wO 2005/079938 A2 |0 |00 00 0 0 00 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

1 September 2005 (01.09.2005) PCT WO 2005/079938 A2
(51) International Patent Classification’: AG63F 13/00 (71) Applicants and
(72) Inventors: MERIMOVICH, Barak [IL/IL]; 5 Orlanski
(21) International Application Number: Street, 49205 Petah Tikva (IL) HAIM, Shai [IL/IL], 19
PCT/IB2005/000190 Kiriat Sefer Street, 65277 Tel-Aviv (IL) FA]NGOLD,

(22) International Filing Date: 26 January 2005 (26.01.2005)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

60/539,618 27 January 2004 (27.01.2004)

English

English

Us

(71) Applicant (for all designated States except US): BET-
TINGCORP UK LTD. [GB/GB]; 65 Maygrove Road,

London NW6 2EH (GB).

(81)

(84)

Arie [IL/IL]; 7 Marshak Street, 49205 Petah Tikva (IL).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: FACILITATING NETWORK-BASED MULTIPLAYER GAMES

BEGIN

502

\| RECEIVE AND DISPLAY GAME CONTEXT |

504
\{

ENABLE USER TO JOIN GAME

(57) Abstract: In an embodiment, a
server enables one or more users to join a
network-based, multiplayer game from one
or more client devices. During game play, the
server may receive one or more requests from
the client devices, and hold the one or more

i‘

506 REGEIVE USER INPUTS AND GENERATE

AND SEND ACTION REQUEST TO SERVER

508

\{ RECEIVE RESPONSE AND UPDATE GAME

UPDATE
MESSAGE

RECEIVED?

516

USER

ACTION(S)

DICATED! SEND
e 512 WATCH
REQUEST
v TO SERVER

SEND
ACTION
REQUEST
TO SERVER

o

518

requests in a virtual waiting area. The server
may release the one or more requests upon
an occurrence of a release condition.

WO 2005/079938 A2 I} A0VYH0 T 000 O 0 0 AR

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — without international search report and to be republished
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, upon receipt of that report

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 2005/079938 PCT/IB2005/000190

10

15

20

25

30

FACILITATING NETWORK-BASED MULTIPLAYER GAMES

RELATED APPLICATION INFORMATION

[0001] The present application claims the benefit of the filing date of U.S.
provisional application serial no. 60/539,618, filed January 27, 2004, the contents of

which is incorporated herein by reference.

BACKGROUND

[0002] With the advent of network-based communications, multiplayer
games have been developed, in which multiple people at different computers may
participate in the same game over a network. For example, in a network-based
blackjack game, multiple players at client computers may join a server-controlled
blackjack table. In such a game, each player may perform an action that may affect
the state of the table. The server, also, may perform actions that affect the state of
the table. Notifying each of the multiple players when the table state is changed

presents technical challenges in network-based, multiplayer game systems.

SUMMARY
[0003] In an embodiment, the inventive subject matter relates to a method
performed by a server, which may include, but is not limited to, enabling one or
more users to join a network-based, multiplayer game from one or more client
devices, and receiving one or more requests from the one or more client devices.
The method may further include holding the one or more requests in a virtual
waiting area, and releasing the one or more requests upon an occurrence of a release
condition.
[0004] In another embodiment, the inventive subject matter relates to a

method performed by a server, which may include, but is not limited to, enabling

CONFIRMATION COPY

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

one or more users to join a network-based, multiplayer game from one or more
client devices, and performing a multiple-user action stage of the game, which
includes receiving and holding one or more action requests from at least some of the
one or more users, and servicing the one or more action requests upon an occurrence
of a first release condition. The method may further include performing a single-
user action stage of the game, which includes receiving and holding one or more
watch requests from one or more out-of-turn users, and servicing the one or more
watch requests upon receipt of an action request from an in-turn user.

[0005] In still another embodiment, the inventive subject matter relates to a
method performed by a client device, which may include, but is not limited to,
displaying a game context for a network-based, multiplayer game, wherein the game
context is received over a network from a server. The method may further include
enabling a user of the client device to join the network-based, multiplayer game and,
when the user is not an in-turn player during a single-user action stage of the game,
sending a watch request to the server.

