order to transfer or copy the reference table 28 onto a
respective client in the series of clients 48a-48n. Also, the server synchronizer
component 46 will communicate with the series of updates 38 as represented by arrow
52 in order to use those updates in synchronizing the client copy of the database table
located on a respective client system with the original database found on the server.

The intermittent connection between the server, being represented by all the
components encircled by the dashed line 68, and each of the series of clients 48a-48n is
represented by arrow 54. The nature of the communication represented by arrow 54 in
a currently preferred embodiment is a direct modem connection, however, any
communications network or method (i.e., by way of a disk or tape) may be used so that
the communication path between client and server may be made. Furthermore, the

logical connection (i.e., the actual contact between the client server or handshaking) may

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

10

also occur intermittently over a continuous physical connection (e.g., LAN, over the
Internet, interprocess communication, etc.).

When a client, such as client 48a, connects with the server synchronizer
component 46 as represented by arrow 54, it will identify itself through some form of
identifier in a synchronization request. The request may also include other information
including the type of database engine that is native to the client, the copies of database
tables currently resident on the client and their associated version numbers, etc.

The server synchronizer component 46 will also access a profile database 56 as
represented by arrow 58 in order to validate clients. The profile database contains
information on each client authorized to receive updates from the server synchronizer
component 46 including, but not limited to or required depending upon implementation,
the following information: a list of database tables authorized for update by the client;
the version number for each authorized database table; the password to be used for
verification of log in or other connection initiation; the database engine or engines
natively running on the client and in the case of multiple engines, an association between
the engines and the database table; and other information apparent to those skilled in the
art.

The server synchronizer component 46 will also communicate with a translator
component 60 as represented by arrow 62. The translator component is used for
translating the table differences 40 contained in each update of the series of updates 38
from one format (e.g., a generic format) to a format specific to the type of database
engine found on the particular client receiving the update(s). Furthermore, when the
initial table is placed on the client, a translation between the reference table 28 may be
necessary in order to transmit the information in the appropriate database-specific format
required by the client.

Database information 64 is accessed by the translator component 62 according to
the type of database engine found on the client. For example, client 48a may have an
Oracle® database engine requiring the translator component 60 to access the relevant
Oracle® information 66 in order to translate the table differences 40 in a number of
different updates within the series of updates 38 prior to sending the specific instructions
to the client 48a.

Those skilled in the art will note that certain functions of the described
architecture may be handled either by the server 68 (specifically, the server synchronizer
component 46) or a corresponding component running on the client system. For
example, the client may track its own database engine type, current version of a client

copy of client database table, etc. and notify the server synchronizer component 46 of

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

11

these parameters in the synchronization request. Alternatively, the client may simply
identify itself and all such information may be stored in the corresponding client entry of
the profile database 56 that may be accessed by the server synchronizer component 46.

In either case, the server synchronizer component 46 will know or be able to
ascertain the status of the client copy of the database table in order to determine which
updates of the series of updates 38 need to be applied to that table in order to make it
current, The server synchronizer component 46 will also be able to deliver the
information that the translator component 60 will need in order to translate the table
differences 40 from a generic format to the correct format or instructions for the type of
database engine on the particular client requesting synchronization.

Generally, it is preferred to push as much information up to the centralized server
as possible so that a client component that interfaces with the server has as little
sophistication as possible. In other words, the client will simply receive instructions from
the server that may be given to a database engine in order to apply the relevant updates
to the client copy of the database table. In such a minimal implementation, the client
component need only store its identifying information for communicating and identifying
itself to the server synchronizer component 46. Additionally, minimal client software
will have the ability to communicate with its native database engine, though client
software may be so written that the same client code may be configured to interface with
a variety of different types of database engines. Such an arrangement allows the client
component to be very flexible when adding new types of database engines supported by
the current system shown in Figure 1.

Referring to Figures 2A-2D, different states of a database table having employee
information are shown with each state at a different point in time and progressing
sequentially in time from Figure 2A to Figure 2D. For illustration purposes, the database
table is small both in terms of columns and rows and those skilled in the art will
appreciate that a database table of any size may be used according to the concepts
illustrated in the present invention. Furthermore, any form of database used
interchangably in place of the database table is considered within the scope of the present
invention, including but not limited to such things as data files, other databases organized
other than row-column format, etc.

