006/023994 A1 | 000 0 0000 R0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 March 2006 (02.03.20006)

lﬂb A 0.0 0 OO O

(10) International Publication Number

WO 2006/023994 Al

(51) International Patent Classification : GOG6F 12/16
(21) International Application Number:
PCT/US2005/030168

(22) International Filing Date: 24 August 2005 (24.08.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/924,652 24 August 2004 (24.08.2004) US

(71) Applicant (for all designated States except US): RE-
VIVIO, INC. [US/US]; 12 Hartwell Avenue, Lexington,
MA 02421 (US).

(72) Inventors: ROWAN, Michael; 14 Estes Street, Ames-
bury, MA 01913 (US). RODGERS, Kevin; 2 Symphony
Court, Derry, NH 03038 (US).

(74) Agents: ANDERSON, Thomas, E. et al.; Intellectual
Property Department, Hunton & Williams LLP, Suite
1200, 1900 K Street, N.W., Washington, DC 20006-1109
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND DEVICES FOR RESTORING A PORTION OF A DATA STORE

o (57) Abstract: A storage management device receives a request to restore a portion of a data store to its content at a specified past
time, which is selected from a substantially continuous time interval. In response to the received request, the storage management
device stores in the portion of the data store content that was stored in the portion of the data store at the specified past time and that

was overwritten since the specified past time.

WO 2006/023994 PCT/US2005/030168

METHODS AND DEVICES FOR RESTORING A PORTION OF A DATA STORE

Cross Reference to Related Application

[0001] This application is a continuation-in-part of United States patent application Serial
No. 10/668,833, filed September 23, 2003, the disclosure of which is hereby incorporated herein

by reference in its entirety.

Technical Field

[0002] The present invention relates to data storage. More particularly, the invention relates

to methods and devices for restoring a portion of a data store.

Background

[0003] Business enterprises rely increasingly on computer systems that allow the sharing of
data across a business enterprise. The data storage systems that have evolved to store large
amounts of data typically are critically important to an enterprise. As a result, the disruption or

failure of the data storage system can cripple operation of the entire enterprise.

[0004] Data used by applications running on computer systems are typiéally stored on
primary storage devices (e.g., disks) and secondary storage devices (e.g., tape and cheaper disk
drives) for protection. As these applications run, the data changes as a result of business
opgrations. Information technology departments typically deal with a number of problems
concerning data storage systems. Generally, however, these fall into two broad catégories:

hardware failure and data corruption.

[0005] The business significance of data storage systems and the importance of the integrity
of the data that they store and maintain has generated a correspondingly high interest in systems
that provide data protection and data recovery. At present, mirroring and snapshot technology

are the two primary approaches available to enterprises interested in data recovery. In the event
* of a system failure, data recovery allows an enterprise to recover data from a prior point in time

and to resume operations with uncorrupted data. Once the timing of the hardware failure or

—1-

WO 2006/023994 PCT/US2005/030168

corrupting event, or events, is identified, recovery may be achieved by going back to a point in

time when the stored data is known to be uncorrupted.

[0006] Typically, data storage devices include individual units of storage, such as cells,
blocks, sectors, etc. Read commands generated by a host system (used generally to mean one or
more host systems) direct the information system to provide the host with the data specified in
the request. Traditionally, the information is specified based on its location within the data
storage device, e.g., one or more specific blocks. Write commands are executed in a similar
fashion. For example, data is written to a specific unit of storage in response to an I/O request
generated by a host system. A location identifier provides direct association between the data
and the unit of storage in which it is stored. Thereafter, the locaﬁon identifier is employed to

read and update the data.

[0007] On the hardware failure side of the data protection problem, vendors provide a few
different mechanisms to help prevent hardware failure from affecting application availability and
performance, for example, disk mirroring. This is a mechanism where multiple disks are
grouped together to store the same information, allowing a disk to fail without preventing the
application from retrieving the data. In a typical setup, the user will allocate 1-4 mirror disks for
each application data disk. Each write request that is sent to the application primary disk is also
sent to the mirror copies, so that the user actually has N (where N is between 2 and 5 typically)
disks with the exact same data on it. As a result, the mirroring approach provides at least one
complete backup of the then current data. Thus, if a disk failure occurs, the user still has
application data residing on the other mirror disks. A redundant array of independent disks

(“RAID”) provides one example of a mirroring system.

[0008] However, mirroring is ineffective when data corruption occurs. Data corruption
comes in many forms, but it generally is recognized when the user’s application stops
functioning properly as a result of data being written to the disk. There are many possible
sources of data corruption such as a failed attempt to upgrade the application, a user accidentally
deleting key information, a rogue user purposely damaging the application data, computer

viruses, and the like. Regardless of the calise, mitroring actually works against the user who has

WO 2006/023994 PCT/US2005/030168

experienced data corruption because mirroring replicates the bad data to all the mirrors

simultaneously. Thus, all copies of the data are corrupted.

[I N R IR SR R U

[0009] Additionally, because the disks are continuously updated, a backup of historical data,
i.e., a snapshot of the data present in the data storage device at a past time T, can only be created
if the system is instructed to save the backup at or prior to time T. Thus, at time T+1 the system
is unable to provide a backup of the data current at time T. Further, each unit of storage is saved
regardless of whether the data stored in it is unchanged since the time that the previous backup
was made. Such an approach is inefficient and costly because it increases the storage capacity
required to backup the data storage device at multiple points in time. Also, the mirroring
approach becomes less efficient and more error prone when employed with larger data storage
systems because large systems span hundreds of disks and the systems cannot assure that each
disk is backed up at the same point in time. Consequently, complex and error prone processes

are employed in an attempt to create a concurrent backup for the entire data storage system.

[0010] As described above, snapshots, also referred to as single point in time images, are
frequently created in conjunction with a mirroring system. Alternatively, a snapshot approach
may be employed as an independent data storage and recovery method. In the snapshot
approach, the user selects periodic points in time when the current contents of the disk will be
copied and written to either a different storage device or an allocated set of étorage units within
the same storage device. This approach suffers, however, from the same shortcomings as
mirroring, that is, all snapshots are created at the then current point in time either in conjunction
with the users request or as a result of a previously scheduled instruction to create a snapéhot of
the stored data. Whether alone or in combination, neithér data mirrors or data snapshots allow
the user to employ hindsight to recreate a data set that was current at some past time. Because
the data stored in each of the storage units is not associated with an individual time identifier, a
user is unable to go back to view data from a particular point in time unless coincidentally a
historical backup was previously created for that time. There is no way to restore the data at an
intermediate time, for example time (T-1), between the current time (T) and the time that the last
backup disk was saved (for example T-2). Also, generation of single point in time images
generally is a lengthy process. Image generation time has become even more significant as the

storage capacity and data set sizes have increased.

—3-

WO 2006/023994 PCT/US2005/030168

[0011] The storage industry, as a result, has focused on providing both faster and more
frequent image generation. Suppliers of data recovery systems that employ tapes have attempted
to provide larger, more scalable tape libraries by increasing system capacities and the quantity of
tape heads in order to allow parallel operation. Suppliers of disk based systems have focused on
how to use disk drives to provide more single point in time images with improved response
times. In one approach, one of a quantity N mirror disks is brought offline at a specified time in
order to create a single point in time image at that time. The approach may allow for an
increased number of images provided that the quantity of mirror disks is increased sufficiently.
However, this approach significantly increases the required storage capacity with each point in
time, for example, for a 5 terabyte application, 30 terabytes of s't'orage are required to support 2
standard mirror disks and 4 point in time images. Because these solutions are only attempts at
fixing existing approaches they do not provide a solution that is workable as the capacity of data

storage systems continues to increase.

Summary of the Invention

[0012] The present invention addresses the shortcomings of current systems by facilitating
the recovery of data at any prior point in time. In particular, the present invention permits data
stored in a data store to be recovered, without requiring that a snapshot of the data store be

created, at a point in time just prior to the occurrence of a corrupting event.

[0013] Even more particularly, the present invention provides a storage management device
that facilitates the storage of data at, and the subsequent recovery of data from, one or more
physical stores. The storage management device may be implemented in a network and it may
recgive data for storage in the physical stores from one or more other devices connected to the

network.

[0014] In one embodiment, the storage management device receives a request to restore a
portion of a data store to its content at a specified past point in time. In accordance with the
invention, the past point in time specified in the request can be any point in time prior to the
point in time at which the request is made. - In other words, the specified past point in time can be
selected, for example by a user at a host, from the substantially continuous time interval that

precedes the point in time at which the request is made.

—4—

WO 2006/023994 PCT/US2005/030168

[0015] According to one advantage, in response to the received request, the storage
management device implements a non-destructive restore of the portion of the data store that is
specified in the request to its content at the specified past point in time. According to another
related advantage, the storage management device preserves a copy of all the data written to that
portion of the data store between the specified past point in time and the time at which the
aforedescribed request is made. Thus, in one embodiment, all data sfored in the data store at any
point in time, whether the data be corrupt or not, is preserved. In other words, in such an

embodiment, all data stored in the data store is immutable.

[0016] According to yet another advantage, while storing in the portion of the data store that
is specified in the request the content that was stored in that portion of the data store at the
specified past time, the storage management device may service an I/O request directed to that
portion of the data store. As such, delay in responding to user-generated 1/O requests is

minimized, thereby preserving user satisfaction and improving overall efficiency.

[0017] In general, in one aspeét, the present invention relates to methods and devices for
restoring a portion of a data store. For example, a storage management device receives a request
“to restore a portion of a data store to its content at a specified past time, which may be selected
from a substantially continuous time interval. In response to the received request, the storage
management device stores in the portion of the data store content that was stored in the portion

of the data store at the specified past time and that was overwritten since the specified past time.

[0018] In general, in another aspect, a method for restoring a portion of a data store includes
receiving a request to restore a portion of a data store to its content at a specified past time. The
specified past time can be selected from a substantially contiﬁuous time interval. In response to
the request, for each unit of storage in the portion, a determination is made about whether such
unit of storage was overwritten in the interval between the specified past time and the present
| time. In response to the determining step, for each unit of storage determined to have been
overwritten in the interval between the specified past time and a present time, a stored copy of
the overwritten content is located, the content in the determined unit of storage at the present
time is copied to a respective saved uﬁit of storage, and then the located previously overwritten .

content is stored in the determined unit of storage. The operation is recorded as a write

—5—

[N}

P

WO 2006/023994 PCT/US2005/030168

operation, for example, the occurrence of the storing step and the associated location of the

respective saved unit of storage are recorded.

[0019] The foregoing and other objects, aspects, features, and advantages of the invention

will become more apparent from the following description and from the claims.

Brief Description of the Drawings

[0020] In the drawings, like reference characters generally refer to the same parts throughout
the different views. Also, the drawings are not necessarily to scale, emphasis instead generally

being placed upon illustrating the principles of the invention.

[0021] FIG. 1 is a block diagram of a storage system including a current store and a time

store according to an embodiment of the invention.

[0022] FIG. 2 is a diagram depicting an embodiment of an I/O request sent by a host to a

storage management device.

[0023] FIG. 3 is a table depicting a series of write commands directed to a data store in an

embodiment of the invention. -

[0024] FiG. 4 is a block diagram depicting the generation of multiple prior images of a data

store according to an embodiment of the invention.

[0025] FIG. 5 is a block diagram depicting the generation of dynamic current stores

according to an embodiment of the invention.
[0026] FIG. 6 is a timeline depicting the generation of a recévery data store.

[0027] FIGS. 7A and 7B are tables depicting the contents of a current store and a time store
during a series of write commands directed to the current store. FIG. 7A depicts the current

store. FIG. 7B depicts the time store.

[0028] FIG. 8 is a table depicting the generation of a prior image of a data store according to

an embodiment of the invention.

WO 2006/023994 PCT/US2005/030168

[0029] FIG. 9 is a block diagram of a processor module according to an embodiment of the

invention.

[0030] FIG. 10 is a block diagram depicting further details of a storage management device "

according to an embodiment of the invention.

[0031] FIG. 11 is a block diagram of an /O manager according to an embodiment of the

invention.

- [0032] FIG. 12 is a block diagram of a storage management device according to an

embodiment of the invention.

[0033] FIG. 13 is a block diagram of a storage system according to an embodiment of the

invention.

[0034] FIG. 14A is a flow diagram of an illustrative embodiment of a method for providing a

modification history for a location within a data store in accordance with the invention.

[0035] FIG. 14B is a flow diagram of another illustrative embodiment of a method for
providing a modification history for a location within a data store in accordance with the

invention.

[0036] FIG. 15 is a diagram depicting an embodiment of an I/O request sent by a host to a

storage management device.

[0037] FIG. 16 is a diagram depicting an embodiment of an I/O response sent by a storage

management device to a host.

[0038] FIG. 17 is a timeline depicting a series of write operations directed to a data store in

- an embodiment of the invention.

[0039] FIG. 18 is a diagram depicting an embodiment of a historical index generated by a

storage management device in accordance with the invention.

[0040] ~ FIG. 19 is a diagram depicting an embodiment of an I/O request sent by a host to a

storage management device.

WO 2006/023994 PCT/US2005/030168

[0041] FIG. 20 is a diagram depicting an embodiment of an I/O response sent by a storage

management device to a host.

[0042] FIG. 21 is a block diagram of a storage management device according to an

embodiment of the invention.

[0043] FIG. 22 is a flow diagram of an illustrative embodiment of a method for storing data

in accordance with the invention.

[0044] FIG. 23 is a block diagram of a multiprocessor system according to an embodiment of

the invention.

[0045] FIG. 24 is a flow diagram of an illustrative embodiment of a method for maintaining
a substantially consistent running clock for a multiprocessor system in accordance with the

invention.

[0046] FIG. 25 is a graph of the time according to an internal clock of a slave processor
module within a multiprocessor system versus the time according to an internal clock of a master

processor module within the multiprocessor system.

[0047] FIG. 26 is a block diagram of a storage management device according to an

embodiment of the invention.

[0048] FIG. 27 is a table depicting an index of records for a set of write commands in

accordance with an embodiment of the invention.
[0049] FIG. 28 depicts maps generated in accordance with an embodiment of the invention.

- [0050] FIG. 29 is a block diagram of a system for processing I/O requests according to an

embodiment of the invention.

[0051] FIG. 30 is a flow diagram of an illustrative embodiment of a method for processing

1/0 requests in accordance with the invention.

[0052] FIG. 31 is a table corresponding to I/O requests in accordance with an embodiment of

the invention.

—8—

WO 2006/023994 PCT/US2005/030168

[0053] FIG. 32 depicts queues used to process I/O requests according to an embodiment of

the invention.

|||||||||||||||

[0054] FIG. 33 is a block diagram of a system according to an embodiment of the invention.
[0055] FIG. 34 is a block diagram of a system according to an embodiment of the invention.
[0056] FIG. 35 is a block diagram of a method according to an embodiment of the invention.

[0057] FIGS. 36A-36D depict an exemplary embodiment of a binary tree according to an

embodiment of the invention.

[0058] FIG. 37 depicts a block diagram of a storage management device according to an

embodiment of the invention.

[0059] FIG. 38 depicts an exemplary method for checkpointing according to an embodiment

of the invention.
[0060] FIG. 39 depicts a block diagram of an exemplary embodiment of the invention.

[0061] FIG. 40 depicts an exemplary method for checkpointing according to an embodiment

of the invention.

[0062] FIG. 41 is a block diagram of a storage management device according to an

embodiment of the invention.

[0063] FIG. 42 is a flow diagram of an illustrative embodiment of a method for recording
write requests directed to a data store and for enabling the generation of at least a portion of a

time map of at least one portion of the data store for a past time.

[0064] FIG. 43 is an exemplary block diagram for explaining the illustrative embodiment of
the method for recording write requests directed to a data store and for enabling the generation of
at least a portion of a time map of at least one portion of the data store for a past time depicted in
FIG. 42.

WO 2006/023994 PCT/US2005/030168

[0065] FIG. 44 is a block diagram of a storage management device according to an

embodiment of the invention.

[0066] FIG. 45 is a flow diagram of an illustrative embodiment of a method for restoring a

portion of a data store.

[0067] FIG. 46 depicts an exemplary table that represents exemplary units of storage of a

data store at various times.
[0068] FIG. 47 depicts an exemplary first database table having write request entries.

Detailed Description

[0069] FIG. 1 provides a general overview of a storage system 30 that allows for the
generation of images of a data store from points in time that are prior to a request time. A host
34 communicates with a physical store 36 via a storage management device 38. In one
embodiment, the physical store 36 stores digital data. In a version of this embodiment, the
physical store 36 is one or more disk drives. For example, the disk drives can be magnetic disk
drives, optical disk drives, or a combination of both types of disk drives. In another version of
this embodiment, the physical store 36 includes one or more tape drives. The physical store 36
can be one or a combination of drives, or a storage area network. The physical store 36 can itself
be a virtual drive presented by any of a variety of storage networks, appliances, or controllers.
The physical store 36 can be, for example, a mirrored disk or RAID system, or other storage

appliance.

[0070] The host can be any type of network or system(s) that accesses physical store 36
and/or any other form of data storage. In one embodiment, the host 34 includes a number of

- computers on a computer network. The hos;t can include a storage network that is accessed by
oone or more users via a plurality of workstations, inersonal 6omputers, or a combination of the

two.

[0071] In one embodiment, the storage management device 38 itself can be a “storage
appliance.” It can be, for example, a separate device with processors and memory. The storage .

management device 38 functionality described here can also be integrated into an eXisting

-10-—

WO 2006/023994 PCT/US2005/030168

enterprise system storage area network. In one embodiment, the storage management device 38
is implemented as a firmware layer of a storage system. In one embodiment, the storage

management device 38 uses both a current store A 44 and a time store A 46 data for a disk

R SR A SR SR SR AR A AN

volume A. Although, the figure shows current store A 44 and time store A 46 as located within
the storage management device 38, preferably, the data associated with one or both of current
store A 44 and time store A 46 is stored in the physical store 36. In such case, the storage
management device 38 keeps track of the data in the current store A and the time store A in its
memory, for example in the form of indexes and pointers, and reads and writes data to and from
' the physical store 36. The current store A 44 and the time store A 46 can be allocated separate
groups units of storage in the physical store 36, for exarﬁple, or their data can be intermixed on

the physical store.

[0072] The current store A 44 and the time store A 46 could also be implemented in random
access memory (“RAM?”) or other storage located in the storage management device 38. Ina
version of this embodiment, the current store A 44 and the time store A 46 are in different
memories. Further, the media type that stores thé current store A 44 can be different than the
media that stores the time store A 46, e.g., the current store A 46 can be on a disk drive while the
‘time store A 44 is on RAM. In another version, the current store A 44 and the time store A 46
comprise different sections of the same memory. In another embodiment, the current store A 44
and the time store A 46 cdmprise physical disks, which may be the physical store 36 or
otherwise. The current store A 44 and the time store A 46 can be stored on the same physical

disk, or they can both be stored in portions of many different physical disks.

[0073] The current store A 44 stores current data and the time store A 46 stores older data
from the current store A 44 that has since been replaced (i.e., overwritten) by newer data. The
storage management device 38 employs information from either or both of the current store A 44 |
- and the time store A 46 to generate and present to the host 34 durrent and past images of disk
volume A. In one embodiment, eacﬁ pair of current store A 44 and time store A 46 implements
one or mofe logical devices. In a version of this embodiment, the storage management device 38
does not include a disk drive, but uses the physical store 36 to store the data on such virtual

drives.

—11-

WO 2006/023994 PCT/US2005/030168

[0074] The storage management device 38 communicates with the host 34 over a first
communication link 40. The first communication link 40 can be any sort of data
communications link, such as a LAN, storage network or bus including a Fibre Channel and
Small Computer Systems Interface (“SCSI”). Ethernet (e.g., Gigabit ethernet) and wireless
communication are other possibilities for the first communication link 40. In one embodiment,
the storage management device communicates SCSI protocol at the logical layer, and is able to
communicate using one or more of a variety of physical layers, including SCSI bus, Fibre
Channel, Fibre Channel 2, or iSCSI over ethernet. In response to the host 34 I/O requests, over
the communication link 40, the storage management device 38 acts as if it was the physical store

36. The host’s 34 I/O requests can include both read and write commands to units of storage.

[0075] The storage management device 38 communicates with the physical store 36 over a
second communication link 42. The second communication link 42 can also be any sort of data
communications link, such as a LAN, storage network or bus including (without limitation) Fibre
Channel, Small ’Computer Systems Interface (“SCSI”), Integrated Drive Electronics (“IDE”),
FCon, and FiCon. Ethernet (e.g., Gigabit ethernet) and wireless communication are other
possibilities for the second communication link 42. In one embodiment, the physical store 36

and the second communication link 42 are implemented in a storage area network.

[0076] With primary storage systéms to date, the data which is stored on the devices is
indexed by an address which is made up of a device and an offset. The storage address space is
divided up into blocks (e.g., sectors), where each block is 512 bytes long. When presented with
an I/0 request, the I/O request is sent to a specific device/disk/storage unit, and the address is
known as a Logical Block Address (“LBA”) and a length. In this example, the block comprises
the unit of storage and the LBA indicates the unit of storage where the I/O operation begins, i.e.,
-a specific 512-byte block that is part of the device. The length indicates how many 512-byte
blocks the I/O request will operate on. For instance, in order to read 4096 bytes from a device
étarting at byte 8192, the LBA would be set to 16 and the length would be 8. Block sizes, less
than or greater than 512 bytes can also be used, for example, a block can be 520 bytes long.
Additionally, the unit of storage may be any part of the storage address space that is uniquely

addressable.

12—

WO 2006/023994 PCT/US2005/030168

[0077] In one embodiment, time is an added dimension in a second part of the address space
for a given storage device. The user can request a specific LBA (and associated block span), and
the user is also afforded the option of requesting a specific LBA/span combination at a specific
point in time. The time is selected from a substantially continuous time interval, and doesn’t
have to be determined in advance. This capability can be provided at the block addressing level,

and it can be applied to entire devices in order to produce a variable point in time storage.

| [0078] In one embodiment, storage device management device 38 commands include an
address that includes a location identifier and a time identifier. In one implementation, the
location identifier can include at least one of a logical device identifier and a unit of storage with
the logical device. The time identifier can be a current time or it can be a recovery time, i.e., a
prior point in time for which the data stored in that unit of storage is desired. In this description,
the prior time for which data is requested by the host 34 is referred to as the “recovery time.” A
“request time” refers to the time at which the host 34 makes a request for data from a recovery
time. The units of storage of digital data can be accessed by specifying an address that includes
both a location or address and a time. The storage management device 38 thus can present a
continuum of “prior images” of a data store to the host 34 regardless of whether a snapshot was
generated prior to the request time where each prior image is a view of the disk at the recovery
time. In one embodiment, an increment that defines a minimum elapsed time between
consecutive time identifiers is sufficiently small that it allows the generation of a prior data store
from a substantially continuous time interval. In a version of this embodimént, requests for a
current image can be responded to with data located entirely on the current store A 44 without
employing any of the data from the time store A 46. However, as will be explained below in
more detail, requests for data from a prior time (i.e., a prior image) can require data from both

thé current store A 44 and the time store A 46.

[0079] ~ Inonme embodimgnt, each host 34 I/O request includes one or more target units of
storage identified by a device identifier (e.g., a physical disk, a logical device, a virtual device,
etc.), a ﬁrét unit of storage (e.g., an LBA, etc.), a length, and for read commands, a time
identifier. Write commands include éldata payload comprising data that is being written to the

target units of storage.

—-13 -

PV RV

WO 2006/023994 PCT/US2005/030168

[0080] In another embodiment, the time identifier is implied, in the sense that a logical
device is provided by the storage management device 38 that is a view of another first logical
device at an earlier time. The second logical device can be established through out-of-band
communication (e.g., at a console of the storage management device) or by way of in-band
communication between the host 34 and the storage management device 38. In one embodiment,
once the second logical device is established, units of vstorage associated with it can be accessed
by requesting data from the second logical device rather than expressly requesting data for a

specific time.

[0081] In one embodiment, the time store includes both control information, also referred to
as “meta data,” and payload data. In a version of this embodimént, the control information
includes a time stamp that indicates when a particular unit of storage in the current store 44 was
directed to be overwritten as a result of a write operation, the location in the current store 44 of
the unit of storage where the data originated from, and the location in the time store 46 where the
old data is now stored. The payload data that is stored in the time store 46 can include data that

formerly appeared in the current store 44 but has been replaced by new data.

[0082] FIG. 2 depicts an embodiment of an I/O request, specifically, a time-based read
command that can be sent by the host 34 to the storage management device 38. In one
embodiment, the I/O request is a SCSI command. FIG. 2 identifies each bit included in the 32
bytes of the command block 88. In byte 0, an operation code identifies the type of command to
be performed, i.e., a time-based read command. Bytes 2-9 are for the Logical Block Address
that identifies a first unit of storage that the read command operates on. Bytes 10-13 are for the
transfer length, which indicates the number of blocks that are being read beginning with the unit
of storage (i.e., block) identified by the logical block address. Bytes 14 and 15 are reserved for
-future use. Byte 16 is a RelativeChk field that indicates whether the time field is relative or
absolute. If the RelativeChk field is 0, the time specified in the command block is relative to the |
present time; therefore, a 0 indicates that the time specified is a past time measured from the |
current time. For example, a recovery time of T-5000 specified at a request time T provides an
example of a read command with a recovery time that is relative to current time T, i.e., the
recovery time is 5000 increments of time prior to the current time. If the RelativeChk field is

non-zero, the time specified is a specified absolutely, i.e., without reference to another time. For

— 14—

WO 2006/023994 PCT/US2005/030168

example, such an I/O request could include a relative time and the storage management device
38 could have a minimum increment of time that is one second or less. In another embodiment,
the I/O request could include an absolute time and the minimum time increment could be one

millisecond or less.

[0083] Bytes 17-24 include the specified read time, either relative or absolute. If the read
time is absolute, the recovery time is included in bytes 17-24. If the read time is relative, the
recovery time is calculated based on subtracting the specified read time from the current time.

Bytes 25-30 are reserved for future use. Byte 31 is the control field of the command block 88.

[0084] In operation, data is provided to the host 34 in response to I/O requests generated by
the host 34 and communicated to the storage management device 38 over the first
communication link 40. To maintain a historical record of data that was stored in current store A
40 in thé past, in one embodiment, the storage management device 38 employs a copy-on-write
process when a host 34 I/O request directs the storage management device 38 to replace existing
data with new data. Upon receipt of the host’s 34 write request, the copy-on-write operation is
executed by copying the existing data that is to be replaced from the current store A 44 to the
time store A 46. The location in the current store A 44 from which the data is copied is referred
to as the original location. The location in the time store A 46 in which the old (i.e., overwritten)

data is stored is referred to as the destination location.

[0085] It may be that an actual copy of data is not performed upon the occurrence of a write
operation in a particular instance, for example, because the data that will be overwritten is
already saved (because it was saved with other nearby blocks, for example) or because the data is
saved in memory and not written immediately. Here, cbpy-onjwrite operation can mean actual
copying, but also can include such optimizations that allow for the effect of a copy-on-write.

The storage management device 38 keeps track of the data that was in a unit of storage before it
is overWritten, and there is sufficient information in a time store to obtain the saved data from
somewhere within the storage management device 38, tﬁe physical store, and/or elsewhere after
the block is overwritten. For simplicity of explanation, the examples described below generally
present the opefation of the storage ménagement device 38 as if the copy-on-right were always

performed, with the understanding that optimizations can be used in practice.

—15-

[EE R S AR A AT

WO 2006/023994 PCT/US2005/030168

[0086] In one embodiment, the storage management device 38 indexes each copy-on-write
and retains a record of the original location, the destination location, and a timestamp. In various
embodiments, the timestamp includes the time at which the data was written to the current store
A 44 or the time store A 46. In another embodiment, the timestamp includes the time that the

write request was received and processed by the storage management device 38.

[0087] As a demonstrative example, the storage management device 38 can present to the
host 34 a data store A. In this example, data store A is a disk volume. In one embodiment, data
store A is implemented with a current store A 44 and a time store A 46. The storage
management device 38 is capable of storing each change made to the volume A, and further, of
providing to the host 34, a “prior image” of the volume as it exiéted at times in the past. As

described above, the storage management device 38 can be accessed with a time specification.

[0088] Generally, because of the high volume of I/O requests found in the data management
systems employed in enterprise applications, each prior image of data store A will include at
least some data from time store A 46 in those applications. For example, if at present time T,
host 34 requests a prior image of data store A at some time in the past T-100, the storage
management device 38 will review its index and determine the units of storage on data store A
that have been updated between time T-100 and the present (T). The host 34 receives data from
the prior image of data store A, at time T-100, that includes the units of storage ﬁom current
store A 44 that have not been updated since T-100 and, for those units of storage that have been
updated since T-100, the units of storage from time store A 46 representative of the data store A
at T-100.

[0089] As another example, at a current time T, host 34 requests an image of data store A
from a prior time T-30. In response, the storage management device 38 generates a prior image
for T-30 by employing data that exists in the current store A 44 provided that the storage unit has
not been updated since the request time T-30. However, the data from current store A 44 is
combined with data from time store A 46 for each record that has been updated since the request
time T-30. For example, if data stored in Block 100 of current store A 44 was written once since
the request time of T-30 (e.g. at tirhe T-20), the old data that was transferred from the current

store A 44 to the time stofe A 46 as a result of copy-on-write command that occurred at time T- |

~16—

WO 2006/023994 PCT/US2005/030168

20 would be found in time store A 46 at a specific address. That is, the data in time store A 46
will be indexed with its location and a timestamp indicating that it was written at time T-20.
Because this is the only point in time since T-30 in which Block number 100 was written, the
unit of storage identified by Block 100 and time T-20 stored in time store A 46 is the
representative data of Block 100 that will be presented to host 34 when the image of data store A

at time T-30 is created.

[0090] Referring to FIG. 3, in a much-simplified illustrative example, a storage management
device 38, presents a volume A that includes five units of storage, shown for simplicity as 100
byte blocks Block 100, Block 200, Block 300, Block 400 and Block 500. In this example, five
updates are made to data store A between the current time T and a past time. Past write times are
shown in this example, and for simplification these are identified as times T-60, T-48, T-33, T-
29, and T-15. In this notation, the time T-60 is 60 units (e.g., seconds, milliseconds,
microseconds) prior to time T. In an actual implementation, the units would be small increments

of time, and so these numbers (i.e., 60, 48, 33, 29, 15) would likely be significantly larger.

[0091] In this example, Block 100 is updated at time T-60. Block 300 is updated at time T-
'48. Block 200 is updated at time T-33 and again at time T-29. Block 400 is updated at time T-
15. As described above, prior to the write to Block 100, the information at Block 100 will be
read and stored in the time store 46 for volume A. The same copy—on-write'operation takes place
for the other blocks. As a result, time store A 46 will include five records corresponding to data

copied from current store A 44 prior to write requests directed to current store A 44,

[0092] In one embodiment, storage management device 38 indexes each record stored in

time store A 46 with both the location bf the unit of stofage (e.g., Block 100, Block 200, etc.),

and also a timestamp associated with the time in which the copy-on-write was performed. Thus,
a prior image of data store A at time prior to T-60 can be generated by presenting data from time
 store A 46 for Blocks 100-400 and data in current store A 44 for Block 500, because Block 500
was not updated between prior time T-60 and present time T. Likewise, if a view of data store A -
(i.e., a prior image) at time T-35 is desired, three blocks can be provided by the current store A
44, i.e., Block 100, Block 300, and Blbck 500, because they were unchanged after time T-35.

—17-

WO 2006/023994 PCT/US2005/030168

Block 200 and Block 400 were modified since time T-35, and so those blocks can be provided by

the time store 46 for volume A.

[0093] Thus, as demonstrated in this simplified example, by saving in the time store 46 data
that is on the volume before that data is overwritten, and also by indexing the data stored in the
time store 46 by the time that it was overwritten, the system has available to it a éomplete current
version in the current store 44, and also has an image of the data on the volume A at the time
interval for which there is data in the time store 46. The storage management device 38 can
present a “virtual” volume that reflects the original volume at a time in the past. Further, the
storage management device 38 can provide a virtual volume from any time in the substantially
continuous time interval, “substantially” continuous because of the quantization limits defined by

the minimum time increment. The virtual volume need not be generated before the request time.

[0094] In one example implementation, if the example volume is referred to as volume A,
another volume, volume B, can be provided that is based on the “prior image” of volume A, that
is, the contents of volume A at an earlier time. This data from volume B can be copied from the
prior image of volume A onto a new volume, such that volume B then a complete copy of
volume A at a prior time. Volume B can also remain “virtual” in the sense that volume B can
exist merely in the form of the combination of the current store A 44 and the time store A 46,
with the storage management device 38 providing the data from either the currenf store 44 or the

time store 46 in response to accesses to volume B.

[0095] Referring to FIG. 4, it is possible, for example, to provide both the current image of
volume A, a prior image of volume A at one time (e.g., time T-3000) and a prior image of
volume A at another time (e.g., time T-6100). Because these prior images are “virtual,” the

storage management device 38 can provide both virtual prior images 48, 50 simultaneously.

[0096] The host 34 and the storage management device 38 can use one or more of variety
protocols to refer to prior images of a data store. For example, the host 34 can request in an out-
of-band communication that the storage management device 38 make available a virtual data
store that is a prior image of another volume. The host 34 can request in an in-band
communication, for example using the existing protocol or an extension to the existing protocol -

that the storage management device 38 make a new volume available. A system administrator

—18—

WO 2006/023994 PCT/US2005/030168

can also operate a console or control panel of the storage management device 38, or otherwise
provide input to the storage management device 38 to direct the storage management device 38
to make a volume available that is a virtual image of another volume. In some implementations, ...,

the new volume can be assigned a volume or device identifier (e.g., a SCSI ID, or a Fibre

Channel world wide name).

[0097] Thus, in one embodiment, the storage management device receives a request to create
a virtual data store that reflects the state of an original data store at a specified time. The virtual
data store can be, for example, a new logical unit. The specified time can be selected from a
substantially continuous time interval between a past time and the current time. The size of the
interval (and the value of the past time) is a function of the size of the time store and the amount
of changes directed to the data store. The virtual data store, because it is virtual, it can be

provided substantially instantaneously, with minimal or no data movement.

[0098] The storage management device receives a storage protocol request for data at a
specified address in the virtual data store and transmits, in response to the storage protocol

request, data stored in the original data store at the specified address at the specified time.

[0099] The request to create a new virtual data store can take the form of some manipulatibn
of a user interface. The user interface can be on one or more host systems, and communicate to
the storage management device, and/or the user interface can be on a console for the storage
management device. The request can be communicated via a variety of networking technologies
and protocols, and/or via a storage protocol, for example, the same protocol over which the
request for data is made. The request can even be part of the same storage protocol packet as the
request for data. A request for data from a time in the past ca;ﬁ even trigger automatically the

provision of a virtual data store.

© [0100] - - The request for data can be a standard read request, for example via a sforage
protocol, such as a SCSI read request. The request can specify an address, which can include a
logical unit identifier, and a location identifier. The address can include the identifier for the

virtual data store.

~19—

WO 2006/023994 PCT/US2005/030168

[0101] The original data store can itself be a virtual data store, as described here. There can

be a chain of virtual data stores, each formed from a prior image of other data stores.

[0102] As described, because it is virtual, the virtual data store can be provided substantially
instantaneously, with minimal or no data movement. It is possible, however, if there will be
sustained use of the virtual data store, to copy the data from the virtual data store, for example, in
the background, to another data store, and thereby make a complete copy of the virtual data
store. Once the copy is complete, the copy can be used instead of the virtual data store. In this
way the prior image can be provided by the virtual data store substantially instantaneously, with
the time-consuming copying of data from one data store to another being essentially transparent

to users of the storage management device.

[0103] In another embodiment, the host 34 can communicate with the storage management
device 38 using a protocol that allows the host 34 to access a unit of storage by referring to an
address and a time. Thus, the dimension of time is added to the access request. The time can be
referred to in a number of ways. For example, the host 34 can refer to absolute time as it kept by
it or by the storage management device 38, for example, 4:07.33 on a particular day. The time
can also be referred to relatively, that is, it can be specified as a time relative to another time. In
one embodiment, the time is referred to based on a number of time units to be subtracted from
(thus, relative to) the current time. This approach eliminates the need for the host 34 and the
storage managehlent device 38 to have a precisely synchronized clocks. Time can be referred to
using any applicable units and can be any applicable units, including without limitation

nanoseconds, microseconds, milliseconds, seconds, etc.

[0104] Thus, in one approach, the host 34 (or the system administrator) could first direct that
a new virtual volume be created, volume B, that is a prior image of volume A, at time T-3000.
The host 34 (or the system administrator) could then direct that a new virtual volume be created,
volume C, that is a prior image of volume A, but at time T-6100. Thus the host can compare the
actual data on volumes A, B, and C as necessary to determine what files or records, etc. on the

volumes differ, for example, for forensic purposes, etc.

[0105] In another approach (that can be used in addition to or instead) the host 34 could

make a request of a volume with a request that includes a specification of time in addition to the

-20 -

WO 2006/023994 PCT/US2005/030168

address of the data. The storage management device 38 can respond to the request by providing

the data at the specified address at the specified time.

LR N A R A A

[0106] It should be noted also that in some implementations, current store A 44 canbe'a
mirror disk of a disk 60 that is shown in phantom, or used in any other configuration as would

one or more actual volumes.

- [0107] The time images can also be either fixed or dynamic. A fixed time image, also
referred to as a clone is similar to a snapshot of data store A at a specific point in time. It is
referred to as a fixed because it is not updated, i.e., once it is created no data is written to it. A
fixed image generated by storage management device 38 can differ from a snapshot, however,
because the image can be generated for the first time at a request time that is later than the
recovery time, i.e., the storage management device 38 re-creates an image that may not have
previously existed at any time since the recovery time. In contrast, a snapshot is a duplicate that

is generated at the then current time.

[0108] A dynamic time image is created as an image of current store A at a specific point in

~time. However, unlike a fixed time image, once generated, a dynamic time image is continually
updated in the same manner as current store A. As a result, the contents of a dynamic time
image are the same as current store A 44 up until the recovery time. For example, if first prior
image 48 is dynamic, it will match current store A up until T-3000. Thereafter, beginning at the
present request time (T), updates to current store A are replicated on first prior image 48. The
resulting dynamic time image functions as a current store B which includes the results of all I/O
requests directed to current store A 44 except for those occurring between request time (T) and
recovery time (T-3000). Accordingly, current store B élso has a time store, i.e., time store B,

associated with it.

[0109] = Referring to FIG. 5, fixed and dynamic time images are shown. A fixed prior image
is a view of a data store at a specific point in time. It is fixed in the sense that it is not updated —
for example, it can be read only. In one embodiment, a time image is fixed by identifying it as a
read only image at the time the image is created. A fixed image can be useful for looking at a
data store at a particular time, for forensic purposes (i.., to identify the cause of a problem), or

to recover erased data. A dynamic image starts as a view of a first data store (e.g., data store A)

)

WO 2006/023994 PCT/US2005/030168

at a particular point in time, but the prior image can be modified. The dynamic image can appear
to the host as if it were a new data store onto which a prior image were copied. A dynamic

image can be useful for quick recovery from a failure.

[0110] For example, upon failure due to corruption of data in a first data store, fixed prior
images can be speciﬁéd (as described above) that each present the data in the first data store as it
existed at a specified time in the past. These prior images can be inspected to determine the
approximate time of the corruption. As the minimum time stamp increment is decreased, the
approximate time can be determined with increased precision. In one embodiment, a prior image
that presents data from just before the time of corruption is specified to be dynamic, the software
applications that use the data in the data store begin to use the pfior image instead, and business
activity resumes using the most recent uncorrupted version of the first data store. The
applications can use the image, for example, by reconfiguring the business applications in some
way, or by directing the storage management device 38 to present the dynamic prior image in the
place of the first current data store, i.e., by using the prior image to create a second data store
(e.g., data store B). In one embodiment, a dynamic image appears to the host as a new data store

(e.g., a new device with a target identifier).

[0111] In one embodiment, the storage management device 38 provides a dynamic image
without copying (or without initially copying) the prior image to another data store. Rather, the
storage management device, as described above, provides the prior image of the first data store
by using the current store and the time store associated with the first data store, as appropriate.
The storage management device also associates a second current store and second time store with
the dynamic image (i.e., the second data store), such that the changes to the dynamic image are
stored in the second current store, and the changed blocks are stored (e.g., in copy-on-write

. fashion) in the second time store.

10112] In one embodiment of such an implementation, the storage management device 38,
upon receiving a request for current data in the dynamic image, will check first for data in the
second current store, and then for data in the first time store, and lastly, for data in the first
current store. Upon a write request to the dynamic image, the storage management device 38

determines the location for the data currently in the dynamic image (i.e., the second current storé,

—22—

WO 2006/023994 PCT/US2005/030168

the original current store, or the original time store), stores the block that was “overwritten” in

the second time store and then writes the new block to the second current store. A request for

data from a prior image of the dynamic image can be provided using the second time store, the

second current store, the first time store, and the first current store.

