COMMODITY DISPLAY STAND

Inventor: Paul Belokin, Jr., Rt. No. 4, Hayward, Wis. 54843

Filed: Apr. 25, 1973

Appl. No.: 354,310

U.S. Cl........................... 211/74; 229/14 C; 248/158; 248/188.1; 248/174

Int. Cl........................... A47B 73/00

Field of Search.................. 211/74, 77; 40/145 RX, 40/124 R; 248/152, 174, 450; D7/71, 70; 229/14 C

FOREIGN PATENTS OR APPLICATIONS
1,244,412 9/1960 France............................... 211/60 R
418,111 2/1967 Switzerland.......................... 211/74

Primary Examiner—Marion Parsons, Jr.
Attorney, Agent, or Firm—Harbaugh & Thomas

ABSTRACT

Several embodiments of a display stand are disclosed, characterized by the provision of an upright support wall having one or more openings therein to receive a portion of a commodity package, such as the neck of a bottle or the end of a package, to support same for display or storage. The upright support wall can be planar, tubular, pyramidal or conical. The shaped openings therein have their axes normal to or at an angle to the plane of the supporting wall. A number of base supports for the upright wall support are disclosed which, in one embodiment are formed of inexpensive cardboard or plastic pieces that fold into a compact package and unfold to be interengaged into a display stand. In one embodiment the upright wall is an extruded member having a longitudinal channel on at least one side to engage and hold the base of a wire hook member. Other embodiments are disclosed.

5 Claims, 27 Drawing Figures
COMMODITY DISPLAY STAND

BACKGROUND OF THE INVENTION

The basic idea of supporting a bottle or package entirely by a single opening or aperture in a wall without some other retaining or supporting edges is not shown in the prior art. For instance, racks are provided for soft drink bottles wherein a pair of spaced supporting walls, one with large openings, is affixed to the side of a coin-operated machine. Each opening is large enough to receive the entire bottle and the edges of the openings have circumferential flanges which grip the bottle while its base is canted and impinges against the second wall, the space between the walls being less than the length of the bottles. Other devices provide an outwardly extending lower lip at each opening which cups around the bottom surface of a cylindrical object such as a phonograph record. In some devices the lip around the under side of the opening is canted and has a transverse end wall which receives the bottom of a bottle to keep it in place while the neck of the bottle protrudes to the other side for easy access. None of the prior art devices provide a convenient foldable or collapsible unit that can be readily cut from plain cardboard, be packaged in a compact unit and unfold for assembly in interlocking relationship to form a rigid support for commodities of all shapes and sizes.

SUMMARY OF THE INVENTION

Briefly, this invention provides a commodity rack that includes a generally vertical support wall with one or more openings therein adapted to receive the neck of a bottle or the small end of a package such that it is caught and retained under the force of gravity. By merely lifting the protruding end of the bottle or package the item is released and is free to be pulled from the opening. The items are at an angle to the supporting wall so that their labels can be read and there is no danger of accidental dislodgement.

Furthermore, the invention provides a number of different embodiments employing this principle wherein a commodity display is formed of a number of cooperating parts that are assembled by folding or unfolding for interengagement into a rigid reinforced structure, though formed of pressed paper or cardboard or the like. In one embodiment, all of the parts comprising the assembly fold to a flat planar configuration so as to be contained in a single box which itself may be part of the final display assembly.

DESCRIPTION OF THE DRAWINGS:

Several illustrative and non-limiting examples of the invention are shown in the drawings wherein:

