Abstract:

Title: GENERATION OF HIGH POLYHYDROXYBUTRATES PRODUCING OILSEEDS

Figure 1

S line (male sterile) X M line (maintainer) (phaA and phaC)

S line (phaA and phaC) X R line (restorer) (phaB)

Hybrid seeds (phaA/phaB/phaC)

(57) Abstract: Transgenic oilseed plants, plant material, plant cells, and genetic constructs for synthesis of polyhydroxyalkanoates ("PHA") are provided. In a preferred embodiment, the transgenic oilseed plants synthesize (poly)3-hydroxybutyrate ("PHB") in the seed. Genes utilized include phaA, phaB, phaC, all of which are known in the art. The genes can be introduced in the plant, plant tissue, or plant cell using conventional plant molecular biology techniques.
Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))
GENERATION OF HIGH POLYHYDROXYBUTRATE PRODUCING
OILSEEDS

FIELD OF THE INVENTION

The invention is in the field of polymer production in transgenic
plants. Methods for generating industrial oilseeds producing high levels of
polyhydroxybutyrate (PHB) and industrial oilseeds producing high levels of
PHB are described.

BACKGROUND OF THE INVENTION

Production of polyhydroxyalkanoates (PHAs), a family of naturally
occurring renewable and biodegradable plastics, in crops has the potential of
providing a renewable source of polymers, chemical intermediates and bio-
energy from one crop if plant residues remaining after polymer isolation are
converted to liquid fuels and/or energy. PHAs can provide an additional
revenue stream that would make bioenergy crops more economically viable.

PHAs are a natural component of numerous organisms in multiple
ecosystems and accumulate in a wide range of bacteria as a granular storage
material when the microbes are faced with an unfavorable growth
environment, such as a limitation in an essential nutrient (Madison et al,
Microbiol. Mol. Biol. Rev., 1999, 63, 21-53; Suriyamongkol et al,
Biotechnol Adv, 2007, 25, 148-175). The monomer unit composition of these
polymers is largely dictated by available carbon source as well as the native
biochemical pathways present in the organism. Today PHAs are produced
industrially from renewable resources in bacterial fermentations providing an
alternative to plastics derived from fossil fuels. PHAs possess properties
enabling their use in a variety of applications currently served by petroleum-
based plastics and are capable of matching or exceeding the performance
characteristics of fossil fuel derived plastics with a broad spectrum of
properties that can be obtained by varying the monomer composition of homo-
and co-polymers, or by manipulating properties such as molecular
weight (Sudesh et al., *Prog. Polym. Sci.*, 2000, 25, 1503-1555; Sudesh et al,

Industrial production of PHAs in crop plants would provide a low cost,
renewable source of plastics. Production of PHAs in plants has been an as yet
unsolved goal for plant scientists and has previously been demonstrated in a
number of crops unsuitable for industrial production or in industrially useful
crops at levels to low to be commercially attractive [for review, see
(Suriyamongkol et al., Biotechnol Adv, 2007, 25, 148-175); (van Beilen et al,
The Plant Journal, 2008, 54, 684-701) and references within] including maize
(Pokier et al., 2002, Polyhydroxyalkanoate production in transgenic plants, in
Biopolymers, Vol 3a, Steinbuchel, A. (ed), Wiley-VHC Verlag GmbH, pgs
switchgrass (Somleva et al, Plant Biotechnol J, 2008, 6, 663-678), flax
(Wrobel et al, J. Biotechnol, 2004, 107, 41-54; Wrobel-Kwialkowski et al,
National Academy of Sciences of the United States of America, 1996, 93,
12768-12773), alfalfa (Saruul et al, Crop Set, 2002, 42, 919-927), tobacco
(Arai et al, Plant Biotechnol, 2001, 18, 289-293; Bohmert et al, Plant
Physiol, 2002, 128, 1282-1290; Lossl et al, Plant Cell Reports, 2003, 21,
891-899; LSssl etal, Plant Cell Physiol, 2005, 46, 1462-1471), potato
(Bohmert et al, Plant Physiol, 2002, 128, 1282-1290), and oilseed rape
Biotechnol, 1999, 17, 1011-1016;). Most of the efforts to produce PHAs in
plants have focused on production of the homopolymer P3HB or the
copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HBV). While
there have been some efforts to produce medium chain length PHAs in plants,
these studies have yielded barely detectable levels of polymer (Romano et al,
Planta, 2005, 220, 455-464; Mittendorf et al, Proceedings of the National
Academy of Sciences of the United States of America, 1998, 95, 13397-13402;
Poirier et al, Plant Physiol, 1999, 121, 1359-1366; Matsumoto, Journal of
Polymers and the Environment, 2006, 14, 369-374; Wang et al, Chinese

To date, the highest levels of polymer have been obtained when the
homopolymer poly-3-hydroxybutyrate (P3HB or PHB) is produced in plastids
(Suriyamongkol et al, Biotechnol Adv, 2007, 25, 148-175; van Beilen et al,
The Plant Journal, 2008, 54, 684-701; Bohmert et al, Molecular Biology and
Biotechnology of Plant Organelles, 2004, 559-585). This is likely due to the
high flux of acetyl-CoA, the precursor for PHB in these organelles during fatty acid biosynthesis (Bohmert et al., *Molecular Biology and Biotechnology of Plant Organelles*, 2004, 559-585). Expression of three genes encoding β-ketothiolase, acetoacetyl CoA reductase, and PHA synthase, allows the conversion of acetyl-CoA within the plastid to PHB. Previous work has reported producing levels of PHB in *Brassica napus* up to a maximum of 6.7% of seed weight, a level too low for commercial production.

SUMMARY OF THE INVENTION

Transgenic oilseed plants, plant material, plant cells, and genetic constructs for synthesis of polyhydroxyalkanoates ("PHA") are provided. In a preferred embodiment, the transgenic oilseed plants synthesize (poly)3-hydroxybutyrate ("PHB") in the seed. Host plants, plant tissue, and plant material have been engineered to express genes encoding enzymes in the biosynthetic pathway for PHB production such that polymer precursors in the plastid are polymerized to polymer. Genes utilized include *phaA*, *phaB*, *phaC*, all of which are known in the art. The genes can be introduced in the plant, plant tissue, or plant cell using conventional plant molecular biology techniques.

It is an object of the invention to provide methods and compositions for producing transgenic oilseeds having commercially viable levels of polyhydroxyalkanoates in the seed, for example greater than 7%, 10%, 15%, or 19% polyhydroxyalkanoate or more of the total dry seed weight.

It is another object of the invention to provide oilseeds having increased levels of polyhydroxyalkanoate greater than 7%, 10%, 15%, or 19% polyhydroxyalkanoate or more of the total dry seed weight and having impaired germination relative to non-transgenic oilseeds.

Using a non-traditional screening method to identify transgenic lines, than those used in all other reported studies, it has been discovered that very high levels of PHA, for example PHB can be produced in the oilseed but that oilseeds with high levels of PHA fail to germinate or germinate but produce impaired seedlings which do not survive to produce viable, fertile plants. The failure to produce viable progeny explains why previous researchers failed to...
demonstrate that commercial levels of PHA can be produced in transgenic
oilseeds. A preferred PHA produced in oilseeds is PHB.

In another embodiment the transgenes encoding PHA biosynthesis
genes are expressed in a seed specific manner such that the PHA
accumulates in the seed. In this embodiment the level of PHA accumulated is
greater than 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%
and 19% of the dry weight of the seed.

Methods and compositions for producing hybrid lines are also
provided. Hybrid lines can be created by crossing a line containing one or
more PHAs, for example PHB genes with a line containing the other gene(s)
needed to complete the PHA biosynthetic pathway. Use of lines that possess
cytoplasmic male sterility with the appropriate maintainer and restorer lines
allows these hybrid lines to be produced efficiently.

In still another embodiment the oilseeds produced by the disclosed
methods produce high levels of PHA and are impaired in their ability to
germinate and survive to produce viable plants relative to oilseeds containing
little or no PHA, for example less than 7% PHA of the dry weight of the
seed. Germination can be impaired by 8%, 9%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%,
99%, or 100% relative to oilseeds with less than 7% PHA. Impaired
germination provides a built in mechanism for gene containment reducing
the risk of unwanted growth of these oilseeds when a different crop is
planted on the production fields.

Transgenic plants useful for the invention include dicots or monocots.

Preferred host plants are oilseed plants, but are not limited to members of the
Brassica family including B. napus, B. rapa, B. carinata and B. juncea.
Additional preferred host plants include industrial oilseeds such as Camelina
sativa, Crambe, jatropha, and castor. Other preferred host plants include
Arabidopsis thaliana, Calendula, Cuphea, maize, soybean, cottonseed,
sunflower, palm, coconut, safflower, peanut, mustards including Sinapis
alba, and tobacco.

Other embodiments provide plant material and plant parts of the
transgenic plants including seeds, flowers, stems, and leaves. The oilseeds
can be used for the extraction of PHA biopolymer or as a source of PHA biopolymer based chemical intermediates. The residual parts of the seed can be used as meal for animal feed or steam and power generation and a source of vegetable oil for industrial oleochemicals or biofuel.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram describing a strategy for creating hybrid seeds using cytoplasmic male sterility.

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

A number of terms used herein are defined and clarified in the following section.

The term PHB refers to polyhydroxybutyrate and is used interchangeably with the term PHA which refers to polyhydroxyalkanoate.
The term PHB also encompasses copolymers of hydroxybutyrate with other hydroxyacid monomers.

The term "PHA copolymer" refers to a polymer composed of at least two different hydroxyalkanoic acid monomers.

The term "PHA homopolymer" refers to a polymer that is composed of a single hydroxyalkanoic acid monomer.

As used herein, a "vector" is a repiicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment. The vectors can be expression vectors.

As used herein, an "expression vector" is a vector that includes one or more expression control sequences.