[0006] In still another embodiment, the inventive subject matter relates to a
method, which may include, but is not limited to, a server enabling one or more
users to join a network-based, multiplayer game from one or more client devices,
and a client device displaying a game context for the game, wherein the game
context is received from the server. The method may further include the client
device enabling a user of the client device to join the network-based, multiplayer
game. The method may further include the server receiving one or more requests
from the one or more client devices, holding the one or more requests in a virtual
waiting area, and releasing the one or more requests upon an occurrence of a release
condition.

[0007] In still another embodiment, the inventive subject matter relates to an
apparatus, which may include, but is not limited to, a server to enable one or more
users to join a network-based, multiplayer game from one or more client devices, to
receive one or more requests from the one or more client devices, to holding the one
or more requests in a virtual waiting area, and to release the one or more requests

upon an occurrence of a release condition. The apparatus may further include one

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

or more data storage mechanisms to store game state information, information in the
virtual waiting area, and user objects.

[0008] In still another embodiment, the inventive subject matter relates to an
apparatus, which may include, but is not limited to, one or more processors to
receive a game context for a network-based, multiplayer game over a network from
a server, to enable a user of the apparatus to join a network-based, multiplayer
game, and when the user is not an in-turn player during a single-user action stage of
the game, to send a watch request to the server. The apparatus may further include a
display mechanism to display the game context.

[0009] In still another embodiment, the inventive subject matter relates to a
server, which may include, but is not limited to, means for enabling one or more
users to join a network-based, multiplayer game from one or more client devices,
means for receiving one or more requests from the one or more client devices,
means for holding the one or more requests in a virtual waiting area, and means for

releasing the one or more requests upon an occurrence of a release condition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The appended claims point out different embodiments of the
inventive subject matter with particularity. However, the detailed description
presents a more complete understanding of the inventive subject matter when
considered in connection with the figures, wherein like-reference numbers refer to
similar items throughout the figures and:

[0011] Figure 1 is a schematic block diagram of a computer system, in
accordance with an example embodiment;

[0012] Figure 2 is a schematic block diagram of a server, in accordance with
an example embodiment;

[0013] Figure 3 illustrates an example of a blackjack table representation at
a first state, in accordance with an example embodiment;

[0014] Figure 4 illustrates an example of a blackjack table representation at

a second state, in accordance with an example embodiment;

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

[0015] Figure 5 illustrates a flowchart of a method for a client device to
facilitate a network-based, multiplayer game, in accordance with an example
embodiment;

[0016] Figure 6 illustrates an example of a game data structure, in
accordance with an example embodiment;

[0017] Figure 7 illustrates a flowchart of a method for a server to facilitate a
network-based, multiplayer game, in accordance with an example embodiment;
[0018] Figure 8 illustrates a flowchart of a method for a server to perform a
multiple-user action stage, in accordance with an example embodiment;

[0019] Figure 9 illustrates a flowchart of a method for a server to perform a
single-user action stage, in accordance with an example embodiment; and

[0020] Figure 10 illustrates a diagrammatic representation of machine in the
example form of a computer system, within which a set of instructions, for causing
the machine to perform any one or more of the methodologies discussed herein, may

be executed.
DETAILED DESCRIPTION

[0021] Embodiments include methods and apparatus for facilitating
network-based, multiplayer games. Examples of applicable multiplayer games
include, but are not limited to, blackjack, poker, keno, roulette, craps, racing games,
sports betting games (e.g., boxing, horse racing, etc.), board games (e.g., checkers,
chess, Monopoly, etc.), course navigation games, fighting games, and other types of
network-based multiplayer games. Although the description, below, describes
implementing embodiments in a network-based blackjack game, it is to be
understood that the scope of the subject matter includes other types of multiplayer
games, as well.

[0022] In an embodiment, a network-based, multiplayer game may be, for
example, a blackjack game. A blackjack game may be implemented as a server
application, which is capable of communicating with various types of clients, in an

embodiment. In an embodiment, the server application maintains a virtual “table”

WO 2005/079938

10

15

20

25

30

PCT/1B2005/000190

for all iterations associated with a particular game. Similar to an actual blackjack
game played at a casino, for example, one or more players (also referred to as
“users™), through interaction with their respective client devices, may join the table
(e.g., join the game). Accordingly, a first player may join a table using his home
computer located in Israel, while a second player may join the sarme table using her
cellular telephone in Brazil, in an embodiment.

