发明名称
通过空中传送来下载和升级无线设备的终端软件

摘要
本发明涉及一种能够通过空中传送以有效且故障保险的方式下载和升级设备(9)的终端软件的通信设备(9)和方法。用于通过包括多个接入网络(5，7)的无线网络(19)从一个服务器(1)向所述通信设备(9)提供无线电软件的该方法包括下列步骤：启动该通信设备(9)的第一无线接入技术(15，17)的无线电软件的下载；选择用于下载该软件的该通信设备(9)的一个无线接入技术(15，17)；通过可用的无线接入技术(15，17)下载该无线电软件，其中为第一无线接入技术(15，17)设计的无线电软件存储在存储装置(13)的存储空间中。此外，本发明涉及一种在无线网络(19)中包括所述通信设备的系统以及一种包括用于执行根据本发明的方法的指令的计算机可读介质。
1. 用于通过包括多个接入网络的无线网络从软件下载服务器向通信设备提供无线电软件的方法，所述通信设备被配置成在所述无线网络中操作，并且包括用于接收所述无线电软件的收发信机以及存储装置，所述存储装置包括用于与所述无线网络的相应接入网络进行通信的至少两个无线电接入装置，该方法包括下列步骤:

 启动所述通信设备的第一无线接入装置的无线电软件的下载;
 选择用于下载所述软件的所述通信设备的无线接入装置;
 通过可用的无线接入装置下载所述无线电软件，其中为第一无线接入装置设计的无线电软件被存储在所述存储装置的存储空间中。

2. 根据权利要求1所述的方法，其中选择步骤包括下面的步骤:
 为下载所述无线电软件选择不是接收软件的主体的第二无线接入装置。

3. 根据权利要求2所述的方法，其中选择无线电接入装置的步骤包括下面的步骤:

 如果所述第二无线接入装置不可用于下载，那么选择所述第一无线接入装置用于所述下载。

4. 根据权利要求3所述的方法，其中所述存储装置包括用于临时存储的存储空间，其中选择步骤包括下面的步骤:

 如果所述第一无线接入装置在使用中，并且如果所述用于临时存储的存储空间可用于接收所述无线电软件，那么通过所述第一无线接入装置进行下载。

5. 根据权利要求1-3中任何一项所述的方法，其中为第一无线接入装置设计的无线电软件被存储在分配给所述第一无线接入装置的所述存储装置的存储空间中。

6. 根据权利要求1-4中任何一项所述的方法，进一步包括下面的步骤:在完成第一无线接入装置的无线电软件的下载时，检验下载的软件是可操作的。

7. 根据权利要求6所述的方法，其中检验步骤包括下面的步骤:
 在所述通信设备中执行本地测试过程。

8. 根据权利要求7所述的方法，其中执行测试过程的步骤包括下面的步骤:
 执行下载的软件的循环冗余校验;
执行该通信设备的软件配置的硬件逻辑的内置自测试；以及
执行下载的软件的环路测试。
9、根据权利要求7所述的方法，其中检验步骤包括下面的步骤；
如果所述本地测试过程是成功的，那么执行确认过程。
10、根据权利要求9所述的方法，其中检验步骤包括下面的步骤；
如果所述本地测试过程是不成功的，那么执行差错处理过程。
11、根据权利要求9所述的方法，其中执行确认过程的步骤包括下面的步骤；
通过所述第一无线装置发送测试消息到所述服务器；
如果通过所述第一无线装置在预定时间段内已经接收到确认消息，那么确定软件的下载是成功的；以及
如果通过所述第一无线装置在预定时间段内没有接收到确认消息，那么执行差错处理过程。
12、根据权利要求1－4中任何一项所述的方法，其中启动无线电软件的下载的步骤包括下面的步骤；
轮询所述通信设备关于所述通信设备的无线接入装置的软件的当前版本；
检查所述软件的版本对于所述服务器上可用的相应软件的当前版本是否是最新的；以及
如果所述软件的版本不是最新的，那么开始选择和下载。
13、根据权利要求1－4中任何一项所述的方法，其中所述通信设备包括用于启动无线接入装置的无线电软件的下载的启动装置，以及其中启动无线电软件的下载的步骤包括下面的步骤；
将指示消息通过所述无线网络从所述通信设备发送到所述服务器，该指示消息包括关于所述通信设备的无线接入装置的软件的当前版本的信息；
检查所述软件的版本对于所述服务器上可用的相应软件的当前版本是否是最新的；以及
如果所述软件的当前版本不是最新的，那么开始选择和下载。
14、根据权利要求1－4中任何一项所述的方法，其中启动无线电软件的下载的步骤包括下面的步骤；
在所述通信设备与接入网络连接时，将查询消息通过所述网络从所述接入
网络发送到所述服务器，以便检查对应于所述接入网络的所述通信设备的无线接入装置的新的软件版本是否可用；