As used herein, an "expression control sequence" is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence. Control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, and the like. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

As used herein, "operably linked" means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.

As used herein, "transformed" and "transfected" encompass the introduction of a nucleic acid into a cell by a number of techniques known in the art.

"Plasmids" are designated by a lower case "p" preceded and/or followed by capital letters and/or numbers.

As used herein the term "heterologous" means from another host.

The other host can be the same or different species.

The term "cell" refers to a membrane-bound biological unit capable of replication or division.

The term "construct" refers to a recombinant genetic molecule including one or more isolated polynucleotide sequences.
Genetic constructs used for transgene expression in a host organism comprise in the 5'-3' direction, a promoter sequence; a nucleic acid sequence encoding the desired transgene product; and a termination sequence. The open reading frame may be orientated in either a sense or anti-sense direction. The construct may also comprise selectable marker gene(s) and other regulatory elements for expression.

The term "plant" is used in it broadest sense. It includes, but is not limited to, any species of woody, ornamental or decorative, crop or cereal, fruit or vegetable plant, and photosynthetic green algae (e.g., *Chlamydomonas reinhardtii*). It also refers to a plurality of plant cells that are largely differentiated into a structure that is present at any stage of a plant's development. Such structures include, but are not limited to, a fruit, shoot, stem, leaf, flower petal, etc. The term "plant tissue" includes differentiated and undifferentiated tissues of plants including those present in roots, shoots, leaves, pollen, seeds and tumors, as well as cells in culture (e.g., single cells, protoplasts, embryos, callus, etc.). Plant tissue may be *in planta*, in organ culture, tissue culture, or cell culture. The term "plant part" as used herein refers to a plant structure, a plant organ, or a plant tissue.

A non-naturally occurring plant refers to a plant that does not occur in nature without human intervention. Non-naturally occurring plants include transgenic plants and plants produced by non-transgenic means such as plant breeding.

The term "plant cell" refers to a structural and physiological unit of a plant, comprising a protoplast and a cell wall. The plant cell may be in form of an isolated single cell or a cultured cell, or as a part of higher organized unit such as, for example, a plant tissue, a plant organ, or a whole plant.

The term "plant cell culture" refers to cultures of plant units such as, for example, protoplasts, cell culture cells, cells in plant tissues, pollen, pollen tubes, ovules, embryo sacs, zygotes and embryos at various stages of development.

The term "plant material" refers to leaves, stems, roots, flowers or flower parts, fruits, pollen, egg cells, zygotes, seeds, cuttings, cell or tissue cultures, or any other part or product of a plant.
A "plant organ" refers to a distinct and visibly structured and differentiated part of a plant such as a root, stem, leaf, flower bud, or embryo.

"Plant tissue" refers to a group of plant cells organized into a structural and functional unit. Any tissue of a plant, whether in a plant or in culture, is included. This term includes, but is not limited to, whole plants, plant organs, plant seeds, tissue culture and any groups of plant cells organized into structural and/or functional units. The use of this term in conjunction with, or in the absence of, any specific type of plant tissue as listed above or otherwise embraced by this definition is not intended to be exclusive of any other type of plant tissue.

"Seed germination" refers to growth of an embryonic plant contained within a seed resulting in the formation and emergence of a seedling.

"Cotyledon" refers to the embryonic first leaves of a seedling.

"Early plantlet development" refers to growth of the cotyledon containing seedling to form a plantlet.

II. Transgenic Plants

Transgenic plants have been developed that produce increased levels of biopolymers such as polyhydroxyalkanoates (PHAs) in seeds. Methods and constructs for engineering plants for seed specific production of PHA, in particular PHB, are described. One embodiment provides transgenic plants for the direct, large scale production of PHAs in crop plants or in energy crops where a plant by-product, such as oil, can be used for production of energy. Proof of concept studies for polyhydroxybutyrate (PHB) synthesis in canola (Valentin et al, Int. J. Biol. Macromol, 1999, 25, 303-306; Houniels et al, Planta, 1999, 209, 547-550; Slater et al, Nat. Biotechnol, 1999, 17, 101 1-1016.) have been reported. There have been instances where high level PHB production in the chloroplasts of plants has led to decreases in total plant growth (Bohmert et al, Molecular Biology and Biotechnology of Plant Organelles, 2004, 559-585; Bohmert et al, Planta, 2000, 211, 841-845) for unidentified reasons. There have been several studies that have attempted to alleviate this problem by inducible expression of enzymes (Bohmert et al, Plant Physiol, 2002, 128, 1282-1290; Løssl et al, Plant
Transgenic oilseeds comprising at least about 8% dry weight PHA are provided. In one embodiment we provide transgenic oilseeds having at least 10% PHA dry weight and which are impaired in germination and plant survival.

A. Genetic Constructs for Transformation

Suitable genetic constructs include expression cassettes for enzymes for production of polyhydroxyalkanoates, in particular from the polyhydroxybutyrate biosynthetic pathway. In one embodiment, the construct contains operatively linked in the 5' to 3' direction, a seed specific promoter that directs transcription of a nucleic acid sequence in the nucleus; a nucleic acid sequence encoding one of the PHB biosynthetic enzymes; and a 3' polyadenylation signal that increases levels of expression of transgenes.

In one embodiment, enzymes for formation of polymer precursors are targeted to the plastid using appropriate plastid-targeting signals. In another embodiment, the PHA pathway is expressed directly from the plastid genome using appropriate plastidial promoters and regulatory sequences.

DNA constructs useful in the methods described herein include transformation vectors capable of introducing transgenes into plants. As used herein, "transgenic" refers to an organism in which a nucleic acid fragment containing a heterologous nucleotide sequence has been introduced. The transgenes in the transgenic organism are preferably stable and inheritable. The heterologous nucleic acid fragment may or may not be integrated into the host genome.

Several plant transformation vector options are available, including those described in "Gene Transfer to Plants" (Potrykus, et al., eds.) Springer-Verlag Berlin Heidelberg New York (1995); "Transgenic Plants: A Production System for Industrial and Pharmaceutical Proteins" (Owen, et al., eds.) John Wiley & Sons Ltd. England (1996); and "Methods in Plant Molecular Biology: A Laboratory Course Manual" (Maliga, et al. eds.) Cold Spring Laboratory Press, New York (1995). Plant transformation vectors generally include one or more coding sequences of interest under the
transcriptional control of 5' and 3' regulatory sequences, including a promoter, a transcription termination and/or polyadenylation signal, and a selectable or screenable marker gene. For the expression of two or more polypeptides from a single transcript, additional RNA processing signals and ribozyme sequences can be engineered into the construct (U.S. Pat No.5,519,164). This approach has the advantage of locating multiple transgenes in a single locus, which is advantageous in subsequent plant breeding efforts.

Engineered minichromosomes can also be used to express one or more genes in plant cells. Cloned telomeric repeats introduced into cells may truncate the distal portion of a chromosome by the formation of a new telomere at the integration site. Using this method, a vector for gene transfer can be prepared by trimming off the arms of a natural plant chromosome and adding an insertion site for large inserts (Yu et al., Proc Natl Acad Sci USA, 2006, 103, 17331-6; Yu et al, Proc Natl Acad Sci USA, 2007, 104, 8924-9). The utility of engineered minichromosome platforms has been shown using Ctc/lox and FRT/FLP site-specific recombination systems on a maize minichromosome where the ability to undergo recombination was demonstrated (Yu et al, Proc Natl Acad Sci USA, 2006, 103, 17331-6; Yu et al., Proc Natl Acad Sci USA, 2007, 104, 8924-9). Such technologies could be applied to minichromosomes, for example, to add genes to an engineered plant. Site specific recombination systems have also been demonstrated to be valuable tools for marker gene removal (Kerbach, S. et al., Theor Appl Genet, 2005,111,1608-1616), gene targeting (Chawla, R. et al, Plant Biotechnol J, 2006, 4, 209-218; Choi, S. et al, Nucleic Acids Res, 2000, 28, E19; Srivastava, V, & Ow, DW, Plant Mol Biol, 2001, 46, 561-566; Lyznik, LA, et al, Nucleic Acids Res, 1993, 21, 969-975), and gene conversion (Djukanovic, V, et al, Plant Biotechnol J, 2006, 4, 345-357).

An alternative approach to chromosome engineering in plants involves in vivo assembly of autonomous plant minichromosomes (Carlson et al., PLoS Genet, 2007, 3, 1965-74). Plant cells can be transformed with centromeric sequences and screened for plants that have assembled autonomous chromosomes de novo. Useful constructs combine a selectable
marker gene with genomic DNA fragments containing centromeric satellite and retroelement sequences and/or other repeats.

Another approach is Engineered Trait Loci ("ETL") technology (US Patent 6,077,697 to Hadlaczy et al.; US Patent Application 2006/0143732). This system targets DNA to a heterochromatic region of plant chromosomes, such as the pericentric heterochromatin, in the short arm of acrocentric chromosomes. Targeting sequences may include ribosomal DNA (rDNA) or lambda phage DNA. The pericentric rDNA region supports stable insertion, low recombination, and high levels of gene expression. This technology is also useful for stacking of multiple traits in a plant (US Patent Application 2006/0246586, 2010/0186117 and PCT WO 2010/037209).

Zinc-finger nucleases (ZFNs) are also useful in that they allow double strand DNA cleavage at specific sites in plant chromosomes such that targeted gene insertion or deletion can be performed (Shukla et al., Nature, 2009; Townsend et al., Nature, 2009).

For direct expression of transgenes from the plastid genome, a vector to transform the plant plastid chromosome by homologous recombination (as described in U.S. Pat No. 5,545,818 to McBride et al.) is used in which case it is possible to take advantage of the prokaryotic nature of the plastid genome and insert a number of transgenes as an operon. WO 2010/061186 describes an alternative method for introducing genes into the plastid chromosome using an adapted endogenous cellular process for the transfer of RNAs from the cytoplasm to the plastid where they are incorporated by homologous recombination. This plastid transformation procedure is also suitable for practicing the disclosed compositions and methods.

