Office de la Propriete Canadian CA 2415334 A1 2004/06/30

Intellectuell Intellectual P
du Canada Office P ey 2 415 334
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2002/12/31 (51) Cl.Int.//Int.Cl.” GO6F 1/00, GO6F 12/14

(41) Mise a la disp. pub./Open to Public Insp.: 2004/06/30 (71) Demandeur/Applicant:
PROTEXIS INC., CA

(72) Inventeurs/Inventors:
RIEBE, HENNING, CA:
ALDIS, DAVID, CA

(74) Agent: OYEN WIGGS GREEN & MUTALA

(54) Titre : SYSTEME DE CRYPTAGE PERSISTANT DES DONNEES CRITIQUES DE LOGICIELS PERMETTANT DE

COMMANDER L'EXECUTION D'UN PROGRAMME INFORMATIQUE
(54) Title: SYSTEM FOR PERSISTENTLY ENCRYPTING CRITICAL SOFTWARE DATA TO CONTROL OPERATION

OF AN EXECUTABLE SOF TWARE PROGRAM

- SoFTwARE.
PuBListture
t2- 10_
SoFroree] S
PUBLL ¢ He 2. B @2@
| Toara] lse:m%
AsaSrpey | 7™V

. __T_T____.{q |
! (e EpanE | . 3

MAN A e MENT

' T |

r T———

Lo MO A Lo A’Tl QM; f
N‘E—TL&.)@@L

(57) Abrége/Abstract:
A data encryption/decryption system Is provided which maintains in encrypted form one or more critical data elements requiread

by a software program. A user must obtain a license key In order to decrypt the critical data elements before the software
program can use them. The data elements can be chosen such that their contents provide a control mechanism for the correct
operation of the executable software program. The system allows for the Iinclusion of different data elements with or within a
single version of the software program. The different data elements are encrypted for different license keys to allow for different
license options and corresponding levels of control and flexibility in the delivery of the software program.

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
S
N

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02415334 2002-12-31

Abstract

A data encryption/decryption system is provided which maintains in encrypted form one or
more critical data elements required by a software program. A user must obtain a license key
in order to decrypt the critical data elements before the software program can use them. The
data elements can be chosen such that their contents provide a control mechanism for the
correct operation of the executable software program. The system allows for the inclusion of
different data elements with or within a single version of the software program. The different

data elements are encrypted for different license keys to allow for different license options

and corresponding levels of control and flexibility in the delivery of the software program.

CA 02415334 2002-12-31

System for Persistently Encrypting Critical Software Data to Control

Operation of an Executable Software Program

Field of the Invention:

[0001] The present invention relates to content and software protection and, more
specifically, to a system for encrypting critical data within a software program to protect

critical elements of that program and control its execution.

Background of the Invention:

[0002] Software is generally sold as a right to use. In other words, the use of the software
is marketed and sold but not the software itself. It is important to protect the software itself
from intentional, as well as inadvertent copying. Simple lock/unlock protection does not
offer adequate flexibility for the user or the owner of the software. It would be useful to offer
a range of control, including a very fine level of control, of the action and operation of a
specific functionality within a software program.

J0003] Encryption of software programs offers a means to hide or shield important
proprietary intellectual property (i.e., the software) from those who may wish to abuse the
license terms and copy the software or a portion thereof. A substantial problem for software
publishers and legitimate resellers is piracy of software programs. Piracy can occurin a
number of forms such as the unlocking of protected software for illegal copying and retail
sale, as well as the installation of unlocked software onto more computers than permitted
under the software license agreement. A need exists for an encryption/decryption system for
software programs to restrict the use of unlocked software to the situations intended by the
software publisher.

[0004] Existing encryption systems and methodologies commonly employ encryption of
one or more executable files in order to block the installation or stop the unlicensed execution
of the software. Standard encryption methodologies commonly entail ‘wrapping’ the entire

set of executable programs or files. These encrypted programs must then be unencrypted or

unwrapped in order to be executed on the user’s computer. Such unwrapping has a number

CA 02415334 2002-12-31

of disadvantages. Once the program is unwrapped, 1t may be vulnerable to copying. In
addition, the unwrapping process can require a substantial amount of free memory or disk
space (e.g., on the order of two to three times the memory needed for the actual program)
during the decryption process. The vulnerability of an unwrapped program to copying is
addressed in commonly-assigned U.S. Patent No. 6,223,288 whereby the executable file is
persistently locked to a user’s hardware through a hardware hash mechanism. U.S. Patent No.
6,223,288 1s hereby incorporated in 1ts entirety herein for all purposes.

