Surgical staples and end effectors for deploying the same

An end effector includes an anvil and a cartridge assembly having a plurality of surgical staples disposed in a cavity defined therein. The cartridge assembly may include a movable driver or sled configured to deploy the surgical staple from the cavity into tissue. The surgical staple may include a linear leg and an arcuate leg extending therefrom. The linear leg may include a protruding portion to provide pressure to tissue captured by the surgical staple. A three-dimensional and/or self-supporting surgical staple may interlock its two legs upon deployment thereof.
Description

CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001] The present application claims the benefit of and priority to U.S. Provisional Application Serial No. 61/918,018 filed on December 19, 2013, the entire contents of which are incorporated by reference herein.

BACKGROUND

1. Technical Field

[0002] The present disclosure relates to formable surgical fasteners and, more particularly, to surgical staples for use in surgical staplers having an end effector including a cartridge assembly for deploying the surgical staples and an anvil for forming the surgical staples. The present disclosure also relates to cartridge assemblies configured to carry and deploy the surgical staples and anvil assemblies for forming the surgical staples.

2. Background of Related Art

[0003] Many varieties of surgical fastening apparatus are known in the art, some of which are specifically adapted for use in various surgical procedures including, but not limited to, end-to-end anastomosis, open gastrointestinal anastomosis, endoscopic gastrointestinal anastomosis, and transverse anastomosis. Suitable examples of apparatus which may be used during the course of these procedures can be seen in U.S. Patent Nos. 5,915,616; 6,202,914; 5,865,361; and 5,964,394, each of which is hereby incorporated by reference herein in its entirety.

[0004] In general, a surgical fastening apparatus will include an anvil that is approximated relative to a fastener cartridge during use. The anvil includes depressions that are aligned with, and/or are in registration with slots defined in the cartridge, through which the fasteners will emerge, to effectuate formation. The fastener cartridge typically has one or more rows of fasteners disposed laterally or radially of a longitudinal slot that is configured to accommodate a knife, or other such cutting element, such that tissue can be simultaneously cut and joined together. Depending upon the particular surgical fastening apparatus, the rows of fasteners may be arranged in a linear or non-linear, e.g., circular, semi-circular, or otherwise arcuate configuration.

[0005] Various types of surgical fasteners are well known in the art, including but not limited to unitary fasteners and two-part fasteners. Unitary fasteners generally include a pair of legs adapted to penetrate tissue and are connected by a backspan from which they extend. The staples are formed into a closed configuration, such as a "B" shaped configuration. Typically, the two-part fastener includes legs that are barbed and connected by a backspan. The legs are engaged and locked into a separate retainer piece that is usually located in the anvil. In use, the two-part fastener is pressed into the tissue so that the barbs penetrate the tissue and emerge from the other side where they are then locked into the retainer piece. The retainer piece prevents the two-part fastener from dislodging from the tissue. The two-part fasteners are not intended to be unlocked or removable. The fasteners are generally made of a bioabsorbable material.

[0006] During each of the aforementioned surgical procedures, the tissue is initially gripped or clamped between the anvil and cartridge such that individual fasteners can be ejected from the cartridge, through the slots, and forced through the clamped tissue. Thereafter, the fasteners are formed by driving them into the depressions formed in the anvil.

[0007] Laparoscopic Endo GIA™ reloads or cartridge assemblies are usually 12 mm in diameter. Some cartridge assemblies used to staple relatively thick tissue are 15 mm in diameter. "B" staples use linear pushers to keep the staples constrained within a pocket of a cartridge assembly during their deployment. "B" staples are guided from all sides to ensure acceptable forming. Traditional staple-pusher-sled configurations, however, are too big to fit a 5 mm diameter stapler.

[0008] Accordingly, there is a growing need to make staplers having cartridge assemblies that are smaller than 12 mm in diameter, with 5mm cartridge assemblies being the most desirable. There is also a growing need for surgical staples that occupy less space within a cartridge assembly prior to deployment. Pediatric, thoracic and hepato-biliary and pancreatic surgeons could benefit from such devices. Further, it would simplify port management if a cartridge assembly could fit into a 12 mm port. Smaller cartridge assemblies will also enable new multi-firing staplers, which may be capable of being reloaded inside of body cavities.

[0009] It would therefore be desirable to provide a staple configuration for a staple designed to penetrate tissue and contact an anvil pocket on the opposing side of tissue, which, in cooperation with conventional cartridge and anvil technology, minimizes staple size and therefore cartridge assembly size.

SUMMARY

[0010] In accordance with one aspect of the present disclosure, a surgical staple is provided for use in a surgical stapler. The surgical stapler has an end effector with opposing jaws. An anvil is located on one jaw and a cartridge is located on an opposing jaw. The jaws are movable between spaced apart and approximated positions. The anvil has anvil pockets against which the staples are formed as at least one leg of each staple is urged into contact with the anvil. The surgical staple may include a linear leg and an arcuate leg extending therefrom. The linear leg may include a protruding portion to provide pressure to tissue captured by the surgical staple.
In accordance with another aspect of the present disclosure, a self-supporting surgical staple is provided. The self-supporting surgical staple can be directly driven and formed without the need for any additional supporting components. The self-supporting surgical staple is dimensioned such that it can be constrained within a pocket or cavity of a cartridge assembly while permitting only one degree of freedom, along which the surgical staple will be formed. The self-supporting surgical staple may include a first, linear leg extending at an angle relative to a second leg. The self-supporting surgical staple may further include a connector extending at an angle relative to the first and second legs configured for abutting engagement with a driver, sled, or wedge of a cartridge assembly.

Surgical staples of the present disclosure allow for the use of smaller diameter laparoscopic staplers. The surgical staples can be made from titanium or stainless steel and can be fabricated from sheet metal or wire. In some embodiments, a bump in the surgical staples helps to hold the surgical staples securely in a pocket of a cartridge assembly. It is contemplated that a backspan of the surgical staples can have a short spike to stabilize the surgical staples against tissue. In some embodiments, the surgical staples can include a bump to achieve even tissue compression. In embodiments, the surgical staples may be partially coined to achieve a desired stiffness and decrease the size of an entry wound during insertion into tissue.

In accordance with another aspect of the present disclosure, an end effector of a surgical stapler is provided. The end effector includes a cartridge assembly and an anvil. The cartridge assembly may have a plurality of surgical staples disposed in a cavity defined therein. The cartridge assembly may include a movable pusher bar and/or sled configured to deploy the surgical staple from the cavity into tissue. The pusher bar at least partially secures a surgical staple in the cavity of the cartridge assembly. Upon engagement of the sled with the pusher bar, the pusher bar rotates within the cavity about an axis to deploy the surgical staple from the cavity into tissue. The pusher bar at least partially secures a surgical staple in the cavity of the cartridge assembly.