FIG. 1 is a perspective view of one form of the display stand of this invention;
FIG. 2 is a cross-sectional view taken along the lines 2—2 of FIG. 1;
FIG. 3 is a cross-sectional view taken along the lines 3—3 of FIG. 1 to show the manner of engagement of the neck of a bottle;
FIG. 4 is an exploded view of the parts of the base of the display stand shown in FIG. 1;
FIG. 5 is a perspective view of a modified display stand with the base partially cut away at one corner;
FIG. 6 is an exploded view of the parts of a modified base with the tubular wall support member only partially shown;
FIG. 7 is a fragmentary perspective view of the parts of FIG. 6 in assembled form;
FIG. 8 is a perspective view modified and simplified form of the invention;
FIG. 9 is a fragmentary exploded view of the parts shown in FIG. 8;
FIG. 10 is a fragmentary cross-sectional view taken along the lines 10—10 of FIG. 8;
FIG. 11 is a perspective view of a modified bottle rack;
FIG. 12 is a perspective view of still another modified bottle rack;
FIG. 13 is an exploded view of the various partially folded parts of still another modification of the display stand showing the packing container therefor;
FIG. 14 is an exploded view of the various unfolded and squared up parts of the display stand of FIG. 13 to show how the parts go together;
FIG. 15 is a perspective view of the assembled display stand of FIGS. 13 and 14;
FIG. 16 is a fragmentary perspective view in cross-section of the tubular supporting wall member of FIGS. 13, 14 and 15 showing a hook member used therewith for the display of carded items;
FIG. 17 is a perspective view of a modified display stand using a different form of tubular supporting wall member having external channels engaging a modified hook member;
FIG. 18 is a cross-sectional view taken along the lines 18—18 of FIG. 17;
FIG. 19 is an enlarged fragmentary side view in partial section of the tubular supporting wall member and hook member of FIGS. 17 and 18;
FIG. 20 is an enlarged fragmentary perspective view partially in section to show the manner of engaging the hook member in the side channel of the supporting wall member;
FIG. 21 is a perspective view of a dual display stand formed of parts related to those shown in FIGS. 13, 14 and 15;
FIG. 22 is a perspective view of a modified form of tubular supporting wall member;
FIG. 23 is a cross-sectional view taken along the lines 23—23 of FIG. 22;
FIG. 24 is a fragmentary plan view of the supporting wall member of FIG. 22 in unfolded condition;
FIG. 25 is a perspective view of one of the ring-like trim rigidifying members used with the modified tubular supporting wall members of FIG. 22;
FIG. 26 is a perspective view of a clip member adapted for clenching the corners of the hinged walls of the supporting wall member shown in FIGS. 22, 23 and 24; and
FIG. 27 is an exploded view of a modified base constructed of wooden members.

DESCRIPTION OF THE PREFERRED EMBODIMENT:

Referring to FIGS. 1—4, one form of display stand 10 is shown to include the cylindrical supporting wall member 12 having a plurality of circumferentially and radially spaced round holes 14 extending through the wall 16 thereof in communication with the interior space 18. The top and bottom ends 20 and 22, respectively, of the wall member 12 are square cut and the lower end portion 24 of the arcuate side wall 16 is devoid of the openings 14.
The base member 30 which supports the assembly in an upright position has the cylindrical outer wall 32 with the top and bottom square cut edges 34 and 36 defining the inner space 38. The star-shaped cross brace member 40 fits within this inner space 38. For this purpose this brace member 40 is formed of one long rectangular piece of sheet material folded along the various transverse fold lines 42 and 44 sequentially in opposite directions to form a multi-pointed star configuration. The ends 46 and 48 of the sheet material overlap as indicated and are stapled or glued at their interface. The cross brace 40 thus presents a number of radial points at the fold lines 42 and 44, as well as at the squared corners 50 and 52, where the ends 46 and 48 overlap as a cord, which fit within the outer wall member 32 in the manner shown in FIG. 2. The outer points at fold lines 44, 50 and 52 engage the inner wall surface 54 of the wall member 32 in a sliding but fairly tight relationship. This rigidifies and orients the inner points along the fold lines 42 to define a space to receive the base end 24 of the wall member 12 in the manner illustrated. Again this is a fairly tight but slidable relationship so that the reinforcing cross brace member 40 engages the wall member 12 in a manner to hold it upright.

