
(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2019/07/10
(87) Date publication PCT/PCT Publication Date: 2020/01/16
(85) Entrée phase nationale/National Entry: 2020/10/06
(86) N° demande PCT/PCT Application No.: IB 2019/055864
(87) N° publication PCT/PCT Publication No.: 2020/012370
(30) Priorité/Priority: 2018/07/12 (PL PL426318)

(51) Cl.Int./Int.Cl. *B01J 31/22* (2006.01)
(71) Demandeur/Applicant:
APEIRON SYNTHESIS S.A., PL
(72) Inventeurs/Inventors:
GAWIN, RAFAL, PL;
KRAJCZY, PATRYK, PL;
GAWIN, ANNA, PL;
SKOWERSKI, KRZYSZTOF, PL
(74) Agent: PERLEY-ROBERTSON, HILL & MCDougall
LLP

(54) Titre : UTILISATION DE COMPLEXES DE RUTHENIUM N-CHELATANTS DANS LA REACTION DE METATHÈSE
(54) Title: USE OF N-CHELATING RUTHENIUM COMPLEXES IN THE METATHESIS REACTION

(57) Abrégé/Abstract:

The subject matter of the invention is the use of a ruthenium complex of the formula 1, wherein the individual substituents have meanings as indicated in the olefin metathesis reactions description, including a reaction selected from such as ring-closing metathesis (RCM), homometathesis (self-CM) or cross metathesis (CM).

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2020/012370 A1

(43) International Publication Date
16 January 2020 (16.01.2020)

(51) International Patent Classification:

B01J 31/22 (2006.01)

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(21) International Application Number:

PCT/IB2019/055864

(22) International Filing Date:

10 July 2019 (10.07.2019)

(25) Filing Language:

Polish

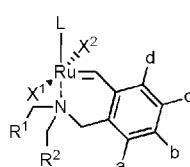
(26) Publication Language:

English

(30) Priority Data:

PL426318 12 July 2018 (12.07.2018) PL

(71) Applicant: APEIRON SYNTHESIS S.A. [PL/PL]; Dun-ska 9, 54-427 Wroclaw (PL).


(72) Inventors: GAWIN, Rafal; Krymska 3/1, 02-759 Warsza-wa (PL). KRAJCZY, Patryk; Pasternik 4/1, 48-250 Gi-ogowek (PL). GAWIN, Anna; Krymska 3/1, 02-759 Warszawa (PL). SKOWERSKI, Krzysztof; Stara 9, 87-330 Jablonowo Pomorskie (PL).

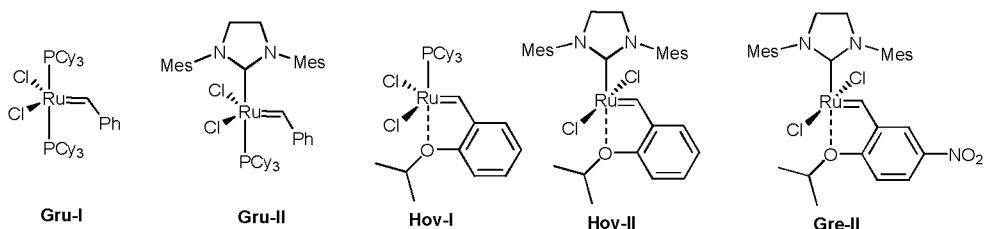
(74) Agent: AOMB POLSKA SP. Z O.O.; Emilii Plater 53, 21 floor, 00-113 Warszawa (PL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

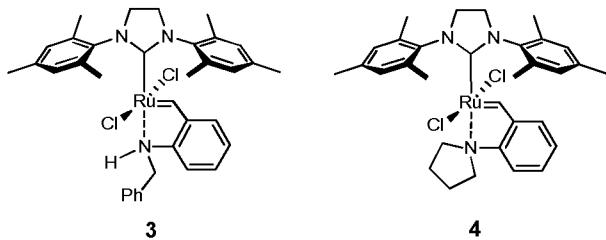
(54) Title: USE OF N-CHELATING RUTHENIUM COMPLEXES IN THE METATHESIS REACTION

(57) Abstract: The subject matter of the invention is the use of a ruthenium complex of the formula 1, wherein the individual substituents have meanings as indicated in the olefin metathesis reactions description, including a reaction selected from such as ring-closing metathesis (RCM), homometathesis (self-CM) or cross metathesis (CM).

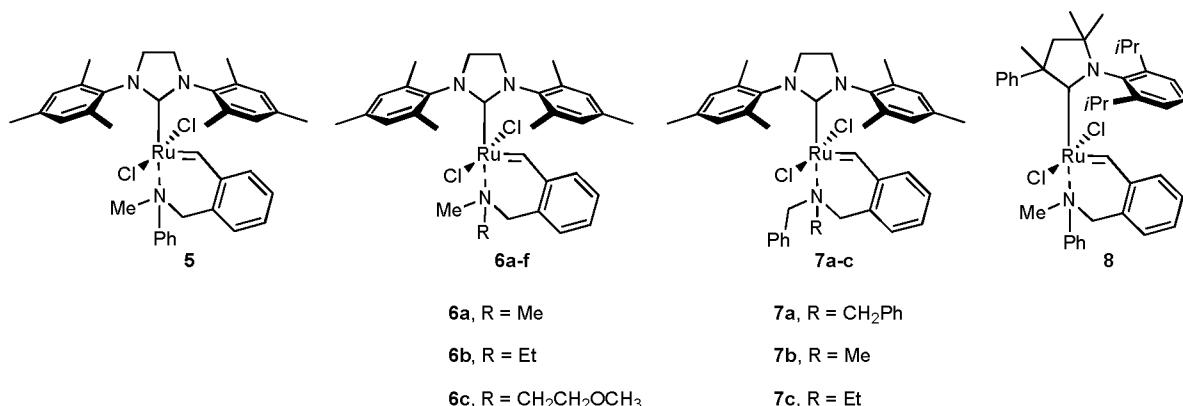

WO 2020/012370 A1

Use of *N*-chelating ruthenium complexes in the metathesis reaction

The invention relates to the use of *N*-chelating ruthenium complexes of the general formula 1 as catalysts and / or (pre)catalysts in the olefin metathesis reaction.


In recent years, significant progress has been made in application of olefin metathesis in organic synthesis [R. H. Grubbs (Editor), A. G. Wenzel (Editor), D. J. O'Leary (Editor), E. Khosravi (Editor),

5 *Handbook of Olefin Metathesis*, 2nd edition, 3 vol. 2015, John Wiley & Sons, Inc., 1608 pages]. Many catalysts are known in the prior art that have both high activity in various types of metathesis reactions and high tolerance for functional groups. By combining these features, metathesis catalysts are important in modern organic synthesis and in industry. The most widely described (pre)catalysts in the literature are Grubbs, Hoveyda, indenylidene type complexes, and more recently Bertrand type 10 catalysts having a carbene cycloalkylamine ligand (CAAC) [Grubbs et al. *Chem. Rev.* 2010, 110, 1746-1787; Nolan et al. *Chem. Commun.* 2014, 50, 10355-10375]. In other cases, most of the olefin metathesis catalyst structures are derived from the above-mentioned ruthenium complexes.



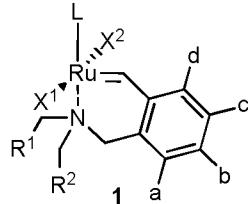
There are many examples of industrial applications of ruthenium complexes in which the use of fast 15 initiating (pre)catalysts is preferred. The rate of initiation turned out to be crucial in the synthesis of natural compounds, an example being the application of Gre-II catalyst: Shu, C., Zeng, X., Hao, M.-H., Wei, X., Yee, N. K., Busacca, C. A., Han, Z., Farina, V., Senanayake, Ch. H., *Org. Lett.* 2008, 10, 1303-1306; Winter, P., Hiller, W., Christmann, M., *Angew. Chem. Int. Ed.* 2012, 51, 3396-3400; Stellfeld, T., Bhatt, U., Kalesse, M., *Org. Lett.* 2004, 6, 87; Seiser, T., Kamenka, F., Cramer, N., *Ang. Chem. Int. Ed.* 2008, 47, 6483. Increasing the rate of Gre-II catalyst initiation was achieved by 20 introduction an electron withdrawing nitro group [WO 2004/035596A1]. The nitro substituent decreases the electron density on the ether oxygen atom. As a consequence, the Ru-O bond is weakened, which makes the Gre-II complex a fast initiator of the metathesis reaction.

Many catalysts have been described in the prior art, the modifications of which were intended to affect 25 (pre)catalyst activity by changing the electron density on a chelating heteroatom to ruthenium. Among these modifications, the benzylidene ligands having such atoms as: nitrogen, sulfur, selenium and phosphorus, which coordinate to ruthenium [Diesendruck, C. E., Tzur, E., Ben-Asuly, A., Goldberg, I., Straub, B. F., Lemcoff, N. G., *Inorg. Chem.* 2009, 48, 10819-10825], are described.

The most widely described are modifications in which the chelating oxygen atom has been replaced with nitrogen. Slugovc described complexes having the Schiff base in the benzylidene ligand [Slugovc, C., Butscher, D., Stelzer, F., Mereiter, K., *Organometallics* **2005**, *24*, 2255-2258]. Grela presented the structure of the N-pyridine ligand complex [Szadkowska, A., Gstrein, X., Burtscher, D., Jarzembska, K., Woźniak, K., Slugovc, C., Grela, K., *Organometallics* **2010**, *29*, 117-124] and a series of complexes having a secondary amine in the benzylidene ligand (3) [Żukowska, K., Szadkowska, A., Pazio, A., Woźniak, K., Grela, K., *Organometallics* **2012**, *31*, 462-469]. Another example is a complex having a ligand with a chelating nitrogen atom which alkyl substituents together with the nitrogen atom form a pyrrolidine ring (4) [Tzur, E., Szadkowska, A., Ben-Asuly, A., Makal, A., Goldberg, I., Woźniak, K., Grela, K., Lemcoff, N. G., *Chem. Eur. J.* **2010**, *16*, 8726-8737]. The (pre)catalysts cited above are examples of latent N-chelating complexes requiring an elevated temperature or addition of an acid, e.g. Lewis acid for activation. Their latency is caused by the high electron density on the nitrogen atom, which is associated with the strong interaction of Ru-N and slow initiation.

