»UK Patent .,GB

(m2578077

(13)B

(45)Date of B Publication 16.09.2020

(54) Title of the Invention: MUIti-tenant data service in distributed file systems for big

data analysis

(51) INT CL: GO6F 9/50 (2006.01) GO6F 16/188 (2019.01)

(21) Application No: 2000838.9

(22) Date of Filing: 14.06.2018
Date Lodged: 21.01.2020

(30) Priority Data:
(31) 15636770
(31) 15824356

(32) 29.06.2017
(32) 28.11.2017

(33) US
(33) US

(86) International Application Data:
PCT/IB2018/054378 En 14.06.2018

(87) International Publication Data:
wW02019/003029 En 03.01.2019

(43) Date of Reproduction by UK Office 15.04.2020

(56) Documents Cited:

CN 105052104 A
US 20160087960 A1

CN 103617199 A
US 20130132349 A1

(58) Field of Search:

As for published application 2578077 A viz:

INT CL GO6F, HO4L

Other: SIPOABS, CNABS, DWPI, CNTXT, CNKI, IEEE
updated as appropriate

Additional Fields
Other: None

(72) Inventor(s):
Yong Zheng
Zheng Cai Yuan
Tian Feng
Xiao Ming Bao
Xin Wang

(73) Proprietor(s):
International Business Machines Corporation
(Incorporated in USA - New York)
New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:

IBM United Kingdom Limited
Intellectual Property Department, Hursley Park,
Winchester, Hampshire, SO21 2JN, United Kingdom

d L/08.%C dO

...

. ._._.j.

SUFTYWARE

L L R L I L L L L L I L I I L L L L L L L L L L L L L I L I L L L L L L L I L L L L L L L L L L L L L L L N

111

TUAL

110

A LA A A T R AT

-SYSTEM 108

LIBRARY
FRAMEWORK

P._wm..
<
o
o
L

=
@

.
W W OW W R WURUW W, WU W W, R W, R R R A AR ..

P‘*‘*‘-*-—-—“ L L I -... - hadaaasa

..

ll

. 0 .
-~ .
.
A 3 < P <+ 3 J

B ey

1“ . "
e U %

CONTAINE
CA

.y
;

.. i - : ! . .'
. I:% .
Fre =y . .
. : L4 . . .
— e v, vl s . s, v 2. B s s s s s dhn. v, dhn. whn. shn. she.

MEMORY

- "
——— -y
.
.
.
.
.
.
.
.
.
.
.
.
.
»
»
'
'
- .. -
. -
0 '
. .
. .
'
. . p .
.

EVE

B
COMMUN

.ﬂallﬁ -“\« .

RAM DEVICES
1

ON SUB-SYSTEM 102
&
MEMORY DEVICE 208

&hg
ra

. .
. - »
i v - g
: - g
Ly - A - .
. m . .
AN . “.
N 1
A :
_ .
|

O N ...ll»l\ul\ull.s\ A gl el el e e e e e el ™ e e el el e e e ™ ™ ™ e ||||||i_ W)

SN A
EXTERNAL

g':
e
r-
-

TN R T TR W W
. R . « .o N . . .

T
IGURAT

-
Pomrn
!

{F

N

v
»

.....................

q'. .
LI o e . ko o . . T

NPINREREFEREREREFEALIEREEENREEEREERES e s s e s Bl el

SoOR

SArwmdy e

4
1—

TENANT G

SET 204

L= 1
1
1
L

RULTI

« s s e s g s e « s e s e
Fr 7 W W W W v v v v v v v v —— e e e Y ——— ———————
0

PROC

o user
SUB-SYSTEM 104

-"“".‘\‘.R."‘ \.“.‘ \"\‘\‘.‘L““‘.“.“.‘.“.‘.‘ﬁ -
. R «« . .

S e T T S S, HE, N N SN, T, BN, N, WS N R W T T SR

w
_ C
o5
| 0
|) ==
| < Z 1
o o
| L =
| B0V
m £
m o
: | 8
m
i -

.......... ol T oS B s oS e o S S o s ol S o o s e oS B e e s S o e e s oS oS e e s SR S o e s e e sl clhemininills oo iadiadiadls v e vihadhandhntio shodhe clbe ulte oo sdhenhe albe elhs sito aife aste.cdhe clhe wlho alfe alhe aithe oo mibe g ol i ol el e e o ol el ol e i el ik, e e s e e S i, S, e S e e S S S S o S 5 1114'1waﬁl*agaaﬁﬁaaﬁaﬁﬁku%%‘%iqgaiﬂquqﬁ%‘%ﬁ%%qs\ig%gi ’

— . e s g g s g e e s g s " g N N, N N L_";_-L,-

De'terrmme ﬁ\ss.gn ‘
: Tenant § | Connestor |
Identifier | b&rv ce Mch;iz;

Determine
Durermr}
Maod ’%Dﬁ

Raegsive
Reguest
Mod 302

lll

PTG Y ST YT N W WY S W WY W W W W WY Sy W Sy v v -

| N T A o o " o W W " - ———— - —-— - - - -

ll

;.
X] -
Determine § | Process §] Generate

\te-::ie Mod | Reguest { | ResuitMad
| Mod 312 : 314

\\

; Receive 11O 'Qeques{ éfi()ﬁ

Hamﬂi ifi} Request "\‘42%

--

r_
I

i:f"-Hadf:}f}p ibéf&nc&s
i Docker 3 3

th‘.“\‘ v

D'ae::keﬂ ’1 g | Decke: 2 1
| tozis8tz | 192 1882’3 - 182/168.3.2
gpfcfhdpfmetamp*l | gpfs/hdplinst gpfsfhdpmstaﬂce\;f
" | soa o 06 |

L92 16‘8 3 2

-'.."' g =

!---'---—

--

.......................
II

|
AAAAAAAAAA L W W ——— 3
]
. ’ . : :
) e T
. 3
\ i
. L :
N .
!. N L
. .\ .
.5

L Canneotor Semc:f e 508

‘. * s T q‘!
..... . . x

- ..
B

'l ~
‘. '..
A i (j -
h 0 ..
.

'.

g , .
" P N T G R i I .v
W ’
« .
. .
N

. e
; s
.

'

. -..-
>ovov0-ovnovocvoosooqna :n
dasie o o . B
. . : - . -
g Sl) . .-
' . . N O Y
A
l.. - - .l . . . - ° .‘
et T MmN '\\.‘ N "‘ . YaTe et e ..

L 4

N) . . .
LR LS I R UL T]
-

\I dei

- -'-"r.- !‘D- -’r v -\ v-

Q
Q«
-
ety

L . .
l'.!".“..!..!.”l.'!"'!-\'vl!q_

-
. o
PR

A A S a
- Lt L

Cmﬁ:ﬂmer l‘mam m Emmme

Com

~uw~wvsvw*ww~s?f&jf*--r---1-.. (f =0 e KK R :

:'\ '_ .

