
(19) United States
US 20040215596A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0215596 A1
Fukuhara et al. (43) Pub. Date: Oct. 28, 2004

(54) SYSTEM, METHOD AND APPARATUS FOR
DATA PROCESSING AND STORAGE TO
PROVIDE CONTINUOUS OPERATIONS
INDEPENDENT OF DEVICE FAILURE OR
DISASTER

(76) Inventors: Keith T Fukuhara, Belmont, CA (US);
Alan S. Gin, Foster City, CA (US)

Correspondence Address:
DORSEY & WHITNEY, LLP
INTELLECTUAL PROPERTY DEPARTMENT
370 SEVENTEENTH STREET
SUTE 4700
DENVER, CO 80202-5647 (US)

(21) Appl. No.: 10/836,481

(22) Filed: Apr. 30, 2004

Related U.S. Application Data

(63) Continuation of application No. 10/134,666, filed on
Apr. 26, 2002, now Pat. No. 6,760,861, which is a
continuation-in-part of application No. 09/676,699,
filed on Sep. 29, 2000.

Application 1

32A

User Device

Publication Classification

(51) Int. CI.7. ... G06F 7/00
(52) U.S. Cl. .. 707/1

(57) ABSTRACT

A System, method, and apparatus for providing continuous
operations of a user application at a user computing device.
At least two application Servers are provided with each
application Server running the user application concurrently
and independently. Each application Server may have a
persistent Storage device associated with it for Storing data.
In response to a user request for data processing within the
user application, the user request is transmitted to the at least
two application Servers for processing therein. A return
result-responsive to the user request as processed by the
one of the at least two application Servers-is passed to the
user computing device from one of the at least two appli
cation Servers. In this manner, if one of the application
ServerS fails or becomes unavailable due to a disaster or
otherwise, the user requests can be continuously processed
by at least the other application Server without any delayS.

Multicasting
Engine

Z-se
Server N Application |

Patent Application Publication Oct. 28, 2004 Sheet 1 of 27 US 2004/0215596 A1

Patent Application Publication Oct. 28, 2004 Sheet 2 of 27 US 2004/0215596 A1

Establish two or more servers having - 9 O applications and storage capabilities. -

Multicast user requests - pass
operations/data from user device to two 9, 2

or more servers for processing.

Each server performs requested S4
operation; each server stores result.

Return result to user device; if any 56,
server fails, use result from reamaining

server(s).

Fig. 2

US 2004/0215596 A1 Patent Application Publication Oct. 28, 2004 Sheet 3 of 27

90%
SO V

Til T-TITETE |-

US 2004/0215596 A1 Patent Application Publication Oct. 28, 2004 Sheet 4 of 27

anano ?nano ?-)
Yhko

aneno |eJºu89 Lae(Ti
Ob

Vy '61-I
Å p89 JUIL

| 1

(X3

A peÐJULL +/Z@__-----6u]ssaooud
Patent Application Publication Oct. 28, 2004 Sheet 5 of 27

Patent Application Publication Oct. 28, 2004 Sheet 6 of 27 US 2004/0215596 A1

System initialization

Initialize Listening Devices; establish
links between listening devices, and

SerWeS.

A 2-O

initialize Multicasting Engines;
establish links between Engines and

Clients.

Process transaction using
multicasting between Engine(s) and

listening devices / servers.

Fig. 5

Patent Application Publication Oct. 28, 2004 Sheet 7 of 27 US 2004/0215596 A1

General Message Format 3ed

32 - 3. 4.
P Header Message Payload

e N 7-1
Sub Message Header Encapsulated Client/Server Message

User Session Sequenceing &

lo | 2. 144

Fig. 6

Encrypted Message Format 50

- 52- s

1 w. Sn

l33
User Sess Sequ tris &

42 o 4

Fig. 7

Patent Application Publication Oct. 28, 2004 Sheet 8 of 27 US 2004/0215596 A1

Initialize
General
Message
Oueues

Establish Links
with Listening

Devices

too

Retry or Error out
and notify

-- Network

Management
System

b2.

initialize Client
Communcation

Ports

6.

Fig. 8

Patent Application Publication Oct. 28, 2004 Sheet 9 of 27 US 2004/0215596 A1

Start Session
Manager (MCE) o

Get packet from
Processing thread

-ko
Listen for packet from
Port Comm. interface

Determine if it is a new
Session

is

Yes

Establish new port with
client

Create User Session ID
and Application Domain

D

Pass packet to the
established processing

thread
2. Unencapsulate

transaction and pass
back to the client

Pass User Session ID &
Application Domain ID to
Management Processor
to start thread at listening

device

Wait for Confirmation
from Management

Processor

Error
Processing

Successful

Start New Processing
Thread

Pass Processing Thread
and User information to
Port Comm. Interface

Fig. 9

Patent Application Publication Oct. 28, 2004 Sheet 10 of 27 US 2004/0215596 A1

Get Packet from Session
Manager

Extract User Session D q 2.
& Application Domain ID

Encapsulate User
Session ID & Application
Domain ID into Message
Frame "Client/Server

Message"

Place "Management"
Application Domain D
value in "Message

Domain" field

a

Place message on the
queue

Wait for Response from
Listening Device

Successful

(as

Process Error

Return Successful Listener
Startup to Session Manager

Fig. 10

Patent Application Publication Oct. 28, 2004 Sheet 11 of 27 US 2004/0215596 A1

26C 2O2

SendMessage on the Multicast
Network Check Outbound Queues

Listen for Inbound Messages
from Multicast Network

Extract Application Domain ID
and User Session ID (filter)

Match filter value to Lookup
table for queues

2O2 Place Message on the
appropriate inbound Queue

Fig.11

Patent Application Publication Oct. 28, 2004 Sheet 12 of 27 US 2004/0215596 A1

Get Signal from
Management Processor

Get User Session D &
Application Domain D

Out Gueue

Check that queues
started properly

Successful

Process Error

2W2.

Error

Pass filter value to
Message Processor

Pass Processing Thread link to
Session Manager

Fig. 12

Patent Application Publication Oct. 28, 2004 Sheet 13 of 27 US 2004/0215596 A1

25 Get Message from
Inbound Oueue

Unencapsulate Client
Server Message
(transaction) Get Message from

Session Manager

Check if redundant
transaction.

lgnore or Walidate
transaction

Encapsulate transaction
into new message

Rerequest missing
transaction

Add filter to message

Pass the transaction to
Session Manager

Add message to
outbound queue

Fig. 13

Patent Application Publication Oct. 28, 2004 Sheet 14 of 27 US 2004/0215596 A1

Establish Link
with Server

and Application

Initialize
General

'ge Retry or Error out
and notify

Retry -H NetWork
Management

System

initialize
Listening Ports 23

Fig. 14

Patent Application Publication Oct. 28, 2004 Sheet 15 of 27 US 2004/0215596 A1

Check Outbound Queues

Listen for inbound Messages
from Multicast Network

Extract Application Domain ID
and User Session ID (filter)

Match filter value to Lookup
table for queues

Place Message on the
appropriate inbound Queue

Fig. 15

SendMessage on the Multicast

2 F6

Network

Patent Application Publication Oct. 28, 2004 Sheet 16 of 27 US 2004/0215596 A1

Get Packet from General
29 O Oueue

Check for a Session Process Management
2S2 Management Message Message 29.3

Y New User

Extract User Session D
2s & Application Domain ID

Pass User Session D &
12.SS Application Domain ID to

Session Manager

Wait for Session
Manager to establish

connection with
Application/Host/Server
and start new Processing

Thread

Process Error

Return Successful Listener .
Startup to Management

Processor

Fig. 16

Patent Application Publication Oct. 28, 2004 Sheet 17 of 27 US 2004/0215596 A1

Get Message from
Management Processor Check if New User

Start New Processing
Thread for New User

Unencapsulate User
Get Message from Session ID & Application
Processing Thread Domain ID into Message

Frame "Client/Sever
Message" (filter)

Unencapsulate Client/ Start new Processing
Server Message Thread, passing filter

value.

Wait for Response from
new Processing Thread

Successful

Pass Client/Server
Message to Port Comm.

interface Process Error

Return Successful Processing
Thread Startup to Management

Processor.

Fig. 17

Patent Application Publication Oct. 28, 2004 Sheet 18 of 27 US 2004/0215596 A1

Get Message from
Inbound Oueue

22 Unencapsulate Client/
Server Message
(transaction)

Get Message from
Session Manager

Encapsulate transaction
into new message

Pass the transaction to
Session Manager

Add filter to message Wait for Response from
8 Session Manager

Successful

Process Error

Add message to
Outbound queue 2e2

Fig. 18

Patent Application Publication Oct. 28, 2004 Sheet 19 of 27 US 2004/0215596 A1

240
-

Allocate
Memory from
Dynamic

Memory Pool

Operating system may f
allocate this memory

from disk.