Also known in the prior art are latent *N*-heterocyclic (pre)catalysts having benzylidene ligands containing in the *ortho* position a group: $-\text{CH}_2\text{NR}_2$ or $-\text{CH}_2\text{NRR}'$ (5-7). This group forms a six-membered chelating ring to the ruthenium atom. The properties (latency) of these complexes can also be explained by the high electron density at the nitrogen atom, resulting in a strong Ru-N interaction.

20 These catalysts are described in patent applications *WO 2017/185324 A1* (5), *WO 2015/126279 A1* (6, 7) and a patent document *RU 2462308 C1* (6, 7). Catalysts of this type are used as initiators of the ROMP reaction (*EP 2452958 B1*). In *RU 2462308 C1* and *WO 2015/126279 A1 7a-c* complexes are described, as latent and useful in the DCPD metathesis polymerization reaction.

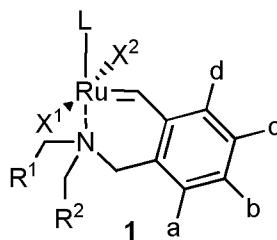

In addition, implementation of a cycloalkylamine carbene **8** (CAAC) in place of N-heterocyclic carbene is described (WO 2017/185324 A1). This catalyst was tested in the ethenolysis reaction and it was noted that even with this change requires chemical activation (addition of HSiCl_3).

The initiation rate of catalyst depends among others on the binding strength between Ru-N (or -Ru-another chelating heteroatom) in the benzylidene ligand. In the case of strong Ru-N interaction, the catalyst is initiating slowly (latent requires thermal or chemical activation) and is the most often used in 30 ROMP reactions. In catalysts **5-8**, a nitrogen atom (in the benzylidene ligand) strongly interacts with

ruthenium. The electron density on the nitrogen atom is increased by alkyl substituents. The electron density can be correlated with the change of basicity in a series of differently substituted amines [Hoefnagel, A. J., Hoefnagel, M. A., Wepster, B. M., *J. Org. Chem.* **1981** *46*, 4209-4211].

It has surprisingly been found that the (pre)catalysts represented by formula **1** are not latent catalysts

5 but exhibit high activity in olefin metathesis reactions.



In the light of the prior art, it is not obvious that the catalyst of formula **1**, which has at least one aryl substituent R¹ or R² in the benzylidene part, will have a high activity. This property is also contrary to the information contained in WO 2015/126279 A1. The introduction of an aryl group (R¹ and/or R²),

10 due to an insulating methylene group (between R¹ and/or R² and the nitrogen atom), does not significantly affect the reduction of the electron density on the nitrogen atom (as of the case with the latent(pre)catalysts known from the prior art (**8**)), which should consequently result in low (pre)catalyst **1** activity.

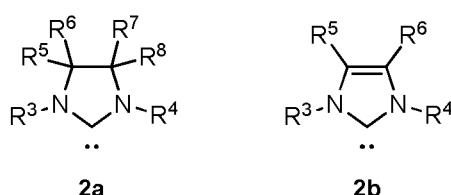
Complexes of formula **1** according to the invention are applicable in a wide range of reactions. Ring 15 closing metathesis(RCM), cross metathesis (CM) and homometathesis (self-CM) can be performed with good results. (Pre)catalysts of the general Formula **1** in metathesis reactions show much higher activity than complexes having alkyl substituents on the nitrogen atom (Examples I-IV). The complexes of formula **1** used in a small amount catalyze reactions in a wide range of concentrations and temperatures, which greatly facilitates the development of an efficient process. The above- 20 mentioned properties are desirable from the point of industrial application of ruthenium complexes as (pre)catalysts for the metathesis reaction.

Thus, the invention relates to the use of a compound represented by formula **1**

wherein:

25 X¹, X² independently represent an anionic ligand selected from such as a halogen atom, -OR, -SR, -C(C=O)R, where R represents C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, C₂-C₁₂ alkenyl, C₅-C₂₀ aryl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom;

30 R¹ represents a hydrogen atom or C₅-C₂₄ aryl, C₁-C₂₅ alkyl, C₄-C₂₅ heteroaryl, C₇-C₂₄ aralkyl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form acyclic system;

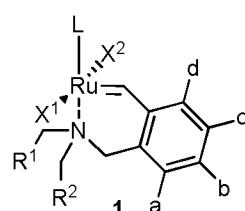

R^2 represents C_5 - C_{24} aryl, C_4 - C_{25} heteroaryl, C_7 - C_{24} aralkyl, the groups being optionally substituted with at least one C_1 - C_{12} alkyl, optionally C_1 - C_{12} perfluoroalkyl, optionally C_1 - C_{12} alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

a, b, c, d independently represent a hydrogen atom, a halogen atom, C_1 - C_{25} alkyl, C_1 - C_{25}

5 perfluoroalkyl, C_3 - C_7 cycloalkyl, C_1 - C_{25} alkoxy, C_5 - C_{24} aryl, C_7 - C_{24} aralkyl, C_5 - C_{25} heteroaryl, 3 to 12-membered heterocycle, wherein the alkyl groups can be linked to each other to form a ring; may also independently represent an alkoxy (- OR'), thioether (- SR'), nitro (- NO_2), cyano (- CN), amide (- $CONR'R''$), carboxyl and ester (- $COOR'$), sulfonic (- SO_2R'), sulfonamide (- $SO_2NR'R''$), formyl and ketone (- COR') group, wherein R' and R'' independently have the following meanings: C_1 - C_{25} alkyl,

10 C_1 - C_{25} perfluoroalkyl, C_5 - C_{24} aryl, C_5 - C_{25} heteroaryl, C_5 - C_{24} perfluoroaryl;

15 L represents a neutral ligand, such as a $P(R')_3$ group, wherein R' independently represents C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_5 - C_{24} aryl, C_7 - C_{24} aralkyl, C_5 - C_{24} perfluoroaryl, two R' substituents can be linked to each other to form a cycloalkyl ring containing a phosphorus atom in the ring, or L is independently selected from the group including the so-called N-heterocyclic carbene ligands of formula **2a** or **2b**:


wherein:

each R^3 and R^4 independently represent C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_5 - C_{20} aryl, or C_5 - C_{20} heteroaryl, which is optionally substituted with at least one C_1 - C_{12} alkyl, C_1 - C_{12} perfluoroalkyl, C_2 - C_{12} alkoxy or a halogen atom;

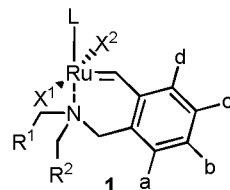
each R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} independently represent a hydrogen atom, C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_5 - C_{20} aryl, or C_5 - C_{20} heteroaryl, which is optionally substituted with at least one C_1 - C_{12} alkyl, C_1 - C_{12} perfluoroalkyl, C_1 - C_{12} alkoxy or a halogen atom, and R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} groups may be optionally interconnected to form a C_4 - C_{10} cyclic or a polycyclic C_4 - C_{12} system;

25 in olefin metathesis reactions including a reaction selected from such as ring-closing metathesis (RCM), homometathesis (self-CM) or cross-metathesis (CM).

Preferably, the compound is represented by formula **1**

wherein:

30 X^1 and X^2 represent halogen atoms;


L represents a $P(R')_3$ group, wherein R' represents C_3 - C_8 cycloalkyl or L represents a ligand of formula **2a** or **2b**, in which substituents R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} have meanings as described above;

R^1 represents a hydrogen atom or C_5 - C_{24} aryl, C_4 - C_{25} heteroaryl, C_7 - C_{24} aralkyl, which are optionally substituted with at least one C_1 - C_{12} alkyl, optionally C_1 - C_{12} perfluoroalkyl, optionally C_1 - C_{12} alkoxy, optionally a halogen atom, wherein the alkyl groups can be linked to each other to form a ring;

R^2 represents C_5 - C_{24} aryl, C_4 - C_{25} heteroaryl, which are optionally substituted with at least one C_1 - C_{12} alkyl, optionally C_1 - C_{12} perfluoroalkyl, optionally C_1 - C_{12} alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

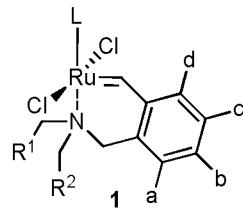
a , b , c , d independently represent a hydrogen atom, an alkoxy (- OR'), thioether (- SR'), nitro (- NO_2), cyano (- CN), amide (- $CONR'R''$), carboxyl and ester (- $COOR'$), sulfone (- SO_2R'), sulfonamide (- $SO_2NR'R''$), formyl and ketone (- COR') group, in which the substituents R' and R'' independently have the following meanings: C_1 - C_{25} alkyl, C_1 - C_{25} perfluoroalkyl, C_5 - C_{24} aryl, C_5 - C_{25} heteroaryl, C_5 - C_{24} perfluoroaryl.

