WO 2006/098736 A1 || 0000000 0 000 R0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 September 2006 (21.09.2006)

2|) R
2 |0 0 00O 0

(10) International Publication Number

WO 2006/098736 Al

(51) International Patent Classification:
GI10L 19/00 (2006.01)

(21) International Application Number:
PCT/US2005/013507

(22) International Filing Date: 19 April 2005 (19.04.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/661,527 14 March 2005 (14.03.2005) US

(71) Applicant (for all designated States except
NIELSEN MEDIA RESEARCH, INC.
770 N. Broadway, New York, NY 10003 (US).

Us):
[US/US];

(72) Inventors; and

(75) Inventors/Applicants (for US only): PRICE, Lois
[US/US]; 10437 Lightner Bridge Drive, Tampa, Florida
33626 (US). RAMASWAMY, Arun [US/US]; 10710
Tavistock Drive, Tampa, Florida 33626 (US). COOPER,

(74)

(81)

(84)

Scott [US/US]; 884 Cypress Lakes Blvd., Tarpon Springs,
Florida 34688 (US).

Agent: HANLEY, Mark G.; HANLEY, FLIGHT &
ZIMMERMAN, LLC, 20 N. Wacker Drive, Suite 4220,
Chicago, IL 60606 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

[Continued on next page]

(54) Title: COMPRESSED DOMAIN ENCODING APPARATUS AND METHODS FOR USE WITH MEDIA SIGNALS

124
N

308
TRANSPORT
STREAM
PROCESSOR

300

STREAM
READER

310

TRANSPORT

312

PACKET

(57) Abstract: Apparatus, methods, and
articles of manufacture for encoding a com-
pressed media stream are disclosed. A disclosed
method encodes frames associated with one or
more compressed media streams (400) within
the media signal on a frame-by-frame (408)
basis and releases for transmission an encoded
version of the media signal containing the
encoded frames on a packet-by-packet basis

(416).

STORE PARSER

— |

316

|| PACKET HOLD
QUEUE

FRAME STORE

314 |

PACKET WRITE |, — 318
QUEUE

|

STREAM
WRITER

|~ 320

BUFFER 304

MANAGER

302

INPUT BUFFER

306

VIRTUAL BUFFER

WO 2006/098736 A1 1IN0 NDVOH0 AT 00 0O AR

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Gazette.

— with international search report

WO 2006/098736 PCT/US2005/013507

COMPRESSED DOMAIN ENCODING APPARATUS AND METHODS FOR USE
WITH MEDIA SIGNALS
RELATED APPLICATION
[0001] This application claims the benefit of the filing date of U.S. Provisional
Application No. 60/661,527, filed on March 14, 2005, the entire disclosure of which
is incorporated herein by reference.
FIELD OF THE DISCLOSURE
[0002] The present disclosure relates generally to media metering and, more
specifically, to encoding apparatus, methods, and articles of manufacture for encoding
compressed media signals.
BACKGROUND
[0003] The monitoring or metering of audience media consumption activities, such
as the consumption of television and/or radio programs, often involves the encoding
of broadcast media at a headend distribution station. Typically, the encoding process
encodes or otherwise embeds information such as, for example, ancillary codes
identifying respective broadcast sources or stations and/or particular programs, time
stamp information, or any other information that may be useful for identifying and
analyzing the media consumption activities and/or characteristics of aﬁdience

members.

[0004] The mandate by the Federal Communications Commission that television
stations migrate to Advanced Televisions Standards Committee (ATSC) digital
television (DTV) service has caused many television network providers to adopt new
distribution models that change the characteristics of the network feeds provided to
local affiliates for distribution to consumption sites (e.g., consumer homes). For

example, in some cases, media content is distributed from the network origination

WO 2006/098736 PCT/US2005/013507

source through the local affiliate(s) and to the consumption sites in a pre-packaged
ATSC motion picture experts group version 2 (MPEG-2) DTV format. In other
words, the media content is provided in and remains in a compressed digital format
throughout the distribution process and is only decompressed and decoded at its final
consumption destinations (e.g., consumer homes). Tile distribution of media content
in such a compressed format can significantly reduce transmission costs for high
definition program content (e.g., reduces the costs associated with having to purchase
satellite bandwidth and the like) and can reduce the capital expenditures (e.g.,
equipment purchases) by affiliate stations needed to convey high definition program
content to consumers. Rather, in these compressed content distribution systems, the
local affiliate or final distributor can insert local content (e.g., local programs,
commercials, etc.) using an MPEG splicer or the like, which does not require the
decompression and/or decoding of the compressed media signal(s) received from the

upstream network provider.

[0005] The above-noted migration by television stations to distribution models
based on the distribution of compressed media content has complicated the task of
encoding media signals with metering data (e.g., ancillary codes, timestamps, etc.).
For example, some known systems encode media transmitted via a local affiliate with
one or more codes identifying that affiliate as a final distributor by encoding an
uncompressed version of an audio portion of the media signal with the identifying
codes. However, in the case where a local affiliate receives network broadcast media
content in a compressed format (e.g., MPEG-2 format), the local affiliate or final
distributor cannot easily access the uncompressed audio portion of the compressed
media signal(s) received from the upstream network provider. More specifically, in

the case of an MPEG-2 compliant media signal, the media signal is provided in a

WO 2006/098736 PCT/US2005/013507

packet-based transport stream or digital data stream that may be carrying multiple
programs and, thus, multiple video and/or audio streams. The audio streams are
typically composed of compressed audio data (e.g., AC-3 formatted) packets that are
interleaved among one another and a variety of other types of packets (e.g., video
packets, program association table (PAT) packets, program and system information
protocol (PSIP) packets, program map table (PMT) packets, etc.). In any event, the
local affiliate or distributor cannot typically easily decompress one or more
compressed audio streams, encode those decompressed streams with metering data,

and recompress the encoded streams in real-time.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] FIG. 1 depicts an example media monitoring system that uses the example
encoding methods, apparatus, and articles of manufacture described herein.
[0007] FIG. 2 is a diagram depicting an example manner in which the packets
composing a frame of a media stream may be interleaved within a transport stream.
[0008] FIG. 3 is a detailed block diagram of an example implementation of the
encoder shown in FIG. 1.
[0009] FIG. 4 is a flow diagram depicting an example encoding process that may
be performed by the example encoder shown in FIG. 3.
[0010] FIG. 5 is detailed flow diagram depicting an example process that may be
performed by the packet store of FIG. 3 to identify a next transport stream packet for
processing. |
[0011] FIG. 6 is a detailed flow diagram depicting an example process that may be
used to implement the buffer manager pointer request process of FIG. 5.
[0012] FIG. 7 is a detailed flow diagram depicting an example process that may be

used to implement parse/process packet process of FIG. 4.

WO 2006/098736 PCT/US2005/013507

[0013] FIG. 8 is a detailed flow diagram depicting an example process that may be
used to implement the parse packet payload for slice boundaries process of FIG. 7.
[0014] FIG. 9 is a detailed flow diagram depicting an example process that may be
used by the hold queue of FIG. 3 to receive packet objects from the example
parse/process packet process of FIG. 7.
[0015] FIG. 10 is a detailed flow diagram depicting an example process that may
be used to implement the remove frame from hold queue process of FIG. 4.
[0016] FIG. 11 is a detailed flow diagram depicting an example process that may
be used to implement the transmit packet(s) block of FIG. 4.
[0017] FIG. 12 is block diagram depicting an example of the relationships between
programs in a transport stream, elementary streams composing the programs, and
major/minor channel pairs.
[0018] FIG. 13 is a block diagram of an example processor system that may be
used to implement one or more of the functional blocks of the example encoder
apparatus of FIG. 3 and/or one or more of the blocks of the example processes shown
in FIGS. 4-11.

DETAILED DESCRIPTION
[0019] Although the example systems described herein include, among other
components, software executed on hardware, such systems are merely illustrative and
should not be considered as limiting. For example, it is contemplated that any or all
of the disclosed hardware and software components could be embodied exclusively in
dedicated hardware, exclusively in software, exclusively in firmware or in some
combination of hardware, firmware, and/or software.
[0020] In addition, while the following disclosure is made with respect to example

television and radio systems, it should be understood that the disclosed system is

WO 2006/098736 PCT/US2005/013507

readily applicable to many other media systems. Accordingly, while the following
describes example systems and processes, persons of ordinary skill in the art will
readily appreciate that the disclosed examples are not the only way to implement such
systems.

[0021] In general, the example apparatus, methods, and articles of manufacture
described herein may be used to insert, embed, or otherwise encode data such as
media source identifiers, timestamps, alternative audio, or any other information in a
compressed media signal such as, for example, a compressed digital transport stream.
In the particular examples described herein, the compressed digital transport stream is
an MPEG-2 transport stream (e.g., compliant with the ATSC standard, DVB-T
standard, etc.) containing at least one AC-3 formatted audio stream. However, the
apparatus, methods, and articles of manufacture described herein could also be
applied to other compressed digital data formats including similar or different types of
audio and/or video data.

[0022] As described in greater detail below, the example encoding apparatus,
methods, and articles of manufacture enable the encoding or modification of a
compressed digital transport stream including a plurality of media streams (e.g.,
multiple video and/or audio streams associated with one or more programs) without
requiring demultiplexing, decoding, and/or decompression of the data within the
digital transport stream. Further, the examples described herein encode data in the
transport stream while preserving the size (e.g., byte width) and location of the
original data within the transport stream. As a result, the examples described herein
can be used to encode an MPEG data stream, for example, without changing the
timing of the various components making up that data stream. In one example,

encoding is performed by watermarking selected audio data packets. In another

WO 2006/098736 PCT/US2005/013507

example, encoding is performed by inserting data in expanded auxiliary data fields of
audio data frames. In yet another example, encoding is performed using a
combination of watermarking and auxiliary data field data insertion. While media
encoding often involves inserting or embedding code values representative of media
source information, media consumption information, or the like, the apparatus,
methods, and articles of manufacture described herein may also be used to perform
other types of encoding or encode other types of information. For example, the
apparatus, methods, and articles of manufacture described herein may be used to
encode (e.g., insert) other information such as, for example, alternative audio (e.g.,
voice over information) in selected audio data packets.

[0023] Regardless of the type of information encoded, the example encoding
apparatus, methods, and articles of manufacture described herein buffer a segment of
a multi-program digital data stream or transport stream and selectively parse the
buffered segment of the transport stream to extract copies of compressed audio data
packets, each of which may contain data associated with one or more of plurality of
component audio data streams. The locations of the copied compressed audio data
packets within the original digital transport stream are stored for reference during a
subsequent re-insertion or copying process. The examples described herein assemble
the copied compressed audio data packets into respective frames, each of which is
associated with one of the plurality of audio data streams. When a complete frame is
assembled (i.e., with copies of the relevant audio data packets or slices), the frame is
encoded with metering data (e. g., a source identifier, timestamp, etc.). The encoded
frame is then decomposed into its component data slices, each of which is then copied
using the stored location data over its corresponding location in the buffered segment

of the original transport stream. A portion (e.g., a contiguous sequence of packets) of

WO 2006/098736 PCT/US2005/013507

the buffered transport stream for which all audio packets to be encoded have been
completely encoded is then released and transmitted or broadcast. The released
portions of the buffered transport stream may vary in size from a single transport
packet to multiple transport packets. Thus, the example encoding apparatus, methods,
and articles of manufacture described herein may be used to encode one or more
selected compressed data streams within a multi-program digital transport stream on a
frame-by-frame basis and transmit portions of the encoded digital transport stream on
a packet-by-packet basis.

[0024] Now turning to FIG. 1, an example media metering system 100 includes a
media distribution facility 102, at least one monitored media consumption site 104,
and a central data collection facility 106. In general, the media distribution facility
102 is configured to encode and broadcast or otherwise transmit one or more media
signals containing video and/or audio content to the monitored consumption site 104
(e.g., a household). In turn, the monitored consumption site 104 is configured to
extract the encoded data or information from media signals consumed (i.e., viewed,
listened to, etc.) by one or more panelists or respondents associated with the
monitored consumption site 104. The extracted encoded data may then be conveyed
to the central data collection facility 106 and analyzed to determine viewing behaviors
and, more generally, the characteristics, patterns, etc. of the media consumption
activities associated wifh panelists, multiple consumption sites, etc.