..... 4-‘) .-.' "-

i3 o . >

2 2 x

< W .) >

'f > . -

’I. -t “‘ Y

---------- ‘.----- '---------\-\-'\-\\‘\‘.u-'..--"'.'-.,.,,.) -_.,‘--‘-.,_ A m a kA A aa s da

o s e

3 S .. -t

~ b N

-~ ‘- Lo -

L{}ﬂtﬁlﬂﬂl] : 192 16 E 3 Ii St 1

‘. v : . >

") -

___ ‘,, . ~.7\-~ww»s-\~wx~.MQ..{hdf

B : Do

u Y N

;]D.CI ; 1 192 iég 1 4 'L}.St&l’i” ‘E

» -‘ ‘Q -

. % H L - '!'.

.-r--t.----.i!!I'!“"Vf!“(\“TT"‘!‘O’-!’OC‘,1 Y ‘LA Te e rrrerraunase s s s anannmasanassnsana .-.-‘---;-‘-
4

Con mcxl 2

A g v arrregmyprrrrenaygseme g pe 5w . e .
kt.l&tl.\.sl.t;l.tsstc\-\.-----. vvvvv R I L I e S S B S T L L N T N e L L T I LN \axs-t.\«sl.qt.qcsocn - 4

kS Py , -, .
, 2 : N
g ‘v’ e . g h ¢ M-
; . :. N ¥ R
, : ~ Tenant I}y aode
.1 o e \, . a & .
'-5'.' ----- av\:vv\;oq-'r!vvvvv'rv v.‘ --------------------------------------- *tecaeam v Pt e e v "o’ N
? - - 0 4 4w 4 % - o - I L
N A " . e = , S
\9 I' " Re e a e) i
\ »
.‘ . 'ﬁ \ ‘) Lot .. .:'
r v } 3 . t j n !) g :
¥ b a E N . ,J'_u-us :_,,:_' A& I .
. 4 . * : . . .
yks.ksk\s\u A AR A A s ke a s : .. %--huh-\h\wwvwﬁw\\»g\t\\s.gg;gw\~~.qg\;‘\\g.g.g '-JJ-{:
Y - . N
. - - . : ﬁ T :
i < : :
‘ ‘ L‘ -
\ P
oooo ________________________ :-.\.'.h‘-'.‘q\\\\\\‘c\\'vtq\.\1’1.1.-. \\L\A\..\.-g-..‘-\;..“6..
\.l :’ g . et . :
: ;) % {j -4
ﬂStﬁﬂCﬁ 3 ﬂﬂti : :
l - "o .
' N f .
AL.....I..I.‘l"‘!IIIVVYVVVV‘VVVV‘YYT“’V"U“"V!\"‘ g ‘-v“q_-\.-, ----------------------- -)-.-‘-_t‘-..s‘.‘“-!.v“1-1‘!---‘----‘--.l;
. f 5 :
t AN X TN) L "’} >y "t 3
. . . R . .
r— S . '
dﬂ.ﬁe Zo 3! Qﬁ dlﬂ 1 £3 0 ﬂ ﬁ ;
= IR LN '.-v N YT R EE E R ‘\'".-"hvvvo-. ____________ ...-.._:__o.......a.___._...----..'"-:.'-;-_'.:..‘.'.-.
{ ‘: N ‘:L . ‘.
: % . S : :
'L‘iSf‘%nCC 2 5 (\(} klta.‘iﬂel 2 T])2 168 2 I\} ¥ i l ;
B - < '
] ' v " G
{- o \ :: - ¢nj -. L‘L .
L . L
'''''''''''''''''''''''''''''''' :‘:'-' " '-'—'—‘-'—'v'-‘v:w‘_-:-:-t'r"'-'v"--- - "--""-"" . "- -vtﬂ‘ :r v - - - ‘- - --- edam'a - ‘At o'-'t'u'a'-'c 4 v '- . !' v v ‘ .- 1 R ‘v !' v v -l NERENE A AT :
r . ‘ e e xS
& pS = W [
\ : ﬁ o .
" Tlg dﬂCﬁ: % Gﬂ a}.{} Cr ‘ {j‘ ‘ﬁ"' \ G :
5. f
okt S akeitey g NEAOBERREDS Lt g v 'L \-r .
---------------------- :,"'"""'.'-'.'.'.'.'s'\'-‘.'.'....----- -----&-‘--.vcv\v .‘\“-‘.-.s..s-.-..........\.- ﬂv‘v“V‘-‘Vr"-V""'-v:.
[v V -
9, :‘ . r\ Y
%
: 3 ¥ ; :
.1, .'-- ‘ .f_ Yy
. - -] r -
1 “ % .
1}}}}?]*?-W*\'u‘%*‘**\W?\\‘VVQJVG!71!|vlc\¢‘\\4\“.g-g‘,7 _)"""““"""""'""‘"‘ﬂm%ﬂ: __________ ﬂ\-,‘,‘-‘g~-,‘,-,..,-.,,f.
Sl e e e e et et et

IAQJII

192 --168.,..,4 ?h‘ﬁtam

-‘QL\90....‘."-"."'.""'-“‘0'00-0

l
b
l
'
'
'
l
l
>

.......

In ﬁne-

'I‘i? 168, ‘"’.3

J»A*o-*#
-:- a.p-y_,
0 .

- w e o-----uvu‘-----------------OQQ

15;@92.1@324 %1:1 tance 2

L]
'..Q..'..".".

B ¢+ + + ¢ ¢ 0 ¢ @

. IlIIIIIIIIIIIII‘IIIIIIIIIll.ll.l.ll.l..‘lIIIIIII’.ll-II-II'll-II'!I'l.'ll-ll'lI'll'll\ll'lIII.I\

l@

¥

— - o o - "

- - -

".".".".'."""'".".".‘IIlIIIIIIIIIIIIIIIIIIIIIIIII

R fi&'s"& mstance IEJ ‘-“?25

ﬂ'""""“‘\“““““““

T TN

?

R e e G

w"J'-v-'w-‘—'—'—‘-v-l

L L-LA..L-L.A..‘___

S A A AR AR AR AR E MRS DA S
..\9'."..I...l.9’-...9........’..............9..9.’9.’

- ‘Ah‘——-“

_‘;é'

%ancﬂe i;“. iequesis Q?»ﬁﬂ

—-~ - .