Preferably, a compound is represented by formula **1**

wherein

X^1 and X^2 represent halogen atoms;

L represents $P(R')_3$ group, wherein R' represents C_3 - C_8 cycloalkyl; or


L represents a ligand of formula **2a**, wherein each R^3 and R^4 independently represent C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_5 - C_{20} aryl, which is optionally substituted with at least one C_1 - C_{12} alkyl, C_1 - C_{12} perfluoroalkyl, C_2 - C_{12} alkoxy, each R^5 , R^6 , R^7 , R^8 independently represents a hydrogen atom, C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_5 - C_{20} aryl, or C_5 - C_{20} heteroaryl, which is optionally substituted with at least one C_1 - C_{12} alkyl, C_1 - C_{12} perfluoroalkyl, C_1 - C_{12} alkoxy or a halogen atom, and R^5 , R^6 , R^7 , R^8 groups can optionally be interconnected to form a C_4 - C_{10} cyclic or C_4 - C_{12} polycyclic system;

R^1 represents a hydrogen atom or C_5 - C_{24} aryl, C_4 - C_{25} heteroaryl, which are optionally substituted with at least one C_1 - C_{12} alkyl, optionally C_1 - C_{12} perfluoroalkyl, optionally C_1 - C_{12} alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form acyclic system;

R^2 represents C_5 - C_{24} aryl, C_4 - C_{25} heteroaryl, which are optionally substituted with at least one C_1 - C_{12} alkyl, optionally C_1 - C_{12} perfluoroalkyl, optionally C_1 - C_{12} alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form acyclic system;

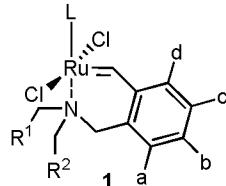
a , b , c , d independently represent a hydrogen atom, an alkoxy (- OR'), nitro (- NO_2), amide (- $CONR'R''$), ester (- $COOR'$), sulfone (- SO_2R'), sulfonamide (- $SO_2NR'R''$) group, in which the substituents R' and R'' independently have the following meanings: C_1 - C_{25} alkyl, C_5 - C_{24} aryl.

Preferably, a compound is represented by formula **1**

wherein

L represents $P(R')_3$ group, wherein R' represents C_3 - C_8 cycloalkyl; or

L represents a ligand of formula 2a, wherein each R^3 and R^4 independently represent C_5 - C_{20} aryl,


5 which is optionally substituted with at least one C_1 - C_{12} alkyl, and each R^5 , R^6 , R^7 , R^8 independently represents a hydrogen atom;

R^1 represents a hydrogen atom or C_5 - C_{24} aryl, C_4 - C_{24} heteroaryl, which are optionally substituted with at least one C_1 - C_{12} alkyl, optionally a halogen atom, wherein the alkyl groups can be interconnected to form acyclic system;

10 R^2 represents C_5 - C_{24} aryl or C_4 - C_{24} heteroaryl, which are optionally substituted with at least one C_1 - C_{12} alkyl, optionally a halogen atom, wherein the alkyl groups can be interconnected to form acyclic system;

a, b, c, d independently represent a hydrogen atom, an alkoxy group (- OR'), in which the substituent R' independently represents C_1 - C_{25} alkyl, C_5 - C_{24} aryl.

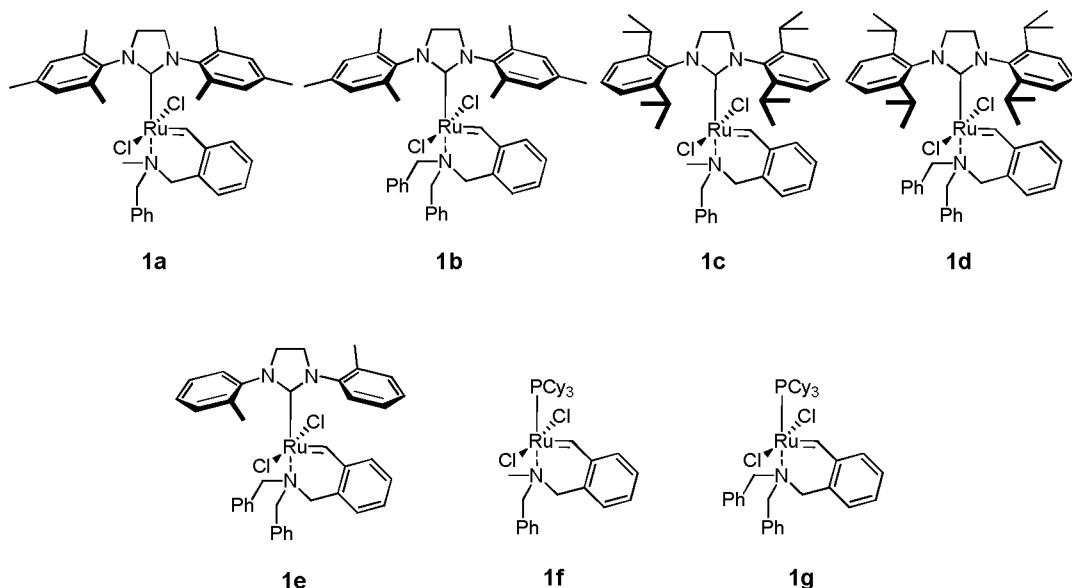
15 Preferably, a compound is represented by formula 1

wherein

L represents tricyclohexylphosphine; or

L represents a ligand of formula 2a, in which each R^3 and R^4 independently represent C_5 - C_{20} aryl,

20 which is optionally substituted with at least one C_1 - C_{12} alkyl, and each R^5 , R^6 , R^7 , R^8 independently represent a hydrogen atom;


R^1 represents a hydrogen atom, C_5 - C_{24} aryl or C_4 - C_{25} heteroaryl, which are optionally substituted with at least one a halogen atom;

R^2 represents C_5 - C_{24} aryl or C_4 - C_{25} heteroaryl, which are optionally substituted with at least one

25 halogen atom;

a, b, c, d independently represent a hydrogen atom, an alkoxy group (- OR'), wherein the substituent R' independently represents C_1 - C_{25} alkyl.

Preferably, the ruthenium compound of formula 1 has the structural formula selected from the following formulas 1a-1g;

Preferably, the reaction is carried out in an organic solvent such as toluene, benzene, mesitylene, dichloromethane, ethyl acetate, methyl acetate, tetrabutyl methyl ether, cyclopentyl methyl ether or without a solvent.

5 Preferably, the reaction is carried out at a temperature of from 0 to 150 °C.

Preferably, the reaction is carried out at a temperature of from 20 to 120 °C.

Preferably, the reaction is carried out from 1 minute to 24 hours.

Preferably, compound 1 is used in an amount not greater than 0,5 mol%.

10 Preferably, compound 1 is added to the reaction mixture in solid form and/or in the form of a solution in an organic solvent.

In the present description, the used terms have the following meanings. The undefined terms in this document have meanings that are given and understood by one of skill in the art in light of the best knowledge available, the present disclosure and the context of the description of the patent application. Unless otherwise stated, the following chemical terms conventions have been used in the 15 present description that have the indicated meanings as in the definitions below:

As used herein, the term „halogen atom” represents an element selected from F, Cl, Br, I.

The term "carbene" represents a particle containing an inert carbon atom with a valence number of 20 two and two unpaired valence electrons. The term "carbene" also includes carbene analogues in which the carbon atom is replaced with another chemical element such as boron, silicon, germanium, tin, lead, nitrogen, phosphorus, sulfur, selenium, tellurium.

The term "alkyl" refers to a saturated, linear, or branched hydrocarbon substituent with an indicated 25 number of carbon atoms. Examples of alkyl substituent are -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl, and -n-decyl. Representative branched -(C1-C10)alkyles include -isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, -neopentyl, -1-methylbutyl, -2-methylbutyl, -3-methylbutyl, -1, 1-dimethylpropyl, -1,2-dimethylpropyl, -1-methylpentyl, -2-methylpentyl, -3-methylpentyl, -4-methylpentyl, -1-ethylbutyl, -2-ethylbutyl, -3-ethylbutyl, -1,1-dimethylbutyl, -1,2-dimethylbutyl, -1,3-dimethylbutyl, -2,2-dimethylbutyl, -2,3-dimethylbutyl, -3,3-dimethylbutyl, -1-methylhexyl, -2-methylhexyl, -3-methylhexyl, -4-methylhexyl, -5-methylhexyl, -1,2-

dimethylpentyl, -1,3-dimethylpentyl, -1,2-dimethylhexyl, -1,3-dimethylhexyl, -3,3-dimethylhexyl, -1,2-dimethylheptyl, -1,3-dimethylheptyl and -3,3-dimethylheptyl, and the like.

The term "*alkoxy*" refers to an alkyl substituent as defined above linked through an oxygen atom.

The term "*perfluoroalkyl*" represents an alkyl group as defined above in which all hydrogen atoms have been replaced by the same or different halogen atoms.

The term "*cycloalkyl*" refers to a saturated mono- or polycyclic hydrocarbon substituent with an indicated number of carbon atoms. Examples of the cycloalkyl substituent are -cyclopropyl, -cyclobutyl, -cyclopentyl, -cyclohexyl, -cycloheptyl, cyclooctyl, -cyclononyl, -cyclodecyl, and the like.

The term "*alkenyl*" refers to a saturated, linear, or branched non-cyclic hydrocarbon substituent having an indicated number of carbon atoms and containing at least one carbon-carbon double bond.

Examples of the alkenyl substituent are -vinyl, -allyl, -1-butenyl, -2-butenyl, -isobutylenyl, -1-pentenyl, -2-pentenyl, -3-methyl-1-butenyl, -2-methyl-2-butenyl, -2,3-di-methyl-2-butenyl, -1-hexenyl, -2-hexenyl, -3-hexenyl, -1-heptenyl, -2-heptenyl, -3-heptenyl, -1-octenyl, -2-octenyl, -3-octenyl, -1-nonenyl, -2-nonenyl, -3-nonenyl, -1-decenyl, -2-decenyl, -3-decenyl and the like.

The term "*aryl*" refers to an aromatic mono- or polycyclic hydrocarbon substituent with an indicated number of carbon atoms. Examples of an aryl substituent are -phenyl, -tolyl, -silyl, -naphthyl, -2,4,6-trimethylphenyl, -2-fluorophenyl, -4-fluorophenyl, -2,4,6-trifluorophenyl, -2,6-difluorophenyl, -4-nitrophenyl and the like.