[0025] The media distribution facility 102 may be located at any point or level
within a multi-level media distribution system. For example, the media distribution
facility 102 may be a geographically local broadcast station that is affiliated or
otherwise associated with a national broadcasting company. In that case, the media

distribution facility 102 receives one or more media signals from the national

WO 2006/098736 PCT/US2005/013507

broadcasting company to be distributed (e.g., re-broadcast) via cable, wirelessly, or in
any other manner to customers in a particular geographic service region.
Additionally, the media distribution facility 102 may also generate or provide local
media content or programming such as local news, commercials, community service
programs, and the like, to be separately broadcast on different local channels and/or
inserted into the media content and channels received from the national broadcasting
company.

[0026] The media distribution facility 102 includes a plurality of media sources
108 and 110 that provide media content such as audio and/or video programs, web
pages, still images, or any other consumable audio information, image information,
etc. In one example, the media source 108 is provided by a media distribution entity
upstream in the overall media distribﬁtion system. For example, the media source 108
may be a national broadcasting company or another similar headend media source. In
the case where the media source 108 is an upstream entity, the media source 108 may
provide one or more media signals 112 using one or more compressed digital data
streams. Such compressed digital data streams are often generally referred to as
transport streams because such compressed digital data streams are specifically
configured to packetize and/or encapsulate information for reliable transport via a
communication link. Accordingly, the terms “transport stream” and “data stream”
may be used interchangeably throughout the description herein.

[0027] The transport stream 112 provided by the media source 108 may have any
desired format or protocol. However, in the examples described herein, the media
source 108 is configured to provide an MPEG compliant transport stream. MPEG is a
well-known compressed digital data transmission standard that enables the

transmission of a plurality of audio and/or video programs within a single data stream.

WO 2006/098736 PCT/US2005/013507

As a result, the transport stream 112 provided by the media source 108 may be
referred to as a multi-program transport stream, including, for example, a plurality of
broadcast channels, each of which may be associated with particular media programs
broadcast at particular times, conveying audio and/or video information. In some
examples, the media source 108 provides an ATSC compliant MPEG-2 transport
stream and, in other examples, the media source 108 provides a DVB-T MPEG-2
compliant transport stream.

[0028] The transport stream 112 provided by the media source 108 is composed of
a sequence of digital data packets, some of which contain video information
associated with one or more programs, channels, etc. Other data packets within the
transport stream contain audio information or programs, which may be separate from
or, alternatively, part of the video programs or information. In other words, the audio
data packets within the transport stream may be associated with an audio portion of a
television program or, alternatively, may be a radio program, which does not have a
video component. Still further, other data packets within the transport stream 112
contain configuration information, information concerning the relationships among
the various data packets within the transport stream 112, etc. In particular, in the case
where the media source 108 provides an MPEG-2 compliant transport stream, the
transport stream 112 contains PSIP tables, program association tables (PAT’s), and
program map tables (PMT"s), all of which may be used to associate particular data
packets with particular major and/or minor channels, particular data packets
containing audio information (e.g., AC-3 packets) with corresponding video packets
Or programs, etc.

[0029] In contrast to the media source 108, the media source 110 is local to the

distribution facility 102. For example, the media source 110 may be a digital versatile

WO 2006/098736 PCT/US2005/013507

disk player, a hard drive containing stored audio and/or video information, a video
tape playback device, etc. In some examples, the media source 110 provides an
analog media signal 114, which is conveyed to an MPEG encoder 116 for conversion
into a digital data stream or transport stream 118 similar or identical in format to the
transport stream 112 provided by the media source 108. The transport streams 112
and 118 are provided to a multiplexer 120, which multiplexes the streams 112 and
118 to form a single multi-program transport stream 122.

[0030] A compressed domain encoder 124 receives the multi-program transport
stream 122 and encodes the multi-program transport stream 122 to include source
identifiers, time stamps, and/or any other information pertaining to the source(s), type,
or nature of the audio and/or video content provided via the transport stream 122. As
noted generally above and described in greater detail below, the compressed domain
encoder 124 encodes (e.g., inserts, embeds, etc.) information in the multi-program
digital transport stream 122 in real-time without decompressing or decoding the
digital information contained therein. More specifically, in the examples described
herein, the compressed domain encoder 124 parses the multi-program transport
stream 122 to identify data packets associated with one or more compressed audio
data streams, each of which may be associated with a different channel or program.
In one example where the transport stream 122 is an MPEG-2 compliant data stream,
the audio packets identified by the encoder 124 are AC-3 formatted audio data
packets, each of which has a 4-byte header and a 184-byte payload. However, the
apparatus, method, and articles of manufacture described herein may be more
generally applied for use with other audio data packet formats, protocols, etc.

[0031] Once identified by the encoder 124, the audio data packets or portions

thereof are copied and stored in one of a plurality of frame buffers, each of which

10

WO 2006/098736 PCT/US2005/013507

uniquely corresponds to a particular audio data stream (e.g., a particular channel or
program). In this manner, the encoder 124 uses the frame buffers to reassemble
copies of one or more audio data frames associated with one or more programs or
channels within the multi-program transport stream 122. Each identified audio data
packet may contain one of more slices of data. For example, some of the identified
audio data packets may contain audio information associated with two audio frames
from a particular audio stream. The portions of information copied and saved in the
frame buffers may be referred to throughout this description as slices, where any
given frame of a particular audio stream is composed of multiple slices, which may
have different data widths (e.g., a different number of data bytes) depending on
whether the slices were part of a data packet containing information relating to
multiple audio frames or part of a data packet containing information relating to only
a single audio frame. |

[0032] When the compressed domain encoder 124 has assembled a copy of a
complete frame within any of its frame buffers, that frame copy is encoded (e.g.,
information is inserted, embedded, etc.) to include source identifying information
(e.g., information identifying a broadcaster, a distribution level, etc.), time stamps,
and/or any other desired ‘information. As the compressed domain encoder 124 copies
and saves slices of frames in respective frame buffers, the original location of each
slice within the multi-program transport stream 122 is saved in association with that
slice. The encoder 124 can then insert each slice of an encoded frame into its
respective original position within a previously buffered portion or segment of the
multi-program transport stream 122. Thus, the encoder 124 encodes compressed
digital audio frames on a frame-by-frame basis and inserts the encoded information in

the original multi-program transport stream 122 in a manner that preserves the size of

11

WO 2006/098736 PCT/US2005/013507

the packets within the transport stream 122 and the timing of the data contained with
the transport stream 122.

[0033] The encoder 124 monitors an encoded version of the transport stream 122
to determine whether one or more packets of the encoded transport stream should be
conveyed to a transmitter 126. As described in greater detail below, the encoder 124
only releases contiguous blocks of packets (or a single packet) from the encoded
transport stream in sequence and only those packets which are no longer needed for
the encoding process. Thus, because the audio packets making up audio frames
within the transport stream 122 are typically interleaved, the encoding process
performed by the encoder 124 may complete its encoding activities for packets
temporally located subsequent to packets for which encoding activities are not yet
complete.

[0034] Turning to FIG. 2, an example segment of the multi-program transport
stream 122 (FIG. 1) processed by the encoder 124 (FIG. 1) includes twenty-eight
transport packets or data packets. In the case where the transport stream 122 is an -
MPEG-2 data stream, one or more audio streams may be carried within the transport
stream as AC-3 packets. As depicted in the example of FIG. 2, a first frame 128 of a
first audio stream is composed of slices corresponding to packets 1, 5, 9, 11, and 15.
Similarly, a first frame 130 of a second audio stream is composed of slices
corresponding to transport packets 6, 12, 16, 18, and 22. Thus, each of the frames 128
and 130 is composed of five slices, where the first and fifth slices of each of the
frames 128 and 130 are composed of only a portion of its corresponding packet. For
example, the first and fifth slices of the first frame 128 of the first audio stream
correspond to portions of transport packets 1 and 11, respectively. Second frames 132

and 134 of the first and second audio streams are composed of slices corresponding to

12

WO 2006/098736 PCT/US2005/013507

at least packets 15, 19, 22, and 23 as shown. The remaining slices of the frames 132
and 134 may correspond to transport packets occurring subsequent to the twenty-
eighth packet. Thus, certain packets (e.g., those for which only a portion is used to
compose a respective slice) such as, for example, packets 15 and 22, are shared by
different frames of a given audio stream. Each of the frames 128, 130, 132, and 134
may be associated with a frame buffer. For example, the slices of the first and second
frames 128 and 132 of the first audio stream may be stored in a first frame buffer, and
the slices of the first and second frames 130 and 134 of the second audio stream may
be stored in a second frame buffer. Additionally, those packets not associated with
one of the frames 128, 130, 132, and 134 in FIG. 2 may be associated with audio
packets of audio streams that are not to be encoded, video packets, PMT packets,
PSIP packets, PAT packets, etc. |

[0035] During the encoding process, the encoder 124 (FIG. 1) assembles a
complete copy of the first frame 128 of the first stream before copies of the remaining
audio frames 130, 132, and 134 are complete. Thus, the encoder 124 encodes the
frame 128 with identifying information as desired and substitutes, copies, or
overwrites the slices of the encoded frame to the original data packet locations in the
transport stream from which those slices were obtained during the copying process.
For example, the first slice of the encoded frame 128 is returned or copied to the
location of packet 1, the second slice is copied to the location of packet 5, the third
slice is copied to the location of packet 9, the fourth slice is copied to the location of
packet 11, and the fifth slice is copied to the location of packet 15.

[0036] After having processed packets 1-15 of the transport stream and after
encoding the first frame 128 of the first stream, the encoder 124 may determine what

portion, if any, of the transport stream can be released or conveyed to the transmitter

13

WO 2006/098736 PCT/US2005/013507

126 (FIG. 1). In this example, although the encoder 124 has copied and encoded
packets among packets 1-15, the encoder 124 has not yet encoded packet 6, for
example, because a copy of the first frame 130 of the second stream is not complete
until packet 22 has been processed by the encoder 124. Thus, the encoder 124 cannot
yet convey packet 6 to the transmitter 126. Accordingly, in this example, the encoder
124 conveys only packets 1-5 to the transmitter 126 because those packets are no
longer needed to complete the encoding process for any other frame. As can be seen
from the above example, the encoder 124 is configured to encode the multi-program
transport stream 122 on a frame-by-frame basis (i.e., one frame at a time) and to
transmit an encoded transport stream on a packet-by-packet basis (i.e., one or more
packets at a time). A more detailed discussion of the manner in which packet
interleaving affects the order in which frames are encoded and the manner in which
packets of an encoded transport stream are released and/or transmitted is provided in
connection with FIGS. 3-12 below.

[0037] Referrihg again to FIG. 1 in detail, the transmitter 126 sends encoded
portions or blocks (e.g., one or more packets) of the transport stream 122 via a
communication link 150 to a receiver 152 (e.g., a set-top box). The communication
link 150 may be a wireless link (e.g., a satellite link, a radio frequency link, etc.), a
hardwired link (e.g., a cable link), or any combination thereof. The réceiver 152 may
provide a variety of tuning functions that enable a person at the consumption site 104
to tune to a particular channel or program. Additionally, the receiver 152 may
provide a variety of user interface features such as graphical program guides, security
features to prevent unauthorized viewing of particular channels and/or programs,

configuration instructions and/or menus, etc.

14

WO 2006/098736 PCT/US2005/013507

[0038] The receiver 152 is coupled to a media presentation device 154, which may
be a video monitor, a television, including speakers, or any other device capable of
rendering audio and/or video information in a manner that is consumable by a person.
The receiver 152 is also coupled to a metering device 156, which is configured to
decode or extract the information encoded in the multi-program transport stream 122
by the encoder 124. Thus, the information extracted by the metering device 156 can
include source identifiers (SID’s), time stamps inserted by the encoder 124, or any
other information embedded or otherwise inserted in the transport stream 122 by the
encoder 124, Additionally, the metering device 156 may also associate locally
generated information such as, for example, identifying information (e.g., names,
demographic information, etc.) associated with one or more persons consuming media
presented via the media presentation device 154. Further, the metering device 156
may also include locally generated time information (e.g., time stamps) to be
associated with SID’s or other information associated with programs, channels, etc.
consumed at the consumption site 104.

[0039] The metering device 156 is configured to periodically or substantially
continuously convey the media consumption information it extracts or collects to the
data collection facility 106 via a communication interface 158 and communication
link(s) 160. The communication interface 158 may be a modem or any other suitable
device. The communication link(s) 160 may include any desired combination of
hardwired and wireless links and/or networks including, for example, telephone
networks, cable networks, the Internet, etc.