The cross brace member 40 is of lesser depth than the wall 32 of the base 30 and is positioned therein with substantially equal top and bottom margins as shown in FIG. 2. This provides space for the top and bottom disc 56 having the central openings 58 to be inserted over the wall member 12 and upon being pushed downwardly and upwardly, respectively, attain the positions shown in FIG. 2. The central openings 58 encompass the exterior of the wall member 12 in a sliding friction fit and the outer edges 60 of these discs engage the inner wall surface 54 of the wall member 32 in the same manner. These discs are pushed in far enough to contact the top and bottom coplanar edges 62 and 64 of the reinforcing member 40. The top surface of the upper disc 56 forms a shelf for display of items 66 as desired. The parts fit together such that no additional fasteners, tape or glue are required to maintain a rigid structure.

In this instance, the items 66 displayed are bottles having the smaller necks 68 and a suitable cap or cork member 70 as illustrated in FIG. 3. The necks of the bottles are inserted into the holes 14 which are bored or cut straight through the wall 16 of the upright support member 12. The wall 16 in FIG. 3 represents cardboard having the spaced outer wall portions 72 and 74 and the inner corrugated sheet 76 glued therebetween. The hole 14 therefore presents a corner at 78 and 80 which engages above and below against the neck of the bottle.

The weight of the bottle 66 and its liquid contents 82 with the resiliency of the cardboard edges 78 and 80 and the relative size of the hole 14 in relation to the diameter of the neck of the bottle, allows the bottle to assume an angular position whereby the liquid level 84 reaches the cork of the bottle to keep it moist. Thus the device can be used to display bottles of wine for extended periods of time without fear of the cork drying out and breaking the airtight seal. The bottle 66 is easily removed by grasping the extended portion and raising the bottle upwardly until the axis of the neck coincides with the axis of the opening 14, in which position it can be removed. Although bottle 66 is shown to have a flange 86 below the cork or cap 70, the display device of this invention will just as well hold bottles whose necks are not flanged. The labels 86 of the bottles are turned to an upright position and are, because of their angular orientation, easily seen. A trim edge of colored tape 88 can be applied about the bottom edge 36, as desired.

The display stand shown in FIGS. 1-4 is preferably constructed of pressed paper or cardboard since this material is lightweight and strong. The holes 14 formed therein have sufficient resiliency around their edges to conform with the contour of the neck of the bottle and also because of the fibrous structure of the wall 16 imparts frictional contact with glass or plastic. In fact, after extended use, though the holes 14 may crush somewhat at the corners 78 and 80, this only increases the holding strength and does not interfere with removal of the bottles.

In FIG. 5, there is shown a modified display stand 10a having an upright supporting wall member 12a which is rectangular in cross-section.

The openings 14 are provided through each of the four walls 90 of the supporting wall member 12a, and, as is the case with the wall member 12 of FIG. 1, the walls 90 are spaced sufficiently from each other so that the neck of a bottle or the like can be inserted without interference with other bottles already in place. One form of display is illustrated with the holes 14 vertically aligned along the center of each side wall 90.

The base 30a is modified to a square configuration and can include a reinforcing member 92 having suitable cross members or diagonals 94 to fit within and form the corners of the walls 96 of the base member 30a. The arrangement supports an insert cover 98 having a square cut hole 100 fitting the outer contour of the supporting wall member 12a. Other forms of bases can be used therewith.

For example, the base 102 shown in FIG. 7 comprising the two interlocking members 104 and 106 having a T-shape can be used within the base 30a of FIG. 5. These members are identical in exterior configuration being rigid, planar and having the extensions 108 and 110 respectively extending from their top edges 112 and 114. The member 104 has the slot 116 in its extension 108 while the member 106 has the slot 118 extending from the bottom edge 120 to a point or end 122. The length of the slot 118 is the same as the distance from the bottom edge 124 of the member 104 to the bottom 126 of the slot 116, and the length of the slot 116 is the same as the distance from the end 122 of the slot 118 to the top end 128 of the extension 110. The two T-members interengage at right angle planes through their slots to form the assembled base 102 shown in FIG. 7. The extension 108 and 110 form a support for the square support member 12a or as illustrated, a support for the tubular support member 12, which is the same as shown in FIG. 1.