In some aspects of the present disclosure, a cartridge assembly includes a locking shelf to prevent a pusher bar from being ejected from the cartridge assembly.

In other embodiments, the cartridge assembly does not include a pusher bar such that the sled directly engages a surgical staple to deploy the surgical staple from the cavity into engagement with the anvil and tissue.

In another embodiment of the present disclosure, an anvil is provided that includes two anvil pockets disposed in perpendicular relation to one another.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are described herein with reference to the drawings, wherein:

FIG. 1 is a perspective view of a surgical stapler in accordance with an embodiment of the present disclosure;
FIG. 2 is a perspective view of a surgical staple in an unformed configuration in accordance with an embodiment of the present disclosure;
FIG. 3 is a perspective view of the surgical staple shown in FIG. 2 in a formed configuration;
FIG. 4 is a perspective, cutaway view of a cartridge assembly, in accordance with an embodiment of the present disclosure, with the surgical staple shown in FIG. 2 disposed therein;
FIG. 5 is a cutaway view of a cavity defined in the cartridge assembly shown in FIG. 4;
FIG. 6 is a perspective view of a pusher bar of the cartridge assembly shown in FIG. 4;
FIG. 7 is a perspective, cutaway view of an end effector including an anvil and the cartridge assembly shown in FIG. 4 deploying the surgical staple shown in FIG. 2;
FIG. 8 is a perspective, cutaway view of the end effector shown in FIG. 7 after having formed the surgical staple shown in FIG. 2;
FIG. 9 is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;
FIG. 10 is a perspective view of the surgical staple shown in FIG. 9 in a formed configuration;
FIG. 11 is a perspective view of a surgical staple in accordance with another embodiment of the present disclosure;
FIG. 12 is a perspective view of a surgical staple in accordance with another embodiment of the present disclosure;
FIG. 13 is a top view of the surgical staple shown in FIG. 12;
FIG. 14 is a perspective, cutaway view of an end effector, in accordance with an embodiment of the present disclosure, including a cartridge assembly and an anvil having the surgical staple shown in FIG. 12 disposed therein in an unformed position;
FIG. 15 is a perspective, cutaway view of the cartridge assembly shown in FIG. 14 after having formed the surgical staple shown in FIG. 12;
FIG. 16 is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;
FIG. 17 is a perspective view of the surgical staple shown in FIG. 16 in a formed configuration;
FIG. 18A is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;
FIG. 18B is a perspective view of the surgical staple shown in FIG. 18A in a formed configuration;
FIG. 19A is a side view of the surgical staple shown in FIG. 18A in the unformed configuration;
FIG. 19B is a side view of the surgical staple shown in FIG. 18A in the formed configuration;
DETAILED DESCRIPTION OF THE EMBODIMENTS

[0018] Embodiments of the presently disclosed surgical staples and end effectors will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.

[0019] With reference to FIG. 1, a surgical fastener applying apparatus 10 according to an embodiment of the present disclosure will be discussed. Surgical fastener applying apparatus 10 is used to sequentially apply a plurality of surgical fasteners to tissue, and may be of the reusable or disposable variety. Surgical fastener applying apparatus 10 includes a handle 12, an elongated shaft 14 extending distally therefrom, and an end effector 120 pivotally coupled to a distal end 18 of the elongated shaft 14. The handle 12 includes stationary handle member 17 and a force is transmitted to the ejectors or pushers positioned adjacent to surgical fasteners disposed within slots of the staple cartridge assembly 122 thereby ejecting the surgical fasteners and driving the surgical fasteners against a staple forming surface of the anvil 124.

[0021] Referring specifically to FIGS. 2 and 3, a new surgical staple 100 is provided, which is configured for disposal in a cartridge assembly, such as, for example, cartridge assembly 122 described with reference to FIG. 1. Surgical staple 100 includes a first leg, such as, for example, a backspan 102, and a second leg 104 extending therefrom. Backspan 102 and second leg 104 are substantially coplanar with one another. Backspan 102 has a first linear portion 106 and a second linear portion 108 separated by a protrusion or bump 110. Protrusion or bump 110 applies pressure to tissue captured by surgical staple 100. In some embodiments, protrusion or bump 110 may be variously configured, such as, for example, oval, oblong, squared, circular, and/or polygonal.

[0022] Second leg 104 has an arcuate configuration and extends between a first end 112 and a second end 114. Second leg 104 may have varying cross section configurations and curvatures between first and second ends 112, 114 to help achieve an optimal shape after deployment. In some embodiments, second leg 104 has a uniform cross section configuration and curvature between first and second ends 112, 114. First end 112 of second leg 104 extends from first linear portion 106 of backspan 102 at an angle such that surgical staple 100 has a generally V-shaped configuration, as shown in FIG. 2. Second end 114 of second leg 104 has a slanted or tapered tip 119 designed and adapted to penetrate tissue. Upon deployment of surgical staple 100, second linear portion 108 of backspan 102 and second end 114 of second leg 104 are brought closer together such that surgical staple 100 takes on a generally D-shaped configuration, as shown in FIG. 3.

[0023] Surgical staple 100 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 100 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.
[0024] With reference to FIGS. 4-8, end effector 120 is provided, and is configured for connection to a distal end of a surgical stapler, such as, for example, surgical fastener applicator 10. End effector 120 includes a cartridge assembly 122 configured to hold or store a plurality of surgical staples, such as, for example, surgical staples 100, and an anvil 124 pivotally attached to cartridge assembly 122 configured to deform surgical staple 100 upon actuation of end effector 120.

[0025] Cartridge assembly 122 includes an inner surface 126 defining a cavity or pocket 128 for receipt of surgical staple 100 and a staple guiding member, such as, for example, a staple pusher bar 130. Inner surface 126 includes a first hub 132 and a second hub (not shown) oriented towards one another defining a rotation axis "X1-X1" therebetween. Each hub 132 has a counterbore including a semicircular flat-bottomed hole 134 (FIG. 5) and a smaller hole 136 formed therein configured for rotatable receipt of pusher bar 130.

[0026] Inner surface 126 further includes a curved portion 138 configured for receipt of second leg 104 of surgical staple 100 such that second leg 104 is translatable relative to and along curved portion 138 of inner surface 126. A shelf or ledge 140 overlapped curved portion 138 of inner surface 126 to define an opening 142 for second leg 104 to pass through during deployment of surgical staple 100 from cavity 128. Shelf or ledge 140 also provides a stop for pusher bar 130, as described in further detail herein below.