[0113] In another emBodiment, the dynamic images are stored entirely in the time store. In
this embodiment, a data store has a single current store and a single time store. In a version of

this embodiment, fixed images, dynamic images, indexing information, and control blocks are
stored in the time store. Dynamic images can be created by writing data located in the data store
at a specified recovery time to a section of the time store. In a further version of this

embodiment, a copy-on-write operation is not performed when dynamic images are written to.

[0114] Because the storage management device 38 (at least initially) can provide the
dynamic image as a “virtual” device, in the sense that the data in the dynamic image is a
combination of the data in the first and second current data stores and the first and second time
stores, the dynamic image can be brovided very quickly, and without copying of data from one
data store to another. Once a dynamic image is ui) and running, it can be useful to (as storage
management device capacity allowsj copy the contents of the first current store and/or the first
time store to the second current store and second time store for the dynamic image. In other
words, the “virtual” second data store can be used to create a new data store that can be used to
independently replace the first data store. This can be accomplished in the background, or at a
time when storage management device transaction activity is relatively low. In addition, the
background copy operation can be initiated either manually or automatically. In one |
embodiment, either the host 34 or a system administrator can initiate the background copy

v

operation and data store replacement operation.

[0115] Referring to FIG. 5, as a simplified demonstrative example of this embodiment,
éupposé that a dynamic image is created of a first data store, referred to in this example as data
store A 143. The prior image upon which the dynamic image is based is specified to be data
store A 143 at (again, as an example) a particular time (e.g., 11:00 a.m.). The prior image of data
store A 143 is provided using the current store A 144 and the time store A 146 associated with
data store A 143. Upon indication by the host 34 or the system administrator that the prior image

—23—

WO 2006/023994 PCT/US2005/030168

should be dynamic (and therefore allow modification), the second data store is assigned an
identifier, which in this example is data store B 147, and a current store B 148 and a time store B

152 are allocated to the dynamic image.

[0116] The storage management device 38 responds to a read request to data store B at the
current time by checking first the current store B 148, and if the requested block is not in the
current store B, then the time store A 146 and current store A 144 can be used to obtain the block
as it was at the time of the prior image that was the basis for the dynamic image. To use data
from a prior image of data store A 143, an index of the data store A 143 is checked to determine

whether current store A 144 or time store A 146 contains the desired block.

[0117] The storage management device 38 responds to a write request to data store B (for the
current time) by locating the current content of the target block as just described for the read
request (e.g., checking first the current store B 148, then the time store A 146, then the current
store A 144), reading the target block, and then writing the data read to the time store B 152 to

. complete a copy-on-write operation. The data associated with the write request for the target

block is written to current store B 148.

[0118] A read request to data store B 147 for a time in the past can be responded to by
checking first thé time store B 152. An index of the time store B 152, for example, can be
checked to determine whether it contains the desired block. If not, then current store B 148 is
checked, and if the block is not in the current store B, then the time storé A 146 and current store
A 144 are used to obtain the block as it was at the time of the prior image that was the basis for
the dynamic image. That is, an index of the time store A 146 is checkéd to determine whether it
contains the desired block for the desired time, and if not, the block in current store A 144 is
used. It should be understood that the order in which the index of time store A 146 and current
store A 144 are checked may be reversed. Alternatively, a composite index of time store A 146

and current store A 144 may be employed.

[0119] It should be noted that data store A 143 can continue to be an active data store and
there can be continued transactions to data store A 143, but those later changes will not be
reflected in data store B 147, because the storage management device 38 will continue, for

accesses to data store B 147, accessing the data store A 143 at a specific past time (i.e., the prior

_ 24—

WO 2006/023994 PCT/US2005/030168

image), and blocks later changed in the current store A 144 will be saved in the time store A 146,
and so will not be lost. Practically, the size of the past time interval that can be captured by the
time store will depend on the frequency of write operations directed to data store A 143 anq ﬂ‘l‘e‘ N
size of the time store A 146. Depending on the specific implementation, it therefore may be

beneficial, at some time after beginning use of a dynamic image, to copy the prior image that is

the basis for the dynamic image, such as the data store A at 11:00 a.m. in the example above, to

another data store, or to the time store B 152 and the current store B 148. As mentioned, this

transfer can be accomplished in the background while the storage management device 38 is

operating normally.

[0120] In one embodiment, the transfer of the prior image blocks to current store B 148 for a
specified recovery time is accomplished by the following. A block is copied from current store
A 144 if the block in current store A 144 has not been overwritten since the recovery time (i.e., if
the block in current store A 144 is not different from the prior image that is the basis for data
store B 147) and if the block is not already included in current store B 148 (i.e., if the block was
not already “overwritten” in the dynamic image éince the time the dynamic image was created).
A block is copied from time store A 146 to current store B 148 if it represents th¢ data appearing
in the block of data store A 143 at the recovery time, and if the block is not already found in ‘
current store B 148 (i.e., the block was not already “overwritten” in the dynamic image).
Optionally, blocks in the time store A 146 from a time before the prior image can also be copied
from the time store A 146 to the time store B 152, so that the data store B 147 can respond to

requests for data for a time before the prior image.

[0121] Dynamic images (e.g., a third data store) can be created based on other existing
dynamic images (e.g., data store B), such that the data in the third data store is provided ﬁ*om'
other current stores and time stores (e.g., from data store A and data store B). Such a dynamic
. image also can be generated without copying (or without initiaily copying) the prior image to

another data store.

[0122] For example, the storage management device 38, as described above, can provide the
prior image of a dynamic data store (e.g., data store B) by using the original current store (e.g., .

current store A), original time store (e.g., time store A), second current store (e.g., current store

—25—

WO 2006/023994 PCT/US2005/030168

B), and second time store (e.g., time store B), as described in the above example. If this new
prior image is specified to be dynamic, the storage management device 38 can associate a third
current store and third time store with the new dynamic image (e.g., third data store), such that

the changes to the new dynamic image are stored in the third current store, and changed blocks

of the third data store are stored (e.g., by copy-on-write operation) in the third time store.

[0123] Using the above example, the system administrator, can, upon detection of data
corruption in data store B 147, again use a number of prior images to identify the approximate
(or'even the exact) time of data corruption. The system administrator can then identify a prior
image of data store B 147 that is of a time that is before the corruption. As an example, we say
this image was at 1 p.m. The system administrator can specify that the image of data store B at

1 p.m. is a dynamic image, and this new dynamic image will be called data store C. Data store C

153 is allocated a current store C 154 and a time store C 156.

[0124] Upon receiving a request for current data in the data store C 153, the storage
management device will check first for data in current store C 154, and then for data in current
store B 148 and time store B 152 for the time at which the dynamic image was created. If the
data block is not in current store B 148 or time store B 152 as appropriate, the storage

management device 38 will obtain the data from time store A 146 or current store A 144.

[0125] Upon a write request to data store C 1.53, the storage management device 38
determines the location for the data currently in the dynamic image (i.e., current store C 154,
current store B 148, time store B 152, current store A 144 and time store A 146), stores the block
that was “overwritten” in time store C 156, and then writes the new block to current store C 154.
A request for data from a prior image 6f thetdenamic image can be provided using time store C
156, and the current store C 154 in appropriate combination with current store B 148, time store

B 152, current store A 144, and time store A 146.

[0126] Referring to FIG. 6, in another exampie, presentéd as a timeline 190, the top most
horizontal line represents data store A from a first time T1 to a later time T5, i.c., time line 192.
A host 34 directs I/O requests to the data stores throughout the time period T1 to T5. Data store
A is used first and, in this example, an application directs read and write transactions to data

store A.

-26-

WO 2006/023994 PCT/US2005/030168

[0127] At time T3, the system administrator recognizes that there has been corruption in the
data store A 143, likely caused by a corruption event. The system administrator implements a
review of prior images of data store A 143 to determine the time that the data corruption
occurred, by identifying a recent time that the data was not corrupted. In other words, the
corruption event likely occurred at the earliest time that corrupted data appears. The storage
fnanagement device 38 can be employed to implement a search of arbitrary past versions of data
store A 143 so that the time of the corrupting event can be determined. The degree of precision
at which the corrupting event can be is at least in part determined by the minimum time stamp

increment.

[0128] The validity of the data in data store A 143 is checked in a first search conducted to
identify the time of the corrupting event. The first set of vertical lines appearing on time line 192
between T3 and T4 provide a simplified example of points in time (i.e., T14, T15 and T16) that a
search was conducted. They represent a search from time T4 when the fact that corruption is
first recognized back to time to T3. A system administrator, for example, begins the search at
time T4 and reviews the data at a first search time T16. The data at time T16 is corrupted, so the
system administrator reviews data from an earlier point in time, i.e. time T15 and T14. The data
at time T15 and T14 is corrupted, so the search continues with review of time T11. The data at
time T11 is not 4corrupted, and so the administrator checks time T12, time T13, and time T3. The
search continues in this manner until the identification of the most recent time for which valid

data exists, which in this example is time T3.

[0129] The search may also be conducted using a variety of search methodologies. For
example, larger time increments between the first and second searches might be used in an effort
to more rapidly determine the time of the corrupting event. Alsb, the search need not begin from
the point in time that the corruption is discovered. For example, the search can begin at an
earlier point in time if the system administrator has an idea of the approximate time of the
‘corrupting event. The search may also begin at a time that is earlier than the corrupting event,
e.g., T1, T2, etc. For a search with a first search time at time T2, for example, the search would
proceed to later points in time until the first time where corrupted data is found. It should be
understood that any search strategy can be employed because the storage management device 38

is capable of providing any version of the data store A 143 that is within the interval covered by

—27—

WO 2006/023994 PCT/US2005/030168

the time store A 146, to the precision of the minimum time stamp increment. In one

implementation, the time precision is one millisecond.

(R IR SR A R MR AN AN}

[0130] In this example, time T3 is specified as the recovery time because it was a desired '
point in time identified because the corruption did not exist. Of course, the user could have
selected an even earlier point in time, prior to T3, as the recovery time. A second data store, data
store B 147, is established using the data from data store A at time T3. Recall that at time T4,
the user identified time T3 as the most recent point in time for which valid data exists for data
store A 143. Attime T4 (i.e., the request time), the user creates data store B 147 as a prior image
of the first data store, data store A 143, at time T3 (i.e., the recovery time). In FIG. 6, timeline
194 is associated with data store B 147.

[0131] Data store B 147 is a dynamic image; therefore, a second current store (current store
B) 148 and a second time store (time store B) 152 are associated with data store B 147. Once
current store B 148 is created, the storage management device 38 can make data store B 147
available to the host 34, and the application can use data store B 147 in place of data store A 143.
Thereafter, host 34 I/O requests can be directed to data store B 147 instead of data store A 143.
In this example, I/O requests continﬁe to be directed to data store A 143 and data store B 147 |
between time T4 and time T5. In another embodiment, data store B 147 is a dynamic image
comprised of a second current store that is not associated with a second time store. In a version
of this embodiment, current store B 148 is implemented in a write pool whereby a write
command directed to data store B 147 results in the newly written data replacing existing data in

current store B 148, i.e., a record of the old data in the current store B 148 is not retained.

[0132] As described previously, data store B 147 can be created without copying the contents

of data store A 143. Data store B 147 therefore can be created virtually immediately, and it can
be brought on-line quickly. The data initially associated with data store B 147 resides in current

' store A 144 and time store A 146.

[0133] Upon receiving a read request for data store B 147 at the current time, the storage
management device 38 determines which of current store A 144 and time store A 146 has the
data for the block that is being read. Data in current store A 144 will be used for all data that has

not been written to since time T3 and data in time store A 146 will be used for all blocks in

~28—~

WO 2006/023994 PCT/US2005/030168

current store A 144 that were overwritten after time T3. Once some data has been written to
current store B 148, a response to a read command directed to data store B 147 at the current
time might come from current store B 147, current store A 144, or time store A 146. Upon
receiving a read request, storage management device 38, determines which of current store B
148, current store A 144, and time store A 146, has the data for the block that is being read. The
storage management device 38 will use data in current store B 148 for all requests for blocks in
data store B 147 thét were written after time T4, i.e., timeline segments (e), (), and (g). Data in
current store A 144 will be used for all blocks of data that have not been written to since time T3
(timeline segments () and (b)), and data in time store A 146 will be used for all blocks of data

on data store A 143 that have been written to between times T3 and T4 (timeline segment (c)).

[0134] Data store A 143 can continue in a dynamic state after time T4, however, changes
that occur to data store A 143 after T4 will affect only the location of the data used to respond to
requests for blocks in data store B 147. Such changes will not affect the actual contents of data
store B 147. The source of data for block 100 of data store B 147 is a corresponding block in
current store A 144 if, for example, the corresponding block 100 of data store A 143 has not been
overwritten since time T3. However, the source of data for block 100 of data store B 147 is a
corresponding block in time store A 146 if the corresponding block 100 was overwritten in
current store A 144 since time T3, e. g., a copy-on-write command was executed on the
corresponding block in data store A 143. Of course, the immediately preceding description
assumes that block 100 has not yet been the target of a write command since the creation of data
store B 147. Additionally, where data store A 143 is dynamic, data written to data store A 143
following time T4 is processed with copy-on-write operations such that time store A 1‘46

continues to be employed after time T4 to save newly-overwritten data.

[0135] When a write request is directed to data store B 147, the storage management device
38 determines where the data currently in data store B 147 is located (i.e., current store B 148,

current store A 144, or time store A 146). The location of the data will be the following:

[0136] 1) in current store B 148 if the block in current store B 148 has been overwritten since
time T4,

—-29 ~

WO 2006/023994 PCT/US2005/030168

[0137] 2) in current store A 144 if the block in current store A 144 has not had data written

to it since time T3; and

[0138] 3) in time store A 146 if the block in current store A 144 was overwritten anytime' """ e

after time T3.
[0139] It then follows that:

.[0140] 1) If the data is located in current store B 148, the existing data will be read from
current store B 148 and written to time store B 152. (e.g., copy-on-write). The new data will be
written to current store B 148. In one embodiment, updates to current store B 148 are
accomplished without using a copy-on-write operation or a time store B 152. Ina version of this

embodiment, old data is not saved when write commands are directed to current store B 148.

[0141] 2) If the data is located in current store A 144, the existing data from current store A
144 will be copied and written to time store B 152 without overwriting the existing data in

current store A 144. The new data will be written to current store B 148.

[0142] 3) If the data is located in time store A 146, the existing data from time store A 146
will be copied and written to time store B 152 without overwriting the existing data in time store

A 146. The new data will be written to current store B 148.

[0143] Upon a read request for data store B 147 for the current time, the storage management
device 38 determines the location for the data currentlj/ in the dynamic image by checking for
data in current store B 148, current store A 144 and time store A 146. The storage management
device 38 will use data in current store B 148 for all blocks of data store B 147 that.are written to
after time T4, i.e., timeline segments (), (f), and (g). Data in current store A 144 will be used
for all blocks of data that have not been written to since time T3 (i.e., timeline segments (a) and

~ (b)), and data in time store A 146 will be used for all blocks of data on data store A 143 that have

been written to (in data store A 143) between times T3 and T4 (timeline segment (c)).

[0144] Any number of additional data stores may also be generated based upon a current or
prior image of data store A 143. For example, an image of data store A 143 at time T2 can be

created at any time beginning with time T2, e.g., a data store D can be created at time T3.

~30—

WO 2006/023994 PCT/US2005/030168

Creation of additional data stores can be performed sequentially with, in parallel with, or

independently of the creation of the other data stores that are based on data store A 143. In each

case, the contents of the additional data stores appear to be independent of the contents of the N
other data stores, i.e., at the creation of a data store its contents depend upon the contents of data

store A 143. Thereafter, read and write commands directed to the additional data stores are

responded to with data from current store A 144, time store A 146, and/or the additional data

_store that the command is directed to.

[0145] In one embodiment, the storage management device 38 implements an instant restore
that allows-a user (e.g., a host or system administrator) to generate a prior image of a data store
substantially instantaneously. For example, as is described in greater detail herein, the
architecture of the storage management device 38 provides detailed indexing of the write
commands that are directed to each data store so that the appropriate data for each block of the

data store at any time can be rapidly identified and accessed.

[0146] The instant restore can be performed in more than one manner. For example, an
instant restore occurring at time T4 can be a non-destructive restore of data store A 143 for a
-desired recovery time of time T3. In one embodiment, the non-destructive restore is ‘
implemented by copying back into current store A 144 the results of write operations performed
between times T3 and T4. In a version of this embodiment, a copy-on-write operation is
performed on each block of data store A 143 that was written to from time T3 to time T4. At the
recovery time, data that was current at time T3 for that block is written to each of the
corresponding blocks of data store A 143. The data in the current store that is overwritten is
copied to time store A 146. As described herein, the relevant details regarding the data written
with a copy-on-write operation are indexed by the storage management device 38. As a result, it
is possible to later recover and review the operations that were performed on data store A 143

. between T3 and T4.

[0147] - Because non-destructive instant restore operations increase the amount of data that
must be stored in the time store, the storage management device 38 can also implement a
compact recovery. In a compact recovery, some selected data is not retained following the

recovery. In a version of this embodiment, a write operation, not a copy-on-write operation, is

-31-

WO 2006/023994 PCT/US2005/030168

performed on the blocks of data store A 143 that were updated between T3 and T4. As a result,
at the recovery time, data that was current at time T3 is written to each of the corresponding
blocks of data store A 143 that were updated between T3 and T4. In another version of this
embodiment, a copy-on-write operation is performed, but the data retained for the period
between T3 and T4 is placed at the front of the queue of data that will be overwritten should the
time store reach its storage capacity. For example, the data from the period T3 and T4 can be
associated with the earliest portion of the time line so that it will be the first to be replaced when

the specified storage capacity for the data store is reached.

[0148] FIG. 6 also depicts the creation of a third data store (i.e., data store C) generated from
the contents of data store B 147, i.e., data store C 153 is generatéd from a previously created
dynamic image. Here the request time is TS and the recovery time is T7. Once again, the
recovery time can be a time before corruption occurred. The operation that creates data store C
153 from data store B 147 is referred to as “stacking” because it creates a series of virtual data

stores where each data store is based upon a prior image of another data store (or data stores).

[0149] In this example, data store C 153 is based upon a prior image of data store B 147 and
data store B 147 is based upon a prior image of data store A 143. As aresult, data store C 153
can initially be provided from data stored in any of current store B 148, time store B 152, current
store A 144 and time store A 146. The storage management device 38 can preseﬁt an image of
data store C 153 to the host 34 based upon the following resources: 1) current store B 148 will be
used for data from blocks that were overwritten between times T4 and T7, but that have not been
overwritten since time T7 (timeline segments (e) and (f)); 2) time store B 152 will be used for
data from blocks that have been overwritten since time T7 (timeline segment (g)); 3) current
store A 144 will be used for data from blocks that have not been overwritten since time T3 (time
-line segments (a) and (b)); and 4) time store A 146 will be used for data from blocks that were

overwritten between times T3 and T4 (timeline segments (c)).

[0150] Current store C 154 and time store C 156 are allocated as described above. Read and
write requests directed to data store C 153 are processed by storage management device 38 in a
similar manner to the process described for data store B 147. One difference, however, is that, in

order to locate the contents of data store C 153, the quantity of data stores that must be searched

-3

WO 2006/023994 PCT/US2005/030168

has increased to include current store A 144, time store A 146, current store B 148, and time
store B 152. The process of creating a dynamic image from prior data store images can be
extended as required by the application within the storage capacity of the system. For example, a
dynamic image can be created from a prior image of data store C 153 to create a fourth data
store, e.g., data store D. Additionally, the preceding approach can be employed to create a static

iinage from a prior image of any data store, €.g., creation of a clone of data store A 143 at time

T3, etc.

[0151] FIGS. 7A and 7B provide another illustrative example of the operation of a current
store and a time store for a given data store. FIG. 7A shows the contents of the current store, and
FIG. 7B shows the contents of the time store associated with the current store of FIG. 7A. A
timeline is drawn at the top of each figure to indicate an initial time t0, a first write time t1, a
second write time t2, a third write time t3 and a final time t4. The numbers 0-5 appearing to the
left side of FIGS. 7A and 7B identify six blocks of the data store. As mentioned, the data store
can consist of any number of blocks or other units of storzige. Additionally, the data store can be
implemented as any type of resource for storing digital data including a virtual disk, a logical

disk, a physical disk, and the like.

[0152] The data that is stored at each point in time is enclosed in a solid box. Each of blocks
0-6 of the current store have a corresponding block in the time store. - At the time a write request
is directed to a block, the data that is written is enclosed in a dashed block appearing adjacent the
corresponding block of the current store in FIG. A. This represents data that is pending its

transfer to the current store at the completion of the copy-on-write command.

[0153] In operation, at for example time t0, data a, b, ¢, and d are present in each of current
storé blocks 0-3 respectively. Blocks 4 and 5 do not contain any data at this time. Additionally,
the time store does not contain any data because write requests for blocks 0-5 have not yet been
directed to the current store. At time tl, data X, Y, and Z are written to blocks 2-4 respectively.
A copy-on-write operation is performed on each of blocks 2-4 and the old data appearing in
those blocks is read from the current store and written to the time store, i.e., data ¢, d, and an
empty block are written to blocks 2-4 of the time store respectively. As shown in the current

store at time t2, the newly written data appears in blocks 2-4 following completion of the write

—33—

WO 2006/023994 PCT/US2005/030168

operation at time t1. However, a second write operation is performed at time t2 when data 7, 9,

and 8 are written to blocks 0, 3, and 5 respectively. Again, a copy-on-write is performed and, as

aresult, old data a, Y, and an empty block are written to blocks 0, 3, and 5 respectively. Attime

t3, a third write operation is performed and data Q is written to block 5. The original data 8 that
was previously written to block 5 at time t2 is read and written to block 5 of the corresponding
time store. The new data Q is written to block 5 at time t3 and, as a result, the data Q appears in
block five of the current store at time t4. Provided that a write operation is not performed at time

t4, the time store will remain empty at time t4.

[0154] The time store of FIG. 8 is based upon the sequence of copy-on-write operations
performed to the data store as shown in FIGS. 7A and 7B. FIG. 8 demonstrates how, at request
time of t4, a prior image of the current store can be generated for recovery of an image
representative of the data store at recovery time t1. Because no write operations were performed
on blocks 0, 1, and 5, at either time t0 or time t1, blocks 0, 1, and 5 of the prior image are
comprised of data from the current store at time t1. Data from the time store is used for the prior
image of blocks 2, 3, and 4 at time t1 because data was written to blocks 2, 3, and 4 at time t1.
Thus, the prior image of the data store for time t1 does not reflect the result of changes to the

current store occurring after time t1.

[0155] Referring now to FIG. 9, in one embodiment, a storage management device 238
includes one or more processor modules 278, 278", 278", generally 278. There can be any
number of processor modules 278, although three are shown for demonstrative purposes in the

figure.

[0156] Each processor module 278 includes a CPU 290 that is in communication with each
of a target interface 292, a ROM 294, a memory 296, and an initiator interface 298. The CPU
290 can be implemented in one or more integrated circuits, and can include other “glue” logic
(not shbwn) for interface with other integrated circuits, such as bus interfaces, clocks, and
communications interfaces. The CPU 290 implements software that is provided in the ROM 294
and also software in memory 296, which software can be accessed, for example, over the internal

network interface 284 or in the physical store 36.

—34 -

WO 2006/023994 PCT/US2005/030168

[0157] The CPU 290 is also in communication with an internal network interface 284 that
connects the processor module 278 to an internal network 286, which network allows the
processor modules 278 to communicate with one another. The internal network 286 canbe
implemented as one or more actual networks, and can be any sort of network with sufficient

capacity to allow communication of both control information and data. The internal network 286

can include a shared serial or parallel bus, or some combination. The internal network can be or

include any type of physical network that implements remote direct memory modeled interfaces

such as InfiniBand, Ethernet, Fibre Channel, SCSI, and the like. In one embodiment, the
interface is a Direct Access Provider Library (“DAPL”).

[0158] In one embodiment, the processor modules 278 plug into a backplane that implements
the connections for the internal network 286. In one implementation, one or more sets of
processor modules 278 are rack mounted within the storage management device 238 and the
internal network 286 also connects each rack to the other racks within the storage management
device 238. The distributed processing implemented in the storage management device 238
creates a system whose size (e.g., memory capacity, processing speed, etc.) can easily be scaled

up or down to fit the desired capacity.

[0159] The target interface 292 provides an interface that allows the processor module 278 to
present itself as one or more target data store devices. For example, if the target interface 292 is
a Fibre Channel interface, the target interface 292 allows the processor module 278 to present
one or more Fibre Channel devices to the host (not shown). The target interface 292 can
implement any suitable networking communication or data storage protocol. The target interface
292 can be implemented with one or more integrated circuits that preferably have direct memory
access to portions of the memory 296 for storage of data received and data to be transmitted.

The target interface 292 typically will require initialization and programming by the CPU 290.

[0160] . The initiator interface 298 provides an interface that allows the processor module 278
to present itself as one or more hosts for communication with physical data storage. For
example, if the initiator interface 298 is a Fibre Channel interface, the initiator interface 298
allows the processor module 278 to communicate with one or more physical storage devices over

a Fibre Channel interface. The initiator interface 298 can implement any suitable networking

—35—

WO 2006/023994 PCT/US2005/030168

communication or data storage protocol. The initiator interface 298 can be implemented with
one or more integrated circuits that preferably have direct memory access to portions of the

memory 296 for storage of data received and data to be transmitted.

[0161] The processor modules 278 can be implemented in a fault tolerant configuration
wherein two processor modules 278 are each responsible for responding to I/O requests directed
to the same units of storage. In a version of this embodiment, fault tolerance can be further
improved by sharing responsibility for I/O requests for units of storage comprising a single
physical or logical device (or volume) to multiple pairs of processor modules 278. For example,
first and second processor modules 278 can be given responsibility for blocks 100 and 200 of
current store A and third and fourth processor modules 278 can be given responsibility for blocks
300- 500 of current store A. Fault tolerance can be further improved by locating processor

modules 278 that perform the same tasks in separate racks.

[0162] Referring now to FIG. 10, in a functional depiction of the system elements, again,
three processor modules 378, 378", 378", generally 378, are shown in a storage management
device 338. The number of modules 378 is (again) merely illustrative, and the quantity of
processor modules 378 can be increased or decreased for such considerations as scalability,
performance, and cost. The functional elements shown on each processor module 378 can be
implemented with hardware and/or software; in general, both are used to implement each of

these elements.

[0163] In one embodiment, each processor module 378 of the storage management device
338 includes at least a host interface 361 for communicating with a host, an I/0 manager 362, a
storage buffer 363, and a physical store interface 364. In another embodiment, each processor
modulé 378 includes fewer or more of these functional elements. In various embodiments, the
storage management device 338 also includes an internal network 380 (e.g., an internal
InfiniBand network, an internal Ethernet network, an internal Fiber Channel network, and/or an
internal SCSI network) for enabling communication between the functional elements (e.g., the
host interface 361, the I/O manager 362, the storage buffer 363, and the physical store interface
364) of a single processor module 378, for enabling communication between any of the

functional elements of a first processor module 378 and any of the functional elements of a

—36—

WO 2006/023994 PCT/US2005/030168

second processor module 378, for enabling communication between one or more components of
the same functional element (e.g., for enabling communication between a target mode driver 382
and a data classifier 384 of the host interface 361), and for enabling communication betweena

component of one functional element and another functional element (or a component of that

other functional element), whether on the same or on a different processor module 378.

[0164] Inone embodiment, the host interface 361 includes the target mode driver 382, which
includes the target interface 292 (see FIG. 9) and software for communicating with the target

interface 292. Functionally, the target mode driver 382 communicates with the host 34 over any
type of communication link 40 described above (e.g., a Fiber Channel nétwork). As a result, the

target mode driver 382 receives and responds to incoming I/ requests from the host 34.

[0165] In one embodiment, the target mode driver 382 receives I/O requests that include
control information, such as, for example, write operations that also include a data payload, read
operations, or, as described below, requests for a modification history for a location within a data
store. In response to a read operation, for example, the target mode driver 382 can obtain from
an I/O manager 362 the requested data and can thereafter communicate the requested data to the
‘host 34. In response to a write operation, the target mode driver 382 initially stores the received
write operation in a first storage buffer 363 that is located on the same processor module 378 as
the target mode driver 382. In one embodiment, the target mode driver 382 then separates the
write operation into its associated control information and data payload, such that both the
control information and the separated data payload are initially stored in the first storage buffer
363. In one embodiment, the I/O requests are separated into the data payload and a control
packet by the host interface 361. The control information may then be transmitted via the
internal network 380 to other components within the storage management device 338. For
example, in one embodiment, the target mode driver 382 transmits the control information to a

. data classifier 384. For its part, the data payload, or copies thereof, may also be transmitted via
the internal network 380 to 6ther corhponents within the storage management device 338.
Ultimately, the data payload will be communicated over the internal network 380 to the
appropriate physical store interface 364, as directed by an I/O manager 362. Preferably, the data
payload is communicated by hardware direct memory access, without need for software

processing.

—-37-

WO 2006/023994 PCT/US2005/030168

[0166] In one embodiment, prior to transmitting the control information to the data classifier

384 and prior to acknowledging the received I/0 request to the host 34, the target mode driver

382 time stamps the control information. Iln othgr quds, the target mode driver 382 associlz'it'qs” N
with the control information é timé at which the control information was received at the host

interface 361. For example, where the target mode driver 382 transmits the control information

to the data classifier 384 in a data packet, the target mode driver 382 may use a field within the

data packet to indicate the time at which the control information was received at the host

interface 361. Any other method of time stamping the control information may also be used.

[0167] - In one embodiment, after the target mode driver 382 has separated the data payload of
the write operation from the control information of the write operation, and apart from the target
mode driver’s transmission of the control information to a data classifier 384, the target mode
driver 382 replicates the separated data payload to create at least one data payload copy. In one
embodiment, the target mode driver 382 then evaluates a first cost equation, as described below,
and, based on the results of the evaluated first cost equation, optimally identifies a second

storage buffer 363 that is capable of at least temporarily storing a first data payload copy. In one
embodiment, the first storage buffer 363 and the second storage buffer 363 are different storage
buffers 363, in, for example, different processor modules 378. Optionally, the target mode driver
382 may then also evaluate a second and/or further coét equation(s), as described below, and,
based on the results of the evaluated second and/or further cost equation(s), may optimally
identify a third and/or further storage buffer(s) 363 that is/are capable of stofing second and/or
further data payload copies. The first, second, third, and any further storage buffers 363 may
each be different storage buffers 363. The target mode driver 382 may then transmit the first
data payload copy to the second storage buffer 363 and, optionally, may transmit the second
and/or further data payload copies to the third and/or further storage buffers 363. Accordingly,
the storage management device 338 may provide for the redundant storage of data, be it

' temporary or permanent.

[0168] ‘In one embodiment, the host interface 361 also includes the data classifier 384. The
data classifier 384 is in communication with the target mode driver 382 of the host interface 361,
and is also in communication with the plurality of I/O managers 362. The data classifier 384

receives the control information of the I/O requests from the target mode driver 382, identifies

-38-—-

WO 2006/023994 PCT/US2005/030168

the appropriate processor module 378 to respond, and forwards this control information to the

I/0 Manager 362 of the appropriate processor module 378.

[0169] In one embodiment, the data classifier 384 classifies the I/O requests received at the
host interface 361, by the target mode driver 382, as a particular type of I/O request (e.g., as a
write operation, as a read operation, or as a request for a modification history). In one
embodiment, the data classifier 384 analyzes the control information of the received I/O request
to classify the I/O request. The data classifier 384 also classifies the control information by
comparing the incoming 1/O requests with subscription requests generated, for example as
described below, by the I/0 managers 362. In one embodiment, the data classifier 384
determines a process group, storage device identifier (e.g., a logical unit), a unit of storage
identifier, and a length for each I/O request. This information, along with the control
information, the time stamp, and the I/O request type, is passed to the appropriate I/O manager
362. In order to allow for processing a large volume of I/0 requests, the storage buffers 363
temporarily store these information packets from the data classifier 384 as they are transmitted to

the respective I/O manager 362.

[0170] In greater detail, the plurality of I/O managers 362 of the storage management device
338 are responsible for managing a data store. In one embodiment, each one of the plurality of
I/O managers 362 subscribes, via a subscription protocol (for example as described below), to at
least one set of locations within the data store for which it will process control information that it
receives from a data classifier 384. Accordingly, when the control information of an I/0 request
received at the host interface 361 includes an operation to be performed on a first location within
the data store, the data classifier 384 can identify, based on the subscriptions of the plurality of
I/O managers 362, a first one of the plurality of I/O managers 362 capable of processing the
control information. Moreover, in one embodiment, the data classifier 384 may also identify,
again based on the subscriptions of the plurality of I/O managers 362, a second one of the
plurality of /O managers 362 capable of processing the control information should the first one

of the plurality of I/O managers 362 fail.

[0171] In one embodiment, after the data classifier 384 receives the control information from

the target mode driver 382, the data classifier 384 replicates the control information to create a |

—39_

WO 2006/023994 PCT/US2005/030168

copy of the control information. In one such embodiment, the data classifier 384 transmits the
control information to the first one of the plurality I/O managers 362 identified as described
above, and instructs that first I/O manager 362 to process the control information. The data
classifier 384 may also transmit the copy of the control information to the second one of the
plurality of I/O managers 362 identified as described above, and may instruct that second I/O
manager 362 to temporarily store the copy of the control information, rather than process the
copy of the control information. The copy of the control information may be stored, for
example, in the storage buffer 363 of the processor module 378 at which the second one of the
plurality of I/O managers 362 is located. Accordingly, in one embodiment, the storage
management device 338 saves a redundant copy of the control i;lformation so that it may be

processed by a second I/O manager 362 in the event that the first I/O manager 362 fails.

[0172] In one embodiment, the control information of a first I/O request directs an I/O
manager 362 to operate on a first location within a data store. In one such embodiment, the I/O
manager 362 may also be directed by the control information of other I/O requests to operate on
second locations within the data store that at least partially overlap the first location within the
data store. In such a case, the I/O manager 362 first processes the control information having the
earliest time stamp. Accordingly, in one approach, by time stamping the control information of
the I/O requests; the target mode driver 382 effectively ensures that the I/O manager 362
processes the control information of any one particular I/O request for a first location within a
data store before it processes the control information of other I/0 requests having a later time
stamp, when those other I/O requests are directed to locations within the data store that at least

partially overlap the first location within the data store.

[0173] - Once an I/O manager 362 receives the control information and is instructed by the
data classifier 384 to process the control information, the I/O manager 362 orders and manages
the I/O requests and forwards appropriate instructions to the physical store interface 364. In oné
embodiment, the /O manager 362 processes control information, and monitors and indexes the
flow of information within the storage management device 338. For example, the I/O manager
362 monitors and indexes the flow of information to and from the other processing modules, and
the host interface 361 and the physical store 364. The I/O manager 362 also fnanages the I/O

and insures that modified units of storage are saved and accessible for future reference in the

— 40—

WO 2006/023994 PCT/US2005/030168

creation of prior images. In addition, the I/O manager 362 tracks the performance (e.g., response

time) of the storage management device 338 in responding to I/O requests from the host 34.

|||||| Pty

10174] The I/O manager 362 may also implement various optimization routines in order 'to
provide the host with an efficient response time to I/O requests. For example, because the
storage management device can be employed in very large storage systems 30, including storage
systems with terabytes of storage capacity, optimization of the copy-on-write command may be
desirable. A copy-on-write command can require at least two sequential operations prior to
writing the new data to a target storage address: (a) reading existing data from the target storage
address and (b) writing the existing data to a new storage address. In one embodiment, the
storage management device implements, either alone or in combination, certain optimizations.
These optimizations generally fall into one of five categories: (i) aggregation; (ii) spanning; (iii)
redundant write; (iv) reordering; and (iv) live storage. Each of these optimizations can allow for

more efficient processing, particularly of the copy-on-write operations.

[0175] 1. Aggregation. The first optimization is aggregation. The storage management
device 338 may aggregate separate copy-on-write commands for sequential units of storage (e.g.,
units of storage in adjacent blocks) and perform the operations in a single copy-on-write
command. This can be useful because the extra overhead associated with the multiple physical

disk reads and writes of each block is eliminated when adjacent blocks are operated on as a

group.

[0176] 2. Spanning. The aggregation optimization can be extended further by combining
separate copy-on-write commands directed to units of storage that are non-sequential but in close
proximity to one another into a single copy-on-write command that spans, in addition to all the
targeted units of storage, all the units of storage that are located in the span. For example, where
five units of storage 100, 200, 300, 400, and 500 are located sequentially to one another in the

~ order shown, copy-on-write commands directed to blocks 100, 300 and 500 can instead result in
a single copy-on-write command directed to blocks 100-500 inclusive. Although extra data is
read and operated on, a spanned block that included extra data can still be significantly faster

than 3 separate disk operations.

—41 -

WO 2006/023994 PCT/US2005/030168

[0177] 3. Redundant Write. A redundant write optimization can be implemented by
identifying a first unit of storage that is likely to be the target of a host write request. Data
written to a first block may also written toa ;econd b,l\(.)Ck‘ An index can track the address‘c‘)lf‘ \
éach unit of storage. Instead of iﬁplerﬂeﬁting cop&-on-write, then, the next write command to
that block can result in one of the two blocks being overwritten. The unaffected block can then

serve as the historical copy of that block.

[0178] 4, Reordering. With the reordering optimization, incoming I/O requests may be
~ reordered so as to maximize the benefits of one or more of the other optimization protocols such

as the aggregation protocol, the spanning protocol, the redundant write protocol, and the like.

[0179] 5. Live Storage. In some instances, significant efficiencies can be gained by storing
data in memory rather than in physical storage. For example, if certain blocks have a high
volume of I/O requests (e.g., they are updated frequently), many read/write operations can be
saved by keeping the data in memory. In one embodiment, the memory is memory 296 (FIG. 9)

located in the processor module 378.

[0180] A storage buffer 363 may store, at least temporarily, data payloads, data payload
copies, control information, and copies of control information that are being processed within the
storage management device 338. In one embodiment, the plurality of storage buffers 363 are in
communication with one or more of the target mode drivers 382. In one such embodiment, data
received by a target mode driver 382, and any copies of that data made by the target mode driver
382, is stored in one or more storage buffers 363 until it is communicated to a physical store 36
by the physical store interface 364 or to another processor module 378 via the internal network
380. A storage buffer 363 includes the memory 296 (see FIG. 9), which is allocated in such a

way as to allow the various devices to communicate data without software processing of the data.

- [0181] . A physical store interface 364 communicates with the physical store 36 over any type
of communication link 42 described above (é. g., a Fiber Channel network), and communicates
with the plurality of I/0O managers 362, one or more of the host interfaces 361, and the plurality
of storage buffers 363 via the internal network 380. In response to read requests for example, the
physical store interface 364 retrieves data stored on the physical store 36, which data is

ultimately provided to the host interface 361 for communication to the host 34. For write

—42—

vty

VAt

WO 2006/023994 PCT/US2005/030168

requests, the physical store interface 364 forwards the data payload to target units of storage of

the physical store 36.

[0182] After an I/O manager 362 has processed the control information of an I/O request that
was initially received by the target mode driver 382 at the host interface 361, that /O manager
362 may instruct a physical store interface 364 to communicate with one or more of the physical
stores 36. In one embodiment, the I/O manager 362 instrucfs fhe physical store interface 364 to
read data from a physical store 36. For example, the I/O manager 362 may have processed the
control information of a write operation and the physical store interface 364 is therefore
instructed to read data from the physical store 36 in order to perform a copy-on-write operation.
Alternatively, the I/O manager 362 may have processed the control information of a read
operation and the physical store interface 364 is therefore instructed to read data from a
particular location within the physical store 36. Upon being instructed by the I/O manager 362
to read data from the physical store 36, the physical store interface 364 reads such data.

[0183] In another embodiment, the I/O manager 362 processes the control information of a
write operation that included a data payload, but the data payload, previously separated from the
control information by the target mode driver 382, will have been stored in a first storage buffer
363, as described above. In one such embodiment, in addition to instructing the physical store
interface 364 to communicate with the physical store 36, the I/O manager 362 also instructs the
physical store interface 364 to communicate with that first storage buffer 363. Accordingly, the
physical store interface 364 retrieves the data payload from the first storage buffer 363 and
writes the data payload to a location within the physical store 36, as instructed by the I/O

manager 362.