A transgene may be constructed to encode a multifunctional enzyme through gene fusion techniques in which the coding sequences of different genes are fused with or without linker sequences to obtain a single gene encoding a single protein with the activities of the individual genes.

Transgenes encoding a bifunctional protein containing thiolase and reductase activities (Kourtz, L., K. et al. (2005), Plant Biotechnol. 3: 435-447) and a trifunctional protein having each of the three enzyme activities required for PHB expression in plants (Mullaney and Rehm (2010), Journal of
Biotechnology 147: 31-36) have been described. Such synthetic fusion gene/enzyme combinations can be further optimized using molecular evolution technologies.

A transgene may be constructed to encode a series of enzyme activities separated by intein sequences such that on expression, two or more enzyme activities are expressed from a single promoter as described by Snell in US patent No. 7,026,526 to Metabolix, Inc.

1. **Genes involved in Polyhydroxyalkanoate Synthesis**

In a preferred embodiment, the products of the transgenes are enzymes and other factors required for production of a biopolymer, such as a polyhydroxyalkanoate (PHA).

For PHA production, transgenes encode enzymes such as beta-ketothiolase, acetoacetyl-CoA reductase, PHB ("short chain") synthase, PHA ("long chain") synthase, threonine dehydratase, dehydratases such as 3-OH acylACP, isomerases such as Δ 3-cis, Δ 2-trans isomerase, propionyl-CoA synthetase, hydroxyacyl-CoA synthetase, hydroxyacyl-CoA transferase, R-3-hydroxyacyl-ACP:CoA transferase, thioesterase, fatty acid synthesis enzymes and fatty acid beta-oxidation enzymes. Useful genes are well known in the art, and are disclosed for example by Snell and Peoples Metab. Eng. 4: 29-40 (2002); Bohmert et al. in *Molecular Biology and Biotechnology of Plant Organelles*. H. Daniell, C. D. Chase Eds., Kluwer Academic Publishers, Netherlands, 2004, pp. 559-585; (Suriyamongkol et al., Biotechnol Adv, 2007, 25, 148-175; van Beilen et al. *The Plant Journal*, 2008, 54, 684-701).

PHA Synthases

Hydratase and Dehydrogenase

An alpha subunit of beta-oxidation multienzyme complex pertains to a multifunctional enzyme that minimally possesses hydratase and dehydrogenase activities. The subunit may also possess epimerase and Δ3-cis, Δ2-trans isomerase activities. Examples of alpha subunits of the beta-oxidation multienzyme complex are FadB from *E. coli* (DiRusso, C. C. J. Bacteriol. 1990, 172, 6459-6468), FaoA from *Pseudomonas fragi* (Sato, S., Hayashi, et al. J. Biochem. 1992, 111, 8-15), and the *E. coli* open reading frame f714 that contains homology to multifunctional α subunits of the β-oxidation complex (Genbank Accession # 1788682). A β subunit of the β-oxidation complex refers to a polypeptide capable of forming a
multifunctional enzyme complex with its partner a subunit. The β subunit possesses thiolase activity. Examples of β subunits are FadA from *E. coli* (DiRusso, C. C. J. Bacteriol. 172: 6459-6468 (1990)), FaoB from *Pseudomonas fragi* (Sato, S., Hayashi, M., Imamura, S., Ozeki, Y., Kawaguchi, A. J. Biochem. 111: 8-15 (1992)), and the *E. coli* open reading frame f436 that contains homology to a subunits of the β-oxidation complex (Genbank Accession # AE000322; gene b2342).

Reducases

Thiolases

The transgene can encode a thiolase. A beta-ketothiolase refers to an enzyme that can catalyze the conversion of acetyl CoA and an acyl CoA to a β-ketoacyl CoA, a reaction that is reversible. An example of such thiolases are PhaA from *Alcaligenes eutrophus* (Accession J04987, Peoples, O. P. & Sinskey, A. J. J. Biol. Chem. 264: 15293-15297 (1989)), BktB from *Alcaligenes eutrophus* (Slater et al. J Bacteriol. 180(8):1979-87 (1998)) and thiolases from the following *Rhizobium meliloti* (Accession RMU 17226), *Z. ramigera* (Accession P07097), *Paracoccus denitrificans* (Accession
D49362), Burkholderia sp. (Accession AF153086), Alcaligenes latus (Accession ALU47026), Allochromatium vinosum (Accession P45369), Thiocystis violacea (Accession P45363); Pseudomonas sp. strain 61-3 (Accession ABO14757), Acinetobacter sp. strain RA3849 (Accession L37761) and Synechocystis sp. Strain PCC6803 (Taroncher-Oldenburg et al., (2000), Appl. Environ. Microbiol. 66: 4440-4448).

Oxidases

An acyl CoA oxidase refers to an enzyme capable of converting saturated acyl CoAs to Δ2 unsaturated acyl CoAs. Examples of acyl CoA oxidases are POX1 from Saccharomyces cerevisiae (Dmochowska, et al. Gene, 1990, 88, 247-252) and ACX1 from Arabidopsis thaliana (Genbank Accession # AF057044).

Catalases

2. **Promoters**

Plant promoters can be selected to control the expression of the transgene in different plant tissues or organelles for all of which methods are known to those skilled in the art (Gasser & Fraley, Science 244:1293-99 (1989)). In one embodiment, promoters are selected from those of eukaryotic or synthetic origin that are known to yield high levels of expression in plant and algae cytosol. In another embodiment, promoters are selected from those of plant or prokaryotic origin that are known to yield high expression in plastids. In certain embodiments the promoters are inducible. Inducible plant promoters are known in the art.

Suitable constitutive promoters for nuclear-encoded expression include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in U.S. Pat. No. 6,072,050; the core CAMV 35S promoter, (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy

"Seed-preferred" promoters include both "seed-specific" promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108. Such seed-preferred promoters include, but are not limited to, Ciml (cytokinin-induced message); cZ19Bl (maize 19 kDa zein); milps (myo-inositol-1-phosphate synthase); and celA (cellulose synthase). Gama-zein is a preferred endosperm-specific promoter. Glob-1 is a preferred embryo-specific promoter. For dicots, seed-specific promoters include, but are not limited to, bean β-phaseolin, napin β-conglycinin, soybean lectin, cruciferin, oleosin, the Lesquerella hydroxylase promoter, and the like. For monocots, seed-specific promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, g-zein, waxy, shrunken 1, shrunken 2, globulin 1,
etc. Additional seed specific promoters useful for practicing this invention are described in the Examples disclosed herein.

Root-preferred promoters are known and may be selected from the many available from the literature or isolated *de novo* from various compatible species. See, for example, Hire et al. (1992) *Plant Mol. Biol.* 20(2): 207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) *Plant Cell* 3(10): 1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) *Plant Mol. Biol.* 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) *Plant Cell* 3(1):1-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also U.S. Patent Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179.

Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are
known in the art and include, but are not limited to, the maize 1n2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1 a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. Proc. Natl. Acad. Sci. USA 88:10421-10425 (1991) and McNellis et al. Plant J. 14(2):247-257(1998)) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al Mol. Gen. Genet. 227:229-237 (1991), and U.S. Patent Nos. 5,814,618 and 5,789,156), herein incorporated by reference in their entirety.

In one embodiment, coordinated expression of the three transgenes, phaA, phaB, and phaC, necessary for conversion of acetyl-CoA to PHB is controlled by a seed specific promoter, such as the soybean oleosin promoter (Rowley et al, Biochim Biophys Acta, 1997, 1345, 1-4) or the promoter from the lesquerella hydroxylase gene (US Patent No. 6,437,220 B1). In another embodiment, coordinated expression of the three transgenes, phaA, phaB, and phaC, necessary for conversion of acetyl-CoA to PHB is controlled by a promoter active primarily in the biomass plant, such as the maize chlorophyll A/B binding protein promoter (Sullivan et al, Mol Gen. Genet., 1989, 215, 431-40). It has been previously shown that plants transformed with multi-gene constructs produced higher levels of polymer than plants obtained from crossing single transgene lines (Valentin et al, Int. J. Biol. Macromol, 1999, 25, 303-306; Bohmert et al, Planta, 2000, 211, 841-845).

In one embodiment, the final molecular weight of the polymer produced is controlled by the choice of promoter for expression of the PHA synthase gene. As described in US Patent No. 5,814,127, high PHA synthase activity will lower polymer molecular weight and low PHA synthase activity will increase polymer molecular weight. In another embodiment, a strong promoter is used for expression of the genes encoding plastid-targeted monomer producing enzymes while a weaker promoter is used to control expression of synthase.
3. Transcription Termination Sequences

At the extreme 3' end of the transcript of the transgene, a polyadenylation signal can be engineered. A polyadenylation signal refers to any sequence that can result in polyadenylation of the mRNA in the nucleus prior to export of the mRNA to the cytosol, such as the 3' region of nopaline synthase (Bevan, M., Barnes, W. M., Chilton, M. D. Nucleic Acids Res. 1983, 11, 369-385).