When the modified base 102 of FIGS. 6 and 7 is used within the four-cornered base member 30a, the squared ends will fit within the respective corners 130 thereof and the extensions 108 and 110 will be as wide as the space between diagonal corners of the modified support member 12a or as wide as the inside diameter, indicated by the arrow 132 (FIG. 7) of the tubular support 12. The shape of the opening 100 will be round to conform with the tubular member 12 in this latter instance.
FIGS. 8, 9 and 10 show a simplified version of the invention that may be termed a counter display for bottles 66 particularly where horizontal storage and wetting of the cork are desired. The modified support 140 comprises the planar support wall 142 and the base bracket 144, each having the respective slots 146 and 148 spaced inwardly from one of their ends. The slots being of the same length and half the width of the wall 142 and bracket 144, the two come together in the manner shown in FIG. 8. The bottom end 150 of the support 140 and the other end 152 of the bracket 144 are coplanar and rest on any flat surface, such as a shelf or counter top.

The juncture of the slots 146 and 148 is such that the support member 142 and the base 144 are substantially perpendicular to each other, i.e. angle A is about 90°. This juncture can be sufficiently loose or angled so that the support member 142 extends at an angle A of less than 90° from the base 144. The holes 154 in the support member 142 are drilled or formed with their axis 156 (FIG. 10) at an angle such that the axis of the bottle 66 is held substantially parallel to the plane upon which the ends 150 and 152 are to rest. This brings the liquid level 84 of the wine well over the cork 70a for proper preservation and sealing of the contents. In this instance, the wall 158 of the support member is sufficiently rigid so that the corners 160 and 162 of the hole 154 do not crush appreciably or cause the hole to enlarge from repeated use. The axis of the bottle 66 defines an angle with the front face of the support 142 which is about the same as the angle of slant of the support 142 from the plane of the ends 150 and 152. The flange 86 on the bottle 66 cooperates with top corner 160 in holding the bottle in place by gravity, until its end is lifted.

FIG. 11 illustrates a modified support 164 comprising a pair of spacer walls 166 and 168 joined along one side by the coextensive supporting wall 170 having there-through the holes 154, again bored or cut at an angle to the planar surface thereof. A pair of screw eyes 172 at the top edge of the assembly provide means for hanging the bottle rack on a wall or the like. Any number of holes 154 properly spaced can be used. The side walls 166 and 168 can also be provided with holes 154, in which instance for stability the support 164 would be rigidly attached to a cellar wall or the like.

FIG. 12 shows another simplified bottle rack comprising the pyramidal support 174 defined by the four similar triangular walls 176, 176a, 176b and 176c, each having a plurality of spaced holes 14 which cut on an axis perpendicular to the planar surface of the side walls. The bottom edge 178 is planar so the rack can sit on the floor or countertop for ready display of the merchandise.

FIGS. 13, 14 and 15 show a preferred form of this invention for use in the general display of a plurality of different shaped items. FIG. 13 shows the disassembled parts and the manner in which they fold into a compact package. FIG. 14 shows the parts in unfolded and squared condition as they are sequentially assembled and FIG. 15 shows the completed assembly of this modified commodity support.

The container for the display stand 10b comprises the box 182 having the planar bottom 184, the sides 186 and the top flaps 188. The fold-in ends 190 have buttressing corner flaps 192. The fold lines are indicated at 194. To assemble the box it is only necessary to fold the ends 190 to a right angle position and bend one of the sides 186 to the vertical, followed by bending the top 188 thereof over the top edges of the end flaps. Tape is applied to the edge junctures in the known manner. The remaining side 186 and top 188 are left open to insert the parts, following which these members are bent over and properly taped.

The modified commodity support stand 10b comprises the pair of base identical members 200 and 200a, the four identical box-like inserts 202, the inner reinforcing ribbed member 204, the tubular shell or casing 206 and, optionally the wooden or plastic sticks 208. These parts are individually described by reference to one of them in detail.