Referring to Figures 3A-3B, two updates organized in an arbitrary generic format
are shown. Again, the format is chosen for illustration purposes only and those skilled
in the art will appreciate that many different formats or conventions may be chosen.
Specifically, Figure 3A corresponds to the changes between the database table that

occurred going from the state in Figure 2A to the state in Figure 2B. In other words, the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 ' PCT/US98/10679

12

database table shown in Figure 2A is version 1.0 and the database table shown in Figure
2B is version 1.1 and the update shown in Figure 3A is update version 1.1. Applying
update version 1.1 to the database table version 1.0 (Figure 2A) will yield database
version 1.1 (Figure 2B). In like manner. Figure 3B illustrates update version 1.2 that
incorporates changes made to the database table from the state shown Figure 2B to Figure
2C.

Referring to Figure 4, the relationships between the different table versions and-
the different update versions is shown for added clarity. Note that database table version
1.0 (Figure 2A) may have update version 1.1 (Figure 3A) and update version 1.2 (Figure
3B) applied thereto to arrive at database table version 1.2 (Figure 2C).

Referring now to Figure S, a flow chart is presented showing the processing steps
taken 1n order to create the updates shown in Figures 3A and 3B. In addition, a two-tier
revision process is shown that allows a database table to be copied in its entirety to the
client should there be changes so significant that the updating process would actually be
less efficient such as a structural change to the table or an excessive number of updates
being stored at the server.

Initially, at step 70, the versioning is initialized to 1.0 which indicates the state
of the reference table 28 after the current table 20 (Figure 2A) is copied to the reference
table 28 at step 72. Reference will be made throughout the discussion of the flow chart
in Figure 5 to the architectural block diagram shown in Figure 1, the database table states
illustrated in Figures 2A-2D, and the updates shown in Figures 3A and 3B.

Once the system is initialized, the current table will receive a number of database
change events at steps 74 over a period of time. At a certain point, an update sequence
is initiated at step 76. Those skilled in the art will appreciate that a large number of
criteria may be used in selecting when the creation of an update is necessary or desirable.
For example, updates may be initiated on a strictly periodic basis such as once per day
or twice per week. Another alternative would track the number of database change
events made to a particular database table and initiate update creation when a certain
threshold of changes are made representing database change activity.

Naturally, hybrid combinations of periodic and database change activity may be
used according to the implementation. Further, in a complex and robust system having
many different database tables or other databases as contemplated by the present
invention, each individual database table or database may have a unique update creation
schedule.

At step 78 (Fig. 5), it is determined whether a major revision or conversely a

minor revision is chosen for the update creation. A major revision may be indicated

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

13

manually, automatically after so many updates have been made, based on significant
structural changes made to the table requiring a re-copy of the table to the client, or any
other relevant criteria. Typically, a major revision is required when the entire database
table should be copied to a client such as at initial creation of the table or when the
overhead of applying the many updates is greater than simply copying the table.

If a minor revision is determined at step 78, as in the case between the database
table states shown in Figures 2A and 2B, the versioning is incremented at step 80 for a-
minor revision. In a currently preferred versioning system, major and minor revisions are
separated by a decimal point, therefore in the current example, the version marker would
increment from 1.0 to 1.1.

The differences are generated between the current table 20 and the reference table
28 by the differencing engine 30 and stored as an update in the series of updates 38 (See
Figure 1). These differences are prepared as part of an update (e.g., update 1.1 shown
in Figure 3A).

Between the state of the database table in Figure 2A and Figure 2B, three changes
were made. Namely, the employee in row one became married, a new employee was
added (Mr. Mauss), and a former employee deleted at row 2 (Mr. Presley). In Figure 3A,
these changes are stored in an arbitrary generic format with a change-type indicator
separated by a ":" followed by a location field separated by a "=>" followed by the data
of the change itself. For modifications to existing table cells, the change-type indicator
is signified by a "M," the location of the cell is given by the row number and the column
number, and the data is the new cell data. For additions of a new record or row, the
change-type indicator is "A," the location field indicates after which row the new record
should be inserted, and the data field indicates all the cells therein. Finally, a deletion
will be signified by a "D" change-type indicator and the location field contains the row
number to be deleted (no data is associated with a delete).