[0023] Joining a “table” is analogous to joining a “game,” in various
embodiments. For example, a “table” may represent a casino-style gambling table
used to play a blackjack, poker, roulette, craps, or other types of table-based games.
In other embodiments, a “game” may be represented using another type of
representation. For example, a “game” may be played on a virtual gameboard,
adventure course, arena, or other manifestation. It is intended that the scope of the
inventive subject matter be extended to such other manifestations, and use of the
term “table” is not meant to limit the scope of the inventive subject matter to table-
based games. The term “table,” as used herein, may be interchangeably construed
to mean “game.”

[0024] During play, multiple “iterations” of the game may be performed.
For example, a single game iteration for a particular blackjack game may include
each player placing a bet, providing player inputs to “hit” or “stand,” and receiving
feedback on whether the deal has resulted in a win, lose or draw for the player. As
long as a player has sufficient credit, the player may participate in as many game
iterations as he or she would like. |

[0025] In a multiplayer scenario, more than one person may be playing on
and/or viewing the blackjack table at any particular time. The “actions” performed
by each player may affect the state of the game (e.g.., the state of the table), and thus
may affect the decisions of the other players. Accordingly, it is desirable that each
player be notified when the table’s state is changed. Assume, for example, that
three players, X, Y, and Z, are participating in a blackjack game at a particular table.
[0026] There are at least four kinds of table state changes that a player, X,

may expect:

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

[0027] L. A change caused by an action that player X had done
by himself (e.g., press the “HIT” button when it was his turn
to play).

[0028] 2. A change caused by one other player (e.g., player X is
watching a “HIT” action done by player Y when it is Y’s turn
to play).

[0029] 3. A change caused by an action that was done by more
than one player at the table (e.g., a “place your bets” round
when all the players may be placing their bets, both player X
and Y want to see the bets each other are placing), and

[0030] 4. A change caused by an action by the system, which
may be represented as the dealer (e.g., the dealer notices that
player Y is not responding in her turn and tells the other
players they should skip player Y’s turn).

[0031] Actions of the types 1 and 2, above, are referred to herein as “single-

user action stages,” because the system expects an action request from just one of

potentially multiple players. Actions of type 3, above, are referred to herein as

“multiple-user action stages,” because the system expects action requests from

multiple ones of the players (e.g., up to all of the players at the table).

[0032] In a typical client-server methodology, the server sends a response to

a client only after receiving a request from the client. A typical server may not,

itself, initiate a conversation with a client. Therefore, in order for player X to be

notified regarding a change in the table, X should send a request for which the
server will reply with the new state of the table.

[0033] For actions of type 1, above, the server may simply reply to player

X’s action request with a response that indicates the new state of the table. For

actions of types 2 and 3, however, player X may not have sent an action request to

the server. Regardless, player X should be notified when an action request from
player Y or Z have affected the state of the table.

[0034] One solution may be to implement client-server “polling.” Using

this technique, when it is player Y’s turn to make an action request, users X and Z

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

periodically (e.g., once per second) send dummy requests to the server. If there is
no change in the table’s state, the server responds with a negative answer. After
player Y has made an action request, and the table’s state has changed, the next time
player X or Z sends a dummy request, the server may respond with a message
indicating the table’s new state. Such a solution may be inefficient, because the
server may send numerous negative answers to players X and Z in response to their
dummy requests. In addition, the clients associated with players X and Z expend
significant resources periodically performing the tasks of generating and sending
dummy requests, and receiving, parsing, and evaluating negative answers.

[0035] Another solution may be to use “sockets.” A sockets implementation
enables a client to initiate a connection with a server. Once a connection has been
established, the server may send data to the client without requiring a client’s
explicit request. However, a sockets solution may limit the range of platforms that
the system may support, because not all electronic devices support sockets. For
example, a cellular telephone or television system may not have sockets capabilities.
Further, sockets are typically implemented using different communications ports
than the standard ports through which communications may be allowed by various
communication ﬁ/rewalls. Because many firewalls block non-standard ports from
being used, a sockets implementation may not be practical over a network that
includes a firewall.