[0040] The data collection facility 106 includes a processing system 162 and a
database 164 that is coupled to the processing system 162. The processing system

162 is configured to analyze information sent to it by the consumption site 104

15

WO 2006/098736 PCT/US2005/013507

together with information sent by one or more other consumption sites (not shown).
For example, the processing system 162 may be configured to perform statistical
analyses to facilitate the assessment of media consumption behaviors of particular
groups of consumers (e.g., demographic groups), particular geographic regions,
consumption trends, patterns, etc., or any other desired information associated with
metering broadcast media.

[0041] FIG. 3 is a detailed example functional block diagram of the compressed
domain encoder 124 of FIG. 1. As noted generally above, the various functional
blocks of the example encoder 124 of FIG. 3 cooperate or interoperate to encode one
or more audio streams transmitted within a compressed digital transport stream in
real-time without having to decompress or decode the transport stream and without
changing the size and/or timing of the data contained with the transport stream.
Further, as noted above, the blocks of the example encoder of FIG. 3 encode the one
or more audio streams on a frame-by-frame basis and convey or transmit encoded
portions or blocks of the compressed digital transport stream on a packet-by-packet
basis.

[0042] Turning in detail to FIG. 3, a stream reader 300 receives the multi-program
transport stream 122 (FIG. 1) and writes or stores blocks containing one or more
transport packets to an input buffer 302viaa buffer manager 304. The process of
obtaining and writing transport stream packets to the input buffer 302 is carried out by
the stream reader 300 asynchronously with respect to the processes performed by the
remaining blocks and/or processes of the example encoder 124.

[0043] The input buffer 302 is implemented as a circular buffer, which may be
defined to have a predetermined size (e.g., width in data bytes) and to existin a

particular region within a memory device, within multiple memory devices, within a

16

WO 2006/098736 PCT/US2005/013507

dedicated hardware device, etc. Thus, if the input buffer 302 is sized to hold N
packets from the transport stream 122 (FIG. 1), packets 1 though packet N are written
sequentially to the input buffer 302 so that packet 1 is in the first buffer location and
packet N is in the last buffer location. Then, when the stream reader 300 receives and
writes packets N+1, N+2, N+3, etc. to the buffer 302, the buffer manager 304
overwrites the first buffer location (in which packet 1 is currently stored) with the
contents of packet N+1, the second buffer location (in which packet 2 is currently
stored) with the contents of packet N+2, and so on. The length or size (e.g., number
of bytes) of the input buffer 302 is selected so that packet data is overwritten well
after the packet data to be overwritten is no longer needed to perform the encoding
processes described herein. Thus, the size of the input buffer 302 is determined, at
least in part, by the manner in which frame data is interleaved within the transport
stream 122 and the processing delays associated with the various processes performed
by the functional blocks of the example encoder 124 of FIG. 3.

[0044] To facilitate the coordination or synchronization (e.g., serialization of) the
operations of the stream reader 300 with the operations of the other functional blocks
of the encoder 124, the buffer manager 304 maintains a virtual buffer 306. As will
become clearer in connection with the various processes or operations of the encoder
124 described below, the virtual buffer 306 facilitates the ability of multiple
asynchronous processes to access portions of the data stored in the input buffer 302
which, as noted above, is implemented as a circular buffer (i.e., a physical buffer).
[0045] Unlike the input buffer 302, the virtual buffer 306 is not associated with a
particular block or portion of a memory. Instead, the virtual buffer 306 is
implemented using three counters. Specifically, a first counter counts the cumulative

total number of bytes read by the stream reader 300 and written by the buffer manager

17

WO 2006/098736 PCT/US2005/013507

304 to the input buffer 302. A second counter counts the cumulative total number of
bytes that the buffer manager 304 has passed to the transport parsing function
described in detail below. Finally, a third counter counts the cumulative total number
of bytes that the buffer manager 304 has released to be written to the encoded
transport stream.

[0046] In addition to facilitating the coordination or synchronization of the
processes accessing the input buffer 302 via the buffer manager 304, certain
relationships between the input buffer 302 and the virtual buffer 306 may be analyzed
to identify error conditions and/or assess the relative performance characteristics of
the various processes performed by the functional blocks of the example encoder 124
of FIG. 3. For example, the difference between the first and third counters represents
a total stream delay due to processing, caching, etc. Thus, when the difference
between the first and third counters exceeds the size of the input buffer 302, a buffer
overflow condition has occurred. In other words, the total stream delay exceeds the
size of the portion of the transport stream that can be buffered in the input buffer 302.
Such a condition may be a serious error because it indicates that the stream reader 300
is storing transport packets in the input buffer 302 a rate that exceeds the rate at which
packets are being processed by the encoding processes. In another example, if the
difference between the first and third counters equals zero (i.e., the counter values are
equal), then a buffer underflow condition has occurred. Such a condition is not an
error because it indicates that the encoding processes are running at least as fast as the
stream reader 300. In still another example, the difference between the second and
third counters represents a stream delay associated with the caching of packets to

perform the encoding processes described herein.

18

WO 2006/098736 PCT/US2005/013507

[0047] While the virtual buffer 306 is not truly boundless, it can be made
substantially boundless for practical purposes. For instance, if the three counters used
for the virtual buffer 306 are implemented using 64-bit counters, it would take
approximately 234,000 years to fill the virtual buffer 306 (i.e., roll-over one or more
of the counters making up the virtual buffer 306) at a rate of 2,500,000 bytes per
second.

[0048] The segment of the multi-program transport stream 122 (FIG. 1) stored in
the input buffer 302 is parsed and encoded via the cooperative operation of a transport
stream processor 308, a transport parser 310, a packet store 312, a packet hold queue
314, and a frame store 316. The parsing and encoding operations performed using
these blocks are asynchronous with respect to the operations of the stream reader 300
and, thus, rely on the synchronization or coordination capabilities of the buffer
manager 304 to control the manner in which the parsing and encoding operations
interact with the input buffer 302 and the packet data stored therein.

[0049] In general, the transport stream processor 308 requests packet information
from the packet store 312 one packet at a time. In response to a request for packet
information from the transport stream processor 308, the packet store 312 provides an
encapsulated data structure (e.g., an object-oriented data structure) containing
information relating to a next transport packet in the input buffer 302 to be parsed and
processed (e.g., potentially encoded if the packet is a compressed audio packet
associated with an audio stream to be encoded). In the examples described herein, the
packet store 312 maintains an array of packet objects (i.e., object-oriented data
structures), each of which can be used to temporarily hold information relating to a
single transport packet currently present in the input buffer 302. More specifically,

when the transport stream processor 308 requests packet information from the packet

19

WO 2006/098736 PCT/US2005/013507

store 312, the packet store 312 selects an available packet object (i.e., a packet object
from its array of packet objects available for use) to hold information relating to a
transport packet that has not yet been parsed, processed, encoded, etc. The packet
store 312 then communicates with the buffer manager 304 to obtain pointer
information identifying the location of a next transport packet in the input buffer 302.
The packet store 312 populates the selected packet object with the pointer information
so that the packet object becomes representative of the next transport packet in the
input buffer 302. The use of packet objects and the pointers contained therein
significantly reduces the amount of data (e.g., transport packet contents) that has to be
copied or transferred from the input buffer 302 to another memory location within the
encoder 124. As described in greater detail below, many of the transport packet
parsing, encoding, and other proccséing operations performed by the transport parser
310, the frame store 316, and the packet hold queue 314 can be performed using the
packet objects provided by the packet store 312, thereby enabling processing of the
transport packets in the input buffer 302 without having to physically copy or transfer
the transport packet contents from the input buffer 302 to other memory locations in
the encoder 124. Such a reduction in memory copy or transfer operations
significantly increases the rate at which the encoder 124 can process transport stream
packets and improves the real-time processing capabilities of the encoder 124.

[0050] Packet objects allocated by the packet store 312 to hold transport packet
information can be reused or recycled after the packet objects have been fully
processed by the encoder 124. Thus, the packet objects in the array of packet objects
maintained by the packet store 312 can be used many times to temporarily hold

information relating to many transport packets.

20

WO 2006/098736 PCT/US2005/013507

[0051] Each packet object received from the packet store 312 by the transport
stream processor 308 is passed to the transport parser 310 for parsing and/or other
processing. The transport parser 310 uses the information (e.g., the pointer
information) in each packet object received from the transport stream processor 308 to
identify the type of information stored in the transport packet associated with that
packet object. More specifically, the transport processor 310 uses the pointer
information in the packet object to read transport packet header information which, in
turn, is used to identify the type of information stored in the transport packet. In the
examples described herein, the transport parser 310 looks for compressed audio
packets (e.g., AC-3 packets) associated with one or more particular audio streams
selected for encoding.

[0052] In addition to parsing the header information, the transport parser 310
further parses each compressed audio packet that it has identified for encoding. In
particular, the transport parser 310 parses selected compressed audio packets to
identify slice boundaries (i.e., the boundaries between audio frames within transport
packets). Using the identified slice boundaries, the transport parser 310 builds copies
of audio frames associated with audio streams to be encoded. The copies of audio
frames are built and maintained by the transport parser 310 using frame buffer objects
provided by the frame store 316. More specifically, the transport parser 310
establishes one frame buffer for each audio stream to be encoded and uses packet
objects associated with the slices of the audio frames to be encoded to push the
contents (e.g., the audio payload data) of the transport packets corresponding to those
packet objects onto a corresponding frame buffer.

[0053] The transport parser 310 may also process other types of transport packets

(i.e., transport packets containing information other than compressed audio to be

21

WO 2006/098736 PCT/US2005/013507

encoded) such as, for example, packets containing PAT information, PMT
information, and PSIP information. In particular, PAT, PMT, and PSIP information
may be used to associate SID’s with particular programs, channels, and/or audio
PID’s to identify audio streams to be encoded, etc.

[0054] All packet objects processed by the transport parser 310, whether the
packet objects are representative of compressed audio packets selected for encoding
or other types of packets, are pushed to the packet hold queue 314. However, packet
objects that are associated with or representative of transport packets containing
compressed audio data to be encoded (i.e., those packets having contents that have
been pushed onto one of the queues in the packet hold queue 314) are marked or
otherwise identified as “to be edited,” which indicates that those packets are to be
encoded, whereas all other packet objects are marked or otherwise identified as “pass
through,” which indicates that those packets are not to be encoded. Thus, the packet
hold queue 314 holds a sequence of packet objects that corresponds to at least a
portion of the sequence of transport packets stored in the input buffer 302. However,
as described in greater detail below, for all packet objects except those packet objects
associated with compressed audio frames to be encoded, the packet objects are
released for reuse by fhe packet store 312. Although the packet objects are released
for reuse by the packet store 312, the packet hold queue 314 holds the packets referred
to by these released objects by storing the identity of the last byte of the virtual buffer
306 occupied by each of transport packets corresponding to the released packet
objects.

[0055] In addition to receiving all packet objects (i.e., whether they are identified
as “pass-through” objects or “to be edited”) the packet hold queue 314 also maintains

one queue for each compressed audio stream to be encoded. In particular, each queue

22

WO 2006/098736 PCT/US2005/013507

includes packet objects associated with a particular audio stream and may include a
number of packet objects that corresponds to two frames of compressed audio data.
Thus, each packet object corresponds to a single slice of a compressed audio frame or,
in the case of transition packet, a slice of each of two consecutive audio frames.
Further, as noted above and in contrast to the packet objects associated with all other
types of packets, the packet objects corresponding to audio frames to be encoded are
not yet released for reuse by the packet store 312.

[0056] The transport parser 310 monitors the queues in the packet hold queue 314
to identify when complete copies of frames to be encoded are available in the frame
buffer(s). When the transport parser 310 identifies a complete frame, the transport
parser 310 encodes (e.g., inserts or embeds watermark data or other identifying
information in) the completed frame. In this manner, the transport parser 310 encodes
one or more audio streams on a frame-by-frame basis. The transport parser 310 in
cooperation with the buffer manager 304 copies each slice of the encoded frame to its
respective original position in the transport packet stream stored in the input buffer
302. In other words, the transport parser 310 overwrites encoded slice data in
locations in the input buffer 302 corresponding to the original slice data.