The base members 200 are formed of one elongated piece of planar rectangular material 210 such as cardboard folded along the transverse fold lines 212 to form the end walls 214 and the side walls 216. The end edges 218 and 220 of the planar piece 210 overlap midway of one side and are suitably stapled, glued or taped together at this juncture. The end walls 214 are identical in width and height. The sides 216 are also identical in width and height and these parts can be made to any desired size.

The juncture of the ends 218 and 220 can be anywhere along one side, or at an end or at a corner as desired. At points substantially equidistant from the center of each side 216, a pair of vertical spaced and parallel slots 222 is provided that extend from the edges 224 of these sides about halfway to the opposite edges 226. The tops and bottoms of both the base members 200 and 200a are open. The base member 200 has the reinforcing trim tape 228 along the edge 226. The base member 200a differs only in that its trim tape is along the opposite edge 224, and includes the open ends of the slots 222, which are not closed thereby. The trim tape 218 can be used as indicia to indicate either the top or bottom of the assembled base pieces and as a guide reference for assembly.

Both of the base members 200 and 200a fold flat as is apparent from FIG. 13 and are about the same planar dimensions as the bottom member 184 of the box in their folded compressed condition.

The base members fit together by interengaging their respective slots 222 in the manner indicated by their alignment and positions in FIG. 14 where the respective slots open toward each other. When the top base member 200a for illustration, is thus fitted down on the bottom base member 200, then respective edges 224 and 226 become coplanar as shown in FIG. 15. In the assembled condition the bases 200 and 200a become the diagonals of a square and are at right angles to each other.

The intersecting side walls of each base member also define a rectangular opening illustrated at 230 between their inner surfaces and the ends 214. The edge 224 is shown in broken lines across the open top of the base member 200a in FIG. 14 to illustrate the opening 230. Four such rectangular openings are thus formed.

The reinforcing boxes 202 are each identical and designed to press-fit into the four openings 230 that would be defined by the assembled base members 200 and 200a. Consequently, their end walls 232 are the same external dimensions as the inside dimensions of the space 230 so as to fit therein without disturbing the shapes of the parts, yet form a good friction fit and reinforce the assembly. Each box 202 is formed of a single
planar piece of material folded along the fold lines 234 with the overlapping ends 236 and 238 suitably taped, glued or stapled. The end edges 239 are all square and coplanar.

Thus in FIG. 14, the two reinforcing boxes 202 immediately above the base 200a will fit into the spaces 230 of the lower base 200 defined by a portion of the side wall 216 of the base member 200a and the side and end wall of the base member 200. Next, the upper pair of reinforcing boxes 202 will fit into the spaces 230 defined by a portion of the side walls 216 of the base member 200 and the end and side walls of the base member 200a. The end edges 239 of each box 202 are against the inside surface of the sides and ends defining these spaces for proper rigidity of the assembled base 200.

This leaves or defines an essentially square or rectangular space 240 indicated to be between the two broken line edges 224 in the open top of the base member 200a, that is, between the intersecting sides of the respective bases 200 and 200a. This space 240 has the same cross-sectional configuration as the upright support member 206 in its unfolded condition shown in FIG. 14.

This member 206 is formed of sheet material, cardboard or the like to include four elongated wall members 242 which may be the same width to form a square in cross-section (fitting the space 240) joined to each other along the fold lines or corners 246. The support member 206 is sufficiently tough and resilient as to be capable of folding flat as shown by the flattened portions 248 in FIG. 13 and then folded once or twice depending on its length along the transverse folds 250 and 252, intermediate the ends 254 and 256. A plurality of different shaped holes indicated by the smaller punched holes 258, the round holes 260, the square holes 262 and the triangular holes 264 are formed in the side walls 242 of the support member 206. These holes are formed in one or all of the side walls as desired and with any convenient spacing. Generally the lower section 248 which fits down into the square opening 240 is devoid of holes since they are cut up by the base.