[0036] According to various embodiments of the inventive subject matter,
clients may send “action requests,” and “watch requests™ to a server, and the server
may hold those requests in a virtual waiting area until satisfaction of a condition for
releasing the requests. When requests are released, the server may perform any of a
number of functions, including but not limited to updating the table’s state, and
responding to the requests with state update messages. In an embodiment, action
requests, watch requests, and/or state update messages may include messages
formatted using a markup language, such as HTML (Hyper-Text Markup
Language), SGML (Standard Generalized Markup Language), XML (Extensible
Markup Language), or another format. In an embodiment, a client device may send

requests and receive state update messages using a standard port and

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

communications protocol (e.g., port 80 supporting Hyper-Text Transfer Protocol
(HTTP)).

[0037] Example systems and servers, in which various embodiments may be
implemented, are described below in conjunction with Figures 1 and 2. An example
of two display screens for a blackjack game are described later in conjunction with
Figures 3 and 4, in accordance with various embodiments. Example methods for
implementing a network-based, multiplayer game are described later in conjunction
with Figures 5-9.

[0038] Figure 1 is a schematic block diagram of a computer system 100, in
accordance with an example embodiment. In system 100, a server 102 may
communicate with one or more clients 104, 106, 108 over one or more networks
110. Although one server 102, three clients 104, 106, 108, and one network 110 are
illustrated in Figure 1, different numbers of servers 102, clients 104, 106, 108, and
networks 110 may be associated with system 100, and the numbers may change
dynamically (e.g., as players join or leave games).

[0039] In an embodiment, network 110 includes the Internet. In other
embodiments, network 110 may include a local area network (LAN), a wide area
network (WAN), a wireless LAN (WLAN), a radio area network (RAN), a personal
area network (PAN) (e.g., a Bluetooth network), a cellular network, a satellite
network, a public switched telephone network (PSTN), or any combination thereof.
Although the description, below, describes implementing embodiments in a system
that includes the Internet, it is to be understood that the scope of the subject matter
includes systems that employ other types of networks to provide communications
between a server and client, as well.

[0040] In an embodiment, one or more network-based multiplayer games are
executed and maintained on a server 102, and accessed by client programs (e.g., a
browser) associated with clients 104, 106, 108. In an embodiment, a network-based
multiplayer game may include a Java-based, enterprise application, or an application
programmed using a different language. A multiplayer game, in accordance with an

embodiment, may use open standards (e.g., XML, HTML, SGML, or others) and

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

transport protocols (e.g., HTTP) to exchange information and data with calling
clients.

[0041] As used herein, the term “server” is intended to include one or more
first computing devices or computer programs executing on one or more computing
devices, which provide one or more services to client programs or client devices.
The term “client,” as used herein, is intended to include a second computing device
or computer program executing on a computing device, which may request services
from a server. Use of the terms “server” and “client” are not meant to limit the
scope of the subject matter to any particular type of system. Instead, these terms are
used for convenience to indicate various elements of a network-based
communication system.

[0042] A client 104, 106, 108 may include one or more computing devices
(e.g., processors) within a device such as a computer (e.g., a desktop personal
computer (PC) or laptop computer), a personal digital assistant (PDA), a two-way
pager, a cellular telephone, a television set and set-top box, an interactive television
(ITV) system, a gaming system, a consumer electronics device, a web appliance,
devices combining these functionalities, or virtually any other electronic device
capable of providing two-way network communications, displaying information
pertaining to a multiplayer game, and receiving user inputs associated with the
game. In an embodiment, each client 104, 106, 108 may include a wired or wireless
network interface, one or more processors, a display mechanism (e.g., a display or
screen), and a user interface (e.g., keyboard, keypad, toggle switches, joystick,
microphone, speaker, etc.).

[0043] Server 102 maintains and updates state information relating to a
game. In addition, in an embodiment, server 102 receives messages from the one or
more clients 104, 106, 108 via one or more networks 110, and may respond
accordingly. As will be described in detail later, server 102 may hold certain user
requests in a manner that enables the system to update all users as to the state of the
game, regardless of whether or not it is the user’s turn.