[0005] Another common locking process involves embedding license checks within the
software executable(s) themselves through an Application Programming Interface or API
which is commonly part of an activation-based system. While this process has the advantage
of not requiring substantial memory or disk storage for decryption, pirates using standard
software debugging tools commonly break the protection. The actual lock is not broken

- through this process, but the protection can often be removed through patches that overwrite
or circumvent the license checks. With this technique, increased protection and effectiveness
can be achieved through increased compléxity in the nature and integration of the license
validation checks. This increased complexity, however, may have the undesirable effect of
increasing the initial protection setup investment, as well as the routine maintenance and
quality assurance efforts for the developers of the software product.

[0006] Soitware executables represent one of three forms of digital content. These three
content forms are:

1. Executable Content — data that consists of machine instructions that are directly
processed by the target hardware; it 1s usually stored in the form of individual files (e.g.,
common software applications). -

2. Viewable Content — data that can only be viewed (or played) by programs that
understand the particular data format and are able to correctly interpret it; it is typically stored
either as individual files or as data elements within an application or a database (e.g., music,
pictures, video, written works).

3. Usable Content —data that belongs to and is processed by a particular application; it

1s often stored as data elements within the application, also as files or as elements within a

CA 02415334 2002-12-31

database (e.g., tax tables, algorithmic control parameters). This data may be proprietary, or
not, and it arranged in a manner such that it is usable by a software program.

[0007] Existing licensing systems are primarily directed at the first form of content
described above to prohibit copying of, or operation of, executable sottware code. There are
a number of systems that address viewable content, the second content form described above.
A need exists for a content protection system that is primarily applicable to the third form of
content described above, that is, usable content, and that impacts the interaction between the
first and third forms of content (i.e., the use of static data with executable programs).
J0008] Further, a need also exists for a content protection system that can be adapted to
support all three content forms since all forms of content may be used interchangeably. For
viewable content such as digital pictures to be viewed with executable applications such as
content players, a need exists for a content protection system that allows such content to be
used, modified or stored according to algorithmic parameters that are themselves maintained
as usable content. For example, it would be beneficial to have protected data elements that
are required by algorithms controlling digital sound reproduction. Similarly, an executable
program that works in conjunction with independent data such as fonts, virus files, and so on,
could also benefit from maintaining this data in a protected form. A need exists for a content
protection system that can provide basic functionality with an entry level product, as well as
increasing functionality through decryption of the data required for that functionality. For
data elements representing algorithmic variables, a need exists for a content protection
system that provides programmatic execution control ranging from very coarse control (e.g.,
as an overall gate or switch on the primary program) to very fine control of a specific
function such that, by selectively encrypting parameters for just one or two algorithms, very

specific functions can be disabled or controlled through a limited or extensive range.

Summary of the Invention:
[0009] In accordance with the present invention, a content protection system is provided
which allows content publishers to select and encrypt data elements within an executable

program, as opposed to encrypting the entire executable program. The data elements can be

CA 02415334 2002-12-31

stored within the program as static data or stored as external dataset or retrieved from a
database. The data elements comprise usable data that supports usable, viewable and
executable forms of content.

[00010] In accordance with another aspect of the present invention, the content protection
system allows critical program data required for initialization and control of a program
execution, proprietary algorithms and other critical calculation parameters to be encrypted
with a license key prior to distribution to end users and recovered during execution of the
program. The program can be constructed to operate sub-optimally if the required license
key 1s not made available at execution time to increase the value of the properly licensed
software. This protects the software from common piracy through circumvention of license
check functions as the required data will remain encrypted despite the compromised license
check functions.

[00011] The content protection system of the present invention allows flexibility with
respect to encrypting multiple datasets and thus provides license options. For example, the
present invention provides programmatic execution control ranging from coarse to fine

control and/or varying levels of functionality, depending on the level of legitimate user access

obtained via license key or activation technology.

Brief Description of the Drawings:

[00012] The novel features and advantages of the present intervention can be understood
by reference to the detailed description of the preferred embodiments which follows, when
read in conjunction with the accompanying drawings, in which:

[00013] Fig. 1 1s a schematic block diagram of a communications network comprising a
software publisher configured with a content protection system in accordance with an
embodiment of the present invention;

[00014] Fig. 2 is a flow chart illustrating a sequence of operations for encrypting data
using a content protection system constructed in accordance with an embodiment of the

present invention;

CA 02415334 2002-12-31

[00015] Fig. 3 is a flow chart illustrating a sequence of operations for decrypting data

using a content protection system constructed 1n accordance with an embodiment of the
present invention;

[00016] Fig. 4 1s a flow chart illustrating a sequence of operations for incomplete
decryption in accordance with an embodiment of the present invention;

[00017] Fig. 5 is a flow chart illustrating a sequence of operations for encrypting multiple
datasets and/or employing multiple licenses using a content protection system constructed in
accordance with an embodiment of the present invention; and

[00018] Fig. 6 is a flow chart illustrating a sequence of operations for decrypting a dataset
employing multiple licenses using a content protection system constructed in accordance with
an embodiment of the present invention.

[00019] Throughout the drawing figures, like reference numerals will be understood to

refer to like parts and components.