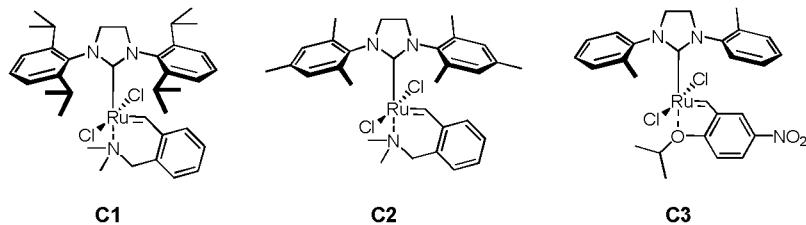
The term "*aralkyl*" refers to an alkyl substituent as defined above substituted with at least one aryl as defined above. Examples of aralkyl substituent are -benzyl, -diphenylmethyl, -triphenylmethyl and the like.

The term "*heteroaryl*" refers to an aromatic mono- or polycyclic hydrocarbon substituent with an indicated number of carbon atoms in which at least one carbon atom has been replaced by a heteroatom selected from O, N and S. Examples of a heteroaryl substituent are -furyl, -thienyl, -imidazolyl, -oxazolyl, -thiazolyl, -isoxazolyl, -triazolyl, -oxadiazolyl, -thiadiazolyl, -tetrazolyl, -pyridyl, -pyrimidyl, -triazinyl, -indolyl, -benzo[b]furyl, -benzo[b]thienyl, -indazolyl, -benzoimidazolyl, -azazolyl, -quinolyl, -isoquinolyl, -carbazolyl, and the like.

The term "*heterocycle*" refers to a saturated or partially unsaturated, mono- or polycyclic hydrocarbon substituent with an indicated number of carbon atoms in which at least one carbon atom has been replaced with a heteroatom selected from O, N and S. Examples of a heterocycle substituent are furyl, thiophenyl, pyrrolyl, oxazolyl, imidazolyl, thiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, triazinyl, pyrrolidinyl, pyrrolidinyl, hydantoinyl, oxiranyl, oxetanyl, tetrahydrofuran, tetrahydrothiophenyl, quinolinyl, isoquinolinyl, chromonyl, coumarinyl, indolyl, indolizinyl, benzo[b]furanyl, benzo[b]thiophenyl, indazolyl, purinyl, 4H-quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, carbazolyl, β -carbolinyl, and the like.

The term "*neutral ligand*" refers to a non-charged substituent capable of coordinating with a metallic center (a ruthenium atom). Examples of such ligands can be: amines, phosphines and their oxides, alkyl and aryl phosphites and phosphates, arsines and their oxides, ethers, alkyl and aryl sulphides, coordinated hydrocarbons, alkyl halides and aryl halides.

The term "*anionic ligand*" refers to a substituent capable of coordinating with a metallic center (a ruthenium atom) having a charge capable of partially or completely compensating the charge of the


metallic center. Examples of such ligands may be fluoride anions, chloride, bromide, iodide, cyanide, cyanate and thiocyanate anions, carboxylic acid anions, alcohol anions, phenol anions, thiols and thiophene anions, hydrocarbon anions with delocalized charge (e.g. cyclopentadiene), anions of (organo)sulfuric and (organo)phosphoric acids and their esters (such as e.g. anions of alkylsulfonic and arylsulphonic acids, anions of alkylphosphoric and arylphosphoric acids, anions of alkyl and aryl esters of sulfuric acid, anions of esters of alkyl and aryl phosphoric acids, anions of alkyl and aryl esters of alkyl phosphorus and arylphosphoric acids). Optionally the anion ligand may have L¹, L² and L³ groups, linked in the same way as the catechol anion, the acetylacetone anion, the salicylic aldehyde anion. Anion ligands (X¹, X²) as well as neutral ligands (L¹, L², L³) can be linked to each other to form multidentate ligands, e.g. a bidentate ligand (X¹-X²), a tridental ligand (X¹-X²-L¹), a tetrudentate ligand (X¹-X²-L¹-L²), a bidentate ligand (X¹-L¹), a tridental ligand (X¹-L¹-L²), a tetrudentate ligand (X¹-L¹-L²-L³), a bidentate ligand (L¹-L²), a tridental ligand (L¹-L²-L³). Examples of such ligands are: catechol anion, acetylacetone anion and salicylic aldehyde anions.

The term "heteroatom" represents an atom selected from the group of oxygen, sulfur, nitrogen, phosphorus and others.

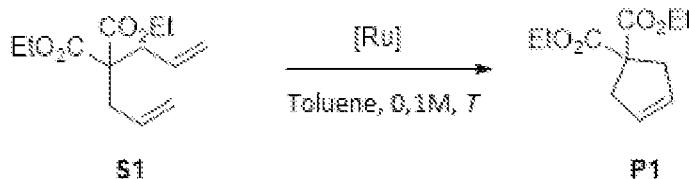
Embodiments of the invention

The following examples are only intended to illustrate the invention and to explain its particular aspects, without limitation, and should not be equated with its entire scope, which is defined in the appended claims. In the following examples, unless otherwise indicated, standard materials and methods used in the field were used or the manufacturers' recommendations for specific reagents and methods were followed.

The use of (pre)catalysts **1** was compared with (pre)catalysts **C1-C3**, structures of which are illustrated below:

Diethyl malonate (**S1**), ethyl undecenoate (**S3**), acrylonitrile and methyl stearate are commercially available compounds. Diethyl (2,2-dimethylallyl)malonate (**S2**) was prepared according to the procedure from literature, **S1** and **S3** were distilled under reduced pressure and stored over activated alumina. Acrylonitrile was dried with 4Å molecular sieves and deoxygenated with argon. All reactions were carried out under argon. Toluene was washed with citric acid, water, dried with 4Å molecular sieves and deoxidized with argon.

The composition of the reaction mixtures was examined by gas chromatography using a PerkinElmer Clarus 680 GC apparatus equipped with a GL Sciences InertCap® 5MS/NP capillary column.


The individual components of the reaction mixtures were identified by comparing the retention times with commercial standards or isolated from reaction mixtures for which the structure was confirmed by NMR.

Example I

Application example: RCM reaction of diethyl diallylmalonate (**S1**)

To a solution of **S1** (0.240 g, 1.0 mmol) in toluene (10 ml) at a designated temperature a determined amount of the corresponding (pre)catalyst in toluene (50 μ l) was added in one portion. At appropriate intervals, samples of the reaction mixture were taken, to which 3 drops of ethyl vinyl ether were added

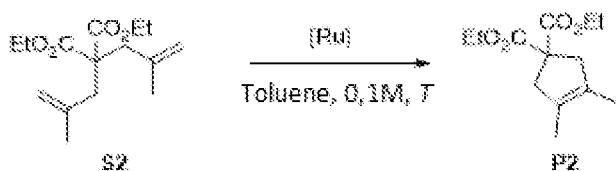
5 to deactivate the catalyst. The samples were analyzed by gas chromatography.

Table 1. Results of RCM reaction of diethyl diallylmalonate **S1** at 29°C using 0.1 mol% (pre)catalysts.

Time [min]	Conversion [%]	
	1b	1d
2	41	30
5	72	63
10	91	90
20	98	99
30	99	>99
60	>99	-

Table 2. Results of RCM reaction of diethyl diallylmalonate **S1** at 40°C using 0.1 mol% (pre)catalysts.

Time [min]	Conversion [%]				
	C2	1a	1b	1c	1d
2	-	-	75	-	41
5	-	-	95	-	88
10	-	-	>99	-	99
20	-	-	-	-	>99
30	-	-	-	-	-
60	<1	16	-	13	-


10 **Table 3.** Results of RCM reaction of diethyl diallylmalonate **S1** at 80°C using 0.1 mol% (pre)catalysts.

Time [min]	Conversion [%]						
	C2	1a	1b	C1	1c	1d	1g
2	-	20	>99	-	13	>99	34

5	-	51	-	-	18	-	66
10	-	77	-	-	30	-	90
20	13	88	-	19	43	-	99
30	-	91	-	-	47	-	>99
60	24	94	-	33	52	-	-

Example II

Application example: RCM reaction of (2,2-dimethylallyl) malonate (**S2**)

5 To a solution of **S2** (0.240 g, 1.0 mmol) in toluene (10 ml) at a designated temperature a determined amount of the corresponding (pre)catalyst in toluene (50 μ l) was added in one portion. At the appropriate time intervals, samples of the reaction mixture were taken, to which 3 drops of ethyl vinyl ether were added to deactivate the catalyst. The samples were analyzed by gas chromatography.

Table 4. Results of RCM reaction of (2,2-dimethylallyl) malonate (**S2**) at 80°C using 0.5 mol% (pre)catalysts.

Time [min]	Conversion [%]	
	C3	1e
30	91	93
60	93	94

Table 5. Results of RCM reaction of (2,2-dimethylallyl) malonate (**S2**) at 100°C using 0.5 mol% (pre)catalysts.

Time [min]	Conversion [%]	
	C3	1e
30	88	96
60	89	96

15 Example III

Application example: RCM reaction of acrylonitrile with ethyl undecanoate (**S3**)

To a solution of **S3** (1.062 g, 5.0 mmol, 1 molar equivalent), acrylonitrile (0.655 mL, 10.0 mmol, 2 molar equivalents) and methyl stearate (internal standard) in toluene (8.3 mL) at 85°C under argon, a

solution of the appropriate (pre)catalyst (100 ppm) in toluene (50 μ l) was added in one portion. The reaction was stirred for 1 hour. A stream of argon was passed through the solution during the reaction. A sample was taken, into which 3 drops of ethyl vinyl ether were added to deactivate the catalyst. The sample was analyzed by gas chromatography.