[0044] Figure 2 is a schematic block diagram of a server 200, in accordance

with an example embodiment. In an embodiment, server 200 includes one or more

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

page servers 202, Application Programming Interface (API) servers 204, and
database servers 206. Further, server 200 may include volatile and/or non-volatile
data storage mechanisms 210, which may be accessible to servers 202, 204, 206.
[0045] Page servers 202 may deliver web pages (e.g., mark-up language
documents) to clients. API servers 204 may provide a set of API functions for
querying and writing to the server 200. Database servers 206 may facilitate
communications with one or more remote databases 220. More, fewer, or different
servers may be associated with server 200, in other embodiments.

[0046] An API executed on server 200 may implement a network-based,
multiplayer game, in an embodiment. Such an API may be called using HTTP, for
example, and information may be sent and received using a standard markup
language message format (e.g., HTML, SGML, XML, or other). A client-side
application used to interact with server 200 may be designed to communicate with a
server-side API. In other embodiments, othqr protocols and/or messaging formats
may be used to provide communications between a server and client.

[0047] The remaining Figures are used to illustrate the various
communications between clients and servers, and the actions performed by clients
and servers, according to various embodiments. The description will begin from the
perspective of a client device, and then proceed to the perspective of a server.
Again, a blackjack game will be described for the purposes of example only,
although the scope of the inventive subject matter extends to various other network-
based, multiplayer games, as well.

[0048] In an embodiment, a player (or “user”) may join a game table, such
as a blackjack table, via a client device (e.g., device 102, 104, 106, Figure 1). Ina
particular embodiment, a player invokes a browser on the client device, and
accesses a website, which manages the game. For example, a player may access a
website such as “www.playmontecarlo.com” (developed by BettingCorp UK Ltd.,
London, United Kingdom), may select to play “Multiplayer Blackjack,” and may
join a particular table. In an embodiment, a visual representation of the table may

be downloaded from the server to the client device and displayed.

10

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

[0049] Figure 3 illustrates an example of a blackjack table representation
300 at a first state, which may be displayed on a client device, in accordance with an
example embodiment. In an embodiment, table representation 300 includes various
game elements, which may include a deck of cards 302, one or more betting areas
304, 305, 306, 307, 308, player chip reservoirs 310, a dealer chip reservoir 312, and
chip indicators 313, 314, 315, 316.

[0050] Game elements may also include action initiation elements 318, 320,
which may be different during various stages of the game. For example, during a
betting round, action initiation elements 318, 320 may include a selectable “PLAY”
element 318 and a selectable “CLEAR BET” element 320. Other action initiation
elements may appear during play as elements integrated with the page or in popup
windows. For example, but not by way of limitation, other selectable elements may
include “SPLIT,” “PUSH,” “BUY INSURANCE,” and “DOUBLE DOWN,” among
others.

[0051] In an embodiment, table representation 300 also includes one or
more player indicators 322, 324, 326, which indicate and identify players currently
associated with the table. For example purposes, these players are identified as
“Player X” 322, “Player Y” 324, and “Player Z” 326. Further, table representation
300 may include various game state indicators, which may include a player balance
indicator 332, a current bet indicator 334, an insurance indicator 336, a payout
indicator 338, and a timer 340.

[0052] When a game state corresponds to a betting round, each player 322,
324, 326 may make a bet. For example, in an embodiment, Player X 322 may
manipulate the user interface of his client device to drag one or more chip indicators
313-316 into the betting area 305 associated with Player X. The player’s chip
reservoir 310, current bet indicator 334, and balance indicator 332 may be adjusted
at the client device, in response. Player Y 324 and Player Z 326 may perform
similar actions before, concurrently with, or after Player X 322. Accordingly, a
betting round may be considered a “multiple-user action stage.”