[0057] After the transport parser 310 has copied or overwritten encoded frame data
from a frame buffer to the input buffer 302 (i.e., has used the slices of the encoded
frame data to overwrite the corresponding slices in the original transport stream stored
in the input buffer 302), the transport parser 310 instructs the packet hold queue 314
to remove the packet objects corresponding to that frame from the queue assigned to
hold packet objects associated with the audio stream from which that frame was

originally copied.

23

WO 2006/098736 PCT/US2005/013507

[0058] After the packet hold queue 314 receives an instruction from the transport
parser 310 to remove packet objects, the packet hold queue 314 determines the
location of the oldest packet currently being held by the packet hold queue 314 in any
of its packet object queues. In other words, the packet hold queue 314 reviews the
sequence of packets held by the packet hold queue 314 (the sequence of packets
corresponds to at least a portion or segment of the sequence of packets in the input
buffer 302) to determine what portion of the packets held can be released and
transmitted. Specifically, the packet hold queue 314 effectively reviews the held
packets in order on a packet-by-packet basis to determine what portion, if any, of the
held packet sequence can be released and transmitted. For example, the packet hold
queue 314 may determine that only the oldest packet being held can be released or,
alternatively, may determine, for example, that the oldest fifteen packets can be
released and transmitted. In any case, once the packet hold queue 314 has identified
packets to be released and transmitted, the packet hold queue 314 instructs a packet
write queue 318 to provide those packets to a stream writer 320, which conveys the
packet information to the transmitter 126 (FIG. 1). In general, the packet write queue
318 cooperates with the buffer manager 304 to identify for the stream writer 320 the
physical locations of the packets in the input buffer 302 that are to be conveyed for
transmission.

[0059] The operations of the various blocks described in connection with FIG. 3
may be implemented using machine or processor executable computer code or
software instructions using any desired programming languages and/or techniques.
The example implementations described herein employ object-oriented programming
techniques and use, for example, encapsulated data structures (i.e., objects) that

facilitate the implementation of the various blocks described in connection with FIG.

24

WO 2006/098736 PCT/US2005/013507

3. However, any other programming techniques could be used instead of or in
addition to those specifically described herein. Additionally or alternatively, the
various blocks described in connection with FIG. 3 may be implemented using any
desired type or combination of hardware (e.g., ASIC’s, digital logic, analog circuitry,
etc.). Further, as described in greater detail below, many of the blocks depicted in the
example block diagram of FIG. 3 generate and/or pass pointers to packet data within
the input buffer 302 rather than passing the actual data or transport packet content.
For example, the buffer manager 304 passes such pointers to the packet store 312 for
each transport packet to be processed or parsed by the transport parser 310. However,
only the packets to be encoded (e.g., only AC-3 packets corresponding to audio
streams to be encoded) require the copying of actual transport packet content to the
frame queues managed by the transport parser 310 as well as the subsequent copying
of encoded frame data back into the segment of the transport stream stored in the
input buffer 302. All other transport packet content or data such as video packet data
may remain in place in the input buffer 302. Thus, because the compressed audio
packets to be encoded typically compose a relatively small portion of the overall
transport stream, the effective rate at which the transport stream can be processed
(e.g., in real-time) can be significantly increased.

[0060] In addition to compressed audio packets to be encoded, the data associated
with certain other packets such as, for example, packets containing PMT data, PSIP
data, PAT data, etc. may be processed by state machines in known manners. As
described below, such additional data may be used to identify which of the audio
streams are to be encoded, to associate SID’s with particular channels, etc. However,
such additional data typically composes only a small portion of the data contained

within a transport stream (e.g., in comparison to the amount of video data in the

25

WO 2006/098736 PCT/US2005/013507

transport stream) and, thus, copying of such additional data does not significantly
reduce the rate at which a transport stream can be encoded using the example
apparatus, methods, and articles of manufacture described herein.

[0061] FIG. 4 depicts an example encoding process 400 that may be performed by
the example encoder 124 shown in FIG. 3. The various blocks or operations shown in
FIG. 4 may be implemented as machine readable and executable instructions or code,
which may be stored on a memory and executed by, for example, a processor.
Alternatively, some or all of the blocks shown in FIG. 4 may instead be implemented
using dedicated hardware devices (e.g., ASIC’s). In the case where one or more
blocks are representative of machine readable and executable instructions or code,
those blocks may be implemented using a processor system such as the example
processor system 1302 shown in FIG. 13. Alternatively or additionally, one or more
of the blocks shown in FIG. 4 may be implemented using one or more blocks of the
example encoding apparatus 124 depicted in FIG. 3.

[0062] In general, the example encoding process 400 of FIG. 4 sequentially
processes and parses the packets of a compressed digital transport stream such as, for
example, an MPEG-2 compliant transport stream or data stream. As will be described
in greater detail below, the contents of selected packets (e.g., compressed audio
packets associated with one or more selected audio streams) are collected into
respective frames. As each collected frame is completed, it is encoded with
identifying information (e.g., SID’s, timestamps, etc.) and/or any other information.
Any desired encoding process may be used to encode the collected frames of
compressed audio data. However, in the examples described herein, a watermarking
encoding technique and/or a technique that inserts data into auxiliary data fields may

be particularly useful when used with the encoding apparatus, methods, and articles of

26

WO 2006/098736 PCT/US2005/013507

manufacture described herein. Regardless of the frame encoding technique used, the
slices composing the encoded frames are inserted (e.g., overwritten) to their original
positions within the transport stream in a manner that preserves the timing and packet
sizes (i.e., byte lengths) of the original transport stream. A portion of the transport
stream for which encoding operations are complete (e.g., a single packet or a plurality
of sequential packets) is released and transmitted to, for example, another media
distribution facility and/or or one or more consumption sites (e.g., households,
business establishments, etc.). Thus, the example encoding process 400 of FIG. 4
may be used to encode one or more compressed audio streams on a frame-by-frame
basis and may release and transmit portions of the encoded transport stream on a
packet-by-packet basis. Such a frame-by-frame encoding and packet-by-packet
release and transmission technique enables the efficient real-time processing and
encoding of a compressed digital data stream or transport stream containing multiple
media streams (e.g., multiple audio and/or video data streams), particularly where the
transport packets composing those media streams to be encoded are temporally
interleaved within the transport stream.

[0063] Turning in detail to FIG. 4, the example encoding process 400 identifies a
next packet within the input buffer 302 (FIG. 3) to be processed, parsed, etc. (block
402). In general, the identification operation (block 402) is performed by identifying
the next packet in sequence within the input buffer 302 to be processed (e.g., via the
buffer manager 304 of FIG. 3), assigning a packet object (e.g., an object-oriented data
structure representative of a packet) to the next packet (e.g., via the packet store 312),
and storing pointer information corresponding to the location of the next packet in the
input buffer 302 in the packet object (e.g., via the packet store 312). The resulting

packet object including the pointer information is then passed to a packet

27

WO 2006/098736 PCT/US2005/013507

parsing/processing operation (e.g., via the transport stream processor 308 to the
transport parser 310).

[0064] In the case of the example encoder 124 of FIG. 3, the identification process
of block 402 is carried out in the following manner. The transport stream processor
308 requests a next transport packet for parsing and/or processing from the packet
store 312. The packet store 312 assigns an available packet object for use in
representing the next transport packet and requests pointer information from the
buffer manager 304. In turn, the buffer manager 304 obtains pointer information
relating to the next packet to be processed, parsed, etc. and provides that pointer
information to the packet store 312. The packet store 312 stores the pointer
information in the assigned packet object and provides the packet object to the
transport stream processor 308. The transport stream processor 308 then provides the
packet object (including the pointer information relating to the next transport packet)
to the transport parser 310. Of course, alternatively, one or more of the activities
associated with the identification process of block 402 may be performed using
machine readable instructi;ms executed by a processor system such as the system
1302 of FIG. 13. A more detailed example of the identification operation of block
402 is described below in connection with FIG. 5.

[0065] Afier the next packet in the input buffer 302 (FIG. 3) is identified at block
402, the identified packet is parsed and/or processed (block 404). In general, the
operations performed at block 404 use the packet information received from block
402 to identify the type of the packet to be parsed/processed and parse and/or process
the packet information based on the packet type. As described in greater detail in
connection with FIG. 7 below, only compressed audio packets (e.g., AC-3 packets in

the case where an MPEG compliant transport stream is being parsed/processed) from

28

WO 2006/098736 PCT/US2005/013507

selected audio streams are selected for encoding. The packets to be encoded are
copied and decomposed into their component slices, each of which is stored in a
frame buffer corresponding to the audio stream with which the slices are associated.
As noted above, there is one frame buffer for each audio stream to be encoded and,
thus, each frame buffer holds only slices belonging to the same compressed audio
stream.

[0066] The example encoding process 400 then determines (e.g., via the transport
parser 310)whether any current frame within any of the frame buffers is ready for
encoding (i.e., the frame is complete) (block 406). A frame is ready for encoding
when all slices making up that frame have been stored in its corresponding frame
buffer. If a current frame is ready for encoding at block 406, the frame is encoded
(e.g., via the transport parser 310) (block 408) using, for example, a watcnﬂarking
process such as that disclosed in International Patent Application No.
PCT/US04/18953, the entire disclosure of which is incorporated herein by reference.
Alternatively or additionally, the encoding (block 408) may be performed using a data
insertion technique that enlarges auxiliary data fields and inserts information in the
enlarged auxiliary data fields. An example of such a data insertion technique is
disclosed in International Patent Application No. PCT/US03/28037, the entire
disclosure of which is incorporated herein by reference. However, any other desired
encoding method suitable for encoding compressed digital data could be used instead
of or in addition to those specifically mentioned above.

[0067] After encoding the current frame (block 408), the example encoding
process 400 copies the encoded frame data to the input buifer 302 (FIG. 3) (block
410). More specifically, each slice of the encoded frame is copied to (i.e., overwrites)

the location in the original transport stream from which the slice was copied during

29

WO 2006/098736 PCT/US2005/013507

the parsing and/or other processing at block 404 (e.g., via the transport parser 310 and
the buffer manager 304). As mentioned above, the slices composing any given frame
may be interleaved among one or more other similar or different types of transport
packets (e.g., video, compressed audio associated with other audio streams, PMT
packets, PSIP packets, PAT packets, etc.). Further, as noted above, a transport packet
to be encoded may include slices from different frames of an audio stream. For
example, the last slice of a first frame of an audio stream and first slice of a next or
second frame may both be associated with the same original transport packet. In that
case, the transport packet to be encoded may be referred to as a transition packet and,
as described in greater detail below, such a transition packet is released for
transmission only when all the frames contributing slices to that packet have been
encoded. Accordingly, in the above example, both the first and second frame would
have to be encoded before releasing the transition packet for transmission.

[0068] After the slices associated with an encoded frame have been copied to (i.e.,
have overwritten) the original transport stream in the input buffer 302 (FIG. 3), the
example encoding process 400 (e.g., via the transport parser 310 and the packet hold
queue 314) removes the encoded frame information from a hold queue (block 412).
For example, in the case where the example encoder 124 (FIG. 3) uses packet objects
within the hold queue (314), the packet objects associated with objects making up the
frame to be removed are released for reuse to the packet store 312. However, if a
frame to be released ends with a transition packet, the packet object associated with
that transition packet is not released. In this manner, the example encoder 124
ensures that the transition packet is fully encoded (i.e., that all slices composing the

transition packet are encoded) prior to releasing the transition packet. A more

30

WO 2006/098736 PCT/US2005/013507

detailed description of an example implementation of the frame removal process
(block 412) is provided in connection with FIG. 10 below.

[0069] After the packet objects are removed from the hold queue at block 412, the
frame buffer (holding the content associated with the removed packet objects) is
cleared and the first slice of the next frame is copied into the frame buffer (block
413).

[0070] Ifthere are no current frames ready for encoding at block 406 or after
performing the operations at block 413, the example encoding process 400 determines
whether there are one or more packets ready for transmission (e.g., ready for
broadcast) (block 414). For example, in the case of the example encoding apparatus
124 of FIG. 3, the packet hold queue 314 and the packet write queue 318 cooperate to
identify the oldest held byte (which is necessarily part of the oldest held packetj in the
input buffer 302. The contiguous block or sequence of transport packets preceding
the oldest held byte are fully encoded packets and, thus, may be transmitted without
affecting the encoding of any remaining bytes or packets. Thus, the contiguous block
or sequence of transport packets preceding the oldest held byte can then be safely
transmitted (block 416) (e.g., via the stream writer 320 of FIG. 3).