Detailed Description of the Preferred Embodiments:

P P PR v A Al PP

[00020] Fig. 1 depicts an exemplary system for content distribution and protection in
accordance with an embodiment of the present invention. Software publishers 12 provide
content such as software to users 22 via different distribution channels such as by shipping
product media (not shown) or transmitting software electronically over a network 18 (e.g., an
intranet 20, the internet, LAN, WAN, and so on). A payment processing center 28 or other eé
commerce system component 1s preferably provided to provide users with immediate
fulfillment capability. Software publishers preferably comprise a data assembly module 14
with which to select content to be protected and the method of protection, as well as a license
management module 16 for providing and tracking licenses for protected content.

[00021] The present invention offers a novel approach wherein one or more program data
elements are encrypted (e.g., by a publisher 12). The data elements can be stored within a
program executable, referred to as static data, stored as an external dataset (file), or retrieved
from a database. Data stored externally in files can be located and accessed in any way

appropriate for the application’s requirements such as, for example, locally on a fixed or

CA 02415334 2002-12-31

removable storage media, or via the Internet, a LAN or a similar networked connection. The
data elements can also be stored within any common database 30 and retrieved through
database queries as required (e.g., via a web server 26).

[00022] With reference to Figs. 1 and 2, the contents of these data elements can be chosen
by the publisher 12 (block 50) to include information that, in turn, controls the operation of
the executable program (block 56). Utilizing this approach, critical program data required for
the initialization and control of program execution, proprietary algorithms and other
calculation parameters can be encrypted (blocks 52 and 54) prior to distribution (block 58) to
end users 22 and recovered during the execution of the software program. As shown in Fig.
3, a user 22 accesses (block 70) an encrypted data element by decrypting it (blocks 72 and
74). The software executes correctly (block 78) once the decrypted data is revealed (block
76). The decrypted data is then preferably erased after use (block 80).

[00023] Alternatively, the program can be constructed to operate sub-optimally should the
required license key not be available at execution time. As illustrated in Fig. 4, a user 22
accesses (block 90) an encrypted data element but cannot decrypt it (blocks 92) because
retrieval of the license terms (block 94) did not result in successfully locating a license key.
The required data 1s not available without the key and, therefore, remains hidden (block 96),
causing the software application to fail to execute correctly (block 98) or, alternatively,
operate sub-optimally. Thus, common circumvention techniques cannot be used to create an
unprotected copy of the program. Moreover, rather than simply stepping through a program
in a debug mode and jumping over license check functions, a hacker or pirate must gain a
much more complete understanding of the underlying algorithms to the extent of re-creating
appropriate data elements. This requires substantially greater effort and understanding than is
required to circumvent conventional license checks.

[00024] The present invention allows considerable flexibility in data delivery, as well as
development and control of license options. As illustrated in Fig. 5, multiple data sets
indicated by blocks 102, 106, 110 and 114 can be encrypted, as indicated by blocks 116, 118,

120 and 122, respectively. Each data set can be subject to different license terms, as

CA 02415334 2002-12-31

indicated by blocks 100, 104, 108 and 112, respectively. The multiple data sets can then be
delivered (blocks 124 and 126) to users 22 independently, or as part of a larger dataset.
[00025] As illustrated in Fig. 6, the encrypted data elements or data sets can be accessed
(block 130) and searched (block 132) for an installed license (e.g., any of the licenses
indicated by blocks 134, 136, 138 and 140). Once the selected license terms are retrieved
(block 144), the corresponding data available under that license (e.g., the corresponding one
of the data elements indicated by blocks 148, 150, 152 and 154) is decrypted (block 156).
The software executes correctly (block 164) once the decrypted data is revealed (block 162).
The decrypted data 1s then preferably erased after use (block 166). If a valid license is not
availlable to the user 22 (block 142), the required data cannot be decrypted (block 146)
without the key and, therefore, remains hidden (block 158), causing the software application
to fail to execute correctly (block 160) or, alternatively, operate sub-optimally.

[00026] In accordance with the present invention, multiple data sets can be selectively
unlocked according to license terms based upon an accompanying new license or according
to the license terms of a previously provided executable application, previously supplied data
or both. Decryption of the data, and hence program execution, can be controlled by the
original software license and terms, by a new set of terms, or by a combination of the two. ‘
Thus, a dataset can be delivered or otherwise made available (e.g. as part of a standard update
or a paid-for upgrade) to a program where the current license allows some degree of access to
the data. A new license can then be delivered, such as through an integrated payment and
fulfillment function, that allows access to additional data in a pre-existing or newly provided
data file. This new data can, for example, enable new functionality or enhanced performance
or both.