4. Selectable Markers

Genetic constructs may encode a selectable marker to enable selection of plastid transformation events. There are many methods that have been described for the selection of transformed plants [for review see (Miki et al., Journal of Biotechnology, 2004, 107, 193-232) and references incorporated within]. Selectable marker genes that have been used extensively in plants include the neomycin phosphotransferase gene nptII (U.S. Patent Nos. 5,034,322, U.S. 5,530,196), hygromycin resistance gene (U.S. Patent No. 5,668,298), the bar gene encoding resistance to phosphinothricin (U.S. Patent No. 5,276,268), the expression of aminoglycoside 3"-adeny transferase (aadA) to confer spectinomycin resistance (U.S. Patent No. 5,073,675), the use of inhibition resistant 5-enolpyravyl-3-phosphoshikimate synthetase (U.S. Patent No. 4,535,060) and methods for producing glyphosate tolerant plants (U.S. Patent No. 5,463,175; U.S. Patent No. 7,045,684). Methods of plant selection that do not use antibiotics or herbicides as a selective agent have been previously described and include expression of glucosamine-6-phosphate deaminase to inactive glucosamine in plant selection medium (U.S. Pat. No. 6,444,878) and a positive/negative system that utilizes D-amino acids (Erikson et al., Nat Biotechnol, 2004, 22, 455-8). European Patent Publication No. EP 0 530 129 A1 describes a positive selection system which enables the transformed plants to outgrow the non-transformed lines by expressing a transgene encoding an enzyme that activates an inactive compound added to the growth media. U.S. Patent No. 5,767,378 describes the use of mannose or xylose for the positive selection of transgenic plants. Methods for positive selection using sorbitol dehydrogenase to convert sorbitol to fructose for plant growth
have also been described (WO 2010/102293). Screenable marker genes include the beta-glucuronidase gene (Jefferson et al., 1987, EMBO J. 6: 3901-3907; U.S. Patent No. 5,268,463) and native or modified green fluorescent protein gene (Cubitt et al., 1995, Trends Biochem. Sci. 20: 448-455; Pan et al., 1996, Plant Physiol. 112: 893-900).

Transformation events can also be selected through visualization of fluorescent proteins such as the fluorescent proteins from the nonbioluminescent Anthozoa species which include DsRed, a red fluorescent protein from the Discosoma genus of coral (Matz et al. (1999), Nat Biotechnol 17: 969-73). An improved version of the DsRed protein has been developed (Bevis and Glick (2002), Nat Biotech 20: 83-87) for reducing aggregation of the protein. Visual selection can also be performed with the yellow fluorescent proteins (YFP) including the variant with accelerated maturation of the signal (Nagai, T. et al. (2002), Nat Biotech 20: 87-90), the blue fluorescent protein, the cyan fluorescent protein, and the green fluorescent protein (Sheen et al. (1995), Plant J 8: 777-84; Davis and Vierstra (1998), Plant Molecular Biology 36: 521-528). A summary of fluorescent proteins can be found in Tzfira et al. (Tzfira et al. (2005), Plant Molecular Biology 57: 503-516) and Verkhusha and Lukyanov (Verkhusha, V. V. and K. A. Lukyanov (2004), Nat Biotech 22: 289-296) whose references are incorporated in entirety. Improved versions of many of the fluorescent proteins have been made for various applications. Use of the improved versions of these proteins or the use of combinations of these proteins for selection of transformants will be obvious to those skilled in the art. It is also practical to simply analyze progeny from transformation events for the presence of the PHB thereby avoiding the use of any selectable marker.

For plastid transformation constructs, a preferred selectable marker is the spectinomycin-resistant allele of the plastid 16S ribosomal RNA gene (Staub JM, Maliga P, Plant Cell 4: 39-45 (1992); Svab Z, Hajdukiewicz P, Maliga P, Proc. Nath Acad. Sci. USA 87: 8526-8530 (1990)). Selectable markers that have since been successfully used in plastid transformation include the bacterial aadA gene that encodes aminoglycoside 3'-adenyltransferase (AadA) conferring spectinomycin and streptomycin

5. Plastid targeting signals

B. Exemplary Host Plants

Plants transformed in accordance with the present disclosure may be monocots or dicots. The transformation of suitable agronomic plant hosts using vectors for nuclear transformation or direct plastid transformation can
be accomplished with a variety of methods and plant tissues. Representative plants useful in the methods disclosed herein include the Brassica family including *B. napus*, *B. rapa*, *B. carinata* and *B. juncea*; industrial oilseeds such as *Camelina sativa*, Crambe, jatropha, castor; *Calendula, Cuphea, Arabidopsis thaliana*; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including *Sinapis alba*; sugarcane flax and tobacco, also are useful with the methods disclosed herein.

Representative tissues for transformation using these vectors include protoplasts, cells, callus tissue, leaf discs, pollen, and meristems.

C. **Methods of Plant Transformation**

Berlin) (maize); Klein et al. Plant Physiol. 91:440-444 (1988) (maize);
Fromm et al. Biotechnology 8:833-839 (1990) (maize); Hooykaas-Van
5,736,369 (cereals); Bytebier et al. Proc. Natl Acad. Sci. USA 84:5345-5349
(1987) (Liliaceae); De Wet et al. in The Experimental Manipulation of Ovule
Tissues, ed. Chapman et al. (Longman, N.Y.), pp. 197-209 (1985) (pollen);
D'Halluin et al. Plant Cell 4:1495-1505 (1992) (electroporation); Li et al
Plant Cell Reports 12:250-255 (1993) and Christou and Ford Annals of
14:745-750 (1996) (maize via Agrobacterium tumefaciens); all of which are
herein incorporated by reference in their entirety. References for protoplast
transformation and/or gene gun for Agrisoma technology are described in
WO 2010/037209. Methods for transforming plant protoplasts are available
including transformation using polyethylene glycol (PEG), electroporation,
and calcium phosphate precipitation (see for example Potrykus et al., 1985,
Mol. Gen. Genet. 199, 183-188; Potrykus et al., 1985, Plant Molecular
Biology Reporter, 3, 117-128). Methods for plant regeneration from
protoplasts have also been described [Evans et al., in Handbook of Plant Cell
Culture, Vol 1. (Macmillan Publishing Co., New York, 1983); Vasil, IK in
Cell Culture and Somatic Cell Genetics (Academic, Orlando, 1984)].

Methods for transformation of plastids such as chloroplasts are
known in the art. See, for example, Svab et al. (1990) Proc. Natl. Acad. Sci.
relies on particle gun delivery of DNA containing a selectable marker and
targeting of the DNA to the plastid genome through homologous
recombination. Additionally, plastid transformation may be accomplished by
transactivation of a silent plastid-borne transgene by tissue-preferred
expression of a nuclear-encoded and plastid-directed RNA
or by use of an integrase, such as the phiC31 phage site-specific integrase, to
target the gene insertion to a previously inserted phage attachment site (Lutz et al, Plant J, 2004, 37, 906-13). Plastid transformation vectors can be designed such that the transgenes are expressed from a promoter sequence that has been inserted with the transgene during the plastid transformation process or, alternatively, from an endogenous plastidial promoter such that an extension of an existing plastidial operon is achieved (Herz et al, Transgenic Research, 2005, 14, 969-982). An alternative method for plastid transformation as described in WO 2010/061185 wherein RNA produced in the nucleus of a plant cell can be targeted to the plastid genome can also be used to practice the disclosed invention. Inducible gene expression from the plastid genome using a synthetic riboswitch has also been reported (Verhounig et al. (2010), Proc Natl Acad Sci USA 107: 6204-6209). Methods for designing plastid transformation vectors are described by Lutz et al. (Lutz et al, Plant Physiol, 2007, 145, 1201-10).

Recombinase technologies which are useful for producing the disclosed transgenic plants include the cre-lox, FLP/FRT and Gin systems. Methods by which these purposes described herein are described for example in (U.S. Pat. No. 5,527,695; Dale And Ow, 1991, Proc, Natl Acad. Sci., USA 88: 10558-10562; Medberry et al., 1995, Nucleic Acids Res, 23: 485-490).

D. Methods for Reproducing Transgenic Plants.

Following transformation by any one of the methods described above, the following procedures can be used to obtain a transformed plant expressing the transgenes: select the plant cells that have been transformed on a selective medium; regenerate the plant cells that have been transformed to produce differentiated plants; select transformed plants expressing the transgene producing the desired level of desired polypeptide(s) in the desired tissue; and, cellular location.

In plastid transformation procedures, further rounds of regeneration of plants from explants of a transformed plant or tissue can be performed to increase the number of transgenic plastids such that the transformed plant reaches a state of homoplasmy (all plastids contain uniform plastomes containing transgene insert).
The cells that have been transformed may be grown into plants in accordance with conventional techniques. See, for example, McCormick et al. *Plant Cell Reports* 5:81-84(1986). These plants may then be grown, and either pollinated with the same transformed variety or different varieties, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that constitutive expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure constitutive expression of the desired phenotypic characteristic has been achieved.

In some scenarios, it may be advantageous to insert a multi-gene pathway into the plant by crossing of lines containing portions of the pathway to produce hybrid plants in which the entire pathway has been reconstructed. This is especially the case when high levels of product in a seed compromises the ability of the seed to germinate or the resulting seedling to survive under normal soil growth conditions. Hybrid lines can be created by crossing a line containing one or more PHB genes with a line containing the other gene(s) needed to complete the PHB biosynthetic pathway. Use of lines that possess cytoplasmic male sterility (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52) with the appropriate maintainer and restorer lines allows these hybrid lines to be produced efficiently. Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina.

III. Methods for Use

The disclosed genetic constructs can be used to produce industrial oilseed plants for high levels of PHA production. Specifically, PHA is produced in the seed.

The transgenic plants can be grown and harvested. The polyhydroxyalkanoate can be isolated from the oilseeds and the remaining plant material can be used as a feedstock for industrial use, preferably for the production of oleochemicals, energy or for use as feed for animals. The
polyhydroxyalkanoate harvested from the plants can then be used to produce
plastics, rubber material, coating material, and binders for paints, or as a
feedstock for producing chemical derivatives such as hydroxyacids, esters,
alkenoic acids or amines. PHA also has several medical applications.

The present invention will be further understood by reference to the
following non-limiting examples.

Examples

Example 1. Design and Construction of Transformation Vectors for
production of PHB in Oilseeds.