[0027] Pusher bar 130 is rotatably disposed in cavity 128. Pusher bar 130 has a first side 150, a second side 152, a top surface 154 and a bottom surface 156 and extends between a first end 158 and a second end 160. First end 158 of pusher bar 130 includes a first disc 162 extending from first side 150 of pusher bar 130 configured for disposal in flat-bottomed hole 134 of hub 132 of cartridge assembly 122. Disc 162 further includes a post 164 extending therefrom having a flattened tip. Post 164 is configured for receipt or disposal in hole 136 of hub 132 of cartridge assembly 122. First end 158 further includes a second disc 172, similar to first disc 162, extending from second side 152 of pusher bar 130 configured for disposal in the flat-bottomed hole of the second hub (not shown) of cartridge assembly 122. Disc 172 further includes a post 174, similar to post 164, having a flattened tip. Post 174 is configured for receipt or disposal in the hole of the second hub (not shown) of cartridge assembly 122.

[0028] Posts 164, 174 are oriented in opposite directions relative to one another and provide pusher bar 130 with the ability to rotate within cavity 128 of cartridge assembly 122. It is contemplated that, due to the shape and restrictive features of cavity 128, pusher bar 130 is resisted and/or prevented from rotating in any direction other than counter-clockwise from its starting orientation within cavity 128, as shown in FIG. 4.

[0029] Top surface 154 of pusher bar 130 has a planar portion 176 extending between first and second ends 158, 160 configured for abutment with backspan 102 of surgical staple 100, as shown in FIG. 4. Planar portion 176 includes a bump or protrusion 178 disposed at first end 158 of pusher bar 130 configured for engagement with second linear portion 108 of backspan 102 of surgical staple 100. Pusher bar 130 also includes a stepped surface or raised portion 180 extending from top surface 154 and between first and second ends 158, 160. Surgical staple 100 is received between raised portion 180 and inner surface 126 such that surgical staple 100 is resisted and/or prevented from moving laterally. In this way, when surgical staple 100 is disposed within cavity 128, surgical staple 100 is secured between planar portion 176, raised portion or stepped surface 180, bump or protrusion 178, and inner surface 126 of cartridge assembly 122 to provide guidance for surgical staple 100 during deployment thereof. Pusher bar 130 further includes a shelf or ledge 182 that engages shelf or ledge 140 upon deployment of surgical staple 100 so as to prevent second end 160 of pusher bar 130 from exiting cavity 128.

[0030] In assembly, pusher bar 130 is inserted vertically downward into cavity 128 until posts 164, 174 engage first and second hubs 132 in a snap-fit connection. In some embodiments, pusher bar 130 can be inserted from a bottom side of cartridge assembly 122 vertically upward into cavity 128.

[0031] Cartridge assembly 122 further includes a driver or sled 184 translatably disposed therein. Driver or sled 184 may include a wedge 186 at a distal end of an arm 188. An upper surface 190 of wedge 186 may tap downwardly to a curved drop off 192. Drop off 192 is configured to engage bottom surface 156 of pusher bar 130 during actuation of end effector 120. In embodiments, cartridge assembly 122 includes a plurality of drivers or sleds 184 configured to engage a plurality of pusher bars 130 in successive order.

[0032] In operation, with tissue disposed between cartridge assembly 122 and anvil 124 of end effector 120, end effector 120 is actuated to pivot cartridge assembly 122 and/or anvil 124 toward the other. Driver or sled 184 translates, in a direction shown by arrow "A" in FIG. 7, and engages wedge 186 with second end 160 of bottom surface 156 of pusher bar 130. Pusher bar 130 rotates about first axis "X1-X1," in a direction shown by arrow "B" in FIG. 7, from the starting, vertical position shown in FIG. 4, to a finished, horizontal position shown in FIG. 8. The rotation of pusher bar 130 causes surgical staple 100 to rotate within cavity 128 relative to and along curved portion 138, such that second leg 104 of surgical staple 100 exits cavity 128 of cartridge assembly 122 and penetrates tissue. Continued rotation of pusher bar 130 and, in turn, rotation of surgical staple 100, engages second leg 104 with an anvil pocket 125 of anvil 124 so as to deform or bend second leg 104 of surgical staple 100 about first linear portion 106 of backspan 102. Deformation of surgical staple 100 ceases upon an engagement of shelf or ledge 182 of pusher bar 130 with shelf or ledge.
In one embodiment, as shown in FIGS. 9 and 10, a surgical staple 200, similar to surgical staple 100 described above with regard to FIGS. 2-8, is provided. Surgical staple 200, like surgical staple 100, is designed and adapted for use in cartridge assembly 122 of end effector 120 described above. Surgical staple 200 includes a first leg, such as, for example, a backspan 202, and a second leg 204 extending therefrom. Backspan 202 and second leg 204 are coplanar with one another. Backspan 202 has a linear configuration and extends between a first end 206 and a second end 208. Second end 208 of backspan 202 has a bump or short leg 218 extending at an angle therefrom. Bump or short leg 218 helps to stabilize surgical staple 200 in tissue.

Second leg 204 has an arcuate configuration and extends between a first end 212 and a second end 214. Second leg 204 may have a varying cross section configuration and curvature between first and second ends 212, 214 to help achieve an optimal shape after deployment. In some embodiments, second leg 204 may have a uniform cross section configuration and curvature between first and second ends 212, 214. First end 212 of second leg 204 extends from first end 206 of backspan 202 at an angle, such that surgical staple 200 has a generally V-shaped configuration prior to deformation, as shown in FIG. 9. Second end 214 of second leg 204 has a slanted or tapered point 219 designed and adapted to penetrate tissue. Second leg 204 is longer than backspan 202.

In operation, upon deployment of surgical staple 200, second end 208 of backspan 202 and second end 214 of second leg 204 are brought closer together such that surgical staple 200 takes on a generally D-shaped configuration. In the formed configuration, as shown in FIG. 10, a curved inner surface 221 of second end 214 of second leg 204 overlaps and abuts a curved outer surface 220 of short leg 218 of backspan 202 to capture tissue therebetween. In the formed configuration, short leg 218 of backspan 202 and second end 214 of second leg 204 are oriented in opposing directions.

Surgical staple 200 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 200 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.