检查所述软件的版本对于所述服务器上可用的相应软件的当前版本是否是最新的；以及

如果所述软件的当前版本不是最新的，那么开始选择和下载。

15. 一种被配置成在包括多个接入网络的无线网络中操作的通信设备，包括：收发信机，用于通过所述无线网络从软件下载服务器接收无线电软件；存储装置，用于存储与所述无线网络的相应无线接入网络进行通信的至少两个无线接入装置；还包括：

控制装置，用于控制所述收发信机和所述存储装置的操作，并且被配置成选择用于下载所述通信设备的第一无线接入装置的无线电软件的无线接入装置；以及

其中通过选择的无线接入装置下载该第一无线接入装置的所述无线电软件，并且将所述无线电软件存储在所述存储装置的存储空间中。

16. 根据权利要求15所述的通信设备，其中所述控制装置被配置成选择用于下载所述无线电软件的不是接收软件的主体的第二无线接入装置。

17. 根据权利要求16所述的通信设备，其中所述控制装置被配置成如果所述第二无线接入装置不可用于下载，那么选择所述第一无线接入装置以用于所述下载。

18. 根据权利要求17所述的通信设备，其中所述存储装置包括用于临时存储的存储空间，以及其中所述控制装置被配置成如果所述第一无线接入装置在使用中，并且如果所述用于临时存储的存储空间可用于接收所述无线电软件，那么选择所述第一无线接入装置以用于下载。

19. 根据权利要求15-17中任何一项所述的通信设备，其中为第一无线接入装置设计的无线电软件被存储在分配给所述第一无线接入装置的所述存储装置的存储空间中。

20. 根据权利要求15-18中任何一项所述的通信设备，其中所述控制装置被配置成在完成第一无线接入装置的无线电软件的下载时，检查下载的软件是否可操作的。

21. 根据权利要求20所述的通信设备，其中所述控制装置被配置成执行本
地测试过程。

22. 根据权利要求21所述的通信设备，其中所述控制装置被配置成执行：
下载的软件的循环冗余校验；该通信设备的软件配置的硬件逻辑的内置自测试；
以及下载的软件的环路测试。

23. 根据权利要求21所述的通信设备，其中所述控制装置被配置成如果所述
本地测试过程是成功的，那么执行确认过程。

24. 根据权利要求21所述的通信设备，其中所述控制装置被配置成如果所述
本地测试过程是不成功的，那么执行差错处理过程。

25. 根据权利要求23所述的通信设备，其中所述控制装置被配置成通过所述
第一无线装置发送测试消息到所述服务器；如果通过所述第一无线装置在预
定时间段内已经接收到确认消息，那么确定软件的下载是成功的；以及如果通
过所述第一无线装置在预定时间段内没有接收到确认消息，那么执行差错处理
过程。

26. 根据权利要求15所述的通信设备，进一步包括用于启动所述通信设备
的无线接入装置的无线电软件的下载的启动装置，以及其中所述控制装置被配
置成控制所述启动装置的操作。
通过空中传送来下载和升级无线设备的终端软件

技术领域

本发明一般而言涉及无线通信领域，尤其涉及一种能够通过空中传送（over-the-air）以有效且故障隔绝的方式下载和升级设备的终端软件的通信设备和方法。此外，本发明涉及一种在无线网络中包括所述通信设备的系统以及一种包括用于执行根据本发明的方法的指令的计算机可读介质。