Five different vectors for seed specific expression of the PHB
pathway were constructed containing different seed specific promoters for
production of PHB in oilseeds (Table 1). Vector pMBXS490, a pCAMBIA
based plasmid (Centre for Application of Molecular Biology to International
Agriculture, Canberra, Australia), contains the following gene expression
cassettes: (1) an expression cassette for PHA synthase containing the
promoter from the soybean oleosin isoform A gene, a DNA fragment
encoding the signal peptide of the small subunit of rubisco from pea (P.
sativum) and the first 24 amino acids of the mature protein (Cashmore, A.R.
1983, In Genetic Engineering of Plants, pp. 29-38), a DNA fragment
encoding a hybrid PHA synthase (PhaC; US Patent 6,316,262) in which the
first nine amino acids at the N-terminus of this synthase are derived from the
Pseudomonas oleovoransphaC1 gene and the remainder of the synthase
coding sequence is derived from Zoogloea ramigeraphaC gene, and the 3'
termination sequence from the soybean oleosin isoform A gene; (2) an
expression cassette for reductase containing the promoter from the soybean
oleosin isoform A gene, a DNA fragment encoding the signal peptide and the
first 24 amino acids of the mature protein of the small subunit of rubisco
from pea, a DNA fragment encoding a NADPH dependent reductase (PhaB)
from Ralstonia eutropha eutropha (Peoples, O. & A. Sinskey, 1989, J. Biol.
Chem., 264, 15293-15297), and the 3' termination sequence from the
soybean oleosin isoform A gene; (3) an expression cassette for thiolase
containing the promoter from the soybean glycinin (glyl) gene (Iida et
al.,1995, Plant Cell Reports, 14, 539-544), a DNA fragment encoding the
signal peptide and the first 24 amino acids of the mature protein of the small subunit of rubisco from pea, the phaA gene encoding a β-ketothiolase (PhaA) from \textit{Ralstonia eutropha} (Peoples, O. & A. Sinskey, 1989, J. Biol. Chem., 264, 15293-15297), and a 3' termination sequence from the soybean glycinin gene; (4) an expression cassette for DsRed, a protein that can be visualized in seeds by placing them in light of the appropriate wavelength, containing the promoter from the cassava mosaic virus (CMV), a DNA fragment encoding a modified red fluorescent protein from \textit{Discosoma sp.} (DsRed) in which eleven amino acids have been added to the C-terminus to increase solubility and/or prevent aggregation of the protein, and a termination sequence from the \textit{Agrobacterium tumefaciens} nopaline synthase gene.

| Table 1. Summary of transformation vectors containing seed specific promoters |
|---------------------|---------------------|---------------------|
| Plasmid | Promoter controlling expression of \textit{pha} genes | Selectable or visible marker |
| pMBXS490 | Oleosin | DsRed |
| pMBXS364 | LH | DsRed |
| pMBXS355 | LH | bar |
| pMBXS491 | Napin | DsRed |
| pMBXS492 | Glycinin | DsRed |

Promoters are as follows: LH, promoter from the \textit{Lesquerella fendleri} bifunctional oleate 12-hydroxylase:saturate gene (US Patent No. 6,437,220 B1); Oleosin, promoter from the soybean oleosin isoform A gene (Rowley and Herman, 1997, Biochim. Biophys. Acta 1345, 1-4); Napin, promoter from the \textit{Brassica napus} napin gene (Ellenstrom, M. et al., 1996, Plant Molecular Biology, 32: 1019-1027); Glycinin, promoter from the soybean glycinin (\textit{gyl}) gene (Iida, A. et al., 1995, Plant Cell Reports, 14.:539-544).

Vectors pMBXS364, pMBXS355, pMBXS491, and pMBXS492 contain the same PHB pathway genes as pMBXS490 with the exception that the expression of these genes is under the control of different promoters as outlined in Table 1. Vector pMBXS355 contains an expression cassette for the \textit{bar} gene, encoding phosphinothricin acetyltransferase whose expression
is under the control of the 35S promoter. Expression of the bar gene allows selection of transformants based on their resistance to bialaphos. All other vectors in Table 1 contain expression cassettes for DsRed allowing the identification of transgenic seeds under the appropriate wavelength of light.

Example 2. Transformation of Camelina.

In preparation for plant transformation experiments, seeds of Camelina sativa cultivar Suneson or Celine were sown directly into 4 inch pots filled with soil (Metro mix) in the greenhouse. Growth conditions were maintained at 24°C during the day and 18°C during the night. Plants were grown until flowering. Plants with a number of unopened flower buds were used in 'floral dip' transformations.

Agrobacterium strain GV3101 was transformed with the construct of interest using electroporation. A single colony of GV3101 containing the construct of interest was obtained from a freshly streaked plate and was inoculated into 5 mL LB medium. After overnight growth at 28°C, 2 mL of culture was transferred to a 500-mL flask containing 300 mL of LB and incubated overnight at 28°C. Cells were pelleted by centrifugation (6,000 rpm, 20 min), and diluted to an OD600 of -0.8 with infiltration medium containing 5% sucrose and 0.05% (v/v) Silwet-L77 (Lehle Seeds, Round Rock, TX, USA). Camelina plants were transformed by "floral dip" using transformation constructs as follows. Pots containing plants at the flowering stage were placed inside a 460 mm height vacuum desiccator (Bel-Art, Pequannock, NJ, USA). Inflorescences were immersed into the Agrobacterium inoculum contained in a 500-ml beaker. A vacuum (85 kPa) was applied and held for 5 min. Plants were removed from the desiccator and were covered with plastic bags in the dark for 24 h at room temperature. Plants were removed from the bags and returned to normal growth conditions within the greenhouse for seed formation.

To identify Camelina seeds expressing DsRed, fully mature seeds were harvested from transformed plants and placed in a desiccator with anhydrous calcium sulfate as desiccant for at least 2 days prior to screening. DsRed expressing seeds were visualized in a darkroom with a green
LumaMax LED flashlight (Lab Safety Supply, Inc., Janesville, WI) and a pair of KD's Dark Red glasses (Pacific Coast Sunglasses Inc., Santa Maria, CA).

To identify bialaphos resistant seeds, seeds from floral dip transformations were sterilized in 70% ethanol and 10% bleach, and washed in water. Sterilized seeds were placed on germination and selection medium in square Petri dishes. The germination and selection medium contained 10 mg/L bialaphos (Gold BioTechnology, B0178-500) in 1/2X MS medium, which was made with Murashige & Skoog medium mixture (Caisson Labs, MSP09) at half concentration. The plates were sealed and placed in a growth chamber for germination under a 16-h photoperiod, 3,000 lux light intensity, and temperatures of 23/20 °C at day/night. Seedlings with greenish cotyledons were picked and transferred to soil about six days after initiation of germination.

Example 3. Production of PHB in seeds of Camelina.

In initial transformation experiments with pMBXS490, 24 DsRed positive seeds were isolated. Four of these seeds were sacrificed to determine their PHB content using a previously described gas chromatography/butanolysis technique performed essentially as previously described (Somleva et al., 2008, *Plant Biotechnol. J.*, 663-678). These four seeds contained 19.9, 12.0, 9.8, and 6.4% dwt PHB in the seed. When other seeds from this transformation were planted in soil, seedlings possessed whitish cotyledons and their growth was severely impaired. Only a few T1 seeds with low levels of PHB were capable of germination and survival in soil in a greenhouse. These seedlings were still weak and possessed white or variegated cotyledons.

In transformations of pMBXS355 and pMBXS364, seeds from transformed plants were screened for resistance to bialophos and or visual screening for DsRed, respectively. Despite having the same promoter controlling the expression of the PHB biosynthetic pathway, the maximum PHB production in pMBXS355 (0.54% PHB) was significantly lower than
the amount produced by pMBXS364 (3.4%) (Table 2). This is likely due to difficulty in distinguishing between weak pMBXS355 seedlings that produced higher levels of PHB and the non-transformed, bialophos sensitive seedlings.

Table 2. Comparison of PHB production in Lines isolated using bialaphos selection or visual screening

<table>
<thead>
<tr>
<th>Vector</th>
<th>Selectable or Screenable Marker</th>
<th># of Lines Tested</th>
<th># of Lines w/ PHB in T2 Seeds</th>
<th>Range of PHB Production (% seed weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pMBXS355</td>
<td>Bar(^1)</td>
<td>204</td>
<td>5</td>
<td>0.05 to 0.54%</td>
</tr>
<tr>
<td>pMBXS364</td>
<td>DsRed(^2)</td>
<td>170</td>
<td>85</td>
<td>0.5 to 3.4%</td>
</tr>
</tbody>
</table>

Selection of transformants performed by germination of seeds on tissue culture plates containing 10 mg/L bialaphos. Selection of transformants performed by visual screening for DsRed expression.

In transformations with pMBX491 and pMBX492 containing the PHB genes under the control of the napin and glycine promoters, respectively, were healthier than transformants obtained from pMBX490 transformations. For pMBX491, T2 seeds were isolated containing 8% PHB in DsRed seeds picked from the segregating population. These seeds possessed a 75% germination rate and a 60% survival rate under greenhouse conditions in soil. The cotyledons after 11 days were chlorotic and the growth of this line was significantly delayed compared to wild-type. For pMBX492, T2 seeds were isolated containing 6.9% PHB in DsRed seeds picked from the segregating population. These seeds possessed a 75% germination rate and a 70% survival rate under greenhouse conditions in soil. After 11 days, the cotyledons and first true leaves of this transformant were green. The growth of this line was somewhat delayed compared to wild-type but faster than the pMBXS491 line.