[0071] As noted generally above, none, one, or multiple packets may be ready for
transmission at any given time. However, if no packets are ready at block 414 or if
ready packets have already been transmitted (block 416), then the example encoding
process 400 determines if there are more packets to process in the input buffer 302
(block 418). If there are more packets to process, control is returned to block 402.
On the other hand, if there are no more packets to process, then the encoding process

400 may be stopped and/or control may be returned to another process.

31

WO 2006/098736 PCT/US2005/013507

[0072] FIG. 5 is flowchart of an example process 500 that may be carried out by
the packet store 312 (FIG. 3) and/or the processor system 1302 (FIG. 13) to identify
the next packet for parsing and/or processing in the input buffer 302 (block 402 of
FIG. 4). The example process 500 initially waits for a transport packet request (block
502). For example, as described in connection with the example encoder 124 of FIG.
3, the transport stream processor 308 requests a next packet from the packet store 312
and, when the packet store 312 receives this request, the packet store 312 identifies
the next available packet object (block 504).

[0073] After identifying the next available packet object (block 504), the example
process 500 requests a pointer from the buffer manager 304 (block 506). As
described in greater detail in connection with FIG. 6 below, in the case of the example
encoding apparatus 124 of FIG. 3, the buffer manager pointer request process 506
includes the buffer manager 304 receiving a pointer request from the packet store 312
and issuing a pointer to the next packet header in the input buffer 302. The buffer
manager pointer request process 506 returns the pointer to ’the next packet header and
the packet store process 500 assigns the returned pointer to the packet object
identified (block 508). The buffer manager 304 uses the virtual buffer 306 to ensure
that pointer delivered to the packet object, in fact, is a valid transport packet ready for
parsing.

[0074] The example process 500 then determines whether the packet object
including the returned pointer information corresponds to a last packet (block 510). If
the packet object is the last packet at block 510, data indicating that the packet object
is representative of a last packet is stored in the packet object (i.e., the packet object is
marked as being representative of a last packet) (block 512). If the packet object is

not representative of a last packet at block 510 or if the packet object has been marked

32

WO 2006/098736 PCT/US2005/013507

as being representative of a last packet at block 512, then the example process 500
stores in the packet object the virtual buffer locations of the first and last data bytes of
the packet represented by the packet object (block 514).

[0075] After storing the virtual buffer locations at block 514, the example process
500 determines if the packet represented by the packet object straddles the end of the
input buffer 302 (block 516). If the packet straddles the end of thé input buffer 302,
data indicative of a straddle condition are stored in the packet object (block 518). If
the packet does not straddle the end of the input buffer 302 at block 516 or after the
data indicative of a straddle condition are stored in the packet object at a block 518,
the packet object is marked “in use” (block 520). After the packet object is marked
“in use” at block 520, the process 500 issues a pointer to the packet object to the
transport parser 310 (block 522) and control is returned to block 404 of FIG. 4.
[0076] FIG. 6 is a flow diagram depicting a more detailed example of the buffer
manager request process 506 (FIG. 5). As with the other processes described herein,
the example process 600 may be implemented by the buffer manager block 304 (FIG.
3) and/or by the example processor system 1302 (FIG. 13). Regardless of the
particular implementation, the example process 600 waits for a transport packet
request (block 602) and, when such a request is received, the example process 600
issues a pointer to the next packet header in the input buffer 302 (FIG. 3) (block 604).
After issuing the pointer at block 604, the example process 600 updates the counters
associated with the virtual buffer 306 (FIG. 3) (block 606) and then analyzes the
relationships between the input buffer 302 and the virtual buffer 306 (block 608). As
described above in connection with FIG. 3, the results of these analyses may indicate
a buffer overflow condition (i.e., an overflow of the input buffer 302), a buffer

underflow condition, processing delays or other characteristics, etc.

33

WO 2006/098736 PCT/US2005/013507

[0077] The example process 600 may then determine whether one or more of the
analyses results generated at block 608 are indicative of an error condition (e.g., a
buffer overflow condition) (block 610). If such an error is identified at block 612,
then an error handling process may be performed (block 612). Such an error handling
process (block 612) may include providing notifications (e.g., visual alerts, audible
aierts, etc.) to one or more users, system operators, technicians, etc. and/or may
include automatic corrective action such as, for example, increasing the size of the
input buffer 302 to eliminate an overflow condition. If no error is detected at block
610 or after performing the error handling process 612, control is returned to block
508 of FIG. 5.

[0078] FIG. 7 is a flow diagram that depicts a more detailed example of the
transport packet parsing/processing block 404 shown in FIG. 4. The various blocks or
operations shown in the example of FIG. 7 may be performed by the transport parser
310 (FIG. 3) and/or the processor system 1302 (FIG. 13). Initially, the example
process 404 receives a pointer to a packet object (e.g., via the example packet store
process 500) (block 702). The packet object pointer is then used to locate and parse
the header of the transport packet corresponding to the packet object (block 704). The
transport packet and, thus, the header information are contained in the input buffer
302 (FIG. 3). Additionally, the header of the transport packet contains information
reflecting the type of the transport packet. For example, the header may indicate that
the packet payload contains video data, audio data, PMT information, PSIP
information, PAT information, etc.

[0079] The example process 404 of FIG. 7 reads the packet header information to
determine if the packet payload contains PAT or PMT information (block 706) and, if

so, the process media program information and compressed audio stream information

34

WO 2006/098736 PCT/US2005/013507

(e.g., AC-3 information) therefrom (block 708). In the case where the transport
stream being processed is an MPEG-2 compliant data stream, a program identifier
value of zero in the packet header indicates that the packet contains PAT information.
As is known, PAT information includes a list of program number/PMT program
identifier (PID) pairs, and PMT information provides a list of PID’s for each of the
component media streams within the transport stream being processed.

[0080] In general, the example process 404 uses the PAT and PMT information to
build and maintain tables that are used by other portions of the process 404 to identify
compressed audio packets within the transport stream being processed that are to be
encoded. More specifically, at block 710, the example process 404 updates PMT’s
and PAT’s as needed. For example, if the version information associated with the
information extracted at block 708 indicates that versions have changed, the process
404 updates the PMT and PAT information. Following any needed updates at block
710, the example process 404 uses the PAT and PMT information to associate the
PID’s of compressed audio streams (e.g., AC-3 streams) with particular programs,
associate programs with minor channel information, and minor channel information
with SID’s, SID’s with programs, SID’s with AC-3 PID’s, etc. (block 712).

[0081] The processing of a packet containing PAT or PMT information concludes
when the process 404 labels or marks the packet object associated with the PAT or
PMT packet as a “pass-through” packet and sends the labeled or mérked packet to the
hold queue 314 (FIG. 3) (block 714). The marking or labeling of the packet objects at
block 714 may be implemented by storing appropriate labeling information in the
packet object.

[0082] Ifthe process 404 determines that the packet being parsed/processed is not

a PAT or PMT packet (block 706), the example process 404 determines if the packet

35

WO 2006/098736 PCT/US2005/013507

being parsed/processed contains PSIP information (block 716). If the process 404
determines that the packet being parsed/processed contains PSIP information, channel
and program information is extracted (block 718) and is used to update the tables at
block 710. As is known, PSIP information relates a program number or identifier
(PID) to each major/minor channel combination. Additionally, PSIP information may
be used to generate a list of PID’s for each of the elementary streams for each minor
channel and, particularly, a list of PID’s corresponding to the compressed audio
associated with each program.

[0083] If the example process 404 determines at block 716 that the packet being
parsed/processed does not contain PSIP information, the process 404 determines if the
packet contains compressed audio (AC-3) information associated with a compressed
audio stream selected for encoding (block 720). In particular, the tables updated at
block 710 and the associations made at block 712 may be used to identify compressed
audio packets to be encoded at block 720. If, at block 720, the packet being
parsed/processed is identified as not having been selected for encoding, the packet
object for that packet is marked as “pass-through” at block 714 and the process
returns control to block 406 (FIG. 4). A more detailed description of one manner in
which audio packets to be encoded can be identified at block 720 is provided in
connection with FIG. 13 below.

[0084] On the other hand, if the packet being parsed/processed is identified as
having been selected for encoding (block 720), the example process 404 may perform
one or more error checking processes (block 721). In general, the error checking
performed at block 721 may be used by the encoder 124 (FIG. 1) to ensure that the
audio frames that it has selected for encoding are properly sized and/or aligned. For

example, the transport parser 310 (FIG. 3) may examine header information

36

WO 2006/098736 PCT/US2005/013507

associated with selected audio packets (e.g., AC-3 packets identified as to be
encoded) to check the audio bit rate, frame size, cyclical redundancy check (CRC)
information associated with the frame to be encoded, and/or the encoding mode. If
any of these checks indicate that the audio frame is improperly aligned, improperly
sized, and/or corrupted in any way an error has occurred and the packet object is sent
to the hold queue as “pass through” (block 714). Additionally, in the case that an
etror is detected at block 721, the example process 404 (e.g., transport parser 310
(FIG. 3)) clears the frame buffer associated with the audio frame for which an error
was detected and flushes the corresponding packet objects in the hold queue 314
(FIG. 3). Following the detection of an error at block 721, the encoder 124 (FIG. 1)
searches for the beginning of the next audio frame and resumes encoding activities.
[0085] Ifno error is detected at block 721, the example process 404 parses the
packet payload for slice boundaries (block 722). In general, the packet payload
parsing process performed at block 722 stores slice boundary information within the
packet object representing the packet being parsed/processed to associate one or more
portions of a packet payload with one or more frames of compressed audio
information. As described in greater detail in connection with FIG. 8, one packet
payload may contain compressed audio information associated with only one frame of
a compressed audio stream, while another packet payload may contain compressed
audio information associated with two frames of a compressed audio stream. After
the packet payload has been parsed at block 722, the example process 404 marks the
packet object associated with that payload as “to be edited” (i.e., to be encoded)
(block 7245 and returns control to block 406 of FIG. 4. If during the example process
404, the example encoder 124 (FIG. 1) determines (e.g., by recognizing a change in

PAT, PMT, and/or PSIP information) that the composition of the transport stream 122

37

WO 2006/098736 PCT/US2005/013507

(FIG. 1) has changed and/or that a significant interruption in the stream 122 has
occurred, the example encoder 124 flushes all held packets, writes all previously
parsed data to the output stream, resets all state machines, clears all internal data
tables, and then resumes encoding activities.

[0086] FIG. 8 is a more detailed flow diagram of the example payload parsing
process 722 of FIG. 7. Initially, the example payload parsing process 722 searches
the packet payload for a frame start (block 802). In particular, the example process
722 looks for a particular data value or data sequence (e.g., in the case of an AC-3
compliant audio stream the sequence 0xb77 indicates the start of a frame).

[0087] If a frame start data value or sequence is found at block 804, the example
process 722 determines if the packet being parsed is a transition packet (i.e., is a
packet containing data for multiple frames of a media stream) (block 806). If, at
block 806, the example process 722 determines that the frame start sequence is
associated with the first frame of a compressed audio stream to be encoded, then the
packet to be parsed is not a transiti(;n packet and the example process 722 saves the
location and size (e.g., number of bytes) of the first slice in the packet object
associated with the packet being parsed (block 808). The example process 722 then
clears the frame buffer assigned to hold frame data for the audio stream associated
with the slice of the packet being parsed/processed. As noted above, each frame
buffer is uniquely assigned to hold data from a corresponding audio stream.

[0088] If, on the other hand, the example process 722 determines that the packet
being parsed/processed at block 806 is a transition packet (i.e., a packet containing
slice data from two frames of a compressed audio stream), the example process 722
saves or stores the locations and sizes of the last slice of a current frame and the first

slice of a next frame in the packet object associated with the packet currently being

38

WO 2006/098736 PCT/US2005/013507

parsed/processed (block 812). The example process 722 then copies the last slice of
the current frame to the frame buffer for the stream associated with the packet being
parsed (block 814).

[0089] If a frame start is not found at block 804, then the example process 722
saves the location of the next slice of the current frame in the packet object
representative of the packet containing the slice. In this case, the packet being
parsed/processed is a continuation packet (i.e., contains a payload associated only
with the current frame). Thus, the example process 722 copies the payload of the
packet to the next slice in the frame buffer associated with the packet (and, thus, the
audio stream) being parsed/processed (block 820).