[00027] An example of the application of the present invention to a trial version of
software 1s demonstrated by a data compression product. While the trial license is valid, the
data compression product can provide a level of compression that provides a realizable
benefit to encourage purchase, yet 1s far short of the fully licensed version capability. In
accordance with the present invention, the level of compression is set through use of a

variable lookup where a valid license receives a “0.5” constant representing 50%

CA 02415334 2002-12-31

compression, replacing a default *“0” constant representing 0% compression for an expired
trial or fully unlicensed version. The present invention is advantageous in that this level of
control can be set with relative ease. Upon receipt of a full license (e.g., through an Internet-
based purchase process), the full capability is provided with a “1.0” constant representing
100% compressiori. All of these values can be provided as encrypted static data or a lookup
in an encrypted data file, and the delivery of the appropriate value determined by the license
key, 1n accordance with the present invention. A hacker or cracker can be further challenged
through the use ot quadratic equations and the substitution of exponents of the equation, for
example, that then provide a non-linear nature to the data for what results in a linear benefit.
[00028] In contrast with existing methods of encryption that would encrypt the entire data
compression sottware product, the present invention encrypts only a portion of the product
such as the variable lookup in the foregoing example. Due to the relatively small size of the
required buttfer, decryption can occur repeatedly during program execution with very
negligible impact on the efficiency of the program execution or the requirement for additional
memory or disk storage. Moreover, the program maintenance effort is substantially reduced,
as program security 1s no longer dependent on increasing the complexity of the licensing
checks. A non-encrypted copy of the data elements can be used for most maintenance
activities, and substituted just prior to final product build and distribution with the encrypted
copy.

[00029] The data is protected persistently since it is only stored in its encrypted form
within the executable binary program file. In other words, it is part of the program in an
encrypted form. It never has to be stored in its unencrypted form. Where greater flexibility
1s required, the encrypted data elements can also be stored external to the program in files, or
fields of a database, or anywhere appropriate to the application environment as noted above.
The program retrieves the encrypted data elements when required from the external storage
and then uses the data as though 1t were part of the program. The encrypted data elements
can be updated at any time without changing the application program. Thus, external data is
also never stored in unencrypted form and can be used to provide greater configuration

flexibility. This is of value both for data changes that are required to keep the program

CA 02415334 2002-12-31

operation up-to-date (e.g. tax tables or virus definitions), as well as to provide licensing
flexibility (e.g. functionality that varies depending upon the license type, which may change
over time for marketing reasons). This ability to update and change the data provides the
additional benefit of reducing the requirements of a standard software build and quality
assurance process. Updates and upgrades can be conducted far more expeditiously than with
conventional practice and other licensing and protection approaches which require a
completely new compile and build of the software elements.

[00030] Multiple versions of a data element (e.g., with different values) can be included
with an application, each individually encrypted with a key specific to a different license.
Some licenses can have associated data elements that have no counterpart in other licenses.
The actual data element that the application eventually processes is then dependant on the
particular license that the user has access to. In this way, the same application binary file, or
software executable, can securely contain the data required for what would otherwise be
multiple application binary files requiring separate manufacture and distribution. To upgrade
the application’s functionality, the user only needs to acquire an appropriate license to unlock
the tunctionality already delivered with the application. Combined with an activation process
as described below, this allows new application functionality to be unlocked instantly,
without the need for new software to be delivered or installed.

[00031] The content protection system 10 of the present invention has the highly desirable
capability of controlling critical program operations in an application-specific and a release-
specific manner and allows the use of common binaries for multiple product configurations
and markets. The actual software product is controlled by an encoded serial number sold
with the license to use the software. Access to the encrypted buffer is provided through an
activation code linked to a decryption key that is preferably locked to a hash of the unique
hardware 1dentification of the target computer. The activation code is only provided to
holders of unused (1.e., previously unactivated) serial numbers per a central data store. This
preterred technique allows activation codes to be conveniently supplied electronically over
the Internet, or any other network, or even via e-mail, telephone or facsimile-based customer

support. The provision of the activation codes can be further integrated with a payment

CA 02415334 2002-12-31
- 10 -

module that can allow the user to select and purchase the desired software, as well as the

desired software functionality. Activation methods are described in commonly-assigned U.S.
Patent No. 5,809,145, in U.S. application Serial No. 10/126,973, filed April 22, 2002 and in
U.S. application Serial No. 10/126,974, filed April, 22, 2002, which are all hereby
incorporated by reference herein.

[00032] The following is an example of how the content protection system 10 of the
present invention can be implemented. With regard to structuring the protection, the level of
protection provided by the system 10 can be affected by the actual integration with the

product to be protected. For example, at a high level, the integration can appear as follows:

Your program here...

If the system 10 says that the license is invalid
Then quit

Otherwise

Your program continues ...

[00033] As stated previously, implementing the persistent protection in this manner
presents crackers with a relatively easy target. Sophisticated pirates use conventional
software debugging tools to trace code at runtime. Rather than look at the entire program in
machine code, they only need to concentrate on the place where it stops. Overwriting the

response to the above question (1.e. the quit instruction) effectively removes the protection

without otherwise affecting the application.