In one embodiment, as shown in FIG. 11, a surgical staple 300, similar to surgical staple 100 described above with regard to FIGS. 2-8, is provided. Surgical staple 300 is fabricated from metallic wire, such as, for example, titanium or stainless steel wire. In embodiments, surgical staple 300 is fabricated from sheet metal. Surgical staple 300 includes a first leg, such as, for example, a backspan 302, and a second leg 304 extending therefrom. Backspan 302 includes a protrusion or bump 310 extending therefrom. Backspan 302 may be flattened, coined, or have an increased thickness to increase a stiffness of backspan 302.

Second leg 304 has a varying cross section and curvature between a first end 312 and a second end 314 to help achieve an optimal shape after deployment. Specifically, first end 312 of second leg 304, similar to backspan 302, may be flattened, coined, or have an increased thickness to increase its stiffness relative to the remainder of second leg 304. Second end 314 of second leg 304 has a uniform rounded cross section configuration such that second end 314 is more pliable and, in turn, more prone to bending or deforming under compressive forces compared to the flattened or coined portions of first and second legs 302, 304. Accordingly, surgical staple 300 may have a higher likelihood of bending at an interface 315 between first and second ends 312, 314 of second leg 304 than along other portions of surgical staple 300.

With reference to FIGS. 12-15, a 3-dimensional surgical staple 400, in accordance with another embodiment of the present disclosure, is provided. Surgical staple 400 is designed and adapted to be deployed directly by a driver or sled 484 without using a pusher bar, as described herein below.

Referring specifically to FIGS. 12 and 13, surgical staple 400 includes a first leg, such as, for example, a backspan 402, and a second leg 404 extending therefrom. At least a portion of backspan 402 is non-coplanar with second leg 404 of surgical staple 400. Backspan 402 includes a main body 403 extending between a first end 406 and a second end 408 having a triangular bump or protrusion 410 disposed therebetween. Protrusion or bump 410 provides pressure to tissue captured by surgical staple 400. First end 406 of main body 403 is attached to a side surface 411 of a first end 412 of second leg 404 at an angled orientation relative thereto such that main body 403 of backspan 402 is offset from or disposed in a different plane than second leg 404. Second end 408 of main body 403 of backspan 402 has an extension or short leg 418 extending perpendicularly and upwardly therefrom in parallel alignment with second leg 404. Short leg 418 is offset from main body 403 of backspan 402 and coplanar with second leg 404. Having main body 403 of backspan 402 offset from second leg 404 and short leg 418 allows surgical staple 400 to be translated through a cartridge assembly 422 towards an anvil 424 along backspan 402 while second leg 404 and short leg 418 are guided through cartridge assembly 412, as described in greater detail below.

Second leg 404 has an arcuate configuration and extends upwardly from main body 403 of backspan 402. Second leg 404 may have a varying cross section configuration and curvature between first and second ends 412, 414 to help achieve an optimal shape after deployment. In some embodiments, second leg 404 has a uniform cross section configuration and curvature be-
between first and second ends 412, 414. Second end 414 of second leg 404 has a slanted or tapered tip 419 designed and adapted to penetrate tissue. Upon deployment of surgical staple 400, short leg 418 of backspan 402 and second end 414 of second leg 404 are brought closer together, such that surgical staple 400 may take on a generally D-shaped configuration.

[0042] Surgical staple 400 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 400 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.

[0043] With reference to FIGS. 14 and 15, an end effector 420 of a surgical stapler is provided. End effector 420 includes a cartridge assembly 422 configured to hold or store a plurality of surgical staples, such as, for example, surgical staples 400, and an anvil 424 configured to deform surgical staple 400 upon actuation of end effector 420.

[0044] Cartridge assembly 422 includes an inner surface 426 defining a cavity or pocket 428 configured for receipt of a surgical staple, such as, for example, surgical staple 400. Inner surface 426 includes a curved portion 438 configured for receipt of second leg 404 of surgical staple 400 such that second leg 404 is translatable along and relative to curved portion 438 of inner surface 426. Inner surface 426 further includes a planar portion 442 in juxtaposed relation to curved portion 438 configured for receipt of backspan 402 of surgical staple 400. A pair of oppositely oriented shelves or ledges 440 overlap cavity 428 to define openings 444 configured to capture first end 412 of second leg 404 and short leg 418 of backspan 402 therein during deployment of surgical staple 400 from cavity 428.

[0045] Cartridge assembly 422 further includes a driver or sled 484 translatably disposed therein. Driver or sled 484 includes an arm 486 and a wedge 488 at a distal end thereof. An upper surface 490 of wedge 488 is substantially planar and tapers downwardly to a pointed distal tip. Upper surface 490 is configured to engage an upper surface 490 of arm 486 of driver or sled 484 and adapted to penetrate tissue. Upon deployment of surgical staple 400 through cavity 428 of cartridge assembly 422, engages second leg 404 with an anvil pocket 425 of anvil 424 so as to deform or bend second leg 404 about first end 406 of backspan 402. Deformation of surgical staple 400 ceases upon the abutment of upper surface 490 of backspan 402 of surgical staple 400 in parallel alignment with shelves or ledges 440 of cartridge assembly 422, as shown in FIG. 15. In a deployed position, as shown in FIG. 15, backspan 402 of surgical staple 400 is in parallel alignment with shelves or ledges 440 of cartridge assembly 422. After surgical staple 400 is formed, surgical staple 400 takes on a generally D-shaped configuration to capture tissue between backspan 402 and second leg 404.

[0047] With reference to FIGS. 16 and 17, another embodiment of a 3-dimensional surgical staple designated as 500 is provided, similar to surgical staple 400 described above with regard to FIGS. 12-15. Surgical staple 500 is designed and adapted to be deployed directly by a driver or sled without using a pusher bar, similar to surgical staple 400 described above. Surgical staple 500 includes a first leg, such as, for example, a backspan 502, and a second leg 504 extending therefrom. At least a portion of backspan 502 is non-coplanar with second leg 504. Backspan 502 includes a main body 503 extending between a first end 506 and a second end 508. First end 506 of main body 503 is attached to a first end 512 of second leg 504. Backspan 502 includes an extension or short leg 518 extending upwardly from second end 508 of main body 503. Short leg 518 is offset from main body 503 of backspan 502.

[0048] Second leg 504 of surgical staple 500 has an arcuate configuration and extends between a first end 512 and a second end 514. Second leg 504 may have a varying cross section configuration and curvature between first and second ends 512, 514 to help achieve an optimal shape after deployment. In some embodiments, second leg 504 has a uniform cross section configuration and curvature between first and second ends 512, 514. First end 512 of second leg 504 extends from first end 506 of main body 403 of backspan 502 at an angle such that surgical staple 500 has a generally V-shaped configuration, as shown in FIG. 16. Second end 514 of second leg 504 has a slanted or tapered tip 519 designed and adapted to penetrate tissue. Upon deployment of surgical staple 500, short leg 518 of backspan 502 and second end 514 of second leg 504 are brought closer together such that surgical staple 500 takes on a generally D-shaped configuration, as shown in FIG. 17. In the formed configuration, second end 514 of second leg 504 is in a side-by-side orientation with short leg 518 of backspan 502 to capture tissue therebetween.