背景技术

在一般而言的电信中以及特别是在无线通信领域中的迅速发展需要越来越频繁地更新包含在通信设备例如无线电接口中的软件应用程序。另外一个也有助于该发展的趋势是向通信设备提供越来越多的功能的不断增加的趋势，比如多个无线电接入技术（RAT），例如 WCDMA、GSM / GPRS、WLAN、蓝牙、IEEE 802.11a 或 IEEE 802.11b。为了提供不同种类的功能，无线网络往往不得不将新的功能逐渐引入其网络或者改变现有的功能。然而，这就需要已经存在于该网络中的通信设备（例如移动终端）能够在新的网络中操作，即在该网络中引入新的功能之后它们能够与新的网络互相操作。除上述之外，用户还希望在他或她的通信设备例如移动终端或膝上型电脑中可以使用软件应用程序的最新版本，即使根据技术的观点这是不必要的，这也是影响该快速发展的重要因素。

然而，问题在于现有的通信设备何时需要更新或接收一个软件应用程序（例如无线电电子邮件、操作系统）和用于操作或配置某个 RAT（例如终端-网络通信协议、算法和数据处理功能）的软件。典型地，该通信设备被带入一个服务中心来更新或接收一个应用程序，以使该通信设备能够提供与该应用程序相关的服务。这是费时的，并且也是昂贵的。

为了解决这个问题已经提出了许多解决办法。在 US 6,052,600 中披露了一种诸如蜂窝电话之类的无线电设备，其包括用于下载和升级该无线电设备的终端软件的专用下载信道。因此，没有必要为了升级包含在无线电设备中接收的软件而把无线电设备带到通信中心。例如，将蜂窝电话配置成为 CDMA 电话
或者作为 GSM 电话工作的软件。

然而，在 US 6,052,600 中描述的无线电设备和方法仍然伴随着许多问题和 / 或限制。首先，可能需要一个双存储器。换句话说，由当前软件版本占用的存储空间在新的版本被完全地下载之前不能够被释放，因为（至少一部分）旧的版本在下载进程（process）中在使用。第二，可能需要用于其它通信（正常业务）的资源被软件下载进程占用。如果存储在存储器中的旧软件的一部分被下载的更新重写（以便节省存储空间），那么可能在下载进程中根本不可能执行其它通信。最后，新软件的安装可能失败。在旧软件被删除之前没有发现的错误会导致一个不起作用的无线电接口，这不可能通过空中传送升级（使用错误的无线电功能）来修复。

因此，需要一种通信设备和用于通信设备的方法，其能够以有效且故障的保险的方式通过空中传送来下载和升级设备的终端软件，即不用将其带到服务中心。

发明内容

本发明的一个目的是提供一种通信设备和方法，其能够以有效且故障的保险的方式通过空中传送下载和升级设备的终端软件。根据本发明，这个目的和其它目的通过具有定义在独立权利要求中的特征的通信设备和方法来实现。优选实施例在从属权利要求中进行定义。

在本发明的上下文中，术语“通信设备”是指软件可编程的无线电通信终端。通信设备可以使用单一或双工通信技术进行接收、发射、或者接收和发射。通信设备可以是例如蜂窝电话、带有调制解调器的计算机、寻呼机或个人数字助理。此外，术语“无线网络”应该宽泛地理解为通信原则，而不只是实际的网络。

根据本发明的第一方面，提供一种用于通过包括多个接入网络的无线网络从服务器向通信设备提供无线电软件的方法，该通信设备被配置成在该无线网络中操作，并且包括用于接收该无线电软件的收发信机以及存储装置，该存储装置包括用于与该无线电网络的相应接入网络进行通信的至少两个无线电接入技术，该方法包括下列步骤：启动该通信设备的第一无线电接入技术的无线电软件的下载；选择用于下载该软件的该通信设备的一个无线电接入技术；通过可用的
无线接入技术下载该无线电软件，其中为第一无线电接入技术设计的无线电软件被存储在该存储装置的存储空间中。

根据本发明的第二方面，提供一种被配置成在包括多个接入网络的无线电网络中操作的通信设备，该通信设备包括：收发信机，用于通过该无线电网络从软件下载服务器接收无线电软件；存储装置，其包括用于与该无线电网络的相应无线电接入网络进行通信的至少两个无线电接入技术；还包括：控制装置，用于控制该收发信机和该存储装置的操作，并且被配置成选择用于下载该通信设备的第一无线电接入技术的无线电软件的一个无线电接入技术，并且其中通过选择的无线电接入技术来下载该第一无线电接入技术的无线电软件，并且将该无线电软件存储在该存储装置的存储空间中。