Bge, o % 0,n v A s TS a .
/lr"lr"lr"rrr(rr.’"rf

s
n.-:-. v
..

il S '.'.'.'.'.'.'.'.'..'-. '-. '..'-. '-. '..'-. ': ':': ': .t '.'.'.'.'.’.’.’.’.’d‘:'x'/)??;'d';':r':":":r'--"--":r':r';';';';':';'-'-'-'-'-'-'-'.*'.".".".".'.’(’.'.'.'.'-’-’-'.'.'-'.'.'."'".'.'.'.','.‘.‘.'.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.‘.'.'.‘.'_{{{{{{{{{_{{{_"{{{{{_{{{_"{{{{f{{{{{{{{{{{{{{{i{"“g'""fjil""'g" P R R R N N N N N N N N N N N N N N N R Y Y Y Y Y YRR Y Y Y YWY Y O O .

R R A A A A A A A A A A A A

IN

AN

tellectual

Property
Office

Application No. GB2000838.9 RTM Date :3 August 2020

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

Docker
Hadoop
Apache

Intellectual Property Office is an operating name of the Patent Office

www.gov.uk /ipo

070520

1

MULTI-TENANT DATA SERVICE IN DISTRIBUTED
FILE SYSTEMS FOR BIG DATA ANALYSIS

TECHNICAL FIELD

[0001] The present invention relates generally to the field of storage access and control, and more particularly

to memory configuring.

BACKGROUND

[0002] In a converged system, virtualization provides elasticity of computing resources, storage space, and/or
application mobility. A converged Infrastructure groups information technology components into a software
package. A virtualization container is a software package that includes a file system to install software on a server
In a reliable fashion. An example of a virtualization container is Docker. Some virtualization containers include
software library frameworks. A software library framework allows for distributed processing of large data sets using
a programming model. One example of such a software library framework is Hadoop. A portable operating system
interface maintains compatibility between various operating systems. A portable operating system interface defines

a set of application programming interfaces. An example of a portable operating system interface standard is
POSIX.

[0003] Big data analytics allows the analysis of technology in despite the exponential growth and availabllity of
data, including both structured data and unstructured data. Big data analytics, has evolved in two directions: (i)

relation database-based massively parallel processing; and (ii) software library framework-based analysis.

[0004] It is extremely difficult to manage multiple clusters for different users. Although one connector service
could be started, monitored and maintained for each cluster instance from one tenant, monitoring one independent

network [P address, this method is not scaleable as considerable system resources would be required.

[0005] Therefore, there is a need In the art to address the aforementioned problem.

SUMMARY

[0006] According to the present invention there are provided a method, a computer program product, a computer

program, and a system according to the independent claims.

070520

2

[0007] Viewed from a further aspect, the present invention provides a computer program product for managing a

read/write request, the computer program product comprising a computer readable storage medium readable by a
processing circuit and storing instructions for execution by the processing circuit for performing a method for

performing the steps of the invention.

[0008] Viewed from a further aspect, the present invention provides a computer program stored on a computer
readable medium and loadable into the internal memory of a digital computer, comprising software code portions,

when said program is run on a computer, for performing the steps of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The present invention will now be described, by way of example only, with reference to preferred

embodiments, as Illustrated in the following figures:

Figure 1 Is a block diagram view of a first embodiment of a system according to the present invention;

Figure 2 is a flowchart showing a first embodiment method performed, at least in part, by the first
embodiment system;

Figure 3 is a block diagram view of a machine logic (e.g., software) portion of the first embodiment
system;

Figure 4 Is a flowchart showing a second embodiment method performed by a second embodiment of

a system according to the present invention;

Figure 5 Is a block diagram view of the second embodiment of the system:;

Figure 6 are lookup tables generated by a third embodiment of the system according to the present
Invention: and

Figure 7 Is a flowchart showing a third embodiment method performed by a fourth embodiment of a

system according to the present invention.

DETAILED DESCRIPTION

[0010] Configuration of a multi-tenant distributed file system on a node. Various tenants and tenant clusters are
correlated to a distributed file systems, and the distributed file system communicates with various tenants through a

connector service. The entire distributed file system exists on a physical node. This Detailed Description section is

divided into the following sub-sections: (I) Haraware and Software Environment; (iI) Example Embodiment; (iii)

Further Comments and/or Embodiments; and (iv) Definitions.

070520

3

ARDWARE AND SOF TWARE ENVIRONMENT

[0011] The present invention may be a system, a method, and/or a computer program product at any possible
technical detall level of integration. The computer program product may include a computer readable storage
medium (or media) having computer readable program instructions thereon for causing a processor to carry out

aspects of the present invention.

4

[0014] The computer readable storage medium can be a tangible device that can retain and store instructions
for use by an instruction execution device. The computer readable storage medium may be, for example, but Is not
imited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list
of more specific examples of the computer readable storage medium includes the following: a portable computer
diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable
read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc
read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable
combination of the foregoing. A computer readable storage medium, as used herein, i1s not to be construed as being
transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic
waves propagating through a waveguide or other transmission media (.., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

[0015] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface In
each computing/processing device recelves computer readable program instructions from the network and forwards
the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0016] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
Instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such
as the “C” programming language or similar programming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the users computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the
atter scenario, the remote computer may be connected to the user's computer through any type of network,
Including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external
computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state

5

Information of the computer readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[0017] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer
readable program instructions.

[0018] These computer readable program instructions may be provided to a processor of a general-purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in
a particular manner, such that the computer readable storage medium having instructions stored therein comprises
an article of manufacture including instructions which implement aspects of the function/act specified in the
flowchart and/or block diagram block or blocks.

[0019] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the Instructions which execute on the computer, other programmable apparatus, or other device implement the
functions/acts specified in the flowchart and/or block diagram block or blocks.

[0020] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation
of possible Implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable Instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur
out of the order noted In the Figures. For example, two blocks shown In succession may, In fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

b

[0021] An embodiment of a possible hardware and software environment for software and/or methods
according to the present invention will now be described in detail with reference to the Figures. Figure 11s a
functional block diagram illustrating various portions of networked computers system 100, including: multi-tenant
configuration sub-system 102; user sub-system 104, virtual container sub-system 106; virtual container sub-system
108; connector service 112; and communication network 114. Multi-tenant configuration sub-system 102 contains:
multi-tenant configuration computer 200; display device 212; and external devices 214. Multi-tenant configuration
computer 200 contains: communication unit 202; processor set 204; input/output (I/0O) interface set 206; memory
device 208; and persistent storage device 210. Memory device 208 contains: random access memory (RAM)
devices 216; and cache memory device 218. Persistent storage device 210 contains: multi-tenant configuration

program 300. Virtual container sub-system 108 includes: software library framework 110.

[0022] Multi-tenant configuration sub-system 102 is, in many respects, representative of the various computer
sub-systems In the present invention. Accordingly, several portions of multi-tenant configuration sub-system 102 will

now be discussed in the following paragraphs.