[0049] Surgical staple 500 further includes a lateral extension or hook 520 connected to at least one of first end 506 of backspan 502 and first end 512 of second leg 504. Hook 520 is configured for translatable receipt in a track formed in a cartridge assembly. At least a portion of hook 520 and short leg 518 are co-planar with one another.
Surgical staple 500 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 500 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.

With reference to FIGS. 18A-24, a self-supporting, self-locking surgical staple 600, in accordance with another embodiment of the present disclosure, is provided. Surgical staple 600 is designed and adapted to be self-supporting within its respective pocket or channel 628 of a cartridge assembly 622, as described in further detail below. Surgical staple 600 is also designed and adapted to self-lock or have its legs interlock upon deployment to provide more reliable tissue compression and hemostasis of said tissue.

Surgical staple 600 includes a first leg, such as, for example, a backspan 602, and a second leg 604. Backspan 602 has a plurality of bends along its length forming a plurality of segments along its length. A first segment 603 is connected to and extends perpendicularly from a first end 612 of second leg 604. First segment 603 interconnects backspan 602 with second leg 604. A second segment 605 extends upwardly at an angle, for example, substantially 90 degrees, relative to first segment 603. The angle at which second segment 605 extends from first segment 603 is relatively small to minimize any loss of driving force of surgical staple 600 through cartridge assembly 622 due to friction and to minimize the need to increase a thickness of an interface between first and second segments 603, 605 to prevent deformation at the interface. Second segment 605 is configured for abutting engagement with a driver or wedge 684 to translate surgical staple 600 through cartridge assembly 622 and into tissue. Second segment 605 interconnects first segment 603 with a third segment 607 of surgical staple 600.

Third segment 607 is connected to second segment 605 at an obtuse angle. Backspan 602 includes a squared or hooked portion 609 connected to third segment 607. Squared or hooked portion 609 defines a notch 611 configured for disposal of a second end 614 of second segment 604 of surgical staple 600. Backspan 602 further includes an extension or short leg 618 extending transversely and downwardly therefrom, such that short leg 618 runs parallel with second leg 604, as shown in FIG. 19A. Short leg 618 further has a pointed tip 619 configured for penetrating tissue.

Second leg 604 has a linear configuration and a circular, uniform cross section configuration. In some embodiments, second leg 604 is variously configured and has various cross section configurations, such as, for example, those alternatives described herein above. Second leg 604 extends between a first end 612 and a second end 614. As mentioned above, first end 612 is connected to first segment 603 of backspan 602. Second end 614 has a pointed end 616 configured for penetrating tissue.

In use, surgical staple 600 is shaped or bent to change surgical staple 600 from a starting, unformed configuration, as shown in FIGS. 18A, 19A, and 20A, to a finished, formed configuration, as shown in FIGS. 18B, 19B, and 20B. To change surgical staple 600 from the unformed configuration to the formed configuration, surgical staple 600 is brought into engagement with an anvil 624 that directs a compressive force upon second leg 604 of surgical staple 600. Second end 614 of second leg 604 is bent or curved relative to first end 612 of second leg 604 until second end 614 of second leg 604 is received within notch 611 of backspan 602 and in abutment with squared or hooked portion 609 of backspan 602, such that backspan 602 and second leg 604 are interlocked with one another. In the formed configuration, as shown in FIGS. 18B, 19B and 20B, second end 614 of second leg 604 and short leg 618 of backspan 602 are oriented in opposing directions to better capture tissue therebetween.

With reference to FIGS. 21-24, an end effector 620 of a surgical stapler is provided. End effector 620 includes a cartridge assembly 622 configured to hold or store a plurality of surgical staples, such as, for example, surgical staples 600, and an anvil 624 pivotally or translatably attached to cartridge assembly 622 and configured to deform surgical staple 600 upon actuation of end effector 620.

Cartridge assembly 622 includes a pocket or channel 628 adapted and designed for receipt of a surgical staple, such as, for example, surgical staple 600. Pocket or channel 628 is shaped and dimensioned to closely surround surgical staple 600 so as to resist and/or prevent movement of surgical staple 600 in all directions except along an axis "X2-X2." In this way, surgical staple 600 is supported within pocket or channel 628, as shown in FIG. 23, without a need for any additional restrictive components, such as, for example, a pusher bar 130. Pocket or channel 628 extends transversely between a top end 630 and a bottom surface 632 of cartridge assembly 622. For example, pocket or channel 628 can extend at an acute angle relative to both top end 630 and bottom surface 632 of cartridge assembly 622.

Cartridge assembly 622 further includes a driver or wedge 684. Driver or wedge 684 has a planar driving surface 686. Driver or wedge 684 is translatably disposed in an elongate channel 634 defined in cartridge assembly 622. Elongate channel 634 overlies pocket or channel 628. Driving surface 686 of driver or wedge 684 abuts second segment 605 of surgical staple 600 and is disposed at an angle with respect to second leg 604 of surgical staple 600. In embodiments, cartridge assembly 622 includes a plurality of drivers or wedges 684 configured to engage a plurality of surgical staples 600 in successive order.