[0053] In an embodiment, timer 340 indicates a time remaining before

expiration of the betting round. Timer 340 may be initialized to a certain number of

11

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

seconds (e.g., from 10-30 seconds or more), and may count down to zero. Ifa
player places one or more chips into his betting area (e.g., area 305) and selects the
“PLAY” element 318, his associated client device generates and sends an action
request (e.g., an XML message sent using HTTP) to the server, which indicates his
bet. If the timer 340 expires prior to a player selecting the “PLAY” element 318,
then his client device generates and sends an action request to the server, which
indicates the total chip value that the player had placed in his betting area prior to
expiration of timer 340. If no chips exist in a player’s betting area upon expiration
of the timer 340, then his client device may not generate and send an action request
to the server, and the server may assume that the player is sitting out the round.
[0054] As will be explained in more detail later, the server holds the action
requests for a multiple-user action stage of the game until action requests are
received for some or all players, or until a timeout period has elapsed (e.g., as
indicated by timer 340), in an embodiment. The server then releases the action
requests (e.g., executes threads associated with the requests), updates the state of the
table, and sends table state update messages (e.g., XML messages sent using HTTP)
to the client devices associated with the players, in an embodiment. In an
embodiment, updating the state of the table includes indicating the bets of all of the
players who made bets, and simulating card dealing. A card dealing simulation may
include execution of a random or semi-random card selection process for a player
and for the dealer.

[0055] In an embodiment, the table state update messages indicate the bets
made by all of the players and the card values dealt to the players. Upon receipt of a
table state update message, a client device may display the bets of each player on
each client device, and simulate dealing of the cards.

[0056] Figure 4 illustrates an example of a blackjack table representation
400 at a second state, which may be displayed on a client device, in accordance with
an example embodiment. The illustrated representation 400 includes dealt card
elements 402, which indicate the cards dealt to Player X 422. In addition, in an
embodiment, representation 400 includes a turn indicator 410, shown in Figure 4 as

an arrow, which indicates the player whose turn it is, referred to herein as the “in-

12

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

turn player.” The other players, whose turn it is not, are referred to herein as the
“out-of-turn players.”

[0057] In the example of Figure 4, turn indicator 410 indicates that Player X
422 is the in-turn player. In an embodiment, only the in-turn player (e.g., Player X
422) may perform an action that affects the state of the game, and the out-of-turn
players (e.g., Player Y 424 and Player Z 426) may simply observe. Accordingly, a
playing stage may be considered a “single-user action stage.” In an embodiment,
the out-of-turn players (e.g., Player Y 424 and Player Z 426) recognize that it is not
their turn, and each one may send a “watch” request (e.g., an XML message sent
using HTTP) to the server. As will be explained in more detail later, the server
holds the watch requests from the out-of-turn players until after the server receives
an action request from the in-turn player, or until a timeout period expires.

[0058] During a player’s turn, action initiation elements 418, 420 may
include a selectable “STAND” element 418 and a selectable “HIT” element 420.
During his turn, a player may increase his bet, as described above, and/or may select
the “STAND” element 418 or the “HIT” element 420.

[0059] In an embodiment, timer 440 indicates a time remaining before
expiration of the player’s turn. Timer 440 may be initialized to a certain number of
seconds (e.g., from 10-30 seconds or more), and may count down to zero. If the in-
turn player selects the “STAND” element 418 or the “HIT” element 420, his
associated client device generates and sends an action request (e.g., an XML
message sent using HTTP) to the server, which indicates his decision. During a
turn, a player also may increase his bet, in an embodiment. If the timer 440 expires
prior to a player selecting the “STAND” element 418 or the “HIT” element 420,
then his client device may not generate and send an action request to the server, and
the server may assume a default decision of “STAND.” As will be explained in
more detail later, upon receipt of the in-turn player’s action request (or upon
expiration of a timeout period), the server updates the state of the table.

[0060] In an embodiment, if the in-turn player selects “HIT” element 420,
updating the state of the table includes indicating the additional bets (if made) of the
in-turn player, and simulating card dealing. The identity of the in-turn player may

13

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

remain as Player X, 422, because Player X may still have the opportunity to “HIT”
again (assuming his card total has not exceeded 21). Although not illustrated in
Figure 4, an in-turn player may be given additional options during a turn, as well.
For example, but not by way of limitation, an in-turn player may be given options to
“DOUBLE DOWN,” “SPLIT,” “PUSH,” or “BUY INSURANCE,” at various
times.

[0061] In an embodiment, if the in-turn player selects “STAND” element
418, updating the state of the table includes indicating the additional bets (if made)
of the in-turn player, and modifying the identity of the in-turn player (if any players
have not yet taken their turn).