根据本发明的第三方面，提供一种在包括多个接入网络的无线电网络中的系统，该系统包括连接到该无线电网络的软件下载服务器以及至少一个根据本发明的第二方面的通信设备。

根据本发明的另一方面，提供一种计算机可读介质，其包括用于使可编程设备执行根据本发明的第一方面的方法的指令。

本发明基于使用通信设备的内置功能的思想，即在下载或升级该设备的一个无线电接入技术的软件时使用多个无线电接入技术。换句话说，本发明的基本原理是通过由该设备支持的一个可用无线电接入技术来下载或升级该一个无线电接入技术用的软件。

此解决方案提供了相对于现有解决方案的几个优点。一个优点是利用了通信设备的内置功能，因此该通信设备不必配备有用于下载和升级终端软件的任何专用下载信道。此外，软件下载能够作为后台进程执行，其不必与其它类型的业务协调或者妨碍其它类型的业务，所述其它类型的业务包括数据，控制，业务或无线服务。

附图说明

根据下面结合附图的仅仅举例说明的优选实施例的详细描述，本发明的上述特征和其它特征以及优点将是显而易见的，其中：

图1示意性地示出本发明的原理；
图2是根据本发明第一实施例的下载过程的流程图；
图 3 是根据本发明第二实施例的下载过程的流程图；
图 4a 是根据本发明一个实施例的通信设备中的检验（verification）过程的步骤的流程图；
图 4b 是根据在图 4a 中所示的本发明实施例的通信设备中的检验过程的步骤的流程图；
图 5a 是根据本发明第一实施例的服务器中的触发过程的步骤的流程图；
图 5b 是根据本发明第一实施例的通信设备中的触发过程的步骤的流程图；
图 6a-6b 是根据本发明第二实施例的触发过程的流程图；以及
图 7a-7b 是根据本发明第三实施例的触发过程的流程图。

具体实施方式

本发明提供一种适用于无线网络中的操作的方法和通信设备。该网络主要包括至少一个通信设备、至少一个基站和一个服务器。为了简单起见，该至少一个基站在后面的描述中将不进行讨论，因为它的功能以与该网络的其它部分的交互对本领域的技术人员来说是公知的。然而应该注意，该无线网络又包括多个无线子网络，例如，诸如 WLAN 之类的接入网络。

首先参考图 1，将描述本发明的主要原理。图 1 示出其中可以提供本发明的无线网络的简化框图。根据本发明的一个实施例，无线网络 19 包括软件下载服务器 1，例如位于与主干网络 3 连接的服务中心，该主干网络 3 又与其他无线接入网络 5 和 7 连接。所述接入网络可以是例如用于 WCDMA、GSM / GPRS、WLAN 或蓝牙的接入网络。通信设备 9 包括：收发信机 11，用于接收例如从服务器 1 传送的软件；存储器 13；启动装置 16，其被配置成启动或触发软件下载；以及控制器 18，用于控制例如在通信设备 9 中的软件下载进程。控制器 18 尤其被配置成选择用于下载无线电软件的无线接入技术。根据本发明的优选实施例，例如 WLAN 的第一无线接入技术 15 和例如 WCDMA 的第二无线接入技术 17 在存储器和软件配置的硬件 13 中执行。当然，还有其它想得到的实施例，例如可以在存储器 13 中执行三个无线接入技术。控制器 18 被连接到收发信机 11、存储器 13 和用于启动下载进程的装置 16。

下面是下载进程的主要原理。软件例如通信设备 9 的 RAT 的配置信息的下载可以由来自通信设备 9、服务器 1 或接入网络 5 或 7 的请求启动或触发，
这开始正如将在下面参考图5-7进一步描述的下载进程。在图1示出的例子中，用于第一RAT 15的软件是下载的主体(subject)。此后，当检测到第一RAT 15的软件版本对于包括在软件下载服务器1中的相应软件不是最新的时，识别出一个可用于下载的通信设备的RAT。这个检验过程也将参考图5-7进行描述，并且正如将要解释的，它可以根据如何触发该下载过程而不同。为了找到一个可用的RAT，执行一个检查或选择进程，这将在下面参考图2和3进行描述。