In operation, with tissue disposed between cartridge assembly 622 and anvil 624 of end effector 620,
end effector 620 is actuated to pivot or translate cartridge assembly 622 and/or anvil 624 toward the other. Driver or wedge 684 is translated, in a direction shown by arrow “D” in FIG. 22, into engagement with second segment 605 of backspan 602 of surgical staple 600. As driver or wedge 684 is further translated, a force is acted on surgical staple 600, in a direction along axis “X2-X2,” to translate surgical staple 600 through pocket or channel 628. Continued translation of driver or wedge 684 and, in turn, movement of surgical staple 600 through pocket or channel 628 of cartridge assembly 622, engages second leg 604 with an anvil pocket 625 of anvil 624 so as to deform or bend second end 614 of second leg 604 about first end 612 of second leg 604. After surgical staple 600 is formed, second end 614 of second leg 604 interlocks with squared or hooked portion 609 of backspan 602, as shown in FIGS. 18B, 19B, and 20B, to capture tissue between backspan 602 and second leg 604. [0060] In one embodiment, as shown in FIGS. 25A and 25B, a surgical staple 700 is provided, similar to surgical staple 600 described above with regard to FIGS. 18A-24. Surgical staple 700, like surgical staple 600, is designed and adapted to be self-supporting within its respective pocket or channel of a cartridge assembly. Surgical staple 700 is also designed and adapted to self-lock or have its legs interlock upon deployment to provide more reliable tissue compression and hemostasis of said tissue. [0061] Surgical staple 700 includes a first leg, such as, for example, a backspan 702, and a second leg 704. Backspan 702 has a plurality of bends along its length forming a plurality of segments along its length such that at least a portion of backspan 702 is offset from second leg 704. A first segment 703 is connected to and extends perpendicularly from a first end 712 of second leg 704. First segment 703 interconnects backspan 702 with second leg 704. A second segment 705 extends upwardly at an angle relative to first segment 703. Second segment 705 is configured for abutting engagement with a driver or wedge to translate surgical staple 700 through a cartridge assembly and into tissue. Second segment 705 interconnects first segment 703 with a third segment 707 of surgical staple 700.

[0062] Third segment 707 is connected to second segment 705 at an obtuse angle. Backspan 702 includes a squared or hooked portion 709 connected to third segment 707 to help retain surgical staple 700 in a pocket or channel of a cartridge assembly, such as, for example, a pocket or channel similar to that founding cartridge assembly 622. Backspan 702 further includes an extension or short leg 718 extending transversely and downwardly therefrom, such that short leg 718 runs parallel with second leg 704, as shown in FIG. 25A. Short leg 718 has a pointed tip 719 configured for penetrating tissue.

[0063] Second leg 704 has a linear configuration and a circular, uniform cross section configuration. Second leg 704 extends between a first end 712 and a second end 714. As mentioned above, first end 712 is connected to first segment 703 of backspan 702. Second end 714 has a pointed end 716 configured for penetrating tissue. [0064] In use, surgical staple 700 is shaped or bent to change surgical staple 700 from a starting, unformed configuration, as shown in FIG. 25A, to a finished, formed configuration, as shown in FIG. 25B. To change surgical staple 700 from the unformed configuration to the formed configuration, surgical staple 700 is brought into engagement with an anvil that directs a compressive force upon second leg 704 of surgical staple 700. Second end 714 of second leg 704 is bent or curved relative to first end 712 of second leg 704 until second end 714 of second leg 704 is in juxtaposed relation to and abutment with short leg 718 of backspan 702. In this way, backspan 702 and second leg 704 are interlocked with one another. In the formed configuration, as shown in FIG. 25B, second end 714 of second leg 704 and short leg 718 of backspan 702 are oriented in opposing directions to better capture tissue therebetween.

[0065] In one embodiment, as shown in FIGS. 26A-27, a surgical staple 800 is provided, similar to surgical staple 700 described above with regard to FIGS. 25A and 25B. Surgical staple 800, like surgical staple 700, is designed and adapted to be self-supporting within its respective pocket or channel of a cartridge assembly. Surgical staple 800 is also designed and adapted to self-lock or have its legs interlock upon deployment to provide more reliable tissue compression and hemostasis of said tissue. [0066] Surgical staple 800 includes a first leg, such as, for example, a backspan 802, and a second leg 804. Backspan 802 has a plurality of bends along its length forming a plurality of segments along its length such that at least a portion of backspan 802 is offset from second leg 804. A first segment 803 is connected to and extends perpendicularly from a first end 812 of second leg 804. First segment 803 interconnects backspan 802 with second leg 804. A second segment 805 extends upwardly at an angle relative to first segment 803. Second segment 805 is configured for abutting engagement with a driver or wedge to translate surgical staple 800 through a cartridge assembly and into tissue. Second segment 805 interconnects first segment 803 with a third segment 807 of surgical staple 800.

[0067] Third segment 807 is connected to second segment 805 at an obtuse angle. Backspan 802 includes a squared or hooked portion 809 connected to third segment 807 to help retain surgical staple 800 in a pocket or channel of a cartridge assembly, such as, for example, a pocket or channel similar to that found in cartridge assembly 622 described above. Backspan 802 further includes an extension or short leg 818 extending transversely and downwardly therefrom, such that short leg 818 runs substantially parallel with second leg 804, as shown in FIG. 26A. Short leg 818 has a length that is approximately half of a length of second leg 804. In some embodiments, short leg 818 has a length that is more or less than a length of second leg 804. Short leg 818 has an arcade configuration and a uniform cross section con-
Figuration. In some embodiments, short leg 818 is variously shaped and configured, such as, for example, those alternatives described herein above. Short leg 818 also has a pointed tip 819 configured for penetrating tissue.

Second leg 804 has a linear configuration and a circular, uniform cross section configuration. Second leg 804 extends between a first end 812 and a second end 814. As mentioned above, first end 812 is connected to first segment 803 of backspan 802. Second end 814 has a pointed end 816 configured for penetrating tissue.

With reference to FIG. 27, an anvil 824 is provided to apply a compressive force on surgical staple 800. Anvil 824 includes two anvil pockets 825, 827 oriented perpendicular relative to one another so that both second leg 804 and short leg 818 can be deformed about two axes that lie in perpendicular relation to one another. Anvil pocket 825 is configured for engagement with second leg 804 and anvil pocket 827 is configured for engagement with short leg 818. Anvil pocket 825 is longer than anvil pocket 827 because second leg 804 is to be bent or curved to a substantially lesser degree than short leg 818.

In use, surgical staple 800 is shaped or bent to change surgical staple 800 from a starting, unformed configuration, as shown in FIG. 26A, to a finished, formed configuration, as shown in FIG. 26B. To change surgical staple 800 from the unformed configuration to the formed configuration, surgical staple 800 is brought into engagement with anvil 824 that directs a compressive force upon both second leg 804 and short leg 818 of backspan 802.

Second end 814 of second leg 804 is bent or curved relative to first end 812 of second leg 804 about a first axis "X3-X3" until second end 814 of second leg 804 is substantially parallel with third segment 807 and squared or hook portion 809 of backspan 802. First end 812 of second leg 814 may be fabricated from a more pliable material or have a lesser thickness than the remainder of second leg 804 so that bending of second leg 804 occurs adjacent first end 812, as shown in FIG. 26B. After second end 814 of second leg 804 is bent or curved to a position juxtaposed to short leg 818, short leg 818 contacts anvil pocket 827 of anvil 824 causing short leg 818 to bend or curve about an axis "X4-X4," substantially perpendicular to axis "X3-X3," about which second leg 804 is bent or curved. Short leg 818 is bent or curved around second end 814 of second leg 804 to interlock backspan 802 and second leg 804 with one another. In the formed configuration, as shown in FIG. 26B, short leg 818 takes on a U-shaped configuration.