[0184] * Once the data payload is safely stored to a location within the physical store 36, the
I/0 manager 362 may delete, mark for deletion, or mark for replacement, the one or more data
payload copy(ies) previously stored (redundantly) in the second and/or further storage buffer(s)
363. Similarly, once the control information has been processed by an I/O manager 362, the I/O
‘manager 362 may delete, mark for deletion, or mark for replacement, the copy of the control
information previously stored in a storage buffer 363 of a processor module 378 on which a

second I/O manager 362 is located.

—43 —

WO 2006/023994 PCT/US2005/030168

[0185] Referring now to FIG. 11, each processor module 378 (FIG. 10) is responsible for I/O
requests made with reference to specific portions of a data store. Each I/O manager 362 is

TR TRTeT:

responsible for managing and fulfilling I/O requests for the portions of the data store to Wthh ifts
‘processing module is assignéd. Iﬁ oné‘ len&i)odirrylé‘n‘t,yflza‘xch I/0O manager 362 is assigned a set of
blocks of the data store, for example, blocks 100-500 of data store A. Each processor module
378 can employ multiple I/O managers 362. Assignment of the I/O manager 362 to the portions
of the data store to which it is responsible takes place by way of a subscription protocol. In one
embodiment, the subscription protocol is implemented by having each one of the plurality of I/O
managers 362 register, with each one of the data classifiers 384, the one or more portions of the

data store for which it will perform data operations (e.g., read operations or write operations).

[0186] Each I/O manager 362 can be responsible for multiple current stores and multiple

time stores, which are managed by the current store controller 472 and the functional storage
module 474. In one embodiment, the storage management device 338 maintains a database that
associates each I/O manager 362 with the contiguous set of blocks that are assigned to the
respective I/O manager 362. The data classifiers 384 associated with an I/O manager 362

employ the database to ensure that each I/O manager only i)erforms tasks associated with the
'blocké assigned to it. In one embodiment, this approach allows a subset of the total number of
1/0 managers 362 in the storage management device 338 to service a single time store while

other I/0O manager 362 subsets can service additional time stores. This approach is also scalable
because increasing the quantity of I/O managers 362 will increase the quantity of time stores that
the storage management device 338 can efficiently service. Also, the approach can be used with

a single physical store 36 that comprises multiple time stores and multiple current stores.

Because this approach uniquely identifies each data store, only a limited amount of additional
information is required to associate each I/O manager 362 with specific unit(s) of storage. In one .
embodiment, the data store block number, the time store block number, and the time stamp are

" the only additional information that is required.

[0187] " In one embodiment, the I/O manager 362 maintains a series of control information
tables that each correspond to a specific window of time. For example, all I/O processed by an
I/0 manager 362 between 9:00 and 9:05 can be stored in a single table, while I/O that occurred

between 9:05 and 9:10 is stored in another table. In a version of this embodiment, the tables are

44—

WO 2006/023994 PCT/US2005/030168

a fixed size. A fixed table size allows the processing time of each query to a table to be readily
determined because all the tables are full except the table that is currently in use. Thus, the
processing time is identical for all tables, but the current table. Although the table size is ‘f‘i‘x‘e‘c‘l?
;nhe time period covered by eéch te\lblevi‘si Vle;riéblé Iés a‘ ‘r‘esult of the variable frequency of write
commands and the variable size of the target units of storage associated with each command.
For example, a table that is limited to 600,000 entries will fill in 9,000 units of time if, on
average, the associated I/O manager 362 processes 200,000 write commands every 3000 units of
time. However, the same size table will fill in 3000 units of time if the associated I/O manager
362 receives 200,000 write commands every 1000 units of time. In a version of this
embodiment, the table comprises a data store block number, a time store block number, and a

timestamp that indicates when the associated copy-on-write operation was performed.
[0188] When a table is filled, the I/O manager 362 does three things:
[0189] 1) The I/O manager 362 creates a new table for new incoming write operations.

[0190] 2) The I/O manager 362 creates an entry in a se_para;ce table (e.g., a master table) that
describes and indexes these control information tables. The master table contains the table name
and the time range that the table covers, i.e., from the creation time of the table to the time that‘
the last entry was recorded in the table. In one embodiment, the master table is local to the 1/0

manager 362 with which it is associated.

[0191] 3) The I/O manager 362 creates a bitmap representing all of the I/O in a given table.
This bitmap has a bit for a given block range. The bitmap can be tuned to adjust the block
ranges represented by each bit; therefore, in one embodiment, bit 0 represents blocks 0-15, bit 2
represents block 16-32, etc. The amount of data each bit represents is referred to as the region

size.

[0192] The region size is also tunable. Thus, the chance for a false positive on a bit is
reduced the closer the region size is to either the average I/O request size or the minimum I/O
request size. In one embodiment, the minimum I/O request size is 1 sector or 512 bytes. In

operation, if the region size is 128 kilobytes, the first bit would be set if the user wrote data to

— 45—

[RRSEAR LR AR AR KR AR

WO 2006/023994 PCT/US2005/030168

blocks 2-10. However, if the bitmap was later used to determine whether block 85 is referenced

in the underlying data, the bitmap would provide a false positive indication.

[MR A AR AR AR R LA |

[0193] As the region size is reduced the quantity of false positives is reduced, and may'in’
fact be reduced to zero. More memory and disk space are required, however, to store the bit map
when the region size is reduced. Conversely, as the region size is increased, there is an increase
in the quantity of false positives that occur, however, the memory requirements of the bit map
are reduced. In one embodiment, each I/O manager selects a region size that dynamically

balances the rate of false positives and the size of the bitmap.

[0194] In one embodiment, the impact of the operations required by the I/O manager to close
or “seal” a table when it reaches capacity and to move to a new table are minimized because the

table transfer is performed asynchronously relative to the continuing I/O stream.

[0195] When a specific recovery time is requested for the generation of a time based data
store (for example data store B), three general levels of operations must be performed by the I/0

manager 362.

[0196] 1) The I/O manager 362 first identifies the tables that are involved. If the user
requests a recovery time of T-500, the I/O manager 362 scans the master table for the control
information tables that include I/O operations that occurred between T-500 énd the request time.
The I/O manager then retrieves the bitmaps for each of the control information tables that

include the qualifying I/O operations.

[0197] 2) The I/O manager 362 then creates a master bitmap by OR'ing together all of the
bitmaps that were retrieved and saves the individual bitmaps and the master bitmap. Once the
OR operation is complete, the master bitmap can be used to evaluate a substantial percentage of
' potential read requests to determine whether the requested blocks were involved in prior write
operation (i.e., between T-500 and the request time). If a block was not involved in a write
operation at that time, data from the current store will be used for the block. Retrieval and
presentation of data from the current store is a substantially real time operation. If the region bit
is set in the master bitmap, the I/O manager 362 begins scanning the individual bitmaps from the

oldest to the newest to determine which bit is set for the region and then scans the bitmap’s

— 46—

WO 2006/023994 PCT/US2005/030168

underlying table for the location of the I/O operation in the time store. These operations are
slower than the retrieval of data from the current store, but they continue to proceed through the

system.

[0198] 3) The I/O manager 362 begin creating region maps whereby copies of the blocks
described in each individual cdntrol information table are stored in memory. When this
operation is complete, the time delay for a read request that must go to the time store for data is
reduced because the request is redirected to the memory and rarely (if ever) requires any extra

table scanning.

[0199] The response time of the storage management devicé 38 is reduced by the preceding
approach because the I/O manager 362 begins servicing requests when the first step is complete.
In most applications, the current store will provide the majority of the data required for the
generation of a time store because, most often, the time store will be generated at a relatively
recent point in time, for example, 1 minute, 1 hour, 1 day. The amount of data typically changed
in those time segments is small when compared to the entire data store. Each master table can
contain 500,000 to 5,000,000 records, yet each table can be searched in a fixed time. Thus, a
master table of only a few thousand entries can be used in an application that supports a physical

store 36 of 2 terabytes.

[0200] Referring to FIG. 11, the current store controller 472 processes requests directed to
the device/unit of storage combinations to which the current store controller 472 is subscribed.
Each current store controller 472 receives the resulting control information transmitted from a
host interface 361 (FIG. 10) to the I/O manager 462 over a control plane 568 (FIG. 12). The
current store controller 472 creates work orders based on this control information to insure that
the data associated with the control request is written to a logical unit and that the old data that
presently appears at the target location is copied and saved elsewhere by the storage management
device 538. '

[0201] Similarly, the time store controller 476 processes requests directed to the device/unit
of storage combinations to which the time store controller 476 is subscribed. Each subscription

is registered with the data classifier 384 of the processor modules 378.

—47—

WO 2006/023994 PCT/US2005/030168

[0202] The I/O manager 362 also includes an I/O router 470. The I/O router 470 is the
software module responsible for moving the data, as directed by the current store controller 372

and the time store controller 376.

[AR At

[0203] Although one of each of the I/O router 470, a current store controller 472, functional
storage 474, and a time store controller 476 is shoWn, the I/O manager 362 can include one or
more of each of these. Moreover, these elements can communicate in other configurations than
vthe configuration shown in FIG. 11. For example, in one embodiment, the I/O manager 462

includes a plurality of time store controllers 476.

[0204] Referring now to FIG. 12, in another embodiment and a more abstract representation,
the storage management device 538 includes a data plane 566 and a control plane 568 used for
communication of the multiple modules between each other. The storage management device
538 includes multiple host interfaces 561, I/O managers 562 and physical store interfaces 564.
Although these components are, as shown in earlier figures, each located on a particular
processor module, they can be vieWed together as collections of these components working

together to share the load, both for efficiency and fault tolerance.

[0205] The host interfaces 561 and physical store interfaces 564 communicate data to each
other on a data plane 566, which as described above is implemented with direct memory access
and the internal network 380 (FIG. 10). Control information (e.g., control packets, meta-data
packets) is communicated on the control plane 568 between the host interfaces 561 and the I/0
managers 562, and between the I/O managers 562 and the physical store interfaces 564. The
control plane 568 is implemented with inter-processor communication mechanisms, and use of
the internal network 380 (FIG. 10). The data payload is communicated between the host
interface 561 and the physical store interface 564 over the data plane 566.

- [0206] The optimization operations described above are accomplished, in part,. because of a
queue system employed by the storage managemént device 338. The queue system organizes the
control information (e.g., control packets, meta data packets) that are processed by the I/O
managers 362. The control information is first subject fo an incoming queue in which the I/0

manager 362 queues the control information in the order that it is received.

_ 48—

TPV

WO 2006/023994 PCT/US2005/030168

[0207] In one embodiment, control packets are joined, reordered, and/or strategically delayed
in order to process the packets more efficiently. Referring again to FIG. 10, the I/O manager 362
identifies and tracks idempotent groups of control packets, that is, groups of control packets that
are independent of one another. Generally, the idempotent groups are the groups that can be
processed more efficiently than other packet groups, e.g., idempotent groups are processed more
ciuickly. If for example, at time TO a first control packet directed to blocks 0-15 arrives, and at
time T35, a second control packet directed to blocks 8-31 arrives, the /O manager 362 includes
all the operations from TO to T4 in one idempotent group, and begins another group at time T5
(provided that no other control packets overlap between TO and TS) In this example, the
processing, grouping, and execution order are selected to prevent the T5 operation from
occurring prior to the TO operation. If for example, the T5 operation were performed first, the
TO operation would include part of T5's payload in its before image (i.e., blocks 8-15). Further,
the T5 operation would be missing the data from the TO operation in it's before image although

the data existed at time T1.

[0208] The storage management device 338 creates many opportunities for generating
customized control packet groups that improve processing efficiency because, for example,
operations can be split into “worker groups”, where each worker group can operate in a threaded,
independent by éimultaneous fashion: A determination that certain blocks are not idempotent as
described above, forces the I/O manager 362 to ensure that all the blocks referencing 0-32 occur
in the same worker group as the TO and T5 operations, but operations involving other very large
groups of blocks can still reordered. Therefore, the I/O managers 362 are constantly identifying,
analyzing, and managing idempotent relationships on multiple queues using advanced queuing

theory.

[0209] The system allows the user to create a new dynamic or static data store B, which is a
representation of the main data store A but at a previous point in time, for example, T-500. The
target mode driver 382 creates target device representations on the first communication link 40,
which allows the host 34 to issue commands to the new data store B. The I/O manager 362 uses
functional storage '474 to create a map of all blocks which can not be satisfied for the data store
B via current store A, i.e., the blocks have been overwritten in current store A since the recovery

time T-500. The map continues to be updated as a result of the continuing stream of I/O which is

— 49 —

WO 2006/023994 PCT/US2005/030168

directed to the main data store A. For example, each time the user modifies a block of data store

A, the targeted block in current store A no longer contains the same data as it did before time T-

500. The map incorporates the location where the newly targeted block gets copied to in 151131 J,
store A. As aresult, I/O requests directed to data store B locate the correct block contents.

Additionally, this entire process must be synchronized to ensure that updates to the current store

A, time store A are accurately reflected in data store B’s map in order to prevent /O requests to

data store B from identifying the wrong block as the source of data. For example, when a new

block is written to data store A, the map is updated with the location in the time store of the prior
contents of data store A. The storage management device 538 employs methods to ensure that

later in time I/O requests directed to data store B locate the correct data.

[0210] MODIFICATION HISTORY REQUEST

[0211] In general, in another aspect, the invention relates to systems, methods, and articles of
manufacture for providing a modification history for a location within a data store. In brief
overview, in one embodiment of this aspect of the invention, a first computing device (e.g., 2
host as described above) specifies to a second computing device (e.g., a storage management |
‘device as described above) a location within a data store (e.g., an address range within a data .
store) that the second computing device manages. The first computing device then also requests
from the second computing device a list of times-at which at least a portion of the data stored at
the specified location was modified. This could be a request for a modification history for the
location within the data store. The second computing device then reéponds, in one embodiment,
with a list of times at which some portion of the data stored at the location was modified and,
optionally, identifies which portions of the location were modified at those times. Generally
speaking, if some portion of the data stored at the location has been modified, it will have been

modified as a result of a write operation directed to that portion of the data store.

[0212] | In one embodiment, the request for a modification history for a location within the
data store is received at the second computing device in-band, that is, from the first computing
device and through the same communication protocol that the first computing device uses when
it communicates data commands (e.g., read operations and write operations). In another

embodiment, the request is received at the second computing device out-of-band. For example,

—50-

WO 2006/023994 PCT/US2005/030168

the request is received via a different communication protocol than that used by the first
computing device when it communicates data commands, is received via a different channel
(e.g., via a user interface, such as a graphical user interface, or a command line on a console of a
computing device that is different from the first computing device, such as, for example, the
second computing device or another computing device such as an administrator’s computing
device or a computing device located at a third party control center), or is received via some

combination thereof.

[0213] This aspect of the invention can be useful, for example, if a user (e.g., a system
administrator) becomes aware of a problem with data stored in'all' data storage device. The
problem could be, for example; data corrupted as a result of improper operation of software or
hardware, or, as another example, data overwritten by an application as a result of an
administrator error. Upon determining the relevant location(s) of the problem, the administrator
can query the device to determine when the location(s) were last modified. With that
information, the administrator can then request that the data storage device present a prior image
of the data store at a time pribr to each of the times indicated. In this way, the user is likely to

identify the most recent available prior image in which the corrupted data was intact.

[0214] Some applications and operating systems, for example, upon detecting certain errors
in a data store, provide information about the specific data store locations at which the error was
detected in order to facilitate debugging. When such location information is provided directly by
the application, the query described above can be made using that location information. Some
applications and operating S}}stems, as another example, report errors associated with a particular
file. Typically, operating system and/or file system tools can be used to determine the data store
locations allocated to those files by the operating system and/or file system. If the data store
“presented to an application (or operating system, device, etc.) is virtualized, it may be that the
data store locations provided by the application (or operating system, .device, etc.) need to be
converted (e.g., de-virtualized) to identify the respective relevant locations in the data store as

presented by the data storage device.

[0215] In one exemplary embodiment, a user of a data store is notified of a problem

encountered by an application, such as a database application. The user determines, either

—51 -

WO 2006/023994 PCT/US2005/030168

directly from the application, or indirectly using information provided by the application or
operating system, the location(s) of the problem. The user may, for example, make this
determination by using a software-based tool to analyze application specific or operating system,, ...,
maintained error logs to facilitate the de-virtualization of I/O errors. The user then directs an
inquiry to the storage device to determine the times at which the location(s) were last modified.
This inquiry can be performed, for example, using the application, using a software-based tool
otherwise provided on the user’s computer, or directly to the storage device using a control
panel console, or other means. The user (via the tool, etc.) receives the modification hlstory

~ The user then requests that the storage device present one or more prior images (e.g., one at a
time, or all at once) at a respective time prior to the reported modification times. The user can
then check each prior image to identify the most recent available prior image in which the

problem is absent. The user can then, for example, copy data from the prior image to the data

store, begin using the prior image, or take some other course of action.

[0216] FIG. 13 illustrates one embodiment of a storage system 630 that can provide a
modification history according to this aspect of the invention. The storage system 630 includes a
‘host 634, a storage management device 638, and a physical store 636. The host 634 and the
storage management device 638 communicate with one another over a first communication link
640. The storage management device 638 and the physical store 636 communicate with one
another over a second communication link 642. Generally speaking, the host 634, the storage
management device 638, the physical store 636, and the first and second coinmunication links
640, 642 may have the capabilities of, and may be implemented as, the hosts, storage
management devices, physical stores, and first and second communication links, respectively,
described above, with the additional functlonahty described here. It will be understood that other

implementations are also possible.

- [0217] . In one embodiment, the hqst 634 includes at least a host receiver 681 and a host
transmitter 683. The host receiver 681 and the host transmitter 683 can each be implemented in
any form, way, or manner that is useful for receiving and transmitting, respectively,
communications, such as, for example, requests, Comrriands, and responses. In one embodiment,
the host receiver 681 and the host transmitter 683 are implemented as software modules with

hardware interfaces, where the software modules are capable of interpreting communications, or

—-52—

WO 2006/023994 PCT/US2005/030168

the necessary portions thereof. In another embodiment, the host receiver 681 and the host
transmitter 683 are implemented as a single host transceiver (not shown). The host 634 uses the
host receiver 681 and the host transmitter 683 to communicate over the first communication link

640 with the storage management device 638.

[0218] In one embodiment, the storage management devicg 638 includes at least a storage
management device receiver 687, a determination module 689, and a storage management device
transmitter 691. Again, the storage management device receiver 687 and the storage
management device transmitter 691 can each be implemented in any form, way, or manner that
is useful for receiving and transmitting, respectively, communications, such as, for example,
requests, commands, and responses. For example, like the host receiver 681 and the host
transmitter 683, the storage management device receiver 687 and the storage management device
transmitter 691 also may be implemented as software modules with hardware interfaces, where
the software modules are capable of interpreting communications, or the necessary portions
thereof. In one embodiment, the storage management device receiver 687 and the storage
management device transmitter 691 are implemented as a single storage management device
transceiver (not shown). The storage management device 638 uses the storage management
device receiver 687 and the storage management device transmitter 691 to communicate over the
first communication link 640 with the host 634 and/or to communicate over the second

communication link 642 with the physical store 636.

[0219] For its part, the determination module 689 may be implemented in any form, way, or
manner that is capable of achieving the functionality described below. For example, the
determination module 689 may be implemented as a software module and/or program, and/or as
a hardware device, such as, for example, an application specific integrated circuit (ASIC) or a
field programmable gate array (FPGA). In one embodiment, the determination module 689 is
implemented as part of an I/O Manager 362 (see FIG. 10) described above.

[0220] In one embodiment, the storage management device 638 also includes at least one
data store 643 that has an associated current store 644 and a time store 646. For example, the
data associated with one or both of the current store 644 and the time store 646 may be stored in

the memory of the storage management device 638. The data associated with one or both of the |

—53—

WO 2006/023994 PCT/US2005/030168

current store 644 and the time store 646 also can be stored in the physical store 636, which for its
part can be either directly stored, or virtualized, etc. The storage management device 638 keeps
management device 638 reads and writes data to and from memory and/or the physical store 636,
and uses indexes and pointers to the data to maintain the time store 646. Again, the data store
643, its current store 644, and its time store 646 may have the capabilities of, and may be
implemented as, the data stores, current stores, and time stores, respectively, described above,
with the additional functionality described here. In yet another embodiment, as described above,
the storage management device 638 includes more than one data store, such as, for example, two,

three, or any number of data stores.

[0221] As previously described, when the storage management device 638 receives from the
host 634 a write operation directed to the data store 643, the storage management device 638
maintains a record of the write operation. In one embodiment, the storage management device
638 employs a copy-on-write procedure and updates a historical index. For example, after
receiving, but prior to executing, the write operation, the storage management device 638 copies
any old data from the data store 643 that is to be overwritten by new data contained in the write
operation. The storage management device 638 saves the “old” data to a new destination within
the data store 643 and updates the historical index. In one embodiment, for example, for every
occurrence of a write operation, the storage management device 638 records a timestamp that
indicates the time at which the old data was overwritten, records the address range within the
data store 643 at which the old data was overwritten, and records the new address range within
the data store 643 at which the old data is now stored. Accordingly, the storage management
device 638 maintains an index that may be consulted, as described below, in responding to a .

request for a modification history for a location within the data store 643.

- [0222] Although described with reference to the copy-on-write operation, it should be
understood that the principles just described would be applicable to any data storage system in
which a lo.g or index of changes are recorded. For example, if the actual writes to the data store
are recorded, instead of or in combination with logging data that was previously written prior td
overwriting, the system still could provide information about when storage locations were

modiﬁed as described above, and this information could be determined from the log or index of

_ 54—

WO 2006/023994 PCT/US2005/030168

changes. Also, it should be understood that in some circumstances, some, rather than all,
changes to the data store may be recorded, and the data store can in such circumstances, provide

only the modification information that it has available.

[0223] Referring now to FIG. 14A, in brief summary of one embodiment of a method 700
for providing a modification history for a location within a data store, for example using the
exemplary storage system 630 of FIG. 13, the storage management device 638 receives, at step
704, a request for a modification history for a location within the data store 643. The storage
management device 638 then determines, at step 708, at least one time at which at least a portion
of data stored at the location specified in the received request was modified. Then, at step 712,
the storage management device 638 transmits, in response to thé received request, the at least
one time determined at step 708. Optionally, the storage management device 638 also identifies,
at step 710, for each time determined at step 708, the address range within the data store 643 at
which data was modified at that determined time. At step 714, the storage management device
638 may, optionally, also transmit, in response to the received request, the address ranges

identified at step 710.

[0224] In greater detail, at step 704, the host 634 transmits, via its transmitter 683 and over '
the first communication link 640, a request for a modification history for a location within the
data store 643. The request can be communicated in ahy form or manner that is useful for
making the request. In one embodiment, for example, the request is communicéted in the form
of a data packet. The request is received at the receiver 687 of the storage management device
638. In one embodiment, the location specified in the request is an address range within the data
store 643. The address range may be designated, for example, by an LBA and a length. In one
embodiment, the LBA specifies the beginning of the address raﬁge, and the length specifies the
-length of the address range. For example, in one embodiment, the storage address space of the
data store 643 is divided up into blocks (e.g., sectors), where each block is 512 bytes long. In
éuch a case, the LBA is used to designate a specific 512-byte block (i.e., the 512-byte block at
the beginning of the address range) and the length is used to designate how many 512-byte
blocks are included within the address range. For instance, where the host 634 requests a
modification history for an address range in the data store 643 that starts at byte 8192 and that is -
4096 bytes long, the request would include an LBA of 16 and a length of 8.

—55—

WO 2006/023994 PCT/US2005/030168

[0225] After the storage management device 638 receives the request for the modification
history for the location within the data store 643, the determination module 689 of the storage
management device 638 determines, at step 708, one or more times at which at least a portion of ...
the data stored at the location was modified. In one embodiment, for example, the determination
module 689 parses the aforedescribed historical index listing the modifications made to (e.g., the
write operations performed on) the data store 643. The index may be stored, for example, as part
of the time store 646 of the data store 643. The determination module 689 then determines
which of those listed modifications were made to the data at an address range at least partially
dverlapping the requested location’s address range and notes the time(s) such modifications were
made. It could be the case, however, that no modifications were made to the data at the
requested location’s address range. In such a case, the storage management device 638 would
transmit at step 712 (described below) a negative response (i.e., a response indicating that there

are no times at which the data at the requested location’s address range was modified).

[0226] In general, prior to receiving the request for the modification history, one or more
subsets, intersecting sets, supersets, and/or the whole set of theAdata stored at the location within
the data store 643 may have been modified at one or more times. For example, the request
received by the storage management device 638 might be for a modification history of a 1ocati6n
having an address range (LBA 0, length 64). Prior to receiving this request, data stored at the
address range (LBA 0, length 8) (i.e., a subset of the location), data stored at the address range
(LBA 62, length 16) (i.e., an intersecting set of the location), data stored at the address range
(LBA 0, length 128) (i.e., a superset of the location), and/or data stored at the address range
(LBA 0, length 64) (i.e., the whole set of the location) may have been modified at one or more
times. In one embodiment, after having determined, at Astep 708, the times at which these sets
(and/or any other sets that at least partially overlap the requestéd location’s address range) were
modified, the determination module 689 of the storage management device 638 also identifies, at

} step 710, the address ranges of these previously modified sets.

[0227] At step 712, the storage management device 638 transmits, for example in the
embodiment of FIG. 13, via its transmitter 691 and over the first communication link 640, the
one or more determined times at which at least a portion of the data stored at the location was

modified. Optionally, at step 714, the storage management device 638 may additionally

56—

WO 2006/023994 PCT/US2005/030168

transmit, via its transmitter 691 and over the first communication link 640, the one or more
identified sets of address ranges that were modified at the one or more determined times. The
one or more determined times and/or the one or more identified sets of address ranges can be
communicated in any form or manner that is useful for providing such information. For
example, the information is communicated in the form of a data packet. In one embodiment, the
host 634 receives, at its receiver 681, these one or more determined times and/or one or more
identified sets of address ranges. Also, optionally, the transmitter can transmit the data that was

modified.

[0228] In one embodiment, the storage management device'l638 transmits the modification
information in a single packet. For example, the single transmitted packet identifies each of the
sets of address ranges that was modified and, for each of the sets, lists the times at which it was
modified. In another embodiment, the storage management device 638 transmits the determined
times and the identified sets of address ranges separately, for example in separate packets, and
further provides the host 634 with additional information to relate the determined times to the
identified sets of address ranges. In still another embodiment, the storage management device
638 also transmits to the host 634 the data that was stored at the identified sets of address ranges
prior to being modified at the determined times. In doing so, the storage management device
may identify which determined time and/or set of address ranges corresponds to a given piece of

subsequently modified data.

[0229] FIG. 14B depicts one embodiment of a method 700°, which is a variation on the
method 700 of FIG. 14A, for providing a modification history for a location within a data store,
again using the exemplary storage system 630 of FIG. 13. Generally speaking, except as set
forth herein, the steps of the method 700’ are performed in the same or a similar manner to the

steps of the method 700 described above.

[0230] In one embodiment, like the method 700, the storage management device 638
receives, at step 704°, a request for a modification history for a location within the data store 643.
In this embodiment, however, the request for the modification history is a request for a list of
every time from which the entire data, and not simply some portion of the data, stored at the

location specified in the request was modified. Accordingly, the storage management device 638

-57 —

WO 2006/023994 PCT/US2005/030168

determines, at step 708°, at least one time from which all of the data stored at the location was

modified, and transmits in response to the received request, at step 712°, the at least on

determined time. Optionally, at step 714°, the storage management device 638 also transmits, in ...
response to the received request, an address range within the data store 643 at which, beginning

from the at least one determined time, the entire data was modified. If transmitted, this address

range would be the same as the location specified in the request for the modification history.

| [0231] Inthe embodiment of the method 700° described above, the data stored at the location
specified in the request for the modification history may all have been modified, but need not
necessarily all have been modified, at the same time in order for the conditions of the request to
be satisfied. Put another way, at least one portion of the data stored at the location specified in
the request for the modification history may have been modified at a different time from (i.e., at
a time subsequent to) the at least one time determined by the storage management device 638 at
step 708’ of the method 700°. If, for example, the entire data stored at the location specified in
the request for the modification history is modified at a first time T1, a first portion of the Adata,
but not the entire data, stored at the location is modified at a second time T2, a second portion of
the data, but not the entire data, stored at the location is modified at a third time T3 (where the
first portion and the second portion of the data amount to all of the data stored at the location ‘
specified in the request for the modification history), and the entire data stored at the location is
again modified at a fourth time T4 (where T1, T2, T3, and T4 occur chronologically in time), the
times from which the storage management device 638 will determine, at steb 708’, all of the data

stored at the location to have been modified are T1, T2, and T4.

[0232] Being able to request, as just described for the method 700°, a list of every time from
which the entire data, and not simply some portion of the data, stored at a particular location Was
modified is particularly useful where a user knows that the entire data stored at the location is

- corrupt and needs to be replaced (e.g., where the user knows than an entire JPEG file is corrupt).
Armed with the times determined by the storage management device 638 at step 708, the user
can then request that the storage management device 638 produce an image of the location at
times just prior just prior to the determined times. The user is thereby able to identify the most
recent time at which the entire data was intact (i.e., not corrupt) and can choose to restore the

data at the location to the data that was present in the location at that most recent time.

— 58~

WO 2006/023994 PCT/US2005/030168

[0233] FIG. 15 depicts an illustrative embodiment of a request 800 for a modification history
for a location within a data store (e.g., the data store 643) that can be transmitted by a host (e.g.,
the host 634) to a storage management device (e.g., the storage management device 638) in
accordance with the invention. In one embodiment, as illustrated, the request 800 is in the form
of a data packet 804. The data packet 804 may include at least a portion of an I/O command,

which may be in a standard I/0O command format, such as a SCSI command format.

[0234] - In one embodiment, the data packet 804 includes 16 bytes of request data. In byte 0,
an operation code identifies the type of request (e.g., providing a modification history for a
location within the data store 643) that is to be executed. For example, the operation code may
be associated with a request for at least one time at which at least a portion of data stored at a
location within the data store 643 was modified or with a request for a list of every time from
which the entire data, and not simply some portion of the data, stored at a location within the
data store 643 was modified. An exemplary operation code is Clh, which is a code allocated to a

vendor-specific request in the SCSI protocol.

[0235] The three most-significant bits (i.e., bits 5-7) of byte 1 are reserved for future use.
Optionally, the remaining 5 least-significant bits (i.e., bits 0-4) of byte 1 provide for a service
action field (e.g., a field containing a coded value that identifies a function to be performed under
the more general request specified in the operation code of byte 0). Alternatively, in another

embodiment, bits 0-4 of byte 1 are also reserved for future use.

- [0236] Bytes 2-9 are for the LBA, which identifies the first unit of storage (i.e., the first
block) of the location for which the modification history is requested. Bytes 10-13 are for the
length, which indicates the number of the units of storage, including the first unit of storage

“identified by the LBA, that sequentially form the location within the data store 643. In one
embodiment, the LBA and the léngth form an address range.

[0237] Byte 14 is reserved for future use. For example, byte 14 could be used as a Relative
Check field for indicating whether the one or more times which will be returned by the storage
management device 638 are to be relative or absolute. If, for example, the Relative Check field
is 0, the one or more times returned by the storage mmageﬁent device 638 are to be relative to

the present time. In other words, a 0 in the Relative Check field indicates that the one or more

—59—

WO 2006/023994 PCT/US2005/030168

times to be returned by the storage management device 638 are to be past times measured from
the current time. On the other hand, if, for example, the Relative Check field is non-zero, the

......

i.e., without reference to another time.

[0238] Byte 15 is the control field of the data pécket 804. For example, in one particular
embodiment where the data packet 804 is implemented in a typical SCSI command format, bit 0
of byte 15 may be used (e.g., may be set) to specify a request for continuation of the task across
two or more commands (i.e., to link successive commands), bit 1 of byte 15 can provide a way to
request interrupts between linked commands, bit 2 of byte 15 may be used to specify whether,
under certain conditions, an auto condition allegiance shall be established, bits 3-5 of byte 15 cab

be reserved, and bits 6-7 can be vendor-specific bits.

[0239] FIG. 16 depicts an illustrative embodiment of a response 900, specifically, a response
900 to a request 800 for a modification history for a location within the data store 643, that can
be transmitted by the storage management device 638 to the host 634 in accordance with the
invention. In one embodiment, as illustrated, the response 900 is in the form of a data packet
904. The data packet 904 may include at least a portion of an I/O response, which may be in a

standard I/O response format, such as a SCSI response format.

[0240] In one embodiment, as illustrated, the data packet 904 includes at least 30 bytes of
response code, and may include, as described below, additional bytes of response code. FIG.16 -
identifies each bit that may be included in the exemplary bytes of response code. Bytes 0-1 are

reserved for future use.

[0241] Bytes 10-13 are for an LBA that identifies a first unit of storagé (i.e., a first block) in
a set that includes at least a portion of the location specified in the request 800. In other words,

" the LBA represented in bytes 10-13 identifies the first unit of storage of, for examble, a subset of
the location specified in the request 800, an intersecting set of thé location specified in the
request 800, a superset of the location specified in the request 800, or the whole settof the
location specified in the request §00. Bytes 14-21 are for a length that indicates the numbeerf
units of storage, including the first unit of storage identified by the LBA in bytes 10-13, that

sequentially form the set. In one embodiment, the LBA and the length form an address range for

— 60—

WO 2006/023994 PCT/US2005/030168

the set. As indicated by this information, data stored at the identified address range of the set
was modified prior to the point in time at which the storage management device 638 received the
request 800. As such, bytes 22-29 are for a determined time of change, which indicates the time

at which the data stored at the address range of the set identified in bytes 10-21 was modified.

[0242] Together, bytes 10-29 (i.e., the LBA, the length, and the determined time of change)
constitute a tuple. The data packet 904 may include any number of tuples (e.g., one, two, or
more tuples). Bytes 30-n of the data packet 904 are for the repeat of tuples. In one embodiment,
the number of tuples included within the data packet 904 is, or is responsive to, the number of
times at least a portion of data stored at the location specified in the request 800 was modified
according to the information available to the storage device. Bﬁes 2-9 are for the indicator,

which represents the number of tuples included within the data packet 904.

[0243] In one embodiment, the determined time of change represented in bytes 22-29 is a
relative time. Alternatively, in another embodiment, the determined time of change is an
absolute time. In one embodiment, each tuple could, for example, include an additional byte that
is used as a Relative Check field for indicating whether the determined time of change contained
within that tuple is relative or absolute. Alternatively, in another embodiment, all of the
determined times of change included within the n tuples of the data packet 904 are either all
relative or all absolute; there is no variance from one ’uiple to the next. In one suéh embodiment,
by way of example, one of the reserved bytes 0-1 could be used as a Relative Check field for
indicating whether the all of the determined times of change included within the n tuples of the
data packet 904 are relative or absolute. As above, if, for example, the Relative Check field is 0,
the one or more determined times of change are relative to the present time. On the other haﬁd, :
if, for example, the Relative Check field is non-zero, the one or ﬁxore determined times of change
returned by the storage management device 638 are specified absolutely, i.e., without reference

to another time.

[0244] In one embodiment, if the determined time of change included within a tuple is
relative, the actual modification time for the data stored at the address range of the set specified
by that tuple is calculated by subtracting the determined time of change from the time at which

the response 900 was generated. In such an embodiment, the response 900 may be time

—61 —

WO 2006/023994 PCT/US2005/030168

stamped. If, on the other hand, the determined time of change included within a tuple is
absolute, the actual modification time for the data stored at the address range of the set specified

by that tuple is simply the determined time of change.

|||||||| Pttty

[0245] FIGS. 17-20 present one example of how a modification history for a location within
the data store 643 may be obtained. FIG. 17 depicts a timeline 1000 for the example. The
timeline 1000 illustrates a different write operation being directed to the data store 643 at each of
the times T1, T2, T3, T4, and T5. Each write operation is represented as

“Wr (LBA, length, data),” where (LBA, length) represents the address range at which the data is
written: Accordingly, at time T1, data is written to the address range (LBA 0, length 8); at time
T2, data is written to the address range (LBA 62, length 16); at time T3, data is written to the
address range (LBA 100, length 35); at time T4, data is written to the address range

(LBA 0, length 64); and, at time t5, data is written to the address range (LBA 0, length 128).

[0246] FIG. 18 depicts an exemplary embodiment of a historical index 1100 for this
example. As described above, after receiving, but prior to executing, a particular write
operation, the storage management device 638 copies the data stored at the address range
specified by the write operation and saves it to a new destination. The storage management
device 638 then executes the write operation and updates the historical index 1100 as described
above. For example, after executing the write operation at time T1, the storage management
device 638 records, as shown in the second row of the historical index 1100, the time T1 at
which the write operation was executed, the address range (LBA 0, length 8) to which the data
was written, and the new address range (LBA 1000, length 8) at which the data stored at the
address range (LBA 0, length 8) just prior to time T1 is now stored. As shown in FIG. 18, the
historical index 1100 is similarly updated after executing each one of the write operations at

times T2, T3, T4, and T5.

[0247] ' In accordance with the example, at some time after time TS, the host 634 requests,
from the storage management device 638, a modification history for a location within the data
store 643. For example, with reference now to FIG. 19, the host 634 transmits a data packet
1204, which is in the form of the data i)acket 804 described above with reference to FIG. 15,t0 .

the storage management device 638. In this example, the host 634 requests at least one time at

62—

WO 2006/023994 PCT/US2005/030168

which at least a portion of the data stored at the address range (LBA 0, length 64) was modified.

Accordingly, the operation code of byte 0 of the data packet 1204 is associated with that request,
bytes 2-9 of the data packet 1204 are set to indicate that the LBA is 0, and bytes 10-13 of the

data packet 1204 are set to indicate that the length is 64.

[0248] After processing this request for the modification history for the address range

(LBA 0, length 64) within the data store 643 (e.g., after parsing the historical index 1100 listing
the write operations performed on the data store 643), the storage management device 638
responds to the host 634. For example, with reference now to FIG. 20, the storage management
device 638 transmits to the host 634 the data packet 1304, whicti is in the form of the data packet
904 described above with reference to FIG. 16. In this example; the data packet 1304 includes
four tuples, as specified by the indicator in bytes 2-9 of the data packet 1304. With reference
now to both FIGS. 18 and 20, bytes 10-29 (i.e., the first tuple of the data packet 1304) indicate
that the address range (LBA 0, length 8) (i.e., a subset of the requested address range

(LBA 0, length 64)) was modified at time T1; bytes 3049 (i.e., the second tuple of the data
packet 1304) indicate that the address range (LBA 62, length 16) (i.e., an intersecting set of the
requested address range (LBA 0, length 64)) was modified at time T2; bytes 50-69 (i.e., the third
tuple of the data packet 1304) indicate that the address range (LBA 0, length 64) (i.e., the whole
set of the requested address range (LBA 0, length 64)) was modified at time T4; and bytes 70—89
(i.e., the fourth tuple of the data packet 1304) indicate that the address range (LBA 0, length 128)
(i.e., a superset of the requested address range (LBA 0, length 64)) was modified at time T5. The
host 634, by receiving the data packet 1304, is thereby provided with the times at which at least a
portion of the data stored at the address range (LBA 0, length 64) within the data store 643 was

modified, and the corresponding address ranges that were modified at those times.

[0249] It should also be noted that, because the write operation that occurred at time T3 of
the timeline 1000 was directed to the address range (LBA 100, length 35), which does not
overlap the requested address range (LBA 0, length 64), the data packet 1304 does not include

any information relating to that write operation.

—63 —

WO 2006/023994 PCT/US2005/030168

[0250] STORAGE BUFFER SELECTION

[0251] In general, in another aspect, the invention relates to methods and apparatus for
“optimally selecting one or more storage buffers for the storage of data. In brief overview, inone
embodiment of this aspect of the invention, a first computing device (e.g., a storage management
device as described above) receives data requiring temporary or permanent storage. For
example, the first computing device receives from a second computing device (e.g., a host as
described above) a write operation that includes a data payload requiring temporary or
permanent storage. The first computing device initially stores the received data at a first storage
buffer and then optimally identifies one or more additional storage buffers within the first
computing device at which to store redundant copies of the received data. A storage buffer may

be, for example, located on one of several processor modules present in the first computing

device.

[0252] In one embodiment of this aspect of the invention, the first computing device
evaluates one or more cost equations in order to optimally identify the one or more additional
storage buffers for redundantly storing the copies of the received data. Moreover, in one
"embodiment, the first computing device stores a first copy of the received data in a first
optimally identified additional storage buffer, and may also store second and further copies of
the received data in second and further optimally identified additional storage buffers.

Accordingly, the first computing device can provide redundant storage capabilities.

[0253] FIG. 21 illustrates one embodiment of a storage management device 1438 that
optimally identifies one-or more storage buffers according to tﬁis aspect of the invention.
Generally speaking, the storage management device 1438 may have the capabilities of, and may
be implemented as, the storage management devices described above, with the additional

~ functionality described here. It should be understood that other implementations are also |

possible.