[0023] Multi-tenant configuration sub-system 102 may be a laptop computer, a tablet computer, a netbook
computer, a personal computer (PC), a desktop computer, a personal digital assistant (PDA), a smart phone, or any
programmable electronic device capable of communicating with client sub-systems via communication network 114,
Multi-tenant configuration program 300 Is a collection of machine readable instructions and/or data that Is used to
create, manage, and control certain software functions that will be discussed in detail, below, in the Example

Embodiment sub-section of this Detailed Description section.

[0024] Multi-tenant configuration sub-system 102 is capable of communicating with other computer sub-
systems via communication network 114. Communication network 114 can be, for example, a local area network
(LAN)}, a wide area network (WAN) such as the Internet, or a combination of the two, and can include wired,
wireless, or fiber optic connections. In general, communication network 114 can be any combination of connections
and protocols that will support communications between multi-tenant configuration sub-system 102 and client sub-

systems.

[0025] Multi-tenant configuration sub-system 102 is shown as a block diagram with many double arrows.
These double arrows (no separate reference numerals) represent a communications fabric, which provides
communications between various components of multi-tenant configuration sub-system 102. This communications
fabric can be implemented with any architecture designed for passing data and/or control information between
Processors (such as microprocessors, communications processors, and/or network processors, etc.), system
memory, peripheral devices, and any other hardware components within a system. For example, the

communications fabric can be implemented, at least in part, with one or more buses.

/

[0026] Memory device 208 and persistent storage device 210 are computer readable storage media. In
general, memory device 208 can include any suitable volatile or non-volatile computer readable storage media. It s
further noted that, now and/or in the near future: (1) external devices 214 may be able to supply some, or all,
memory for multi-tenant configuration sub-system 102; and/or (i1} devices external to multi-tenant configuration sub-

system 102 may be able to provide memory for multi-tenant configuration sub-system 102.

[0027] Multi-tenant configuration program 300 Is stored in persistent storage device 210 for access and/or
execution by one or more processors of processor set 204, usually through memory device 208. Persistent storage
device 210: (1) Is at least more persistent than a signal in transit; (i1} stores the program (including its soft logic
and/or data) on a tangible medium (such as magnetic or optical domains); and (iii) is substantially less persistent
than permanent storage. Alternatively, data storage may be more persistent and/or permanent than the type of

storage provided by persistent storage device 210.

[0028] Multi-tenant configuration program 300 may include both substantive data (that Is, the type of data
stored in a database) and/or machine readable and performable instructions. In this particular embodiment (i.e.,
Figure 1), persistent storage device 210 includes a magnetic hard disk drive. To name some possible variations,
persistent storage device 210 may include a solid-state hard drive, a semiconductor storage device, a read-only
memory (ROM), an erasable programmable read-only memory (EPROM), a flash memory, or any other computer
readable storage media that is capable of storing program instructions or digital information.

[0029] The media used by persistent storage device 210 may also be removable. For example, a removable
hard drive may be used for persistent storage device 210. Other examples include optical and magnetic disks,
thumb drives, and smart cards that are inserted into a drive for transfer onto another computer readable storage
medium that Is also part of persistent storage device 210.

[0030] Communication unit 202, in these examples, provides for communications with other data processing
systems or devices external to multi-tenant configuration sub-system 102. In these examples, communication unit
202 includes one or more network interface cards. Communication unit 202 may provide communications through
the use of either or both physical and wireless communications links. Any software modules discussed herein may
be downloaded to a persistent storage device (such as persistent storage device 210) through a communications
unit (such as communication unit 202).

[0031] /O interface set 206 allows for input and output of data with other devices that may be connected
locally in data communication with multi-tenant configuration computer 200. For example, I/O interface set 206
provides a connection to external devices 214. External devices 214 will typically include devices, such as a
keyboard, a keypad, a touch screen, and/or some other suitable input device. External devices 214 can also include
portable computer readable storage media, such as, for example, thumb drives, portable optical or magnetic disks,

8

and memory cards. Software and data used to practice embodiments of the present invention (e.g., multi-tenant
configuration program 300} can be stored on such portable computer readable storage media. In these
embodiments, the relevant software may (or may not) be loaded, in whole or in part, onto persistent storage device
210 via /0 interface set 206. I/0 interface set 206 also connects in data communication with display device 212.

[0032] Display device 212 provides a mechanism to display data to a user and may be, for example, a

computer monitor or a smart phone display screen.

[0033] The programs described herein are identified based upon the application for which they are
iImplemented in a specific embodiment of the invention. However, it should be appreciated that any particular
program nomenclature herein Is used merely for convenience, and thus, the invention should not be limited to use

solely in any specific application identified and/or implied by such nomenclature.

[0034] The descriptions of the various embodiments of the present invention have been presented for
purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many
modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of
the described embodiments. The terminology used herein was chosen to best explain the principles of the
embodiments, the practical application or technical improvement over technologies found in the marketplace, or to
enable others of ordinary skill in the art to understand the embodiments disclosed herein.

I, EXAMPLE EMBODIMENT

[0035] Figure 2 shows flowchart 250 depicting a method according to the present invention. Figure 3 shows
multi-tenant configuration program 300, which performs at least some of the method operations of flowchart 250.
This method and associated software will now be discussed, over the course of the following paragraphs, with
extensive reference to Figure 2 (for the method operation blocks) and Figure 3 (for the software blocks).

[0036] Processing begins at operation S255, where receive request module (“mod”) 302 receives a set of
requests. In some embodiments of the present invention, receive request mod 302 receives a set of requests from
a set of requestors. Examples of a requestor include, but are not limited to, a software library framework, a virtual
container, and/or a user. In some embodiments, a set of requests are a set of input/output (“//O") requests. In
further embodiments, a set of requests are a set of read/write requests. In some of these embodiments, a set of
requests are a set of /0O read/write requests. An example of a virtual container is Docker. An example of a software
ibrary framework 1s Hadoop. In further embodiments, receive request mod 302 receives a set of requests from a

set of dynamic instantiations of a requestor.

[0037] In some embodiments, a requestor is a first distributed file system. In some of these embodiments, a
first distributed file system is not POSIX compatible. In further embodiments, a first distributed file system is

070520

2

organized using a first interface standard. In some embodiments, a set of requests relates to a second distributed
file system. In some of these embodiments, a second distributed file system is POSIX compatible. In further
embodiments, a second distributed file system is organized using a second interface standard. Alternatively, in

some examples: (1) a first distributed file system is POSIX compatible; and (ii) a second distributed file system is not

POSIX compatible. In further alternative examples, neither a first distributed file system, nor a second distributed file

system, are POSIX compatible, but the first distributed file system and the second distributed file system are

organized using different interface standards.