Once the differences have been generated at step 82, the differences are stored in
generic format and the current version number (in this case 1.1) is associated with the
difference update at step 84. Finally, the current table 20 (Figure 2B) is copied to the
reference table 28 (now also Figure 2B) to complete the update sequence. Note that the
current version number (at this point 1.1) is used to indicate both the newly copied
reference table 28 as well as the update just created. Semantically, version 1.0 of the
table having the update 1.1 applied thereto would be the same as version 1.1 of the table.

At the end of the update sequence, the current table goes back to receiving
database change events at step 74 until another update creation is initiated at step 76.

The same process will occur for creating update 1.2 as shown in Figure 3B as was

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

14

explained previously for creating update 1.1 shown in Figure 3A. For the second update
or update 1.2 shown in Figure 3B, corresponding to the change in the table state from
Figure 2B to Figure 2C, one employee, Ms. Wright, was married and had the relevant
cells changed in the database table row. Again, after completion of the update sequence,
the current table will receive database change events at steps 74 until another update
sequence is initiated at step 76.

The differences in the table state from a state shown in Figure 2C to that shown'
in Figure 2D is a major structural change to the table. Namely, an entire column for the
title of the employee is added. Depending on the capabilities of the system, such a
structural change may not be represented in a generic format in an efficient manner. In
other words, it could be more efficient to simply copy the table down to the client rather
then send instructions for updating the table. Those skilled in the art will realize that
various situations and parameters will effect this threshold determination and a system
may be tuned or optimized to recognize this. For example, adding a column to a
relatively small database table may be efficiently handled by simply copying the table
down to the client while the same structural change to a large database table is more
efficiently handled by storing an update. For the example shown illustrating the addition
of the title column as shown in the table state change between Figure 2C and Figure 2D,
a major revision is assumed for illustration purposes.

At step 78, a major revision is determined and the versioning is incremented at
step 88 indicating a major revision. For the version numbering system used in one
embodiment of the present invention, the number before the decimal point is incremented
and the number after the decimal point is set to zero. In other words, the version would
increment from 1.2 to 2.0.

Next, the current table 20 is copied to the reference table 28 at step 90 without any
differencing being made. Finally, all previous updates will no longer be necessary since
every update to this newest version level will require that the table be copied to the client
in its entirety. Therefore, at step 92, all previous updates will be erased in order to release
system resources. The effect of a major revision when receiving a request for an update
is that the reference table 28 will be directly copied to the client regardless of the current
version of the table on the client.

The version identifier may be other than the major/minor revision version number
explained above. Another version identifier could be a date or time stamp that may be
directly compared with other date or time stamps to determine which updates are needed
to make a database table current. Furthermore, the date or time stamp may be combined

with other version information such as the major/minor revision version numbering

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

15

explained previously. For example, a client could simply ask for all updates since a
certain date without tracking which version number it actually has. The server could
compare the date to a file creation dates for the updates (if stored in a file) or other date
and time stamp information in order to assure the correct updates are used to make the
client copy of the database table current.

Referring to the flow chart of Figure 6, the processing steps necessarily taken by
the server computer for implementing the present invention are shown. At step 94,
difference updates are created with version numbers for all database tables in the system.
Each database table will have client copies thereof on one or more of the various clients
to the system. Furthermore such updates are stored in a generic format which may later
be translated to database engine instructions destined for database engine types found on
the appropriate client requesting synchronization. Typically, such updates are handled
by the differencing engine 30 as shown in Figure 1.

Next, the server synchronizing component 46 receives a synchronization request
from a client computer at step 96. In one embodiment of the invention, a remote client
will dial into the server computer using a modem and phone line as a communications
network and "login" or otherwise identify itself and begin a session with the server
computer.

The synchronization request is validated at step 98 making access to profile
information in the profile database 56 as shown in Figure 1. This is a security feature that
assures that a valid client is receiving or requesting information from the server.
Furthermore, the profile database information may also include reference to new database
tables assigned to the client. The server synchronizer component 46 would then be
required to communicate the new tables to a particular client at a later point in time as
will be shown hereafter.