The 19% dwt PHB produced in a single seed obtained from Camelina plants transformed with construct pMBXS490 was an unexpected result and is the highest level of PHB reported in oilseeds to date. Previous studies
with *Brassica napus* produced up to 7.7% dwt PHB. These seeds were obtained from transformation of *Brassica napus* using stem segments as the explants and selection of the transformed explants (Fry, J. et al., 1987, 6, 321-325) using glyphosate resistance obtained from expression of a gene encoding 5-enolpyruvylshikimate-3-phosphate synthase. Researchers did not report any germination issues with seeds isolated from the transformed plants [Houmiel et al., 1999, Planta, 209, 547-550; Valentin et al., 1999, Int. J. Biol. Macromol. 25, 303-306].

The use of DsRed as a visual marker in Camelina enabled the identification of high PHB producing seeds that would not have germinated in a typical seed screening procedure where an antibiotic or herbicide selectable marker, such as glyphosate resistance, is employed to provide resistance to the selection agent during seed germination and seedling development in tissue culture medium.

Example 4. Transformation of Brassica napus, Brassica carinata, and Brassica juncea.

Transformation of Brassica carinata

Brassica carinata can be transformed using a previously described floral dip method (Shiv et al., 2008, Journal of Plant Biochemistry and Biotechnology 17, 1-4). Briefly constructs of interest are transformed into Agrobacterium strain GV-3101 and cells are grown in liquid medium. Cells are harvested and resuspended in a transformation medium consisting of $\frac{1}{2}$ MS salts, 5% sucrose, and 0.05% Silwet L-77. Brassica carinata plants are grown in a greenhouse until inflorescences develop and approximately 25% of their flowers are opened. Plants are submerged in the prepared Agrobacterium solution for approximately 1 minute, and covered for 24 hours. Plants are returned to the greenhouse and allowed to set seed. Transformed seeds are screened by picking DsRed seeds under the appropriate wavelength of light as described above.
Transformation of *Brassica napus*

Brassica seeds are surface sterilized in 10% commercial bleach (Javex, Colgate-Palmolive) for 30 min with gentle shaking. The seeds are washed three times in sterile distilled water and placed in germination medium comprising Murashige-Skoog (MS) salts and vitamins, 3% (w/v) sucrose and 0.7% (w/v) phytagar, pH 5.8 at a density of 20 per plate and maintained at 24°C an a 16 h light/8h dark photoperiod at a light intensity of 60-80 μE m² s⁻¹ for 4-5 days.

Constructs of interest are introduced into *Agrobacterium tumefaciens* strain EHA101 (Hood et. al., 1986, J. Bacterid. 168: 1291-1301) by electroporation. Prior to transformation of cotyledonary petioles, single colonies of strain EHA101 harboring each construct are grown in 5 ml of minimal medium supplemented with appropriate antibiotics for 48 hr at 28°C. One ml of bacterial suspension was pelleted by centrifugation for 1 min in a microfuge. The pellet was resuspended in 1 ml minimal medium.

For transformation, cotyledons are excised from 4 or in some cases 5 day old seedlings so that they included ~2 mm of petiole at the base, individual cotyledons with the cut surface of their petioles are immersed in diluted bacterial suspension for 1 s and immediately embedded to a depth of ~2 mm in co-cultivation medium, MS medium with 3% (w/v) sucrose and 0.7% phytagar and enriched with 20 μM benzyladenine. The inoculated cotyledons are plated at a density of 10 per plate and incubated under the same growth conditions for 48 h. After co-cultivation, the cotyledons are transferred to regeneration medium comprising MS medium supplemented with 3% sucrose, 20 μM benzyladenine, 0.7% (w/v) phytagar, pH 5.8, 300 mg/L timentinin and 20 mg/L kanamycin sulfate.

After 2-3 weeks regenerant shoots obtained are cut and maintained on "shoot elongation" medium (MS medium containing, 3% sucrose, 300mg/L timentin, 0.7% (w/v) phytagar, 300 mg/L timentinin and 20 mg/L kanamycin sulfate, pH 5.8) in Magenta jars. The elongated shoots are transferred to "rooting" medium comprising MS medium, 3% sucrose, 2mg/L indole butyric acid, 0.7% phytagar and 500mg/L carbenicillin. After roots emerge, plantlets are transferred to potting mix (Redi Earth, W.R. Grace and Co.).
The plants are maintained in a misting chamber (75% relative humidity) under the same growth conditions. Plants are allowed to self pollinate to produce seeds. Seeds are screened by visualization of DsRed as described above.

Brassica napus can also be transformed using the floral dip procedure described by Shiv et al. (Shiv et al., 2008, Journal of Plant Biochemistry and Biotechnology, 17, 1-4) as described above for Brassica carinata.

Transformation of Brassica juncea

Brassica juncea can be transformed using hypocotyl explants according to the methods described by Barfield and Pua (Barfield and Pua, Plant Cell Reports, 10, 308-314) or Pandian et al. (Pandian, et al., 2006, Plant Molecular Biology Reporter 24: 103a-103i) as follows.

B. juncea seeds are sterilized 2 min in 70% (v/v) ethanol and washed for 20 min in 25% commercial bleach (10 g/L hypochlorite). Seeds are rinsed 3X in sterile water. Surface-sterilized seeds are plated on germination medium (lx MS salts, 1x MS vitamins, 30 g/L sucrose, 500 mg/L MES, pH 5.5) and kept in the cold room for 2 days. Seeds are incubated for 4-6 days at 24°C under low light (20 µm m⁻²s⁻¹). Hypocotyl segments are excised and rinsed in 50 mL of callus induction medium (lx MS salts, 1x B5 vitamins, 30 g/L sucrose, 500 mg/L MES, 1.0 mg/L 2,4-D, 1.0 mg/L kinetin pH 5.8) for 30 min without agitation. This procedure is repeated but with agitation on orbital shaker (~ 140 g) for 48 h at 24°C in low light (10 µm m⁻²s⁻¹).

Agrobacterium can be prepared as follows: Cells of Agrobacterium strain AGL1 (Lazo, G. et al. (1991),Biotechnology, 9: 963-967) containing the construct of interest are grown in 5 mL of LB medium with appropriate antibiotic at 28°C for 2 days. The 5 mL culture is transferred to 250 mL flask with 45 mL of LB and cultured for 4 h at 28°C. Cells are pelleted and resuspended in BM medium (lx MS salts, 1x B5 vitamins, 30 g/L sucrose, 500 mg/L MES, pH 5.8). The optical density at 600 nm is adjusted to 0.2 with BM medium and used for inoculation.

Explants are cocultivated with *Agrobacterium* for 20 min after which time the *Agrobacterium* suspension is removed. Hypocotyl explants are washed once in callus induction medium after which cocultivation proceeds...
for 48 h with gentle shaking on orbital shaker. After several washes in CIM, explants are transferred to selective shoot-inducing medium (500 mg/L AgNO2, 0.4 mg/L zeatin riboside, 2.0 mg/L benzylamino purine, 0.01 mg/L GA, 200 mg/L Timentin appropriate selection agent and 8 g/L agar added to basal medium) plates for regeneration at 24°C. Root formation is induced on root-inducing medium (0.5x MS salts, 0.5x B5 vitamins, 10 g/L sucrose, 500 mg/L MES, 0.1 mg/L indole-3-butyric acid, 200 mg/L Timentin, appropriate selection agent and 8 g/L agar, pH 5.8).

Plantlets are transferred to are removed from agar, gently washed, and transferred to potting soil in pots. Plants are grown in a humid environment for a week and then transferred to the greenhouse.

Example 5. Production of hybrid lines that are not capable of germinating.

In previous experiments in Arabidopsis, lower levels of PHB were obtained when lines expressing individual PHB genes were crossed to produce a plant containing the entire PHB biosynthetic pathway (Nawrath, C., Y. Poirier, et al., 1994, Proc. Natl. Acad. Sci. USA 91, 12760-12764) than when multi-gene constructs containing the entire PHB biosynthetic pathway were constructed and transformed (Bohmert, K., I. et al., 2000, Planta 211, 841-845; US Patent 6,448,473). This observation led to the subsequent predominant use of multi-gene constructs for PHB production in plants. However, in some scenarios, it may be advantageous to insert a multi-gene pathway into the plant by crossing of lines containing portions of the pathway to produce hybrid plants in which the entire pathway has been reconstructed. This is especially the case when high levels of product in a seed compromises the ability of the seed to germinate or the resulting seedling to survive under normal soil growth conditions. Hybrid lines can be created by crossing a line containing one or more PHB genes with a line containing the other gene(s) needed to complete the PHB biosynthetic pathway. Use of lines that possess cytoplasmic male sterility (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg, 67, 31-52) with the appropriate maintainer and restorer lines allows these hybrid lines to be
produced efficiently. Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K. et al., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina. Cytoplasmic male sterility has also been reported upon expression of a β-ketothiolase from the chloroplast genome in tobacco (Ruiz, O. N. and H. Daniell, 2005, Plant Physiol. 138, 1232-1246). Male sterility has also been reported upon expression of the faoA gene encoding the α-subunit of the fatty acid β-oxidation complex from Pseudomonas putida (US Patent 6586658).

High PHB producing lines that are not capable of germination can be produced using oilseed lines that possess cytoplasmic male sterility (CMS) controlled by an extranuclear genome (i.e. mitochondria or chloroplast). The male sterile line is typically maintained by crossing with a maintainer line that is genetically identical except that it possesses normal fertile cytoplasm and is therefore male fertile. Transformation of the maintainer line with one or more genes for the PHB biosynthetic pathway and crossing this modified maintainer line with the original male sterile line will produce a male sterile line possessing a portion of the PHB biosynthetic pathway. In this example, insertion of thephaA andphaC genes into the maintainer line and crossing with the original male cytoplasmic sterile line will form a male sterile line containing thephaA andphaC genes.

Fertility can be restored to this line using a "restorer line" that carries the appropriate nuclear restorer genes. Alternatively, the restorer line can be transformed with the remaining genes required to complete the PHB biosynthetic pathway and crossed with the previously created male sterile line containingphaA andphaC to produce a hybrid line containing the entire PHB biosynthetic pathway.