Send Error
Code/Message

Return
Memory

Address for
beginning of

queue

Fig. 19

Patent Application Publication Oct. 28, 2004 Sheet 20 of 27 US 2004/0215596 A1

Multicasting Client System
Engine

Fig. 20

Patent Application Publication Oct. 28, 2004 Sheet 21 of 27 US 2004/0215596 A1

Multicasting
Engine 1

-----f

Client System

Multicasting
Engine 2

320

Fig. 21

Patent Application Publication Oct. 28, 2004 Sheet 22 of 27 US 2004/0215596 A1

Location 2

Listening
Software

Multicasting
Engine

Fig. 22

Patent Application Publication Oct. 28, 2004 Sheet 23 of 27 US 2004/0215596 A1

SCS or Fibre
Channel

Multicasting
Engine

SCS or Fibre
Channel

SCS or Fibre
Channel

Fig. 23

Patent Application Publication Oct. 28, 2004 Sheet 24 of 27 US 2004/0215596 A1

G.2

Patent Application Publication Oct. 28, 2004 Sheet 25 of 27 US 2004/0215596 A1

24 6- 25 - (- ?
yesmitt Aca
- fe of BAAwce 50

r2so - De 25grt ' Deas is se

(ge saur dea
/ -esop. 9Auve: 90o (
- OEPOST 2so

Patent Application Publication Oct. 28, 2004 Sheet 26 of 27 US 2004/0215596 A1

02

2- 'll 2

Patent Application Publication Oct. 28, 2004 Sheet 27 of 27 US 2004/0215596 A1

PAddress Socket D Processing Thread
192.168.1.5 Address of ThreadX
192.168.1.7 9002 Address of Thread Y

- G, 2–

pplication Don. DT User Session (D inbound Queue
APVOUCHER 20 Address of Queue X

ARADJUSTMENT Address of Cueue Y

AG 23 A

Application Don. O User Session D inbound Queue
1000 . 20 Address of GueueX

Address of Gueue Y

fiG 298

US 2004/0215596 A1

SYSTEM, METHOD AND APPARATUS FOR DATA
PROCESSING AND STORAGE TO PROVIDE

CONTINUOUS OPERATIONS INDEPENDENT OF
DEVICE FAILURE OR DISASTER

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application is a continuation-in-part of and
claims priority to co-pending, commonly assigned U.S.
patent application Ser. No. 09/676,699 entitled “FAULT
TOLERANT, STATE-COMPATIBLE COMPUTER SYS
TEM AND METHOD,” filed Sep. 29, 2000, the disclosure
of which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

0002 This application relates, in general, to computing
and methods for providing continuous computing operations
despite a disaster, device failure or other cause of device
unavailability.

BACKGROUND

0.003 Computing systems, such as systems having serv
erS and databases Supporting multiple users over a network,
may utilize various techniques to provide data reliability in
the event of a device failure-Such as a failure of a primary
database. For example, the contents of a database may be
replicated to other mass secondary or backup storage
devices, and an image of the State of the computing System
may be periodically Saved as well to Secondary Storage
devices. In the event of a device failure or a disaster affecting
the primary database, a Secondary Storage device is made to
functionally replace the primary Storage device for the
computing System. AS recognized by the present inventors,
after a device failure in Such an arrangement, the time for
transitioning from the primary to the Secondary System
devices may be lengthy and result in delays in the comple
tion of computing operations that were Scheduled prior to
the device failure. There also may be delays in users having
network access to a working computing System when the
primary network or primary Storage device become unavail
able. Such delays may result in Significant loSS of revenues
for businesses that rely on computing Systems, or may result
in an inferior quality of Service experienced by the user. In
the financial industry, downtime of a brokerage computing
network may result in the loss of millions of dollars in
revenues to the brokerage firm and to its customers.
0004 For example, and as recognized by the present
inventors, if a primary server (Such as an application server)
or a database fails or becomes unavailable due to a disaster,
then the Secondary or backup System needs to be mounted,
the State of the computing System (including each of the
various States of all of the user devices in the System) needs
to be restored and rectified with the state of the data stored
on the Secondary storage device (i.e., all pointers need to be
loaded into the backup System), and all user connections to
the computing System need to be restored or re-established.
Such a transitioning process may involve a delay of, for
example, fifteen minutes to complete. During this delay
period, users may be unable to continue with their use of
their computing System. Further, the State of the computing
System-including the various States of all of the user
devices-may only be recoverable to the time at which the

Oct. 28, 2004

last image of the computing System was persistently Saved.
Hence, particular users may experience a loSS of Some data
or may be unable to complete time-critical computing opera
tions.

0005. As recognized by the present inventors, what is
needed is a System and method for data processing and/or
data Storage that provides continuous operations indepen
dent of device failure or disaster-So that failures or unavail
ability of System devices, Such as application Servers or
databases, are transparent to end users.
0006. It is against this background that various embodi
ments of the present invention were developed.

SUMMARY OF THE INVENTION

0007 According to one embodiment of the invention, a
method for providing continuous operations of a user appli
cation at a user computing device is disclosed. The method
includes providing at least two Servers, Such as application
Servers, with each Server running the user application con
currently and independently. Each Server may have a per
Sistent Storage device associated with it for Storing data. In
response to a user request for data processing within the user
application, the user request is transmitted to the at least two
Servers for processing therein. Both Servers process the user
request, in one embodiment. A return result-corresponding
to the user request as processed by one of the at least two
Servers-is passed to the user computing device. In this
manner, both Servers are running State accurate versions of
the user application and if one of the ServerS fails or becomes
unavailable due to a disaster or otherwise, the user requests
can be continuously processed by at least the other Server
without any delayS.
0008 Persistent storage devices may be associated with
the at least two Servers to provide additional data reliability,
wherein a first persistent Storage device is associated with a
first Server of the at least two servers, and wherein a Second
persistent Storage device is associated with a Second Server
of the at least two servers. Furthermore, the at least two
Servers may be physically located at the same location, (i.e.,
in a data center or in a rack) or may be physically located at
different locations So as to provide geographic isolation
between the servers.

0009. According to another embodiment of the invention,
an apparatus for processing communications between a user
device and at least two serverS is disclosed. The apparatus
may include a module for receiving a user request relating
to an application program; a module for transmitting the user
request to the at least two Servers for processing therein; and
a module for forwarding to the user device a result received
from one of the at least two servers, wherein the result is
related to the user request. The apparatus may also include
one or more buffers for Storing a plurality of requests
received from the user device, and for Storing a plurality of
results received from the at least two Servers.

0010. According to another embodiment of the present
invention, a System for providing continuous operations of
a user application at a user computing device is disclosed.
The System may include at least two servers, each Server
having a persistent Storage device associated with it, and
each Server adapted to run the user application. A multicast
ing device is provided and processes communications

US 2004/0215596 A1

between the user computing device and the at least two
Servers. In one example, in response to a user request for
data processing within the application, the multicasting
device transmits the user request to the at least two servers
for processing therein. Each of the at least two servers
processes the user request, in one embodiment. The multi
casting device passes a return result to the user computing
device from one of the at least two Servers, the return result
corresponding to the user request as processed by the one of
the at least two servers. In one example, the multicasting
device is embodied as a Server coupled with a network.
Further, the operating System of the first and Second Servers
can be different operating Systems, as the multicasting
device may be platform independent.

0011. According to another embodiment of the invention,
a method for processing communications between a user
device and at least two servers is disclosed. The method
includes receiving a user request relating to an application
program; transmitting the user request to the at least two
Servers for processing therein; and forwarding to the user
device a result received from one of the at least two servers,
wherein the result is related to the user request.
0012. According to another embodiment of the present
invention, a method for providing a continuously operating
computing System for an application Service provider having
a plurality of ServerS Servicing a plurality of user devices,
each user device having a user Session including user
requests relating to at least one application program is
disclosed. The method includes configuring at least two
Servers to each run the application program. A multicasting
Server is provided for receiving a user request relating to the
application program, the multicasting Server transmitting the
user request to the at least two Servers for processing therein.
Upon receiving a first result from one of the at least two
servers, the first result is forwarded to the user device. In this
manner, if one of the ServerS is unavailable due to a disaster
or otherwise, the user request can be continuously processed
by at least the other server.
0013 The features, utilities and advantages of various
embodiments of the invention will be apparent from the
following more particular description of embodiments of the
invention as illustrated in the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

0.014 FIG. 1 illustrates a block diagram of an embodi
ment of the present invention.
0.015 FIG. 2 illustrates a flow diagram of one example of
a process for data processing and/or data Storage to provide
continuous operations independent of device failure or
disaster, in accordance with an embodiment of the present
invention.

0016 FIG. 3 illustrates a block diagram of a network
employing a plurality of multicasting engines, listening
devices, and Servers for data processing and/or Storage to
provide continuous operations independent of device failure
or disaster, in accordance with one embodiment of the
present invention.

0017 FIG. 4A illustrates a block diagram of a multicast
ing engine communicating with at least two client devices
and a network.

Oct. 28, 2004

0018 FIG. 4B illustrates a block diagram of first listen
ing device in communications with a first Server, and a
Second listening device in communications with a Second
Server, wherein both listening devices are coupled with a
network.

0019 FIG. 5 illustrates a flow diagram of an example of
System operations.
0020 FIG. 6 illustrates a diagram of an example of a
message format.
0021 FIG. 7 illustrates a diagram of an example of a
message format for encrypted messages.
0022 FIG. 8 illustrates an example of logical operations
for initializing a multicasting engine.
0023 FIG. 9 illustrates an example of logical operations
performed by a Session manager module of a multicasting
engine.
0024 FIG. 10 illustrates an example of logical opera
tions performed by a management processor module of a
multicasting engine.

0025 FIG. 11 illustrates an example of logical operations
performed by a message processor module of a multicasting
engine.

0026 FIG. 12 illustrates an example of logical opera
tions to initialize a processing thread-of either a multicast
ing engine or a listening device.
0027 FIG. 13 illustrates an example of logical opera
tions performed by one or more processing threads of a
multicasting engine.

0028 FIG. 14 illustrates an example of logical opera
tions for initializing a listening device.
0029 FIG. 15 illustrates an example of logical opera
tions performed by a message processor module of a listen
ing device.
0030 FIG. 16 illustrates an example of logical opera
tions performed by a management processor module of a
listening device.
0031 FIG. 17 illustrates an example of logical opera
tions performed by a Session manager module of a listening
device.