At step 100, the server synchronizer component 46 will determine which database
tables are applicable to the client making the request. This information may be presented
directly by the client itself in the request or references to applicable database tables may
be stored in the profile information pertinent to that particular client. In either instance,
the server synchronizer component 46 will be able to determine the appropriate database
tables in step 100 and those skilled in the art will see many schemes and methods by
which this may be accomplished.

At step 102, the state of the existing client copy of the database tables and their
particular version number are determined, again this information may be provided in the

request from the client or may be centrally stored in the profile database 56 or other area

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

16

accessible to the synchronizer component 46. Note that some client copies of a database
table may not yet exist at the client and will need to be copied over from the server.

Each client will have at least one database engine found thereon for creating and
managing database tables. There are a number of different types or varieties of database
engines that can be used by a client and the client will receive database table differences
and/or database tables themselves in the appropriate format for the database engine
associated with the database table or other data store. Furthermore, multiple database
engines may be used by a client depending on the different data store copies that are
managed by the client system.

The database engine type found in the client computer is ascertained at step 104
for the database table in question. Again, such information may be provided by the client
in the synchronization request or this information may be found in the profile information
for the client depending on the actual implementation.

For each database table, the server synchronizer component 46 will compare the
version number of the client copy of the database table with the most current number of
the original database table on the server. If the client version is less than the server
version, all of the sequentially numbered intervening updates will be applied. For
example, if the client requesting synchronization to the employee database table (See
Figures 2A-2D) had version 1.0 and the latest version was 1.2, then update version 1.1
(Figure 3A) and update version 1.2 (Figure 3B) would be applied to the client copy of the
database table in order to make it current. If another client had version 1.1 of the
employee table then only update version 1.2 (Figure 3B) need be applied in order to make
the client copy of the database table current on that particular client. Finally, if the
current version were 2.0, there would be no existing updates and the entire database table
(i.e., reference table 28) would be copied down to both the client having version 1.1 and
the client having version 1.0.

Before transmitting instructions to a particular client, the server synchronizer
component 46 must interact with the translator component 60 in order to translate either
the differences taken from the updates or the entire database table itself into a format or
instructions understood by the type of database engine running on the client. Having
previously ascertained the database engine type at step 104, this information is passed to
the translator component 60 which will access the particular database engine type within
the database engine information 64 so that a proper translation may occur. Finally, at step
110, for each database table at the client, the instructions and current version number of

the database table are transmitted to the client so that the client may make the client copy

of the database table current.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

17

Referring now to Figure 7, a flow chart is shown illustrating the processing steps
taken on the client computer for synchronizing the client copy of one or more database
tables with the originals of the same found on the server computer. At step 112, the
client will establish a connection with the server computer. This may entail a modem to
modem connection over telephone line or some other means as was explained previously.

The client will generate and send a request for synchronization to the server
computer to be received by the synchronization component 46. The synchronization:
request will at the very least contain information identifying the client and may contain
information regarding the client copies of database tables existing at the client along with
associated version numbers, the type of database engine being run at the client, password
information, etc.

Once the synchronization request is sent, the client will wait until receiving
instructions and the current version number(s) from the server for updating the client
copies of each database table contained thereon at step 116. These instructions will be
of the appropriate format for the native database engine type found on the client.

Finally, at step 118, the client will operate the database engine and the
instructions received previously at step 116, to apply the difference updates and/or copy
new tables from the server in order to make each database table current at the client. The
client can thus be made in a flexible manner to operate with many different types of
database engines without necessarily involving a large amount of redeployment effort at
the client. On the other hand, a more sophisticated redeployment effort takes place at the
server in order to support the new or different database engine type.