[0090] FIG. 9is a flow diagram of an example process 900 by which the hold
queue 314 (FIG. 3) receives packet objects from the transport parser 3 10 (FIG. 3).
More specifically, as shown in FIG. 7, the example packet parsing/processing process
404 sends packet objects to the hold queue as either “pass-through” packets (block
714) or as “to be edited” packets (block 724). Turning in detail to FIG. 9, the
example hold queue process 900 determines whether the received packet object
represents a pass-through packet (block 902). If the packet object is representative of
a pass-through packet (i.e., a packet that is not to be encoded), the example process
900 determines whether there is currently at least one packet object in at least one of
the hold queues, each of which corresponds to an audio stream to be encoded (block
904). Ifthere is at least one packet object in at least one of the hold queues at block
904, the example process 900 saves the location of the last byte of the virtual buffer
306 occupied by the pacicet (block 906), indicates that the packet is to be held for later
writing or transmission (block 908), and releases the packet object representing that

packet to the packet store 312 (FIG. 3) for reuse (block 914). On the other hand, if at

39

WO 2006/098736 PCT/US2005/013507

block 904 the process 900 determines that there are currently no packet objects in any
of the hold queues, the process sends the packet to the packet write queue 318 (block
910), and releases the packet object representing the packet currently being processed
to the packet store 312 (block 914). If the example process 900 determines at block
902 that the packet to be processed is not a “pass-through” packet (i.e., the packet is a
“to be edited” packet), the example process 900 pushes the packet object onto a hold
queue corresponding to the audio stream associated with the packet represented by the
packet object (block 916).

[0091] FIG. 10 is a detailed flow diagram of the example hold queue frame
removal process 412 (FIG. 4). The example frame removal process 412 initially
identifies the hold queue holding the packet objects associated with the frame to be
removed (block 1002). After identifying the c:iueue at block 1002, the example frame
removal process 412 identifies the frame number of the oldest packet object (block
1004) and then pops (i.e., removes) packet objects having the same frame number
from the queue, leaving any object associated with a transition packet (i.e., a packet
which also contains data associated with a subsequent frame) (block 1006). The
packet objects popped or removed at block 1006 are then released to the packet store
312 (FIG. 3) for reuse (i.e., are recycled for use) by the packet store 312 (block 1008).
Any packet objects remaining on the queue from which packets have been popped at
block 1006 are then moved to the head of their respective queue (block 1010) and the
remaining transition packet object (i.e., a packet object representing a transport packet
containing slices from two frames) is modified to contain pointer information (i.e., to
point to) only the current frame (block 1012).

[0092] The example process 412 tracks (e.g., stores or otherwise preserves) the

location of the oldest byte of data in the queue from which the frame was removed

40

WO 2006/098736 PCT/US2005/013507

(block 1014). Then, the example process 412 scans all of the hold queues for the
overall oldest byte of data (block 1016) and instructs the packet write queue 318 that
it is now safe to write up to the oldest held byte from the input buffer 302 (block
1018).

[0093] FIG. 11 is a flow diagram of an example process 1100 that may be used by
the packet write queue 318 (FIG. 3) to perform the transmit packet(s) process 416
(FIG. 4). The example process 1100 determines whether a write instruction has been
received from the hold queue 314 (FIG. 3) and/or the block 1018 of FIG. 10 (block
1102). If the example process 1100 determines that a write instruction has been
received at block 1102, then the example process 1100 determines the number of
bytes to write to the stream writer 320 (FIG. 3) (block 1104). The example process
1100 may determine the number of bytes to be written at block 1104 by subtracting
the number of bytes already written (i.e., the cumulative number of bytes written)
from the virtual buffer location of the oldest held byte to which the process 1100 has
been instructed to write up to by block 1018 (FIG. 10) performed by the hold queue
314. For example, if the example process 1100 has determined that 1880 bytes (or ten
MPEG-2 packets) have been written and the write instruction received from the hold
queus process of FIG. 10 indicates that it is now safe to write up to byte 2256 of the
virtual buffer 306 (FIG. 3), then the example write queue process 1100 determines at
block 1104 that the next 376 bytes of the input buffer 302 are to be written to the
stream writer 320 (i.e., transmitted).

[0094] The example process 1100 then obtains a pointer to the released block of
bytes from the buffer manager 304 (FIG. 3) (block 1106). The example process 1100
then uses the pointer information obtained at block 1106 to call the stream writer 320

to write the next block of data from the input buffer 302 (FIG. 3).

41

WO 2006/098736 PCT/US2005/013507

[0095] FIG. 12 is a block diagram depicting an example manner in which transport
stream programs, elementary streams composing those transport stream programs,
and major/minor channel pairs are related. As described in greater detail below, the
relationships depicted in FIG. 12 may be used to filter, select, or otherwise identify
AC-3 packets to be encoded (e.g., at block 720 of FIG. 7). In the example of FIG. 12,
the relationships depicted are typical of those used in connection with an MPEG-2
transport stream.

[0096] Now turning in detail to FIG. 12, a PSIP terrestrial virtual channel table
(TVCT) 1200, which is defined in the PSIP of the ATSC standard, relates
major/minor channel pairs to particular programs. In the example TVCT 1200, for
instance, program 3 corresponds to major channel 999 and minor channel 1 (i.e.,
channel 999/1), and program 4 corresponds to major channel 999 and minor channel 2
(i.e., channel 999/2). More generally, the TVCT 1200 associates a majot/minor
channel pair with each program (e.g., MPEG-2 program) present in the transporf
stream (e.g., the transport stream 122 of FIG. 1). Additionally, the TVCT 1200 may
also list the elementary streams, each of which may be identified by a transport PID,
composing each of the programs within the transport stream. However, under
prevailing standards (e.g., the ATSC standard A/65B of March 18, 2003), the example
TVCT 1200 is only optionally included in an MPEG-2 transport stream.

[0097] In the example of FIG. 12, a program association table (PAT) 1202
provides respective PID’s identifying respective program map tables (PMT’s) 1204
and 1206 for programs 3 énd 4. Each of the PMT’s 1204 and 1206 identifies
respective groups of elemental streams 1208 and 1210 composing respective
programs 3 and 4. In the example of FIG. 12, program 3 is composed of a video

stream having PID 0x31, and two audio streams having PID’s 0x34 and 0x35.

42

WO 2006/098736 PCT/US2005/013507

Similarly, program 4 is composed of a video stream having PID 0x41 and two audio
streams having PID’s 0x44 and 0x45.

[0098] Having provided some example relationships between program numbers
(e.g., MPEG-2 program numbers), major/minor channel pairs, and elementary streams
(e.g., using PID’s) composing the programs, a manner of using these relationships to
filter, select, or otherwise identify AC-3 packets to be encoded (e.g., at block 720 of
FIG. 7) is now described.

[0099] In one example, a four-part key including a major channel number, a minor
channel number, a program number, and an elementary stream PID is used to identify
elementary streams to be encoded. One or more such keys may be provided to the
example encoding apparatus 124 (FIG. 1) during configuration. Each such key
corresponds to one of a plurality of available encoding methods. In general, each of
the available encoding methods may specify the nature of the data to be inserted into
the elementary stream corresponding to the key. Additionally, in this example, only
non-zero key portions are considered as criteria for filtering. Finally, in the case that
conflicting keys are provided, the encoding method associated with the first submitted
key is applied to its corresponding elementary stream.

[00100] Table 1 below provides an nine example keys that may be applied to a
transport stream having, for example, the relationships between elementary stream
PID’s, major/minor channel pairs, and MPEG-2 PAT’s and PMT’s for programs 3
and 4 shown in FIG. 12. However, it should be recognized that additional or

alternative keys may be used instead of the group of keys shown in TABLE 1.

43

WO 2006/098736

PCT/US2005/013507

Major
Channel

Minor
Channel

Program
Number

Audio
PID

Encoding
Method

Instructions

Result
(Audio
Streams
Encoded)

999

A

Using Method A,
encode all audio
streams associated
with channel 999.

0x34, 0x35,
0x44, 0x45

999

Using Method B,
encode all audio
streams associated

with channel
999/1.

0x34, 0x35

999

Using Method C,
encode all audio
streams associated

with channel
999/2.

0x44, 0x45

Using Method D,
encode all audio
streams associated
with Program
Number 3.

0x34, 0x35

Using Method E,
encode all audio
streams associated
with Program
Number 4.

0x44, 0x45

0x34

Using Method F,
encode only audio
stream 0x34.

0x34

0x35

Using Method G,
encode only audio
stream 0x35.

0x35

0x44

Using Method H,
encode only audio
stream 0x44.

0x44

0x45

Using Method I,
encode only audio
stream 0x45.

0x45

TABLE 1

[00101] With reference to TABLE 1 above, if the first key 999/0/0/0 is provided to

the encoder 124 (FIG. 1), at block 720 (FIG. 7) the example encoder 124 (FIG. 1)

uses encoding method A to encode all audio streams associated with channel 999. In

44

WO 2006/098736 PCT/US2005/013507

particular, as shown in TABLE 1, elementary audio streams having PID’s 0x34, 0x35,
0x44, and 0x45 are selected for encoding at block 720 (FIG. 7). Again, as noted
above, the zero-valued portions of the key (i.e., the minor channel, program number,
and audio PID) are ignored and, thus, all streams associated with major channel 999
are encoded. Also, as noted above, if conflicting keys are submitted, the encoder 124
(FIG. 1) applies the first provided key. Thus, if the example keys in TABLE 1 were
provided to the encoder 124 in the order listed, the first key 999/0/0/0 would be
applied and the remaining eight keys would be ignored. As described above in
connection with FIG. 7, each time the example encoder 124 (FIG. 1) parses a
complete PAT, PMT, or TVCT, the example encoder 124 updates its internal tables at
block 710 (FIG. 7) to reflect changes in, for example, major/minor channel numbers,
program numbers, and/or audio stream PID’s.

}0034}[00102] FIG. 13 depicts an example processor system 1302 that may be used to
implement, for example, one or more of the functional blocks shown in the example
encoder 124 of FIG. 3 and/or to execute machine readable instructions or code
represented by the various blocks of the flow diagrams of FIGS. 4-11. The example
processor-based system 1302 may be, for example, a server, a personal computer, or
any other type of computing device.

J0035}{00103] The processor 1300 may, for example, be implemented using one or
more Intel® microprocessors from the Pentium® family, the Itanium® family or the
XScale® family. Of course, other processors from other families are also appropriate.
The processor 1300 is in communication with a main memory including a volatile
memory 1304 and a non-volatile memory 1306 via a bus 1308. The volatile memory
1304 may be implemented by Synchronous Dynamic Random Access Memory

(SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS Dynamic

45

WO 2006/098736 PCT/US2005/013507

Random Access Memory (RDRAM) and/or any other type of random access memory
device. The non-volatile memory 1306 may be implemented by flash memory and/or
any other desired type of memory device. Access to the memory 1304 is typically
controlled by a memory controller (not shown) in a conventional manner.
}00371{00104] The system 1302 also includes an interface circuit 1310. The interface
circuit 1310 may be implemented by any type of well-known interface standard to, for
example, enable the system 1302 to communicate with the transmitter 126 (FIG. 1)
and/or via the communication link 150 (FIG. 1).

[00105] The system 1302 also includes one or more mass storage devices 1318 for
storing software and/or data. Examples of such mass storage devices include floppy
disk drives, hard drive disks, compact disk drives and digital versatile disk (DVD)
drives. |

[00106] Although certain methods, apparatus and articles of manufacture have been
described herein, the scope of coverage of this patent is not limited thereto. To the
contrary, this patent covers all method, apparatus and articles of manufacture fairly
falling within the scope of the appended claims either literally or under the doctrine of

equivalents.

46

WO 2006/098736 PCT/US2005/013507

What is claimed is:
1. A method of encoding a digital media signal, comprising:

selecting compressed audio packets associated with an audio stream in the
digital media signal;

copying contents of the compressed audio packets into respective frames of
compressed audio data;

identifying a complete one of the respective frames;

encoding the complete frame to include media source identification
information; and

copying portions of the encoded frame into respective corresponding portions

of the digital media signal to form an encoded media signal.

2. A method as defined in claim 1, wherein sélecting the compressed audio

packets comprises selecting AC-3 packets from an MPEG compliant transport stream.

3. A method as defined in claim 1, wherein selecting the compressed audio
packets comprises receiving pointer information associated with the respective

locations of the compressed audio packets in an input buffer.