0032 FIG. 18 illustrates an example of logical opera
tions performed by one or more processing threads of a
listening device.
0033 FIG. 19 illustrates an example of logical opera
tions for initializing a queue in memory.

0034 FIG. 20 illustrates an alternative embodiment for
implementing a listening device, in accordance with one
embodiment of the present invention.
0035 FIG. 21 illustrates a block diagram of one embodi
ment of a System, wherein a portion of the System is located
at a client location and another portion of the System is
located at a remote location.

0036 FIG. 22 illustrates a block diagram of another
embodiment of a System, wherein the Servers are located at
different remote locations, in accordance with one embodi
ment of the present invention.

US 2004/0215596 A1

0037 FIG. 23 illustrates an alternative embodiment of
the present invention, wherein a multicasting engine and two
or more listening devices are used to persistently write data
to and read data from at least two storage devices, in
accordance with one embodiment of the present invention.
0038 FIG. 24 illustrates an alternative embodiment
wherein one or more portions of a multicasting engine are
implemented within a user device.
0039 FIG. 25 illustrates an example of a bank account
transaction implemented using a multicasting System.
0040 FIG. 26 illustrates an example of a stock purchase
transaction implemented using a multicasting System.
0041 FIG. 27 illustrates an example of a table which
may be used to map a user device or Server with a corre
sponding processing thread.
0042 FIGS. 28A-28B illustrate examples of tables
which may be used by a message processor to determine if
a message should be processed or ignored.

DETAILED DESCRIPTION

0043. According to one broad aspect of the invention,
disclosed herein is a System and method for data processing
and/or data Storage which provides continuous computing
operations independent of device failures or unavailability.
In this manner, if a System device Such as a Server, a
database, or a storage device fails or becomes unavailable
due to disaster or otherwise, users are unaffected by Such
events and may continue to complete their computing opera
tions and continue with new computing operations. Various
embodiments of the invention will now be discussed.

0044) Referring to FIG. 1 and in accordance with one
embodiment of the present invention, a multicasting device
or engine 30 is coupled over a network32A, 32B with a user
device 34 and with two or more servers 36A, 36B, 36C
(referred to collectively as 36) each having a storage device
38A, 38B, 38C, respectively, associated therewith for pro
Viding multiple, redundant, State-accurate operating versions
of the application or applications 40 being run by the user
device 34 and the data associated therewith. Each of the
servers 36A, 36B, 3.6C with or without an associated storage
device, 38A, 38B, 38C may be referred to herein inter
changeably as a data center or a node 42A, 42B, 42C.
0.045. As will be described below in greater detail, the
multicasting engine 30 manages data flow between the user
device 34 and the two or more servers 36 to provide
continuous networked data processing irrespective of a
failure of, or disaster affecting, one of the servers 36A, 36B,
36C or data centers 42A, 42B, 42C.
0046) The multicasting device or engine 30 may be
implemented as a Server or may be implemented as one or
more modules operating at one or more Servers or distrib
uted throughout a network. In one example, the multicasting
engine 30 can be a router, Such as a messaging router, or may
be a computer, such as a SUN NETRA (TM) computer,
running an operating System Such as LINUX. The multi
casting engine 30 may be compliant with NEBS (Network
Equipment Building System). Alternatively, Some or all
portions of the multicasting engine as described herein may
be implemented as Software modules operating on one or
more computing devices.

Oct. 28, 2004

0047 The multicasting engine 30 may have, in one
embodiment, one or more ports coupled with one or more
networks 32A, 32B. These ports may be functional or virtual
in nature, as the multicasting engine 30 may have physical
connections that may handle multiple functional or virtual
ports. For instance, the multicasting engine 30 may be
implemented using bi-directional ports, which receive and
transmit data over network connections using, for example,
packetized data using Internet Protocol (IP) formats. Other
data formats, Such as Ethernet, may be used or Supported by
the multicasting engine 30, for example, through the use of
one or more media adapters, to transmit and receive data
over various different networks 32A, 32B depending upon
the particular implementation.

0048. In one embodiment, networks 32A, 32B are both IP
networks. In another embodiment as discussed below with
reference to FIG. 23, network32A is a SCSI or fibre channel
communication link, and network 32B is an IP network. It
is understood that the types of network or networks in which
embodiments of the present invention are implemented is a
matter of choice depending upon the particular implemen
tation.

0049. In accordance with one embodiment of the present
invention, each of the two or more servers 36A, 36B, 36C
will be concurrently running, in real time, the application or
applications 40 that the user device 34 is running, and the
multicasting engine 30 will distribute user requests 44 for
application processing-containing, for example, com
mands and/or data-to the two or more servers 36. The
multicasting engine 30 will also handle receiving the results
46 returned from the two or more servers 36A, 36B,36C and
provides a single result 48 to the user device 34. In this
manner, the user device 34 operates without knowledge of
the fact that its applications 40 are transparently being
hosted and run redundantly and independently by different
servers 36A, 36B, 36C. If one of the servers 36A, 36B, or
36C or data centers 42A, 42B, or 42C fails or becomes
unavailable due to a disaster or otherwise, then at least one
other Server/data center is immediately available and is
already aware of the precise State of the user's device's
computing operations. In this Scenario, the multicasting
engine 30 continueS operating with at least one operational
Server or data center in order to Satisfy the further computing
requests of the user device 34. Since each of the servers 36A,
36B, 36C or data centers 42A, 42B, 42C has been indepen
dently running the application(s) 40 of the user device 34
over the network, each server 36A, 36B, 36C or data center
42A, 42B, 42C has all the state variables (i.e., pointers)
already loaded and all network connections already estab
lished. In this manner, the system of FIG. 1 provides the
user device 34 with continuous fault-tolerant access to its
data and to a working networked System irrespective of a
Server or data center failure or unavailability due to, for
example, a disaster.
0050. In one embodiment the servers 36A,36B,36C may
be arranged as independently operating data centers 42A,
42B, 42C, each having a plurality of application Servers
operating in an environmentally-controlled and protected
area. In one embodiment, the Servers are each provided with
one or more Storage devices 38, Such as persistent mass
Storage devices, and these Storage devices 38 may be con
figured to provide data recovery or redundancy at the data
center 42A, 42B, 42C in the event of a failure of a storage

US 2004/0215596 A1

device. For example, each Storage device 38 may be imple
mented as a disk array Such as a redundant array of inex
pensive disks (RAID), in one example, or may utilize disk
mirroring technology, or any combination thereof. The Serv
ers 36A, 36B, 36C may also be file servers, in one example.
0051) Further, the servers 36A, 36B, 36C or data centers
42A, 42B, 42C may be located in geographically different
locations So as to provide Security and locational or geo
graphic independence. In this manner, if one of the Servers
36A, 36B, 36C or data centers 42A, 42B, 42C is in a
building Subject to an extreme environmental condition Such
as a power Surge/outage, fire, failure of the air conditioning
System, or disaster, then due to the geographic Separation,
the other servers 36A, 36B, 36C or data centers 42A, 42B,
42C will be unaffected by such extreme environmental
conditions. The Servers may use the same operating Systems
or may use different operating Systems, Such as LINUX,
UNIX, Microsoft's Windows 98, NT, or 2000 operating
systems, DEC VAX, IBM 390 (a mainframe operating
system) or IBM MVS or AIX, HPUX, Sun SOLARIS (TM)
or other operating Systems, depending on the particular
implementation. As will be described below, the multicast
ing engine 30 may be platform independent.

0.052 In accordance with one embodiment of the present
invention, two or more of the servers 36A, 36B, 36C or data
centerS 42A, 42B, 42C may act as the application Server for
a user device 34 by maintaining the applications and data
being run by the user device 34 independently and com
pletely on each server 36A, 36B, 36C. The request 44 may
contain instructions and/or data or other information, and the
request 44 may relate to a user Session including an instance
of a user or process running a proceSS or an application, Such
as an application on a Server. A few examples of user
Sessions may include, but are not limited to, an order entry
Session, an account Session, a Word processing Session, a
gaming Session, a bidding or auction Session, an inventory
management Session, a data Search Session, a data read/
write/modify Session, a file Save or file open Session, or the
like.

0053. The multicasting engine 30 receives a user request
44 for data processing by an application 40 and multicasts or
transmits this request 44 to two or more servers 36A, 36B,
36C for processing thereby. Each server 36A, 36B, 36C
independently and completely processes the user request 44
and generates a return result 46, which each Server 36A,
36B, 36C transmits to the multicasting engine 30. The return
result 46 could include multiple data items encoded as
multiple messages or data Streams including text, graphics,
audio, or other data.

0054) Because each server 36A, 36B, 36C is indepen
dently running a copy of the application 40 and is indepen
dently processing the request 44, the processing operations
by the servers 36A, 36B, 36C or data centers 42A, 42B, 42C
are asynchronous with regard to the other Servers or data
CenterS.