Crosses can be performed in the field by planting multiple rows of the male sterile line, the line that will produce the seed, next to a few rows of the male fertile line. Harvested seed can be used for subsequent plantings or as the PHB containing seed for crushing and extraction. When expression cassettes for the PHB genes in this example are controlled by strong
promoters, such as the soybean oleosin promoter, high PHB producing seeds generated in this manner will possess weak seedlings upon germination and will not be able to survive field conditions under normal growth circumstances unless treated with a material that promotes seedling strength/vigor. This adds a level of gene containment.

Cytoplasmic male sterility systems are already available for some Brassicaceae species (Esser, K., 2006, Progress in Botany, Springer Berlin Heidelberg. 67, 31-52). These Brassicaceae species can be used as gene sources to produce cytoplasmic male sterility systems for other oilseeds of interest such as Camelina. Cytoplasmic male sterility has also been reported upon expression of a β-ketothiolase from the chloroplast genome in tobacco (Ruiz, O. N. and H. Daniell, 2005, Plant Physiol. 138, 1232-1246). Overexpression of β-ketothiolase in Camelina to generate a male sterile line and subsequent crossing with a line expressing phaB and phaC could also be used for hybrid seed production.

Male sterile lines have also been produced in Brassica napus by overexpression of thefaoA gene from Pseudomonas putida under the control of the phaseolin promoter sequence (US Patent 6586658).

Double haploid technology can be used to speed up the breeding process. In the double haploid technique, immature pollen grains (haploids) are exposed to treatments that result in doubling of the existing genetic material resulting in homozygous, true breeding material in a single generation.

The references, patents, and patent applications cited throughout are incorporated by reference where permissible in their entireties.
Vector: pMBXS490

1 GGGGATCCGT ACGTAATGAC GTACTAAAAT TGCCACAAAA TAAANITAAAA
51 GTCTCTTATA TAATGACAAA ACAAGTAATT AAAAACTTTA CAAACCCAGA
101 TTTTTTTTTT TAAATATAAT CAAATTAAGT AAATAAAATTA ATATATTATAT
151 CCCCAGCGGA AATTAACTAT AATTTCTTTCT TGCCATTAAG TATTTTAT
201 ATATATAATT GGTCAATTAAC ACAAAGTCTG CAAATAATTATA AATATATAAAA
251 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
301 GAATAATTATA AAATGAAAGG TCAAGGAAGA AAGAAATTAG AAGCAATGAC
351 GACCTTCTTC TTTGTCTACT AATTTGAGAG CCGAAGGCCG CTCTGACCAT
401 CAGCTCATAG CAGATGTCGA GCTTGGGATC GATGTGAGAT GTGGACGCTA
451 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
501 CCGCCGCAAC GGTGATGTCA CGGGGTTGAC CAGCAGTTGC GTCGGCGCTC
551 GCCGCGCAAA CTGATGACAC GCCCGGGGAC GGCAGGCGT GCCTGCGCTC
601 GTGGGACGCC CGGATCCCGG GATAAGCGAC GCGCAGCGAG TGACGACGAC
651 ACGATGACTC GAGCTTCTTT GGGATCCGGA CCGGATCCTA CACAAATATC
701 GGGCGCGGAA CTGCTGCGGA CCCGGGCGGAG CCGGCGCGGA GCACGCGCGC
751 CCCCAGCGGA AATTAACTAT AATTTCTTTG TGCCATTAAG TATTTTATAT
801 ATATATAATT GGTCAATTAAC ACAAAGTCTG CAAATAATTATA AATATATAAAA
851 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
901 GAATAATTATA AAATGAAAGG TCAAGGAAGA AAGAAATTAG AAGCAATGAC
951 GACCTTCTTC TTTGTCTACT AATTTGAGAG CCGAAGGCCG CTCTGACCAT
1001 CAGCTCATAG CAGATGTCGA GCTTGGGATC GATGTGAGAT GTGGACGCTA
1051 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1101 CCCCAGCGGA AATTAACTAT AATTTCTTTG TGCCATTAAG TATTTTATAT
1151 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
1201 GAATAATTATA AAATGAAAGG TCAAGGAAGA AAGAAATTAG AAGCAATGAC
1251 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1301 CCCCAGCGGA AATTAACTAT AATTTCTTTG TGCCATTAAG TATTTTATAT
1351 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
1401 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1451 CCCCAGCGGA AATTAACTAT AATTTCTTTG TGCCATTAAG TATTTTATAT
1501 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
1551 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1601 CCCCAGCGGA AATTAACTAT AATTTCTTTG TGCCATTAAG TATTTTATAT
1651 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
1701 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1751 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
1801 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1851 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
1901 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
1951 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2001 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2051 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2101 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2151 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2201 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2251 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2301 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2351 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2401 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2451 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2501 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2551 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2601 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2651 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2701 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2751 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2801 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2851 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
2901 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
2951 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3001 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3051 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3101 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3151 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3201 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3251 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3301 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3351 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3401 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3451 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3501 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3551 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3601 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
3651 CACCGGCGCA CCAGGTTTGA CCGGTTGGG ACTTGTACAG CCGGTGCCTG
3701 AAAATAGTTG AGCTGTGTTAA ATTTAACTCA GATAAATAGA AGGAAATAGA
pMBXS364

5 1 CATGCAACCC AGAGGCTTCC CTCGGCGATC AAGATTCTT GTTCACTACCC
51 CTGCCTGACT ATAGTCGAGT CGTCTTCGGA GCTGATGCAC CAGCGCTGTC
10 120 CTGCCGGCATC AGTCGCGAGG CTGGCTGGATC CTGTGACGCA
15 121 TGGCTTCCTTC CTGGGACTTTC GTGAGCGGATG ATGAGCGCTAC
20 201 AAATCTCGAG TCTAGAAACG GAGAATTCG AGCTAGAGAC AAGAGAGGCG
25 251 CGCTGGCGTG CCGCTACGCT CGCTACGGTC GTGAGCGGCT CGAGCTGGTC
30 301 CGCGATGCTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
35 351 GGCAGCGGTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
40 401 CGCGATGCTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
45 451 GGCAGCGGTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
50 501 GGCAGCGGTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
55 551 GGCAGCGGTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
60 601 GGCAGCGGTC CAGCGCTGTC GCTGAGCGGCT CGAGCTGGTC
WO 2011/034945