然而应当注意，第二RAT并不是以服务一个下载接口为唯一目的来实现，而是还作为一个通信接口。因此，第一RAT 15可以是包括为WLAN设计的软件的技术，该WLAN可以用于在局部热点区域中进行通信，而第二RAT 17可以是包括为具有连续覆盖范围的WCDMA设计的软件的技术。在这种情况下，第二RAT 17被发现可用于在上述过程中的下载。随后，针对第二RAT 17的软件通过接入网络5被无线地下载。在下载软件期间，软件被存储在存储器13中，这将参考图2和3进行更加详细的描述。

现在转到图2，将描述根据本发明第一实施例的下载过程。一开始，在步骤20，用于启动通信设备9的下载进程的装置16处于空闲状态。然而，设备的其它装置可能在运行中，例如第一RAT 15通过一个针对第一RAT 15的接入网络7可能处于通信状态中。在步骤21，对于第一RAT 15，触发来自服务器1的新版本软件的软件下载。下载进程可能以多种不同的方式进行触发，这将参考图5-7进行描述，例如通过启动装置16的方式。此外，在步骤22，执行通信设备9的第二RAT 17是否可用于下载的检查，即检查RAT 17是否被例如一个通信进程占用。如果通信设备9包括三个或更多个RAT，那么所有这些当然被包括在上述的检查进程中。如果第二RAT 17被识别为可用，那么在步骤23中通过主干网络3、第二RAT的接入网络5以及第二RAT 17执行下载18，并且在下载期间将软件存储在分配给第一RAT 15的存储空间中。优选地，当前存储在存储器13中的第一RAT 15的旧版本在下载进程中被重写。因此，可以节省存储空间。另一方面，如果发现第二RAT 17被另一进程占用，从而使得通过RAT 17下载软件非常慢或者甚至不可能，那么在步骤24中执行第一RAT 15是否在使用中的检查。如果第一RAT 15被识别出在使用中，那么在步骤25中禁止下载进程。

另一方面，如果第一RAT 15没有在使用，那么在步骤26中通过主干网络
3、第一 RAT 的接入网络 7、以及第一 RAT 15 执行下载，并且软件被存储在分配给第一 RAT 15 的存储空间中。优选地，当前存储在存储器 13 中的第一 RAT 15 的旧版本在下载进程中用新版本重写。因此，可以节省存储空间。

优选地，当下载完成时，执行一个测试，以检验第一 RAT 15 的软件已经被完全安装，或者确认下载的软件是否是错误的。如果发现新版本的 RAT 没有正确地工作，则启动差错处理进程，所述 RAT 在该例子中是第一 RAT 15。

为了实现软件的成功下载，该差错处理进程可以是例如重复该下载进程。这个测试进程将参考图 4 进行更详细的描述。

现在参考图 3，将描述根据本发明第二实施例的下载过程。一开始，在步骤 30，用于启动通信设备 9 的下载进程的装置处于空闲状态。然而，该设备的其它装置可能在运行，例如第一 RAT 15 通过一个针对第一 RAT 的接入网络 7 可能处于通信状态中。在步骤 31，对于第一 RAT 15，触发来自服务器 1 的软件下载。下载进程可能以多种不同的方式进行触发，这将参考图 5-7 进行描述。

此后，在步骤 32，执行通信设备 9 的第二 RAT 17 是否可用于下载的检查，即检查 RAT 17 是否被例如一个通信进程占用。如果通信设备 9 包括三个或更多个 RAT，那么所有这些当然被包括在上述的检查进程中。如果第二 RAT 17 被识别为可用，那么在步骤 33 中通过主干网络 3、第二 RAT 的接入网络 5、以及第二 RAT 17 执行下载 18，并且在下载期间将软件存储在分配给第一 RAT 15 的存储空间中。优选地，当前存储在存储器 13 中的第一 RAT 15 的旧版本在下载进程中被重写。因此，可以节省存储空间。