It is apparent that complex and flexible systems may be created using the present
invention. With respect to the field service representative example explained previously,
a server may hold technical documents in Microsoft® Word™ format (one data store) and
a customer database in a SQL database table using a Microsoft® Access® database engine.
The client, on the other hand, may manage the client copy of the customer database using
a Borland® Paradox® database engine and the client copy of the technical documents
using Corel® WordPerfect® or Folio® Infobase® as the appropriate database engine. In
the above-mentioned scenario, translation will allow the database change events
incorporated as differences in one or more updates to be reflected in instructions of the
proper format. Note that in the above example a single client will receive instructions
pertaining to two different database engine types.

Those skilled in the art will also see the ability to auto-update the client portion
itself so that if a new database engine type is presented or made known to the server, at

that point, the server may download a new addition of the client code that will interact

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 98/54662 PCT/US98/10679

18

with the new database engine type. Furthermore, those skilled in the art will recognize
that "applets” as supported by the Java programming language may be used to implement
such innovations.

Those skilled in the art will recognize that the methods of the present invention
may be incorporated as computer instructions stored as a computer program code means
on a computer readable medium such as a magnetic disk, CD-ROM, and other media
common in the art or that may yet be developed. Also, computer componentry such as
RAM, ROM, EEPROM, etc. may serve as a source of program code means storage or
computer readable medium. Combinations of computer readable medium are also
contemplated within the scope of this invention. Program code means comprises, for
example, executable instructions and data which cause a general purpose or special
purpose computer to perform a specific function or functions. Such embodiments of the
present invention stored on a computer readable medium constitute an article of
manufacture. Additionally, important data structures found in computer hardware
memory may be created due to operation of such computer program code means.

A general purpose or special purpose computer running program code becomes
a means for accomplishing the functions of the code. In other words, computer software
used to perform a particular method step is considered, when executing on a computer,
to configure that computer into a means for accomplishing that particular step.
Traditional terminology used for describing computers and their relevant parts, such as
CPU, etc., are given their ordinary construction as would be understood by one skilled
in the art.

The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrated and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:

SUBSTITUTE SHEET (RULE 26)

WO 98/54662 PCT/US98/10679

19

1. A method of distributing database differences corresponding to change
events made to a data store located on a server computer to client copies of the data store
located on one or more client computers comprising the steps of:

creating and storing on the server computer one or more versioned
updates, each update containing data store differences corresponding to data store
change events made to the data store;

determining which updates are necessary for making the client copy of the'
data store current; and

generating and transmitting the specific data store differences to the client
computer based upon the necessary updates.

2. A method of distributing database differences corresponding to change
events made to a database table located on a server computer to client copies of the
database table located on one or more client computers comprising the steps of:

creating and storing on the server computer one or more sequentially
versioned updates, each update containing database differences corresponding to
database change events made to the database table since the preceding update;

receiving, from a client computer, a request for all the database
differences needed to make the client copy of the database table current;

determining which updates are necessary for making the client copy of the
database table current; and

generating and transmitting the specific database differences to the client
computer based upon the necessary updates, whereby the specific database
differences are used by the client computer to make the client copy of the
database table current.

3. A method as recited in claim 2 wherein the client computer supplies the
version of the client copy of the database table as part of the request and the
determination the necessary updates is done by comparing the client version with the
latest update version.

4. A method as recited in claim 2 wherein the version of the client copy of
the database table is referenced from client profile information and the determination the
necessary updates is done by comparing the client version with the latest update version.

5. A method as recited in claim 2 wherein each update contains the database
differences in a generic format and further comprises the steps of:

ascertaining the client database type wherein the client copy of the
database table is held; and

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

20

translating the specific database differences into instructions based on the
ascertained database engine type prior to transmission so that the client computer
may execute the instructions on the client database engine thereby making the
client copy of the database table current.

6. A method as recited in claim 5 wherein the client database type is
ascertained by the client computer supplying the client database type as part of the
request.

7. A method as recited in claim 5 wherein the client database type is
ascertained by reference to profile information regarding the client computer.

8. A computer-readable medium having computer-executable instructions
for performing the steps recited in claim 2.

9. A method as recited in claim 5 wherein client requests for synchronization
are received randomly.

10. A method as recited in claim 5 wherein the client is intermittently
connected to the server computer.

11. A method of distributing database differences corresponding to database
change events made to a database table located on a server computer to client copies of
the database table located on one or more client computers, each client computer capable
of having different database engines comprising the steps of:

| receiving from a client computer a request for all database differences
needed to make a client copy of the database table current;
translating the differences from a generic format into instructions specific
to the type of database engine associated with the client copy of the database
table; and
transmitting the instructions to the client computer for execution on the
client database engine to make the client copy of the database table current.