4, A method as defined in claim 1, wherein selecting the compressed audio
packets comprises reading packet header information to determine packet type

information and audio stream identifying information.

5. A method as defined in claim 1, wherein copying the contents of the
compressed audio packets comprises parsing the compressed audio packets into

slices, each of which corresponds to one of the respective frames.

47

WO 2006/098736 PCT/US2005/013507

6. A method as defined in claim 1, wherein copying the contents of the
compressed audio packets comprises copying the contents of the compressed audio

packets into frame buffers, each of which corresponds to only one audio stream.

7. A method as defined in claim 1, wherein encoding the complete frame to
include the media source identification information comprises at least one of

performing a watermarking operation or inserting data in an auxiliary data field.

8. A method as defined in claim 1, wherein copying the portions of the encoded
frame into respective corresponding portions of the digital media signal comprises
overwriting slices of transport packets within the media signal with corresponding

slices from the encoded frame.

9. A method as defined in claim 1, further comprising using an object-oriented
data structure to represent each of the compressed audio packets and using the object-
oriented data structures to perform one or more of the selecting, copying, identifying,

or encoding operations.

10. A method as defined in claim 9, wherein each of the object-oriented data
structures includes pointer information associated with a location of a transport packet

within a buffer.

11. A method as defined in claim 1, further comprising identifying a contiguous
group of packets within the encoded media signal as ready for transmission and

releasing the contiguous group of packets for transmission.

48

WO 2006/098736 PCT/US2005/013507

12. An apparatus for encoding a digital media signal, comprising:

a processor coupled to a memory and programmed to:

select compressed audio packets associated with an audio stream in the digital
media signal;

copy contents of the compressed audio packets into respective frames of
compressed audio data;

identify a complete one of the respective frames;

encode the complete frame to include media source identification information;
and

copy portions of the encoded frame into respective corresponding portions of

the digital media signal to form an encoded media signal.

13. An apparatus as defined in claim 12, wherein the processor is programmed to
select the compressed audio packets by selecting AC-3 packets from an MPEG

compliant transport stream.

14. An apparatus as defined in claim 12, wherein the processor is programmed to
select the compressed audio packets by receiving pointer information associated with

the respective locations of the compressed audio packets in an input buffer.

15. An apparatus as defined in claim 12, wherein the processor is programmed to
select the compressed audio packets by reading packet header information to

determine packet type information and audio stream identifying information.

49

WO 2006/098736 PCT/US2005/013507

16. An apparatus as defined in claim 12, wherein the processor is programmed to
copy the contents of the compressed audio packets by parsing the compressed audio

packets into slices, each of which corresponds to one of the respective frames.

17. An apparatus as defined in claim 12, wherein the processor is programmed to
copy the contents of the compressed audio packets by copying the contents of the
compressed audio packets into frame buffers, each of which corresponds to only one

audio stream.

18. An apparatus as defined in claim 12, wherein the processor is programmed to
encode the complete frame to include the media source identification information by
at least one of performing a watermarking operation or inserting data in an auxiliary

data field.

19. An apparatus as defined in claim 12, wherein the processor is programmed to
copy the portions of the encoded frame into respective corresponding portions of the
digital media signal by overwriting slices of transport packets within the media signal

with corresponding slices from the encoded frame.

20. An apparatus as defined in claim 12, wherein the processor is programmed to
use an object-oriented data structure to represent each of the compressed audio
packets and to use the object-oriented data structures to perform one or more of the

selecting, copying, identifying, or encoding operations.

21. An apparatus as defined in claim 20, wherein each of the object-oriented data
structures includes pointer information associated with a location of a transport packet

within a buffer.

50

WO 2006/098736 PCT/US2005/013507

22. An apparatus as defined in claim 12, wherein the processor is programmed to
identify a contiguous group of packets within the encoded media signal as ready for

transmission and release the contiguous group of packets for transmission.

23. A machine readable medium having instructions stored thereon that, when

executed, cause a machine to:

select compressed audio packets associated with an audio stream in a digital
media signal;

copy contents of the compressed audio packets into respective frames of
compressed audio data;

identify a complete one of the respective frames;

encode the complete frame to include media source identification information;
and

copy portions of the encoded frame into respective corresponding portions of

the digital media signal to form an encoded media signal.

24. A machine readable medium as défined in claim 23 having instructions stored
thereon that, when executed, cause the machine to select the compressed audio

packets by selecting AC-3 packets from an MPEG compliant transport stream.

25. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to select the compressed audio
packets by receiving pointer information associated with the respective locations of

the compressed audio packets in an input buffer.

51

WO 2006/098736 PCT/US2005/013507

26. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to select the compressed audio
packets by reading packet header information to determine packet type information

and audio stream identifying information.

27. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to copy the contents of the
compressed audio packets by parsing the compressed audio packets into slices, each

of which corresponds to one of the respective frames.

28. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to copy the contents of the
compressed audio packets by copying the contents of the compressed audio packets

into frame buffers, each of which corresponds to only one andio stream.

29. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to encode the complete frame to
include the media source identification information by at least one of performing a

watermarking operation or inserting data in an auxiliary data field.

30. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to copy the portions of the encoded
frame into respective corresponding portions of the digital media signal by
overwriting slices of transport packets within the media signal with corresponding

slices from the encoded frame.

52

WO 2006/098736 PCT/US2005/013507

31. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to use an object-oriented data
structure to represent each of the compressed audio packets and to use the object-
oriented data structures to perform one or more of the selecting, copying, identifying,

or encoding operations.

32. A machine readable medium as defined in claim 31, wherein each of the
object-oriented data structures includes pointer information associated with a location

of a transport packet within a buffer.

33. A machine readable medium as defined in claim 23 having instructions stored
thereon that, when executed, cause the machine to identify a contiguous group of
packets within the encoded media signal as ready for transmission and release the

contiguous group of packets for transmission.

34. A method of encoding a digital media signal, comprising:
extracting a copy of a frame of a compressed media stream from the digital
media signal;
encoding the copy of the frame of the compressed media stream; and
overwriting portions of the digital media signal with corresponding portions of
the encoded copy of the frame of the compressed media stream to form an encoded

media signal.

35. A method as defined in claim 34, wherein extracting the copy of the frame of
the compressed media stream comprises copying slices of the frame from transport

packets to a frame buffer.

33

WO 2006/098736 PCT/US2005/013507

36. A method as defined in claim 35, wherein copying the slices of the frame
comprises using a plurality of packet objects to reference data in an input buffer

containing a segment of the digital media signal.

37. A method as defined in claim 34, wherein encoding the copy of the frame
comprises at least one of embedding watermark information or inserting information

in an expanded data field.

38. A method as defined in claim 34, wherein overwriting the portions of the
digital media stream with the corresponding portions of the encoded copy of the
frame of the compressed media signal comprises overwriting slices of the compressed

media stream with corresponding encoded slices.

39. A method as defined in claim 34, further comprising identifying one or more
packets within the encoded media signal as ready for transmission, wherein at least
one of the one or more packets is associated with a frame having at least another

packet that is not yet ready for transmission.

40. A method as defined in claim 34, wherein at least one of the extracting,
encoding, or overwriting operations is performed using a plurality of object-oriented
data structures, each of which corresponds to a transport packet within the digital

media signal.

54

WO 2006/098736 PCT/US2005/013507

41. An apparatus for encoding a digital media signal, comprising:
a processor coupled to a memory and programmed to:
extract a copy of a frame of a compressed media stream from the
digital media signal;
encode the copy of the frame of the compressed media stream; and
overwrite portions of the digital media signal with corresponding
portions of the encoded copy of the frame of the compressed media stream to form an

encoded media signal.

42. An apparatus as defined in claim 41, wherein the processor is programmed to
extract the copy of the frame of the compressed media stream by copying slices of the

frame from transport packets to a frame buffer.

43. An apparatus as defined in claim 42, wherein the processor is programmed to
copy the slices of the frame by using a plurality of packet objects to reference data in

an input buffer containing a segment of the digital media signal.

44, An apparatus as defined in claim 41, wherein the processor is programmed to
encode the copy of the frame by at least one of embedding watermark information or

inserting information in an expanded data field.

45. An apparatus as defined in claim 41, wherein the processor is programmed to
overwrite the portions of the digital media signal with the corresponding portions of
the encoded copy of the frame of the compressed media stream by overwriting slices

of the compressed media stream with corresponding encoded slices.

35

WO 2006/098736 PCT/US2005/013507

46. An apparatus as defined in claim 41, wherein the processor is programmed to
identify one or more packets within the encoded media signal as ready for
transmission, wherein at least one of the one or more packets is associated with a

frame having at least another packet that is not yet ready for transmission.

47. An apparatus as defined in claim 41, wherein the processor is programmed to
perform at least one of the extracting, encoding, or overwriting operations using a
plurality of object-oriented data structures, each of which corresponds to a transport

packet within the digital media signal.

48. A machine readable medium having instructions stored thereon that, when
executed, cause a machine to:
extract a copy of a frame of a compressed media stream from a digital media
signal,;
encode the copy of the frame of the compressed media stream; and
overwrite portions of the digital media signal with corresponding portions of
the encoded copy of the frame of the compressed media stream to form an encoded

media signal.

49. A machine readable medium as defined in claim 48 having instructions stored
thereon that, when executed, cause the machine to encode the copy of the frame by at
least one of embedding watermark information or inserting information in an

expanded data field.

56

WO 2006/098736 PCT/US2005/013507

50. A machine readable medium as defined in claim 48 having instructions stored
thereon that, when executed, cause the machine to identify one or more packets within
the encoded media signal as ready for transmission, wherein at least one of the one or
more packets is associated with a frame having at least another packet that is not yet

ready for transmission.

51. A machine readable medium as defined in claim 48 having instructions stored
thereon that, when executed, cause the machine to perform at least one of the
extracting, encoding, or overwriting operations using a plurality of object-oriented
data structures, each of which corresponds to a transport packet within the digital

media signal.

52. A method of encoding a media signal, comprising:

processing each of a sequence of transport packets composing the media
signal to identify a subset of transport packets associated with a compressed media
stream; |

arranging copies of the subset of transport packets to form a copy of a frame
of the compressed media stream;

encoding the copy of the frame; and

copying slices of the encoded copy of the frame into corresponding original

locations within the media signal.

53. A method as defined in claim 52, wherein the subset of transport packets
corresponds to a frame of compressed audio data within the compressed media

stream.

57

WO 2006/098736 PCT/US2005/013507

54. A method as defined in claim 52, wherein arranging the copies of the subset of
transport packets comprises buffering packet objects representative of the subset of

transport packets.

55. A method as defined in claim 52, wherein encoding the copy of the frame
comprises at least one of embedding watermark information in the subset of transport
packets or inserting data in an auxiliary data field within the subset of transport

packets.

56. A method of modifying information in a media signal, comprising:
modifying frames associated with one or more compressed media streams
within the media signal on a frame-by-frame basis; and
releasing for transmission a modified version of the media signal containing

the modified frames on a packet-by-packet basis.

57. A method as defined in claim 56, wherein modifying the frames on the frame-
by-frame basis comprises extracting data slices from compressed audio transport
packets within the media signal, arranging the extracted data slices in a frame buffer,
and modifying the data slices in the frame buffer in response to detecting a complete

frame in the frame buffer.

58. A method as defined in claim 56, wherein releasing for transmission the
modified version of the media signal on the packet-by-packet basis comprises
identifying a contiguous block of packets in the encoded version of the media signal,
wherein none of the packets within the contiguous block of packets are needed for a

subsequent modification operation.

58

WO 2006/098736 PCT/US2005/013507

59. An encoder for encoding a media signal containing compressed media
streams, the encoder comprising:
a transport parser configured to encode frames associated with one or more
compressed media streams within the media signal on a frame-by-frame basis; and
a packet hold queue operatively coupled to the transport parser and configured
to release for transmission an encoded portion of the media signal containing the

encoded frames on a packet-by-packet basis.

60. An encoder as defined in claim 59, further comprising a buffer manager
operatively coupled to the transport parser and an input buffer, wherein the input
buffer is configured to hold a segment of the media signal, and wherein the buffer
manager is configured to provide information relating to the location of information

stored in the input buffer to the transport parser.

61. An encoder as defined in claim 60, further comprising a virtual buffer
operatively coupled to the buffer manager to enable serialized access to the

information stored in the input buffer.