[00034] The preceding example illustrates two points of vulnerability. First, the question,

“1f license valid™ 1s easy to find due to its proximity to the obvious reaction, “quit”.

Secondly, the only application dependency on the question is the reaction. Once the reaction

1s removed, the program continues to function normally.

CA 02415334 2002-12-31
- 11 -

[00035] There are several ways of combating these problems. They are highly dependent
upon the nature of the application, but this application-specific nature can otten be used to a
software publisher’s advantage in accordance with the present invention. Recommendations
on implementing the persistent content protection system 10 of the present invention can

include, but are not limited to:

1. Separate the license verification from the decision to quit. After capturing the license

verification, continue normally for some time or number of operations.

2. Use the value captured by the license verification to turn a variety of switches on or
off or otherwise change values (even bits within pictures or sound files), creating some
sequence of more complex, interdependent states that are then verified before quitting. This
technique makes it less obvious which original value has led to the group of particular values
that cause the program to quit. Simply overwriting one or two values near to where the

application quits will not be sufficient to crack the program.

3. Quit in several places according to different conditions.

4. Assume that the “quit” reaction is so obvious that it, and the conditions leading to it,
will eventually be circumvented by a dedicated cracker. Given this assumption, the program
to be protected should also react in a less obvious way. A cracked application may run, but
the failed or missing license verification leads to a crippled state that is very difficult to
override. This tactic is application—dependent and is therefore an effective means of making
use of the protection the present invention provides. An example of this is where critical
application functions are delivered defective and the correct license verification is required so

that the application can “repair” itself.

[00036] The trade-off with more elaborate implementation methods can be an ever-
increasing load on the testing and quality assurance team. A carefully planned application
can use compile time switches to turn the protection mechanisms off so that the program

functionality can be tested and verified independently of the copy-protection mechanisms.

CA 02415334 2002-12-31

- 12 -

Careful control of any such versions 1s important to avoid inadvertent release of unprotected

product.

[00037] To counteract the constant efforts of professional pirates and deliberate crackers

to compromise protected code, the present invention augments the complex task of providing

execution level protection of software with easy to manage data level protection.

[00038] By way of an example, the following exemplary routine decrypts a given buffer

only if a valid license is present:

[00039] PsiDecryptBuffer

PSIERROR stdcall PsiDecryptBuffer(
LPCTSTR szLicenselD,
const BYTE *pblnBuffer,
BYTE *pbOutBufter,
UINT *puiOutButferLen,

const BYTE *szInstanceTag

[00040] Parameters

SzLicenselD The null-terminated product license
1dentifier.

pbInBuffer Address of the encrypted buffer.

pbOutBuffer The address of the buffer that will receive
the decrypted data.

puiQutBufferLen Pointer to a variable that contains the size, in

bytes, of the buffer pointed to by

CA 02415334 2002-12-31
- 13 -

pbOutBuffer. When the function returns,
then this variable will contain the length of

the data returned.

szlnstancelag The unique, null-terminated tag was created

for this buffer during the encryption process.

[00041] Return Value

PSIERROR NOERROR No error occurred (see below).

PSIERROR INVALID VERSION The buffer encryption is incompatible
with the PSIKey version (PSIKey 1s
older).

PSIERROR_PARAMETER_INVA One of the parameters is 1nvalid.
LID

PSIERROR MORE DATA The supplied output buffer length is
too short for the decrypted data; the

size of buffer required is returned in

puiOutBufferLen.

[00042] As stated previously, this routine decrypts the given bufter only if a valid license
is present. The buffer is preferably encrypted specifically for the given product. Encrypting
some of an application’s key data protects the application from being altered to remove the
copy protection features. Ideal candidates for encryption are values that are required for the
correct functioning of the application, especially values that are not easily guessed. This
function of the present invention can also be used to hide sensitive data or other proprietary

information.

CA 02415334 2002-12-31
- 14 -

[00043] The encrypted data is preferably in the form of a hexadecimal string. As this

string may be long, a software publisher can use the line continuation syntax for constants as

defined by the source language.

[00044] To maintain the highest level of security, the butfer is preferably only encrypted
for a particular license, that is, a buffer can only be encrypted for a product’s normal license
or the trial license, but not simultaneously for both. If trialware 1s being released, any data
that is required by both license types 1s encrypted twice as two separate buffers. The buffer
that is appropriate for the currently installed license (e.g., as determined by

PsiVerifyRegistration and PsiVerifyTrial) must be passed to PsiDecryptButter, for example.

[00045] PsiDecryptBuffer preferably decrypts the buffer using only the installed license
information. To hide its functionality, 1t does not generate any errors if the license is invalid
or the buffer used requires a different license type. If the trial license expires, for example,
the buffer appears to be decrypted but contains invalid data. In this way, not performing
proper error checking allows a software publisher to disable some of the program’s
functionality unless a valid license 1s present. If a cracker 1s able to edit the executable, they

cannot simply switch buffers to obtain access to the data requiring a full license.