0055. In one example, the multicasting engine 30 selects
a first return result 46 received and forwards this return
result (shown as 48 in FIG. 1) to the user device 34 so that
further user operations may take place. In this manner,
multiple applications can be run redundantly and indepen
dently by the two or more servers 36A, 36B, 36C, so that if
one server of the servers 36A, 36B, 36C fails or becomes

Oct. 28, 2004

unavailable, that failure is transparent to the user device's
computing processes. In one example, the existence of
multiple Servers may be transparent to the user device 34 and
to each of the servers 36A, 36B, 36C.
0056 Referring to FIG. 2, a flow diagram of one
example of a process for data processing and/or Storage to
provide continuous operations independent of device failure
or disaster is illustrated. At operation 50, two or more servers
or data centers are established to each have or host one or
more applications that may be run by a user. Further, the
Servers or data centerS may be provided with persistent
Storage capabilities to locally Store data at the Site. In one
embodiment, each of the ServerS is adapted to run Some or
all of the various applications and processes of an enterprise
available to a user device. At operation 52, in response to a
user request, the user request and any data associated
therewith is transmitted or multicast to the two or more
Servers—which are capable of handling the user request
for processing. At operation 54, each Server independently
and completely performs the requested operation, and in one
embodiment the results of the operation may be stored (i.e.,
persistently) by each server. At operation 56, each server
transmits the results of its operations So that a result can be
passed to the user device 34. In one embodiment a multi
casting engine is provided to receive multiple results from
two or more Servers, receives multiple results from the
Servers, and the multicasting engine forwards a single result
to the user device. In one example, when the multicasting
engine receives the results from each of the two or more
Servers, the results as received are queued. The multicasting
engine 30 forwards one copy of the results to the user device,
so that the user device 34 only receives one copy of the
result. The multicasting engine awaits receipt of the results
from the other server(s) or data center(s), but in one example
does not transfer more than one result to the user device
assuming that the transfer to the user device of the first result
received is Successful.

0057 Because each server established by operation 50 is,
at operation 54, independently processing and maintaining
the program operations of the user, in the event that a single
Server fails or is struck by disaster or otherwise becomes
unavailable, that failure is transparent to the user Since the
results from the non-failed Server may be passed to the user
by operation 56. The non-failed server can then continue to
Service the computing needs of the user device 34.
0058 Referring to the example shown in FIG. 1, a user
device 34 is coupled with a multicasting engine 30, which
communicates with at least two servers 36A, 36B, 36C data
centers 42A, 42B-shown as Server 1 and Server 2. Each
data center 42A, 42B has a storage device 38A, 38B,
respectively and at least two servers 36A, 36B adapted to
host the applications running on the user device 34. The
user's computing device 34 is running an application 40,
shown as “Application 1.” In accordance with the present
invention, at least Server 136A and Server 236B are also
running "Application 1 and are at the Same program State
as is the user device 34. Server 36C, shown as Server N, is
also shown as running "Application 1, because depending
on the level of redundancy desired, more than two servers
can each independently and redundantly run the user appli
cation.

0059. In one example, where a first level of availability
for application 40 is desired, then the two servers 36A, 36B

US 2004/0215596 A1

are provided to each maintain State-accurate versions of the
application 40. In another embodiment, where a second level
of availability for application 40 is desired, then three
servers 36A, 36B, 36C are provided to each maintain
State-accurate versions of the application 40. In another
embodiment, where a third level of availability for applica
tion 40 is desired, more than three servers may be provided
to each maintain State-accurate versions of application 40.
By continuing to add servers 36, a target level of availability
can be achieved approaching 100% availability.
0060. When the user device 34 generates a request 44 for
processing-Such as when a user double-clicks a link within
a browser to obtain a desired data Set-the request 44 is sent
to the multicasting engine 30, which transmits the request 44
to at least Server 1 and Server 2. Server 1 and Server 2,
operating independently, both receive and process the
request 44. When Server 1 has completed its operation,
Server 1 stores the result of the requested data set in its
storage device 38A and returns the result 46 to the multi
casting engine 30. Before, after, or during this time, Server
2 completes its operation and Server 2 Stores the result of the
requested data Set in its Storage device 38B and returns the
result 46 to the multicasting engine 30. The multicasting
engine 30 receives, at Some time, the result from Server 1
and Server 2 (not necessarily in that order), and forwards a
single result 48 to the user device 34. In this manner,
although the multicasting engine 30 receives multiple
results, the user device 34 only receives a single copy 48 of
the result (i.e., the requested data set), in one example.
0061 Assuming that the user device 34 generates a
Second request, the multicasting engine 30 transmits the
Second request to the at least two data centerS 42A, 42B at
Server 1 and Server 2. If the data center 42B at Server 2
(36B) has failed or become unavailable due to a disaster,
Server 2 (36B) will not generate a return response to the
request, but the data center 42A at Server 1 (36A) will
process the request in its normal operations and transmit the
return result to the multicasting engine 30. The multicasting
engine 30 will forward the return result from the data center
42A at Server 1 (36A) to the user device 34, and the user
device 34 can proceed with its computing operations despite
the fact that the data center 42B at Server 2 (36B) is
unavailable. Accordingly, it can be seen that the System of
FIG. 1 can provide continuous data operations in the event
of a failure of either Server 1 (36A) or Server 2 (36B).
0062 FIGS. 3-21 illustrate examples of a system and
processes thereof for data processing and Storage to provide
continuous operations independent of device failure or
disaster, in accordance with an embodiment of the present
invention. Referring now to FIG. 3, an example of a
networked System utilizing multicasting engines, for
example, 60A, 60B, 60C (referred to collectively or generi
cally as 60) and listening devices, for example, 62A, 62B,
62C, 62D, 62E (referred to collectively or generically as 62)
is illustrated, in accordance with one embodiment of the
present invention. A plurality of multicasting engines 60A-C
are present and receive processing requests over a network
64 from one or more clients 66, shown as client X and client
Y. As will be described in greater detail below, one or more
of the multicasting engines 60A-C process a user request
and transmits or multicasts the request over a multicast
network 68 to at least two of the listening devices 62A-62E,
wherein each listening device 62A-E is in communication

Oct. 28, 2004

with a server 70A-E capable of satisfying the request. As
will be described below, a listening device can be a Stand
alone device or may be implemented as hardware compo
nents or as Software modules operating within a respective
SCWC.

0063 As shown in FIG. 3, multiple multicasting engines
60A-C are present and the multicasting engines 60A-C may
be configured to have fail-over capabilities, wherein each
multicasting engine 60A-C may have a State accurate, Shad
owing engine that can take over if a multicasting engine
60A-C fails. For instance, multicasting engine 60B may
Shadow multicasting engine 60A So that if multicasting
engine 60A becomes unavailable, multicasting engine 60B
may take over the operations of multicasting engine 60A.
Alternatively, two or more multicasting engines may be
clustered in order to provide load balancing and high avail
ability.

0064. As shown in FIG. 3, each server 70A-E is associ
ated with a listening device 62A-E, and the listening device
may be a separate device or may be implemented as hard
ware integrated with the Server or one or more Software
modules running on the associated Server. In Overall opera
tion, when a client (Such as client X) makes a request, a
multicasting engine (Such as 60B) Services the request by
passing the request to at least two listening devices (Such as
62B and 62D), which each completely and independently
process the request using the respective servers (Such as 70B
and 70D) associated with the listening devices. The return
results generated by the Servers are returned by the respec
tive listening device to the multicasting engine 60B, which
passes a result back to the client 66. In this manner, if one
of the Servers becomes unavailable, then the user/client
Session can continue to Seamlessly operate without signifi
cant delay using the remaining listening device and associ
ated Server.

0065 Referring now to FIGS. 4A and 4B, a block
diagram of an example of a multicasting engine 80 and two
listening devices 82A-B is illustrated, in accordance with an
embodiment of the present invention. In FIG. 4A, a multi
casting engine 80 is implemented in this embodiment using
a Session manager 84, a management processor 86, and a
message processor 88. A plurality of queues are also utilized,
including a general queue 90, and a plurality of inbound
client Session queues 92A-B and outbound client Session
queues 94A-B. Further, depending upon the number of user
Sessions being handled by the multicasting engine 80, one or
more processing threads (shown as 96A-B) will be spawned
and operate within the multicasting engine 80. In one
embodiment, the Session manager 84, the management pro
ceSSor 86, and the message processor 88 are implemented as
Software modules running on a programmable device Such
as a Sun Netra (TM) device, in one example.
0066. In the embodiment of FIG. 4A, the session man
ager 84 is generally responsible for receiving communica
tions from a client/user device 98 and establishing, if
needed, user Sessions and Spawning the appropriate proceSS
ing threads 96 for handling these user Sessions. Various
operations of one embodiment of a Session manager 84 are
illustrated in FIG. 9.

0067. The management processor 86 of the multicasting
engine 80 of the embodiment of FIG. 4A is generally
responsible for Starting and managing user Sessions on the

US 2004/0215596 A1

appropriate listening device 82A, 82B corresponding to the
user Sessions of the multicasting engine 80. The manage
ment processor may determine if a user's request can be
handled, and may maintain or access a list of Supported
applications. Various operations of one embodiment of a
management processor 86 are illustrated in FIG. 10.
0068 The message processor 88 of a multicasting engine
80 of the embodiment of FIG. 4A is generally responsible
for transmitting messages from the multicasting engine 80 to
the listening devices 82A, 82B as well as for receiving
messages from the listening devices 82A, 82B to be passed
into the multicasting engine 80 for processing therein.
Various operations of a message processor 86 are illustrated
in FG 11.