[0062] After updating the state of the table, in an embodiment, the server
releases the watch requests received from and held for the out-of-turn players (e.g.,
executes threads associated with the requests), in an embodiment. The server then
sends table state update messages to the client devices associated with each of the
in-turn and out-of-turn plajers, in an embodiment. In an embodiment, the table
state update messages indicates the additional bets made by the in-turn player (if
any), and the card values dealt to the in-turn player (if any). Upon receipt of a table
state update message, a client device may display the in-turn player’s additional bets
and simulate dealing of the cards to the in-turn player, if those actions were
requested. Further, the table state update message may indicate the identity of the
in-turn player, which may or may not have changed. Based on the information, turn
indicator 410 may continue to indicate that Player X 422 is the in-turn player, or
may move to another player (e.g., Player Y 424 or Player Z 426).

[0063] After the last player has taken his turn, updating the table state may
also include determining which players have beaten the dealer, determining payouts
(if any), and adjusting player balances. Accordingly, a table state update message
may be sent to each player to indicate the results of these changes. A new iteration
of the game may then begin. In an embodiment, this includes returning the state of
the game to a betting round.

[0064] The example sequence of events given above is not intended to

indicate all possible actions that a player/client or the dealer/server may perform.

14

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

For example, any player may exit a game or fail to respond during a betting round
or during his turn. As discussed previously, in an embodiment, the server may
implement one or more maintenance or timing threads, which cause a player to be
bypassed if he does not respond within a certain period of time. In addition, players
may perform other actions that are not described in the context of the above
example, such as playing an extra hand, if available, among other things.
Modifications to client/server actions associated with other various game play
actions, which may not be described in the example given above, are intended to fall
within the scope of the inventive subject matter.

[0065] The remaining Figures include flowcharts indicating embodiments of
methods performed by clients and servers to facilitate network-based multiplayer
games. Although the flowcharts are shown as procedures performed in a sequential
manner, the various method embodiments could be performed using object-oriented
or object-based techniques. Further, the sequence of procedures may be varied, in
certain instances, while still achieving substantially similar results.

[0066] Figure 5 illustrates an example embodiment of a sequence of game
procedures from the perspective of a client device. Figures 6-9 illustrate
embodiments of sequences of game procedures from the perspective of a server
device.

[0067] Figure S illustrates a flowchart of a method for a client device to
facilitate a network-based, multiplayer game, in accordance with an example
embodiment. The method begins, in an embodiment, when a client device receives
and displays one or more pages and other information from a server, which may
represent a physical embodiment of the context of a network-based, multiplayer
game (e.g., a casino table, a visualization of a portion of a course, an arena, etc.).
For example, a blackjack table (e.g., table 300, Figure 3) may be received and
displayed. The game context page may be displayed, for example, on a monitor
associated with a client computer, a television screen, or a display area of a cellular
telephone, two-way pager, or other portable electronic device.

[0068] A client device may receive a game context page, for example, by

accessing a website (or other sharable network application) that supports one or

15

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

more versions of the game. In an embodiment, a user may further select a particular
game to play (e.g., select a particular blackjack table from a lounge). For example,
using the blackjack examplg a user may access a casino-style gambling website,
indicate that the user would like to play “multiplayer blackjack,” and select a table
(if multiple tables are provided). A user also may be given the opportunity to
establish credit with the system, for example, if the system provides for actual
betting.

[0069] In block 504, the client device enables a player (a user) to join a
particular game (e.g., a table). For example, in a blackjack application, after a user
has selected a particular game table, and the table representation has been displayed,
the client device may display a selectable screen element such as “JOIN GAME?”
When the user indicates that he would like to join the game, the client device may
send one or more messages to the server to provide information so that the server
may join the player in the game.

[0070] In an embodiment, a game may initially be in a multiple-user action
stage, such as a stage in which one or more players may place bets. Accordingly, in
block 506, the client device may receive user inputs (e.g., bet indications and a
“PLAY” selection), generate an action request that includes the input information,
and send the action request to the server. Server actions, which may be performed
in response to receiving such a request, are described later in conjunction with
Figures 7 and 8. If a player does not place a bet within a certain period of time, then
that player is bypassed, in an embodiment. Although this may occur, it is not
represented in Figure 5 for ease of illustration and description.