[0254] In one embodiment, the storage management device 1438 includes a plurality of
processor modules, for example a first processor module 1478 and at least one second processor
module, for example three second processor modules 1478°, 1478, 1478’ (generally 1478’). |
The first processor module 1478 and the three second processor modules 1478° depicted in the

— 64 —

WO 2006/023994 PCT/US2005/030168

storage management device 1438 of FIG. 21 are, however, merely illustrative. More generally,
the storage management device 1438 can include any number of processor modules 1478, 1478’.
The quantity of processor modules 1478, 1478’ can be increased or decreased based on, for
example, considerations such as scalability, performance, and cost. Again, generally speaking,
the processor modules 1478, 1478’ may have the capabilities of, and may be implemented as, the
processor modules described above (for example, the processor modules 378 described with

respect to FIG. 10), with the additional functionality described here.

[0255] In one embodiment, the storage management device 1438 is a device for storing data
(e.g., for temporarily storing data). Accordingly, in one such embodiment, the storage
management device 1438 includes a plurality of storage buffers .1463, 1463°, 1463, 1463’
(generally 1463) for storing data. In one embodiment, as illustrated for example in FIG. 21, each
processor module 1478, 1478’ of the storage management device 1438 includes at least one
storage buffer 1463. In another embodiment, some, but not all, of the processor modules 1478,
1478’ of the storage management device 1438 include a storage buffer 1463. In yet another
embodiment, the storage management device 1438 includes one or more storage buffers 1463
that stand alone on the storage management device 1438 and that are not part of a processor
module 1478, 1478’. In still another embodiment, a single processor module 1478, 1478’ can
include two or more storage buffers 1463. Generally speaking, the storage buffers 1463 may
have the capabilities of, and may be implemented as, the storage buffers described above (for
example, the storage buffers 363 described with respect to FIG. 10), with the additional
functionality described here. For example, a storage buffer 1463 may be contained within the
memory 296 (see FIG. 9) of a processor module 1478, 1478°. In one embodiment, the entire
memory 296 forms the storage buffer 1463. In another embodiment, a smaller, but contiguous,
block within the memory 296 forms the stérage buffer 1463. In yet another embodiment, several
'separated blocks are linked, for example by pointers, within the memory 296 to form the storage
buffer 1463. The address space within the memory 296 that forms the storage buffer 1463 may

be static, or, alternatively, it may be dynamically allocated at runtime.

[0256] In one émbodiment, at least one processor module (e.g., the first processor module
1478 and/or at least one second processor module 1478”) of the storage management device 1438

includes at least a receiver 1493, a transmitter 1495, an evaluator 1497, and a data operator 1499.

— 65—

WO 2006/023994 PCT/US2005/030168

The receiver 1493 and the transmitter 1495 can each be implemented in any form, way, or
manner that is useful for receiving and transmitting, respectively, communications, such as, for

example, requests, commands, and responses. In one embodiment, the receiver 1493 and the .

transmitter 1495 are implemented as software modules with hardware interfaces, where the
software modules are capable of interpreting communications, or the necessary portions thereof.
In another embodiment, the receiver 1493 and the transmitter 1495 are implemented as a single
‘transceiver (not shown). A processor module 1478, 1478’ uses the receiver 1493 and the
transmitter 1495 to communicate with one or more of the other processor modules 1478, 1478,
and/or to communicate with one or more computing devices (not shown) other than the storage
managemeht device 1438. The receiver 1493 and the transmitter 1495 may be implemented as
multiple devices for different protocols, such as, for example, a target mode driver 382 of FIG.
10, a transceiver associated with the internal network 380 of FIG. 10, or some combination

thereof.

[0257] For their part, the evaluator 1497 and/or the data operator 1499 may be implemented
in any form, way, or manner that is capable of achieving the functionality described below. For
example, the evaluator 1497 and/or the data operator 1499 may be implemented as a software
4module and/or program running on a microprocessor,.and/or as a hardware device, such as, forv
example, an application specific integrated circuit (ASIC) or a field programmable gate array
(FPGA). In one embodiment, the evaluator 1497 and the data operator 1499 are implemented as
part of a host interface 361 described above, for example as part of the target mode driver 382
(see FIG. 10). |

[0258] Referring now to FIG. 22, in brief summary of one embodiment of a method 1500 for
storing data, for example using the exemplary storage management device 1438 of FIG. 21, a
processor module 1478, 1478’ from amongst the plurality of processor modules 1478; 1478’ of

- the storage management device 1438, say the first processor module 1478, receives, at step 1504,
data for storage. The first processor module 1478 then stores, at step 1508, a first instance of the
received data (e.g., the received data itself) at a first storage buffer 1463 on the first processor
module 1478 and evaluates, at step 1512, a first cost equation to identify a second storage buffer
1463 from amongst the plurality of storage buffers 1463 at which to optimally store a second
instance of the received data (e.g., a copy of the received data). Optionally, at step 1516, the first

— 66—

WO 2006/023994 PCT/US2005/030168

processor module 1478 evaluates a second cost equation to identify a third storage buffer 1463
from amongst the plurality of storage buffers 1463 at which to optimally store a third instance
(e.g., another copy) of the received data. Again optionally, at step 1520, the second instance of
the received data may be stored at the second storage buffer 1463 and the third instance of the
received data may be stored at the third storage buffer 1463. Moreover, it should be understood
that, at steps 1516 and 1520, any number of further cost equéti'ons (e.g., second, third, fourth, and
fifth cost equations, etc.) may be evaluated to identify any number of storage buffers 1463 (e.g.,
third, fourth, fifth, and sixth storage bﬁffers 1463, etc.) at which to optimally store any number of
instances of the received data (e.g., third, fourth, fifth, and sixth instances of the received data,
etc.) thereat. Advantageously, by obtimally storing second andlfurther instances of the received
data at second and further storage buffers 1463 from amongst the plurality of storage buffers
1463, the received data may be quickly and efficiently stored with redundancy, thereby
improving fault tolerance, and may be quickly and efficiently accessed, all without overloading

the storage management device 1438.

[0259] In greater detail, in one embodiment, the receiver 1493 of the first processor module
1478 receives, at step 1504, a write operation that includes a data payload. The receiver 1493 of
the first processor module 1478 may, for example, receive the write operation across a network
(not shown) from a computing device (not shown) other than the storage management device
1438. At step 1508, the received write operation is initially stored in a first (and in some
embodiments only) buffer 1463 of the first processor module 1478. In one embodiment, after
the first processor module 1478 has received the write operation and after it has stored the
received write operation in its first buffer 1463, the data operator 1499 of the first processor
module 1478 separates the data payload from the rest of the write operation such that the first
instance of the data payload is created and stored, on its own, in the first buffer 1463 of the first

A processor module 1478. In one embodiment, the write operation includes, in addition to the data
payload, at least some control information. In such an embodinﬁent, the data operator 1499 of
the first processor module 1478 operates to separate the data payload from this controi
information. Having separated the data payload from the rest of the write operation, the data
operator 1499 of the first processor module 1478‘then replicates the first instance of the data

payload to create the second and, optionally, further instances of the data payload.

— 67—

WO 2006/023994 PCT/US2005/030168

[0260] At step 1512, the evaluator 1497 of the first processor module 1478 evaluates a first
cost equation to identify a second storage buffer 1463 from amongst the plurality of storage

at which the first instance of the data payload is initially stored, at which to optimally store the
second instance of the data payload. In one embodiment, the evaluator 1497 identifies a second
storage buffer 1463 that is located on a second processor module 1478’. In one such
embodiment, storing the second instance of the data payload at that second storage buffer 1463,
because the second processor module 1478’ is a different processor module than the first
pfocessor module 1478, protects against losing the data payload in the event that the first

processor module 1478 fails.

[0261] In evaluating the first cost equation at step 1512, the evaluator 1497 of the first
processor module 1478 may consider a variety of factors. For example, in one embodiment, for
each one of the plurality of storage buffers 1463 in the storage management device 1438 other
than the first storage buffer 1463 in the first processor module 1478 at which the first instaﬁce of
the data payload is initially stored, the evaluator 1497 of the first processor module 1478 assigns
a value to the physical distance in the storage management device 1438 from the first processor
module 1478 to that storage buffer 1463. In one such embodiment, the storage buffer 1463
closest in physical distance to the first processor module 1478 is identified by the evaluator 1497
as the second storage buffer 1463 at which to opfimally store the second instance of the data
payload. In another embodiment, for each one of the plurality of storage buffers 1463 in the
storage management device 1438 other than the first storage buffer 1463 in the first processor
module 1478 at which the first instance of the data payload is ihitially stored, the evaluator 1497
of the first processor module 1478 assigns a value to the available capacity of that storage buffer
1463. In one such embodiment, the storage buffer 1463 having the greatest available capacity is
identified by the evaluator 1497 as the second storage buffer 1463 at which to optimally store the

second instance of the data payload.

[0262] In yet another embodiment, in evaluating the first cost equation at step 1512, and for
each one of the one or more second processor modules 1478’ that includes a storage buffer 1463
(which is necessarily different from the first storage buffer 1463 in the first processor module

1478), the evaluator 1497 of the first processor module 1478 assigns a value to the load present

— 68—

WO 2006/023994 PCT/US2005/030168

at that second processor modules 1478’. In one embodiment, the load in question is the
input/output load between the second processor module 1478 in question and a device other
than the storage management device 1438 (e.g., a host as described above). Alternatively, in
another embodiment, the load in question is the interconnect load of, for example, requests,
commands, and responses between the second processor module 1478 in question and at least
6ne other processor module 1478, 1478°. In these cases, the storage buffer 1463 of the second
processor module 1478’ that has the lowest load value is identified by the evaluator 1497 as the

second storage buffer 1463 at which to optimally store the second instance of the data payload.

[0263] In some instances, the storage management device 1438 is implemented such that one
or more of the plurality of storage buffers 1463 are only accessii)le by some subset of the
plurality of processor modules 1478, 1478, For example, in such a storage management device
1438 (not shown) that includes processor modules A, B, C, and D having storage buffers W, X,
Y, and Z, respectively, it may be the case that only processor modules A, B, and C are able to
access storage buffer W, that only processor modules B and C are able to access storage buffer
X, that Aonly processor modules A and C are able to access storage buffer Y, and that only
processor modules A and D are able to access storage buffer Z. Accordingly, in still another
embodiment, the evaluator 1497 evaluates the first cost equation at step 1512 to identify a second
storage buffer 1463 at which to store the second instance of the data payload so that, when the
second storage buffer 1463 is taken to gether with the first storage buffer 1463 at which the first
instance of the data payload was initially stored, the number of processor modules 1478 having
access to the first instance and/or the second instance of the data payload is maximized.
Maximizing the number of processor modules 1478 having access to the first instance and/or the
second instance of the data payload maximizes processihg flexibility and device efficiency when
a stbrage buffer 1463 storing one instance of the data payload, and/or the processor module 1478
on which that storage buffer 1463 is located, fails. In one implementation of this embodiment,
for each one of the plurality of storage buffers 1463 in th¢ storage management device 1438
other than the first storage buffer 1463 in the first processor module 1478 at which the first
instance of the data payload is initially stored, the evaluator 1497 of the first processor module
1478 assigns a value to the number of processor fnodules 1478, 1478’ in the storage rﬁanagement
device 1438 that would be able to access at least one of the first instance and the second instance

of the data payload if the second instance of the data payload were stored at that storage buffer
— 69—

WO 2006/023994 PCT/US2005/030168

1463. In one such embodiment, the storage buffer 1463 that would maximize the number of
processor modules 1478 having access to the first and/or second instance of the data payload if
 the second instance of the data payload were stored thereat is identified by the evaluator 1497 as,....ovvrs

the second storage buffer 1463 at which to optimally store the second instance of the data

payload.

[0264] In still another embodiment, in order to determine the second storage buffer 1463 at
which to optimally store the second instance of the data payload, the evaluator 1497 of the first
processor module 1478 considers all of the factors described above, or some subset thereof, and
applies a weight to each factor it considers. In one such embodiment, the second storage buffer
1463 at which to store the second instance of the data payload is the storage buffer 1463 that
exhibits the best weighted combination of the factors considered. In practice, the weight of each

factor may be varied to suit a particular application.

[0265] Additionally, in another embodiment, for one or more of the plurality of storage
buffers 1463, the weight of one or ﬁqore of the factors considered for those storage bufférs 1463
may be pre-adjusted to make it less desirable to store a copy of the data payload thereat. This
may be done, for example, to artificially limit the amount of data stored at those storage buffers
1463, thereby controlling/limiting the requests made to those particular storage buffers 1463,
and/or capping their performance and, consequently, the performance of the storage management
device 1438.

[0266] In one embodiment, the storage management device 1438 stores more than one copy
of the received data payload. Accordingly, in one such embodiment, the evaluator 1497 of the
first processor module 1438 evaluates, at step 1516, a sécond cost equation, and, optionally, -
third, fourth, and fifth cost equations, etc. Bvaluation of the second cost equation identifies a

‘ third storage buffer 1463 from amongst the plurality of storage buffers 1463, which is different
from the first and second storage buffers 1463 (é.g., the first, second, and third storage buffers
may each be located on different processor modules 1478, 1478”), at which to optimally store a
third instance of the data payload. In one embodiment, the second cost equation evaluated by the
evaluator 1497 of the first processor module 1478 is the same as the first cost equation described

above, except for the fact that both the first and the second storage buffers 1463 (the second

~70—

WO 2006/023994 PCT/US2005/030168

storage buffer 1463 having already been identified through evaluation of the first cost equation)

are not considered by the evaluator 1497. Alternatively, in another embodiment, the second cost
equation is different from the first cost equation, For example, the factors considered in eachof |
the first and second cost equations are the same, but the weights assigned to each of the factors
considered are different. Alternatively, as another example, the factors considered in one of the

cost equations may be some subset of the factors considered in the other of the cost equations.

[0267] In still another embodiment, only the first cost equation is evaluated and a third
instance of the data payload is stored at any storage buffer 1463, other than at the first storage
buffer 1463 in the first processor module 1478 at which the first instance of the data payload was
initially stored and other than at the second storage buffer 1463 identified in evaluating the first

cost equation.

[0268] In one embodiment, at step 1520, the second, third, and/or further instances of the
data payload are stored at the second, third, and/or further storage buffers 1463, respectively,
identified at steps 1512 and/or 1516. To enable this to occur, the transmitter 1495 of the first
processor module 1478 transmits th¢ second, third, and/or further instances of the data payload to
the second, third, and/or further storage buffers 1463, respectively. Accordingly, the data
payload of the received write operation is redundantly stored in one or more of the storage

buffers 1463 of the storage management device 1438.

[0269] CLOCK SYNCHRONIZATION

[0270] In general, in another aspect, the invention relates to methods and apparatus for
synchronizing the internal clocks of a plurality of processor modules. In brief ovefview, in one
embodiment of this aspect of the invention, a multiprocessor system (e.g., a storage management
device as described above) includes multiple processor moduIes; each one of which includes its

* own internal clock. Synchronization across the internal clocks of the multiple proéessor modules
is performed by designating one of the processor modules as the master processor module having
the master internal clock for the multiprocessor system, and by having each one of the other
processor modules (designated as slave processor modules) in the multiprocessor system

periodically compare its internal clock to the master internal clock and, if necessary, correct its |

—71 -

WO 2006/023994 PCT/US2005/030168

internal clock. In one embodiment, the slave processor modules correct their internal clocks

without ever causing them to move backwards in time.

[0271] FIG. 23 illustrates one embodiment of a multiprocessor system 1638 (e.g., a étéfagé '
management device that, generally speaking, has the capabilities of, and is implemented as, the
storage management devices described above, with the additional functionality described here)
that maintains a substantially consistent running clock according to this aspect of the invention.
The multiprocessor system 1638 includes a plurality of processor modules 1678, 1678’, 1678,
1678*°, each one of which includes its own respective internal clock 1675, 1675°, 1675,
1675”°. Again, the four processor modules 1678, 1678’, 1678""', 1678’ depicted in the
multiprocessor system 1638 of FIG. 23 are merely illustrative, and, more generally, the

multiprocessor system 1638 can include any number or type of processor modules.

[0272] The internal clock(s) of one or more of the plurality of processor modules of the
multiprocessor system 1638 may “drift” from the internal clocks of the other processor modules,
for example due to temperature differences between the processor modules caused by one
processor module heating up relative to the other processor modules. It may be the case, for
example, that the internal clock 1675 of the processor module 1678’ begins to run faster than,
and drift apart from, the other internal clocks 1675, 1675’, 1675”* of the multiprocessor system
1638. Accordingly, in order to synchronize the internal clocks 1675, 1675, 1675"’, 16757 of
the multiprocessor system 1638, and thereby maintain a reliable running clock for the
multiprocessor system 1638, the internal clock 1675’ is corrected as, for example, described

here in accordance with this aspect of the invention.

[0273] In one embodiment of this aspect of the invention, a first processor module, for
example, as illustrated, processor module 1678, is designated as the master processor module of
the multiprocessor system 1638. The master process module 1678 includes the master internal
clock 1675 for the multiprocessor system 1638. In one such embodiment, every other processor
module (i.e., at least one other processor module) 1678’, 1678°’, 1678’"’ is designated as a slave
processor module of the multiprocessor system 1638. Each slave processor module 1678°,
1678, 1678°"" (generally 1678”) includes its own respective slave processor module internal

clock 1675°, 1675, 1675 (generally 1675°). The slave processor modules 1678’, according |

—72—

WO 2006/023994 PCT/US2005/030168

to, in one embodiment, the method next described, periodically compare their internal clocks to

the master internal clock 1675 and, if necessary, correct their internal clocks.

ettty

'[0274] Referring now to FIG. 24, in one embodiment of a method 1700 for maintaining a
substantially consistent running clock for the multiprocessor system 1638, a slave processor
module 1678’ synchronizes the slave processor module internal clock 1675” with the master
internal clock 1675 by iteratively performing steps 1704, 1708, 1712, 1716, and, if necessary,
1720 of the method 1700. Optionally, step 1710 may also be performed after steps 1704 and
1708, but before steps 1712, 1716, and 1720. In one embodiment, the iteration through steps
1704, 1708, 1710 (optionally), 1712, 1716, and, if necessary, 1720 of the method 1700 is
performed by the slave processor module 1675 periodically, for example every fraction of a
second (e.g., half-second) or other amount of time. Moreover, in some embodiments, prior to
iteratively performing steps 1704, 1708, 1710 (optionally), 1712, 1716, and, if necessary, 1720,
the slave processor module 1678’ initializes, at step 1702, the slave processor module internal

clock 1675°.

[0275] In one embodiment, to initialize the slave processor module internal clock 1675 at
‘step 1702, the slave processor module 1678’ requests the current time at the master internal clock
1675 and receives, some period of time later, the currént time at the master internal clock 1675.
In one embodiment, if the period of time between the slave processor module’s request for and
receipt of the current time at the master internal clock 1675 is less than a first pre-determined
amount of time, the slave processor module 1678’ initializes the slave processor module internal
clock 1675 to the sum of the received current time at the master internal clock 1675 and one
half the period of time between the slave processor module’s request for and receipt of the
current time at the master internal clock 1675. Otherwise, if the period of time between the slave
processor module’s request for and receipt of the current time at the master internal clock 1675 is
. greater than the first pre-determined amount of time, the slave processor module 1678’ discards
the received current time at the master internal clock 1675’ and requests a new current time at
the master internal clock 1675. In some embodiments, the slave processor module 1678’
continues to discard the received current time at the master internal clock 1675 and to request a

new current time at the master internal clock 1675 until it receives a current time at the master

—73—

WO 2006/023994 PCT/US2005/030168

internal clock 1675 within the first pre-determined amount of time. The slave processor module

1678’ then initializes the slave processor internal clock 1675 as described above.

[0276] In one embodiment, the first pre-determined amount of time is pre-stored in the
memory 296 (see FIG. 9) of the slave processor module 1675°. Moreover, the first pre-
determined amount of time may be configurable based on the hérdware layout of the
multiprocessor system 1638. In one embodiment, the first pre-determined amount of time is set
to a specific time that falls between approximately 26 microseconds and approximately 35

microseconds.

[0277] In an alternative embodiment, rather than initialize the slave processor module
internal clock 1675 as described above, step 1702 is not performed and the slave processor
module 1678’ instead calculates, as described below, an offset between the slave processor

module internal clock 1675° and the master internal clock 1675.

[0278] In brief summary, to synchronize the slave processor module internal clock 1675 to
the master internal clock 1675, the slave processor module 1678’ first requests at step 1704, and
at a first time according to the slave processor module internal clock 1675, a current time
according to the master internal clock 1675. The request can be communicated in any form or
manner that is useful for making the request. In one embodiment, for example, the request is
communicated in the form of a data packet. The slave processor module 1678’ also records the
first time according to the slave processor module internal clock 1675 at which the request is
made. Some time later, at step 1708, the slave processor module 1678’ receives, at a second
time according to the slave processor module internal clock 1675°, the current time according to
the master internal clock 1675. The current time according to the master internal clock 1675 |
may be transmitted to, and received by, the slave processor module 1678’ in any form or manner
that is useful for communicating such information. For example, the current time according to
the master internal clock 1675 may be transmitted to, and received by, the slave processor
module 1678’ in a data packet. Again, in a similar to fashion to step 1704, the slave processor
module 1678’ records the second time according to the slave processor module internal clock

1675 at which the current time according to the master internal clock 1675 is received.

— 74 —

WO 2006/023994 PCT/US2005/030168

[0279] Optionally, after completing steps 1704 and 1708, but before performing steps 1712,
1716, and, if necessary, 1720, the slave processor module 1678’ determines, at step 1710,
whether the first time according to the slave processor module internal clock 1675 (recorded by
the slave processor module 1678’ at step 1704) differs from the second time according to the
slave processor module internal clock (recorded by the slave processor module 1678” at step
1708) by less than a second pre-determined amount of time. ‘In one such embodiment, as
illustrated in FIG. 24, steps 1712, 1716, and, if necessary, 1720, are only performed when the
slave processor module 1678 determines that the first time according to the slave processor
module internal clock 1675’ differs from the second time acco;ding to the slave processor
module internal clock 1675 by less than the second pre-determi-ned amount of time. Otherwise,
the slave processor module 1678’ reverts back to step 1704. By proceeding as such, the slave
processor module 1678’ eliminates from consideration all received current times at the master
internal clock 1675 that were received after inordinate delay, and thereby protects against

erroneous clock synchronization.

[0280] In a similar fashion to the first pre-determined amount of time described above with
respect to step 1702, the second pre-determined amount of time may be pre-stored in the memory
296 (see FIG. 9) of the slave processor module 1675’, and may be configurable based on the
hardware layouf of the multiprocessor system 1638. In one embodiment, like the first pre-
determined amount of time, the second pre-determined amount of time is setto a specific time

that falls between approximately 26 microseconds and approximately 35 microseconds.

[0281] Following completion of steps 1704, 1708 and, optionally, 1710, the slave processor
module 1678’ computes, at step 1712, an expected time by using at least the first time accofding
to the slave processor module internal clock 1675’ (recorded by‘the slave processor module
1678’ at step 1704) and the second time according to the slave processor module internal clock
1675’ (recorded by the slave processor module 1678’ at step 1708). Optionally, in some
émbodiments, the slave processor module 1678’ also uses an offset, for example as described
below, in computing the expected time. In one embodiment, the computed expected time
represents what thé slave processor module 1678’ expects to receive, from the master processor
module 1678, in response to the slave processor module’s request for the current time according -

to the master internal clock 1675. In other words, in one embodiment, the slave processor

— 75—

WO 2006/023994 PCT/US2005/030168

module 1678’ assumes that the master internal clock 1675 and the slave processor module

internal clock 1675° run at the same speed. As such, the slave processor module 1678’ expects
........... onthe. v ppm,

request time (recorded by the slave processor module 1678’ at step 1704), the response time

(recorded by the slave processor module 1678’ at step 1708), and, optionally, any previously

determined offset (described below) between the slave processor module internal clock 1675’

and the master internal clock 1675.

[0282] At step 1716, the slave processor module 1678” determines whether the expected time
differs from the received current time according to the master internal clock 1675. If so, the
slave processor module internal clock 1675’ and the master internal clock 1675 are, contrary to
the slave processor module’s assumption at step 1712, running at different speeds (i.e., the salve
processor module internal clock 1675° is drifting from the master internal clock 1675).
Optionally, in one embodiment, the slave processor module 1678’, in performing step 1716,
determines whether the expected time differs from the received current time according to the
master internal clock 1675 by more than a third pre-determined amount of time. In one such
embodiment, the slave processor module 1678’ only performs step 1720 when the slave
processor module 1678’ determines that the expected time differs from the received current tinﬁe
according to the master internal clock 1675 by more than a third pre-determined amount of time.
Otherwise, as illustrated in FIG. 24, the slave processor module 1678’ reverts back to step 1704.
By proceeding as such, the slave processor module 1678’ does not correct minor, often
insignificant, deviations between the slave processor module internal clock 1675° and the master

internal clock 1675.

[0283] Again, the third pre-determined amount of time may be pre-stored in the memory 296 ‘
(see FIG. 9) of the slave processor module 1675°, and may be configurable. A lower third pre-

- determined amount of time results in tighter synchronization between the slave processor module
internal clock 1675 and the master internal clock 1675. In one embodiment, the third pre-

determined amount of time is set to approximately 5 microseconds.

[0284] Upon determining, at step 1716, that the expected time differs from the received

current time according to the master internal clock 1675, or, optionally, that the expected time

— 76—

WO 2006/023994 PCT/US2005/030168

differs from the received current time according to the master internal clock 1675 by more than
the third pre-determined amount of time, the slave processor module 1678’ corrects, at step
1720, the slave processor module internal clock 1675°. In one embodiment, the correctionis
implemented by effectively “slowing down” or “speeding up” the slave processor module
internal clock 1675, as described further below, although other correction techniques could be
used as well. Having completed step 1720, the slave processor module 1678’ then returns to
perform step 1704 in the next iteration through the steps of the method 1700. If, on the other
hand, the expected time does not differ from the received current time according to the master
internal clock 1675, or, optionally, does not differ from the received current time according to
the master internal clock 1675 by more than the third pre—detern’avined amount of time, the slave
processor module 1678 does not perform step 1720, but, rather, returns from step 1716 to step
1704 to begin the next iteration through the steps of the method 1700.

[0285] Generally speaking, in a multiprocessor system such as the multiprocessor system
1638 depicted in FIG. 23, the internal clocks of any two processor modules, say the master
processor module 1678 and the slave processor module 1678, will not, even though they may
not be drifting away from one another, be exactly synchronous in time, but will instead differ
from one another, at a given point in time, by some amount. In one embodiment, rather than
initialize the slave processor module internal clock 1675 in step 1702 as described above, the
slave processor module 1678’ instead calculates the difference, or offset, between the master
internal clock 1675 énd the slave processor module internal clock 1675°. The offset is calculated
at a point in time during a first iteration through the steps of the method 1700, and is thereafter
used by the slave processor module 1678’ in correcting the slave processor module internal clock
1675°.

[0286] Thus, in one such embodiment, in a first iteration through the steps of the method
1700, after having completed steps 1704, 1708, and, optionally, 1710, but before completing
éfceps 1712, 1716, and, if necessary, 1720, the slave processor module 1678’ computes the offset.
For example, in one embodiment, the slave processor module 1678 computes the offset by
subtracting the received current time according to the master internal clock 1675 (received by the
slave processor module 1678’ at step 1708) from one half the sum of the first time according to .

the slave processor module internal clock 1675 (recorded by the slave processor mbdule 1678’

—77 -

WO 2006/023994 PCT/US2005/030168

at step 1704) and the second time according to the slave processor module internal clock 1675°
(recorded by the slave processor module 1678’ at step 1708”). Practically speaking, in such an
embodiment, it is assumed by the slave processor module 1678’ that the time taken to transmit
the request for the current time according to the master internal clock 1675 to the master
processor module 1678 is equal to the time taken to transmit a response by the master processor
module 1678 back to the slave processor module 1678’. Accordingly, if, in such an
embodiment, the time according to the internal clock 1675’ of the slave processor module 1678’
is exactly equal to the time according to the master internal clock 1675 of the master processor
module 1678, then one half the sum of the first time according to the slave processor module
internal clock 1675’ (recorded by the slave processor module 16;78’ at step 1704) and the second
time according to the slave processor module internal clock 1675’ (recorded by the slave
processor module 1678’ at step 1708”) should be equal to the received current time according to
the master internal clock 1675 (received by the slave processor module 1678 at step 1708). If
this is not in fact the case, then the internal clock 1675’ of the slave processor module 1678 is

offset from the master internal clock 1675.

[0287] Moreover, in another such embodiment, after having calculated the offset, the slave
processor module 1678’ then uses the offset in computing the expected time both at step 1712 of
a first iteration fhrough the steps of the method 1700 and at step 1712 in subsequent iterations
through the steps of the method 1700. In one embodiment, as the slave processor module 1678’
iterates through the steps of the method 1700, it does not again compute' the offset subsequent to
the first iteration through the steps of the method 1700.

[0288] In another embodiment of the method 1700 where the slave processor module
calculates the offset, the slave processor module 1678’ does not adjust the slave processor
module internal clock 1678’ so that its time is exactly equal to the time according to the master
internal clock 1675, but, rather, the slave processor module 1678 corrects, at step 1720 as
éxplained below, the slave processor module internal clock 1675 so that the offset does not drift.
In other words, the slave processor module 1678’ attempts to keep the slave processor module
internal clock 1675 offset by a set amount from the master internal clock 1675. In one such
embodiment, the target mode driver 382 (see FIG. 10) of each slave processof module 1678’

time stamps the control information of received I/O requests with the time that the I/O request

_78 —

WO 2006/023994 PCT/US2005/030168

was received according to that slave processor module’s internal clock 1678, plus or minus the
computed offset for that slave processor module’s internal clock. Accordingly, in such an
received I/O requests with a time that is substantially equivalent to the time according the master
internal clock 1675 at which the I/O request was received. Note, however, that because of the
clock drift phenomenon described herein, the time with which the received I/O request is
stamped may not be exactly equivalent to the time according the master internal clock 1675 at
which the I/0 request was received. This latter issue is, however, addressed by the
multiprocessor system 1638 as described below, and it does not affect the proper operation of the

multiprocessor system 1638.

[0289] In greater detail of the method 1700, in one embodiment, for each iteration through
the steps of the method 1700, the slave processor module 1678’, in computing the expected time
at step 1712, first computes a round trip time for the iteration by subtracting the first time
according to the slave processor module internal clock 1675 (recorded by the slave processor
module 1678’ at step 1704) from the second time according to the slave processor module
internal clock 1675 (recorded by the slave processor module 1678’ at step 1708). Moreover, the -
slave processor module 1678” may store the computed round trip time for each iteration through
the steps of the method 1700 in, for example, its memory 296 (see FIG. 9). Accordingly, in any
current iteration through the steps of the method 1700 subsequent to a first iteration through the
steps of the method 1700, the slave processor module 1678’ may compute an average round trip
time by using the computed round trip time for the then current iteration through the steps of the
method 1700, and by using the round trip time for one or more of the previous iterations through
the steps of the method 1700. |

[0290] In one embodiment, the average round trip time computed by the slave processor

- module 1678’ is simply the average of the round trip time of the then current iteration through
the steps of the method 1700 and of the round trip times of all the previous iterations through the
steps of thé method 1700. In another embodiment, the average round trip time computed by the
slave processor module 1678’ is a moving average of the round trip time of the then current
iteration through the steps of the method 1700 and of the round trip times of one or more of the

most recent previous iterations through the steps of the method 1700. In yet another

~79—

WO 2006/023994 PCT/US2005/030168

embodiment, the average round trip time computed by the slave processor module 1678’ is a

weighted moving average round trip time.

RETRUETRUA Y

"'[0291] In one embodiment, on'the first'and each subsequent iteration through the steps'of the
method 1700, the slave processor module 1678 computes the expected time at step 1712 by
computing the sum of the first time according to the slave processor module internal clock 1675’
(recorded by the slave processor module 1678’ at step 1704 of the current iteration) and one half
the round trip time for that iteration through the steps of the method 1700, and, optionally, by
subtracting the offset therefrom. In another embodiment, on an iteration through the steps of the
method 1700 subsequent to the first iteration through the steps of the method 1700, the slave
processor module 1678’ computes the expected time at step 1712 by computing the sum of the
first time according to the slave processor module internal clock 1675” (recorded by the slave
processor module 1678 at step 1704 of that iteration) and one half the average round trip time

computed, for example, as described above, and, optionally, by subtracting the offset therefrom.

[0292] Once the slave processdr module 1678’ has computed the expected time, it then
determines, at step 1716, whether the expected time differs from the current time according to
the master internal clock 1675, or, optionally, whether the expected time differs from the current
time according to the master internal clock 1675 by more than the third pre-determined amount.
In one embodiment, to make this determination, the slave processor module 1678’ first
computes, for each iteration through the steps of the method 1700, a drift value for the iteration
by subtracting the expected time (computed by the slave processor module 1678’ at step 1712 of 4
that jteration) from the then current time according to the master internal clock 1675 (received by
the slave processor module 1678’ at step 1708 of that iteration). Moreover, the slave processor
module 1678’ may store the computed drift value for each iteration through the steps of the
method 1700 in, for example, its memory 296 (see FIG. 9). Accordingly, as before, in any

- current iteration through the steps of the method 1700 subsequeht to a first iteration through the
steps of the method 1700, the slave processor module 1678’ may compute an average drift value
by using the computed drift value for the then current iteration through the steps of the method
1700, and by using the drift value for one or more of the previous iterations through the steps of

the method 1700.

— 80—

WO 2006/023994 PCT/US2005/030168

[0293] In one embodiment, the average drift value computed by the slave processor module
1678’ is simply the average of the drift value of the then current iteration through the steps of the
method 1700 and of the drift valuves Qf all the previous iterations through the steps of the rp.letho.d |
‘1700. In another embodimenf, the average drift value computed by the slave processor module
1678’ is a moving average of the drift value of the then current iteration through the steps of the
method 1700 and of the drift values of one or more of the most recent previous iterations through
the steps of the method 1700. In yet another embodiment, the average drift value computed by

the slave processor module 1678’ is a weighted moving average drift value.

[0294] In one embodiment, on the first and each subsequent-iteration through the steps of the
method 1700, the slave processor module 1678 determines, at étep 1716, that the expected time
differs from the received current time according to the master internal clock 1675 (received by
the slave processor module 1678’ at step 1708 of the current iteration) when the drift value for
that iteration is non-zero. In another embodiment, on an iteration through the steps of the
method 1700 subsequent to the first iteration through the steps of the method 1700, the slave
processor module 1678 determines that the expected time differs from the received current time
according to the master internal clock 1675 (received by the slave processor module 1678’ at
step 1708 of that iteration) when the average drift value computed, for example, as described

above is non-zero.

[0295] Upon determining that the expected time differs from the received current time
according to the master internal clock 1675, or, optionally, upon determining that the expected
time differs from the received current time according to the master internal clock 1675 by more
than the third pre-determined amount of time, the slave processor module 1678 corrects, at step
1720, the slave processor module internal clock 1675°. In one embodiment, where the expected
time is greater than the received current time according to the master internal clock 1675 (or,
optionally, greater than the received current time according to the master internal clock 1675 by
more than the third pre-determined amount of time), meaning that the slave processor module
internal clock 1675’ has been running faster than the master internal clock 1675, the slave
processor module 1678’ corrects the slave processor module internal clock 1675’ by slowing
down the slave processor module internal clock 1675°. In another embodiment, where the

received current time according to the master internal clock 1675 is greater than the expected

—81-—

WO 2006/023994 PCT/US2005/030168

time (or, optionally, greater than the expected time by more than the third pre-determined
amount of time), meaning that the slave processor module internal clock 1675 has been running

slower than the master internal clock 1675, the slave processor module 1678’ corrects the slave

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Pttt ey

processor module internal clock 1675° by speeding up the slave processor module internal clock

1675°.

[0296] In one embodiment, the multiprocessor system 1638 includes a free-running counter,
which may be incremented on each execution of a single CPU instruction, and the slave
processor module 1678’ is configured to implement the slave processor module internal clock
1675 by calibrating the counts of the free-running counter to microseconds. The slave processor
module 1678’ may, for example, be initially configured to consider a microsecond as being
equivalent to 2800 counts of the free-running counter (e.g., the slave processor module 1678’
may, for example, be initially configured to consider a microsecond as being equivalent to the
time required to execute 2800 CPU instructions, as might be the case with a 2.8 GHz CPU clock
and a CPU that executes one instruction per clock cycle). Accordingly, in one embodiment, to
slow down the slave processor module internal clock 1675, the slave processor module 1678’,
without affecting the free-running counter, increases the number of counts of the free-running
counter that it considers there to be in a given time interval. Similarly, to speed up the slave -
processor module internal clock 1675, the slave processor module 1678, without affecting the
free-running counter, may decrease the number of counts of the free-running counter that it
considers there to be in a given time interval. Importantly, in some such embodiments, the slave
processor module 1678’ corrects the slave processor module internal clock 1675 in such a
fashion that it never goes backwards in time. Rather, the slave processor module internal clock
1675 continually moves forwards in time, being slowed down or sped up for correction as

described above.

. [0297] FIG. 25 depicts an exemplary graph 1800 of the time according fo the slave processor
module internal clock 1675’ .versus the time according to the master internal clock 1675. In the
exemplary graph, it is assumed, for simplicity of explanation, that the offset, if calculated as
described above, is zero, although it would not necessarily be zero if it was in fact calculated as
described above. Thus, ideally, as represented by line 1804, the time according to the slave

processor module internal clock 1675 is always equal to the time according to the master

_82—

WO 2006/023994 PCT/US2005/030168

internal clock 1675. In practice, however, the slave processor module 1678’ may drift relative to
the master processor module 1678 (for example due to temperature variation), such that the slave
~ processor module internal clock 1675” runs faster than the master internal clock 1675 (as | oovienr
represented by line segments 1808 and 1812). Alternatively, the master processor module 1678

may drift relative to the slave processor module 1678’ (for example due to temperature

variation), such that the master internal clock 1675 runs faster than the slave processor module

internal clock 1675’ (as represented by line segment 1816). As such, the slave processor module

1678’ corrects the slave processor module internal clock 1675, in accordance with the method

1700 described above, to “slow down” the slave processor module internal clock 1675’ relative

to the master internal clock 1675 (as represented by the exemplary line segment 1816), or,

alternatively, to “speed up” the slave processor module internal clock 1675 relative to the

master internal clock 1675 (as represented by the exemplary line segment 1812). As described,

the slave processor module 1678’ corrects the slave processor module internal clock 1675 in

such a fashion that it never goes backwards in time.

[0298] In another embodiment, the multiprocessor system 1638 of FIG. 23 is a server in a
network (not shown). Accordingly, a processor module, say the slave processor module 1678,
may receive one or more write operations from another computing device in the network (e.g., a
host). In one such embodiment, the slave processor module 1678 may determine, at step 1716
of an iteration through the steps of the method 1700, that the expected time differs from the
received current time according to the master internal clock 1675 (received by the slave
processor module 1678’ at step 1708 of f[hat iteration through the steps of the method 1700) by
less than a specified amount of time 1820, which is represented on the graph 1800 of FIG. 25 and
which is greater than the aforedescribed third pre-determined amount of time. In such a case, the
slave processor module 1678’ acknowledges the received write operation before a write is
actually completed. Alternatively, the slave processor module 1678’ may determine that the

* expected time differs from the received current time according to the master internal clock 1675
by more than the specified amount of time 1820. In such a case, the slave processor module
1678’ refrains from acknowledging the received write operation until the expected time, through
correction of the slave processor module internal clock 1675’ as described above with reference
to the method 1700, is once again determined to differ from the received current time according

to the master internal clock 1675 by less than the speéiﬁed amount of time 1820. Similarly, in

-83—

WO 2006/023994 PCT/US2005/030168

this latter case, all other processor modules in the multiprocessor system 1638 may also refrain

from acknowledging received write operations until the expected time, as computed by the slave
‘processor module 1678’ is once again determined to differ from the received current time | .00,
according to the master internal clock 1675 by less than the specified amount of time 1820. In

these embodiments, the most extreme case in which the multiprocessor system 1638 will

continue to acknowledge received write operations occurs when the internal clock of a first slave
processor module runs faster than the master internal clock 1675 and drifts up to the specified

amount of time 1820 in the positive direction, while the internal clock of a second slave

pfocessor module runs slower than the master internal clock 1675 and drifts up to the speciﬁéd

amount of time 1820 in the negative direction.