It is contemplated that each of the surgical staples described herein may be fabricated from different materials at certain preselected areas of the surgical staples and/or may have different thicknesses or densities at certain preselected areas thereof to ensure bending or curving of the surgical staples at said preselected areas of the surgical staples. Further, it is envisioned that the various segments or components of the surgical staples disclosed herein may be monolithically formed or integrally connected with one another. It is further contemplated that the various end effectors and surgical staples described herein can be integrated with a variety of surgical staplers other than the surgical stapler shown in FIG. 1, such as, for example, a surgical stapler-cutter, a linear surgical stapler, a linear surgical stapler-cutter, a circular surgical stapler, or a circular surgical stapler-cutter.

Although specific embodiments of the present disclosure have been described above in detail, it will be understood that this description is merely for purposes of illustration. Various modifications of and equivalent structures corresponding to the disclosed aspects of the embodiments in addition to those described above may be made by those skilled in the art without departing from the spirit of the present disclosure which is defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.

The invention may be described by reference to the following numbered paragraphs:-

1. An end effector for a surgical stapler, comprising:
 an anvil having a staple forming surface; and a cartridge assembly configured to support a surgical staple therein and being movably coupled to the anvil between unapproximated and approximated positions, the cartridge assembly including a driver configured to rotate the staple into engagement with the staple forming surface of the anvil to deform the staple.

2. The end effector according to paragraph 1, wherein the cartridge assembly further includes a pusher bar rotatably coupled to an inner surface of the cartridge assembly, the driver configured for cooperative engagement with the pusher bar.

3. The end effector according to paragraph 2, wherein the pusher bar has a planar portion in abutment with a backspan of the staple.

4. The end effector according to paragraph 3, wherein the pusher bar is rotatable between a starting position, in which the staple is disposed within the cartridge assembly, and a finished position, in which a leg of the staple is disposed in engagement with the staple forming surface of the anvil.

5. The end effector according to paragraph 4, wherein the driver is movable along an axis to rotate the pusher bar between the starting and finished positions.

6. The end effector according to paragraph 3, wherein the pusher bar has a raised portion disposed ad-
jacent the planar portion, the backspan of the surgical staple being releasably secured between the raised portion of the pusher bar, the planar portion of the pusher bar, and the inner surface of the cartridge assembly.

7. The end effector according to paragraph 2, wherein the inner surface of the cartridge assembly includes a curved portion configured for receipt of a leg of the staple such that the leg of the staple is movable relative to and along the curved portion of the inner surface.

8. The end effector according to paragraph 2, wherein the staple has a V-shaped configuration.

9. The end effector according to paragraph 8, wherein the staple includes:
 a backspan; and
 a leg extending from the backspan, the staple having a D-shaped configuration upon deformation thereof by the staple forming surface of the anvil.

10. The end effector according to paragraph 9, wherein the leg has an arcuate configuration prior to deformation thereof.

11. The end effector according to paragraph 9, wherein the backspan has a bump.

12. The end effector according to paragraph 11, wherein the bump is disposed between first and second linear portions of the backspan.

13. The end effector according to paragraph 11, wherein the bump extends from an end of the backspan, the leg having an end that overlaps the bump of the backspan upon deformation of the leg.

14. The end effector according to paragraph 9, wherein the leg has a first end and a second end, the first end having a greater thickness than a thickness of the second end.

15. The end effector according to paragraph 1, wherein the driver supports the staple and is movable along an axis to rotate the staple.

16. The end effector according to paragraph 15, wherein the driver has a tapered, upper surface in engagement with the staple.

17. The end effector according to paragraph 15, wherein the staple includes:
 a backspan; and
 a leg extending from the backspan, at least a portion of the backspan being laterally offset from the leg.

18. The end effector according to paragraph 17, wherein the backspan includes:
 a main body having a first end extending from the leg and a second end; and
 an extension extending from the second end of the main body, the leg and the extension being coplanar with one another and the main body being laterally offset from the leg and the extension.

19. The end effector according to paragraph 17, wherein the backspan includes:
 a main body having a first end extending from the leg and a second end; and
 an extension extending from the second end of the main body and at least partially laterally offset from the main body and the leg such that the extension and an end of the leg are in a side-by-side orientation upon deformation of the leg; and
 a lateral extension connected to the first end of the main body.

20. An end effector for a surgical stapler, comprising:
 an anvil defining a staple forming surface; and
 a cartridge assembly movably coupled to the anvil between unapproximated and approximated positions, the cartridge assembly defining a longitudinal axis and a pocket extending at an angle relative to the longitudinal axis, the pocket being configured to support a staple therein, the cartridge assembly including a driver configured to move the staple into engagement with the staple forming surface of the anvil to deform the staple.

21. The end effector according to paragraph 20, wherein the pocket is configured to direct movement of the staple along an axis defined by the pocket, the axis of the pocket extending at an acute angle relative to the longitudinal axis of the cartridge assembly.

22. The end effector according to paragraph 20, wherein the driver has a planar driving surface, the driver being translatable along the longitudinal axis of the cartridge assembly such that engagement of the planar driving surface of the driver with the staple urges the staple towards engagement with the staple forming surface of the anvil to deform the staple.

23. The end effector according to paragraph 22, wherein the cartridge assembly defines an elongate
channel for housing the driver, the elongate channel intersecting the pocket.

24. The end effector according to paragraph 20, wherein the staple includes:

a leg having a first end and a second end; and
a backspan including a segment extending at an angle from the first end of the leg, the segment being in abutment with the driver.

25. The end effector according to paragraph 24, wherein the backspan further includes a hooked portion connected to the segment, the hooked portion defining a notch configured for disposal of the second end of the leg upon deformation of the leg to interlock the second end of the leg with the backspan.

26. The end effector according to paragraph 24, wherein the backspan further includes an extension extending transversely relative to the segment.

27. The end effector according to paragraph 26, wherein the staple is configured such that upon deformation thereof, the extension and the second end of the leg are oriented in opposing directions.

28. The end effector according to paragraph 26, wherein the anvil includes:

a first staple forming pocket configured to engage the second end of the leg; and
a second staple forming pocket in perpendicular relation to the first staple forming pocket, the second staple forming pocket being configured to engage an end of the extension, wherein the end of the extension is curved around the second end of the leg upon deformation of the staple.