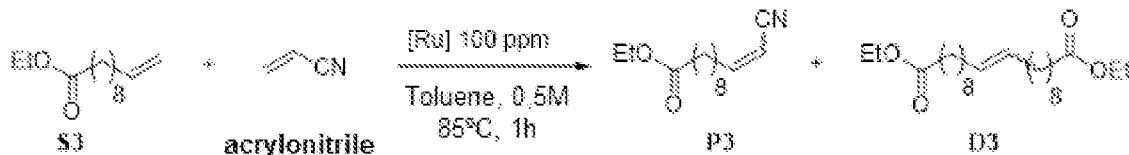


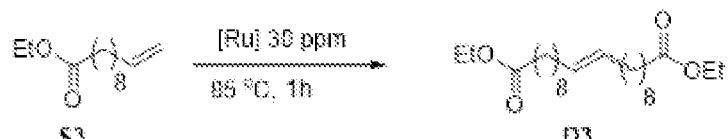
Table 6. Results of CM reaction of acrylonitrile with **S3**.

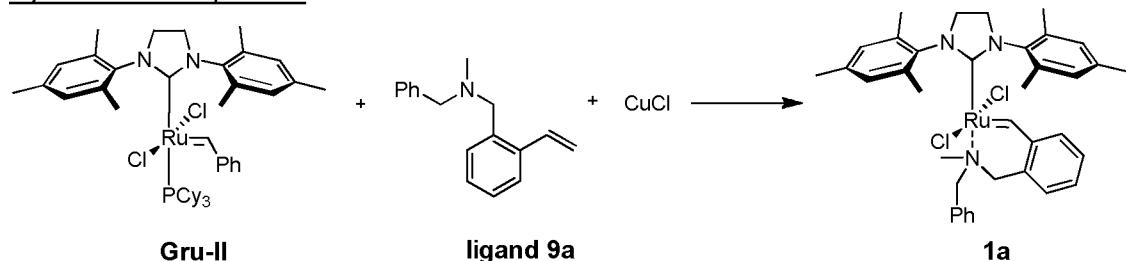
(pre)catalyst [Ru]	Conversion [%]	P3 [%]	D3 [%]	Selectivity towards P3 [%]
1a	34	32	2	94
1b	26	24	2	92
1c	55	46	9	84
1d	44	37	7	84
C2	17	16	1	94

Example IV

Application example: homometathesis of ethyl undecenoate (**S3**)

10 To **S3** (3.00 g, 14.13 mmol) and methyl stearate (internal standard) at 85°C under argon a solution of the appropriate (pre)catalyst (30 ppm) in toluene (50 μ l) was added in one portion. The reaction was stirred for 1 hour. A stream of argon was passed through the solution during the reaction. A sample was taken, into which 3 drops of ethyl vinyl ether were added to deactivate the catalyst. The sample was analyzed by gas chromatography.




Table 7. Results of homodimerization reaction of **S3**.

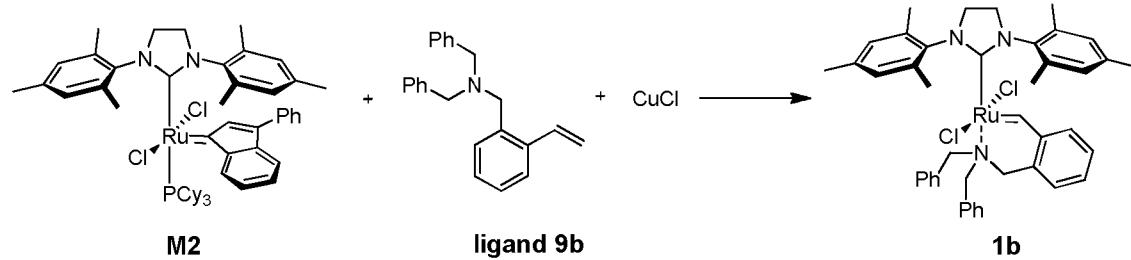
(pre)catalyst [Ru]	Conversion [%]	D3 [%]	Selectivity towards D3 [%]
1a	99	67	68
1b	81	55	68
1c	98	72	74
1d	96	65	68
C2	76	52	69

The **C1-C2** (pre)catalysts known in the state of the art initiate the metathesis reaction of **S3** without the addition of an activator, while their activity is significantly lower than (pre)catalysts **1a-d**.

Example V

5 Synthesis of complex **1a**.

To the **Gru-II** complex (2.000 g, 2.36 mmol, 1 molar equivalent) dry deoxygenated toluene (23 ml), benzylidene ligand **9a** (0.615 g, 2.59 mmol, 1.1 molar equivalent) and CuCl (0.350 g, 3.53 mmol, 1.2 molar equivalent) was added under argon. The reaction was stirred for 20 minutes at 55°C. Then was
 10 cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The crude product was isolated using column chromatography on silica gel (eluent: ethyl acetate/cyclohexane 2: 98→1: 9). The green fraction was collected and concentrated to dryness. The residue was dissolved in methylene chloride and excess of heptane was added. Methylene chloride was slowly removed under reduced pressure.
 15 The resulting precipitate was filtered and washed with cold heptane to give a green crystalline solid – (pre)catalyst **1a** (1.340 g, 81%).


¹H NMR (CD₂Cl₂, 600 MHz): δ = 18.70 (s, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.31-7.23 (m, 3H), 7.19 (t, J = 7.4 Hz, 1H), 7.05 (br s, 4H), 6.99 (br s, 2H), 6.90 (d, J = 7.5 Hz, 1H), 6.74 (d, J = 7.3 Hz, 1H), 4.10 (s, 4H), 3.90-3.00 (br m, 3H), 2.90-2.00 (br m, 19H), 1.73 (s, 3H).

20 **¹³C NMR (CD₂Cl₂, 150 MHz):** δ = 313.4, 313.3, 213.4, 148.9, 139.0, 134.0, 132.6, 132.5, 131.6, 129.8, 129.1, 129.0, 128.4, 128.3, 127.3, 60.0, 43.1, 32.4, 29.6, 23.3, 21.4, 14.4.

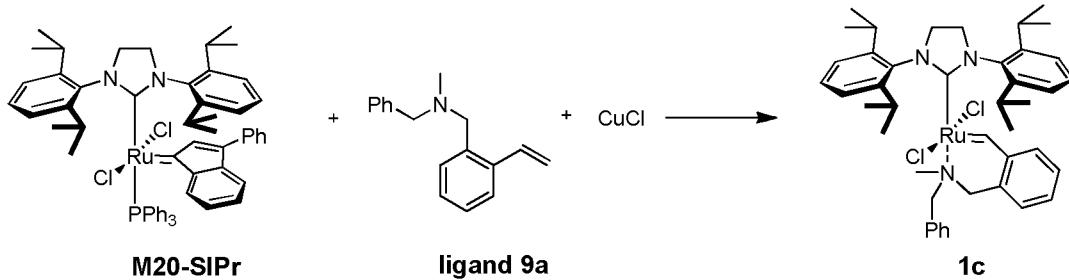
HRMS: ESI was calculated for $C_{37}H_{43}N_3Ru$ $[M-2Cl]^{2+}$: 315.6250; found: 315.6247. (dimer)

Example VI

25 Synthesis of complex 1

To the **M2** complex (1.25 g, 2.36 mmol, 1 molar equivalent) dry deoxygenated toluene (13 ml), benzylidene ligand **9b** (0.495 g, 1.58 mmol, 1.2 molar equivalent) and CuCl (0.183 g, 1.84 mmol, 1.4

molar equivalent) was added under argon. The reaction was stirred for 30 minutes at 70°C. Then was cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The crude product was isolated using column chromatography on silica gel (eluent: ethyl acetate/cyclohexane 2: 98→1: 9). The green fraction was collected and concentrated to dryness. The residue was dissolved in methylene chloride and excess of heptane was added. Methylene chloride was slowly removed under reduced pressure. The resulting precipitate was filtered and washed with cold heptane to give a green crystalline solid - (pre)catalyst **1b** (0.490 g, 48%).

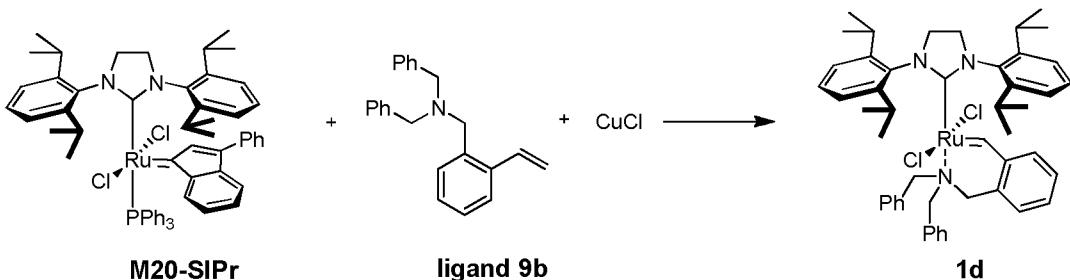

¹H NMR (CD₂Cl₂, 600 MHz): δ = 18.61 (s, 1H), 7.60-6.30 (m, 18H), 4.60-1.50 (m, 28H).

¹³C NMR (CD₂Cl₂, 150 MHz): δ = 315.3, 213.2, 149.5, 139.0, 135.4, 134.6, 132.3, 131.0, 129.9, 129.1, 127.9, 127.8, 126.1, 58.8, 34.7, 22.9, 21.3, 14.4.

HRMS: ESI was calculated for C₄₃H₄₇N₃ClRu [M-Cl]⁺: 742.2502; found: 742.2493.

Example VII

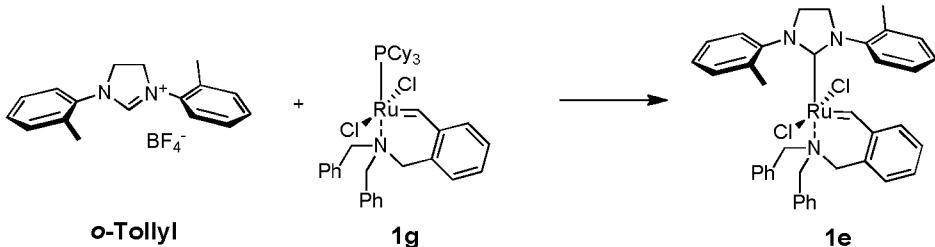
15 Synthesis of complex **1c**


To the **M20-SIPr** complex (2.00 g, 1.97 mmol, 1 molar equivalent) dry deoxygenated toluene (19 ml), benzylidene ligand **9a** (0.468 g, 1.97 mmol, 1.0 molar equivalent) and CuCl (0.293 g, 2.96 mmol, 1.5 molar equivalent) was added under argon. The reaction was stirred for 30 minutes at 80°C. Then was cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The crude product was isolated using column chromatography on silica gel (eluent: ethyl acetate/cyclohexane 2: 98→1: 9). The green fraction was collected and concentrated to dryness. The residue was dissolved in methylene chloride and excess of heptane was added. Methylene chloride was slowly removed under reduced pressure. The resulting precipitate was filtered and washed with cold heptane to give a green crystalline solid - (pre)catalyst **1c** (0.470 g, 30%).