[0299] Inone embodiment, the specified amount of time 1820 is one-half the minimum
amount of time in which a host in the network can request that the multiprocessor system 1638
process a first write operation, thereafter receive an acknowledgement of the request from the
multiprocessor system 1638, and thereafter request that the multiprocessor system 1638 process
a second write operation. In such an embodiment, assuming the extreme case described above, a
host may transmit a first write operation to the first slave processor module whose intérnal clock
has drifted up to the specified amount of time 1820 in the positive direction, thereafter receive an
acknowledgement of the first write operation from the multiprocessor system 1638, and
thereafter immediately send a second write Operaﬁon to the second slave processor module
whose internal clock has drifted up to the specified amount of time 1820 in the negative
direction, and still be guaranteed that the target- mode driver 382 (see FIG. 10) of the second
slave processor module will time stamp the received second write operation with a later time
than the target mode driver 382 (see FIG. 10) of the first slave processor module will time stamp
the received first write operation with. Alternatively, in still other embodiments, the specified
amount of time may be otherwise set to any amount of time that guarantees the correct order of

processing received write operations in the multiprocessor system 1638.

[0300] In yet another embodiment, where the multiprocessor system 1638 includes a free-
running counter and the master processor module 1678 is configured to implement the master
internal clock 1675 by calibrating the counts of the free-running counter to microseconds, as

described above for the slave processor module internal clock 1675, the master processor

— 84—

WO 2006/023994 PCT/US2005/030168

module 1678 maintains a calibration table relating the master internal clock 1675 to a real world
clock. In one embodiment, as described above, 2800 counts on the free-running counter is
equivalent to one microsecond on a real world clock. In one such embodiment, when the -
multiprocessor system 1638 is to present a time to a user at a host in the network, the calibration
table at the master processor module 1678 is first consulted to convert the running time kept by

the multiprocessor system 1638 to the real world time.

[0301] MAP GENERATION AND USE

[0302] In general, additional aspects of the invention relate to systems, methods, and articles
of manufacture for generaﬁng an image of a data store at a past time by using a map (e.g., a time
map) of the locations of data stored in the data store at the specified past time. The map allows
the data storage system to quickly and efficiently determine the locations of data stored in a data
store at a past time, without searching of the entire index of records concerning the locations of

the past data.

[0303] In brief overview, in one embodiment of the invention, a data storage system includes
a storage management device that includes a receiver for receiving a specification for a past time,
and an I/O processor which processes I/O requests directed to one or more target units of storage
in a data store. As previously described, in one embodiment, a unit of storage is a single or
multi-byte group of blocks of the data store. The storage management device also includes an
indexing module which records write requests processed by the I/O processor. The indexing
module includes a memory that stores, for each write request, a record that can include: 1)
identification of target units of storage; 2) locations of data previously stored in the target units
of storage; and 3) a write time denoting a time at which a write request was received.
Additionally, the storage management device includes a mapping module that uses one or more
records to generate a map of the locations of data stored in the target units of storage at the
specified past time. An image generation module, included in the storage management device,
presents an image of the data store at the past time based, at least in part, on the map generated

by the mapping module.

[0304] FIG. 26 illustrates a storage management device 1938 in accordance with an

embodiment of this aspect of the invention. The storage management device 1938 can be

— 85—

WO 2006/023994 PCT/US2005/030168

integrated in the data storage systems described herein, for example, with reference to FIGS. 1,
4,5,and 13. As one example, the storage management device 1938 can communicate with a
Additionally, the data stored in the physical store can be organized and presented to the host
using a variety of approaches. For example, the storage management device 1938 can present
one or more volumes, including logical volumes, to the host. Also, as previously discussed
above, the storage management device 1938 can provide the host with access to both one or
more current stores and one or more time stores associated with a plurality of data stores.
Additionally, the images presented to the host may be either fixed or dynamic images as
describéd previously. The storage management device 1938 can also implement additional
functionality attributed to the storage management devices of the previously described aspects

and embodiments.

[0305] In one embodiment, the storage management device 1938 includes a receiver 1961, a
processor 1962, an indexing module 1995, a mapping module 1997, and an image generation
module 1999 that are in communication with each other. Each of these elements may be
implemented in software, hardware, or some combination of both software and hardware.
Receiver 1961, for example, can be implemented as part of one or more host interfaces 361 of
FIG. 10. The receiver 1961, in one embodiment, is irﬁplemented in the target mode drivers 382
of FIG. 10. The receiver 1961 communicates with the host and receives a specification for a past
time. The past time isApart of a request from the host for the storage management device to
present an image of a data store at the past time. The request can also include the identification

of a specific data store, and in some cases a logical block address and a length.

[0306] In one embodiment, the request for the image of the data store at the past time is A
received in-band by the receiver 1961, that is, from the host thro'ugh the same communication

. protocol that the host uses when it communicates data commands (e.g., read requests and write
requests). In another embodiment, the receiver 1961 receives the request out-of-band. For
example, fhe receiver 1961 receives the request via a different communication protocol than that
used by the host when it communicates data commands, via a different channel (e.g., via a user
interface, a physical interface, or command line console that is different from the host, for .

example, a system administrator’s interface), or via some combination thereof.

— 86—

WO 2006/023994 PCT/US2005/030168

[0307] The processor 1962 processes 1/0 requests directed to one or more target units of
storage. The processor 1962 can be implemented in one of the elements previously described
herein. For example, the processor 1962 can be implemented in one or more elements shown in
the processor modules 378 of FIG. 10. In one embodiment, the processor 1962 is implemented
in the I/O managers 362 shown in FIG. 10. The processor 1962 processes I/O requests directed
to units of storage in the data store, for example, a logical block. A unit of storage that is the

target of a read or write request is also referred to as a target unit of storage.

[0308] As described earlier, write requests are often directed to a plurality of units of storage.
In one embodiment, the storage management device 1938 performs a copy-on-write operation on
target units of storage prior to overwriting the data stored in the ltarget units of storage prior to
execution of the write request. The copied data (i.e., past data) is then moved to another location
by the storage management device 1938. As described, it may be that an actual copy of data is
not performed upon the occurrence of a write operation in a particular instance because, for
example, the data that will be overwritten is already saved elsewhere, or because the data is
temporarily saved in memory before it is written, or because the data is not moved, but instead a
pointer to the data is modified. For example in one embodiment, each write request directed to a
target unit of storage can result in data being written to both the current store and the time store.
As a result, it is unnecessary to perform an actual copy-on-write for the immediately subsequent
write directed to the same target unit of storage because the pést data is already stored in the time
store. Thus, here copy-on-write operation can mean actual copying, but can also include
optimizations that allow for the effect of a copy-on-write. As before, the examples described
below generally present the operation of the storage management device 1938 as if a copy-on-

write were always performed, with the understanding that optimizations can be used in practice.

[0309] The storage management device 1938 also includes an indexing module 1995 that
stores records of the locations of the past data in the storage' management system in order to
'facilitate the later retrieval of past data for, among other purposes, the presentation of images of
the data store at past times. The indexing module 1995 can also be implemented in software,
hardware, or some combination thereof, and for example, in one of the elements previously
described herein. For example, in one embodiment, the indexing module 1995 is implemented in

one or more of the I/O managers 362 of FIG. 10. The indexing module 1995 includes memory

~87—

WO 2006/023994 PCT/US2005/030168

1996 for storing the location records. In a version of this embodiment, the memory 1996 is
integral to the indexing module 1995. In another version, the memory is not integral with
indexing module 1995 but is elsewhere within the storage management device 1938, for
example, elsewhere in the processor module 378 of FIG. 10. Functionally, the indexing module
1995 records write requests processed by the 1/O processor 1962, and stores, in memory 1996, a
record for each write request that is processed. The record includes an identification of the target
units of storage, locations of data previously stored in the target units of storage, and a write time
denoting the time at which the corresponding write command was received. Each write request
niay be directed to a single unit of storage, for example, a block, or a plurality of units of storage.
Howevér, the records stored by the indexing module provide a mechanism by which the data
stored in each unit of storage at the specified past time can be located. In one embodiment, the

time is the time that the storage management device 1938 received the write command.

[0310] The storage management device 1938 also includes a mapping module 1997 that uses
the records stored by the indexing module 1995 to map the current location of past data for the
units of storage in the data store with the specified past time. The mapping functionality allows
for the rapid generation of past images of the data store. The mapping module 1997 can be
Aimplemented in one or more elements shown in the processor modules 378 of FIG. 10. For
example, in one embodiment, the mapping module 1997 is implemented in oné or more of the
I/O managers 362 shown in FIG. 10. Functionally, the mapping module 1997 creates a list of
pointers to locations in the storage management system, for example, a location in the physical
store where the past data is located for the specified past time. Once a map is created it can be
stored by the storage management device 1938 where it can be rapidly accessed in the future to
again present the image of the data store at the past timé.‘ In one embodiment, for example, one

or more of the I/O managers 362 of FIGS. 10 and 11 manage the map.

. [0311]. The map can be dynamic, for example, it can be updated as additional write requests
are processed by the processor 1962. Generally, such updates are necessary to ensure that the
map remains accurate as copy-on-write operations are executed after the time at which the map
is generated. The dynamic nature of fhe map is explairied further with reference to FIGS. 27 and
28.

— 88—

\\\\\\\\\\\\\\\\\\

WO 2006/023994 PCT/US2005/030168

[0312] The storage management device 1938 also includes an image generation module 1999
that presents the image of the data store at the past time based, at least in part, on the map
generated by the mapping module 1997. The image generation module 1999 can also be
implemented in one or more elements shown in the processor modules 378 of FIG. 10. For
example, in one embodiment, the image generation module 1999 is implemented in the host

interfaces 361 shown in FIG. 10.

[0313] The receiver 1961, processor 1962, indexing module 1995, mapping module 1997,
and image generation module 1999 can be implemented in a distributed architecture such as that
shown in FIG. 10. In such an approach, each processor module 378 is responsible for processing
and indexing write commands directed to specific units of storaée in one or more data stores. As
a result, the indexing module 1995 included in each processor module 378 stores a record for
each write command directed to the units of storage that the indexing module 1995 is responsible
for. When an image of a data store at a past time is requested, each mapping module 1997
generates a map for the specified past time for the portion, if any, of the data store for which it is
résponsible. The map is generated using the records stored in the corresponding indexing
module 1995. Based, at least in part, on the map, the image generation modulé 1999 in each
processor module 378 then présents the portion of the image of the data store for which it is
responsible, if any. In one embodiment, each processor module 378 includes an indexing
module 1995, a mapping module 1997, and an image generation module 1999 that are

responsible for common portions of the data store, e.g., the same units of storage.

[0314] The above-described approach also allows the storage management device 1938 to
include built-in redundancy that increases the reliability of the data storage system. For exainple,
two separate processor modules 378 can be assigned to perform‘the above-described operations
- of receiving, processing, indexing, mapping, and image generation for the same units of storage.
In one embodiment, a first processor module 378 is used as a primary processing module and a
éecond processor module 378’ operates as a backup, for example, in the event of a problem with

the first processor module 378.

[0315] FIG. 27 illustrates an index 2009 of records for a small set of write requests directed

to a data store, processed by the processor 1962 and recorded by indexing module 1995. Index

— 89—

WO 2006/023994 PCT/US2005/030168

2009 includes four records 2010, 2010°,2010°°, and 2010°>” each identified by unique write-
request identifiers 1287, 1288, 1290, and 1291, respectively. Each record 2010 identifies the
target logical unit (“LUN™) to which the associated write command was directed, i.e. the target
LUN identification. Additionally, each record includes the location(s) of the units of storage on
the target LUN, the location of the past data that was overwritten, and the time at which the
storage management device 1938 received the write command. In the embodiment shown in
FIG. 27, the location of the units of storage are indicated by the logical block address (“LBA”)
and the length associated with the write request (i.e., the number of LBA’s comprising the target
units of storage). Although each record 2010 in FIG. 27 includes a target LUN identification, the
identification can be eliminated from the records where the index itself is restricted to a single
LUN. Also, in FIG. 27, a LUN identification is included in the location of the past data for each
record 2010. The target LUN and the LUN where the past data is stored differ in each of the
records 2010 shown in FIG. 27. For example, each of the write-requests 1287, 1288, 1290, and
1291 of FIG. 27 are associated with a target LUN identified as LUN 2502 while the past data
associated with write-requests 1287, 1288, and 1291 are stored in LUN 2500, and the past data
associated with write request 1290 is stored in LUN 2501. Although, these examples present a
copy-on-write operation in which different LUNs are used to store the new data and tﬁe past
data, in practice, the new data and the old data can be stored on the same LUN. When the target
LUN is also used to store past data, all LUN identification can be elimiﬁated from each of the

individual records, for example, where the index itself is restricted to a single LUN.

[0316] As for the location values in the index 2009, the first value on the left in the “new
data” column, is the logical block addreés (i.e., the unit of storage) at which the corresponding
write operation begins. The second value, the entry on the right in the “new data” column, is the
length, that is, the number of units of storage that the write operation is directed to. In the
embodiment shown in FIG. 27, the leftmost entry in the “past data” column is the LUN

'~ identification of the LUN where the past data is written. The center entry, appearing in the “past
data” column, is the logical block address where the past data begins to be stored as a result of
the associated copy-on-write operation. The rightmost entry, appearing in the “past data”
column, is the number of units of storage that the past data occupies when copied and written to

the location. Thus, the index 2009 provides enough information to allow the system to identify

—90—

WO 2006/023994 PCT/US2005/030168

the specific locations of the newly-written data and the past data associated with each record

2010.

[0317] In one embodiment, the unit of storage is a specific 512-byte block that is part of the
LUN, and so the length indicates how many 512-byte blocks the write request will operate on.
For example, write-request 1287 occurred at time (“t”) 6100. It was directed to the target units
of storage, in LUN 2502, beginning at LBA 0 for a length of 1.7 blocks. The past data that was
stored at blocks 0-16 is copied and re-written to blocks 64-80 (i.e., location 64, 17) of the LUN
2500. It should be understood that other block lengths can be used.

[0318] Similarly, write-request 1288 results in data in blocﬁs 16-20 of LUN 2502 being
copied to locations 85-89 of LUN 2500. Following the execution of write-request 1288, block
16 has been the target of two write operations, at t=6100 and at t=6117, while each of blocks 0-
15 and 17-20 have been the target of a single write operation. Write-request 1290 is the next
recorded write request. Following its execution, data in blocks 6-9 of LUN 2502 is copied and
written to blocks 37-40 of LUN 2501 and the new data is written in blocks 6-9 of LUN 2502. At
this point, blocks 6-9 and block 16 have each been the target of two write operations, while each
of blocks 0-5, 10-15, and 17-20 have been the target of a single write operation. Write-request
1291 was processed following the processing of write-request 1290. As a result of write-request
1291, the data in blocks 7-10 was written to blocks 46-49 of LUN 2500 as past data and new data
is stored in blocks 7-10 of LUN 2502. Following the execution of write-request 1291, blocks 7-9
have been the target of three write operations, blocks 6, 10, and 16 have been the target of two
write operations, and blocks 0-5, 11-15, and 17-20 have each been the target of a single write

operation.

[0319] | FIG. 28 illustrates two simplified, exemplary maps 2100, 2101 generated by the
mapping module 1997 from the records 2010 stored by the indexing module 1995 in index 2009.
The maps demonstrate how the information provided by the records 2010 is employed by the
mapping module 1997 to map the locations of data that were stored in a data store at a specified
past time. The maps are directed to 20 units of storage in a data store, for ease of explanation.
The storage management device 1938 can be used with any size data store, or any number of

data store, and so it should be understood that a data management system that employs the

-91 -

WO 2006/023994 PCT/US2005/030168

storage management device 1938 would not be limited to a single data store of 20 units of

storage as in this demonstrative example.

e ey

[0320] In general, maps 2100, 2101 are' generated for a specified past time and are shown at’
a generation time. To accurately reflect write requests that occur following the map’s initial
generation, a map may be regenerated or modified following its initial generation. Herein, the
term “initial generation time” refers to the time when the map is first created. The term
"‘generation time” refers to the points in time, following the initial generation time, at which the
map is updated. Map 2100 is a view of the map at the initial generation time t= 6127. The map
2100 is created in response to the receiver 1961 receiving a request for an image of the data store
at the specified past time of t=6106. In the approach shown in FIG. 28, the maps 2100, 2101
only include information concerning units of storage that have been the subject of a write request
since the specified past time. The data in the other units of storage can be located without
mapping because such data still resides in the unit of storage into which it was originally written
(i.e., the current store). Although not limited to this approach, such an implementation is
advantageous because it allows for more rapid rﬁap generation and, as a result, more rapid image

generation.

[0321] In one embodiment, the specification of the past time is supplied from the host at a
request time and is received substantially simultaneously by the receiver 1961. In a version of
this embodiment, the mapping module 1997 begins generating the map 2100 substantially

simultaneously with the receipt of the request by the receiver 1961.

[0322] Referring to the times stored in the index 2009 of FIG. 27, write request 1287
occurred prior to the specified past time (t=6106). These location records 2010 are not of
interest in generating map 2100 because, for example, the locaﬁon of the past data associated
with write-request 1287 was already overwritten as of the specified past time. However, -

" mapping is employed for each write request that occurred after the specified past time and before
the initial Ageneration time (and in the case of updated maps, before the map generation time).
For example, each of Write-fequests 1288 and 1290 occurred after the past time and before the
initial generation time. Thus, the mapping module 1997 will use the records 2010 associated

with write-requests 1288 and 1290 to generate the map 2100. Those write requests that occur

-92 -

WO 2006/023994 PCT/US2005/030168

after the generation time, of course, may not yet be in existence when the map 2100 is generated.
This is true, for example, where the map 2100 is generated substantially simultaneously with the
request, because in such situations, the write request has not yet occurred. However, as is
described in greater detail below, the mapping module 1997 can update an existing map 2101 to
reflect the processing of write requests (and associated copy-on-write operations) occurring after

the initial generation time of the map.

[0323] In FIG. 28, map 2100 includes pointers to locations of past data for the units of
storage that have been the subject of a write request since the specified past time t=6106. Thus,
blocks 6-9 are mapped to blocks 37-40 of LUN 2501, and blocks 16-20 are mapped to blocks 85-
89 of LUN 2500. The mapping module 1997 uses the information stored in the index 2009 (FIG.
27) to generate the map. In the embodiment shown in FIG. 28, the units of storage at blocks 0-5
and 10-15 are not included in the map because those units of storage have not been the target of a
write command since the specified past time t=6106, and so they are still available directly from

the current store.

[0324] A second map 2101 illustrates generally how a map can change over time to reflect
the processing of write requests subsequent to the initial generation time. For example, a pointer
is added to the map for those units of storage that are the target of the subsequent write request if
the unit of stbrage had not previously been mapped. In this example, the map 2101 hasa
generation time of 6131 that reflects write request 1291. Write request 1291 affects blocks 7, 8,
9, and 10 in LUN 2502. Block 10, thus, provides an example of a location to which a map
update applies. Block 10 represents the addition of a pointer that is required as a result of write-
request 1291. The pointer reflects the fact that the data that was stored in Block 10 at the
specified past time t=6106 has been moved, and is now stored in block 49 of LUN 2500. The

- remainder of the map 2101, including the mapping of blocks 6-9, remains unchanged from the
first map 2100. The mapping of blocks 6-9 remains unaffected because although, at time
=6130, a copy-on-write operation was performed on blocks 6-9 it did not affect the location of
the data that was stored in blocks 6-9 at the specified past time t=6106. That data remains stored
in blocks 37-40 of LUN 2501.

~93—

WO 2006/023994 PCT/US2005/030168

[0325] The maps 2100 and 2101 can be stored in any structure that allows for efficient

retrieval of the mapped data ranges. In one embodiment, maps 2100 and 2101 are stored in

binary trees to allow for rapid identification of the blocks that are included in the map, and to
| .locate the source (current locletiori) of vdlat‘a\ for umts of ystorage that have been overwfit;[enl eince

the specified past time. In another embodiment, maps are stored in B+ trees. In versions of each

of these embodiments, each node of the search tree includes a pointer that points to the data

source for that range. Databases, files, and other structures could also be used to store the maps.

[0326] For ease of explanation, the second map 2101 is referred to as being generated at
t=6131. It should be recognized, however, that map 2101 need not be newly generated in its
entirety. Map 2101 can be newly generated, but it can also be the result of an update or
modification to map 2100. Thus, fnap 2100 and map 2101 can exist separately and concurrently,
or.map 2101 can replace map 2100. Further, the storage management device 1938 can
automatically generate map updates in response to write requests that are indexed after the initial
generation times. Additionally, the preceding description concerning FIGS. 26-28 describes the
use of a single target LUN fer storing the data included in a data store. Again, it should be |
understood that a data store can in some implementations include data on a plurality of LUNs
that are the target of write requests, store past data, or a combination thereof. In addition, the -
data store can include a time store and a current store that each includes data stored on multiple
LUN:s.

[0327] In one embodiment, the storage management device 1938 begins to process the map
where the image at the specified past time is requested. Generating the map can be time-
censurning, however, anid so in one embodiment, the storage management device 1938 uses the
map to respond to requests for units of storage that are included in the map, and searches the
index 2009 for locations of units of storage that are not included in the map. If the units of
storage are included in an index record 2010, the information is included in the map for future
reference. If the units of storage are not included in the index, a notation can be made in the map

as well.

[0328] When the map is complete, such that all appropriate index records 2010 have been

added to the map, the storage management device 1938 no longer need consult the index 2009,

- 94—

WO 2006/023994 PCT/US2005/030168

and can refer only to the map. Likewise, explicit entries in the map indicating that data is in the

current store can be removed from the map, making it more efficient.

[0329] In another embodiment, a flag or other indicator is used to identify a completed map.
In a version of this embodiment, until the map 2100 is built, the index 2009 is used as the source
for locations of data that will bé used to generate the image. Once the map 2100 is completed, it
is used as the source for locations of data that will be used to generate the image and the index is
no longer used. In a version of this embodiment, notations are not made for units of storage not

included in the map.l

[0330] SYSTEMS FOR PROCESSING I/0 REQUESTS

[0331] In general, additional aspects of the invention relate to systems and methods for
processing 1/O requests. In brief overview, in one embodiment of the invention, a system
processes 1/O requests directed to at least one logical unit of storage. The system includes an
operation memory for storing a plurality of ordered sets of operations, each set associated with
an /O requést. The system also includes a processor in communication with the operation
memory, for queuing the operations stored in the operation memory in a first queue or a second
queue. The first queue and the second queue are in communication with the processor. The first
queue is for queuing the operations based on an identification of a target logical unit. The

second queue is for queuing the operations based on an operation type.

[0332] In general, in one embodiment, the first opefation associated with a request is placed
on a queue associated with one or more LUNS, or a portion of a LUN. The operation is queued
on the LUN queue until there are no other operations in process for requests directed to
overlapping units of storage as the queued request is directed to (overlapping, for example, can
be where two requests are directed to one or more of the same units of storage). In other words,
in this embodiment, an operation is taken off of a LUN queue and processed only if there are no
operations for overlapping units of storage then in process. The first and remaining operations
associated with the request can then be subsequently processed without concern as to overlap
with other operations. Operations for multiple requests can be, for example, batch-processed for

efficiency. Remaining operations are placed on operation-specific queues in order, to facilitate -

~ 95—

WO 2006/023994 PCT/US2005/030168

such batch processing. Thus, the two types of queues described facilitate processing of requests

without address collisions.

|||||||||||||||||||||| VAt ey

'{0333] FIG. 29 illustrates a system for processing I/O requests in accordance with this aspect’
of the invention. A host 2234 communicates with a physical store 2236 via a storage
management device 2238. The physical store 2236 can include one or more logical units
(“LUNs”), for example, LUN 1 through LUN X. Data stored in these LUNSs can be presented to
the host 2234 via the storage management device 2238. The storage management device 2238
communicates with the host 2234 over a first communication link 2240. The storage
management device 2238 communicates with the physical store 2236 over a second
communication link 2242. As with the previously described aspects, the first communication
link 2240 can be any sort of data communications link, such as a LAN, storage network or bus
including a Fiber Channel and Small Computer Systems Interface (“SCSI”). Ethernet (e.g.,
Gigabit Ethernet) and wireless communication are other possibilities for the first communication
link 2240. In one embodiment, the storage management device communicates SCSI protocol at
the logical layer, and is able to communicate using one or more of a variety of physical layers,
including SCSI bus, Fiber Channel, Fiber Channel 2, or iSCSI over Ethernet. In response to the
'host 2234 1/0 requests, over the communication link 2240, the storage management device 2238
acts as if it was the physical store 2236. The host’s 2234 I/O requests can include both read and

write requests to units of storage.

[0334] Upon receipt of an I/O request from the host 2234, the storage management device
2238 generates an ordered set of operations thaf are processed, in order, to execute the I/O

reqﬁest. In one embodiment, for example, a write request directed to a unit of storage results in

an ordered set of five operations including: 1) reading the existing data stored in the target unit of
storage; 2) writing the existing data to another location; 3) indexing the operation performed in |
. step 2; 4) writing new data to the target unit of storage; and 5) feleasing the write request, e.g.,
generating an acknowledgement that the write request is complete. Another example, is a read
request that results in an ordered set of two operations. The first operation is reading the data
stored in the target unit of storage, and the second step is releasing the read request. In other
embodiments, the above-described I/O requests are modified to include additional operations that

are advantageous for some system configurations. For example, a write request can include an

_ 96—

WO 2006/023994 PCT/US2005/030168

operation directed to updating a time-map, as described above. In other embodiments, the
number of operations associated with an I/O request may be reduced or re-ordered as part of an

optimization.

[0335] The hardware and software architecture of the storage management device 2238 is
advantageous for efﬁciently processing the ordered sets of operations. The storage management
device 2238 includes an operation memory 2296, a processor 2262, LUN queues 2221 and
operation-type queues 2222 that are ih communication with one another over an internal network
2280. In one embodiment, the LUN queues 2221 include a separate queue for each of the
corresponding LUNSs included in the physical store 2236, e.g., LUN 1 through LUN X. The
operation-type queues 2222 include separate queues for organizing operations based on the type
of operation to be queued. For example, an indexing queue is used to store the index operations
from a plurality of ordered sets. Additionally, the operation-type queues are not dedicated to a
single LUN; therefore, the indexing queue, and other.operation-type queues, can store operations
directed to a plurality of LUNs. Functionally, in one embodiment, the first operation in each set
of ordered operations is queued in the appropriate LUN queue. Operations subsequent to the
first operation in each set of ordered operations are not queued in a LUN queue. Instead, the

subsequent operations are queued in the operation-type queues.

[0336] FIG. 30 illustrates the general process employed by one embodiment of the system.
Ih step 2304, the storage management device 2238 receives an I/O request from the host 2234.
For example, in one embodiment, the host interface 361 (FIG. 10) receives the I/O request. In
step 2305, the storage management device 2238 generates a set of ordered operations associated
with the I/O request. Then, at step 2306, the first operation from the ordered set of operations is
placed in the LUN queue responsible for the LUN that is the target of the received I/0 request.

- The first operation is taken off of the queue and processed. At step 2307, subsequent operations
in the ordered set are processed. In one embodiment, execution of these steps can be
.accomplished with the embodiments previously described herein. For example, generally, each
of the steps can be executed in the processor modules 378 (FIG. 10). More specifically, in a
version of this enibodiment, the I/0O manager 362 performs step 23 05 and generates the ordered
set of operations and the LUN queues and operation-type queues are impleménted in memory

296 (FIG. 9) that may or may not be included in the I/O manager 362. In one embodiment, the

-97—

WO 2006/023994 PCT/US2005/030168

operations of the ordered set that are subsequent to the first operation are stored in memory while

the first operation is stored in the LUN queue. Once the first operation is processed, the second
operation from the ordered set is pulled from memory and placed in the operation-type queue for oo
the operation type that corresponds to the second operation. Once the second operation is

processed, the third operation from the ordered set is pulled from memory and stored in the
operation-type queue for the operation type that corresponds to it. The steps of pulling an

.operation from the operation memory 2296, storing it in the appropriate queue, processing the

operation, and pulling the subsequent operation in the ordered set into an appropriate queue is

répeated for each operation associated with the I/O request until all the operations generated by

the I/O request are complete.

[0337] Referring now to FIG. 31, a table 2407 of entries 2410 that correspond to I/O requests
is illustrated. Each entry includes the time that the storage management device 2238 received the
/O request, the identification of the I/O request, the identification of the target LUN (e.g., the
LUN #), the logical block addresses (or other units of storage) affected by the I/O request (e.g.,
the target units of storage), the type of I/O request, and the set of ordered operations that were
generated as a result of the I/O request. The storage management device 2238 is capable of
4processing the huge volumes of I/O requests associated with data storage systems of 1 terabyté
or larger. The demonstrative table, however, presents a small set of information for purposes of
explanation. Entries in the table 2407 cover a périod of time, at least, from t=6100 to t=6130.
Two types of I/O requests are include in the table 2407, i.e., a read request (1290) and write
requests (1286, 1287, 1288, 1289, and 1291). However, the system can process a variety of /O
requests such as requests for a modification history. Additionally, I/O requests have been
directed to two different LUNs during the time period covered by the table 2407, i.e., LUN 2502
and LUN 2503.

. [0338]. The table 2407 includes the set of ordered operatioﬁs associated with each I/O
request. The sets of operations appéar in the columns labeled 1-5 in the order that they are
processed; For example, I/O request 1288 is a write request which includes five ordered
operations: 1) reading the existing data in the target unit of storage; 2) writing the existing data to
another location; 3) indexing the operation pérformed in step 2; 4) writing the new data to the

target unit of storage; and. 5) releasing the write request. In another embodiment, a write request

—98 —

WO 2006/023994 PCT/US2005/030168

includes a different set of ordered operations. For example, in systems where time maps are
used, the write request can include six ordered operations: 1) reading the existing data in the
target units of storage; 2) writing the existing data to another location; 3) indexing the operation
performed in step 2; 4) writing the new data to the target unit of storage; 5) updating one or more
time maps, if necessary; and 6) releasing the write request. Further, the quantity of ordered
6perations in an I/O request-type may be expanded by dividing one or more of the ordered
operations into sub-operations. For example, operation 5 of the immediately preceding ordered
set could be divided into one operation directed to determining whether a time map has
previously been generated, and another operation directed to the map update. Additionally, the
steps can be performed out of order, for example, as described H'erein with reference to the

optimizations.

[0339] FIG. 32 provides a simplified diagram that will now be used to explain the operation
of a storage management device 2238 which includes LUN queues and operation-type queues
through use of the simplified example of FIG. 31. The data in the table of FIG. 32 corresponds
to the information in table 2407 of FIG. 31. Information in the leftmost column represents the
time that the storage management device 2238 received an associated I/O request. The columns
labeled LUN 2502 and LUN 2503 represent two LUN queues. The right half of the FIG. 32
depicts the operétion-type queues. Four types of operation-type queues are shown: 1) a queue
for operations which write the existing data from the target units of sforage to another location
(these queues are als.o referred to as “write-existing” queues); 2) an index queue for queuing the
operations that record the location resulting from completion of the preceding write operation; 3)
a write new data queue for queuing operations which write the new data to the target ﬁnits of
storage; and 4) a release queue for queuing operations that indicate that the preceding operations

in the ordered set were completed.

[0340] The contents of the queues represent individual operations from the ordered sets of
'operations shown in table 2407. Each operation is represented by the identification of the I/O
request that generated it and, to the right of the hyphen, the number of the place the operation
holds in the ordered set that it is a part of. Thus, the fourth operation in an ordered set of

operations generated from I/O request 1286 (i.e., the write new data operation) appears as 1286-4

— 009 —

WO 2006/023994 PCT/US2005/030168

in FIG. 32. As a further example, the first operation in the order set of operations generated as a

result of I/0 request 1288 is represented as 1288-1.

\\\\\\\\\\\\\ [R TR LN AR SR N L A AR AN AR

[0341] At time t=6100, 1/O request 1286 is received by storage management device 2238.
The storage management device 2238 generates an ordered set of operations as a result of I/O
request 1286 (i.e., 1286-1, 1286-2, 1286-3, 1286-4, and 1286-5) corresponding to the set of
operations shown at t=6100 in FIG. 31. The operations from the ordered set are stored in
operation memory 2296. Beginning with the first operation in the ordered set, each of the
operations of the ordered set are moved into a queue, one at a time, and processed. Thus, at
t=6100, operation 1286-1 is placed in the LUN 2502 queue while operations 1286-2, 1286-3,
1286-4, and 1286-5 are stored in operation memory 2296. The first operation (operation 1286-1)
is stored in the LUN 2502 queue because 1/O request 1286 is directed to LUN 2502.

[0342] The processing status of the storage management device 2238 is next viewed at
t=6119 in FIG. 32. By this time, the storage management device 2238 has received two
additional I/0 requests, i.e., 1287 énd 1288 (at t=6114 and t=6117, respectively). Also,
operation 1286-1 (i.e., read data present in the target units of storage) has been processed. As a
result, operation 1286-2 has been identified and stored in the write-existing queue. Because
operation 1286-1 was processed, it is no longer stored in the LUN 2502 queue. However, both
requests 1287 and 1288 are directed to LUN 2502. Therefore, the LUN 2502 queue now
includes the first operation from each of these two pending I/O requests. These two operations
will be executed in the order in which they were received by the storage management device
2238, i.e., 1287-1 followed by 1288-1 so long as there are no requests in process for overlapping

units of storage.

[0343] The storage management device 2238 can include such search trees, algorithms and
~ other systems and methods, described in greater detail herein, to process the I/O requests |
éfﬁciehtly and accurately. In one embodiment, the storage management device 2238 uses an
overlap détection process to determine whether a newly-received I/0 request is targeting any
units of storage which are also the target of one or more I/O requests that are currently being
processgd. If so, the first operation of the newly-received I/O request in the ordered set will be

kept in the appropriate LUN queue until all the operations of the preceding I/O requests are

—100 -

WO 2006/023994 PCT/US2005/030168

processed. However, where, as here, the newly-received I/O requests (i.e., 1287 and 1288) do
not target any of the same target units of storage as the previously-received I/O request(s) (e.g.,
1286), the storage management device 2238 can process, to gether, the operations subsequent to
the first operation in a plurality of ordered sets (e.g., 1286, 1287, and 1288). To facilitate the
previously described processing, the storage management device 2238 can include systems and
fnethods, described in greater detail herein, to batch process the operations that are queued in the
operation-type queues. Thus, operations can be held in the operation-type queues until they are
joined in the queue by other operations of the same type in order to increase the overall

processing speed and efficiency of the storage management device 2238.

[0344] At time t=6122, the storage management device 223é has processed operation 1286-2
(write existing data), determined that requests 1286, 1287, and 1288 are directed to non-
overlapping portions of target LUN 2502, sequentially processed operations 1287-1 and 1288-1,
and received two more I/O requests (i.e., 1289 and 1290). The first operation from each of the
newly-received I/O requests (i.e., 1289-1 and 1290-1) is stored in the LUN 2502 queue.
Operations 1287-1 and 1288-1 were removed from the LUN queue when they were processed.
Operation 1286-2 has been removed from the write-existing queue and operation 1286-3 has
been pulled from the operation memory 2296 and stored in the index queue. Similarly,
operations 1287;2 and 1288-2 have been pulled from the operation memory 2296 and stored in

the write-existing queue.

[0345] A view of the queues at t=6124 demonstrates a simplified example of the batch
processing approach described above. Between t=6122 and t=6124, operations 1287-2 and
1288-2 were removed from the write-existing queue and processed together. As a result,
operations 1287-3 and 1288-3 are pulled from the operation mefnory 2296 and stored in the
index queue where they join operation 1286-3, which is not yet processed. Regarding the
operations in the LUN queues, operation 1289-1 was processed, and as a result, operation 1289-2
was pulled from operation memory 2296 and stored in the write-existing queue. However, |
because there is overlap in the units of storage that are the target of I/O requests 1289 and 1290
(i.e., blocks 26-28 as listed in FIG. 31), operation 1290-1 will not be processed until all the

operations of I/O request 1289 are processed. In the meantime, operation 1290-1 will remain in -

—-101 -

WO 2006/023994 PCT/US2005/030168

the LUN 2502 queue, and operations 1290-2, 1290-3, 1290-4, and 1290-5 will remain in the
operation memory 2296.

................ ISR AR AR AR HAR R AR AR A

' [0346] The three operations in the index queue (i.e., 1286-3, 1287-3, and 1288-3) are now
processed together. After the three index operations are complete, the corresponding write new
data operations (i.e., 1286-4, 1287-4, and 1288-4, respectively) are pulled from the operation
memory 2296 and are stored in the write-new queue at t=6125. Also at t=6125, I/O request
1291, directed to LUN 2503, is received by the storage management device 2238. The first
operation from the ordered set generated as a result of request 1291 is stored in the LUN 2503
queue. Further, at t=6125, there are no other operations directed to LUN 2503 that are in queue;
therefore, operation 1291-1 is stored as the first operation in the LUN 2503 queue. The
subsequent operations (i.e., 1291-2, 1291-3, 1291-4, and 1291-5) are stored in the operation
memory 2296. At this time, each of the two LUN queues shown in FIG. 32 includes a single
operation. Although operation 1291-1 was received later in time, it can be processed before
operation 1290-1 because there are no operations that precede 1291-1 in the LUN 2503 queue
and, in this example, there are no operations for LUN 2503 in process. In contrast, operation.
1290-1 will remain in queue until all of the operations associated with I/O request 1289 are
complete (i.e., 1289-2, 1289-3, 1289-4, and 1289-5).

[0347] At time t=6127, operation 1291-1 has been processed as have each of the operations
stored in the operation-type queues at t=6125. As a result of this processing, operations 1286-5,
1287-5 and 1288-5 are pulled from the operation memory 2296 and moved to the release queue.
At this time, operations associated with I/O requests 1286, 1287, and 1288 are no longer stored
in fhe operation memory 2296. Also, operation 1289-4 is pulled from the operation memory and
stored in the write-new queue, and operation 1291-2 is pulled from the operation memory and
stored in the write-existing queue. It should be understood from this example, that the operation-
- type queues can be used to service multiple LUNs. For exampie, operation 1291-2 can be
processed (including batch processed) with operations directed to LUN 2502 or any other

combination of LUNS that the storage management device 2238 is servicing.

[0348] By time t=6129, the first of the example I/O requests are completed. Release

operations 1286-5, 1287-5, and 1288-5 are processed together. Each release operation provides a

-102 -

WO 2006/023994 PCT/US2005/030168

system acknowledgement that the associated I/O request is complete. Once a release operation is
processed, the corresponding 1/0 request is complete and neither the LUN queues nor the
operation-type queues store any operations associated with completed I/O request. Asa, result, at
t=6129, the operation-type queues only include operation 1291-3 in the index queue, and 1289-5
in the release queue. Because the processing of I/O request 1289 is incomplete, .operation 1290-

1 remains in the LUN 2502 queue.

[0349] Referring now to FIG. 33, in a functional depiction of system elements, storage
management device 2538 includes an operations generator 2525. The operations generator 2525
receives I/0 requests originating from the host 2534. As preyiO}'Jsly described, for each I/0
request, a set of ordered operations is determined by the I/O request type. In one embodiment,
the operations generator 2525 determines the I/O request type upon receiving the I/O request.
Based on the 1/0 request type, the operations generator 2525 extracts a set of ordered operations
from each I/O request that is received from the host 2534. In one embodiment, an operations
generator 2525 is included in the processing modules 378 (FIG. 10) of the storage management
device 2538. In a version of this embodiment, the operations generator is included in the target
mode driver 382 of FIG. 10. The storage management device 2538 also includes an operations
pool 2524 that stores each of the extracted operations prior to the operation being moved to a
queue. In one émbodiment, the operations pool 2524 is included in the operation memory 2296.

In a version of this embodiment, the operation memory is included in the buffer 363 of FIG. 10.

[0350] The storage management device 2538 includes both a LUN queuing module 2521 and
an operation-type queuing mvodule 2522. The LUN queuing module 2521 receives the first
operation, from each ordered set of operations, from the operations pool 2524 and stores it in the
appropriate LUN where it is processed. In the embodiment shown in FIG. 33, the LUN queuing
module 2521 includes a processing management module 2526. In one embodiment, in general, |
the processing management module 2526 manages the processing of the operations stored in the
‘LUN queues. More specifically, the processing management module 2526 ensures that the
operations stored in the LUN queues are processed in such a manner thét when the subsequent
operations in the 6rdered séts are pulled to the operation-type queues they are idempotent relative
to any other operations stored in the operation-type queues. The processes used by the

processing management module 2526 are described in greater detail elsewhere herein. However,

-103 -

WO 2006/023994 PCT/US2005/030168

in one embodiment, the processing management module 2526 employs a search tree data
structure to organize the order of execution of the operations stored in the LUN queues 2221. In
~another embodiment, the processing management module employs a fairness algorithm to ensure
that operations directed to LUNS that receive a low volume of I/O requests get processed in a
timely manner. In a version of this embodiment, the processing management module 2526

monitors the amount of time that each pending operation is stored in a LUN queue.