[0038] Processing proceeds to operation S260, where determine directory mod 304 determines a set of directories
corresponding to a set of requestors. In some embodiments of the present invention, determine directory mod 304
determines a set of directories corresponding to a set of requestors. A directory Is a structure for organization of a
set of computer files. A directory is sometimes also called a path, a folder, and/or a drawer. A directory can be
expressed In various forms, including: (1) parent_folder/child_folder/file.extension; and/or (ii) Parent Folder > Child
Folder > File. In some of these embodiments, determine directory mod 304 determines a set of directories
corresponding to a set of tenant identifiers. In other embodiments, determine directory mod 304 determines a set of
directories corresponding to a set of tenant identifiers by assigning a directory to a set of requestors. In further
embodiments, determine directory mod 304 determines a set of directories corresponding to a set of tenant
identifiers by assigning a subdirectory to a set of requestors. In some embodiments, a first requestor in a set of
requestors corresponds to a first directory. In other embodiments, a set of requestors share afirst directory. In
some embodiments, determine directory mod 304 determines a set of directories corresponding to a set of

requestors from which receive request mod 302 received a set of requests In operation S299.

[0039] Processing proceeds to operation $265, where determine tenant identifier mod 306 determines a set of
tenant identifiers corresponding to a set of requests. In some embodiments of the present invention, determine
tenant identifier mod 306 determines a set of tenant identifiers corresponding to a set of requests. In some
embodiments, determine tenant identifier mod 306 determines a set of tenant identifiers for a set of requestors that
are dynamic instantiations. In alternative embodiments, determine tenant identifier mod 306 determines a set of
tenant identifiers for a set of virtual containers. In further embodiments, determine tenant identifier mod 306
determines a set of tenant identifiers for a set of software library frameworks. Alternatively, determine tenant
identifier mod 306 determines a set of tenant identifiers for a set of users. In some embodiments, determine tenant
identifler mod 306 determines a set of tenant identifiers for a set of instances of a set of tenants. In some
embodiments, determine tenant identifier mod 306 determines a set of tenant identifiers corresponding to a set of
requests received by receive request mod 302 In operation S255. Alternatively, determine tenant identifier mod 306

determines a set of tenant identifiers corresponding to a set of directories determined by determine directory mod
304 in operation S260.

10

[0040] Processing proceeds to operation S270, where assign connector service mod 308 assigns a connector
service. In some embodiments of the present invention, assign connector service mod 308 assigns a connector
service. In further embodiments, a connector service IS an only connector service on a computer system.
Alternatively, a connector service IS an only connector service associated with a first distributed file system and a
second distributed file system. In some of these embodiments, a connector service directs requests from a set of
requestors on a first distributed file system directed to a second distributed file system. In other embodiments,
assign connector service mod 308 assigns a connector service based, at least in part, on a set of tenant identifiers.
In further embodiments, assign connector service mod 308 assigns a connector service based, at least in part, on a
set of directories. A connector service is sometimes also called a connection server. A connector service directs a
set of requests through a set of appropriate channels. A connection server may also perform functions including,
but not limited to: (1) authenticate a set of users; (ii) entitle a set of users to a set of resources; (i) assign a set of
packages to a set of resources; (iv) manage local and/or remote sessions; (v) establish a set of secure connections;
and/or (vi) apply policies. In some embodiments, assign connector service mod 308 assigns a connector service
based, at least in part, on a set of requestors of a set of requests received by receive request mod 302 in operation
S255. In other embodiments, assign connector service mod 308 assigns a connector service based, at least in part,
on a set of requests received by receive request mod 302 in operation S255. In further embodiments, assign
connector service mod 308 assigns a connector service based, at least in part, on a set of directories determined by
determine directory mod 304 in operation S260. In alternative embodiments, assign connector service mod 308
assigns a connector service based, at least in part, on a set of tenant identifiers determined by determine tenant
identifier mod 306 in operation S265.

[0041] Processing proceeds to operation S275, where determine node mod 310 determines a node
corresponding to a set of requestors. In some embodiments of the present invention, determine node mod 310
determines a node corresponding to a set of requestors. In some of these embodiments, determine node mod 310
determines that a first node corresponds to each requestor In a set of requestors. In some of these embodiments,
determine node mod 310 determines that a physical node corresponds to a set of requestors. In other
embodiments, determine node mod 310 determines that a virtual node corresponds to a set of requestors. In
alternative embodiments, determine node mod 310 determines a node corresponding to a set of requestors by
assigning each requestor In the set of requestors to a first node. In some embodiments, determine node mod 310
determines a node corresponding to a set of requests. In further embodiments, determine node mod 310
determines a node corresponding to a set of tenant identifiers. In other embodiments, determine node mod 310
determines a node based, at least in part, on a connector service. In alternative embodiments, determine nod mod
310 determines a node based, at least in part, on a one-to-one relationship between the node and a connector
service. In other embodiments, determine node 310 maps a path between a connector service and a node. In some
embodiments, determine node mod 310 determines a node corresponding to a set of requestors from which receive
request mod 302 received a set of requests in operation S255. In other embodiments, determine node mod 310
determines a node corresponding to a set of requests received by receive request mod 302 in operation S255. In

11

further embodiments, determine node mod 310 determines a node corresponding to a set of directories determined
by determine directory mod 304 in operation S260. In alternative embodiments, determine node mod 310
determines a node corresponding to a set of tenant identifiers determined by determine tenant identifier mod 306 In
operation S265. Alternatively, determine node mod 310 determines a node based, at least on part, on a connector
service assigned by assign connector service mod 308 in operation S270.

[0042] Processing proceeds to operation S280, where process request mod 312 processes a set of requests.
In some embodiments of the present invention, process request mod 312 processes a set of requests. In some
embodiments, process request mod 312 processes a set of requests based, at least in part, on a set of tenant
identifiers. In other embodiments, process request mod 312 processes a set of requests based, at least in part, on a
node. In further embodiments, process request mod 312 processes a set of requests based, at least in part, on a
directory. In some embodiments, process request mod 312 mounts a first distributed file system to a second
distributed file system. In alternative embodiments, process request mod 312 processes a set of requests based, at
least In part, on a connector service. For a read request, process request mod 312 reads a set of data from a
storage. For a write request, process request mod 312 modifies a set of data in a storage. For an input request,
process request mod 312 receives a set of data. For an output request, process request mod 312 transmits a set of
data. In some embodiments, process request mod 312 processes a set of requests received by receive request
mod 312 in operation S253. In other embodiments, process request mod 312 processes a set of requests based, at
least in part, on a set of tenant identifiers determined by determine tenant identifier mod 306 in operation S265. In
further embodiments, process request mod 312 processes a set of requests based, at least in part, on a node
determined by determine node mod 310 in operation S275. In other embodiments, process request mod 312
processes a set of requests based, at least in part, on a set of directories determined by determine directory mod
304 in operation S260. In alternative embodiments, process request mod 312 processes a set of requests based, at
least in part, on a connector service determined by determine connector service mod 308 in operation S270.