¹H NMR (CD₂Cl₂, 600 MHz): δ = 18.61 (s, 1H), 7.70-6.70 (m, 14H), 6.57 (d, J = 7.7 Hz, 1H), 4.80-2.30 (br m, 11H), 2.20-0.20 (br m, 28H).

¹³C NMR (CD₂Cl₂, 150 MHz): δ = 307.0, 215.5, 149.6, 148.1, 133.9, 132.7, 131.5, 129.9, 128.9, 128.7, 128.4, 128.3, 127.5, 124.9, 60.1, 55.1, 43.6, 29.2, 27.0, 23.9.

HRMS: ESI was calculated for C₄₅H₅₈N₄ClRu [M-Cl+CH₃CN]⁺: 791.3397; found: 791.3391.


Example VIII

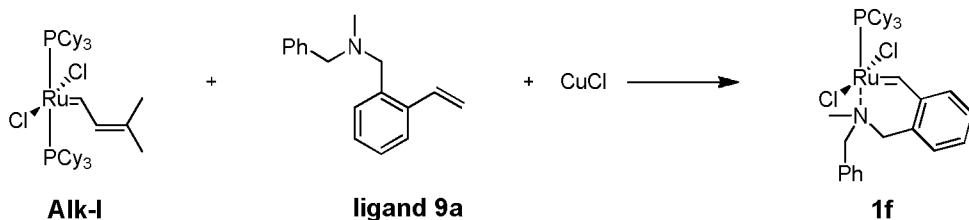
Synthesis of complex 1d

To the **M20-SIPr** complex (0.500 g, 0.49 mmol, 1 molar equivalent) dry deoxygenated toluene (5 mL), benzylidene ligand **9b** (0.185 g, 0.59 mmol, 1.2 molar equivalent) and CuCl (0.059 g, 0.59 mmol, 1.2 molar equivalent) was added under argon. The reaction was stirred for 20 minutes at 60°C. It was cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The crude product was isolated using column chromatography on silica gel (eluent: ethyl acetate/cyclohexane 2: 98→1: 9). The green fraction was collected and concentrated to dryness. The residue was dissolved in methylene chloride and excess of heptane was added. Methylene chloride was slowly removed under reduced pressure. The resulting precipitate was filtered and washed with cold heptane to give a green crystalline solid - (pre)catalyst **1d** (0.083 g, 20%).

¹H NMR (CD₂Cl₂, 600 MHz): δ = 18.33 (s, 1H), 7.80-6.95 (m, 12H), 6.95-6.30 (m, 7H), 6.05 (d, J = 7.7 Hz, 1H), 4.60-2.60 (br m, 14H), 2.0-0.20 (br m, 24H).

¹³C NMR (CD₂Cl₂, 150 MHz): δ = 311.0, 215.6, 148.6, 135.9, 132.8, 132.6, 130.0, 129.6, 128.6, 127.4, 127.4, 126.9, 126.4, 124.4, 62.2, 59.3, 57.4, 55.7, 32.4, 29.6, 27.8, 26.4, 23.7, 23.3, 14.4.

Example IXSynthesis of complex 1e


To the **o-Tollyl** compound (0.300 g, 1.04 mmol, 1.5 molar equivalent) dry deoxygenated toluene (5 mL) was added, placed in an oil bath heated to 45°C and then LiHMDS (1 mL, 1.04 mmol, 1.5 molar equivalent) was added. After 5 minutes of reaction, **1g** (0.522 g, 0.69 mmol, 1 molar equivalent) and CuCl (0.103 g, 1.04 mmol, 1.5 molar equivalent) were added under argon. The reaction was stirred for 20 minutes at 45°C. It was cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The crude product was isolated using column chromatography on silica gel (eluent: ethyl acetate/cyclohexane 2: 98→1: 9). The green fraction was collected and concentrated to dryness. The residue was dissolved in methylene chloride and excess of heptane was added. Methylene chloride was slowly removed under

reduced pressure. The resulting precipitate was filtered and washed with cold heptane to give a green crystalline solid - (pre)catalyst **1e** (0.274 g, 55%).

ESI was calculated for $C_{39}H_{39}N_3ClRu$ $[M-Cl]^+$: 686.1878; found: 686.1884.

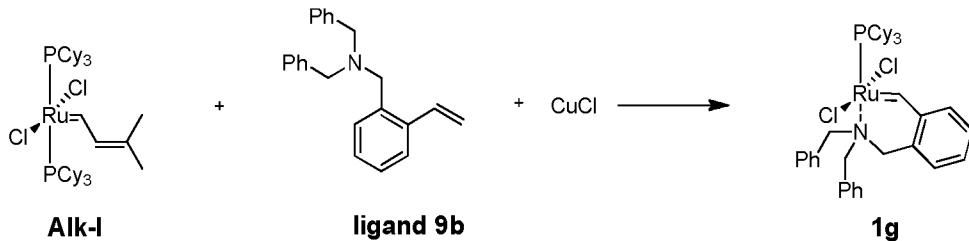
Synthesis of complex **1f**

5

To the **Alk-I** complex (1.00 g, 1.25 mmol, 1 molar equivalent) dry deoxygenated methylene chloride (12 ml), benzylidene ligand **9a** (0.356 g, 1.50 mmol, 1.2 molar equivalent) and CuCl (0.148 g, 1.50 mmol, 1.2 molar equivalent) was added under argon. The reaction was stirred for 20 minutes at 35°C.

10 It was cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The residue was dissolved in methylene chloride and excess methanol was added. Methylene chloride was slowly removed under reduced pressure. The resulting precipitate was filtered and washed with cold methanol to give a green crystalline solid - (pre)catalyst **1f** (0.592 g, 70%).

15 **¹H NMR** (CD_2Cl_2 , 600 MHz): δ = 19.15 (s, 1H), 7.90-6.70 (m, 9H), 4.45-4.05 (m, 2H), 2.40-2.26 (m, 3H), 2.12-1.90 (m, 8H), 1.88-1.58 (m, 16H), 1.36-1.16 (m, 11H).


¹³C NMR (CD_2Cl_2 , 150 MHz): δ = 295.5, 148.2, 134.3, 133.2, 132.8, 132.4, 129.9, 129.1, 128.7, 128.6, 126.5, 63.1, 43.8, 35.2 (d, J = 20.3 Hz), 30.7, 28.5 (d, J = 10.0 Hz), 27.0, 26.9.

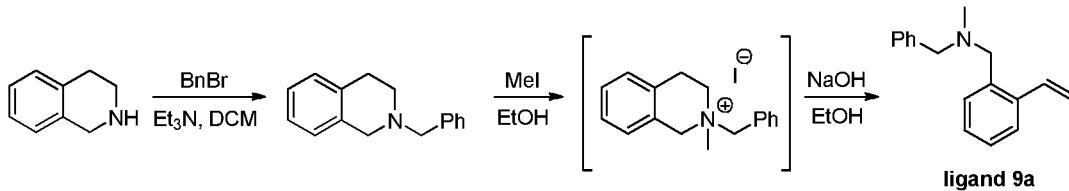
³¹P NMR (CD_2Cl_2 , 243 MHz): δ = 35.6.

20

Example XI

Synthesis of complex **1g**

To the **Alk-I** complex (1.00 g, 1.25 mmol, 1 molar equivalent) dry deoxygenated methylene chloride (12 ml), benzylidene ligand **9b** (0.470 g, 1.50 mmol, 1.2 molar equivalent) and CuCl (0.148 g, 1.50 mmol, 1.2 molar equivalent) was added under argon. The reaction was stirred for 20 minutes at 35°C. It was cooled to room temperature and concentrated to dryness. The residue was dissolved in ethyl acetate, filtered through a pad of Celite and concentrated to dryness. The residue was dissolved in methylene chloride and excess methanol was added. Methylene chloride was slowly removed under reduced pressure. The resulting precipitate was filtered and washed with cold methanol to give a green crystalline solid - (pre)catalyst **1g** (0.592 g, 63%).


¹H NMR (CD₂Cl₂, 600 MHz): δ = 19.14 (d, J = 10.2 Hz, 1H), 8.00-6.80 (m, 14H), 4.33 (d, J = 14.0 Hz, 2H), 4.20-2.90 (br m, 2H), 2.39-2.26 (m, 3H), 2.05-1.60 (m, 22H), 1.38-1.16 (m, 10H).

¹³C NMR (CD₂Cl₂, 150 MHz): δ = 297.7, 148.9, 134.6, 133.0, 132.7, 129.6, 129.2, 128.6, 126.6, 60.2, 34.8 (d, J = 20.3 Hz), 30.2, 28.5 (d, J = 9.8 Hz), 27.0.

5 ³¹P NMR (CD₂Cl₂, 243 MHz): δ = 34.5.