Before or after the insertion of the upright support or post member 206 into the base 200-200a, the X-shaped reinforcing member 204 is unfolded and inserted inside the support member. The reinforcing member 204 is optional to the assembly depending on the type of items to be displayed. This member comprises the elongated cover flaps 270 joined to each other along their inner edges at the juncture 272. This member can be formed from a single sheet of material folded lengthwise into four equal width flaps and sewn or stapled along the juncture 272. As shown in FIG. 13 the end edge 274 is one continuous piece. The reinforcing member 204 is about as long as that portion of the upright support 206 which is above the base 200-200a and the edges 276 fit into the inside corners 278 of the upright support member thereby squaring it up and stiffening it longitudinally and transversely. The lower edge 256 of the upright support 206 extends to the plane of the lower edges 226 of the base 200-200a when properly assembled.

In one form of the completed assembly, the holes 258 are punched in pairs through opposite walls 242 of the upright support member 206 near the top edge 254 so as to receive the rod members 208 on which carded items 280 can be displayed. The rods clear the top end of the reinforcing member 204. The round holes 260 are available in which to hang bottle goods or tubed items 282 and the like. The square holes 262 are suitable for engaging packages such as the elongated box 284 while the top surfaces 232 of the reinforcing boxes form a shelf for other goods. In this connection, the vertical depth of the boxes 202 is less than the vertical depth of the base member 200 so that when inserted to the bottom the top edges 224 and 226 of the base form a retaining flange. It is also apparent that the upright support 12a of FIG. 5 can be constructed like the upright support 206.

The hook members 290 can also be provided for use with the assembly of FIG. 15. These members (FIG. 16) are formed of one piece of wire or rod, bent to form a hooked end 292 that engages over a hole 14, in the side of the upright support 206, the depending shank 294, the circular flat base 296 and the extended rod portion 298 upon which carded items are hung.

The box container 182 may also serve as a top shelf over the assembled base 200-200a. For this purpose the tear lines 299 are provided on the cover flaps 188 so that these pieces can be torn off so that the remaining flap extends over the end flaps 190 enough to be taped thereto and form a retaining flange. The knock-out piece 302 is serrated so as to be removable and is sized so as to fit over the upright support 206 and the container 182 can be placed thereover to rest on the edges 226 and 224 with its flanges in the upright position.

In FIG. 17, still another modified display stand 10c is shown that is adapted to be used with the base 200-200a of FIG. 15. The supporting wall member 12c thereof is formed in one piece by extruding plastic through a mold shaped to form the wide channels 300 defined by the indented side 303 having the opposing side grooves 304 therealong. FIG. 18 shows how this member 12c fits within the square hole 240 defined in the center of the base member 200-200a in rigid vertical relationship. A modified hook member 306 is provided having a circular base 308, one end 310 of which can be sprung inward so that the edges of the base fit within the grooves 304 of the channels 300. To relocate the hook 306 up or down in the channel the shank or extension 312, upon which items could be hung, is merely pushed toward the spring 310 and the base loosens enough for sliding. The plastic used in the extrusion of the supporting wall member 12c can have inherent lubricity to aid in this action. The weight of items on the shank 312 cant and biases the base 308 sufficiently in the grooves 304 to prevent the hook 306 from moving while in use.

FIG. 21 illustrates still another assembly comprising the combination of a pair of bases 200-200a that are joined together along their end walls 214. These walls are shown in broken lines in order to disclose the fact that the elongated portions of the base 200-200a can be a single unit and the wall juncture 214-214 omitted. In this case, the combined long base 200-200a can be the container for the parts. The upright supports 12a are the same as shown in FIGS. 14 or 22 (yet to be described).

A last embodiment of the invention is shown in FIGS. 22 to 26 wherein the modified upright support member 12d is shown having the connected side walls 320, 322, 324, 326, 328 and 330 connected along the fold lines.
The outer walls 320 and 330 have the large holes 334 while the intermediate walls have the small holes 336. These holes are all aligned so as to be about the same distance from the end edge 338 of the sheet material of which the support 12d is constructed.