[0043] Processing terminates at operation S285, where generate result mod 314 generates a set of results. In
some embodiments of the present invention, generate result mod 314 generates a set of results for a set of
requests. In some embodiments, generate result mod 314 generates a set of results to a set of read requests by
generating a set of messages including a set of data. In some embodiments, generate result mod 314 generates a
set of results to a set of write requests by generating a set of new data entries. In some embodiments, generate
result mod 314 generates a set of results to a set of input requests by storing a set of data that was received. In
some embodiments, generate result mod 314 generates a set of results to a set of output requests by generating a
set of messages. In other embodiments, generate result mod 314 generates results for a first distributed file system
that is not POSIX compatible. In further embodiments, generate result mod 314 generates a set of results for a first
distributed file system that is Hadoop. In other embodiments, a result includes, but is not imited to, a new data entry
and/or a message with a set of data. In some embodiments, generate result mod 314 generates a set of results to a
set of requests received by receive request mod 302 in operation S255.

12

11, FURTHER COMMENTS AND/OR EMBODIMENTS

[0044] Some embodiments of the present invention recognize the following facts, potential problems, and/or
potential areas for improvement with respect to the current state of the art: (1} managing a set of nodes, a set of
connector services, and/or a set of directories corresponding to a set of tenant identifiers leads to an exponential
Increase In resources; (1) various operating systems handle a set of nodes, a set of connector services, and/or a set
of directories in a multitude of fashions; and/or (iii) some distributed file systems (“DFSs”) are not portable operating
system interface (“POSIX”) compatible; (iv) some DFSs cannot be mounted; and/or (v) hyper-convergence
Infrastructures attempt to decrease resource usage. Under conventional means of managing a set of nodes, a set
of connector services, and/or a set of directories corresponding to a set of tenant identifiers requires individual

nodes and individual directories corresponding to each tenant identifier.

[0045] Figure 4 shows flowchart 400 depicting a method according to the present invention. Processing
begins at operation S405, where a multi-tenant configuration sub-system receives an |/O request from a Hadoop
container instance. Processing proceeds to operation S410, where a multi-tenant configuration sub-system isolates
a set of tenant identifiers for a Hadoop container instance. Processing proceeds to operation S415, where a multi-
tenant configuration sub-system recognizes a Hadoop container instance based, at least in part, on a set of tenant
identifiers. Processing proceeds to operation S420, where a multi-tenant configuration sub-system checks a set of
permissions for a Hadoop container instance. Processing terminates at operation S425, where a multi-tenant
configuration sub-system handles an 1/0 request.

[0046] Figure 5 shows a functional block diagram of system 500, including: Hadoop instance 502; Hadoop
Instance 504; Hadoop Instance 506; connector service 508; distributed file system 510; and physical node 512.
Communication between each of Hadoop instance 502, Hadoop instance 504, and Hadoop instance 506 and
distributed file system 510 traverses through connector service 508. By existing on physical node 512, distributed
file system 510 can process all communications through connector service 508.

[0047] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i} isolating a set of DFS instance data; (i} isolating a set of Hadoop instance
data; (i) introducing a multi-tenant recognition module in a DFS connector service; and/or (iv) providing a multi-
tenant capability for a hyper-converged DFS. A hyper-converged DFS is sometimes also referred to as a multi-
tenant DFS. In some embodiments of the present invention, a multi-tenant recognition module incorporates
operation S410 and operation S415 of Figure 4. In other embodiments, connector service 508 in Figure 5 performs
operation S410 and/or operation S415 of Figure 4. In further embodiments, multi-tenant configuration sub-system
provides a connector service and a physical node in a one-to-one relationship. In alternative embodiments, multi-
tenant configuration sub-system configures a set of DFS instances with a set of private network addresses.
Alternatively, a multi-tenant configuration sub-system configures a set of DFS instances with a private network
address. In some embodiments, a multi-tenant configuration sub-system isolates a DFS instance in a directory. In

13

further embodiments, a multi-tenant configuration sub-system isolates a DFS instance in a directory based, at least
In part, on a tenant. In other embodiments, a multi-tenant configuration sub-system isolates a set of operations for a

DFS instance in a directory.

[0048] Figure 6 shows two tables. The first table in Figure 6 Is an instance container mapping list. Two
Instances with three containers are shown, resulting in six tenant IDs. These six tenant IDs are all mapped to one
node. The second table in Figure 6 Is a reverse instance container mapping list. The same six tenant IDs are
shown. However, the second table is sorted to determine a corresponding instance.

[0049] Figure 7 shows flowchart 700 depicting a method according to the present invention. Processing
begins at operation S705, where a multi-tenant configuration sub-system receives an 1/O read/write request from a
Hadoop job in a container. Processing proceeds to operation S710, where a multi-tenant configuration sub-system
retrieves a container IP address from an I/O request. Processing proceeds to operation S715, where a multi-tenant
configuration sub-system retrieves a physical node IP address. Processing proceeds to operation S720, where a
multi-tenant configuration sub-system queries an instance container mapping list based on a container IP and a
node IP. Processing proceeds to operation S725, where a multi-tenant configuration sub-system retrieves an
instance ID. Processing proceeds to operation S730, where a multi-tenant configuration sub-system retrieves an
instance directory. Processing proceeds to operation S735, where a multi-tenant configuration sub-system
transforms a set of [/O pathways. Processing terminates at operation S740, where a multi-tenant configuration sub-

system handles a set of 1/O requests.

[0050] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i} a DFS allows access to a set of files from a variety of hosts; (i) a DFS allows
a set of users to share a set of files across a set of devices; and/or (iii) a DFS Is a popular storage system.
Examples of DFSs include: IBM General Parallel File System ("“GPFS™”) File Placement Optimizer ("FPO”), Red
Hat Linux®, GlusterFS, Lustre, Ceph, and Apache Hadoop Distributed File System ("HDFS”). IBM, and GPFS are
trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Linux is a

registered trademark of Linus Torvalds in the United States, other countries, or both.

[0051] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i} mounting a DFS; (ii) reading data from a DFS; (iit) writing data to a DFS; (iv)
reading data from a DFS using a POSIX application; (v) writing data to a DFS using a POSIX application; (vi)
reading data from a DFS using a POSIX application in the DFS ecosystem; and/or (vii) writing data to a DFS using
a POSIX application in the DFS ecosystem. Some embodiments of the present invention may include one, or more,
of the following features, characteristics, and/or advantages: (1} determining a set of permissions based, at least In
part, on a user ID; (i) determining a set of permissions based, at least in part, on a group ID; (i) determining a set

of permissions for an operating environment; and/or (Iv) determining a set of permissions for an operating system.