[00046] Each encrypted buffer receives a unique Instance Tag that forms part of the
cryptographic process used to protect the data. This makes each buffer a unique package,

further reducing the opportunity to create a “universal crack”.

[00047] Unregistered trialware 1s inherently more vulnerablé to cracking than registered
software. In accordance with the present invention, some data is only available to the fully
licensed version. This can be accomplished either by including this data only in the fully
licensed buffer, or by having a third buffer as illustrated by the following:

[00048] Using two buffers:

CA 02415334 2002-12-31

- 15 -
| Buffer Contents - -
TrialBuffer common data o B -
NormalBuffer common data, specmata | W

[00049] Using three buffers:

Buffer o]_— Contents _—_‘
TrialBuffer [commondata - J;J
NormalBuffer l— common data -
' NormalBuffer2 | special data -
_ |- I — - —

[00050] The buffer is preferably decrypted in all cases, and the program uses the
decrypted data even if it is incorrect, as exemplified by the following code. An invalid
license yields bad data that should lead to a malfunctioning program. This is preferred to

error messages which may indicate to a cracker where to look in the executable code.

[00051] Normal Scenario:
// run application?

if PsiVerifyRegistration(...) I= PSIERROR_NOERROR

// actions to be taken for unlicensed software

// need something secret

PsiDecryptBuffer(NormalBuffer, ...)

CA 02415334 2002-12-31

- 16 -

// get the decrypted data we need
// clear the decrypted buffer!
// use the data
// wipe the data!
[00052] Trialware Scenario:
// show nag screen? run application?
if PsiVerifyRegistration(...) '= PSIERROR NOERROR

if PsiVerifyTrialLicense(...) ...

// need something secret

if PsiVerifyRegistration(...) == PSIERROR NOERROR
PsiDecryptBuffer(NormalBuffer, ...)

Else // always do this! no license, bad decryption!
PsiDecryptBuffer(TrialBuffer, ...)

// get the decrypted data we need

// clear the decrypted buffer!

// use the data

// wipe the data!

CA 02415334 2002-12-31
- 17 -

[00053] In this way, a cracker who is able to edit the executable and circumvent the
license validation remains without a properly running program. Keeping the decrypted data
visible for the shortest possible time (i.€., decrypt the buffer on an as-needed or where-
needed basis and clear the buffer and the data items as soon as possible after use) creates
considerable work for someone wanting to patch the application to overcome the protection.
J00054] Certain products may require more complex persistent copy protection features,
such as the routine, PsiDecryptBuffer. This routine decrypts a data buffer that has been
encrypted for the given product. It will not function without a valid license. This can be
used to hide various pieces of static program data so they are only selectively available at
runtime in the presence of a valid license, thereby eliminating the ability for determined
crackers and pirates to overwrite pieces of program code and obtain an unlicensed working
copy of the product.

[00055] To provide persistent copy protection, it is not necessary to have any trade secret
or otherwise confidential data, but rather only data that is required for the correct functioning
of the application. Providing this data in an encrypted buffer effectively binds it to the
license. Even if the encrypted values become known, it 1s difficult to edit the software to
replace the encrypted portions with the unencrypted ones since the decryption calls must also
be found and removed.

[00056] Hiding data values that are not readily ascertained outside of the application
further increases the level of protection. A cracker must view the code at runtime to
determine the required values. This functionality allows key portions of the software to be
protected to be made invisible to static analysis by buffer encryption in accordance with the
present invention.

[00057] An independent software or content vendor could utilize a licensing mechanism
for each or all of the content types described above to provide and control a variety of
market-optimized products. The value of such a system is clearly enhanced if the license
parameters and mechanisms are consistent. The content protection system 10 of the present
invention provides a common interface to support consistency in license definition, terms

management, and so on, and therefore supports full integration between disparate executable,

CA 02415334 2002-12-31
- 18 -

viewable and usable data types, which has heretofore been a significant challenge to content
providers and distributors. The license terms can be held consistently through separate
delivery of executable and usable content, including updates or upgrades to either. Use of
digital licensing and a system such as the content protection system 10 of the present
invention further allows the opportunity to modify the license itself to result in enhanced
programmatic function and/or additional usable data. Similarly, license terms can be reset to
reduce functionality such as where a computer has been relocated within an organization.
[00058] Utilizing the present invention, a content publisher or distributor can configure
licenses that initially provide limited functionality or a basic content depth, and then provide
a richer set of algorithmic capabilities or richer database upon legitimate acquisition of the
appropriate license. The present invention makes this possible without the need to configure,
distribute and manage different versions of the executable application.