另一方面，如果发现第二 RAT 17 被另一进程占用，从而使得通过 RAT 17 下载软件非常慢或者甚至不可能，那么在步骤 34 中执行第一 RAT 15 是否在使用的检查。如果第一 RAT 15 被识别出在使用中，则在步骤 35 中执行检查，以检查在分配给第一 RAT 15 的存储空间中是否有足够的空闲存储空间来允许通过第一 RAT 15 的下载，而不干扰和 / 或中断通信设备 9 的其它进程。如果该检查得出在分配的存储空间中有足够的存储空间可用，那么在步骤 37 通过主干网络 3、第一 RAT 的接入网络 7、以及第一 RAT 15 执行下载，并且在下载期间将软件存储在步骤 35 中识别的分配给第一 RAT 15 的空闲存储空间中。在这种情况下，因为 RAT 15 在使用中，所以旧的版本不能被新的版本重写。
另一方面，如果在此检查期间发现分配给第一 RAT 15 的存储器中没有足够的空闲存储空间，那么在步骤 38 中禁止下载。然而，如果第一 RAT 没有在使用，那么在步骤 36 中通过主干网络 3、第一 RAT 的接入网络 7、以及第一 RAT 15 执行下载，并且在下载期间将软件存储在分配给第一 RAT 15 的存储空间中。优选地，当前存储在存储器 13 中的第一 RAT 15 的旧版本在下载进程中用新版本重写。因此，可以节省存储空间。

现在转到图 4a 和 4b，将给出根据本发明的一个实施例的检验进程或测试进程的描述，以用于确定软件的下载是否成功，即下载的软件是否在以正确的方式起作用。在步骤 40，在这种情况下作为通信设备 9 的客户端在软件下载完成时启动检验过程。例如客户端在此步骤的开始可能处于空闲状态。此后，在步骤 42 执行一个本地测试过程。根据一个实施例，这个步骤包括依次执行的下列测试：

- 下载的数据或软件的循环冗余校验 (CRC)。
- 该设备的软件配置的硬件逻辑的内置自测试 (BIST)。
- 软件的环路测试 (例如协议消息)。

正如本领域技术人员认识到的，存在能够执行的许多不同的本地测试来代替上述测试。

在步骤 42，如果这些测试的任何一个失败，那么执行一个差错处理过程。根据本发明的实施例，该差错处理过程包括参考图 2 或 3 描述的下载过程。

随后，在步骤 43，如果本地测试成功，则一个测试消息通过第一 RAT 15、接入网络 7 和主干网络 3 被发送到达软件下载服务器 1。在步骤 49，服务器处于空闲状态，并且在步骤 50，服务器接收该测试消息。然后，在步骤 51，执行该测试消息是否被正确接收的检查。如果没有正确接收，那么在步骤 52，服务器启动一个如上所述的差错处理过程。另一方面，如果正确接收的话，在步骤 53，服务器 1 通过主干网络 3，接入网络 7 和第一 RAT 15 将作为该测试消息的答复的确认消息发送到通信设备 9。此后，在步骤 54，服务器返回到初始状态，该初始状态在这种情况下是空闲状态。然后，在步骤 44，检查确认消息是否已经在一个预定时间段 T 内被通信设备 9 接收。这个预定时间段可能从几秒延续到几小时，这取决于例如通信系统的硬件。如果确认消息没有在预定时间段 T 内被通信设备 9 正确地接收，那么在步骤 45 启动一个如上所述的差错
处理过程。这个时间段从发送该测试消息一直计算到接收确认消息。另一方面，如果确认消息被通信设备在该预定时间段内正确接收，那么这个软件下载就被认为是成功的。然后，在步骤46，执行确认消息的内容是否是正确的检查。如果是，该客户端在步骤48返回到初始状态，该初始状态可能是空闲状态；以及如果不是，那么在步骤47启动如上所述的差错处理过程。在步骤48，当发现下载的软件在正确起作用时，那么还没有被重写的旧软件或者部分旧软件可以最终被重写。

现在参考图5a和5b，将描述根据本发明第一实施例的启动或触发过程。在该实施例中下载是由服务器启动的。首先，在步骤60，服务器处于空闲状态。然后，在步骤61，服务器接收用于第一RAT的15的一个新版本的软件，其可能可以用于在局部热点区域进行通信的WLAN。作为一个示例，与通信设备9连接的网络的运营商在服务器1中对于第一RAT的15执行新的或升级的版本的软件。此后在步骤62，服务器1发送一个轮询消息到客户端即通信设备9，其可能处于空闲状态，参见步骤63。该消息通过与当前通信设备相关的接入网络和RAT进行发送。在步骤64接收轮询信息后，客户端在步骤65用一个包括第一RAT的当前软件版本的信息的指示消息作出响应。此后，在步骤70，通信设备9返回到空闲状态。然后，在步骤66，服务器1从通信设备9接收所述指示消息。随后在步骤67，执行一个第一RAT的软件对于服务器的相应软件的最近或最新的版本是否是最新检查。然而，可能在服务器1中有几个可用的软件版本，每个包括不同的特征，在这种情况下，为了选择其中一个版本可以做一个选择。如果不是最新的，那么在步骤68开始或启动根据上面的描述的下载过程。然后，在步骤69，服务器返回到空闲状态。另一方面，如果发现第一RAT的软件版本是最新的，那么在步骤69服务器返回到空闲状态。