[0351] The operation-type queuing module 2522 receives the operations subsequent to the
first operation in each ordered set from the operations pool 2524 and stores them in the
appropriate operation-type queue. The operation-type queuing module also includes a batching
module 2528. The batching module 2528 can be used to optimize the processing of the
operations stored in the operation-type queues. For example, two pending operations directed to
adjacent units of storage can be processed in a single batch in order to reduce the quantity of read
and write operations that must be performed by the physical store. Thus, in order to increase the
overall processing speed, batching may involve delaying the processing of a pending operation

until a larger batch is available.

[0352] The storage management device 2538 also includes an indexing module 2523. The
indexing module 2523 generates a record of the location of data that is moved as a result of a
copy-on-write operation. The indexing module 2523 can be included in the /O manager 362 of
FIG. 10. In one embodiment, an index queue (for example, as shown in FIG. 32) stores the

operations that generate the creation of a record in the indexing module 2523,

[0353] OVERLAP DETECTION

[0354] A storage management device, implemented in accordance with at least some aspects
of the disclosed technology, can improve the performance of an enterprise’s information

~ technology infrastructure by efficiently processing I/O requests directed to particuiar logical
units of storage and/or parts thereof from host processors within the enterprise. In contrast to
traditional storage interactions whereby requesting host processors (or processing threads) await
completion of I/0 requests to storage devices pridr to moving on to other tasks, the disclosed
technology enables a storage management device to acknowledge completion of I/O requests to |

host processors, where at least some of such I/O requests have not in fact been completed, but

~ 104 -

e ey

WO 2006/023994 PCT/US2005/030168

have rather been queued (based on, for example, their receipt time and on their targeted logical
units of storage) and where a queued sequence of corresponding operations has been optimized
so that execution of the operations minimizes the number of disk accesses and thus improves

upon the performance of the enterprise’s storage systems.

[0355] By way of non-limiting example of such an optimization, in response to receiving a
write request directed at a particular location in a logical unit of storage followed by a read
request directed at the same (or partially overlapping) location, a storage management device
incorporating at leaét some aspects of the disclosed technology can determine that there is
overlap between the requests, and hold the read request from execution until after the write
request is complete. As another example, if overlap is detected,' the read can be serviced before
the write is complete, by using the data in temporary storage, for example, the stored data can be
subsequently read from RAM (rather than from a relatively slow disk) thereby reducing the

aggregate number of disk accesses.

[0356]. Also, in some I/O request processing, such as that described elsewhere herein, the
processing of /O requests can be enhanced by limiting concurrent processing of 1/O requests
(e.g., other than as part of special optimizations) to I/O requests directed to non-overlapping
units of storage (e.g., blocks). Such processing thus can be improved by efficiently determining
whether there are I/O requests that are directed to oveflapping units of storage, Without, for
example, review of all of the pending I/O requests, and using that information, determining
whether a I/0 request should be processed or queued. Thus, in addition to enabling
optimizations as described above, a resource (such as a list, database, tree structure, linked list, or
other resource) that efficiently provides information about the locations that are the targets of
pending I/O requests can allow a storage management system to process /0 requests more
efficiently, because the storage management system can restrict concurrent processing to I/O

requests targeted to non-overlapping units of storage.

[0357] With reference now to FIG. 34, an illustrative storage management device (not
shown) can include one or more software processes 2602 (e.g., a scheduler software process) that
receive and store I/0 requests 2604, 2606 in request queues 2608, 2610 associated with |
particular logical units of storage 2612, 2614 or parts thereof targeted by such requests 2604,

-105-

WO 2006/023994 PCT/US2005/030168

2606. The I/O requests 2604 within a particular request queue 2608 are preferably organized to
ensure that requests 2604 are processed (or positioned within the queue 2608) in the order in

~ which they were received (e.g., /O Request 1 2604’ received at Time T1 is positioned ahead of |,
/O Request 2 2604 that was received at later Time T2). Request queues 2608, 2610 can also

be configured, preferably, to store requests 2604, 2606 associated with particular logical units of

storage 2612, 2614 or parts thereof. The /O requests 2604 in a particular queue 2608 may be

directed at various overlapping and/or non-overlapping address ranges in a logical unit of storage

2612. For example, an address range (Address 0 to Address 15) 2616’ associated with an I/0O

réquest 2604’ directed to a logical unit of storage 2612 may overlap another address range

(Address 8 to Address 11) 2616’ associated with another I/O request 2604°””. Similarly, an

address range (Address 0 to Address 15) 2616’ associated with I/O request 2604’ may be distinct

from and thus not overlap an address range (Address 16 to Address 32) 2616’ associated with

another I/0 request 2604°°.

[0358] The queued I/O requests 2604, 2606 can be further associated with one or more
operation sequences 2618 that specify sequences in which certain operations 2620 should be
performed in order to fulfill corresponding I/O requests 2604, 2606. The scheduler software
process 2602 can organize the operations 2620 associated with the queued I/O requests 2604,
2606 in corresponding operation queues 2622 and can further execute such queued operations
2620 in a manner that optimizes the performance of the storage devices associated with the
targeted logical units of storage 2612, 2614 (such as by, for example, minimizing disk accesses
to such storage devices). In order to ensure that operations 2620 queued within one or more
operation queues 2622 are executed in a manner that is cpnsistént with the receipt time of the
corresponding I/O requests 2604, 2606 and which results in performance optimizations, the
scheduler software process 2602 can search a queuing data structure 2624 (e.g., a binary tree
and/or other type of tree data structure) to determine whether the operations 2620 are associated
with non-ovetlapping address ranges (e.g., 2616’ and 2616°”) or whether one or more of the
operations 2620 are associated with overlapping address ranges (e.g., 2616’ and 2616°*”). If the
address ranges 2616 overlap, the scheduler software process 2602 splits one or more nodes 2626
within the binary tree 2624 so that each node 2626 is associated with non-overlapping address

ranges.

- 106 -

WO 2006/023994 PCT/US2005/030168

[0359] In one illustrative embodiment, each node 2626 in a binary tree data structure 2624
that may be searched by a scheduler software process 2602 in accordance with at least some
aspects of the disclosed technology may include: an identifier of a logical unit of storage 2612, a
pointer to a list (e.g., a linked list) of /O requests 2604, an identifier and/or pointer to one or
more operation sequences 2618, identifiers and/or pointers to particular operations 2620 within
the operation sequences 2618, a pointer to non-overlapping address ranges 2616 within the
logical unit of storage 2612, a pointer to a parent node (if a parent node exists, otherwise to null),
and/or pointers to child nodes (if child nodes exist, otherwise to null). The data and pointers
associated with each node are used to form the relationships within the tree data structure 2624,
as well as to facilitate searching and retrieval of relevant data b};' the scheduler software process
2602 when determining whether particular I/0O requests 2604 and/or associated operations 2620
are directed to overlapping/non-overlapping address ranges 2616 within a logical unit of storage

2612 or parts thereof.

[0360] In one illustrative operation and with reference now also to FIG. 35, a scheduler
software process 2602 of a storage management device (not shown) receives I/O requests 2604,
2606 from one or more hosts directed to one or more logical units of storage or parts thereof
2612,2614. The scheduler software process 2602 forms a request queue 2608 for each of the
logical units of storage 2612, if such request queue 2608 does not already exist, and stores the
/O requests 2604 (or indicia associated thérewith) targeted at such logical units of storage 2612
in accordance with the time that they were received (2702). The scheduler software process

2602 evaluates the queued I/O requests 2604 to obtain and/or form the data and pointers,

discussed above, that are used to form the nodes 2626 of the queuing data structure 2624, such

that each of the nodes 2626 are associated with non-overlapping address ranges 2616 (2704).

[0361] By way of non-limiting example, the scheduler software process 2602 can extract
and/or form identifiers and/or pointers associated with one or more logical units of storage 2612,
queued I/O requests 2604, operations 2620 and operation sequences 2618 associated with the I/O
requests 2604, address ranges 2616 specified by the I/O requests 2604, and/or otherwise obtain
any other information that is necessary or desirable to form the nodes 2626 of the binary tree .
data structure 2624. If two or more queued I/O requests 2604 are directed at overlapping address

ranges 2616, the scheduler software process 2602 can form nodes 2626 that include

-107 -

WO 2006/023994 PCT/US2005/030168

corresponding non-overlapping address ranges. For example, if a first /O request 2604’ is
directed at an address range 2616° (address 0 to 15) of a first logical unit 2612 and a second I/O

_ request 2604”"” is directed at an overlapping address range 2616’ (address 8-12), thenthe vvvvvrivre
scheduler 2602 can, for example, form three nodes whose associated address ranges do not
overlap, i.e., a first node can be associated with addresses 0 to 7 (which is further associated with
the first /O request 2604”), a second node can be associated with addresses 8 to 12 (which is
further associated with both the first and second I/O requests 2604’, 2604°°”), and a third node
can be associated with addresses 13 to 15 (which is further associated with the first I/O request
2604°). In this manner, the scheduler 2602 ensures that each node corresponds to distinct noh-
overlépping address ranges within a logical unit of storage regardless of whether the /O requests
specify overlapping or non-overlapping address ranges. Once the nodes 2626 are formed, the
scheduler 2602 arranges the nodes into a data structure 2624 (e.g., a binary tree) using, for
examplé, parent and/or child pointers to other nodes, which may, but need not, exhibit

substantially adjacent address ranges 2616 within a logical unit of storage 2612 (2706).

[0362] The scheduler 2602 can execute (2708) operations 2620 associated with the I/O
requests 2604 by first searching the binary tree 2626 to confirm that no I/O requests with
overlapping address ranges are contained within its nodes 2626 ahead of this request. Execution
of the operations associated with the request can take place in stages, by queuing the operations

in operation queues as described above. For exafnple, a write operation associated with an I/O
request can be executed, and another write operation directed to the same or overlapping address -
specified in a later-occurring I/0 request can be executed after the first write operation is

complete, such that the processing of the two requests occurs in an orderly manner.

[0363] In ohe embodiment, the operations 2620 queued by the scheduler 2602 are based on
one or more batches of I/O requests 2604 that were received during particular time intervals. In
- another embodiment, the operations 2620 queued by the scheduler 2602 can oceur in
substantially real-time, as the I/O requests are received. In }}et another embodiment, the
scheduler 2602 may initially queue operations 2620 in a batch mode and then subsequently
rearrange the operation queues 2620 based on I/O‘requests 2604 received in substantially real-
time. Regardless of the particular queuing methodology implemented, the scheduler 2602 can
maintain and update the binary tree data structure 2624 by adding, removing, and/or splitting

—108 -

WO 2006/023994 PCT/US2005/030168

nodes within the structure as corresponding I/O requests 2604 are added, processed, and/or
removed. For example, the scheduler 2602 can remove one or more nodes 2626 from the binary
with other, as yet unperformed, I/O requests (2710). If a new I/O request is received and is not
directed to an address that overlaps those already in the binary tree 2624, then the scheduler 2602
can expand the binary tree 2624 by forming a new node corresponding to the non-overlapping
address of that new I/O request (2712) and can add such new node to the binary tree 2624, which
may (but need not) subsequently result in a rearrangement of the operations within the operation
qﬁeues 2622. If a new I/O request is received and is directed at addresses that overlap those
alreadyl in the binary tree 2624, then the scheduler 2602 can split one or more of the existing
nodes 2626 in the binary tree into multiple nodes to ensure that each node 2626 in the binary tree
2624 contains non-overlapping addresses (note that splitting nodes is faster than creating and

integrating new nodes into the binary tree 2624) (2714).

[0364] In this manner, the binary tree 2624 remains substantially up-to-date and can support
ongoing queuing operations by the scheduler 2602, particularly with respect to determining
whether newly-received I/O requests are associated with addresses that overlap those of
operations 2620 that may already be queued in one or more of the operation queues 2622. As
new I/O requésfs are received, the scheduler 2602 can rapidly search through the nodes 2626 of
the binary tree 2624 to determine whether there is any overlap in the address ranges specified by
the new I/0 request relative to the address ranges that are associated with already existing and/or
already queued requests and/or operations. As previously discussed, operations associated with
newly-received I/O requests with non-overlapping addresses relative to those in the binary tree
2624 can be queued without undue concern for executing such operation out of order, whereas
overlapping addresses require more careful consideration to ensure that operations are performed

in a proper order to avoid data corruption problems.

[0365] With reference now also to the exemplary embodiment of a binary tree as illustrated
in FIG. 36A, a scheduler software process 2602 can form a first node 2802 (i.e., Node 0) of a
binary tree data structure 2624 (FIG. 34) by, for example, associating information pertaining to‘
an 1/0 request that exhibits the earliest receipt time (i.e., I/O request 0) wifh the first node 2802.

As above, the associated information may include the following: an identifier 2804 of a logical

- 109 -

WO 2006/023994 PCT/US2005/030168

unit of storage targeted by the I/O request, one or more pointers 2806 to one or more I/0
requests, one or more pointers 2808 to operations and/or operation sequences associated with the
I/O requests, and/or one or more pointers 2810 to non-overlapping address ranges associated
with the I/O requests. The node 2802 can also include a pointer 2812 to a parent node, if such
parent node exists (otherwise to null), as well as, pointers 2814, 2816 to one or more child nodes,
if such child nodes exist (otherwise to null). One of the child pointers 2814 may be subsequently
redirected to a child node associated with a lesser address range, while the other child pointer

2816 may be redirected to a child node associated with a larger address range.

[0366] With reference now also to FIG. 36B, the scheduler 2802 can expand the binary tree
by, for example, forming a new node 2818 associated with another, later-received, I/0 request
(i.e., I/O Request 1) that is directed at an address range 2820 (i.e., addresses 16-32) that does not
overlap that of the existing node 2802 (i.e., addresses 0-15). In order to maintain the clarity of
the figures, FIGS. 36B-36D do not repeat all of the information (previously described in
connection with node 2802 in FIG. 36A) associated with the depicted nodes, but those skilled in

the art will recognize that analogous information for each such node would exist.

[0367] With reference now also to FIG. 36C, the scheduler 2602 can expand the binary tree
by splitting one or more existing nodes 2802 in response to receiving a new I/O request that is
directed at an address range (i.e., addresses 8-11) that overlaps the address ranges (i.e., addresses
0-15) associated with one or more of such existing nodes 2802, where each of the resulting nodes
in the binary tree are organized such that they are associated with non-overlapping address
ranges. For example, Node 0 2802 of FIG. 36B that was originally associated with addresses 0-
15 can be split into two additional nodes 2822, 2824 (i.e., Nodes 2 and 3) whose address ranges
(i.e:, addresses 0-7 and 8-11, respectively) do not overlap the updated address range of Node 0
2802 (i.e., addresses 12-15). The pointers, identifiers, and/or other information associated with
each of the nodes 2802, 2818, 2822, 2824 can be updated as necessary to reflect the updated tree
structure. For example, the address range pointer 2810 in Node 0 2802 can be modified to point
to address range 12-15 within a particular logical unit of storage, an address range pointer 2826
of Node 2 2822 can be formed and directed at address range 0-7 within the logical unit of
storage, an 1/0 request pointer 2828 of Node 2 2822 can be formed and directed to a I/O request
0, an address range pointer 2830 in Node 3 2824 can be formed and directed at address range 8-

-110-

WO 2006/023994 PCT/US2005/030168

11 within the logical unit of storage, and two 1/O request pointers 2832 of Node 3 2824 can be
formed and directed to a I/O Requests 0 and 2 (since both these requests are directed at addresses
~ 8-11). Similarly, other node information, such as pointers and identifiers directed to associated

operation sequences, operations, and/or parent or child nodes can be updated to form the updated

binary tree data structure. -

[0368] With reference now also to FIG. 36D, the scheduler 2602 can modify the binary tree
by removing one or more nodes when a corresponding I/O request is completed. For example,
Node 0 2802 and Node 2 2822 of FIG. 36C can be removed from the binary tree when I/O -
Request 0 is completed, since such nodes do not reference any other I/O requests (i.e., their I/O
request pointers 2806, 2828 are directed only at I/O Request 0). The remaining nodes 2818,
2824 in the binary tree can be reorganized to reflect a new tree hierarchy and their associated
information can be similarly updated to reflect their independence from the removed nodes 2802,
2822. For example, the I/O request pointers 2832 of Node 3 2824 can be updated to point only
at I/O Request 2 and not at I/O Request 0, since I/O Request 0 has already been fulfilled, and the
parent and child pointers of Nodes 1 and 3 2818, 2824 can be modified to reflect the new
.hierarchy of the binary tree.

[0369] Although the embodiments discussed above in connection with FIGS. 36A-36D are
relatively simplistic to maintain the clarity of this disclosure, those skilled in the art will
recognize that the disclosed technology can be applied to a large number of I/0 requests that may
exhibit various types of interactions affecting multiple logical units of storage, where each such 4
logical unit of storage (or parts thereof) includes a set of nodes arranged in a distinct binary tree.
As previously discussed, these binary trees enable one or more schedulers 2602 to quickly search
the address range pointers of the binary tree for address ranges specified by newly-received /O
requests to ascertain whether any pending I/O requests, whose operations may be in process or

. queued for processing, overlap the address ranges of the newly-received /O requests. The
scheduler can thus use the search results to quickly determine whether it is possible to start
execution of the operations associated with the request. For large number of requests, this
efficiency can be beneficial for performance. The disclosed téchnology can also be applied to

other types of queuing data structures and/or to other types of commands/requests.

~111-

WO 2006/023994 PCT/US2005/030168

[0370] CHECKPOINTING

[0371] In one embodiment, the storage management device can be used to checkpoint copy-
on-write operation sequences, and these checkpoints may be useful in real-time recovery from o
storage management device failures. For example, in a storage management device designed
with redundancy , there may be one primary processing modulé assigned for processing I/O
operations directed to a particular data store, and one or more secondary processing module that
can complete processing of any in-process I/O operations of the primary processing module upon
detection of an error or failure in the primary processing module. Embodiments of the disclosed
technology enable such a secondary processing module, upon taking over for the primary
processing module, information useful for successfully processihg uncompleted I/O operations.
At the same time, embodiments of the disclosed technology facilitate use of these checkpoints in
a manner that is integrated with the storage of other transactional information, and lightweight

and easy to communicate.

[0372] . In addition, embodiments of the disclosed technology facilitate the use of processing
optimizations by the primary processing module, because the secondary processing module need
not be aware of any optimizations attempted by the primary processing module to successfully
take the place of the primary processing module in the event of failure, and the secondary
processing module can use the disclosed checkpointing information to determine what
processing the secondary processor needs to complete for any outstanding I/O operations. This
is particularly beneficial in a large system having multiple data stores in which there can be

thousands, tens of thousands, or more, I/O transactions outstanding at any given time.

[0373] Inone illustrative embodiment and with reference to FIGS. 37 and 38, a storage
maﬁagement device 2938 can intercept/receive an I/O request 2904 (e.g., a write request, a read -
request, etc.) from a host 2934 that is targeted at a particular current store 2944 (3002) and can,
in response thereto, identify a particular type of operation sequence from perhaps multiple such
operation sequence types 2910 (e.g., write request sequences 2912, read request sequences 2914,
etc.) that is associated with the I/O request 2904 (3004). By way of non-limiting example, an
exemplary write request sequence 2912 can include the operations discussed below with respect

to blocks 3006-3010 and 3014-3018 of FIG. 38.

—-112 -

WO 2006/023994 PCT/US2005/030168

[0374] The storage management device 2938 parses a write request 2904 to extract an
identifier 2916 of a storage device, as well as, a location 2918 (including, for example, a
particular beginning address and a data length) within the current store 2944 to which current
data specified by and/or included with the write request 2904 is to be written. The storage
management device 2938 reads data 2920 (referred to herein as “original data”) stored within the
éurrent store 2944 at the location 2918 (3006) and copies such data 2920 to a destination location
2922 in a time store 2946 associated with a selected storage device (3008). Transactional
information 2926 associated with the write request 2904 is recorded in one or more data
structures, files, and/or databases (not shown) and may include, for example, device identifiers
2916 associated with the current store 2944 and/or time store 29"46, a write request identifier
2928 that uniquely identifies the write request 2904, the locations 2918, 2922 within the current
store 2944 and time store 2946 affected by the write request 2904, a time 2930 that the write
request 2904 was received, and/or other types of information associated with the write request
2904 (3010). The transactional information 2926 can be recorded before, after, or at the same

time as the copying of data 2920 to the destination location 2922.

[0375] If the original data 2920 is not successfully copied to the destination location 2922
and/or if the transactional information 2926 is not properly recorded, then the storage
management dévice 2938 will generate an error message that may be communicated to a user of
the storage management device 2938 and/or to other entities or software processes associated
therewith (3012). Otherwise and upon a successful copy of data 2920 and recordation of
transactional information 2926, the storage management device 2938 generates an indicator 2932
(referred to herein as an “index checkpoint™), which confirms that the data copy and
transactional information recordation operations have completed successfully, and this index
checkpoint 2932 is subsequently stored or‘re;corded, for example, as part of the transactional

information 2926 (3014).

‘[0376] Following the generation and storage of the index checkpoint 2932, the storage
management device 2938 writes the current data (also referred to as “payload data”) specified by
the write request 2904 to the appropriate location 2918 within the current store 2944 (3016). If
the current data is not successfully written, then an error message may be generated (3012).

Otherwise, the storage management device 2938 generates an indicator 2933 (referred to herein

-113 -

WO 2006/023994 PCT/US2005/030168

as a “release checkpoint”), which confirms that the current data has been successfully written to

the desired location 2918 in the current store 2944, and this release checkpoint 2933 is

~ subsequently stored/recorded as part of the transactional information 2926 (3018). Theindex =
checkpoint 2932, release checkpoint 2933, and/or other transactional information 2926, can be

generated for each write request and/or other type of storage transaction event and can thus be

used to recover from storage transaction failures (e.g., power failures, hardware failures, data

corruption events, etc.) with a granularity that enables data recovery, storage command queue
regeneration/synchronization, and/or storage system reconfiguration to occur at a time that is, for

example, substantially coincident with just prior to the occurrence of the storage transaction

failure.

[0377] Index and release checkpoints 2932, 2933 can be used to enhance the fault tolerance
of a storage system, particularly with respect to hardware failures and/or power failures that may
affect a processor module or other type of device that Mites to and/or reads from a storage unit.
For example, fault tolerant systems that include a primary processor module and one or more
standby processor modules can benefit from the disclosed technology in situations where the
primary processor module fails and one of the standby processor modules assumes primary
control over interactions affecting one or more storage units by enabling a storage
command/operation queue within the standby processor module to be substantially identical with
that of the primary processor module at a point in time just prior to or coincident with its failure.
In this manner, the standby processor module can assume its responsibilities without having to
re-execute commands or perform other operations, which may have been already performed by
the primary processor module prior to its failure and which may not have been otherwise
communicated to the standby processor module. The disclosed technology can also be used to

replicate a history of queued I/O requests and/or associated operations for analysis or other

purposes.

[0378] Inone illustrative embodiment and with reference now to FIG. 39, a standby
processor module (not shown) can include one or more request queues 3102 containing, for
example, I/O requests 3104 received at particular times and targeted at particular addresses
and/or address ranges 3106 of one or more logical units of storage 3108. The I/O requests 3104 '

in a particular request queue 3102’ may, but need not, be organized to affect the data stored at

~114-

WO 2006/023994 PCT/US2005/030168

addresses in a particular logical unit 3108°, while I/O requests in other request queues 3102”’
may be organized to affect data stored at addresses in a different logical unit 3108”. The
 standby processor module can also include one or more operation type queues 3110 that may, for
example, include operations associated with the I/O requests 3104 in one or more request queues
3102. Each operation queue 3110 may, but need not, contain only operations of a particular
type. A first illustrative operation queue 3110i may contain a number of operations where one or
more of such operations are associated with I/O request 3104°* (corresponding to, for example, a
write request) and involve reading original data from a first address range 3106” of a logical unit
of storage 3108 associated with a current store 2944 (FIG. 37). A second illustrative operation
queue 3110ii may contain a number of operations where one or more of such operations are
associated with /O request 3104°" and involve copying original data from the first address range
3106” of the current store 2944 to a location in a time store 2946. A third illustrative operation
queue 3110iii may contain a number of operations where one or more of such operations are
associated with I/O request 3104°” and involve recording transactional information 2926 (FIG.
37). A fourth illustrative operation queue 3110iv may contain a number of operations where one
or more of such operations are associated with I/O request 3104’ and involve generating an
index checkpoint 2932. A fifth illustrative operation queue 3110v may contain a number of
operations where one or more of such operations are associated with I/O request 3104°” and
involve writing payload data to the address range 3106” of the logical unit 3108’. A sixth
illustrative operation queue 3110vi may contain a number of operations where one or more of
such operations are associated with I/O request 3104°” and involve acknowledging that the
payload data was successfully written to the address range 3106” of the logical unit of storage
3108’. A seventh illustrative operation queue 3110vii may contain a number of operations where
one or more of such operations are associated with I/O request 3104°” and involve generating a

release checkpoint 2933.

‘ [0379] Inone illustrative recovery process that uses index checkpoints 2932 and/or release
checkpoints 2933 to recover from a hardware/power failure and with reference now to FIGS. 39
and 40, a storage management device 2938, storage system administrator, and/or other type of
entity tasked with monitoring and/or recovering from such failures can detect error messages
and/or other types of error indicia, which are indicative of a hardware failure and/or power

failure. In order to ensure that contents of the requesf queues 3102 and operation-queues 3110 of

—115-

WO 2006/023994 PCT/US2005/030168

a standby processor module conform to the content of corresponding queues of a now failed
primary processor module, the storage management device 2938 can evaluate each of the I/O
requests 3104 in its request queues 3102, based at least in part on corresponding index and/or
.release checkpoints 2932, 2933, to determine whether such I/O requests 3104 were previously
fulfilled or partially fulfilled by the primary processor module prior to its failure. Upon making
such determinations, the storage management device 2938 can modify the request queues 3102
and/or operation queues 3110 of the standby processor module so that they substantially conform
to the I/0 requests and associated operations that were queued in the primary processor module

prior to its failure.

[0380] For example, the storage management device 2938 can search the request queues
3102 of the standby processor module to identify one or more I/O requests 3104 that were
queued prior to a failure of the primary processor module (3202). For each of the identified /O
requests, the storage management device 2938 can determine whether an associated index
checkpoint 2932 exists by, for example, searching for such index checkpoint 2932 in a data
structure, file, database, and/or other type of data repository that is communicatively coupled to
the storage management device 2938 (3204). In one embodiment, the checkpoints are recorded
with other information about the write requests in the database storing the location of overwritten

data and other information described above.

[0381] If an associated index checkpoint 2932 is not located (signifying in the case of a
copy-on-write request that original data has not been successfully copied from a current store
2944 to a location within a time store 2946), then the storage management device 2938 can
queue a complete set of operations associated with the I/0 request 3104 within one or more of
the operation queues 3110 of the standby processor module for subsequent execution (3206).
Otherwise, the storage management device 2938 can determine whether an associated release
checkpoint 2933 exists by, for example, searching for such release checkpoint 2933 in the
aforementioned data repository (3208). If an associated release checkpoint 2933 is not located,
then the storage management device 2938 can queue a subset of the operations associated with
the I/O request 3104 within one or more of the operation queues 3110 of the standby processor
module (3210). For example and in the case where the I/O request corresponds to a copy-on-

write operation sequence, the subset of queued operations can include operations that write the

-116 -

WO 2006/023994 PCT/US2005/030168

payload data specified by the I/O request to a particular location within a logical unit of storage
3108, acknowledge that the payload data was successfully written, and/or generate a release
checkpomt associated with such request Otherwise and if the associated release checkpomt
2933 is located (signifying that the primary processor module completely fulfilled the I/O o
request prior to its failure), then the storage management device 2938 can remove the operations
associated with such 1/O request from the operation queues 3110 of the standby processor
module (3212).

[0382] The aforementioned methodology can be repeated for each I/O request 3104 in the
request queues 3102 of the standby processor module and thereby conforms the queues of the
standby processor module to the corresponding queues of the now failed primary processor
module. In this manner, the request and operation queues 3102, 3110 of the standby processor
module are purged of outdated requests and operations, thereby minimizing, and perhaps entirely
eliminating, the amount of unnecessary and/or otherwise undesirable operations that would
otherwise need to be performed as a result of inconsistencies in the queues of the primary and
standby processor modules upon a hardware/power failure event. Once the standby processor
module’s queues 3102, 3110 have been purged of undesirable operations and requests and/or
loaded with desirable operations, as discussed above, the remaining operation sequences in such
operation queues 3110 can be executed in accordance with the I/O request sequences in the
request queues 3102. At this point, the hardware/power failure recovery effort has been

completed and the standby processor module can resume normal queuing operations.

[0383] Those skilled in the art will recognize that the aforementioned methodology is merely
illustrative and that a wide variety of analogous methods can be performed to produce
substantially the same result. For example, the existence of an associated release checkpoint

2933 can be determined prior to determining the existence of an associated index checkpoint
2932.

[0384] WRITE REQUEST RECORDATION FOR ENABLING MAP GENERATION

[0385] In general, in another aspect, the invention relates to methods and devices for
recording write requests that are directed to a data store, which has associated with it a current

store and a time store, and to methods and devices for enabling the generation of at least a

- 117 -

WO 2006/023994 PCT/US2005/030168

portion of a time map of at least a portion of the data store (e.g., of the current store or some sub-
portion thereof) for a past time. As mentioned above, a time map is a map that is generated at a
present time and that has the current locations of data that was stored in at least one portionof

the data store at a specified past point in time.

[0386] As also mentioned above, in one embodiment, a time map is generated by a
computing device (e.g., a storage management device as described above) when, for example, a
user requests at a present time an image of at least one portion of the data store (e.g., of the
current store or some sub-portion thereof) at a past time. By generating the time map, the
computing device eliminates the need, on each and every request for data covered by fhe image
or a portion thereof, to search through an entire index for locations of old data. Rather, by
referring to the time map, the computing device can quickly and efficiently determine the
locations of the data stored in the at least one portion of the data store at the past time, and,
therefore, quickly and efficiently respond to user requests. Accordingly, system efficiency is

improved and user satisfaction increased.

[0387] While generating a time map improves upon the speed with which data stored in at
‘least one portion of a data store at a past time can be accessed, the present aspect of the invention
relates to methods and devices for recording write requests that are directed to the data store and

that thereby improve upon the speed with which the time map itself can be generated. In
addition, the present aspect of the invention facilitates the quick presentation of data stored in the

data store at a past time, even if the time map is still being generated.

[0388] In one embodiment, upon a request for a prior image, a computing device begins to
generate a time map. If, before the time map is complete, a user makes a request for data
covered by a portion of the image and the data’s location has not yet been entered into the time
map, the system can search for the data quickly enough to provide a reasonable response time,
even though the response will not be as fast as it would be if the time map were complete and
used. As described herein, instead of searching through an entire index for the locations of the
past data, only a portion, or portions, of the index need to be searched in order to respond to the

user’s request for the data covered by the portion of the image. The work done in generating this

-118-

WO 2006/023994 PCT/US2005/030168

response (e.g., the determination of the data’s Jocation) can also be stored in the time map, such

that the system’s overall efficiency is improved.

IS R DR SR Las ety

' [0389] Thus, in one embodiment, 1ipon ' request for creation of a prior image, a time thap 'is
generated, for example as a background process. If a request for data is directed to the prior
image, but the location of the requested data is not yet indicated by the time map (e.g., the time
map has not yet been fully generated), the techniques described herein are used to identify the
Jocation of the requested data, and to respond to the user’s request for the data. The time map is

then updated with the location of the requested data.

[0390] In brief overview, in one embodiment of this aspect of the invention, a first
computing device (e.g., a storage management device as described above) receives multiple
write requests from a second computing device (e.g., a host as described above). The first
computing device stores a record of these write requests. In one embodiment, at least one first
database table and a second database table are used to record information relating to the write
requests and to track any changes effected by the write requests on the data store. More
specifically, for each write request that is received, the first computing device records a write
request entry in a first database table. The write request entry contains information relating to
the received write request. Moreover, each time that a write request entry is recorded a first
database table, the first computing device updates, if necessary, a record in a second database
table. The data contained in the records of the second database table represents in summary form
the write requests directed to the data store. In one embodiment, for example, the data contained
in the records of the second database table specifies the particular units of storage in the data

store that were overwritten as a result of implementing the write requests.

[0391] According to one feature of this aspect of the invention, the first computing device is
able to rapidly and efficiently interpret the data stored in the records of the second database table
to determine which particular units of storage have been overwritten. Moreover, in one
embodiment, given a particular past point in time, and charged with the task of generating a time
map, the first computing device is able to interpret the data stored in the records of the second
database table to identify a subset of a'plurality of first database tables to search for write request

entries that are relevant to the generation of the time map. In other words, in one embodiment,

-119-

WO 2006/023994 PCT/US2005/030168

the invention eliminates the need for the first computing device to search through all first
database tables and through all write request entries when generating a time map. Accordingly,

overall efficiency is improved, and rapid generation of the time map is made possible.

[0392] Additionally, in another embodiment, if, before the time map is complete, a user
makes a request for data stored in the data store at the past time, whose current location is not yet
indicated by the time map but would be if the time map were complete, the first computing
device is still able to rapidly and efficiently identify the location of the data, without having to
search through all of the first database tables, and to respond to the user. The work done in

generating this response, moreover, may be used in completing the time map.

[0393] FIG. 41 illustrates one embodiment of a storage management device 3338 that
récords write requests directed to a data store and that enables the generation of at least a portion
of a time map of at least one portion of the data store (e.g., of a current store of the data store or
some sub-portion thereof) for a past time. Generally speaking, the storage management device
3338 may have the capabilities of, and may be implemented as, the storage management devices
described above, with the additional functionality described here. It should be understood that

other implementations are also possible.

[0394] In one embodiment, the storage management device 3338 uses at least one first
database table 3350, but typically multiple tﬁrst database tables 3350, for recording a plurality of
write request entries. The storage management device 3338 also uses a second database table
3352, which includes at least one record for each first database table 3350 that is used by the
storage management device 3338. Moreover, the storage management device 3338 also includes
an updating module 3354 for updating at least one record in the second database table 3352 each
time that a write request entry is recorded in a first database table. As previously described, the
storage management device 3338 also manages at least one data store 3343 that has associated

with it a current store 3344 and a time store 33486.

[0395] Optionally, the storage management device 3338 can also include an identification
module 3356, a searching module 3358, a time map generation module 3360, and an I/O module
3362. Inresponse to a request for data stored in at least one portion of the data store 3343 (e.g.,

in the current store 3344 or in some sub-portion thereof) at a past time, the storage management

-120-

WO 2006/023994 PCT/US2005/030168

device 3338 may use the identification module 3356 to interpret the one or more records in the

second database table 3352 and thereby identify one or more first database tables 3350 to search
searching module 3358 to perform such search and, having found the relevant write request |
entries, may use the time map generation module to generate at least a portion of a time map of

at least one portion of the data store for the past time. Moreover, the storage management device

3338 may use the I/O module 3362 to respond to a read request for data stored in at least one

specified unit of storage located within the data store 3343 at a past time.

[0396] - The first database tables 3350 and the second database table 3352 can be
implemented in any form; way, or manner that is useful for recording write request entries and
records, respectively. In one embodiment, for example, the first database tables 3350 and/or the
second database table 3352 are implemented as spreadsheets. Alternatively, the first database
tables 3350 and/or the second database table 3352 can be implemented as text or tabular
delimited files, bitmaps, arrays, trees, indices, ledgers, or any other means useful for organizing

data.

[0397] For their part, the updating module 3354, the identification module 3356, the
searching module 3358, the time map generation module 3360, and the I/0O module 3362 may be
implemented in any form, way, or manner that is.capable of achieving the functionality described
below. For example, the updating module 3354, the identification module 3356, the searching
module 3358, the time map generation module 3360, and/or the /O module 3362 may be
implemented as a software module or program running on a microprocessor, and/or as a
hardware device, such as, for example, an application specific integrated circuit (ASIC) or a field

programmable gate array (FPGA).

[0398] The data store 3343 may have the capabilities of the data stores described above, and
| may be implemented with the current stores and time stores described above, with the additional
functionality described here. For example, the data associated with one or both of the current
store 3344 and the time store 3346 may be stored in the memory of the storage management
device 3338 or in a physical store (not -shown), which for its part can be either directly stored, or

virtualized, etc.

-121 -

WO 2006/023994 PCT/US2005/030168

[0399] Typically, the storage management device 3338 receives multiple write requests from
one or more other computing devices, such as, for example, the hosts described above. The write
‘requests are directed to the dg’ga} store 3343 In one Pﬂrjticular embodiment, the write requests are
directed to the current store 3344 of the data store 3343. In one such embodiment, each time that
the storage management device 3338 receives a request to write new data to one or more
specified blocks of the current store 3344, the storage management device 3338 performs, as
previously described, a copy on write operation. In other words, the storage management device
3338 copies the existing data stored in the specified blocks of the current store 3344, writes the
existing data to another location such as within the time store 3346, and then writes the new data
to the specified biocks of the current store 3344. As part of this copy on write operation,
information about the write request, including the new location of the overwritten data, may be
recorded in a first database table 3350. The second database table 3352 is then updated to reflect

the execution of the write request and the recordation of information associated with the write

request in the first database table 3350.

[0400] Referring now to FIG. 42, in brief surhmary of one embodiment of 2 method 3400 for
recording write requests directed to a data store, for examl;;le using the exemplary storage
‘management device 3338 of FIG. 41, the storage management device 3338 records in at least one
first database table 3350, following the execution of éach write request (e.g., following each
copy on write operation described above), a write request entry (step 3404). The storage
management device 3338 also maintains, for e_ach first database table 3350,A at least one record in
a second database table 3352 (step 3408), and updates at least one record in the second database
table 3352 each time that a write request entry is recorded in a first database table 3350 (step
3412), for example by using the updatihg module 3354.

[0401] In one embodiment, when constructing a time map or otherwise determining the
location of data that was stored in a specific unit of storage, and typically at a later time than
steps 3404, 3408, and 3412, the storage management device 3338 uses the identification module
3356 to iﬁterpret one or more records in the second database table 3352 to identify at least one
first database table 3350 to search (step 3416), and uses the searching module 3358 to search the
at least one identified first database table 3350 (step 3420). The storage management device

3338 then generates, using the time map generation module 3360, at least a portion of a time

-122 -

WO 2006/023994 PCT/US2005/030168

map of at least one portion of the data store 3343 (e.g., of the current store 3344 or some sub-
portion thereof) for a past time (step 3424), and/or responds, using the I/O module 3362, to a
read request for data stored in at least one specified unit of storage located within at least one

portion of the data store at a past time (step 3428).

[0402] In greater detail, and with reference now to both FIGS. 42 and 43, in one
embodiment, following receipt by the storage management device 3338 of a write request
directed to the data store 3343, the storage management device 3338 records, at step 3404, a
write request entry 3504 in a first database table 3350. Each write request entry 3504 includes
information relating to the write request. For example, the write request entry 3504 may include
an identification of at least one unit of storage located within the data store 3343 (e.g., within the
current store 3344) to which the write request was directed and/or a time at which the write

request was received by the storage management device 3338.

[0403] In one embodiment, each received write request results in the performance of a copy
on write operation as described above. In such an embodiment, each write request results in
previous data, previously stored at at least one unit of storage located within the data store 3343
(e.g., within the current store 3344), being copied to a new location, such as within the time store
3346 of the data store 3343. The data included in the write request is then written to the at the at
least one unit of storage located within data store 3343 (e.g., within the current store 3344) from
which the previous data was copied. Accordingly, the write request entry 3504 may also include
the new location (e.g., the location within the time store 3346) to which the previous data was

copied.

[0404] As illustrated in FIG. 43, when the storage management device 3338 receives more
than one write request directed to the data store 3343, the storage management device 3338
records a plurality of write request entries 3504 in a first database table 3350. In one
embodiment, the storage management device 3338 records all write request entries 3504 in a
single first database table 3350, for example the first database table 3350", until a maximum
number of write request entries 3504 is reached. Typically, the maximum number of write
request entries 3504 for the first database table 33501 is set for efficiency or because 6f the

memory capacity allocated to the first database table 3350'. Once the number of write request

-123 -

WO 2006/023994 PCT/US2005/030168

entries 3504 in the first database table 3350 reaches a maximum, the storage management
device 3338 employs a new first database table 33507 and records write request entries 3504
therein each time that write requests are received. Again, when the write request entrles 3504

recorded in the first database table 3350 reach a maximum, the storage management dev1ce

3338 employs a new first database table 3350° (not shown), and so on.