14

[0052] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i} running a DFS using a POSIX application; (ii) transferring a set of files over a
single connector service; (iil) transferring a set of files over a single connector service on a DFS using a POSIX
application; and/or (iv) running a hyper-converged DFS using a POSIX application. Some embodiments of the
present invention may include one, or more, of the following features, characteristics, and/or advantages: (1) running
a DFS using a non-POSIX application; (i) transferring a set of files over a single connector service; (il transferring
a set of files over a single connector service on a DFS using a non-POSIX application; and/or (iv) running a hyper-
converged DFS using a non-POSIX application. Some embodiments of the present invention may include one, or
more, of the following features, characteristics, and/or advantages: (i) creating a set of clusters of a set of DFS
instances; (ii) creating a set of clusters of a set of DFS instances for a set of users; (i) assigning a set of network
addresses to a set of clusters; (iv) assigning a set of tenant identifiers to a set of clusters; (v) assigning a set of
network addresses to a set of clusters, wherein the set of network addresses are not related to a DFS; and/or (vi)
assigning a set of tenant identifiers to a set of clusters, wherein the set of network addresses are not related to a
DFS.

[0053] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i) reducing a number of connector services; (i) using a single connector
service; () reducing a number of connector services required to maintain a multi-tenant configuration; (v) reducing
a number of connector services required to maintain a multi-tenant configuration at an exponential level; (v)
reducing a number of tenant identifiers corresponding to a number of clients on a DFS; and/or (vi) reducing a

number of IP addresses corresponding to a number of clients on a DFS.

[0054] In some embodiments of the present invention, a multi-tenant configuration sub-system generates a
DFS cluster for a tenant. In further embodiments, a multi-tenant configuration sub-system generates a tenant |D
corresponding to a DFS cluster. A DFS cluster is sometimes also referred to as a first distributed file system with
multiple requestors and/or multiple tenants. In some of these embodiments, a multi-tenant configuration sub-system

assigns a tenant ID to a node.

[0053] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i) configure a set of directories in a DFS; (ii) configure a set of directories in a
DFS and restart a connector service; (i) creating a set of software library framework instances for a DFS instance;
(Iv) storing a set of tenant information in a directory in a hyper-converged DFS; (v) recognizing a DFS a directory
without restarting; (vi) restarting a DFS without creating a new DFS instance; (vii) providing a DFS cluster for a
tenant; (viil) maintaining a DFS cluster for a tenant; and/or (ix) isolating a DFS based, at least in part, on a set of
hardware resources. Some embodiments of the present invention may include one, or more, of the following

features, characterstics, and/or advantages: (1) generating a user ID when building a software library framework; (i)

15

generating a user ID when compiling a software library framework; (iil) generating a group 1D when building a
software library framework; and/or (lv) generating a group ID when compiling a software library framework.

[0056] Some embodiments of the present invention may include one, or more, of the following features,
characteristics, and/or advantages: (i} managing a hyper-converged big-data DFS; (i) managing a multi-tenant big-
data DFS; (iit) managing a hyper-converged DFS in a cloud system; and/or (iv) managing a hyper-converged DFS

In a virtual system.

V. DEFINITIONS

[0057] "‘Present invention” does not create an absolute indication and/or implication that the described subject
matter Is covered by the Initial set of claims, as filed, by any as-amended set of claims drafted during prosecution,
and/or by the final set of claims allowed through patent prosecution and included in the issued patent. The term
‘present invention” Is used to assist In indicating a portion or multiple portions of the disclosure that might possibly
Include an advancement or multiple advancements over the state of the art. This understanding of the term “present
invention” and the indications and/or implications thereof are tentative and provisional and are subject to change
during the course of patent prosecution as relevant information Is developed and as the claims may be amended.

[0058] ‘Embodiment,” see the definition for “present invention.”

[0059] "And/or” Is the Inclusive disjunction, also known as the logical disjunction and commonly known as the
“Inclusive or.” For example, the phrase “A, B, and/or C,” means that at least one of A or B or Cis true; and “A, B,

and/or C” is only false if each of A and B and C is false.

[0060] A “set of” Items means there exists one or more items; there must exist at least one item, but there can
also be two, three, or more items. A “subset of” items means there exists one or more items within a grouping of

items that contain a common characteristic.

[0061] A “plurality of” items means there exists at more than one item; there must exist at least two items, but
there can also be three, four, or more Items.

[0062] ‘Includes™ and any variants (e.g., including, include, etc.) means, unless explicitly noted otherwise,
“Includes, but is not necessarily limited to.”

[0063] A “user” or a “subscriber” includes, but Is not necessarily limited to: (1) a single individual human; (i1) an
artificial intelligence entity with sufficient intelligence to act in the place of a single individual human or more than

one human; (i) a business entity for which actions are being taken by a single individual human or more than one

16

human; and/or (Iv) a combination of any one or more related “users” or "subscribers” acting as a single “user” or
"subscriber.”

INput,

[0064] The terms “receive,” “provide,” “send, output,” and “report” should not be taken to indicate or
Imply, unless otherwise explicitly specified: (1} any particular degree of directness with respect to the relationship
between an object and a subject; and/or (i} a presence or absence of a set of intermediate components,

intermediate actions, and/or things interposed between an object and a subject.

[0065] A “module” Is any set of hardware, firmware, and/or software that operatively works to do a function,
without regard to whether the module Is: (1) In a single local proximity; (i1} distributed over a wide area; (it} In a
single proximity within a larger piece of software code; (Iv) located within a single piece of software code; (v) located
In a single storage device, memory, or medium; (vi} mechanically connected; (vii) electrically connected; and/or (viil)

connected in data communication. A “sub-module” 1s a "module” within a “module.”

[0066] A “computer” Is any device with significant data processing and/or machine readable instruction
reading capabilities including, but not necessarily limited to: desktop computers; mainframe computers; laptop
computers; field-programmable gate array (FPGA) based devices; smart phones; personal digital assistants
(PDAs); body-mounted or inserted computers; embedded device style computers; and/or application-specific
integrated circuit (ASIC) based devices.

[0067] "Electrically connected” means either indirectly electrically connected such that intervening elements
are present or directly electrically connected. An “electrical connection™ may include, but need not be limited to,
elements such as capacitors, inductors, transformers, vacuum tubes, and the like.

[0068] ‘Mechanically connected” means either indirect mechanical connections made through intermediate
components or direct mechanical connections. "Mechanically connected” includes rigid mechanical connections as
well as mechanical connection that allows for relative motion between the mechanically connected components.
‘Mechanically connected” includes, but is not limited to: welded connections; solder connections; connections by
fasteners (e.g., nails, bolts, screws, nuts, hook-and-loop fasteners, knots, rivets, quick-release connections, latches,
and/or magnetic connections); force fit connections; friction fit connections; connections secured by engagement
caused by gravitational forces; pivoting or rotatable connections; and/or slidable mechanical connections.