Example XII

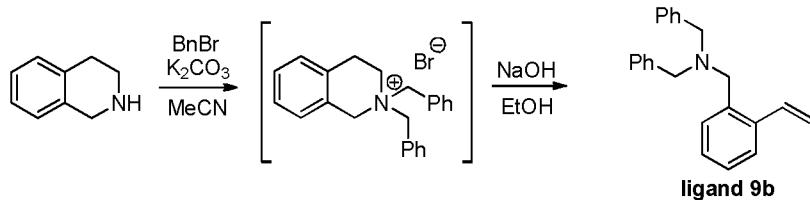
Synthesis of ligand 9a

10 To the solution of 1,2,3,4-tetrahydroisoquinoline (26.600 g, 200.0 mmol, 2 molar equivalents) and triethylamine (10.120 g, 100.0 mmol, 1 molar equivalent) in methylene chloride (500 ml) cooled to 0°C benzyl bromide (17.100 g, 100.0 mmol, 1 molar equivalent) was added dropwise for 10 minutes. [The mixture] was slowly warmed to room temperature and stirred overnight. It was washed with water and dried over Na₂SO₄. It was filtered and evaporated. It was distilled under reduced pressure. The product was collected in a fraction with a boiling point of 126-132°C at a pressure of 1.1x10⁻² mbar (colorless oil, 18.470 g, 83%).

15 ¹H NMR (CDCl₃, 600 MHz): δ = 7.49-7.45 (m, 2H), 7.43-7.38 (m, 2H), 7.36-7.32 (m, 1H), 7.21-7.14 (m, 3H), 7.06-7.03 (m, 1H), 3.76 (s, 2H), 3.71 (s, 2H), 2.97 (t, J = 5.9 Hz, 2H), 2.82 (t, J = 5.9 Hz, 2H).

20 ¹³C NMR (CDCl₃, 150 MHz): δ = 138.4, 134.9, 134.3, 129.0, 128.6, 128.2, 127.0, 126.5, 126.0, 125.5,

25 62.7, 56.1, 50.6, 29.3.


HRMS: ESI was calculated for C₁₆H₁₈N [M+H]⁺: 224.1434; found: 224.1441.

To the amine, obtained in the previous step, (12.946 g, 58.0 mmol, 1 molar equivalent) in ethanol (96%, 150 ml) methyl iodide (16.460 g, 116.0 mmol, 2 molar equivalents) was added. It was stirred at 35°C overnight. The excess of methyl iodide was evaporated under reduced pressure. NaOH (3.480 g, 87.0 mmol, 1.5 molar equivalents) was added. It was heated in reflux with condenser vigorously stirring overnight. It was cooled and concentrated to dryness. The residue was dissolved in methylene chloride, washed with water and dried over Na₂SO₄. Filtered and concentrate to dryness. The crude product was filtered through a thin pad of silica gel (eluent: ethyl acetate/cyclohexane 5:95). Concentrated to dryness to give a colorless oil - ligand 9a (12.711 g, 92%).

30 ¹H NMR (CDCl₃, 600 MHz): δ = 7.53 (dd, J = 7.5; 1.6 Hz, 1H), 7.35-7.27 (m, 5H), 7.26-7.19 (m, 3H), 7.17 (dd, J = 17.5; 10.9 Hz, 1H), 5.65 (dd, J = 17.6; 1.5 Hz, 1H), 5.26 (dd, J = 11.0; 1.5 Hz, 1H), 3.55 (s, 2H), 3.51 (s, 2H), 2.14 (s, 3H).

¹³C NMR (CDCl₃, 150 MHz): δ = 139.4, 137.7, 136.2, 134.9, 130.4, 129.0, 128.1, 127.3, 126.9, 125.6, 114.8, 62.1, 60.0, 42.0.

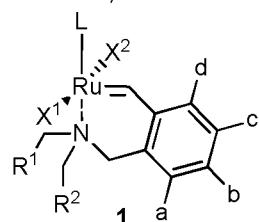
35 HRMS: ESI was calculated for C₁₇H₂₀N [M+H]⁺: 238.1590; found: 238.1596.

Example XIIIPreparation of ligand 9b

To a solution of 1,2,3,4-tetrahydroisoquinoline (1.332 g, 10.0 mmol, 1 molar equivalent) and benzyl

5 bromide (3.590 g, 21.0 mmol, 2.1 molar equivalents) in acetonitrile (100 mL) was added K_2CO_3 (2.073 g, 15.0 mmol, 1.5 molar equivalents). It was heated under reflux with condenser vigorously stirring for 4 hours. It was cooled, filtered and concentrated to dryness. The crude ammonium salt was dissolved in methylene chloride and excess ethyl acetate was added. Methylene chloride was slowly evaporated under reduced pressure. The precipitated product was filtered and washed with ethyl acetate. The ammonium salt was obtained as a white crystalline solid (3.880 g, 98%). The ammonium salt obtained in the previous step was dissolved in ethanol (96%, 50 ml) and NaOH (0.590 g, 14.8 mmol, 1.5 molar equivalent) was added. It was heated in reflux with stirring for 2 hours. The mixture was cooled and methanol was evaporated, yielding a yellow oil. It was dissolved in methylene chloride, washed with water. It was dried over Na_2SO_4 , filtered and concentrated to dryness to give a

10 slightly yellow oil (2.605 g, 84%).


15 1H NMR ($CDCl_3$, 600 MHz): δ = 7.56-7.52 (m, 1H), 7.50-7.46 (m, 1H), 7.43-7.39 (m, 4H), 7.38-7.34 (m, 4H), 7.31-7.25 (m, 4H), 7.05 (dd, J = 17.4; 10.9 Hz, 1H), 5.64 (dd, J = 17.4; 1.6 Hz, 1H), 5.25 (dd, J = 10.9; 1.6 Hz, 1H), 3.64 (s, 2H), 3.57 (s, 4H).

20 ^{13}C NMR ($CDCl_3$, 150 MHz): δ = 139.4, 137.6, 136.4, 135.1, 130.3, 129.0, 128.1, 127.4, 127.2, 126.9,

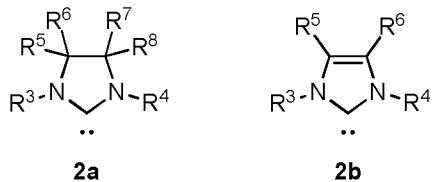
125.6, 114.5, 58.2, 56.1, 26.9.

Claims

1. The use of a ruthenium complex of formula 1,

wherein:

X¹, X² independently represent an anionic ligand selected from halogen atom, -OR, -SR, -C(C=O)R, where R represents C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, C₂-C₁₂ alkenyl, C₅-C₂₀ aryl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom;

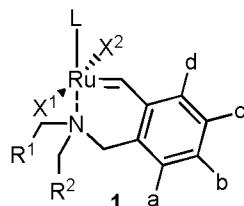

R¹ represents a hydrogen atom or C₅-C₂₄ aryl, C₁-C₂₅ alkyl, C₄-C₂₅ heteroaryl, C₇-C₂₄ aralkyl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom, wherein the alkyl groups can be linked to each other to form a ring;

R² represents C₅-C₂₄ aryl, C₄-C₂₅ heteroaryl, C₇-C₂₄ aralkyl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

a, b, c, d independently represent a hydrogen atom, a halogen atom, C₁-C₂₅ alkyl, C₁-C₂₅ perfluoroalkyl, C₃-C₇ cycloalkyl, C₁-C₂₅ alkoxy, C₅-C₂₄ aryl, C₇-C₂₄ aralkyl, C₅-C₂₅ heteroaryl, 3-12-membered heterocycle, wherein the alkyl groups can be linked to each other to form a ring; can also independently represent an alkoxy group (-OR'), thioether (-SR'), nitro (-NO₂), cyano (-CN), amide (-CONR'R''), carboxyl and ester (-COOR'), sulfone (-SO₂R'), sulfonamide (-SO₂NR'R''), formyl and ketone (-COR'), in which the substituents R' and R'' independently have the following meanings: C₁-C₂₅ alkyl, C₁-C₂₅ perfluoroalkyl, C₅-C₂₄ aryl, C₅-C₂₅ heteroaryl, C₅-C₂₄ perfluoroaryl;

L represents a neutral ligand, such as a P(R')₃ group, in which R' independently represents C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₅-C₂₄ aryl, C₇-C₂₄ aralkyl, C₅-C₂₄ perfluoroaryl, two substituents R' can be interconnected to form a cycloalkyl ring containing a phosphorus atom in the ring,

or L is selected independently from the group including the so-called N-heterocyclic carbene ligands of the formula 2a or 2b:


wherein:

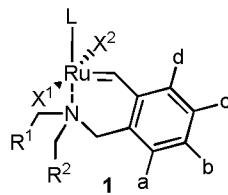
each R^3 and R^4 independently represent C_1-C_{12} alkyl, C_3-C_{12} cycloalkyl, C_5-C_{20} aryl, or C_5-C_{20} heteroaryl, which is optionally substituted with at least one C_1-C_{12} alkyl, C_1-C_{12} perfluoroalkyl, C_2-C_{12} alkoxy or a halogen atom;

each R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ independently represents a hydrogen atom, C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, C₅-C₂₀ aryl, or C₅-C₂₀ heteroaryl, which is optionally substituted with at least one C₁-C₁₂ alkyl, C₁-C₁₂ perfluoroalkyl, C₁-C₁₂ alkoxy or a halogen atom, and R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰ groups can be optionally interconnected to form a C₄-C₁₀ cyclic or C₄-C₁₂ polycyclic system;

in olefin metathesis reactions including a reaction selected from such as ring-closing metathesis (RCM), homometathesis (self-CM) or cross metathesis (CM).