[0405] At step 3408, the storage management device 3338'maintains, for each first database
table 3350, at least one record 3508 in the second database table 3352. Referring to FIG. 43, at
least one portion of the data store 3343 (e.g., the current store 3344 of the data store 3343 or
some sub-portion thereof) may be conceptually organized by the storage management device
3338 into a number m of “buckets,” where m > 1 and each one of the m buckets relates to a fixed
number of storage units located within the at least one portion of the data store 3343. In one
such embodiment, for each first database table 3350, the storage management device 3338
maintains in the second database table 3352, as illustrated, a record 3508 for each one of the m
buckets. Alternatively, in another embodiment, the storage management device 3338 does not
divide the at least one portion of the data store 3343 into buckets. In such an embodiment (not
shown), the storage management device 3338 maintains a single record 3508 in the second

database table 3352 for each one of the first database tables 3350.

[0406] Referring still to FIG. 43, each record 3508 includes a plurality of bit entries, with
each bit entry being set (i.e., “1”) or unset (i.e., “0”). Moreover, in one embodiment, as
illustrated by the vertical alignment in FIG. 43 for the purposes of explanation, each bit entry in a
record 3508 corresponds to at least one unit of storage located within the at least one portion of

the data store 3343.

[0407] Initially, in one embodiment, when a first database table 3350 is empty (i.e., when no

write request entry 3504 has yet been recorded in the first database table 3350), all the bit entries
in each record 3508 associated with that first database table 3350 are unset (i.e.. “0”).
Thereafter, each time that the storage management device 3338 records a write request entry
3504 in that first database table 3350, the storage management device 3338 updates, at step 3412,
at least one record 3508 (assomated with that ﬁrst database table 3350) in the second database

table 3352. In one embodiment, the storage management device 3338 updates the at least one

~124-

WO 2006/023994 PCT/US2005/030168

record 3508 by using the updating module 3354 to set each bit entry in the at least one record
3508 that is unset and that corresponds to a unit of storage located within the at least one portion
of the data store 3343 that is oyer\fvriftt‘grxl’l?‘yl the wrlte request associated with the instant wrlte N
y1'request entry. Accordingly, éacﬁ bit entry that is set (i.e., “1”) in a record 3508 associated with a

first database table 3350 indicates that the at least one unit of storage located within the at least

one portion of the data store 3343 to which that bit entry corresponds has been overwritten at

least once during the development of that first database table 3350. On the other hand, each bit

entry that is unset (i.e., “0”) in a record 3508 associated with a first database table 3350 indicates

that the at least one unit of storage located within the at least one portion of the data store 3343 to

which that bit entry corresponds has not been overwritten at least once during the development

of that first database table 3350. As such, the data (i.e., the bit entries) of the one or more

records 3508 in the second database 3352 represents the effects of the write requests on a state of

the at least one portion of the data store 3343 (i.e., the data identifies at least one unit of storage

located within the at least one portion of the data store 3343 that was overwritten by a write

request).

[0408] Those skilled in the art will recognize that the five bit entries of each record 3508
illustrated in FIG. 43 are merely illustrative and used for the purposes of explaining the present
aspect of the invention. In practice, each record 3508 could include, for example, one or more
bytes of bit entries or one or more words (of any length) of bit entries. Moreover, while the data
of each record 3508 is illustrated in FIG. 43 as having a binary representation, each record 3508
could alternatively store its data in a decimal, hexadecimal, or other representation.
Furthermore, each record 3508 could include, in addition to the bit entries representing the
effects of the write requests on a state of the at least one portion of the data store 3343, an

identifier for identifying the first database table 3350 with which that record 3508 is associated.

. [0409] Having stored and indexed the data as just described, for example using the database
tables 3350, 3352 as above, the storage management device 3338 can efficiently determine
whether the write request entries 3504 of the first database tables 3350 are associated with writes
to a particular unit of storage in the data store 3343. So, in response to a request, for example
from a user, for data stored in the at least one portion of the data store 3343 (e.g., in the current

store 3344 or in some sub-portion thereof) at a past time, the identification module 3356 of the

—125-

WO 2006/023994 PCT/US2005/030168

storage management device 3338 first identifies, at step 3416, at least one first database table
3350 to search for relevant write request entries 3504. In one embodiment, to identify which
first database table(s) 3350 to search, the identification module 3356 of the storage management
device 3338 determines which units of storage located within the at least one portion of the data
store 3343 have been overwritten. In one such embodiment, the identification module 3356 of
the storage management device 3338 determines, for éach unit of storage located within the at
least one portion of the data store 3343 that has a corresponding bit entry, whether at least one of
the records 3508 in the second database table 3352 has a bit entry for that unit of storage that is
set (i.e., “17).

[0410] More specifically, in one embodiment, for each particular unit of storage within the at
least one portion of the data store 3343, the identification module 3356 of the storage
management device 3338 performs a Boolean “OR” operation on the bit entries of the data in
each record 3508 that correspond to that particular unit of storage. For ease of explanation, and
with reference still to FIG. 43, when the storage management device 3338 has employed more
than one first database table 3350, this visually translates to performing a Boolean “OR”
operation on the columns of the data in the records 3508 that are vertically aligned. If the
Boolean “OR” operation returns a “1” for a particular column, the particular unit of storage that
corresponds to that column has been overwritten, and there is in at least one first database table
3350 one or more write requests entries 3504 associated with on or more write requests directed
to that particular unit of storage. Otherwise, if the Boolean “OR” operation returns a “0” for a
“particular column, the particular unit of storage that coﬁesponds to that column was not

overwritten at any time covered by the records 3508 in the second database table 3352.

[0411] Taking, for example, the exemplary data in the three records for bucket 1 of the at

_ least one portion of the data store 3343 illustrated in FIG. 43 (i.e., Record 1,1; Record 2,1; and
Record n,1), performing the aforedescribed Boolean “OR” operation on the vertically aligned bit
entries of these records (i.e., 10010 OR 10010 OR 01010) produces 11010 as a result. - This
result indicates that the first, secdnd, and fourth units of storage located within the at least one
portion of the data store 3343 represented in FIG..43 have been overwritten at some point in time
and that, for each one of those units of storage, at least one record 3508 for bucket 1 has a bit |

entry that corresponds to that unit of storage that is set (i.e., “17). The result also indicates that

—-126 -

WO 2006/023994 PCT/US2005/030168

the third and fifth units of storage located within the portion of the data store 3343 represented in
FIG. 43 have not been overwritten at a point in time covered by this data and that, for each one
of those units of storage, every bit entry in the records 3508 for bucket 1 that corresponds to that

unit of storage is unset (i.e., “0”).

[0412] The identification module 3356 of the storage management device 3338, upon
determining, for a particular unit of storage located within the at least one portion of the data
store 3343, that at least one record 3508 has a bit entry for that particular unit of storage that is
set (i.e., “17), identifies those one or more records 3508 that have a bit entry that is set for that
particular unit of storage. The identification module 3356 then also identifies the one or more
first database tables 3350 for which those identified records 3508 are maintained. In one
embodiment, to accomplish these steps, the identification module 3356 of the storage
management device 3338 first simply scans the relevant bit entries to determine which have been
set to “1.” Returning to our example involving the three records 3508 for bucket 1 of the at least
one portion of the data store 3343 illustrated in FIG. 43 (i.e., Record 1,1; Record 2,1; and Record
© n,1), the identification module 3356 of the storage management device 3338 scans the bit entries
of those records that correspond to the first, second, and fourth units of storage located within the
at least one portion of the data store 3343 illustrated in FIG. 43. The identification module 3356
of the storage management device 3338 need not, and does not, scan, however,} the bit entries of
these records that correspond to the third and fifth units of storage located within the at least one
portion of the data store 3343 illustrated in FIG. 43, because the identification module 3356
knows, as a result of performing the aforedescribed Bdolean “OR” operation, that they are all

unset (i.e., “0”).

[0413] As a result of so scanning the bit entries of those records 3508, the identification
module 3356 of the storage management device 3338 will then, according to the invention,
identify the following first database tables 3350 to search for write request entries 3504 that
relate to write requests that were made to the first, second, and fourth units of storage located

within the at least one portion of the data store 3343 illustrated in FIG. 43:

-127 -

WO 2006/023994 PCT/US2005/030168

Unit of Storage First Database Tables to Search
First 3350, 3350°
Second 3350"
Fourth 3350', 33507, 3350"

\\\\\\\\\\\\\\\\\\\\ — T SNSRI DR SR LR LR B LR AR R A

[0414] After the identification module 3356 has identified, at step 3416, the one or more first
database tables 3350 to search, the searching module 3358 of the storage management device
3338 searches, at step 3420, those identified first database tables 3350. At this point, it should be
recalled that the storage management device 3338 will have been requested, for example by a
user, for the data stored in at least one portion of the data store 3343 (e.g., in the current store
3344 or in some sub-portion thereof) at a past time. Accordingly, in one embodiment, for each at
least one unit of storage located within the at least one portion of the data store 3343 that has a
corresponding bit entry in a record 3508 that is set (e.g., returning to our example above, for each
of the first, second, and fourth units of storage in the at least one portion of the data store 3343
illustrated in FIG. 43), the searching module 3358 of the storage management device 3338
performs the following steps. First, the searching module 3358 searches the write request entries
3504 of the first database tables 3350 identified, as described above, by the identification module
3356. The searching module 3358 then determines from those write request entries 3504 a first
4time following the past time at which previous data stored at that at least one unit of storage was
copied to a new location (such as within the time store 3346 of the data store 3343) as a result of
performing the aforedescribed copy on write operation, and was overwritten at that at least one
unit of storage. Having determined that first time, the searching module 3358 then determines
from a write request entry 3504 the new location, for example within the time store 3346, to
which the previous data was copied at that first time. It is at this new location that the previous
data is now currently stored. The new location is used to generate at least a portion of a time
rﬁap of the at least one portion of the data store 3343 for the past time, and/or to respond to a
user’s read request for data stored in the at least one portion of the data store 3343 at the past

* time, each as described below.

[0415] Of course, in some embodiments, even though a unit of storage located within the at
least one portion of the data store 3343 has a corresponding bit entry in a record 3508 that is set,
the searching module 3358 will be unable to determine a first time following the past time at

which previous data stored in that unit of storage was copied to a new location (e.g., within the

-128 -

WO 2006/023994 PCT/US2005/030168

time store 3346) and was overwritten at that unit of storage. One example of where the
searching module 3358 will be unable to make this determination is where the unit of storage
Iocated within the at least one portion of th?c‘dgltgl §F9F?.3343 was overwritten at a tlme pr19r| to
| the past time, but was not ovérertteﬁ a‘t e; time following the past time. In such a case, the data
stored in that unit of storage at the past time will not have been copied to a new location, but will

instead still be, at the present time, stored in that unit of storage.

[0416] As explained above, where the Boolean “OR” operation returns a “0” for a particular
column of vertically aligned bit entries in FIG. 43, the particular unit of storage in the at least one
portion of the data store 3343 that corresponds to that column was not overwritten at any time
covered by the records in the second database table 3352. Accordingly, in such a case, the data
stored in that particular unit of storage at the past time will also not have been copied to a new

location, but will instead still be, at the present time, stored in that unit of storage.

[0417] In one embodiment, after the searching module 3358 has identified, for each unit of
storage located within the at least one portion of the data store 3343, the location at which the
data stored in that unit of storage at the past time is now currently stored (whether, as explained,
it is still in that unit of storage or it is in a new location, such as within the time store 3346), the
time map generation module 3360 of the storage management device 3338 generates, at step
3424, at least a portion of a time map of the at least one portion of the data store 3343 for the
past time. In one embodiment, the time map generation module 3360 generates the time map by
mapping each unit of storage located within the at least one portion of the data store 3343 to the
location at which the data stored in that unit of storage at the past time is now currently stored.
The mapping may be, for example, as simple as recording in a database, for each unit of storage
located within the at least one portion of the data store 3343, an identification of the location at

which the data stored in that unit of storage at the past time is now currently stored.

[0418] In another embodiment, the storage management device 3338 receives a read request,
for examﬁle from a host as described above, for data stored in at least one specified unit of
storage located within the at least one portion of the data store 3343 at a past time. In one
embodiment, the read request is received after the time map generation module 3360 of the

storage management device 3338 has begun to generate a time map for the same past time, but

- 129 -

WO 2006/023994 PCT/US2005/030168

before it has completed the time map. In such a case, if the portion of the time map that is
complete covers the at least one unit of storage specified in the read request, the I/O module

3362 of the storage management device 3338 determines, at step 3428, the location of the data

\\\\\\\\\\\\\\\\ [N AR AR AR R

from the time map (which may be, as explained, the specified unit of storage located within the
at least one portion of the data store 3343 if the requested data has not been overwritten, or a new
location, such as within the time store 3346, if the requested data has been overwritten).
Alternatively, if, in such a case, the portion of the time map that is complete does not cover the at
least one unit of storage specified in the read request, or if, in other embodiments, the storage
nianagement device 3338 is not, for example, configured to produce a time map or has only
produced of begun to produce a time map for a past time that is different from that specified in
the read request, the storage management device 3338 performs step 3416 and 3420 of the
method 3400 described above. In so performing steps 3416 and 3420 of the method 3400, the
storage management device 3338 need not, however, perform the aforedescribed operations for
each unit of storage located within the at least one portion of the data store 3343. Rather, the
storage management device 3338 need only perform the aforedescribed operations of steps 3416
and 3420 of the method 3400 for each unit of storage specified in the read request. In other
words, the storage management device 3338 need only determine the new location(s) ;co which
the data previously stored at each unit of storage specified in the read request was copied and is

now located.

[0419] Having determined the new location, the I/O module 3362 of the storage management
device 3338, in responding to the read request at step 3428, reads the data from the new location
and transmits it to the requesting party, for example a host as described above. Moreover, in the
case where the time map generation module 3360 of the storage management device 3338 had
begun to generate a time map for a past time that is the same aé‘ that specified in the read request, -
but had not completed the time map at the time that the read request was received, and where the
portion of the time map that had been completed did not cover the at least one unit of storage
specified in the read request, the work done by the storage management device 3338 in

generating the response to the read request (i.e., performing steps 3416 and 3420 of the method
34‘00 to determine the new location(s) to which data previously stored at each unit of storage
speciﬁed in the read request was copied and is now located) may be used by the time map

generation module 3360 of the storage management device 3338 in completing the time map.

—130-

WO 2006/023994 PCT/US2005/030168

[0420] Those skilled in the art will recognize that the implementation of the method 3400
described above could be varied or modified in a variety of ways, while still employing the
described principles and without affecting methods’ results. For example, in one embodiment,
each bit entry in a record 3508 that is set could be represented by a “0”, as opposed to a “1”, and
each bit entry that is unset could be represented by a “1”, as opposed to a “0”. In such an
embodiment, in determining, for a particular unit of storage located within the at least one
portion of the data store 3343, whether at least one record 3508 has a bit entry for that particular
unit of storage that is set, the identification module 3356 performs a Boolean “AND” operation,
as opposed to the Boolean “OR” operation described above, on the bit entries of each record
3508 that correspond to that particular unit of storage. In such ai.'case, if the Boolean “AND”
operation returns a “0” for a particular column, the particular unit of storage that corresponds to
that column has been overwritten, and there is in at least one first database table 3350 one or
more write requests entries 3504 associated with on or more write requests directed to that
particular unit of storage. Otherwise, if the Boolean “AND” operation returns a “1” for a
particular column, the particular unit of storage that corresponds to that column was not
overwritten at any time covered by the records 3508 in the second database table 3508.
Moreover, as another example, a bit entry can be used to represent any number of units of

storage, as long as the translation is applied consistently when data is written and read.

[0421] DATA STORE RESTORATION

[0422] In general, in another aspect, the invention relates to methods and devices for
restoring a portion of a data store. In brief overview, in one embodiment of this aspect of the
invention, a first computing device (e.g., a storage management device as described above)
receives from a second computing device (e.g., a host as described above) a request to restore a
-portion of a data store to the data store’s content at a specified past point in time. In resi)onse to
the request, the first computing device then stores in the portion of the data store content that was
stored in that portion of the data store at the specified past time and that was overwritten since
the specified past time. In one embodiment, the specified past time is selected, for example by a
user at a host that is in communication with the storage management device, from a substantially
continuous time interval. In one such embodiment, the past time specified by the user can be any

point in time prior to the point in time at which the request is made.

-131-

WO 2006/023994 PCT/US2005/030168

[0423] FIG. 44 illustrates one embodiment of a storage management device 3638 that

restores a portion of a data store according to this aspect of the invention. Generally speaking,

|||||| LR EE N S R 1 R W

the storage management devices described above, with the additional functionality described

here. It should be understood that other implementations are also possible.

[0424] In one embodiment, the storage management device 3638 includes a receiver 3650
for receiving a request to restore a portion of a data store to its content at a specified past time,
and a storing module 3654 for storing in the portion of the data store, in response to the request,
content that was stored in the portion of the data store at the specified past time and that was
overwritten since the specified past time. As previously described, the storage management
device 3638 also manages at least one data store 3643 that has associated with it a current store
3644 and a time store 3646. Optionally, the storage management device 3638 may also include
an 1/0O module 3658 for servicing an I/O request directed to the portion of the data store 3643

that is being restored and a transmitter 3662.

[0425] The receiver 3650 and the transmitter 3662 can each be implemented in any form,
way, or manner that is useful for receiving and transmitting, respectively, communications, such
as, for example, requests, commands, and responses. In one embodiment, the receiver 3650 and
the transmitter 3662 are implemented as software modules with hardware interfaces, where the
software modules are capable of interpreting communications, or the necessary portions thereof.
In another embodiment, the receiver 3650 and the transmitter 3662 are implemented as a single
transceiver (not shown). For their part, the storing module 3654 and the I/0O module 3658 may
be implemented in any form, way, or manner that is capable of achieving the functionality
described below. For example, the storing module 3654 and the I/O module 3658 may each be
implemented as a software module or program running on a microprocessor, and/or as a

- hardware device, such as, for example, an application specific integrated circuit (ASIC) or a field

programmable gate array (FPGA).

[0426] The data store 3643 may have the capabilities of the data stores described above, and
may be implemented with the current stores and time stores described above, with the additional

functionality described here. For example, the data associated with one or both of the current

—132 -

WO 2006/023994 PCT/US2005/030168

store 3644 and the time store 3646 may be stored in the memory of the storage management
device 3638 or in a physical store (not shown), which for its part can be either directly stored, or

virtualized, etc.

[0427]) Referring now to FIG. 45, in brief summary of one embodiment of a method 3700 for
restoring a portion of a data store, for example using the exemplary storage manégement device
3638 of FIG. 44, the storage management device 3638 receives, at step 3704, a request to restore
a portion of the data store 3643 (e.g., a request to restore the current store 3644 of the data store
3643) to its content at a specified past time. The request can take any form, and can be
communicated, as non-limiting examples, in-band across a storage area network, as part of an
out-of-band command to the storage management device, comﬁunicated using a remote or local
console or control panel, through a graphical user interface, or in any other manner that such a
request as such can be communicated. After receiving the request at step 3704, the storage
management device 3638 stores in the portion of the data store 3643, at step 3708, content that
was stored in the portion of the data store 3643 at the specified past time and that was
overwritten since the specified past time. In one embodiment, the storage management device
3638 stores the past data (i.e., the content that was stored in the portion of the data store 3643 at
the specified past time) in the portion of the data store 3643 as if it was newly written data, such
that write operaﬁons are recorded, and the overwritten unrestored data preserved. This has the
benefit of allowing the user to immediately use the restored data, while still making it possible to
recreate the unrestored portion of the data store, for example for forensic or data recovery

purposes. In other words, all data stored in the data store 3643 is immutable.

[0428] Optionally, while storing in the portion of the data store 3643 the content that was
stored in the portion of the data store 3643 at the specified past time and that was overwritten
since the specified past time (i.e., while performing step 3708), the storage management device

3638 may service, at step 3712, an 1/O request directed to that portion of the data store 3643.

[0429] In greater detail, in one embodiment, the receiver 3650 of the storage management
device 3638 receives, at step 3704, the request to restore the portion of the data store 3643 (e.g.,
the request to restore the current store 3644 of the data store 3643) to its content at the specified

past time. The receiver 3650 may, for example, receive the request across a network (not shown)

-133 -

WO 2006/023994 PCT/US2005/030168

from a computing device (not shown) other than the storage management device 3638 (e.g., a
host as described above). In one embodiment, the portion of the data store 3643 that is requested
to be restored is a portion of the data store 3643 that is ‘formed from contiguous units of storage.
In another embodiment, the portion of the data store 3643 that is requested to be restored is a
portion of the data store 3643 that is formed from non-contiguous units of storage. Moreover, in
accordance with the invention, the past time specified in the request can be any point in time
‘prior to the point in time at which the request was made. In other words, the specified past time
can be selected, for example by a user at a host, from the substantially continuous time interval

that precedes the point in time at which the request is made.

[0430] In one embodiment, to store in the portion of the data store 3643, at step 3708,
content that was stored in the portion of the data store 3643 at the specified past time and that
was overwritten since the specified past time, the storing module 3654 of the storage
management device 3638 first identifies, at step 3708, units of storage within the portion of the
data store 3643 that had content stored in those units of storage at the specified past time and that
had that content overwritten since the specified past time. 'In other words, the storing module
3654 of the storage management device 3638 first determines whether units of storage located
within that portion of the data store 3643 were overwritten in the interval between the speciﬁed

past time and a present time and, if so, identifies such units of storage.

[0431] By way of example, the request received at step 3704 can be a request to restore the
current store 3644 of the data store 3643. Moreover, to further the example, in having processed |
a write request directed to one or more units of storage located within the current store 3644 of
the data store 3643, the storage management device 3638 can, as described above, have

performed a copy-on-write operation to store a copy of the data that was overwritten at those one
or more units of storage to the time store 3646. In such an exemplary case, the storing module |
. 3654 of the storage management device 3638 identifies, at step 3708, the units of storage located
within current store 3644 that had content stored thereat at the specified past time and that had
that content overwritten by a write request directed thereto since the specified past time. In one
embodiment, to facilitate such identiﬁcation, the storage management device 3638, as described
above, records information relating to the write requests that are directed to the current store

3644 of the data store 3643, and tracks any changes effected by the write requests on the current

~134 -

Aty

WO 2006/023994 PCT/US2005/030168

store 3644 of the data store 3643, by using the first database tables 3350 and the second database
table 3352 described above with respect to FIGS. 41-43.

[0432] In one embodiment of such an example, the storage management device 3638
analyzes, as described above, the records 3508 of the second database table 3352 in order to
identify the units of storage lodated within the current store 3644 of the data store 3643 that had
content stored thereat overwritten since the specified past tiﬁe. Having identified such units of
storage, the storage management device 3638 interprets the relevant write request entries 3504 of
one or more first database tables 3350, as described above with respect to FIGS. 41-43, in order
to ascertain the current locations of the data stored at such units. of storage in the current store

3644 at the specified past time.

[0433] In another embodiment of such an example, in performing step 3708 of the method
3700, the time map generation module 3360 (see FIG. 41) generates, as described above, a time
map (or a relevant portion thereof) of the current store 3644 of the data store 3643 for the
specified past time. The storing module 3654 can then simply refer to the time map in order to
identify the units of storage located within the current store 3644 of the data store 3643 that had
content stored thereat overwritten since the specified past time. More specifically, if the time
map indicates that the current location of data that was stored in a specified unit of storage in the
current store 3644 at the specified past time is still that specified unit of storage in the current
store 3644, the storing module 3654 is able to ascertain that that specified unit of storage has not
been overwritten since the specified past time. If, on the other hand, the time map indicates that
the current location of data that was stored in a specified unit of storage in the current store 3644
at the specified past time is a location within the time store 3646, the storing module 3654 is able
to ascertain that that specified unit of storage in the current store 3644 has been overwritten since
the specified past time. Moreover, as a consequence of interpreting the time map, the storing
module 3654 is also able to ascertain the current location of the data stored at that specified unit
of storage in the current store 3644 at the specified paét time. As further described below,
generating the time map at step 3708 is also useful for performing, optionally, step 3712 of the
method 3700.

-135-

WO 2006/023994 PCT/US2005/030168

[0434] It should also be understood that other implementations for identifying units of
storage within a portion of the data store 3643 that had content stored in those units of storage at
the specified past time and that had that content overwritten since the specified past time, as well

as other implementations for ésceftaining the current locations of the content that was stored in

those identified units of storage at the specified past time, are also possible.

[0435] Having identified such units of storage, and having ascertained the current locations
of the content that was stored in those identified units of storage at the specified past time, the
storing module 3654 of the storage management device 3638 writes to those identified units of
storage, at step 3708, the content that was stored in those identified units of storage at the
specified past time. In one embodiment, in writing such content to such identified units of
storage, the storing module 3654 performs a copy-on-write operation. In other words, the storing
module 3654 copies the current content currently stored in each identified unit of storage (i.e.,
the content stored in each identified unit of storage at the time the aforedescribed request was
made) before such current content is overwritten, and stores a copy of the current content at a
location different than the portion of the data store 3643 that is being restored. After storing the
copy of the current content to the location different than the portion of the data store 3643 that is
‘being restored, the storing module 3654 writes to the identified units of storage within the
portion of the data store 3643 that is being restored the content that was stored in those identified

units of storage at the specified past time.

[0436] In one embodiment, the storing module 3654 performs a copy-on-write operation for
each and every identified unit of storage. In another embodiment, the storing module 3654
performs a copy-on-write operation for each one of a plurality of subsets of the identified units of
storage. In yet another embodiment, the storing module 3654 performs a single copy-on—writé
operation for the all identified units of storage at a single point in time. Moreover, the storing
module 3654 of the storage management device 3638 may record information relating to such
copy-on—writé operations in a historical index, for example by using the first database tables

3350 and the second database table 3352 described above with respect to FIGS. 41-43.

[0437] In one embodiment, the storing module 3654 stores the current content (i.e., the

content stored in each identified unit of storage at the time the aforedescribed request was made)

- 136 -

WO 2006/023994 PCT/US2005/030168

to the time store 3646. By so saving the current content, the storing module 3654 implements a
non-destructive restore of the portion of the data store that is being restored. In other words, the
storing module 3654 preserves, for example in the time store 3646, a copy of all data stored to
the portion of the data store 3643 between the specified past time and the time at which the
aforedescribed request was made. Advantageously, if a user later requires access to such data,
for example in performing a forensic analysis of the data, it is ready available to such a user.
Moreover, the user always has the option, going forward, of making a request to restore the
portion of the data store 3643 back to its content as it existed just prior to the point in time at
which the initial request to restore that portion of the data store 3643 to its content at the

specified past time was made.

[0438] Optionally, while the storing module 3654 is storing in the portion of the data store
3643 the content that was stored in the portion of the data store 3643 at the specified past time
and that was overwritten since the specified past time (i.e., while the storing module 3654 is
performing step 3708), the I/O module 3658 of the storage management device 3638 may
service, at step 3712, an I/O request directed to the portion of the data store 3643 that is being
restored. The I/O request may be received, for example from across a network and from a
computing device other than the storage management device 3638, at the receiver 3650 of the

storage management device 3638.

[0439] In one embodiment, the I/O request is a read request for data.stored at the specified
past time in one or more units of storage located within the portion of the data store 3643 that is
being restored (i.e., the read request is for data that will be stored in those one or more units of
storage located within the portion of the data 3643 that is being restored once step 3708 is
complete). In one embodiment, in order to rapidly and efficiently respond the read request, the
I/O module 3658 refers to the time map generated by the time generation module 3360 as
described above with respect to FIG. 41 and step 3708 of the method 3700. The time map
indicates the current locations of the data stored in those one or more units of storage located
within the portion of the data store 3643 at the specified past time. The I/O module 3658 of the
storage management device 3638 then retrieves the data from the indicated locations and ’
transmits, using the transmitter 3662 of the storage management device 363 8; such data to the

computing device that made the read request.

- 137 -

WO 2006/023994 PCT/US2005/030168

[0440] In another embodiment, the received I/O request is a request to write data to one or
more units of storage located within the portion of the data store 3643 that is being restored. In

~ one such embodiment, the I/O module 3658 of the storage management device 3638 writesthe
data payload of the received write request to a location other than those units of storage located
within the portion of the data store 3643 that is being restored and to which the write request was
directed. For example, the I/O module 3662 writes the data payload of the received write request
to the time store 3646. In such a case, the I/O module 3662 records in a historical index, for
example in a first database table 3350 described above with reference to FIGS. 41-43,
information relating to the write request, such as, for example, the time at which the write
request was received, the-units of storage within the portion of the data store 3643 that is being
restored (e.g., the units of storage within the current store 3644) to which the write request was
directed, and the location within the data store 3643 (e.g., the location within the time store
3646) at which the data payload of the write request is stored. The I/O module 3662 also updates
the portion of the time map for the specified past time that relates to the units of storage located
within the portion of the data store 3643 that is being restored (e.g., the units of storage within
the current store 3644) to which the write request in question was originally directed. AIn one
-embodiment, the I/O module 3662 updates the time map by flagging those units of storage as
having had write requests directed to them subsequent to the time at which the restoration
request was made and by indicating the location within the data store 3643 (i.e., within the time
store 3646) at which the most current data payload is stored. Accordingly, in one such an
embodiment, subsequent read requests directed to the units of storage located within the portion
of the data store 3643 that is being restored and that have had write requests directed to them
subsequent to the time at which the restoration request was made are not serviced from those
units of storage, but, rather, from the location within the data store 3643 (e.g., from the location

within the time store 3646) at which the most current data payload is stored.

‘ [0441] = In one embodiment, once step 3708 is complete, the I/O module 3658 makes a copy
of the data payload of each write request that was serviced while step 3708 was being completed
from its then current storage location (e.g., within the time store 3646) and writes each copy of -
each data payload to the location within the portion of the data store 3643, which is now restored
to the specified past time, to which its respective write request was driginally directed (e.g., to a

location within the current store 3644). In one embodiment, these writes are performed using the

-138-

WO 2006/023994 PCT/US2005/030168

copy-on-write procedure described above and involve the recordation of information relating to
such writes in a historical index as described above (e.g., using the first database tables 3350 and
the second database table 3352 described above). Following such procedure, future read
requests and write requests may be serviced directly from the portion of the data store 3643 that

was previously restored to the specified past time (e.g., from the current store 3644).

[0442] FIGS. 46 and 47 present one example of how a portion of a data store may be
restored, for example by using the exemplary storage management device 3638 of FIG. 44. In
particular, FIG. 46 depicts an exemplary table 3800 that represents 14 exemplary units of storage
(e.g., blocks 1 through 14) of the data store 3643 at various times TO through T10. In this
example, at time TO, block 1 contains content A, block 2 contaiﬁs content B, block 3 contains
content C, block 4 contains content D, and blocks 5 through 14 are empty. It should be
understood that the content contained in the units of storage (e.g., blocks 1 through 14) can be
any sort of data, and that the letters are just used to differentiate the content. Moreover, in one
implementation, blocks 1 through 4 can represent all or a i)ortion of the current store 3644 of the
data store 3643 (see FIG. 44) and blocks 5 through 14 can represent all or a portion of the time
store 3646 of the data store 3643 (see FIG. 44), although this need not necessarily be the case.
According to the example, and as further described below, at times T1 through T7, the storage
management device 3638 processes write requests that are received from another.computing
device, for example a host as described above, and at times T8 through T10 the storage
management device 3638 processes write requests that are generated by the storage management
device 3638 in response to a request to restore a portion of the data store 3643 to its content at a

specified past time.

[0443] - FIG. 47 depicts an exemplary demonstrative first database table 3950 having write
request entries 1 through 10. The first database table 3950 may be implemented as a first
database table 3350 described above with reference to FIGS. 41-43. Thus, each write request
entry 1 through 10 of the first database table 3950 may include the time at which a write request
was received and/or processed by the storage management device 3638, and may also include the
location within the data store 3643 to which the write request was directed. Because the example .
assumes (although not a requirement) that each received and/or processed write request results in

the performance of a copy on write operation as described above, each write request entry 1

- 139 -

WO 2006/023994 PCT/US2005/030168

through 10 of the first database table 3950 may also include the new location within the data
store 3643 to which the previous data (i.e., the data previously stored at the location within the

...........

implementing the write request) was copied.

[0444] In this example, at time T1, the receiver 3650 of the storage management device 3638
receives a write request that is directed to block 1 and that has content E as a data payload. As
previously described and as assumed in the current example, in one implementation, each
received write request results in the performance of a copy on write operation. Accordingly,
when the write request is received at time T1, content A is first copied from block 1 (i.e., the
content stored at the location within the data store 3643 to which the write request is directed is
first copied) and stored at a new location within the data store 3638, in this example, block 5.
Then, the content E written to block 1. A write request entry, in this example write request entry

1, is recorded in the first database table 3950 to reflect this copy-on-write operation.

[0445] Similarly, when, at time T2, a write request entry directed to block 1 and having
content F as a data payload is received, content E is first copied from block 1 and stored to a new
location within the data store 3638, for example block 6, following which content F is written to
block 1. Again a write request entry, for example write request entry 2 of FIG. 47, is recorded in

the first database table 3950 to reflect this copy-on-write operation.

[0446] The storage management device 3638 performs such a copy-on-write operation at
each time T3 through T7 that a write request is received. At time T3, a write request entry
directed to block 3 and having content G as a data payload is réceived. At time T4, a write
request entry directed to block 2 and having content H as a da;[a payload is received. At time T3,
a write request entry directed to block 3 and having content I'as a data payload is received. At

~ time T6, a write request entry directed to block 2 and having content J as a data payload is
received. At time T7, a write request entry directed to block 1 and having content K as a data
payload is received. Thus, as shown, at time T7, blocks 1,2,3,4,5,6,7,8,9,10,and 11
contain contents K, J, I, D, A, E, C, B, G, H, and F, respectively.

[0447] * In this example, between time T7 and time T8, the receiver 3650 of the storage

management device 3638 receives a request to restore a portion of the data store 3643,

—140 -

WO 2006/023994 PCT/US2005/030168

demonstratively exemplified as blocks 1 through 4 to the content stored thereat at T2 or at a
specified time between times T2 and T3, say time T2.5. By using, for example, the records 3508
of the second database table 3352 (described above with reference to FIGS. 41-43), the write
request entries of the first database table 3950, and/or any time map generated as described
above, the storing module 3654 of the storage management device 3638 then determines the
current locations of the content that was stored in those blocks'1 through 4 at the specified past
time T2.5, and then writes to blocks 1 through 4 the content that was stored in those blocks at the
specified past time T2.5.

[0448] In one embodiment, the storing module 3654 of the storage management device 3638
determines the content that was stored in the blocks 1 through 4.at the specified past time T2.5
by determining, for each block 1 through 4, the first time following the specified past time T2.5

" at which the content at that block was overwritten and the location within the data store 3643 to
which the overwritten content was copied before being overwritten. Accordingly, and with
reference to FIG. 47, the storing module 3654 determines that block 1 was first overwritten
following the specified past time T2.5 at time T7 and that the location within the data store 3643
to which the overwritten content was copied before being overwritten is block 11. Similarly, the
storing module 3654 determines that block 2 was first overwritten following the specified past
time T2.5 at time T4 and that the location within the data store 3643 to which the overwritten
content was copied before being overwritten is block 8, that block 3 was first overwritten
following the specified past time T2.5 at time T3 and that the location within the data store 3643
to which the overwritten content was copied before being overwritten is block 7, and that the

content at block 4 was not overwritten following the specified past time T2.5.

[0449] - Having determined, for each of blocks 1 through 3, the first time following the
specified past time T2.5 at which the content at that block was overwritten and the location
within the data store 3643 to which the overwritten content was copied before being overwritten,
the storing module 3654 writes the copy of the previously overwritten data back to that block.
According to the example, in writing the copy of the previously overwritten data back to that
block, the storing module 3654 again performs a copy on write operation. Thus, at time T8, in
writing the content F stored at block 11 back to block 1, the storing module 3654 first copies the.

content K contained in block 1 at time T7 and writes the content K to block 12. A write request

— 141 -

WO 2006/023994 PCT/US2005/030168

entry, for example write request entry 8 of FIG. 47, is recorded in the first database table 3950 to

reflect this copy-on-write operation. Similarly, at time T9, in writing the content B stored at

||||||||||||||||| vttty

time T7 and writes the content J to block 13. A write request entry, for example write request
entry 9 of FIG. 47, is recorded in the first database table 3950 to reflect this copy-on-write
operation. Similarly again, at time T10, in writing the content C stored at block 7 back to block
3, the storing module 3654 first copies the content I contained in block 3 at time T7 and writes
the content I to block 14. A write request entry, for example write request entry 10 of FIG. 47, is
récorded in the first database table 3950 to reflect this copy-on-write operation. Because the
content ét block 4 was not overwritten following the specified past time T2.5, the storing module

3654 does not perform any such write operation on block 4.

[0450] Thus, as illustrated by the example, at time T10, blocks 1 through 4 of the storage
management device 3800 are restored to their content at the specified past time T2.5. Moreover,
the content K, J, I, and D that was stored in blocks 1, 2, 3, and 4, respectively, at the time
between the times T7 and T8 that the storage management device 3638 received the request to
restore those blocks to the content stored thereat at the specified past time T2.5 is preserved in
blocks 12, 13, 14, and 4, respectively. Accordingly, the storage management device 3638
implements a non-destructive restore of blocks 1 through 4 to the content stored thereat at the
specified past time T2.5. Even more speciﬁcally; a copy of all the content written to blocks 1
through 4 of the data store 3643 between the specified past time T2.5 and the time between the
times T7 and T8 at which the aforedescribed request was received by the storage management
device 3638, namely, a copy of content G, H, I, J, and K, is preserved at blocks 9, 10, 14, 13, and

12, respectively.

[0451] The present invention may be provided as one or more modules of one or more

- computer-readable programs embodied on or in one or more articles of manufacture. The article
of manufacture may be, as non-limiting examples, a floppy disk, a hard disk, a CD ROM, a flash
memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable
programs may be implemented in any programming laﬁguage. Some examples of languages that
can be used include C, C++, or JAVA. The software programs may be stored on or in one or

more articles of manufacture as object code.

—142 -

WO 2006/023994 PCT/US2005/030168

[0452] Variations, modification, and other implementations of what is described herein will
occur to those of ordinary skill in the art without departing from the spirit and scope of the
invention as claimed. Accordingly, the invention is to be defined not by the preceding

illustrative description but instead by the spirit and scope of the following claims.

[0453] What is claimed is:

—143 -

WO 2006/023994 PCT/US2005/030168

CLAIMS

1. A method for restoring a portion of a data store, the method comprising:

xxxxxxxxxxxxxxxxx

time, the specified past time selected from a substantially continuous time interval;
storing in the portion of the data store content that was stored in the portion of the data

store at the specified past time and that was overwritten since the specified past time.

2. The method of claim 1, wherein the storing step comprises:

‘ identifying units of storage within the portion of the data store that had content stored in
those units of stofage at the specified past time and that had that content overwritten since the
specified past time; and

writing to the identified units of storage the content that was stored in those identified

units of storage at the specified past time.

3. The method of claim 2, wherein the identifying step comprises determining whether units of
storage located within the portion of the data store were overwritten in the interval between the

specified past time and a present time.

4. The method of claim 3, wherein the identifying step further comprises, for each determined
unit of storage that was overwritten in the interval between the specified past time and a present

time, locating a stored copy of the content that was overwritten.

5. The method of claim 4, wherein the stored copy is located by locating the content associated

with the first write operation following the specified past time directed to such unit of storage.

6. The method of claim 5, wherein the stored copy was made during the execution of a copy-on-

write operation.
7. The method of claim 5, wherein the stored copy was recorded in a time store.

8. The method of claim 5, wherein the stored copy was stored in a collection of changes to the

data store.
9. The method of claim 8, wherein the collection is a database.

10. The method of claim 2, wherein the writing step comprises performing for at least one of the

identified units of storage a copy-on-write operation.

~144 -

WO 2006/023994 PCT/US2005/030168

11. The method of claim 2, wherein the writing step comprises copying current content currently

stored in each identified unit of storage before such current content is overwritten.

12. The method of claim 11, wherein copying the current content comprises storing the current.

content at a location different than the portion of the data store.

13. The method of claim 1, wherein the portion of the data store comprises contiguous units of

storage.

14. The method of claim 1, wherein the portion of the data store comprises non-contiguous units

of storage.

15. The method of claim 1, wherein the portion of the data store comprises the portion of a data

store storing data for an application.

16. The method of claim 1, wherein the request is included in a request to restore all or portions

of each of a plurality of data stores.

17. The method of claim 1 further comprising servicing an I/O request directed to the portion of
the data store while storing in the portion of the data store the content that was stored in the
portion of the data store at the specified past time and that was overwritten since the specified

past time.

18. A method for restoring a portion of a data store, the method comprising:
receiving a request to restore a portion of a data store to its content at a specified past
time, the specified past time selected from a substantially continuous time interval; and
in response to the request, for each unit of storage in the portion:
determining whether such unit of storage was overwritten in the interval between
the specified past time and a present time; and
in response to the determining step, for each unit of storage determined to have
been overwritten in the intervai between the specified past time and a present time:
locating a stored copy of the overwritten content;
copying the content currently in the determined unit of storage to a
‘respective saved unit of storage; A
storing in the determined unit of storage the located previously overwriﬁen

content; and

— 145

WO 2006/023994 PCT/US2005/030168

recording the occurrence of the storing step and the associated location of

the respective saved unit of storage.