PCT/US2010/048962

6401 AACCTTAATCT CCTTATCTTG GGAACACTCT ACACATTATT AGAGAAGAAC
6451 TCAGATTGACT CCTGAGACTG TTGCAAGAGG CTCATTGTTTA CAAGACAGAC
6501 GTGGTGGCAGG CCGGTGCTGT CCGTGACTCT CTGCAAGTATG GCTGATCTCT
6551 ATGGTGGTCTG CAGGGTGACC AGCTTGATTG CCGTGACTCT TGGCAAGGAC
6601 AGTGGCTGAC CGCTTGGATG CAGGCTTGAAG CGTTGGAACTC CACCAGGATA
6651 GTGGCGGCGCG CTCTTCTCGGT CAGGCGGCTTT GTGAGCTGCTG CCCCTCAGCA
6701 CGGCGTTCGCG GGGTGATAGG CGTGGCTGAGG AGCCCTCCCA GACCGATTGG
6751 TTCTCTCGCCA TTGGAGGCGG GCTGGAGGAG AAGTGATACA CGAGAAGATCT
6801 CACGATTGAGA ATGAAAGCAAC CAGCTCTCGG GAGAGCTGTC GTGGTCCAGG
6851 TGCCGACACCC CGCTTCTGTCG CTGACTCCCTTT AGAGATATCTT ATGAGG
6901 CACCTGGGCC AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
6951 TTTCCTTCTTCT TCCTGTTACTT TGGGATCTGTC GTGGTCCAGG
7001 GTTCTCTGTCT TGCGAGGCTC CGCAGGTGTTT AGAGATATCTT ATGAGG
7051 GGGTGAGCCC AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
7101 CAGCTGGGACCC CGCTTCTCGGT CAGGCGGCTTT GTGAGCTGCTG CCCCTCAGCA
7151 CTCTTCTCGGT CAGGCGGCTTT GTGAGCTGCTG CCCCTCAGCA
7201 GAGACTGTTGG ATTTCTCCGT CTTGCGCTCTT TGAAGCTAGA ACTCTGCTAT
7251 ATAGAGGAAGAG GCGTGTGGGGA GAAATCTGGG ATGGTCCGCT ATCTCTGCT
7301 TCAAGTTGAGA TATATATACAA ATCCACTACT ATCAGTCTCC TTGAAAGGAC TGCTGAGGAC
7351 GTTCTCTGTCT TGCGAGGCTC CGCAGGTGTTT AGAGATATCTT ATGAGG
7401 CACCTGGGCC AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
7451 GTGTTCTCTCT TGCGAGGCTC CGCAGGTGTTT AGAGATATCTT ATGAGG
7501 AGCTGCTGAAA CGCCAGCGTA AATCCGCTCTT TATGGATGATG GTGGTCCAGG
7551 GTGGTAAAGCT TCAAGATTCC CTTGCTGCTT TGGGATCTGTC GTGGTCCAGG
7601 TTCTTTCTGTG CAGGCGGCTTT GTGAGCTGCTG CCCCTCAGCA
7651 CACTTTCTGTG CAGGCGGCTTT GTGAGCTGCTG CCCCTCAGCA
7701 TGGCGGACCG GGGTGACACT CTTGCGCTCTT TGAAGCTAGA ACTCTGCTAT
7751 AGCAGCTGGG AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
7801 CTTCAGTCTT CTGTTGATAGA TGTTGATGATG GTGGTCCAGG
7851 CGGCTGACTT AATCCGCTCTT TATGGATGATG GTGGTCCAGG
7901 CACCTGGGCC AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
7951 GTTCTCTGTCT TGCGAGGCTC CGCAGGTGTTT AGAGATATCTT ATGAGG
8001 CACCTGGGCC AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
8051 CTTCAGTCTT CTGTTGATAGA TGTTGATGATG GTGGTCCAGG
8101 GAGACTGTTGG ATTTCTCCGT CTTGCGCTCTT TGAAGCTAGA ACTCTGCTAT
8151 TGCGAGGCTC CGCAGGTGTTT AGAGATATCTT ATGAGG
8201 ATACGGATAT CTGATCCATA TTTAATCTCT CTTGCGCTCTT TGAAGCTAGA ACTCTGCTAT
8251 ACCTCCCTATA TTGAACCTCG TGCAATAGAG CACAGTATTTT AGAGATATCTT ATGAGG
8301 ATCCAAACA AAATTTTGGG CTTATGAGAG CAACTTTTGTTT ATGAGG
8351 AGCTTCTCTGT TGTAGATGATG GTTTGATGATG GTGGTCCAGG
8401 ACACATTACA TCATACGTTG TTTCCTGCTT TATGGATGATG GTGGTCCAGG
8451 TGGCAGGTTCT GGGTGTGACT CAGGCCAGAGG CAGGCCAGAGG CAGGCCAGAGG
8501 ACAGCCTGCTTT TATGGATGATG GTTTGATGATG GTGGTCCAGG
8551 GTCCCTTCTGT TGGGTGAGGA TGTTGATGATG GTGGTCCAGG
8601 CGGCTGACTT AATCCGCTCTT TATGGATGATG GTGGTCCAGG
8651 AGCAGCTGGG AAGCGAGGCC AAGGAGATCTT AGAGATATCTT ATGAGG
8701 CTGCGGACTC GGGTGAGGA TGTTGATGATG GTGGTCCAGG
8751 TTGTTGATGATG GTTTGATGATG GTGGTCCAGG
8801 AGCTCAGTCTT CTGTTGATAGA TGTTGATGATG GTGGTCCAGG
8851 GGGCAGCTCT TGGATGATGATG GTTTGATGATG GTGGTCCAGG
8901 GGTGGCAATC GGGTGAGGA TGTTGATGATG GTGGTCCAGG
8951 AGTTGAGTCT GGGTGTGACT CAGGCCAGAGG CAGGCCAGAGG CAGGCCAGAGG
9001 CACCCCTTCTG CAGGGTGATG CAGGGTGATG CAGGGTGATG CAGGGTGATG
9051 CGAATTCTGGT CCAATCGTCTT CTGTTGATGATG GTGGTCCAGG
9101 GACACTGGTG CTTGCGCTCTT TGAAGCTAGA ACTCTGCTAT
9151 CTCTCCTCTCT CTGTTGATGATG GTGGTCCAGG
9201 TGGCGGACCG GGGTGAGGA TGTTGATGATG GTGGTCCAGG
9251 CCCAGCAGTG GGGTGAGGA TGTTGATGATG GTGGTCCAGG
9301 GATATGATGT TCTGCTGCTT TGGGATCTGTC GTGGTCCAGG
9351 GGGAGTGAGG CTTGCGCTCTT TGAAGCTAGA ACTCTGCTAT
9401 CTCACTGGTG CTTGCGCTCTT TGGGATCTGTC GTGGTCCAGG
9451 CTCACTGGTG CTTGCGCTCTT TGGGATCTGTC GTGGTCCAGG
9501 CTTTCTCTGGT CAGGGTGATG CAGGGTGATG CAGGGTGATG CAGGGTGATG
9551 AGCTCAGTCTT CTGTTGATAGA TGTTGATGATG GTGGTCCAGG
9601 ATATTTTGGG CTTATGAGAG CAACTTTTGTTT ATGAGG
9651 AGCTTCTCTCT CTGTTGATAGA TGTTGATGATG GTGGTCCAGG
19601 AAGGCTCGAGA TTGGTGGCCTG TGAGAAGATG ATTTGGAAGCT TGGAAAGGAGA
19651 AGCAAAACGTT AGTGAACCTAA TTGTTGGTTGC CGGAAATAGTT CTTGTTGGGTT
19701 GCTTTTTGCTG TCTCTCTAAG TGAAGTATAGA GATGAATGTT TGGTATATGG
19751 ATGTGTTTTTT CTGTCAATAAA TGATGCACTG ATGTGGTAAAG TATATGTTGG
19801 TTTGGCATCT CTAATATACCT AATAATTGAAT GTTGTTCTTA TGTAAAGGTT
19851 GATTAAATCA AGGGCTTTTG CAAATGAATAC CATAAACAGAG CNTATTCAAT
19901 ATTTTCCGAAA ACATAACAAA GATTCAGAAA GAATAATTGCAT TAGCATTTAGC
19951 TGAGTTTTCA AACAAATAGGC ATTACATAGA CAGACCTGAG TCTCAATTCC
20001 CCAAAACACA AAAGAGAGGC ATGCTTAATAA CCGCACAATAG TATCCAAAGA
20051 CAGCTTTGATA ATCCCCAAAAC ACAAAGGAAAG AAGATTCTATA ACCGATCCCT
20101 CATGTTATAC CGAAATATCA GACGAACAGC AAAGACTTTA CTCTCTCTGG
20151 TACTGATAGA GCTCAAGACG TTGGCACTGG CGTGTTTTTT ACAACCTGCTG
20201 GACTGTGGAAA ACCGTGGGGTT TACCCCAATTT ATACGCTTGG CAGCAGCCCT
20251 CCCTTCTGGCC AGCTGCGCTGA AGTGGGAGAG GGCGCGCAAG GTGGGCGCCCT
20301 CCCAACAGTT GCGCGCGGCTG AATGCCCAGAT CTTGAGCGACG GCTGCGGCTCTG
20351 GATCGAGATGG TGTTTTCCGG CTTTCAGTAT AAACATACAG TGTTTTGACAG
20401 GATATATTTGG CGGTTAAAAC TAAAGAGAAA GAGGGTTTTAT TAGAAATACG
20451 GATATTTGAA AGGCGTGAAA AAGGTTTATAC CTGTTGGTCCA TTTGTTATGG

(SEQ ID NO: 2)
We claim:

1. An oilseed comprising greater than 7% polyhydroxyalkanoate (PHA) dry weight of the oilseed, wherein germination of the oilseed is impaired relative to an oilseed having less than 7% polyhydroxyalkanoate.

2. The oilseed of claim 1, wherein the PHA comprises (poly) 3-hydroxybutyrate (PHB).

3. The oilseed of claim 1 comprises greater than 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% or 19% of the dry weight of the seed.

4. The oilseed of claim 1, wherein the oilseed is produced by a transgenic plant genetically engineered to produce PHA.

5. The oilseed of claim 4, wherein the PHA is PHB.

6. The oilseed of claim 4, wherein the plant transformed to produce the transgenic plant is selected from the group consisting of members of the Brassica family: B. napus, B. rapa, B. carinata and B. juncea; industrial oilseeds: Camelina sativa, Crambe, jatropha, castor; Arabidopsis thaliana; Calendula, Cuphea; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards including Sinapis alba; and tobacco.

7. The oilseed of claim 1, wherein germination of the oilseed is impaired by 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% relative to an oilseed comprising less than 7% PHA.

8. A transgenic plant genetically engineered to produce PHA, wherein the transgenic plant produces the oilseed of any of claims 1-7.

9. The transgenic plant of claim 8 wherein the plant transformed to produce the oilseed of claim 1 is selected from the group consisting of members of the Brassica family: B. napus, B. rapa, B. carinata and B. juncea; industrial oilseeds: Camelina sativa, Crambe, jatropha, castor; Arabidopsis thaliana; Calendula, Cuphea; maize; soybean; cottonseed; sunflower; palm; coconut; safflower; peanut; mustards: Sinapis alba; and tobacco.

10. A seed produced by the transgenic plant according to any one of claims 8-9.
11. A method for producing a hybrid transgenic plant line comprising crossing a plant line comprising one or more PHB biosynthetic pathway genes with a plant line containing the remaining PHB biosynthetic pathway gene(s) needed to complete the PHB biosynthetic pathway.

12. The method of claim 11 wherein the plant lines comprise cytoplasmic male sterility (CMS) controlled by an extranuclear genome.

13. The method of claim 11 wherein the male sterile line is maintained by crossing with a maintainer line that is genetically identical and comprises normal fertile cytoplasm.

14. The method of claim 13 wherein the maintainer line is transformed with one or more genes for the PHB biosynthetic pathway.

15. The method of claim 14 wherein crossing the transformed maintainer line with the original male sterile line produces a male sterile line possessing a portion of the PHB biosynthetic pathway.

16. The method of claim 15 wherein insertion of the \textit{phaA} and \textit{phaC} genes into the maintainer line and crossing with the original male cytoplasmic sterile line forms a male sterile line containing the \textit{phaA} and \textit{phaC} genes.
Figure 1

S line (male sterile) × M line (maintainer)
(phaA and phaC)

↓

S line X R line (restorer)
(phaA and phaC) (phaB)

↓

Hybrid seeds
(phaA/phaB/phaC)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. A01H1/02 C12N15/82
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A01H C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, BIOSIS, CHEMABS Data, Sequence Search, EMBASE, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.
See patent family annex.

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"A" document member of the same patent family

Date of the actual completion of the international search: 30 November 2010

Date of mailing of the international search report: 09/12/2010

Name and mailing address of the ISA:
European Patent Office, P.B. 5018 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Marchesi ni, Patri zia

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 6103956 A</td>
<td>15-08-2000</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2003233677 A1</td>
<td>18-12-2003</td>
<td>NONE</td>
</tr>
</tbody>
</table>