To form the support 12d, the two outer walls 320 and 330 are folded inwardly to become a diagonal brace as shown in FIG. 23 and the remaining interior walls form the outer walls of the square design as shown. This support member also folds transverse its longitudinal axis, as at the folds 335. The plastic collars 336 are provided to fit over the outside of the support 12d and slide down over the fold marks 334 as indicated by the arrows. A collar 336 can be placed at the top of the support 12d. In FIG. 23, it is seen that the holes 334 will be in alignment by the overlapped walls 320 and 330 so that the opposite holes 336 in the walls can be used to carry a rod member 208 (FIG. 13). A U-shaped clip member 320 (FIG. 26) is adapted to be thrust through the folded corner of the support 12d (FIG. 23) with its tines on the outside of the overlapped walls 320 and 330 to hold the support member together in a square configuration. These hooks 320 are very easily forced through cardboard and form a very rigid and inexpensive fastening.

FIG. 27 shows a modification wherein the base 350 comprises a pair of elongated wooden members 352 and 352a having substantially the same cross-sectional configuration and each having the respective slots 354 and 356. These slots are the same dimensions so as to interengage one into the other and form intersecting cross-members. Each slot has a bore hole, indicated at 358 and 360 that extends through to the bottom and top edges respectively of these parts. The bottom hole 358 is counter-sunk to receive the metal insert 361 having the head 362 imbedded therein with the internally threaded shank 364 extending therein. When these parts are assembled the bores 358 and 360 are coaxial.

The detachable upright member 366 comprises two wooden pieces 368 and 370 that are similarly slotted. These slots, not shown, run longitudinally of these members so that they fit end to end and the assembly defines four radial members illustrated by the section 372. The unslotted end of one of the members 368 or 370 carries the threaded shank 374 which is long enough to extend through the bore 360, into the bore 358 and engage within the internally threaded shank 364. The wooden pieces 368 and 370 form a tab or extension over which a tubular upright such as the upright 12 of FIG. 1 on the walled member 106 of FIG. 15 can fit in telescoping relationship. The parts 352 and 352a along with the assembled or disassembled upright 366 can all be packaged within the tubular members. This is most convenient where shipping costs and bulkiness of packages are a concern.

The tubular upright members illustrated in the drawings can all receive still a second tubular member on the outside so as to provide adjustable length supports. Thus, a pair of telescoping tubes, like the tube 12 of FIG. 1, can be used on the parts shown in FIG. 27.

Preferably, the display rack or stand of this invention is constructed of cardboard or the like having sufficient rigidity to be suitable for the intended purpose and yet be inexpensive and light in weight. The wall strength of the cardboard is coordinated with the size of the display rack to be fabricated and the number, size and weight of articles to be displayed. Cardboard or similar paper board material is also preferred because of the ease of fabrication, the ability to form fold lines therein, and the semi-resilient nature of the edges of the apertures which tend to yield slightly and engage against glass metal or other cardboard surfaces that are presented by the rigid extension of an article engaged thereby. Cardboard is also sufficiently yieldable so that telescoping parts can be fabricated and thus they interengage firmly once in position and resist dislodgement under ordinary static conditions.

Although, in the several embodiments, each walled support or rigid member has a number of apertures into which or from which articles are to be hung or otherwise attached, it is apparent that at least one such aperture can be used. The article to be supported has been described as having a rigid portion from which it can be suspended. By this is meant the neck of a bottle, the neck of a tube, the end of a box or carton or the handle of a brush and the like. The apertures may or may not conform to the shape of the rigid portion of the article it engages.

From this description it is seen that the display rack of this invention includes an elongated generally planar rigid member having an edge flange or other spacing wall to hold the rigid member in an upright position, or for use with a supporting base that holds the right member in an upright position. At least one aperture is provided in the rigid member opening to the space behind the assembly. The cross-sectional area of the aperture is sufficiently larger than the cross-sectional area of the rigid portion of the article to be displayed, and, the length of the rigid portion of the article is longer than the depth of the aperture or the thickness of the wall whereby the nearer lower edge of the aperture and the further upper edge of the aperture engage, respectively, the bottom and top portions of said rigid portions of the article, as the sole support thereof in a cantilever relationship at an angle to the surface of the rigid member.