 19. A device for restoring a portion of a data store, the device comprising:
a receiver configured to receive a request to restore a portion of a data store to its content

at a specified past time, the specified past time selected from a substantially continuous time

interval; and

a storing module configured to store in the portion of the data store content that was
stored in the portion of the data store at the specified past time and that was overwritten since the

specified past time.

—146 -

PCT/US2005/030168

WO 2006/023994

0¢

I "Old

JHOLS
TVOISAHd

[474

8¢ JOIN3A INFWIOVNVIN 3OVHOLS

oy
V 34018
AWIL

144
vV 3H01S
INIHHENO

oy

1SOH

ve

1/47

PCT/US2005/030168

WO 2006/023994

¢ Old

[01U0)) 1€

0€

@@?ﬁmom mN

%

ot L1

MYDPATIE[Y 91

Gl

U@?Emom .E

€1

YJ3uaT JoysueI]. 01

6

SSAIpPY 3001 Ted150] z

IPPVISY | UDSKY | dgd | peamwssy | Odd PoAIRSTY I
(Y0D) 9poD uonerad) | 0

0 I z ¢ ¥ 9 ngeig

2/47

PCT/US2005/030168

WO 2006/023994

€ Old

AL-EM VLVYA =X

AIN3IS3dd

Sl-1 %

6¢-1

ge-L

i 1 geL
8v-1

09-1

00§ X009

007 X009

00€ MO0O1d

002 X004

00} Y0074

1Svd
ANIL
JLIMM

JOVHOLS
40 1INN

V 3401S V1Vvd 40 AHOLSIH

3/47

PCT/US2005/030168

WO 2006/023994

¥ "Old

3J01S TVOISAHd

ge o JOINFA LNFWIDVYNVYIN IDVHOLS
oy : (05 8y ; (4
“ 00L9-L 000€-L - "
v ! ® 39V CERT m v 3401S
! ¥Old HOlMd _ v1va
<« >
J40LS INIL ! v 3HO0LS V J3H0LS ! LNIHINO
m v.iva viva "
N ! ;
~ : O "
T Ao
JOVII Ge T -
SOV LINIH¥HND _ “
HOomd FHOLS V1Va L V3OS
- 1
3HOLS Viva L | AUV |
- T —— N
- y

4/47

PCT/US2005/030168

WO 2006/023994

¢ 9OId

3H01S
TVOISAHd
9€

8
| T T e
“ b I oL !
i P o “
| 5 N 8 . v "
|| 3WOLSAWIL | 1 o JHOLS ANIL P FHOLSINIL | |
_ - | ! j
m | | m
. i Lo o |
z] !
‘ | = a _
. | L N |
- |
: ! O3¥OoLS! 834018} | vV 34OLS)|
- 30IA3a “ viva | | viva |t/ v.iva !
"LNIWIOVNYIN 3OVHOLS} b e |
: L (PSL T (Br) _
H BGCT-EN erov | A |
E H A AR '
| omwna@ KT L] (ovNA@) ! vadols |
! omvols [T gawols [TTITTT| ANSEMNo o
) ANIHENO b ANFHNENO b “
3 1 1 1 |
m | E m
Rl S Pl T GoLen |
LSOH.

e

5/47

PCT/US2005/030168

WO 2006/023994

061

9 'OId

961 _4/

_ e, 0 ()
S e _ \ N

LL 91 R |

_ (p) () “~_ (@) ()

261 | H————+ |
9L GIL ¥iL €LL 211 LIL
Sl vl €L (Al L
ANITIWIL FHOLS V1vda

0 3d01S viva
g J¥OoLs viva

VvV IHOLS viva

6/47

PCT/US2005/030168

WO 2006/023994

&)

MKQNM@S.N_:N

7/47

PCT/US2005/030168

WO 2006/023994

"y owi] e
abewl| Jold

8 'OId

S ~N AN X n

8/47

PCT/US2005/030168

WO 2006/023994

6 Old

8¢cc

8.¢

soepalU|
Jo3eiu]
86Z

pgz ©OBMSIU| MIOMON |eulsiyl

ogz MowaW

Ndo

06¢

v6¢ INOH

aoeus|
zez 1ebiel

kww

/

/

AJIAIA INFWIDVYNVYIN IOVHOLS

9/47

PCT/US2005/030168

WO 2006/023994

0L ‘Ol

J401S

TVOISAHd <
ool

1SOH

J0INIA INFWIDOVYNVYIN FOVHOLS

:whm
: J8lisse|n IaALQ Bpoy
v9€ eleq Jebie|
0B8] 9¢
2101g |BoISAUd 1eBeuepy o)) Log SOBHSIUL JSOH
REAN
€9¢ uayng ¥8E 8¢
- Iayisse|n J3AIQ SPON
ele abie
B ="e =T L=]| 29¢ *ed onieL
21013 |eaisAyd Jabeuep O/ L9¢ aoeI8)u| I1SOH
8.¢
£9¢ Jajng 8¢ Z8¢
Jayissen 19ALQ PO
o€ eleq j1ebie
—»> aoesu| 29¢ 1
210)s [edisAyd 1aBeuepy O/ L9¢ 9oBLIB)U| }SOH
3JOMIBN
Jeulsu|
8¢¢ 0g¢g

> oL

10/47

PCT/US2005/030168

WO 2006/023994

L1 "Old

0Ly

- 18)N0Y
O/l

abelols
jeuonoun

|ZA

9Ly

18]jou0)
21018
dwif

¢t YIOVNVIN O/l

- I8jjonuon

cly

21018
aung

11/47

PCT/US2005/030168

WO 2006/023994

¢l "Old

8E9

L

ANY1d TOHLNOD

895 B

!

il

34018
TVOISAHd <—
OL zpg

A 7252@ 4

LEEER RN 195 soepayy]
210)S [edisAyd 1SOH
299
Jabeuepy
V9Sa0epi0u] o/l L 9SG soeigyu)
210}3 [eoisAug 1SOH —>
ovg
29s .
vommomtwé_ Jabeue|y 195 oo
21013 [eaisAyg oil 1S0H
L ANV1d V1Va 99g]

1SOH
oL

12/47

PCT/US2005/030168

WO 2006/023994

¢l 9Old

J4018 TVOISAHd

99
3401S
JNIL
=
— — 79 —
189 689 I401S 169
d3AI3034 301A3Q 31NAON INIHHND 431 LINSNYYHL 30IA3Q
INFWIFOVYNVYIN 3OVHOLS NOILYNINYEL3d — INFNFOYNYIN 3OVHOLS
€79 89
34018 V1vd 301A3d
INFWIFOVYNYIN 3OVHOLS
ovw/“
€89 189
J3LLINSNYHL d3AIF03y
1SOH LSOH
069 A ¥€9 1SOH

13/47

WO 2006/023994 PCT/US2005/030168

700
STEP 704 ~

RECEIVE A REQUEST FOR A MODIFICATION 4
HISTORY FOR A LOCATION WITHIN A DATA STORE

STEP 708~ !

DETERMINE AT LEAST ONE TIME
AT WHICH AT LEAST A PORTION OF DATA
STORED AT THE LOCATION WAS MODIFIED

- —— - e e e e o e R o e e e ome b -

| IDENTIFY, FOR EACH DETERMINED TIME, AN !
. ADDRESS RANGE WITHIN THE DATA STORE AT WHICH !
t DATA WAS MODIFIED AT THAT DETERMINED TIME |

STEP 712~ l

TRANSMIT, IN RESPONSE TO THE RECEIVED REQUEST,
THE AT LEAST ONE DETERMINED TIME

—— e —— _—__._—_.__.____-__.—...__—._.__—____...

' ; TRANSMIT, IN RESPONSE TO THE RECEIVED REQUEST, 4
: THE AT LEAST ONE IDENTIFIED ADDRESS RANGE |

——__—-__—-.._...___...____—______-.-.__—__-.—.—._:

FIG. 14A

14/47

WO 2006/023994 PCT/US2005/030168

/ 700'
STEP 704'

RECEIVE A REQUEST FOR A MODIFICATION
HISTORY FOR A LOCATION WITHIN A DATA STORE

STEP 708'~, !

DETERMINE AT LEAST ONE TIME
FROM WHICH ALL OF THE DATA STORED
AT THE LOCATION WAS MODIFIED

STEP 712’ !

TRANSMIT IN RESPONSE TO THE RECEIVED REQUEST,
THE AT LEAST ONE DETERMINED TIME

: AN ADDRESS RANGE WITHIN THE DATA STORE
AT WHICH THE ENTIRE DATA WAS MODIFIED I

FIG. 14B

15/47

WO 2006/023994 PCT/US2005/030168

894 / 800
BYTEBIT | 7 6 5 | 4 3 2 1 0
0 OPERATION CODE (C1h)
1 RESERVED SERVICE ACTION (IF REQUIRED)
2 LOGICAL BLOCK ADDRESS
9
10 LENGTH
13
14 RESERVED
15 CONTROL
FIG. 15
900
994 v
BYTEBIT | 7 6 5 4 3 2 1 0
0 - ~ RESERVED
1
2 ~ INDICATOR
9 , _
10 LOGICAL BLOCK ADDRESS
13 |
14 LENGTH
21
2 | DETERMINED TIME OF CHANGE
29
30...n <REPEAT OF TUPLES>

FIG. 16

16/47

PCT/US2005/030168

WO 2006/023994

(VL1va‘'szi o) im
|

(V1va'v9'o) im
|

Ll Ol

(VLva'se'ool) 1M
]

(VLva'aL'z9) M
|

(VLva's'o) IM -
]

|
Gl

000}

I
vl

]
el

I
¢l

I
bl

17/47

WO 2006/023994

PCT/US2005/030168

1100
4

NEW ADDRESS
RANGE AT WHICH DATA
SPECIFIED ADDRESS COPIED, PRIOR TO
TIME AT WHICH RANGE TO WHICH DATA EXECUTING
THE WRITE OPERATION WAS WRITTEN THE WRITE OPERATION,
WAS EXECUTED IN EXECUTING FROM THE SPECIFIED
THE WRITE OPERATION ADDRESS RANGE
OF THE WRITE OPERATION
IS NOW STORED
T1 (LBA 0, LENGTH 8) (LBA 1000, LENGTH 8)
T2 (LBA 62, LENGTH 16) | (LBA 1008, LENGTH 16)
T3 (LBA 100, LENGTH 35) | (LBA 1024, LENGTH 35)
T4 (LBA O, LENGTH64) | (LBA 1059, LENGTH 64)
T5 (LBA 0, LENGTH 128) . | (LBA 1123, LENGTH 128)
FIG. 18
1204
!
BYTE/BIT 7 6 5 4 3 2 1 0
0 OPERATION CODE (C1h)
1 RESERVED | SERVICE ACTION (IF REQUIRED)
2 LOGICAL BLOCK ADDRESS (0)
9 A o
10 LENGTH (64)
13
14 RESERVED
15 CONTROL

FIG. 19

18/47

WO 2006/023994 PCT/US2005/030168

13;04
BYTEBIT | 7 6 5 4 3 2 1 0
0 RESERVED
1 |
2 INDICATOR (4)
3 |
10 LOGICAL BLOCK ADDRESS (0)
13
14 LENGTH (8)
21 -
22 DETERMINED TIME OF CHANGE (T1)
29
30 LOGICAL BLOCK ADDRESS (62)
33
34 LENGTH (16)
41
42 DETERMINED TIME OF CHANGE (T2)
49 |
50 'LOGICAL BLOCK ADDRESS (0)
53
54 LENGTH (64)
61
62 DETERMINED TIME OF CHANGE (T4)
69
70 'LOGICAL BLOCK ADDRESS (0)
73
74 LENGTH (128)
81 | ~
82 DETERMINED TIME OF CHANGE (T5)
89

FIG. 20

19/47

PCT/US2005/030168

WO 2006/023994

RARSIE

weOvl

667

1671) €6l
y¥344ng moﬁ\mm% vovnvaa | luaiowsnveL ¥IAIZOTY
827} TINCOW HOSSIDOHd ANODIS
£971 O wmmm 40 1671 G6) - gehl
y344ng Viva HOLYNTVAT H3LLINSNYYL EENEREN
.8/vL TINAOW HOSSID0Yd ANODIS
£O7) mommmm 40 1671) covl
¥344ng V1va HOLYNIVAZ HILLINSNYYL REINERER
8/7L I1NAOW ¥OSSID0Hd ANODIS
¥344ng V1va HOLYNTVAI H3LLINSNYYL EENEREN]

8/¥l ITINAOW HOSSID0Hd LSHIA

8¢yl 301A30 LNFWIOYNYIN IOVHOLS

20/47

WO 2006/023994 PCT/US2005/030168

1500
/

STEP 1504~

RECEIVE DATA FOR STORAGE

STEP 1508~ |

STORE A FIRST INSTANCE OF THE RECEIVED DATA
AT A FIRST STORAGE BUFFER

STEP 1512~ y

EVALUATE A FIRST COST EQUATION
TO IDENTIFY A SECOND STORAGE BUFFER

——— e - —— e e . e - A M e A e e o S - e Sy

EVALUATE A SECOND COST EQUATION :
| TOIDENTIFY ATHIRD STORAGE BUFFER - |

| STORE A SECOND INSTANCE OF THE RECEIVED DATA 1
| AT THE SECOND STORAGE BUFFER AND :
! STORE A THIRD INSTANCE OF THE RECEIVED DATA |
l AT THE THIRD STORAGE BUFFER - !

ot e - o Pt 0 W - e O S M e G S S e e e -

21/47

WO 2006/023994

MULTIPROCESSOR SYSTEM -

1638
MASTER PROCESSOR MODULE
1678
MASTER INTERNAL CLOCK
1675
SLAVE PROCESSOR MODULE
1678
SLAVE INTERNAL CLOCK
1675
SLAVE PROCESSOR MODULE
1678"
SLAVE INTERNAL CLOCK
1675"
SLAVE PROCESSOR MODULE
1@"
SLAVE INTERNAL CLOCK
1&5!"

FIG. 23

22/47

PCT/US2005/030168

WO 2006/023994 PCT/US2005/030168

1700
STEP 1702~ L o / _____
: INITIALIZE THE SLAVE PROCESSOR MODULE I
b . INTERNAL CLOCK :
STEP 1704~ |

REQUEST, AT A FIRST TIME ACCORDING TO THE SLAVE
PROCESSOR MODULE INTERNAL CLOCK, A CURRENT
TIME ACCORDING TO THE MASTER INTERNAL CLOCK

STEP 1708~ |

RECEIVE, AT A SECOND TIME ACCORDING TO THE SLAVE
PROCESSOR MODULE INTERNAL CLOCK, THE CURRENT
TIME ACCORDING TO THE MASTER INTERNAL CLOCK

4
A

’ ~So

.-~ DOES "*~+
STEP 1710~ -~ THE FIRSTTIME "~
““AGCORDING TO THE SLAVE ™™~ _

NO “PROCESSOR MODULE INTERNAL CLOCK ™
DL DIFFER FROM THE SECOND TIME ACCORDING TO™>
~~ . JHE SLAVE PROCESSOR MODULE INTERNAL _..-

~~_CLOCK BY LESS THAN A SECOND. -~

“~._ PREDETERMINED -~
~- AMOUNT? __-~

STEP 1712~ 1YES

COMPUTE AN EXPECTED TIME BY USING AT LEAST THE
FIRST TIME ACCORDING TO THE SLAVE PROCESSOR MODULE
INTERNAL CLOCK AND THE SECOND TIME ACCORDING TO

THE SLAVE PROCESSOR MODULE INTERNAL CLOCK

DOES
THE EXPECTED TIME
‘DIFFER FROM THE CURRENT TIME
ACCORDING TO THE MASTER
INTERNAL CLOCK?

STEP 1716

STEP1720~, [Yves
CORRECT THE SLAVE PROCESSOR MODULE
INTERNAL CLOCK -

|
FIG. 24

23/47

PCT/US2005/030168

WO 2006/023994

5.9}
0070 TYNYILNI ¥3LSVIN THL |
‘0L ONIGY00DY WL 000}
-]
| 028!
)
]
1
! 908
l
!
m 028}
918}
2181
>~ 008}

7081

0004

G299}

MNO0T0 TYNEILNI I 1NCAON
d0SS300dd AAVTS FHL OL
ONIQHOJJV INIL

24/47

WO 2006/023994 PCT/US2005/030168

STORAGE MANAGEMENT DEVICE
1938
1995
INDEXING MODULE
" 1996
RECEIVER MEMORY
1997
MAPPING MODULE
1962
PROCESSOR
1999
IMAGE GENERATION
MODULE

FIG. 26

25/47

PCT/US2005/030168

WO 2006/023994

¢ Old

019 (¥ ‘ot '0052) ¥'2) 206¢ 1621 ~ 0107
0219 (¥ '2¢ 1062) (v ‘) 2052 062} ~ 0L0Z
2419 | (598 ‘0052) (S91) 205C 88z1 ~ 0102
0019 | (Ll ‘9 ‘0052) (1 '0) 2052 182} ~ 0107
(NN L39YYL NO Y.Lva
o | R | MEEONOLOT gy q
| VLva 1Svd 40 NAT LIONYL NO NNTL1IDYVL 40 dl | 1SINOIY-TLIEM
NOILYOO1 JOVHOLS 40 SLINN

* 6007

26/47

PCT/US2005/030168

WO 2006/023994

8¢ 9ld

L ‘6% 0052
oL
Q3ddvin
G ‘68 ‘0062 b /€ 1062 |
oL CETNEREREEN ol Q3LINISTHITY
Q3ddvi 10N ~ q3ddw 1ON
119 INIL : L
X 0z |6k |8h|z]ol toble|elL]o |
4V 40 MIIA - ‘ “joiz
| _ |
L G 0
THOLS INTHHND JHOLS INTHHND
2052 N1 NI 2052 NN
G ‘580052 GL-0L SMD0TA LY b /€ ‘1052 60 S¥0019 LY
oL a3L1v001 Y.Lvd oL ~431¥0071V1va
Q3ddvin GAINISTUd LN 03ddvi ‘G3LNISTIIY LON
[VINIL ~ T —T— |
NOLLYHANID 1 g0 1 6y f gy | /) | oy ARREE
TVILINT LY
dVIN 40 MIIA 001z

_ | | |
Gl 0} g 0

27/47

WO 2006/023994 PCT/US2005/030168

HOST 2234}
I/lO REQUEST TIME

1286 6100
1287 6114

1290 6121

2240
OPERATION MEMORY 2296 2238
e |/O REQUEST 1286
OPERATIONS 1286- 1,2, 3,4,5 ﬁmgﬁgmm
e |/0 REQUEST 1287 | DEVICE
OPERATIONS 1287 -1, 2,3, 4,5 -
e |/O REQUEST 1290
OPERATIONS 1290 - 1, 2 R 2262
LUN QUEUES | . 2221 PROCESSOR
[LUN 1 QUEUE |
| LUN 2 QUEUE | | |~
: v ~-2280
[LUN X QUEUE . , ‘ |
OPERATION - TYPE QUEUES 2222
| OPERATION-TYPE QUEUE FOR WRITE-DATA OPERATION |
| OPERATION-TYPE QUEUE FOR INDEX OPERATION | <
[OPERATION-TYPE QUEUE FOR RELEASE OPERATION |
e el X2282
: 2236 !
1 e———— —E— —enE— e— 1
i LUN 1 LUN 2 LUN3J = * * [LUNX| i
]
! PHYSICAL STORE !

e o G St e S A S e e e e e A e e e et e et G S e et e e - v - -

28/47

WO 2006/023994 PCT/US2005/030168

STEP 2304 ~,

RECEIVE I/0 REQUEST

STEP 2305~ |

EXTRACT A SET OF ORDERED OPERATIONS
ASSOCIATED WITH THE I/0 REQUEST

STEP 2306 ~ v

PLACE THE FIRST OPERATION IN THE SET
INALUN QUEUE

STEP 2307 < v

PROCESS SUBSEQUENT OPERATIONS IN THE SET
IN OPERATION-TYPE QUEUES

FIG. 30

29/47

PCT/US2005/030168

WO 2006/023994

1€ 9Old

V.LYa |Z NOILYH3dO | L NOILYH3dO wmammwwm%
3SVITEY | MIN | J01InST | NIavRY [Ngaaug | LM 69 €05z | 1621 |SzL9
LM | IHLXAANT | YLYA LM | v Gos 4
39VHOLS 40
— | — — eV EREY ﬂ__%w%mmﬁ avay 86-92 z0sz | ozl |1zi9
V.Iva avay
VLVQ | Z NOILYH3dO | 1 NOILYY3dO Mmmmmww% |
3SVII3Y| MIN | J0.0INST | NIavay | S iNSeaug | LM 6272 208z | 687k |0z19
LM | 3HLXIANI | VLYA 3LRM | iy v
, V1V |Z NOILYY3dO | 1 NOILYSIdO wmumm%%
3SVITRY | MIN | J01TnS3Y | Niavad | SiNGRaey | 3Lm 0Z-91 205z | 887k | 119
: LM | SHLXIONI | YLYA LM | N vg Goe
: VLYQ |2 NOILYY3dO | | NOILYYIdO wm_«mmwomm&m
3SVATRE | MIN | 40170S3 | Niavad | SiIEEST | atkm 8212 zosz | 821 |vLi9
VLVQ | Z NOLLYY3dO | 1L NOILYMado | 39VHOLS HO ~
3sva13d | MIN | J0Lmns3y | Niavay |SHINRAIRVLE Sium | gio 20 | sz |oove] 7
AL | THLXAANI | VYO ILRM | v Gyas
(saLAq)
1SN0 A8
G p ¢ Z | EIREREE]
Zm_mw%m mmmw%m_nz #NMT Emm_o&
SNOILYd3d0 40 138 Ol | T¥OI907 [139WvL| O/ |3l AN/QNN

30/47

PCT/US2005/030168

WO 2006/023994

§-68¢1

£l6dl

G-88¢1

G-/8¢1

§-98¢1

7-68¢1

cleclh

v-18¢)

7-98¢1

v-88¢21

£-68¢1

£-88¢)

€8¢}

£-98¢)

681

£-98¢)

¢-88¢)

¢18¢l

98¢l

¢e 9Old

EVENEL
MIN-ILIIM
X3ANI
ONILSIXI-ILIIM

4Sv313y
MAN-ILIEM

: X4ANI
ONILSIXI-ALIEM

ERVEEL
MAN-ILIHEM
XAAN|
ONILSIX3-3LIIM

ERVERE!:
MIN-ILIEM
X3ANI
ONILSIXF-ILIEM

ERVE R
MIN-ILI-EIM
X3ANI
ONILSIX3-LIWM

ERNENE]S
MIAN-ILIEM

XANI

ONILSIX3-3LIEM

ERVEIEL
MIN-ZLIEM
X3AaNI
ONILSIX3-3LIdM

SENEN
3dAL-NOILYYIdO
40 3LVLS

_ [1-06Z1 |

_ | 1-062) |

_ [1-062} |

_ | 1-062 |

| 1-0621 | 1-682} |

| 1-6821 | 1-28C) |

| |

| | 1-98¢1 |

(LSYT10L 1SHI4d)

d30d0 ONISS300Hd
3IN3ND €052 NN

(LSYT0OL LS¥id)
¥3AYO ONISSID0Nd
3N3ND 205Z NN

6¢19

Lcl9

ARY

VCl9

acl9

6119

0019
JNIL

31/47

PCT/US2005/030168

WO 2006/023994

J40LS

>
'

e Old

40IA40 INFWIOVYNYIN 3OVHOLS

TVOISAHd ~
Ol

8cae

F1NAOW
ONIHOLvd

A

Y

F1NAOW ONININD
IdAL-NOILYH3dO

(4414

9¢G¢
31NAON
LNIWIOVYNVIN
ONISS300Hd

J1NAON
ONIN3ND NN

XA

A

\ 4

Y

vese
100d

£¢al

J1NAON
ONIX3ANI

SNOILYH3dO

TAtTA

HOLVY3INIO
SNOILYH3dO

S1S3N03Y
O/l

Y

veSe

1SOH

32/47

PCT/US2005/030168

WO 2006/023994

33

w0C9¢C SNOILVH3dO -

w819¢ A JON3NO3S NOILVH3dO

#0¢9¢ SNOILVHIdO - -
»8192 ¢ IONINDIS NOILYH3dO

0¢9¢ SNOILV44dO -

819¢ | ION3INOES NOILYHIdO

e 'Old

Y

¥192 X SLINN TVOID0T

«919¢

«¢29¢ M 3N3ND NOILYHIdO
L .

2292 1 IN3NO NOILYIdO

9c9¢

A

Y

§35S3004d

A

\

J4YMLH0S
d431NA3HOS

w0z 4

A

Y

N 26 SS3WAQY
> m
9} SST™AAY
29192 :
J 71 SS3Waav
) :
g SSTYAAY
i
9L9¢ | 0.SS3¥AQV -

2192 | LINNn V210071

9092 -

019¢ X 3IN3ND LS3N03Y

~ 7092 AL INIL LY ¥ 1S3N03Y O

7

//‘
>
>

— .v09¢ 2L INIL LY ¢ 1S3N03H O/l
[~ $09¢ LLINIL LY | 1S3NDFA O/l

¥29¢ FYNLONYLS VLVA ONINANO

f 3

809¢ } 3IN3ANO 1S3NO3Y

33/47

PCT/US2005/030168

WO 2006/023994

34

S3SS34AAY ONIddYTIIAO-NON
JA3IHOY Ol
3341 AYVYNIE NI S3AON 1i1dS

S3A

¢
S35S34aay
ONIddVTd3A0
HLIM SLS3ND3Y
M3N ANV

300N M3N WOH4

ANY

¢S1S3n03Y
d3n3aNo ONINIYNTY

S3A

¢
$3SS34AqY
ONIddVT4IAO-NON
HLIM S1S3ND3Y
M3IN ANY

Nw 17 3LYIMdOYddY d ‘3L AVNIE WO
S3AON ONIANOdSIHH0D IAOWIY

S3A

¢3131dN0D
1S3N03Y 3INO
1SVAT 1Y

5

804¢ "

N3N0 3LNo3X3

A

S1S3NO3Y a3

3

90/7 1 FaNLONYLS VLVA 3L AYYNIE ¥ NI SIAON FONVYHYY

A

A

0,7~ STONYY SS3HAAY ONIddVTHIAO-NON OL ONIANOISIHHOD STAON WHOA

AV

20z~ FNIL LdI3O3E ANV SNNT LIOHVL HLIM FONVAH020V NI SLSINOIY 0/ ININD

34/47

WO 2006/023994 PCT/US2005/030168

35

TIME=0
EVENT: FORM BINARY TREE BY ACCESSING /O REQUEST 0
WITH EARLIEST RECEIPT TIME
NULL

PARENf NODE POINTER 2812

NODE 0 2802

LUN IDENTIFIER 2804
/~ POINTER TO I/O REQUEST: @ 2806
POINTERS TO OPERATION SEQUENCES 2808
AND RELATED OPERATIONS
POINTERS TO NON-OVERLAPPING 2810
ADDRESS RANGES:

NULL | g RigHT NULL
CHILD NODE CHILD NODE
POINTER 2814 POINTER 2816
FIG. 36A
TIME =7 .

EVENT: EXPAND BINARY TREE WITH I/O REQUEST 1
- NON-OVERLAPPING ADDRESS (16-32)

NODE 0 2802 NULL

PTR. TO /0 REQUEST: [0] NODE 1 2818

PTR. TO ADDRESS RANGE: FIRICIGREQUEST

NULL PTR. TO ADDRESS RANGE: [16-32

NULL - NULL

FIG. 36B

35/47

PCT/US2005/030168

WO 2006/023994

36

09¢ 9Old

TINN , TINN
0e8T
/" [11-8] :39NvY $S3AAY OL Mld

¢t8e .

[280] 'S153N03 O/ 0L "dld TINN

TINN TINN

2691 “ONYH SS3AAY OL ld Vese £300N /-G 3oNvy SS34A0Y OL HLd
[1]:1S3n03y 0/1 0L Hld Y 8282 [0]:153n034 0N 0L ¥Ld
0182
818¢ | 300N Gl -Z1] ‘IONVY SS3MAaY 0L Wld ¢e8z ¢ 300N
9082 [0]:153N03Y 0/ OL dLd
2082 03AON

TN
| (11-8) SSAXAAY ONIddVTHINO -

¢ 1S3N03Y O/ 3LVHOddOONI O1 0 3AON LINdS -INIAT
0l =dWIL

36/47

WO 2006/023994 PCT/US2005/030168

, TIME = 11
EVENT: MODIFY BINARY TREE TO REFLECT COMPLETION OF /O REQUEST 0

NULL

NODE 3 2824

PTR. TO O REQUEST:[2] 2832 NODE 1 2818

PTR. TO l/O REQUEST:

PTR. TO ADDRESS RANGE: [16 - 32

NULL NULL

FIG. 36D

37/47

WO 2006/023994 PCT/US2005/030168

STORAGE MANAGEMENT DEVICE 2938

OPERATION SEQUENCE TYPES 2910

WRITE REQUEST SEQUENCES 2912
) READ REQUEST SEQUENCES 2914
2904 !
/0 .
REQUEST
HOST |- o007 | TRANSACTIONAL INFORMATION 2926

AN
2934 WRITE REQUEST IDENTIFIER 2928

DEVICE IDENTIFIERS 2916
LOCATION OF CURRENT DATA 2018
LOCATION OF COPIED DATA 2922
TIME-WRITE REQUEST RECEIVED 2930
INDEX CHECKPOINT 2932

RELEASE CHECKPOINT 2933

A A

CURRENTSTORE | 2044 2046 | TIMESTORE
ADDRESS 1 ADDRESS 1
s 2008 | R
{ADDRESS5 l [ADDRESS 15
ADDRESS 105, - | aooREss 20
: 2920 : 2920
* ADDRESSN ADDRESSP

FIG. 37

38/47

WO 2006/023994 PCT/US2005/030168

RECEIVE WRITE REQUEST ~
-3002
Y
IDENTIFY OPERATION SEQUENCE 3004
Y
READ ORIGINAL DATA AT LOCATION
TARGETED BY WRITE REQUEST 3006
COPY ORIGINAL DATA
TO A DESTINATION LOCATION -3008
\
RECORD TRANSACTIONAL INFORMATION 3010
I - 3012
A
RECORDATION Rl I
SUCCESSFUL? _— MESSAGE
A 3014 T
YES y
GENERATE AND STORE INDEX CHECKPOINT
Y
WRITE PAYLOAD DATA
TO CURRENT STORE LOCATION
L\
3016
WRITE “NO
SUCCESSFUL
. ?
YES
GENERATE AND STORE RELEASE CHECKPOINT N -
3018

FIG. 38

39/47

PCT/US2005/030168

WO 2006/023994

6¢ Old

- g 1S3N03Y JO4 LNIOdMOIHO 3SVITAY ALVHINTO -

IAQLLE
ANAND £ 3dAL NOILYYIdO
ngLre— 8 1SINDIY YO ILIMM AYOTAYd IDATIMONNOY -~
3N3N0O 9 3dAL NOILYH3dO
AQLLE -+ g 1S3N0IY YO VLVYA AYOTAV JLIMM -
H AN3N0 § 3dAL NOILYHIdO
oL A 8 LSIN0TY HO4 LNIOIMOTFHO XIANI FLYHINTD -
ANAND ¥ IdAL NOILYHIdO
morre— @ 1S3N03Y HO4 04N TYNOILOYSNYHL QHODTY -~
: 3N3N0 € IdAL NOILYHIdO
H0LLE - g 1S3N0IY Y04 YLYd TYNIOIHO AJOD -
aN3NO Z 3dAL NOILYYIdO
0L1E 8 1S3N03Y ¥04 vLva TYNIDINO avay —

3N3NO | 3dAL NOILYH3dO

(0¢ wwm.mm_a,q

«801€
X 1INN

TVOI901 |

(0l SSAAY | g0l¢
: L1 1INN

{ gssayaay | VOI9OT

/7L zssadaay
90L€ | ss3YAqy J

«¢0L€ X'IN3ND LS3INDIY

w701 AL INIL 1Y N 1SINDIY O/l

—.701€ ¢1 INIL 1V 8 LS3N03d O/l
—.70Le L1 INIL LV V 1SN0 O/

«¢0L€ | 3N3N0 1S3N03Y

40/47

WO 2006/023994

PCT/US2005/030168

IDENTIFY AN 1/O REQUEST QUEUED PRIOR | -3202

TO FAILURE
A
DETERMINE | -3204
WHETHER AN ASSOGIATED INDEX CHECKPOINT EXISTS 2906
[}
QUEUE ALL
INDEX
pesooiten |
FOUND? :
FOR EXECUTION
YES |
DETERMINE | ~3208
WHETHER AN ASSOCIATED RELEASE CHECKPOINT EXISTS 3240
f’
RELEASE QUEUE A SUBSET
OF ASSOCIATED |
FOUND?
FOR EXECUTION
YES
REMOVE | ~3212
ASSOCIATED OPERATIONS FROM OPERATION QUEUES

Y

YES ANY OTHER

TO FAILURE?

I/l0 REQUESTS QUEUED PRIOR

41/47

PCT/US2005/030168

WO 2006/023994

Ly OId
L i | agss C P
29 oo | | 8ec ! | 9gee
| JINCON Rl e . FINCON | 3INCON_|
TR | ONIHOHY3S | NoLv 1Nl
— ¢Gee 31avl 0S€€ s37avL
EVEE 3HOLS VLVQ 3SvavLya aNOO3S 3SVAVLYQ LSHld

pSEE
TINAOW
ONILYAdN

8EEE IDIAAA INIWIOYNYI JOVHOLS

42/47

WO 2006/023994

PCT/US2005/030168

3400
4

STEP 3404

RECORD IN AT LEAST ONE FIRST DATABASE TABLE
A PLURALITY OF WRITE REQUEST ENTRIES

STEP 3408 ~, '

MAINTAIN, FOR EACH FIRST DATABASE TABLE, AT LEAST
ONE RECORD IN A SECOND DATABASE TABLE

STEP 3412 Y

UPDATE AT LEAST ONE RECORD
IN THE SECOND DATABASE TABLE

i
STEP 3416 ~, ;

1

IDENTIFY AT LEAST ONE FIRST DATABASE TABLE

TO SEARCH

STEP 3420 ~ v

SEARCH THE AT LEAST ONE IDENTIFIED FIRST

DATABASE TABLE

STEP 3424 ~

/

} -STEP3428

GENERATE |
FOR DATA STORED IN AT LEAST |
AT LEAST A PORTION ONE SPECIFIED UNIT OF STORAGE

OF A TIME MAP OF AT LEAST ONE |—
PORTION OF A DATA STORE LOCATED WITHIN AT LEAST ONE

FOR A PAST TIME ‘ AT A PAST TIME -

RESPOND TO A READ REQUEST

PORTION OF A DATA STORE

FIG. 42

43/47

PCT/US2005/030168

WO 2006/023994

b

0(0

0

|

WU q¥003y
g06e—"

0

0]1

b

0

Wz 04003y
g0ge—"

80G€

~

0

0]0

0

0

W} @403y

W 13%ong

¢v Old

4 AYLNT LSIN0TY FLIEM

¢ AJLNT 1S3N0FY FLI-HM
| AYLNT 1S3N0FY LM

]

)

-70GE

-70GE
-70GE

u0SEE 319VL 3SVEvLva LSHId

b AYLN3 1SAN0TY FLI¥M

¢ AYLN3 1S3N0FY LM
| A4LN3 1S3N03Y FLI-kdM

]

)]

- 90E

-70GE
-705E

z06€E 3718Vl 3SvYavLva LSYi4

Llofolo _m oltf{oltL]o
2'uQyd003y ! | 'UQ¥0OIY
s05c " 1 80—
. " .
|
[] 1 []
“
[] m []
|
“
ofitlr]olo mo Liolo])
2704003y ! | ‘7 qd003d
805" | gogs "
“ |
1
i
|
805)
~ mwomm,/,
ojofojLloliqofL]|ofoflL
2"l 4093y m N ORE
Z1ong 1L 1INong

d AMLNT LSINOIY ILIEM

¢ A4IN3 1S3N03Y LM

I AYINT 1S3N03Y LM

]

]

7

-v05¢

L 105¢
-10GE

€vEe JYOLS VIVQA IHL 40 NOILYOd 3NO LSYIT 1V

10GEE 371avL 3SVEvVLYQd LSHId

44/47

PCT/US2005/030168

WO 2006/023994

vy Old

r——="7"7==7===" 1 | e 1

L | goge

! N@@m | ! 1

v IILLINSNYL! ! MJ@mm§ !
JHOLS o i L i

INTHEND
va9¢ T
£79¢ IHOLS VYLVQ ENVIES ¥IAEFOTY

8£9¢ I0IAIA INIWIDOYNYIN JOVHOLS

45/47

PCT/US2005/030168

WO 2006/023994

JNIL 1SVYd @314103dS FHL

m_oz_m NILLIMMEIAO SYM LYHL ANV JWIL LSYd
Q314193dS FHL 1V IHOLS Y1¥d IHL 40 NOILHOd FHL NI
d340LS SYM LVHL LNILNOD JHL F4OLS V.1vd IHL 40 !
NOILHOd IHL NI ONIYOLS JUHM FHOLS VLV IHL 40 1
NOILHOd IHL OL1 d3103MIa LS3INDIY O/l NV m_o_>wm_w

Lle—1}

dALL 1SYd @314193dS FHL JONIS
NALLIdMYEIAO SYM LYHL NV
JNIL LSVd A314103dS IHL LV IHOLS V1va IHL 40
NOILYOd IHL NI A34O0LS SYM LYHL
IN31INODO JHOLS V1VQA 3HL 40 NOILYOd FHL Ni 34018

4 - 80/€ d31S

JAILL 1SYd @31dI103dS V LY
INJINOD SLIOL IHOLS VIVA V 40
NOILYOd V 340LS3H OL 1SINDIY V JAIFOIY

N 90.€ d31S
00/ /

46/47

WO 2006/023994

PCT/US2005/030168

u ¥y
TO | T1 | T2 | T3 | T4 | T5]7T6 | T7 | T8 | T9|TI0
1A |lETFIFIF]IF]F|IK]|F]|F]F
> | B | B|B|[B|H|H[J] o] J]B]|B
s clclclaec]ac] | 1 | l I | ¢C
4 |lp|DbD|D|D|D|[D|D|DJ|DJ|D]|D
5 A|lATALTA]lATA]TATA]TA]A
6 E|E|E|E|E|E]E|E|E
7 clclclclclclc]ec
8 B|B|B|B|B|B]|B
9 G| G|c|c|Gc]|oa
10 HlH]H]H]H
11 FITF | F|F
12 K | K| K
13 J |
14 |
FIG. 46
/3950
THE DATA STORE
WRITE REQUEST 6 WHICH THE | STORE TO WHICH
REQUEST ENTRY | WAS RECEIVED |\ requesT | THE PREVIOUS
AND/OR WAS DIRECTED DATA
PROCESSED WAS COPIED
1 T1 1 5
2 T2 1 6
3 T3 3 7
4 T4 2 8
5 T5 3 9
6 T6 2 10
7 T7 1 11
8 T8 1 12
9 T9 2 13
10 T10 3 14

FIG. 47

47/47

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US05/30168

A CLASSIFICATION OF SUBJECT MATTER
PC(7) GOG6F 12/16
US CL 714/6, 162

B. FIELDS SEARCHED

According o International Patent Classification (IPC) or to both national classification and IPC

US. : 714/6, 162

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PLUS, EAST

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2003/0167380 Al (GREEN et al.) 04 September 2003 (04.09.2003), see entire 1-19
document.
A US 4,814,971 A (THATTE) 21 March 1989 (21.03.1989). 1-19
A US 6,219,752 B1 (SEKIDO) 1-19

D Further documents are listed in the continuation of Box C.

I:I See patent family annex.

* Special categories of cited documents:

“A" document definingthe general state of the art which is not considered to be of
particular relevance

“B" earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as

specified)
“0" document referring to an oral disclosure, use, exhibition or other means

“p" document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the intemnational filing date or pricrity date
and not in conflict with the application but cited to understand the
principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is combined
with one or more other such documents, such combination being obvious
toa person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

01 December 2005 (01.12.2005)

Da of mailing of the international s rch report

Name and mailing address of the ISA/US
Meail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.0. Box 1450
Alexandria, Virginia 223131450

Facsimile No. (571) 273-3201

- 5\09 DF"%Q/M

T¢l¢phone No. (571) 272-1600

Form PCT/ISA/210 (second sheet) (April 2005)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