0069. The processing threads 96A, 96B of the multicast
ing engine 80 of the embodiment of FIG. 4A are generally
responsible for processing the messages or data in the
inbound 92A, 92B and outbound queues 94A, 94B associ
ated with the processing thread. Various operations of the
processing threads are illustrated in FIGS. 12 and 13.
0070. In the example of FIG. 4A, two processing threads
are illustrated-processing thread X (96A) and processing
thread Y (96B). In this example, processing thread X cor
responds to a user Session with client X, and processing
thread Y corresponds to a user session with client Y. The
multicasting engine 80 communicates with the user devices
through communications interface 99, in one example,
which may support various protocols such as TCP/IP, NCP,
NetBioS or others. Accordingly, a Single multicasting engine
80 is capable of handling multiple user sessions from a
plurality of clients.
0071 Referring now to FIG. 4B, a block diagram of two
embodiments of listening devices 82A, 82B is illustrated. In
FIG. 4B, each listening device has a message processor 100,
a management processor 102, and a Session manager 104. A
port communications interface 105 may also be provided to
communicate with its respective Server and may use a media
card, Sockets, pipes, object linking and embedding (OLES),
application program interfaces (API's), or direct memory,
depending on the implementation and the connections ther
ebetween which may include TCP/IP, system network archi
tecture (SNA), direct coupling, SCSI, or Fibre channel, or
other communication linkS.

0.072 Each listening device also has one or more pro
cessing threads 106A, 106B, or 106C having inbound
queues 108A, 108B, 108C and outbound queues 110A,
110B, 110C associated therewith. A general queue 112 is
also provided for these embodiments of the listening devices
82A, 82B.
0073. As shown in FIG. 4B, listening device 82A is
shown as having processing threads X (106A) and Y (106B),
while listening device 82B is shown having processing
thread X (106C). Accordingly, it can be seen that requests
from client X are being handled as processing thread X in
two separate listening devices 82A, 82B having two Separate
and independent Servers 114, 116, respectively, asSociated
there with, in accordance with one embodiment of the
present invention, So as to provide continuous operations
independent of device failure or disaster of one of the Servers
114, 116.
0.074 The message processors 100 shown in the embodi
ment of FIG. 4B are each responsible for transmitting

Oct. 28, 2004

messages from the respective listening device 82A, 82B to
the multicasting engine 80, and receiving a message from
the multicasting engine 80 to be passed to the appropriate
queue within the particular listening device 82A, 82B.
Various operations of one embodiment of a message pro
cessor of a listening device are illustrated in FIG. 15.
0075. The management processor 102 of a listening
device 82A, 82B of the embodiments of FIG. 4B is gener
ally responsible for creating and maintaining user Sessions
within the listening device. Various operations of one
embodiment of a management processor 102 are illustrated
in FIG. 16.

0076. The session manager 104 of a listening device
shown in the embodiment of FIG. 4B is generally respon
Sible for managing the processing threads associated with
the user Sessions to be handled within the listening device
82A, 82B. Various operations of one embodiment of a
Session manager 104 of a listening device are illustrated in
FIG. 17.

0077 Referring to FIG. 5, an example of operations,
such as for the system shown in FIGS. 4A and 4B, is
illustrated in accordance with one embodiment of the
present invention. In operation 120, the listening devices are
initialized. In one embodiment, links are established
between the listening devices and their respective Servers.
For example, in FIG. 4B, listening device 82A establishes
its link to server 114, and listening device 82B establishes its
link with server 116. At operation 122 of FIG. 5, the
multicasting engines are initialized. In one embodiment,
after the multicasting engine has been initialized, linkS may
be established between the multicasting engine and one or
more clients that will be Serviced by the engine. Having
initialized both the listening devices and the engines, at
operation 124, client transactions or requests are processed
using multicasting transmissions between the engines and
the listening devices (and their respective servers). AS
described above in one embodiment, for each user request or
transaction, a multicasting engine effectively transmits the
user request to at least 2 listening devices, each listening
device having a server associated therewith capable of
processing the request or transaction. Each Server indepen
dently and completely processes the request and a result is
returned by the listening device to the multicasting engine,
which passes the results received from one of the listening
devices to the appropriate client. In this manner, embodi
ments of the present invention provide for continuous and
uninterrupted user Sessions in the event of failure or unavail
ability of a Single Server.

0078 Referring to FIGS. 6 and 7, examples of message
formats are shown. In one embodiment, messages 130 are
encoded using IP message formats, which generally have a
header portion 132 and a payload portion 134. In one
embodiment, within the Payload 134, a sub-header 136 is
encoded along with an encapsulated client/server message
138. The Sub-header 136 includes, in one embodiment, a
field 140 for a message domain, a field 142 for user session
information, and a field 144 for Sequencing and error cor
rection. AS will be discussed further below, the message
domain information 140 (which may include an application
domain identification identifying a particular application or
Set of applications) and the user Session information 142 are
utilized as a filter So that the various components or modules

US 2004/0215596 A1

of the multicasting engine and listening device can quickly
and easily determine whether a message received is intended
to be processed by a particular multicasting engine or
listening device as appropriate. The Sequence number may
be a unique number used as a transaction number, or the
Sequence number may be mapped to a transaction number
which is generated by a third-party System. AS shown in
FIG. 7, a similar message format 150 may be utilized with
conventional IP encryption techniques, Such as utilizing the
Secure and encrypted IP headers 152 and encrypted message
payloads 154.

0079 The operations of one embodiment of a multicast
ing engine 30 will be described with reference to FIGS.
8-13. These operations may be used in conjunction with the
multicasting engine 80 shown in FIGS. 4A and 4B, or with
other embodiments or implementations as desired.
0080 Referring to FIG. 8, at operation 160, the general
message queues 90 of the multicasting engine are initialized.
At operation 162, links between the multicasting engine 80
and the listening devices 82A, 82B are established. At
operation 164, the communication ports 99 used to commu
nicate with the client devices 98 are initialized. In one
embodiment, if any of the operations 160-164 fail, the
operations may be re-tried or an error may be generated and
the network management System asSociated with the multi
casting engine 30 may be notified of the error.

0081 Referring to FIG. 9, at operation 170, the session
manager 84 (FIG. 4A) starts by listening for packets from
a communication port 99 of the engine 80. If a packet is
received on a port 99, then operation 172 determines if the
packet corresponds to a new user Session. In one embodi
ment, operation 172 checks a port ID (or Socket identifica
tion) (see FIG. 27) of the received packet and if the port ID
is not already listed in a table maintained within the engine,
then the received packet corresponds to a new user Session.
If the packet does not correspond to a new user Session, then
at operation 173, the packet is passed to an established
processing thread (i.e., 96A or 96B) for handling the data for
the respective user Session.

0082) Otherwise, the packet corresponds to a new user
Session and operation 174 establishes a new port number
(i.e., a virtual port number or a Socket number) for handling
future packets associated with this client Session. Operation
175 creates a user session ID and application domain ID
corresponding to this new user Session. AS will be explained
below, the user session ID and the application domain ID
established at operation 175 are utilized by other compo
nents or modules of the System to encode messages for
transmission, and conversely for filtering and decoding
messages. At operation 176, the user Session ID and the
application domain ID are passed to the management pro
cessor 86 of the multicasting engine 80, which will request
that a thread at a listening device (i.e., 82A, 82B) be
Spawned to handle this particular user Session. In one
embodiment, at least two threads are spawned per user
Session, a first thread at a first listening device associated
with a first Sever capable of Supporting the user Session, and
a Second thread at a Second listening device associated with
a Second Sever capable of Supporting the user Session. For
example, as shown in FIG. 4B, listening device 82A has a
processing thread X (106A) and listening device 82B also
has a processing thread X (106C).

Oct. 28, 2004

0083) Operation 177 waits to receive confirmation from
the management processor 86 that remote listening devices
(i.e., 82A, 82B) are ready to accept messages from the
multicasting engine 80 relating to this user Session. Once
confirmation is received, operation 178 Starts a new pro
cessing thread 96A in the multicasting engine 80 corre
sponding to the user Session, and operation 179 passes the
thread information, as well as the user Session information
in one embodiment, to the communication port 99 for entry
into the table described with reference to operation 172.
0084. The session manager 84 may also receive data from
a processing thread (i.e., thread 96A or 96B) for transmis
Sion out to a client device. At operation 180, a packet or data
is obtained from a processing thread (i.e., 96A or 96B) of the
engine 80, and in one example operation 181 unencapsulates
the packet or data from the processing thread to Strip it of the
sub-header information (see FIGS. 6 and 7) so that the
message is in a Standard format that the client device would
be capable of decoding, Such as traditional IP message
formatting. Operation 181 transmits the data to the client
through the communication port 99.
0085 FIG. 10 illustrates an example of logical opera
tions performed by an embodiment of a management pro
ceSSor of a multicasting engine. These operations will be
explained with reference to FIGS. 4A and 4B, although
these operations may be used in other embodiments as well.
In FIG. 10, at operation 190, the management processor 86
receives a packet from the Session manager 84, and at
operation 192, the management processor 86 extracts the
filter information including, in one embodiment, the user
session ID and the application domain ID. At operation 193,
the management processor 86 forms a message to be sent to
and to be processed by at least two listening devices with
servers (i.e., listening devices 82A, 82B with servers 114,
116) associated therewith, the message including the user
Session ID and the application domain ID in the message
frame portion of the payload, shown as the "client/server
message” portion 138 in FIGS. 6 and 7. At operation 194,
the management processor 86 places a “management' appli
cation domain ID value in the “message domain” field 140
of the sub-message header 136 of the message (see FIGS. 6
and 7). At operation 195, the management processor 86
places the message on the general queue 90, and the message
processor 88 of the multicasting engine 80 then transmits the
message over a network to the listening devices (i.e., 82A,
82B). Operation 196 waits for a response from the listening
devices, and if a Successful response is received, then
operation 197 returns a “successful start up” message to the
Session manager 84 of the multicasting engine 30 (see
operation 177 of FIG. 9).
0086 FIG. 11 illustrates an example of logical operations
performed by an embodiment of a message processor 88 of
a multicasting engine 80. These operations will be described
with reference to FIGS. 4A and 4B, although these opera
tions may be used in other embodiments as well. In FIG. 11,
at operation 200, a message processor 88 checks the out
bound queues (i.e., 94A, 94B) for messages to be transmit
ted to listening devices. If a message exists in an outbound
queue, then at operation 202 the message processor 88 sends
the message over a multicast network to the appropriate
listening devices (i.e., 82A, 82B). If there are no messages
in the outbound queue of the engine 80, then operation 203
listens for inbound messages received from the listening