[00059] Although the present invention has been described with reference to a preferred
embodiment thereof, it will be understood that the invention is not limited to the details
thereof. Various modifications and substitutions will occur to those of ordinary skill in the
art. All such substitutions are intended to be embraced within the scope of the invention as

defined in the appended claims.

CA 02415334 2002-12-31

- 19 -

What Is Claimed Is:

1. A method of protecting a software program from piracy comprising the steps of:
selecting at least one data element from said software program for encryption, said
data element affecting operation of said software program and comprising usable data that
supports any of usable, viewable and executable forms of content;
encrypting said selected data element such that a user is required to obtain a valid

license to decrypt said selected data element;

distributing said selected data element and said software program to said user;

decrypting said selected data element during runtime of said software program upon
said user obtaining a valid license; and

erasing the decrypted said selected data element after said software program executes
correctly such that said selected data element is only available at runtime of said software

program and in the presence of said valid license.

2. A method as claimed in claim 1, wherein said data element is selected from the group
consisting of program data required for at least one of initialization and control of execution

of said software program, a proprietary algorithm, and at least one parameter.

3. A method as claimed in claim 1, wherein said data element is stored within a program

executable of said software program.

4, A method as claimed 1n claim 1, wherein said data element is stored as an external

dataset with respect to said software program.

5. A method as claimed 1n claim 4, wherein said external dataset is accessible locally

with respect to said user.

CA 02415334 2002-12-31

- 20 -
6. A method as claimed in claim 4, wherein said external dataset is accessible remotely
with respect to said user via a network.
7. A method as claimed in claim 4, further comprising the step of updating said selected

data element in said external dataset without changing the code of said software program.

8. A method as claimed in claim 1, wherein said decrypting step further comprises the
steps of:
receiving a user request for a key with which to decrypt said selected data element;
generating an activation code linked to said key; and

providing said activation code to said user.

9. A method as claimed 1n claim 8, wherein said activation code 1s locked to a hash of a

unique hardware identifier associated with said user’s computer.

10. A method as claimed 1n claim 1, wherein said distributing step comprises providing
an encoded serial number with said license to use said software program, and said decryption
step further comprises the steps of:

recelving a user request for a key with which to decrypt said selected data element:;

generating an activation code linked to said key; and

providing said activation code only to those users having an unactivated said serial

number.

11. A method as claimed in claim 1, wherein verification of said valid license causes at
least one of programmable switches and application values in said software program to be

selectively changed to create a sequence of states that are verified prior to ending operation of

said software program if a valid license is not obtained by said user.

CA 02415334 2002-12-31
21 -

12. A method as claimed in claim 1, wherein said software program 1s configured, upon
verification of said valid license, to quit in different places therein in accordance with a

plurality of conditions if said user does not obtain a valid license.

13. A method of protecting a software program from piracy comprising the steps of:

selecting at least one data element from said software program for encryption, said
data element affecting operation of said software program and comprising usable data that
supports any of usable, viewable and executable forms of content;

encrypting said selected data element such that a user is required to obtain a valid
license to decrypt said seclected data element;

distributing said selected data element and said software program to said user;

decrypting said selected data element during runtime of said software program upon
said user obtaining a valid license; and

operating said software program sub-optimally if no valid license is obtained by said

user and said selected data element is not decrypted.

14. A method as claimed 1n claim 13, further comprising the steps of:

hding the functiohality of said selected data element during runtime of said software
program by not providing an error message if said license is invalid; and

operating said software program such that said selected data element appears to be

decrypted but contains invalid data if said license is invalid.

15. A method of protecting a software program comprising the steps of:

bundling different functionalities in at least one software program that require
respective license terms such that they are subject to respective licenses:;

encrypting each of said functionalities;

providing said software program to a user with all of encrypted said functionalities;

and

CA 02415334 2002-12-31
00 .

decrypting and enabling each of said functionalities whenever said user obtains the

corresponding one of said licenses therefor.

16. A method as recited in claim 15, wherein said functionalities provide a range of
programmatic execution control ranging from coarse control of said software program to fine

control of a specific function provided by said software program.

17. A method as recited in claim 16, wherein said functionalities for said range of

programmatic execution control comprise different datasets stored in respective encrypted
buffers.

18. A method as recited in claim 17, wherein said respective encrypted buffers are each
provided with a unique instance tag as part of the cryptographic process to generate keys

therefor.

19. A method as recited in claim 15, wherein said functionalities provide a fully licensed

version of said software program and a trialware version of said software program.

20. A method as recited in claim 19, wherein said functionalities for said fully licensed

version and said trialware version comprises datasets stored in respective encrypted buffers.

21. A method as recited in claim 20, wherein said respective encrypted buffers are each
provided with a unique instance tag as part of the cryptographic process to generate keys

therefor.

22. A method as recited in claim 15, wherein said functionalities comprise a basic mode

of operation and at least one other mode of increased functionality.