Claim

1. An end effector for a surgical stapler, comprising:

an anvil having a staple forming surface; and
a cartridge assembly configured to support a surgical staple therein and being movably coupled to the anvil between unapproximated and approximated positions, the cartridge assembly including a driver configured to rotate the staple into engagement with the staple forming surface of the anvil to deform the staple.

2. The end effector according to claim 1, wherein the cartridge assembly further includes a pusher bar rotatably coupled to an inner surface of the cartridge assembly, the driver configured for cooperative engagement with the pusher bar; preferably wherein the pusher bar has a planar portion in abutment with a backspan of the staple; preferably still wherein the pusher bar is rotatable between a starting position, in which the staple is disposed within the cartridge assembly, and a finished position, in which a leg of the staple is disposed in engagement with the staple forming surface of the anvil.

3. The end effector according to claim 2, wherein the driver is movable along an axis to rotate the pusher bar between the starting and finished positions.

4. The end effector according to any preceding claim, wherein the pusher bar has a raised portion disposed adjacent the planar portion, the backspan of the surgical staple being releasably secured between the raised portion of the pusher bar, the planar portion of the pusher bar, and the inner surface of the cartridge assembly; and/or wherein the inner surface of the cartridge assembly includes a curved portion configured for receipt of a leg of the staple such that the leg of the staple is movable relative to and along the curved portion of the inner surface.

5. The end effector according to claim 2, wherein the staple has a V-shaped configuration; and/or wherein the staple includes:

a backspan; and
a leg extending from the backspan, the staple having a D-shaped configuration upon deformation thereof by the staple forming surface of the anvil; preferably wherein the leg has an arcuate configuration prior to deformation thereof.

6. The end effector according to claim 5, wherein the backspan has a bump; preferably wherein the bump is disposed between first and second linear portions of the backspan.

7. The end effector according to claim 5 or claim 6, wherein the bump extends from an end of the backspan, the leg having an end that overlaps the bump of the backspan upon deformation of the leg; preferably wherein the leg has a first end and a second end, the first end having a greater thickness than a thickness of the second end.

8. The end effector according to any preceding claim, wherein the driver supports the staple and is movable along an axis to rotate the staple; preferably wherein the driver has a tapered, upper surface in engagement with the staple; preferably still wherein the staple includes:

a backspan; and
a leg extending from the backspan, at least a
portion of the backspan being laterally offset from the leg.

9. The end effector according to claim 8, wherein the backspan includes:
 a main body having a first end extending from the leg and a second end; and
 an extension extending from the second end of the main body, the leg and the extension being coplanar with one another and the main body being laterally offset from the leg and the extension.

10. The end effector according to claim 8, wherein the backspan includes:
 a main body having a first end extending from the leg and a second end;
 an extension extending from the second end of the main body and at least partially laterally offset from the main body and the leg such that the extension and an end of the leg are in a side-by-side orientation upon deformation of the leg; and
 a lateral extension connected to the first end of the main body.

11. An end effector for a surgical stapler according to claim 1, comprising:
 an anvil defining a staple forming surface; and
 a cartridge assembly movably coupled to the anvil between unapproximated and approximated positions, the cartridge assembly defining a longitudinal axis and a pocket extending at an angle relative to the longitudinal axis, the pocket being configured to support a staple therein, the cartridge assembly including a driver configured to move the staple into engagement with the staple forming surface of the anvil to deform the staple.

12. The end effector according to claim 11, wherein the pocket is configured to direct movement of the staple along an axis defined by the pocket, the axis of the pocket extending at an acute angle relative to the longitudinal axis of the cartridge assembly; preferably wherein the driver has a planar driving surface, the driver being translatable along the longitudinal axis of the cartridge assembly such that engagement of the planar driving surface of the driver with the staple urges the staple towards engagement with the staple forming surface of the anvil to deform the staple; preferably still, wherein the cartridge assembly defines an elongate channel for housing the driver, the elongate channel intersecting the pocket.

13. The end effector according to claim 11 or claim 12, wherein the staple includes:
 a leg having a first end and a second end; and
 a backspan including a segment extending at an angle from the first end of the leg, the segment being in abutment with the driver.

14. The end effector according to claim 13, wherein the backspan further includes a hooked portion connected to the segment, the hooked portion defining a notch configured for disposal of the second end of the leg upon deformation of the leg to interlock the second end of the leg with the backspan; and/or wherein the backspan further includes an extension extending transversely relative to the segment; preferably still wherein the staple is configured such that upon deformation thereof, the extension and the second end of the leg are oriented in opposing directions.

15. The end effector according to any of claims 11 to 14, wherein the anvil includes:
 a first staple forming pocket configured to engage the second end of the leg; and
 a second staple forming pocket in perpendicular relation to the first staple forming pocket, the second staple forming pocket being configured to engage an end of the extension, wherein the end of the extension is curved around the second end of the leg upon deformation of the staple.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>CLASSIFICATION OF THE APPLICATION (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 97/28745 A1 (HEARTPORT INC [US]) 14 August 1997 (1997-08-14) * figures 9a,9b *</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims

Place of search: Berlin Date of completion of the search: 1 June 2015 Examiner: Korth, C
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 8556153 B1</td>
<td>15-10-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014041191 A1</td>
<td>13-02-2014</td>
</tr>
<tr>
<td>US 2013233908 A1</td>
<td>12-09-2013</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2011295270 A1</td>
<td>01-12-2011</td>
<td>CN 103702624 A</td>
<td>02-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2713899 A1</td>
<td>09-04-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011295270 A1</td>
<td>01-12-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012211546 A1</td>
<td>23-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014171966 A1</td>
<td>19-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014291378 A1</td>
<td>02-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015083781 A1</td>
<td>26-03-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015090760 A1</td>
<td>02-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015090761 A1</td>
<td>02-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015090762 A1</td>
<td>02-04-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012166476 A1</td>
<td>06-12-2012</td>
</tr>
<tr>
<td>US 8225980 B1</td>
<td>24-07-2012</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2013122888 A1</td>
<td>22-08-2013</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013151820 A1</td>
<td>10-10-2013</td>
</tr>
<tr>
<td>WO 9728745 A1</td>
<td>14-08-1997</td>
<td>AU 2265297 A</td>
<td>28-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5976159 A</td>
<td>02-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6254615 B1</td>
<td>03-07-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001021858 A1</td>
<td>13-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003114867 A1</td>
<td>19-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004073240 A1</td>
<td>15-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004172050 A1</td>
<td>02-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9728745 A1</td>
<td>14-08-1997</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 61918018 A [0001]
• US 5865361 A [0003] [0020]