US 2004/0215596 A1

devices. For each message received from a listening device,
operation 204 extracts the filter information, including in
one embodiment the application domain ID and the user
session ID, and operation 205 attempts to match the filter
values to values contained within a look-up table for the
inbound queues maintained in the engine 80. If no match is
found, then operation 206 ignores the message. If a match is
found, then operation 207 places the received message in the
appropriate inbound queue (i.e., 92A, 92B) for processing
by the respective processing thread (i.e., 96A or 96B) (see
FIG. 13).
0.087 FIG. 12 illustrates various operations for initializ
ing a processing thread, and these operations may be utilized
to start a processing thread in either a multicasting engine,
such as engine 80, or a listening device, such as 82A, 82B.
These operations will be described with reference to FIGS.
4A and 4B, although the operations may be used in other
implementations as well. At operation 208, a Signal is
received from a management processor (i.e., 86 or 102) to
Start or initialize a processing thread (See, for example, FIG.
9, operation 178, FIG. 10 operation 195). At operation 209,
the filter information including the user session ID and the
application domain ID are obtained. Operation 210 creates
the client Session queues, including in one embodiment an
inbound queue and an outbound queue (such as 92A, 108A,
110A) corresponding to this processing thread. Operation
211 determines whether the queues have been Started prop
erly (i.e., checking for memory errors) and if Successful,
operation 212 passes the filter value to the message proces
sor (i.e., 88 or 100) so that the message processor can
asSociate the filter value with this particular processing
thread. Operation 213 passes the processing thread link to
the session manager (i.e., 84 or 104) so that the session
manager is made aware of the existence of the processing
thread.

0088 FIG. 13 illustrates examples of logical operations
of a processing thread of a multicasting engine. These
operations will be described with reference to FIGS. 4A and
4B, although the operations may be used in other imple
mentations as well. In FIG. 13, a processing thread (i.e., 96A
or 96B) of the multicasting engine 80 at operation 214
receives a message from the inbound queue (i.e., 92A or
92B). If the message is from a listening device to be
transmitted to a client, then operation 215 unencapsulates
the message So that a message, using conventional data
formats in one embodiment, can be transmitted to the
appropriate client device. Operation 216 determines whether
the message received is redundant-meaning that the mes
Sage received has already been received from another lis
tening device.
0089. As described herein, each server processes a com
puting request independently and completely, and Stores in
its local persistent Storage device whatever data or result is
obtained from its performance of the requested operation.
Since each Server asynchronously returns the result to the
multicasting engine, the multicasting engine will, under
normal operations, receive more than one result and the
results will likely be identical. Further, in one embodiment,
the multicasting engine Sends a new request to a Server only
after the Server has provided the multicasting engine with
the result from the prior request. In this manner, the inbound
and outbound queues maintained by the multicasting engine
80 permit servers that are slower to respond to the request to

Oct. 28, 2004

Still perform and complete their operations before the mul
ticasting engine will Send a new request to these Servers.
Hence, the State of each application running on each Server
is properly maintained, while the user receives the first result
generated by one of the Servers.
0090 Hence, at operation 216, if the message received by
a processing thread is redundant, then operation 217 ignores
the message or alternatively performs. Some validation func
tion on the data received by comparing the data received to
the data previously received from another listening device.
The multicasting engine 30 may be provided with logic to
examine and compare the results received from the Servers
in order to determine if a Server has malfunctioned, become
inoperable, lost its network connection, or has otherwise
become problematic.
0091) If the message received is not redundant, then
operation 218 determines if the transaction Sequencing is
correct by examining the Sequence number (see 144 of
FIGS. 6 and 7) included in the sub-message header 136 of
the message. If the Sequencing is correct, then the data from
the message (excluding any encapsulation in one example)
is passed at operation 219 to the Session manager 84 for
transmission to the appropriate client device 98. If, however,
the Sequencing is incorrect, then operation 220 may re
request any missing transactions from the listening devices
So that these transactions may be processed by the proceSS
ing thread and transmitted to the appropriate client device in
their proper order.
0092. If at operation 214 a message in an inbound queue
is from a client device 98, then operation 221 retrieves the
message from the Session manager 84 and operation 222
encapsulates the message into a new message including, at
operation 224, the appropriate filter information (user Ses
sion ID/application domain ID). Operation 226 adds the
encapsulated message to the outbound queue (i.e., 94A,
94B) of the processing thread (i.e., 96A, 96B) so that the
message can be multicast/transmitted to multiple listening
devices.

0093 FIGS. 14-18 relate to operations performed by a
listening device, in accordance with one embodiment of the
present invention. FIG. 14 illustrates examples of logical
operations to initialize a listening device, and will be
described with reference to FIGS. 4A-4B although these
operations may be used in other implementations. In FIG.
14, operation 230 establishes a link between a listening
device and its respective Server, as well as with the appli
cations that are resident on the Server. Operation 232 ini
tializes the general message queue 112 for the listening
device, and in operation 234, the communication ports of the
listening device are initialized for communicating with one
or more multicasting engines. If any of the operations
230-234 are unsuccessful, then the operations may be re
tried or an error message may be sent to the network
management System.

0094 FIGS. 15-18 relate to various operations per
formed by components or modules of a listening device, in
accordance with one embodiment of the present invention.
FIG. 15 illustrates examples of operations that may be
performed by a message processor, and will be described
with reference to FIGS. 4A-4B although these operations
may be used in other implementations as well. In FIG. 15,
operation 240 checks the outbound queues (i.e., 110A, 110B,

US 2004/0215596 A1

110C) to determine whether there are any messages stored
therein that should be transmitted to the network. If so, then
at operation 242, the message processor 100 transmits the
message over the multicast network to the appropriate
engine to which the message corresponds. If operation 240
determines that the outbound queues are empty, then at
operation 243, the message processor 100 listens for
inbound messages received from multicasting engines. If
there are no inbound messages received from any engines,
then control is passed to operation 240, in one embodiment.
If operation 243 determines that an inbound message has
been received, then operation 244 extracts the filter infor
mation from the message, including, for example, the appli
cation domain ID and the user session ID. Operation 245
matches the filter value extracted at operation 244 to a
processing thread (i.e., 106A, 106B, 106C) operating within
the listening device, and if a match is found, then operation
246 passes the message onto the appropriate inbound queue
asSociated with the processing thread match by operation
245. If operation 245 determines that the filter value does not
correspond to any processing threads presently operating in
the listening device, then operation 247 ignores the message
and control is returned to operation 240.

0.095 FIG. 16 illustrates examples of logical operations
performed by a management processor of a listening device,
and will be explained with reference to FIGS. 4A-4B
although these operations may be used in other implemen
tations as well. Referring to FIG. 16, at operation 250, the
management processor 102 retrieves a packet from the
general message queue 112. Operation 252 examines any
message in the queue to determine whether the message is
a Session management message containing a request to
initiate a new user Session. If the message does not relate to
establishing a new user Session, then control is passed to
operation 253, which processes the management message.
Examples of Such management messages processed at
operation 253 include Status request messages for requesting
that the management processor report which threads are
active within the listening device, in one example. If opera
tion 252 determines that the message is a request to establish
a new user Session, then control is passed to operation 254,
which extracts the user Session ID and application domain
ID associated with the new user session. Operation 255
passes this information to the Session manager 104 So that
the Session manager 104 can establish a connection with the
Server with regard to the particular application associated
with the application domain ID. At operation 256, the
management processor 102 waits for the Session manager
104 to Start a new processing thread once the Session
manager 104 has established a connection with the server
asSociated with the listening device. If the Session manager
104 was Successful in Starting a new processing thread, then
operation 257 returns a notification of a Successful start-up
of a listening device thread asSociated with the new user
Session.

0.096 FIG. 17 illustrates examples of operations per
formed by a Session manager, and will be described with
reference to FIGS. 4A-4B, although these operations may
be used in other implementations as well. In FIG. 17, at
operation 260, the Session manager 104 checks to see if a
message has been received from the management processor
102. If so, then operation 262 determines whether the
message is a request for a new user Session and, if So,

Oct. 28, 2004

operation 263 Starts a new processing thread for a new user
Session, and control is returned to operation 260.

0097. If operation 262 determines that the message is not
a request for a new user Session, then operation 264 unen
capsulates the filter information contained within the mes
Sage-for example, the user Session ID and the application
domain ID-and operation 265 Starts a new processing
thread to be associated with the filter value obtained at
operation 264. Operation 266 waits for a response indicating
the Successful creation of the new processing thread and
upon Such Successful creation, operation 267 returns a
message to the management processor 102 indicating that
the thread was Successfully started.

0098. If there are no messages at operation 260 from the
management processor 102, then operation 268 retrieves any
messages from any of the processing threads that are active
within the listening device. If Such messages exist, then
operation 269 unencapsulates the payload portion of the
message, and operation 270 passes the payload portion
(shown as the “client/server” portion in FIGS. 6 and 7) to
the communication port for transmission from the listening
device to a multicasting engine.