Where more than one aperture is used they are spaced as desired to provide easy access to the articles on the display rack. The axes of the apertures can be normal to the wall of the rigid member or inclined downwardly toward the rigid extended portion of the article. The interengaging slots that are herein disclosed to assemble certain of the parts are preferably cut to the width of the wall of the member to be received therein so that a snug, yet slidable relationship is established along the contacting parts. The base for the assembly is sufficiently broad so as to properly support the display rack in spite of removal of some of the articles therefrom. Various advertising indicia and attention-getting flags or banners can be added as desired.

What is claimed is:
1. A knockdown display rack for articles comprising: an elongated tubular wall member, a base support for said tubular wall member including a substantially cylindrical rigid supporting side wall part and separate removable flat substantially circular top and bottom wall parts fitting in sliding frictional contact within said side wall part and each having aligned apertures defining inner edge portions adapted to hold said tubular wall member in vertical sliding frictional and lateral support.
said base support including rigidifying spacer parts defined by an elongated rectangular planar member folded sequentially in opposite directions along a series of spaced transverse fold lines to form a plurality of inwardly radially disposed folded edges defining vertical wall portions and to form a plurality of outwardly radially disposed folded edges adapted to hold said tubular wall member in vertical sliding frictional and lateral support;
said folded planar member being positionable within said substantially cylindrical side wall part with its top and bottom edges spacing said removable top and bottom wall parts, with said inwardly disposed folded edges extending into supporting contact with said tubular wall member and said outwardly disposed folded edges in supporting contact within said substantially cylindrical side wall part; and
a plurality of spaced apertures extending through said tubular walled member adapted to axially receive a rigid elongated portion of an article;
said spaced apertures being sufficiently larger than the cross-sectional area of the rigid portion of said article and the length of said rigid portion of said article being longer than the depth of said aperture whereby the near lower edge of said aperture and the further upper edge of said aperture engage the bottom and top portions, respectively of said rigid portion of said article as the sole support for same in cantilever relationship.

2. A knockdown display rack in accordance with claim 1 in which:
the ends of said planar member are folded toward each other to form a pair of over-lapping sections, the folded edges of which are engageable in supporting contact within said substantially cylindrical wall part.

3. A knockdown display rack in accordance with claim 1 in which:
said elongated tubular member consists in a planar member having five longitudinal fold lines defining six wall sections;
the inner three of said fold lines being formable to place said wall section into a square configuration and the outermost fold lines placing said outer wall section in contiguous relationship as a diagonal reinforcement for said square configuration that extends to the opposite inside cover thereof.

4. A knockdown display rack in accordance with claim 3 in which:
said tubular wall member folds end-to-end along at least one transverse fold line with the folded portions in juxtaposition; and
a square reinforcing collar member is provided to fit over the outside of said tubular member adjacent said unfolded transverse fold in the squared configuration of said wall member.

5. A knockdown display rack in accordance with claim 1 in which:
said elongated tubular wall member includes four planar side walls joined together along longitudinal fold lines to form a rectangular configuration;
said aligned apertures in said top and bottom wall parts define inner edge portions conforming to said rectangular configuration;
and a reinforcing member is provided for said tubular wall member comprising a single elongated rectangular member folded along four longitudinal fold lines to form wall portions, two of said folds being internal and two being external whereby the internal folds are on opposite sides of the wall section between the external folds with said wall portions forming intersecting planes, the axes of which are substantially the same length as the diagonals of said square configuration of said tubular wall member;
said reinforcing member fitting longitudinally within said four sided tubular wall member with its axes fitting into the corners thereof and its ends on each side of said transverse fold in a rigidifying manner.

* * * * *