CA 02415334 2002-12-31
- 23 .

23. A method as recited in claim 15, wherein said functionalities correspond to respective

ones of multiple versions of a data element associated with said software program.

24. A method as recited in claim 23, wherein said encrypting step comprises individually
encrypting each of said multiple versions of said data element with a key specific to a
different license, and said providing step further comprises the step of sending the different

said encrypted data elements to said user along with said software application.

25. A method as recited in claim 15, wherein at least one of said functionalities has a data

element which comprises usable data that supports any of usable, viewable and executable

forms of content.

CA 02415334 2002-12-31

| gaem

A2

o ~77

“Hdomia ey

>0 LY o wa

gl e i
“AINISEI o0y y
ANZUANGYA

LW Iy gy
AN D DY)

Ardwacsy
VLvg

o N T e W MY, N T YAy AN MM, TE VA 1. (8 At W A5 B 1 e b * 2 2

”Wmmmawmm%gxﬂmﬁmv;;w?-.m.y;,v_.v.\vvw.m,a.nwms---vﬂv.-..-.-.-..-w--w-- CeV e RS It AR deeeae, = e ey e L Sk e s ey ey AR ek fe e o mm e me e o e s .

NI e N QST R, A B N ST (o A b 0 WL 2 AN iy ST N M M,) = A A AN N NS T B XY

Define data 7
element st D
$

J

| rd
45 &

Include encrypted
data element in
software

Distribute software
to end users

Encrypt data T L
C element -License Key
—

CA 02415334 2002-12-31

Retrieve license | <Y
definition

Access encrypted
data element

Decrypt data

element

Required data is

| revealed

Software
application

\ A
Decrypted data

element is erased

after use

executes correctly

CA 02415334 2002-12-31

YV

License Key

q}b

Figure 3

Retrieve license
terms

A b= N amrla R gL 0, PRIV L) (AN SRS

Sttt

- vrimrre wre | -

CA 02415334 2002-12-31

Access encrypted
data element |~ &{o
-9
/_,.M
N
th:nﬁlftngzm No License Key Attempt to retrieve
Available license terms

decrypted

il

Required datais | 4,
hidden '

Software
application fails fo
execute correctly

Figure 4

VA AR T S A INTROANN A AR S i g e S e erE P Aeman siih - e y———— Y N o Ak P e b m ——

B A e e S ol VTR S0 Y TR TR+ ORI AN M AR A UM e 3 = == &

CA 02415334 2002-12-31

Trial licens
definition

09 107 oA jok Vi Yu ~ | A
// ..:......\\/ .- \lnihl boh.\ts.... k“!\\i... e e
. Data to be Data to be . Data o be Datato be
€ available under _Mowdm 1 available under u_mmwmm _m available under Mmmmﬁmowp available under *
tria license S license 1 __833 2 license 2A
. e/
4 Y \ A
Encrypt dala Encrypt data Encrypt data Encrypt data
I\ 1 \ & \ 7.5 N
| 7.2,
P R ———————
Include encrypted
data elements in
software ’ M\L

—9

Distribute software
to end users

— - ————, S S

YV P PAPAITE W e B AL Ay e 41 * ey FrnS e WP BT~ e, me s as ce .

T P B e O+ =y by f Ay, e g

C o LEDY

e,

R TR WS AN A w AT NS AT TRIWIY, A G I) YN A S £ o 1 CTRAR IO T A WAL LAY SR A S P TR AL i 1

AN Farr W Priakd 3 e Pray rh WA oy —— e e

CA 02415334 2002-12-31

| M 472
Access encrypt IJ o Search for
data m_ma instalied license

£ WYY T TYY lO[‘i

&u,(/ . N. W\i
, \ | \/\ Z&

/ Datatobe UmB to be Om"m o be Oma to be
Triaf license avatlable under available under gvailable under vailahle under
& . trial license license 1 license 2 \ M_omawm 2A

h 4

Decrypt data
. alement
T) assoctated with ,A,w\ [
license

\b"&

_ W s A A 4
Valid license :&/ e Required data is equirad data is

. cannot be aled

available dacrypted hidden rave

" N\ lblo

Decrypted data
slament is erased
after use

- s

Software
application
executes comrectly,

Softwara
application fails to
axecute corractly

3 4w mﬁmm

A g o g o e gl g oy g s s s w3, —p + e ss fe s ssmm s oseme * - semes see s o - O S —— ERg—— T . . R = mn =5 . . - I s mas -

AT AP Y I T ke o M e A B s s £ g W ey

T A kP 1 10 B B] i 8 P I VAR A Al e !

!

m

3¢FTw4--ﬂé

PUBLL § He2
CEatA]
AsnErm By

e

(1S EpanE
MAN Alrfe M&ZN'T

I’Q’

TR — T

1

» q/\;\l—

| SoFTwARe.

PuBListiere

(2

METLopp s

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