0099 FIG. 18 illustrates examples of logical operations
for a processing thread of a listening device and will be
explained with reference to FIGS. 4A-4B, although these
operations may be used in other implementations as well. In
FIG. 18, a processing thread gets a message from an
inbound queue (i.e., 108A, 108B, 108C) associated with the
processing thread, at operation 280. Operation 282 unen
capsulates the message So as to extract the “client/server'
payload portion of the message. Operation 283 passes the
payload (also referred to as the transaction portion of the
message) to the Session manager 104, and operation 284
waits for a response from the Session manager 104. If a
Successful response is received, then control is passed to
operation 285.

0100 If at operation 280 there are no messages in the
inbound queue, then operation 285 determines whether there
are any messages for the processing thread from the Session
manager. If not, then control is returned to operation 280. If
operation 285 determines that there are messages for the
processing thread from the Session manager, then operation
286 encapsulates the data from the message into a new
message to be transmitted out to the appropriate multicasting
engine 80. Operation 287 adds the filtering information (i.e.,
the application domain ID and the user session ID) to the
message, and operation 288 adds the formed message to the
outbound queue for transmission to the appropriate multi
casting engine 80.

0101 FIG. 19 illustrates the general operations for cre
ating and initializing a queue in memory, and may be used
for creating a general queue or a inbound or outbound queue
of a processing thread, in accordance with one embodiment
of the present invention. At operation 290, memory is
allocated from a dynamic memory pool, and if this operation
is Successful, then at operation 292 the memory address for
the beginning of the queue is returned to the process that
requested the queue initialization. In this manner, the mod
ule which requested the creation of the queue now has a
memory address range for use in maintaining a queue of, for
instance, messages or other pieces of data. If operation 290

US 2004/0215596 A1

is unsuccessful, then operation 294 may return an error
message indicating that the request for the creation of a
queue was unsuccessful.

0102 FIG. 27 illustrates an example of a table or data
Structure which may be used by a multicasting engine to map
a user device or Server with a corresponding processing
thread. In FIG. 27, the table may be used to map elements
Such as an address (i.e., an IP source address), a Socket
identification (that, for example, identifies a physical or
Virtual port of the multicasting engine upon which the data
was received) and a processing thread identification or
address for a thread operating in the multicasting engine. In
this manner, when a message is received by a multicasting
engine, the table may be used as a look-up table to determine
to which processing thread, if any, within the multicasting
engine the message corresponds. This table may be main
tained as part of the port communications interface 99, or by
other portions of the multicasting engine. Also, non-IP
communication protocols may be Supported as well.

0103 FIGS. 28A-28B illustrate examples of tables
which may be used by a message processor (either 88 of
FIG. 4A or 100 of FIG. 4B) to determine if a message
should be processed or ignored. In this regard, these tables
may be used to “filter' or quickly examine a received
message and determine how to proceed with the received
message. In the table of FIG. 28A, a list of application
domain identifications with their respective user Session
identifications and inbound queues is maintained, in one
example. The application domain identifications in FIG.
28A are text based identifiers-Such as an application
domain identification of “Accounts Payable Voucher” which
maps to a user Session identification of "20 mapping to
inbound queue X, or an application domain identification of
“Accounts Receivable Adjustment' which maps to a user
Session identification of “23” mapping to inbound queue Y.
In FIG. 28B, the application domain identifications may be
numeric based. If a message processor determines that a
received message contains an application domain identifi
cation which should be serviced, then the message processor
can use the inbound queue information in the table to
determine the proper inbound queue to place the data of the
meSSage.

0104 FIGS. 20-24 illustrate alternative embodiments of
the present invention. In FIG. 20, a listening device is
embodied as one or more Software modules 300A, 300B
operating on a respective server device 302A, 302B with
which the listening device is associated. In this Sense, the
listening devices described herein with reference to FIGS. 3,
4B, and 14-18 are embodied as Software modules 300A,
300B operating on the respective servers 302A, 302B.

0105 FIGS. 21 and 22 show different embodiments for
positioning or locating the Servers and other components of
a system. In FIG. 21, a first listening device 310, server 312,
and multicasting engine 313 may be located at a first
location 314, Such as the client Site, for example, in a large
corporation. In order to provide geographical Separation, a
second listening device 316, associated server 318, and
multicasting engine 319 can be located at a data site 320,
which is remote and geographically Separated from the first
location 314. In FIG. 22, the client system 330 and one or
more multicasting engines 332 may be located at a first
location 334, and each of the listening devices 336, 338 and

Oct. 28, 2004

associated servers 340, 342 may be located at different
locations 344, 346, which are remote from the first location
334. Alternatively, multicasting engine 332 may be located
at location 344, 346, or another location remote from
location 334.

0106 The above described system and methods, in whole
or in part, may also be implemented in a single location to
improve the robustness of a computing System. Two or more
Servers may be provided, for instance, in a single rack to
provide fault tolerant operations in the event of a device
failure of one of the servers. Further, the above described
System and methods, in whole or in part, may be imple
mented in a disk Storage System for a computer System to
improve the robustness of disk read and write operations, as
shown in the example of FIG. 23. Two or more storage
devices, Such as disk drives, may be provided, for instance,
in a Single computing System to provide fault tolerant
Storage operations in the event of a device failure of one of
the Storage devices.

0107. In FIG. 23, a block diagram of a system for
multicasting replications of reads and writes to mass Storage
devices is shown. In this example, a server 350 is provided
with multiple and redundant network attached Storage
devices 352, 354, Such as mass Storage devices providing
persistent storage of data. Each storage device 352, 354 may
be provided with a listening device 356, 358, as describe
herein, and a multicasting engine 360 may be provided to
communicate between the Server 350 and the pairs of
listening devices 356, 358 and storage devices 352, 354.
Accordingly, when the server 350 writes data, for instance,
the multicasting engine 360 receives the write request and
transmits or multicasts the write request over a network 362
to at least two listening devices 356, 358, which each
independently and completely process the write request and
write the data to their respective persistent Storage device
352, 354. In this manner, if one of the storage devices 352,
354 becomes unavailable or fails, then the server 350 can
continue to operate utilizing the other available Storage
device.

0.108 Existing computer networks may be provided with
embodiments of the invention in various manners. In one
example, a Server farm or regional data center of an appli
cation Service provider can be provided with a multicasting
engine 30 embodied in a Server, and once the multicasting
engine 30 is operational, each user Session is configured to
be serviced by at least two application Servers located in
geographically different Servers farms or data centers.

0109 While the multicasting engine has been shown and
described herein as a device or module being Separate from
the user device, it is understood that one or more portions of
the multicasting engine or operations thereof may be inte
grated with or incorporated in the user device as desired. In
FIG. 24, a user device 370 is provided with a multicasting
engine 372 or one or more functions of a multicasting engine
as described herein. In this embodiment, the multicasting
engine may be implemented in the user device 370 so as to
pass a single result received from the two or more Servers
374 to the application layer 376 of the user device 370. In
FIG. 24, the application layer 376 is shown to contain
application 1 and application 2, in this example. For
instance, if application 1 is an application for which multi
casting is utilized, then the data processing requests gener

US 2004/0215596 A1

ated by application 1 are transmitted by multicasting engine
372 to the two or more servers 374 for processing in each of
the servers, as described above. When the results from the
two or more Servers are generated and transmitted to the
multicasting engine 372, the multicasting engine 372 passes
a single result to the application layer 376 for application 1,
in this example.
0110 Having described various embodiments of the
present invention, FIGS. 25-26 illustrate examples of sys
tems that may incorporate embodiments of the present
invention therein. It is understood that the examples of
FIGS. 25-26 are for illustrative purposes only, and that
embodiments of the present invention may be incorporated
into a wide variety of different computing environments or
computing systems. FIG.25 illustrates an example of a bank
account System utilizing an example of multicasting
described herein, while FIG. 26 illustrates an example of a
Stock trading enterprise or platform incorporating an
embodiment of the present invention.
0111. With reference to FIG. 25, a bank account system
utilizing multicasting is shown, in accordance with one
embodiment of the present invention. The System includes a
user device 380 coupled with a multicasting engine 382,
which is coupled with at least two data centers 384, 386
having persistent storage devices 388, 390, respectively. In
this example, the user device 380 is operating a bank
account application program 392, which contains account
information 394 for one or more customers of the bank.
Bank account information 394 is shown as "Joe Smiths'
account, and includes information Such as the account's
prior balance and account activity. In accordance with the
present invention, each bank data center 384 and 386
maintains complete and independent copies of the bank
account information 394. These copies are shown as 396 and
398. Whenever the bank account application 392 operating
on user device 380 has a request for data processing with
regard to the "Joe Smith' account of this example (i.e.,
reading account information or writing account informa
tion), then these requests are passed from the user device
380 to the multicasting engine 382, which transmits the
request to at least bank data center 384 and bank data center
386. Each bank data center 384, 386 completely and inde
pendently processes the data request and returns a result to
the multicasting engine 382. The multicasting engine 382
returns a single result to the user device 380, in one
embodiment.

0112 For instance, as shown in FIG. 25, assume that the
account information 394 has a prior balance of S500, and
S250 is being deposited in the account. At the user device
380, a user (such as a bank teller) would enter the S250
deposit amount into the bank account application program
392. The user device 380 would transmit a write request of
“deposit S250” to the multicasting engine 382, which would
then multicast or transmit the “deposit S250” request to at
least bank data center 384 and bank data center 386. Bank
data center 384 would receive the “deposit S250” request
and process the request at the bank data center 384, resulting
in a new balance for the account of S750. Bank data center
384 would store the new balance amount in its persistent
storage device 388 and return a result to the multicasting
engine 382 indicating that the new account balance is S750.
Likewise, bank data center 386 would receive the “deposit
S250 request and process the request in its account infor

Oct. 28, 2004

mation 398 to calculate a new balance of S750. Bank data
center 386 would store the new balance amount in its
persistent storage device 390, and transmit a return result to
the multicasting engine 382 indicating that the new account
balance is S750.
0113. The multicasting engine 382 would receive, asyn
chronously in one example, the results from bank data center
384 and from bank data center 386. In accordance with one
embodiment of the present invention, the multicasting
engine 382 would pass a single result to the user device 380
indicating that the new account balance is S750. Accord
ingly, the bank account application 392 would update its
account information 394 to reflect the new account balance.