现在参考图6a和6b，将描述根据本发明第二实施例的启动或触发过程。一开始，在步骤80，客户端即在这种情况下的通信设备9处于空闲状态。然后，在步骤81，触发过程由用户启动，这可能是由于需要或期望通信设备9的特定RAT的一个新的或更新的软件版本，或者由设备自身的内部指令通过使用通信设备9的启动装置16请求通信设备9更新包含在通信设备9中的特定RAT的软件来启动触发过程。随后，在步骤82，通过通信设备9的任意RAT和主干网络3，通信设备9将一个指示特定RAT的当前软件版本的软件查询消息发送
到服务器。之后，在步骤 83，通信返回到一个初始状态。一开始，在步骤 84，服务器处于空闲状态，并且在接收软件查询消息之后，在步骤 85，服务器被置于一个激活状态。然后在步骤 86 执行一个特定 RAT 的软件对于服务器的相应软件的最近或最新的版本是否是最新的检查。然而，可能在服务器中有几个可用的软件版本，每个包括不同的特征，在这种情况下，为了选择其中一个版本可以做一个选择。如果不是最新的，那么在步骤 87 启动根据上面的描述的下载过程。然而在步骤 88，服务器返回到空闲状态。另一方面，在步骤 88，如果发现第一 RAT 的软件版本是最新的，则服务器直接返回到空闲状态。

现在参考图 7a 和 7b，将描述根据本发明第三实施例的启动或触发过程。在该实施例中，客户端即在这种情况下的通信设备 9 将在触发过程中处于空闲状态。该过程由通信设备 9 的 RAT 的软件启动，该检查在这种情况下是在客户端和 RAT 的接入网络之间的正常关联过程的一部分。例如，如果通信设备连接到 WLAN，那么检查通信设备 9 的相应 RAT 的软件。一开始，在步骤 90，一个特定接入网络处于空闲状态。然后，在步骤 91，作为关联过程的一部分，接入网络执行一个对通信设备的相应 RAT 软件的检查，即检索关于当前软件版本的信息。此后，在步骤 92，接入网络通过主干网络 3 发送一个软件查询消息到服务器 1，并且在步骤 94 返回到空闲状态。一开始，在步骤 94，服务器处于空闲状态，并且在接收到软件查询消息之后，在步骤 95 服务器被置于一个激活状态。然后，在步骤 96，执行一个特定 RAT 的软件对于服务器的相应软件的最近或最新版本是否是最新的的检查。然而，可能在服务器 1 中有几何的可用的软件版本，每个包括不同的特征，在这种情况下，为了选择其中一个版本可以做一个选择。如果不是最新的，在步骤 97 启动根据上面的描述的下载过程。然后，在步骤 98，服务器返回到空闲状态。另一方面，在步骤 98，如果发现第一 RAT 的软件版本是最新的，则服务器直接返回到空闲状态。

尽管在这里为了说明和例证的目的已经示出和描述了特定的实施例，但是本领域的普通技术人员将会理解，在不偏离本发明范围内的情况下，示出和描述的特定实施例可以被各种各样的替代和/或等同实现来代替。本领域普通技术人员将容易认识到，本发明能够以各种各样的实施例来实现，包括硬件和软件实现或者二者的组合。作为示例，上述的许多功能可能由包括在一个微芯片或类似数据载体的适当的软件来获得和执行。本申请打算覆盖在这里讨论的优
选实施例的任何适应性修改或变化。因此，本发明由所附权利要求书及其等同物的措词来限定，并且本发明不被看作仅仅限于在实施例中描述的结构或功能元件，而是由所附权利要求书来限定。
图 4a
图 4b