12. A method as recited in claim 9 wherein the client database type is
ascertained by the client computer supplying the client database type as part of the
request.

13. A method as recited in claim 9 wherein the client database type is
ascertained by reference to profile information regarding the client computer.

14. A method as recited in claim 9 further comprising the steps of:

creating and storing on the server computer one or more sequentially
versioned updates containing database differences corresponding to database

change events made to the database table since the preceding update;

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

21

determining which updates are necessary for making the client copy of the
database table current; and

generating the database differences based upon the necessary updates
prior to translation into instructions.

15. A method as recited in claim 12 wherein the client computer supplies the
version of the client copy of the database table as part of the request and the
determination the necessary updates is done by comparing the client version with the’
latest update version.

16. A method as recited in claim 12 wherein the version of the client copy of
the database table is referenced from client profile information and the determination the
necessary updates is done by comparing the client version with the latest update version.

17. A computer-readable medium having computer-executable instructions
for performing the steps recited in claim 9.

18. A method as recited in claim 9 wherein the client is intermittently
connected to the server computer.

19. A computer program product comprising:

a computer usable medium having computer readable program code
means embodied in said medium for distributing database differences
corresponding to database change events made to a database table located on a
server computer to client copies of the database table located on one or more
client computers, each client computer capable of having one or more database
engines, said computer readable program code means comprising;

means for creating and storing on the server computer one or more
sequentially versioned updates, each update containing database
differences corresponding to database change events made to the database
table since the preceding update;

means for receiving from a client computer a request for all the
database differences needed to make the client copy of the database table
current;

means for determining which updates are necessary for making
the client copy of the database table current;

means for ascertaining the client database type associated with the
client copy of the database table;

means for translating the specific differences based upon the
necessary updates from a generic format into instructions specific to the

client database type; and

5

10

15

20

25

30

35

WO 98/54662

20.

PCT/US98/10679

22

means for transmitting the instructions to the client computer for
execution on the client database engine to make the client copy of the
database table current.

A system for distributing database differences corresponding to database

change events made to a database table located on a server computer to client copies of

the database table located on one or more client computers, each client computer capable

of having one or more database engines comprising:

a) a communications network;

b) a server computer system comprising:

a server CPU;

server storage means, electronically coupled and responsive to
said server CPU, wherein said server storage means is partitioned into at
least a first memory partition for storing a database table and a second
partition for storing one or more updates;

interface means, electronically coupled and responsive to said
server CPU, for establishing a means for electronic communication to a
communications network;

means, electronically coupled and responsive to said server CPU,
for creating and storing in said second memory partition of said server
storage means one or more sequentially versioned updates, each update
containing database differences corresponding to database change events
made to the database table since the preceding update;

means, electronically coupled and responsive to said server CPU,
for receiving from a client computer a request for all the database
differences needed to make the client copy of the database table current;

means, electronically coupled and responsive to said server CPU,
for determining which updates are necessary for making the client copy
of the database table current;

means, electronically coupled and responsive to said server CPU,
for ascertaining the client database type associated with the client copy of
the database table;

means, electronically coupled and responsive to said server CPU,
for translating the specific differences based upon the necessary updates
from a generic format into instructions specific to the client database type;

and

10

15

20

25

30

35

WO 98/54662 PCT/US98/10679

23

means, electronically coupled and responsive to said server CPU,
for transmitting the instructions to the client computer for execution on
the client database engine to make the client copy of the database table
current; and

c) at least one client computer system comprising;:

a client CPU;

client storage means, electronically coupled and responsive to said
client CPU, wherein said client storage means is partitioned into at least
a first memory partition for storing the client copy of a database table;

interface means, electronically coupled and responsive to said
client CPU, for establishing an intermittent means for electronic
communication to said communications network;

means, electronically coupled and responsive to said client CPU,
for sending to said server computer a request for all the database
differences needed to make the client copy of the database table current;

means, electronically coupled and responsive to said client CPU,
for receiving from said server computer instructions for making the client
copy of the database table current; and

means, electronically coupled and responsive to said client CPU,
for applying said instructions to the client copy of database table thereby

making it current.