0114. It can be seen that in FIG. 25 each bank data center
384 and 386 maintains Separate, independent, complete, and
State accurate data Sets of the bank account information. In
this manner, if one of the bank data centers (for instance,
bank data center 384) becomes unavailable, fails, or is the
subject of a disaster, then the user device 380 and bank
account application program 392 can transact banking busi
neSS utilizing bank data center 386 without significant
delayS.
0115 FIG. 26 illustrates an example of a stock trading
System or enterprise utilizing multicasting in accordance
with one embodiment of the present invention. In FIG. 26,
a user device 400 is provided with a stock trading account
application program 402, which permits a user to execute
Stock trading transactions over a network. In this example,
the user device 400 is coupled with a multicasting engine
404 having a transaction number module associated there
with. The transaction number module is a module that
generates a unique transaction or confirmation number and
asSociates this number with requests received from the user
device. This transaction number may be the same as the
sequence number shown in FIGS. 6 and 7, or may be
mapped to or associated with the Sequence number, in one
example.
0116 For instance, if a request received from a user
device should be Supplied with a unique transaction or
confirmation number, then the transaction number module
406 generates the unique number and associates the unique
number with the request. If a unique transaction number is
asSociated with the processing of a request, then multicast
ing engine 404 transmits the request along with the trans
action number to the at least two trading account data centers
410, 412. As shown in FIG. 26, the multicasting engine may
also be provided with an external interface 414 for commu
nicating with an external or third party network to perform
one or more computing processes. In this example, the
external interface 414 is coupled with a Stock exchange
computing system 408 Such as the NASDAQ computing
System or the NYSE computing System to execute Stock
trades.

0117 The multicasting engine 404 may also be provided
with logic 416 for determining communications over eXter
nal interface 414 with the computing system 408. For
example, when the multicasting engine receives data from
trading account data center 410 or 412, logic 416 may
determine that, based on the data received, a message should
be transmitted over external interface 414 to computing
system 408.
0118. In the example of FIG. 26, assume that the user of
application 402 has generated a request to “buy 100 shares.”

US 2004/0215596 A1

The user device 400 transmits this request to the multicast
ing engine 404. In this embodiment, the multicasting engine
404 utilizes a transaction number module 406 which gen
erates a unique transaction number to be associated with this
request. In one embodiment, the multicasting engine 404
transmits the request to “buy 100 shares” along with the
transaction number created by the transaction number mod
ule 406. As described variously above, the multicasting
engine transmits this request and associated transaction
number to at least two trading account data centers 410, 412
for processing therein. Each trading account data center 410,
412 completely and independently process this request-for
instance, by determining whether the user's trading account
has sufficient funds to satisfy this request to “buy 100
shares.” ASSuming there are Sufficient funds to Satisfy the
request, each trading account data center 410, 412 will
generate an “execute' of the buy order for this particular
transaction and transmit this information to the multicasting
engine 404. When the multicasting engine receives this data
from the trading account data centerS 410 or 412, the Logic
416 determines that the “execute buy order” message
received from the data centers 410, 412 necessitates that a
message be generated and transmitted over the external
interface 414 to the Stock exchange computing System 408.
Accordingly, in one embodiment, the Logic 416 performs
the appropriate message (i.e., “buy 100 shares') and trans
mits this message to the Stock exchange computing System
408. In this example, it can be seen that although at least two
trading account data centers 410, 412 processed and gener
ated a message to “execute” the buy order for 100 shares, the
actual transaction was only executed in one instance with the
Stock exchange computing System 408.
0119). It can be seen that in the example of FIG. 26, if
trading account data center 410 was struck by disaster,
failed, or became otherwise unavailable, the user's request
to buy 100 shares could be satisfied by utilizing trading
account data center 412 without Significant delays due to the
unavailability of trading account data center 410.
0120 Accordingly, it can be seen that the various
embodiments of the invention will provide the user with
continuous access to its data and to an operational net
worked System irrespective of a Server failure or unavail
ability due to disaster or other catastrophic failure.
0121 While the above description and drawings show
two or three Servers running a one or two applications and
handling requests from one or two users, it is understood that
a larger number of Servers could be used in a similar manner
to handle multiple applications running concurrently with
numerous requests from multiple users, depending upon the
particular implementation.

0.122 Various embodiments of the present invention may
be embodied as a computer program products including
computer uSable medium and computer readable code
embodied on the computer usable medium, the computer
readable code including computer readable program code
devices configured to cause the computer to perform or
effect one or more of the operations described herein.
0123. While the methods disclosed herein have been
described and shown with reference to particular operations
performed in a particular order, it will be understood that
these operations may be combined, Sub-divided, or re
ordered to form equivalent methods without departing from

Oct. 28, 2004

the teachings of the present invention. Accordingly, unless
Specifically indicated herein, the order and grouping of the
operations is not a limitation of the present invention.
0.124 While the invention has been particularly shown
and described with reference to various embodiments
thereof, it will be understood by those skilled in the art that
various other changes in the form and details may be made
without departing from the Spirit and Scope of the invention.
We claim:

1. A method for providing continuous operations of a user
application at a user computing device, the method com
prising:

providing at least two application Servers, each applica
tion Server running the user application;

in response to a user request for data processing within the
application, transmitting the user request to the at least
two application Servers for processing therein; and

passing a return result to the user computing device from
one of the at least two application Servers, said return
result corresponding to the user request as processed by
the one of the at least two application Servers.

2. The method of claim 1, further comprising:
providing at least two persistent Storage devices, wherein

a first persistent Storage device is associated with a first
Server of the at least two application Servers, and
wherein a Second persistent Storage device is associated
with a Second Server of the at least two application
SCWCS.

3. The method of claim 1, further comprising:
locating a first Server of the at least two application

Servers at a first location; and
locating a Second Server of the at least two application

Servers at a Second location.
4. The method of claim 3, wherein the first location is

geographically remote from the Second location.
5. An apparatus for processing communications between

a user device and at least two servers, comprising:
a module for receiving a user request relating to an

application program;
a module for transmitting the user request to the at least

two servers for processing therein; and
a module for forwarding to the user device a result

received from one of the at least two Servers, wherein
the result is responsive to the user request.

6. The apparatus of claim 5, further comprising:
a module for Storing a plurality of requests received from

the user device,
a module for Storing a plurality of results received from at

least one of at least two servers, and
a module for associating the plurality of results to a

corresponding one of the plurality of requests.
7. A System for providing continuous operations of a user

application at a user computing device, the System compris
Ing:

at least two servers, each Server having a persistent
Storage device associated there with, each Server
adapted to run the user application; and

US 2004/0215596 A1

a multicasting device for processing communications
between the user computing device and the at least two
SCWCS.

8. The system of claim 7, wherein in response to a user
request for data processing within the user application, the
multicasting device transmits the user request to the at least
two Servers for processing therein.

9. The system of claim 8, wherein the multicasting device
passes a return result to the user computing device from one
of the at least two servers, Said return result corresponding
to the user request as processed by the one of the at least two
SCWCS.

10. The system of claim 9, wherein the multicasting
device is a Server.

11. The system of claim 7, wherein a first server of the at
least two ServerS operates using a first operating System, and
a Second Server of the at least two ServerS operates using a
Second operating System.

12. The system of claim 7, wherein a first server of the at
least two servers is located at a first location, and a Second
Server of the at least two Servers is located at a Second
location.

13. The system of claim 12, wherein the first location is
geographically remote from the Second location.

14. A method for processing communications between a
user device and at least two servers, comprising:

receiving a user request relating to an application pro
gram,

transmitting the user request to the at least two servers for
processing therein; and

forwarding to the user device a result received from one
of the at least two servers, wherein the result is respon
Sive to the user request.

15. The method of claim 14, further comprising:
Storing a plurality of requests received from the user

device;
Storing a plurality of results received from at least one of

the at least two servers, and

Oct. 28, 2004

asSociating the plurality of results to a corresponding one
of the plurality of requests.

16. The method of claim 14, further comprising:

creating a record asSociated with the user request.
17. The method of claim 16, wherein the record has a

unique identifier associated with the record.
18. A method for providing a continuously operating

computing System for an application Service provider having
a plurality of ServerS Servicing a plurality of user devices,
each user device having a user Session including user
requests relating to at least one application program, the
method comprising:

configuring at least two servers to each run Said applica
tion program;

providing a multicasting Server for receiving a user
request relating to Said application program, Said mul
ticasting Server transmitting the user request to the at
least two servers for processing therein; and

upon receiving a first result from one of the at least two
Servers, forwarding the first result to the user device.

19. The method of claim 18, further comprising:

locating a first Server of the at least two servers at a first
location; and

locating a second server of the at least two servers at a
Second location.

20. The method of claim 19, wherein said first location is
remote from Said Second location.

21. The method of claim 18, further comprising:

asSociating a first persistent Storage device with a first
Server of the at least two servers, and associating a
Second persistent Storage device with a Second Server of
the at least two servers.