62. An encoder as defined in claim 61, wherein the input buffer is a circular buffer

and wherein the virtual buffer comprises a plurality of counters.

63. An encoder as defined in claim 59, further comprising a packet store
operatively coupled to the packet hold queue, wherein the packet store is configured

to provide packet objects representative of transport packets to the transport parser.

64. An encoder as defined in claim 59, further comprising a packet write queue
operatively coupled to the packet hold queue and configured to cause transport packet

information to be transmitted.

59

WO 2006/098736

1/13

/—'—102

PCT/US2005/013507

/—100

108
12 124
SOURCE > COMPRESSED
MUX » DOMAIN
> ENCODER
MEDIA .| MPEG \
SOURCE ENCODER 118 I
126
110 114 —116 "\ TRANSMITTER
|
l
|
|
/o 104 l
|
— 152 |
RECEIVER le— — — o e o
' 156
METERING |/—
DEVICE/
DECODER
y 158
COMMUNICATION |/~
INTERFACE 106)
[T %
162 — /
160 —"
DATA COLLECTION
FACILITY

FIG. 1

PCT/US2005/013507

WO 2006/098736

2/13

\‘#m_.

¢ Old

ogh zel
Z ANV \\\ln L ANVY4

\’wN_.

INIWDIS WYIHLS LHOdSNVHL

¢ ANVHA I ANV

‘T WV3dLs ‘T NV3YLS ‘L WYIHLS ‘I NYIULS

8¢|.2|9z|Se|ve|ez|ze|1e|0g|6L(8LILL|9L|GL{VLIEL L LL|OL S|v|¢ b
h .

WO 2006/098736

3/13

PCT/US2005/013507

124 ~\
—308
TRANSPORT
STREAM
300 — PROCESSOR
STREAM
READER 312 310
| PACKET TRANSPORT
STORE PARSER
I) 316
PACKET HOLD
QUEUE FRAME STORE
314

__|PACKET WRITE | — 318

QUEUE
STREAM |~ 320

WRITER

| BUFFER 304

MANAGER
302
INPUT BUFFER
~ 306
VIRTUAL BUFFER

FIG. 3

WO 2006/098736 PCT/US2005/013507

4/13

ENCODE COMPRESSED 400
MEDIA SIGNAL
v

402
ﬁNTiFY NEXT PACKET IN
'\ INPUT BUFFER

v A0

6RSE/PROCESS PACKET)

v — 408

CURRENT FRAME(S) READY FOR NO
ENCODING?
| YEs 408

ENCODE CURRENT
FRAME

v

410

COPY ENCODED V

FRAME DATA TO
INPUT BUFFER

)
REMOVE FRAME FROM 412
HOLD QUEUE
v _
CLEAR FRAME BUFFER
AND COPY FIRST SLICE |/~

OF NEXT FRAME INTO

413

BUFFER
‘4
, NO
PACKET(S) READY FOR TRANSMISSION?
414
! YES 416
TRANSMIT PACKET(S)
7 418
R?
\7E_S< PACKETS IN INPUT BUFFE ><~
NO

Y

FIG. 4 (RETURN/END)

WO 2006/098736 PCT/US2005/013507

5/13
500
@CKET STORE PROCES§
K 502
REQUEST FOR
TRANSPORT
NO PACKET?
! YES 504
IDENTIFY NEXT
AVAILABLE PACKET
OBJECT
‘ _— 506
BUFFER MANAGER
POINTER REQUEST
ASSIGN POINTER TO
IDENTIFIED PACKET
OBJECT
—512
v 510
y MARK IDENTIFIED
< LAST PACKET? ES .| PACKET OBJECT
™ AS LAST
P |
\ 2
STORE VIRTUAL BUFFER
LOCATIONS OF FIRST AND| _ 544
LAST DATABYTESOF
PACKET IN PACKET
OBJECT
Y L 018 STo/RTE518
PACKET STRADDLES \ vgs | STRADDLE
END OF INPUT CONDITIO
BUFFER? ITION IN
: PACKET OBJECT
"NO ya 520
MARK PACKET |
OBJECT AS “IN USE”
L yau 522

ISSUE POINTER TO
PACKET OBJECT TO —»Q RETURN)
TRANSPORT PARSER

FIG. 5

WO 2006/098736

—~612

ERROR
HANDLING
PROCESS

l

6/13

PCT/US2005/013507

BUFFER MANAGER 506
POINTER REQUEST

NO

Y
REQUEST FOR
TRANSPORT
PACKET?

'YES

602

ISSUE POINTER TO NEXT
PACKET HEADER IN INPUT
BUFFER

Y

UPDATE VIRTUAL BUFFER
COUNTERS

Y
ANALYZE PHYSICAL AND
VIRTUAL BUFFER
RELATIONSHIPS

L~ 608

YES

!

ERROR?

» NO

y

Q RETURN)

FIG. 6

610

WO 2006/098736 PCT/US2005/013507

713

(PARSE/PROCESS PACK@/ 404

y

RECEIVE POINTER TO
PACKET OBJECT

:

PARSE PACKET HEADER | 704

- — 720
706 AC-3
PACKET? PACKET?

FOR
YES —708 ENCODING? 701
EXTRACT EXTRACT NO
PROGRAMAND | | CHANNEL AND VESN_RROR?
AC-3 PROGRAM NG
718 722
INFORMATION INFORMATION
PARSE PACKET
, —710 PAYLOAD FOR
SLICE
UPDATE TABLES |« BOUNDARIES
v 712
724
T -
sosoome
Minoa 1S OBJECT TO HOLD
CHANNEL(S), SID's, QUE%%QSEDTO BE
ETC.
714 | |
SEND PACKET
OBJECT TO HOLD |,
QUEUE AS “PASS
THROUGH”

y

RETURN/END)«—\‘
.7 _

WO 2006/098736 PCT/US2005/013507

8/13

\

PARSE PACKET PAYLOAD 722
FOR SLICE BOUNDARIES

SEARCH PAYLOAD FOR |,— 802
FRAME START
804
FRAME START NO
FOUND?
"YES _— 806
NO ~° TRANSITION
_ PACKET?
y —808 YES 812 v 818
SAVE LOCATION SAVE LOCATIONS AND SAVE LOCATION OF
AND SIZE OF SIZES OF LAST SLICE OF NEXT SLICE OF
FIRST SLICE OF CURRENT FRAME AND CURRENT FRAME IN
CURRENT FIRST SLICE OF NEXT PACKET OBJECT
FRAME IN FRAME IN PACKET
PACKET OBJECT OBJECT
y yan 810 y ,—814 —820
CLEAR FRAME COPY LAST SLICE OF
BUFFER AND CURRENT FRAME TO COPY PAYLOAD OF
STORE FIRST FRAME BUFFER FOR | |PACKET TO NEXT SLICE
SLICE IN FRAME STREAM ASSOCIATED IN FRAME BUFFER
__ BUFFER WITH PACKET ASSOCIATED WITH
PACKET
A
(RETURN)

FIG. 8

WO 2006/098736 PCT/US2005/013507

9/13
HOLD QUEUE PACKET 900
OBJECT RECEIVE
PROCESS
, —902
PASS- \
YES THROUGH NO
PACKET? /
004
— . —916
AT LEAST ONE PUSH PACKET
PACKET OBJECT NO OBJECT ONTO HOLD
IN AT LEAST ONE QUEUE FOR
HOLD QUEUE? CORRESPONDING
STREAM
rYEngoa L —910
SAVE LOCATION
OF LASTBYTE OF| | sonb PACKET TO
VIRTUAL BUFFER WRITE QUELE
OCCUPIED BY
PACKET
908 7
HOLD PACKET
FOR LATER
WRITING
RELEASE PACKET
» OBJECT TO PACKET
STORE
y _\‘
RETURN)«
Q RN)

FIG. 9

WO 2006/098736 PCT/US2005/013507

10/13

REMOVE FRAME FROM 412
HOLD QUEUE

Y
IDENTIFY QUEUE HOLDING |, — 1002
FRAME PACKETS

A

IDENTIFY FRAME NUMBER OF |, — 1004
OLDEST PACKET

\ 4

POP PACKET OBJECTS
HAVING SAME FRAME
NUMBER FROM QUEUE |, — 1006
LEAVING OBJECT
ASSOCIATED WITH
TRANSITION PACKET

/

RELEASE POPPED PACKET | — 1008
OBJECTS TO PACKET STORE

h 4

MOVE REMAINING PACKET |, — 1010
OBJECTS TO HEAD OF QUEUE

MODIFY TRANSITION PACKET | _ 4012
OBJECT TO POINT ONLY TO V
CURRENT FRAME
v
TRACK OLDEST BYTE OF |, — 1014
DATA IN QUEUE

v
SCAN ALL HOLD QUEUES FOR | — 1016
OLDEST BYTE OF DATA

v
INSTRUCT PACKET WRITE 1018
QUEUE NOW SAFE TO WRITE |
UP TO OLDEST HELD BYTE

y
FIG. 10 L RET[JRN)

WO 2006/098736 PCT/US2005/013507

1113

PACKET WRITE 1100
QUEUE PROCESS

Y
WRITE
NO INSTRUCTION 1102
RECEIVED FROM
HOLD QUEUE?

yWES

DETERMINE NUMBER OF 1104

BYTES TO WRITE TO
STREAM WRITER

\
OBTAIN POINTER TO 1106
RELEASED BLOCK FROM |
BUFFER MANAGER

A J

CALL STREAM WRITER TO | — 1108
WRITE RELEASED BLOCK

\
C RETURN D

FIG. 11

WO 2006/098736

12/13

PCT/US2005/013507

— 1204 — 1202 — 1206
PSI PMT PSI PMT
PMT PID 0x30 PSI PAT » PMT PID 0x40
PROGRAM 3 PROGRAM 4
PROGRAM 3 PROGRAM 4
— 1208 1210 —
VID PID 0x31 VID PID 0x41
AUD PID 0x34 AUD PID 0x44
AUD PID 0x35 AUD PID 0x45
_— 1200
MAJOR CHANNEL 999 MAJOR CHANNEL 999
MINOR CHANNEL 1, PSIP TVCT MINOR CHANNEL 2,
PROGRAM 3 PROGRAM 4

FIG. 12

WO 2006/098736

13/13

1302
_\

= 1306

NON-VOLATILE
MEMORY

‘e 1308
<«

r— 1304

/——1310

WAIN MEMORY

<«

INTERFACE
CIRCUIT

PROCESSOR

1300
/—‘?

>

A

STORAGE
DEVICE(S)

F

IG. 13

PCT/US2005/013507

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US05/13507

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) G10L 19/00
USCL 704/500

According to International Patent Classification (IPC) or to both natiopal classification and IPC

B. FIELDS SEARCHED

U.S. : 704/500; 725/32

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EAST text search

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y.p US 2005/0039064 A1 (BALAKRISHNAN et al) 17 February 2005 (17.02.2005), entire 1-64
document
Y.P US 6,804,453 B1 (SASAMOTO et al) 12 October 2004 (12.10.2004), entire document 1-58
Y US 2002/0173968 Al (PARRY) 21 November 2002 (21.11.2002), paragraphs 0034-0038. 1-58
Y US 6,373,960 B1 (CONOVER et al) 16 April 2002 (16.04.2002), col. 5, lines 51-53; Figures 7,18,29,37,44,49,55
3 and 4.
A US 2002/0150388 Al (AIKAWA et al) 17 October 2002 (17.10.2002) 1-64
A US 2002/0048450 A1 (ZETTS) 25 April 2002 (25.04.2002) 1-64
A US 2005/0022253 Al (CHEN et al) 27 January 2005 (27.01.2005)
A US 2004/0218093 Al (RADHA et al) 04 November 2004 (04.11.2004) 1-64

I:I Further documents are listed in the continuation of Box C.

L]

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of
particular relevance

“E” earlier application or patent published on or after the international filing date

“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O" document referring to an oral disclosure, use, exhibition or other means

“p" document published prior to the international filing date but later than the
priority date claimed

“T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is combined
with one or more other such documents, such combination being
obvious to a person skilled in the art

Date of the actual completion of the international search

16 October 2005 (16.10.2005)

A document member of the same patent family
onal search report

Date of maﬂmg of the i
10 NOV 2™ ™)/

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (571) 273-3201

Authorized ofﬁcer

Richemond Dorvil

HE

Telephone No. 571-272-7241

Form PCT/ISA/210 (second sheet) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