2. The use according to claim 1, in which in the formula 1

X^1 and X^2 represent halogen atoms;


L represents a $P(R')_3$ group, where R' represents C_3-C_8 cycloalkyl or L represents a ligand of formula **2a** or **2b**, in which substituents $R^3, R^4, R^5, R^6, R^7, R^8, R^9, R^{10}$ are as defined above;

R¹ represents a hydrogen atom or C₅-C₂₄ aryl, C₄-C₂₅ heteroaryl, C₇-C₂₄ aralkyl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

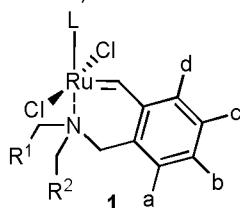
R^2 represents C_5-C_{24} aryl, C_4-C_{25} heteroaryl, which are optionally substituted with at least one C_1-C_{12} alkyl, optionally C_1-C_{12} perfluoroalkyl, optionally C_1-C_{12} alkoxy, optionally a halogen atom, wherein the alkyl groups can be linked to each other to form a ring;

a, b, c, d independently represent a hydrogen atom, an alkoxy (-OR'), thioether (-SR'), nitro (-NO₂), cyano (-CN), amide (-CONR'R''), carboxyl and ester (-COOR'), sulfone (-SO₂R'), sulfonamide (-SO₂NR'R''), formyl and ketone (-COR') group, where the substituents R' and R'' independently have the following meanings: C₁-C₂₅ alkyl, C₁-C₂₅ perfluoroalkyl, C₅-C₂₄ aryl, C₅-C₂₅ heteroaryl, C₅-C₂₄ perfluoroaryl.

3. The use according to claim 1 or 2, wherein in the formula 1

X¹ and X² represent halogen atoms;

represents a P(R')₃ group, in which R' represents C₃-C₈ cycloalkyl; or


L represents a ligand of formula 2a, in which each R³ and R⁴ independently represent C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, C₅-C₂₀ aryl, which is optionally substituted with at least one C₁-C₁₂ alkyl, C₁-C₁₂ perfluoroalkyl, C₂-C₁₂ alkoxy, each R⁵, R⁶, R⁷, R⁸ independently represents a hydrogen atom, C₁-C₁₂ alkyl, C₃-C₁₂ cycloalkyl, C₅-C₂₀ aryl, or C₅-C₂₀ heteroaryl, which is optionally substituted with at least one C₁-C₁₂ alkyl, C₁-C₁₂ perfluoroalkyl, C₁-C₁₂ alkoxy or a halogen atom, and R⁵, R⁶, R⁷, R⁸ groups can be optionally interconnected to form a C₄-C₁₀ cyclic or C₄-C₁₂ polycyclic system;

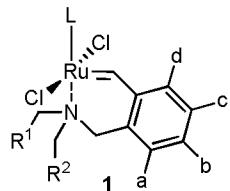
R¹ represents a hydrogen atom or C₅-C₂₄ aryl, C₄-C₂₅ heteroaryl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

R² represents C₅-C₂₄ aryl, C₄-C₂₅ heteroaryl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally C₁-C₁₂ perfluoroalkyl, optionally C₁-C₁₂ alkoxy, optionally a halogen atom, wherein the alkyl groups can be interconnected to form acyclic system;

a, b, c, d independently represent a hydrogen atom, an alkoxy (-OR'), nitro (-NO₂), amide (-CONR'R''), ester (-COOR'), sulfone (-SO₂R'), sulfonamide (-SO₂NR'R'') group, in which the substituents R' and R'' independently have the following meanings: C₁-C₂₅ alkyl, C₅-C₂₄ aryl.

4. The use according to any one of claims 1-3, wherein in the formula 1

L represents a P(R')₃ group, in which R' represents C₃-C₈ cycloalkyl; or


L represents a ligand of formula 2a, in which each R³ and R⁴ independently represent C₅-C₂₀ aryl, which is optionally substituted with at least one C₁-C₁₂ alkyl, and each R⁵, R⁶, R⁷, R⁸ independently represents a hydrogen atom;

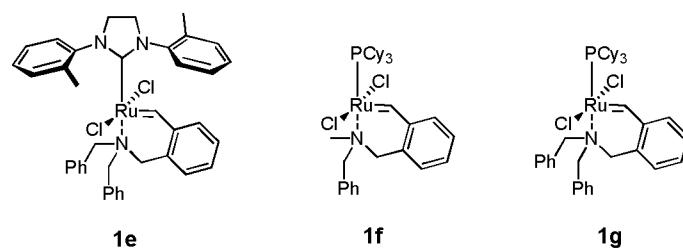
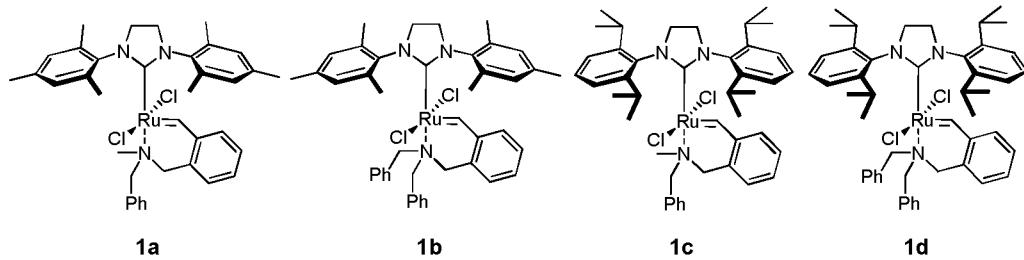
R¹ represents a hydrogen atom or C₅-C₂₄ aryl, C₄-C₂₄ heteroaryl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

R² represents C₅-C₂₄ aryl or C₄-C₂₄ heteroaryl, which are optionally substituted with at least one C₁-C₁₂ alkyl, optionally a halogen atom, wherein the alkyl groups can be interconnected to form a cyclic system;

a, b, c, d independently represent a hydrogen atom, an alkoxy group (-OR'), in which the substituent R' independently represents C₁-C₂₅ alkyl, C₅-C₂₄ aryl.

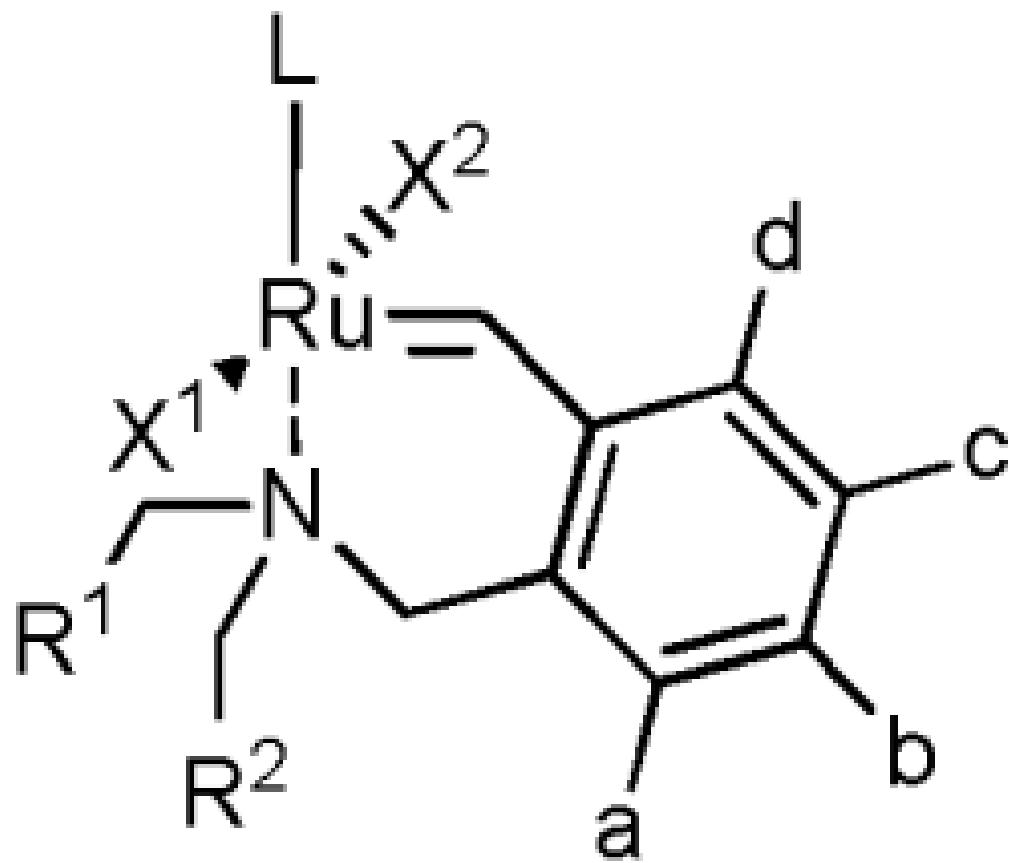
5. The use according to any one of claims 1-4, wherein in the formula 1

L represents tricyclohexylphosphine; or



L represents a ligand of formula 2a, in which each R³ and R⁴ independently represent C₅-C₂₀ aryl, which is optionally substituted with at least one C₁-C₁₂ alkyl, and each R⁵, R⁶, R⁷, R⁸ independently represents a hydrogen atom;

R¹ represents a hydrogen atom, C₅-C₂₄ aryl or C₄-C₂₅ heteroaryl, which are optionally substituted with at least one a halogen atom;

R² represents C₅-C₂₄ aryl or C₄-C₂₅ heteroaryl, which are optionally substituted with at least one a halogen atom;


a, b, c, d independently represent a hydrogen atom, an alkoxy group (-OR'), in which the substituent R' independently represents C₁-C₂₅ alkyl.

6. The use according to any one of claims 1-5, wherein the ruthenium complex of general formula 1 has a structure represented by a structural formula selected from the formulas 1a-1g

7. The use according to any one of claims 1-6, wherein the reaction is carried out in an organic solvent such as toluene, benzene, mesitylene, dichloromethane, ethyl acetate, methyl acetate, tetrabutyl methyl ether, cyclopentyl methyl ether, or without a solvent.
8. The use according to any one of claims 1-7, wherein the reaction is carried out at a temperature of from 0 to 150 °C.
9. The use according to any one of claims 1-8, wherein the reaction is carried out at a temperature of from 20 to 120 °C.

10. The use according to any of the preceding claims, wherein the reaction is carried out for from 1 minute to 24 hours.
11. The use according to any of the preceding claims wherein the compound **1** is used in an amount of not more than 0.5 mol%.
12. The use according to any of the preceding claims, wherein compound **1** is added to the reaction mixture in solid form and/or in the form of a solution in an organic solvent.

(1)