WO 98/54662

28\

| CURRENT TABLE

{

@\32

PCT/US98/10679

f22

OTHER PROGRAMS

REFERENCE TABLE

| U +

| VERSION DIFFERENCING %

| IDENTIFIER —‘L—> ENGINE
N

| TRANSLATOR K= |

: TABLE

| ACCESS INFO DIFFERENCES IEYEPTSIION 38

' [ORACLE INFO |/ [{~#2 (GENERIC FORMAT)| 10ENTIFIER

i 66/ * iy 0’ 42

i . % 52

i <DHTA SASE 1> /N iy i

i PROFILE
| = SERVER SYNCHONIZER @ SoElE

CLIENT a
48— DATABASE
ENGINE a

FIG. 1

CLIENT N |
DATABASE
ENGINE M

4§

PCT/US98/10679

WO 98/54662
216
NAME LETTER GREETING | EMPLOYEE NUMBER | MARITAL STATUS
JONES, G.J. MR. JONES 7843 SINGLE
PRESLEY, E. MR. PRESLEY §782 MARRIED
SMITH, T.0. MRS. SMITH 1703 MARRIED
WRIGHT, H.D. MISS WRIGHT 0813 SINGLE
FIG. 2A
NAME LETTER GREETING | EMPLOYEE NUMBER | MARITAL STATUS
JONES, G.J. MR. JONES 7843 MARRIED
MAUSS, B. MR. MAUSS 1771 SINGLE
SMITH, T.0. MRS. SMITH 1703 MARRIED
WRIGHT, H.D. MISS WRIGHT 0813 SINGLE
FIG. 28
NAME LETTER GREETING | EMPLOYEE NUMBER | MARITAL STATUS
JONES, G.J. MR. JONES 7843 MARRIED
MAUSS, B. MR. MAUSS 1711 SINGLE
SMITH, T.0. MRS. SMITH 1703 MARRIED
YOUNG, H.D. MRS. YOUNG 0813 MARRIED
FIG. 2C
NANE TITLE LETTER GREETING |EMPLOYEE NUMBER| MARITAL STATUS
JONES, G.J. | ASSOCIATE ATTORNEY MR, JONES 1843 MARRIED
MAUSS, B. PRESIDENT HR. MAUSS m SINGLE
SMITH, 1.0. NURSE HRS. SMITH 1703 MARRIED
YOUNG, H.D. | OFFICE MANAGER MRS. YOUNG 0813 MARRIED

FIG. 20

WO 98/54662

VERSION 1.0
(FIG. 2A)

316

UPDATE 1.1

M: R1, C4 => MARRIED
A: AFTER R1 => MAUSS, B. ...
D: R2

FIG. 3A

UPDATE 1.2

M: R4, C1 => YOUNG, H.D.
M: R4, C2 => MRS. YOUNG
M: R4, C3 => MARRIED

FIG. 3B

VERSION 1.1
(FIG. 28)

VERSION 1.0
(FIG. 34)

VERSION 1.2
(FIG. 20)

VERSION 1.2
(FIG. 38)

FIG. 4

PCT/US98/10679

VERSION 1.3
(FIG. 20)

WO 98/54662 PCT/US98/10679

416

INITIALIZE VERSIONING T~ 10

'

COPY CURRENT TABLE T~—72
TO REFERENCE TABLE

*

CURRENT TABLE RECEIVES |~ 74
DATABASE CHANGE EVENTS

!

INITIATE UPDATE ~~—16

MAJOR
REVISION?

!