[0069] A “data communication” includes, but I1s not necessarily limited to, any sort of data communication
scheme now known or to be developed in the future. "Data communications™ include, but are not necessarily limited
to: wireless communication; wired communication; and/or communication routes that have wireless and wired

portions. A “data communication” Is not necessarily limited to: (1) direct data communication; (i) indirect data

17

communication; and/or (i1} data communication where the format, packetization status, medium, encryption status,

and/or protocol remains constant over the entire course of the data communication.

[0070] The phrase “without substantial human intervention” means a process that occurs automatically (often
by operation of machine logic, such as software) with little or no human input. Some examples that involve “no
substantial human intervention” include: (1) a computer is performing complex processing and a human switches the
computer to an alternative power supply due to an outage of grid power so that processing continues uninterrupted;
(I} a computer Is about to perform resource intensive processing and a human confirms that the resource-intensive
processing should indeed be undertaken (in this case, the process of confirmation, considered in isolation, Is with
substantial human intervention, but the resource intensive processing does not include any substantial human
Intervention, notwithstanding the simple yes—no style confirmation required to be made by a humany); and (li) using
machine logic, a computer has made a weighty decision (for example, a decision to ground all airplanes In
anticipation of bad weather), but, before implementing the weighty decision the computer must obtain simple yes—

no style confirmation from a human source.

[0071] "Automatically” means "without any human intervention.”

[0072] The term “real time” (and the adjective “real-time”) includes any time frame of sufficiently short duration
as to provide reasonable response time for information processing as described. Additionally, the term “real time’
(and the adjective “real-time”} includes what is commonly termed “near real time,” generally any time frame of
sufficiently short duration as to provide reasonable response time for on-demand information processing as
described (e.g., within a portion of a second or within a few seconds). These terms, while difficult to precisely
define, are well understood by those skilled in the art.

070520

18

CLAIMS

1. A method for managing a read/write request, the method comprising:

recelving a first request from a first virtual container to perform an input/output (I/O) operation;
determining a first non-POSIX compatible directory corresponding to a first tenant associatedwith the first

virtual container;

assigning a connector service to the first non-POSIX compatible directory corresponding to the first tenant

assoclated with the first virtual container:

determining a first POSIX compatible s directory corresponding to the connector service, wherein:

the first POSIX compatible directory is utilized to access data stored on a first physical node of a POSIX compatible

distributed file system; and

mapping a path between the first non-POSIX compatible directory assigned to the connector service, the
first POSIX compatible directory corresponding to the connector service, and the first physical node of the POSIX
compatible distributed file system, wherein the first read/write request is from the first tenant; and

generating a first result to the first read/write request;

wherein;

at least processing the first read/write request using the connector service and the first node is performed

by computer software running on computer hardware.

2. The method of claim 1, further comprising:

receiving a second request from a second virtual container to perform an |/O operation;

determining a second non-POSIX directory corresponding to a second tenant associated with the second
virtual container;
assigning the connector service to the second non-POSIX compatible-directory corresponding to the

second tenant associated with the second virtual container:

mapping a path between the second non-POSIX compatible directory assigned to the connector service
and a second physical node of the POSIX compatible distributed file system. a second node contains a second set
of files on the second directory, and the second set of files corresponds to the second tenant; and

program instructions executable by a device to cause the device to generate a second result to the second

read/write request.

3. The method of claim 2, wherein the second physical node Is the first physical node.

4 The method of any of the preceding claims, further comprising:

070520

19

processing the first request from the first virtual container to perform the [/O operation on the data stored
on the first physical mode of the POSIX distributed file system; and generating a first result to the first request,
wherein the first result is selected from a group consisting of:

a new data entry, and

a message with a set of data.

5. The method of any of the preceding claims,-wherein the connection service is operable for further
performing at least one of. authenticating a set of users;

entitling a set of users to a set of resources;

assigning a set of packages to a set of resources;

managing local and/or remote sessions;

establishing a set of secure connections;

and/or applying policies.

o. The method of any of the preceding claims, wherein the first directory is organized using an Apache
Hadoop Distributed File System ("HDFS").

/. A computer program product for managing a read/write request, the computer program product
comprising:
a computer readable storage medium readable by a processing circuit and storing instructions for

execution by the processing circuit for performing a method according to any of claims 1 to 6.

8. A computer program stored on a computer readable medium and loadable into the internal memory of a

digital computer, comprising software code portions, when said program is run on a computer, for performing the

method of any of claims 1 to ©.

9. A computer system for managing a read/write request, the system comprising:

a processor set; and

a computer readable storage medium;

wherein:

the processor set is structured, located, connected, and/or programmed to execute instructions stored on
the computer readable storage medium; and

the instructions include program instructions executable by a device to cause the device to:

recelve a first request from a first virtual container to perform an input/output (I/O) operation;

determine a first non-POSIX compatible directory corresponding to a first tenant identifier in a set of tenant

assoclated with the first virtual container;

070520

20

assign a connector service to the first non-POSIX compatible directory corresponding to the first tenant

assoclated with the first virtual container;

directory corresponding to the connector service, wherein:

the first POSIX compatible directory Is utilized to access data stored on a first physical node of a POSIX

compatible distributed file system; and

mapping a path between the first non-POSIX compatible directory assigned to the connector service, the
first POSIX compatible directory corresponding to the connector service, and the first physical node of the POSIX
compatible distributed file system, wherein the first read/write request is from the first tenant; and

program instructions executable by a device to cause the device to generate a first result to the first

read/write request.

10. The computer system of claim 9, further comprising:
program instructions executable by a device to cause the device to:

recelve second request from a second virtual container to perform an /O operation;

determine a second non-POSIX directory corresponding to a second tenant associated with the second

virtual container;

assign the connector service to the second non-POSIX-compatible-directory corresponding to the second
tenant associated with the second virtual container:
map a path between the second non-POSIX compatible directory assigned to the connector service and a second
physical node of the POSIX compatible distributed file system.:

a second node contains a second set of files on the second directory, and the second set of files
corresponds to the second tenant; and

program instructions executable by a device to cause the device to generate a second result to the second

read/write request.

11. The computer system of either of claims 9 or 10, further comprising:
program instructions executable by a device to cause the device to:

process the first request from the first virtual container to perform the /O operation on the data stored on

the first physical mode of the POSIX distributed file system; and
generating a first result to the first request, wherein the first result is selected from a group consisting of:
a new data entry, and

a message with a set of data.

12. The computer system of any of claims 9 to 11,wherein the connection service is operable for further
performing at least one of:
authenticating a set of users;

entitling a set of users to a set of resources,;

070520

2

assigning a set of packages to a set of resources;
managing local and/or remote sessions;
establishing a set of secure connections;

and/or applying policies.

13. The computer system of any of claims 9 to 12, wherein the first directory is organized using an Apache
Hadoop Distributed File System ("HDFS").

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - CLAIMS
	Page 25 - CLAIMS
	Page 26 - CLAIMS
	Page 27 - CLAIMS