INCREMENT VERSIONING |
(MAJOR) —— 88
INCREMENT VERSIONING | v
(MINOR) ~—80 | COPY CURRENT TABLE
¢ TO BASE TABLE AND —T~— 90
TO REFERENCE TABLE
GENERATE DIFFERENCES ¢
BETWEEN THE CURRENT _|
TABLE AND THE ~—82 ERASE ALL
REFERENfE TABLE PREVIOUS UPDATES | %2
ASSOCIATE VERSION WITH v R
DIFFERENCE UPDATE [~ 84
AND STORE
IN GENERIC FORMAT
COPY CURRENT TABLE T~— 85
TO THE REFERENCE TABLE G, ¢

ey

WO 98/54662

516

PCT/US98/10679

PERIODICALLY CREATE AND STORE DIFFERENT

UPDATES WITH VERSION NUMBERS
IN A GENERIC FORMAT

T

v

RECEIVE A SYNCHRONIZATION REQUEST |

FROM A CLIENT COMPUTER

—— 96

\ 4

VALIDATE THE SYNCHRONIZATION

PROFILE INFORMATION

REQUEST WITH THE —__ g

v

DETERMINE DATABASE TABLES

v

APPLICABLE TO CLIENT 100

DETERMINE EXISTING DATABASE

THE CLIENT COMPUTER

TABLES AND VERSION ON —

~—102

v

ASCERTAIN THE DATABASE ENGINE
ON THE CLIENT COMPUTER

T—104

v

DETERMINE WHICH DIFFERENCE
FOR EACH DATABASE TABLE

UPDATES TO APPLY T—106

v

TRANSLATE SPECIFIC DIFFERENCES
FROM THE GENERIC FORMAT

TO DATABASE ENGINE INSTRUCTIONS

108

;

TRANSMIT INSTRUCTIONS AND CURRENT 4~ 44¢
VERSION TO THE CLIENT COMPUTER SYSTEM
TO MAKE EACH DATABASE TABLE CURRENT

FIG. 6

WO 98/54662

6/6

ESTABLISH CONNECTION
WITH THE SERVER

112

v

GENERATE AND SEND
REQUEST FOR 7

114

SYNCHRONIZATION

y

RECEIVE INSTRUCTIONS
AND CURRENT VERSION
FROM SERVER FOR
UPDATING CLIENT COPY
OF EACH DATABASE TABLE

116

’

APPLY INSTRUCTIONS
TO EACH TABLE USING -

~— 118

THE DATABASE ENGINE

FIG. 7

PCT/US98/10679

INTERNATIONAL SEARCH REPORT International application No.

PCT/US98/10679

A. CLASSIFICATION OF SUBJECT MATTER
| IPC(6) :GOGF 17/30
US CL :707/3, 8, 10, 201, 203; 395/200.3, 200.31
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.s. : 707/3, 8, 10, 201, 203; 395/200.3, 200.31

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
STN, DIALOG, APS, MAYA

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5,752,042A (COLE ET AL) 12 May 1998, Abstract,| 1-20
col.1, lines 20-65; col.5, lines 19-67

Y US 5,493,728A (SOLTON ET AL) 20 February 1996, see| 1-20
entire document

X US 5,765,171A (GEHANI ET AL) 09 June 1998, See entire| 1-20
document

X US 5,737,636A (HERMANN ET AL) 07 April 1998, See| 1-20
entire document

X US 5,758,355A (BUCHANAN) 26 May 1998, See entire| 1-20
document

Y US 5,751,958A (ZWEBEN ET AL) 12 May 1998, see entire| 1-20
document

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T later document published after the international filing date or priority
. L . date and not in conflict with the application but cited to understand the
A" documentdefining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance
f— " X document of particular relevance; the claimed invention be
E carlier document published on or afier the international filing date considered novel or : " idered to involve an inventive step
‘L document which may throw doubts on priority claim(s) or which is when the document is taken alone
. cited to blish the publication date of another citation or other R) L X
special reason (as specified) Y document of particular v ; the inveation t be
consilered to involve an inventive step when the document is
“0* document referring to an oral disch . use, exhibition or other combined with one or more other such d such binati
means being obvious to a person skilled in the art
P document published prior to the intemational filing date but later than »g* document member of the same patent family
the priority date claimed

Date of the actual completion of the international search

15 AUGUST 1998

Date of mailing of the international search report

280CT1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

THOMAS G. BLACK

Telephone No. (703) 305-9707

Form PCT/ISA/210 (second sheet)(July 1992)«

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