[0071] After sending an action request, a server response may be received,
in block 508, in the form of one or more game update messages. In an embodiment,
the client device updates the visual representation of the game, accordingly. For
example, a client device may update the visual representation of the table to show
all of the player bets that have been made.

[0072] A game may then proceed to a single-user action stage, in an
embodiment. If such is the case, a determination may be made, in block 510,

whether the client device is associated with the in-turn player. If not, then the

16

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

player may observe but not play, during that game stage, and the client device may
send a “watch request” to the server, in block 512, in an embodiment. In a
particular embodiment, a client device for an out-of-turn player may send only one
watch request to the server during a single-user action stage, and wait for the server
to respond (as opposed to periodically polling the server). Server handling of a
watch request in conjunction with a single-user action stage is described in detail
later in conjunction with Figures 7 and 9.

[0073] If the client device does represent the in-turn player (as determined in
block 510), then the user may play during that game stage. In an embodiment, if a
player waits too long to take his or her turn, then the server may assume a particular
player action (e.g., “STAND,”), and may update the game accordingly. In an
embodiment, a determination is made, in block 514, whether a game update
message has been received from the server. If not, then a further determination is
made, in block 516, whether a user action has been indicated (e.g., “STAND,”
“HIT,” “SPLIT,” and/or a bet modification). If so, then the client device sends an
“action request” to the server, in block 518, in an embodiment. Server handling of
an action request in conjunction with a single-user action stage is described in detail
later in conjunction with Figures 7 and 9.

[0074] Once the client device sends a wait request (in block 512) or an
action request (in block 518), the client device waits for and/or determines whether
a game update message has been received from the server, in block 520. When a
determination is made that a game update message has been received (in blocks 520
or 514), then the client device updates the game (e.g., the table) according to the
information in the game update message, in block 522. For example, the client
device may update the displayed game representation to indicate modified bets
and/or a simulated card deal, among other things. If the last player has taken his
turn, then the game update message may also indicate whether or not the player has
won, lost or drawn, as well as the monetary winnings or losses.

[0075] A determination may then be made, in block 524, whether the game
iteration is over (e.g., whether all participating players have taken their turns). If

not, then the procedure iterates as shown, and a determination is again made

17

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

whether it is the player’s turn, in block 510. If the game iteration is over, as
determined in block 524, then the procedure iterates as shown, where a new betting
round or other multiple-user action stage may be initiated.

[0076] Figure 5 is not meant to illustrate all possible state changes or actions
that may occur during a typical game iteration. For example, a user may leave a
game at any time, or may fail to respond when it is the user’s turn. In such cases,
the server may assume that the user has passed, and may update the game state
accordingly. Further, other types of games may include more than one multiple-
user action stage, and or the sequencing between the single-user and multiple-user
action stages may be performed in different orders. Variations in the illustrated
client-side flow of procedures of Figure 5 may be used for different types of games
and/or for game iterations in which different actions are performed by a player.
[0077] Embodiments of network-based, multiplayer games will now be
described from a server perspective, in conjunction with Figures 6-9. As will be
described in more detail later, a game may be established or configured on a server
prior to or in response to a first player’s attempt to join the game. In an
embodiment, configuring a game may include, for example, configuring a data
structure in which game-related information may be stored and updated. In an
embodiment, the data structure for a particular game is referred to as a table.

[0078] Figure 6 illustrates an example of a game data structure, in
accordance with an example embodiment. Game data structure 600 may exist, for
example, within one or more data storage mechanisms (e.g., data storage 210,
Figure 2) associated with a server. In an embodiment, game data structure 600
includes game state information 602, a virtual waiting area 604, and user objects
storage 606.

[0079] Game state information 602 may include, for example, information
indicating the current stage of the game (e.g., idle stage, betting stage, playing stage,
etc.). In addition, in an embodiment, game state information 602 includes a state
sequence indicator (e.g., an integer value), which may be updated (e.g.,
incremented) each time a player-initiated or system-initiated state change occurs.

Further, during play, game state information 602 may include, for example,

18

WO 2005/079938 PCT/1B2005/000190

information indicating each player’s current bet, each player’s card values, the
dealer’s card values, and the identity of the in-turn player, among other things.
[0080] Virtual waiting area 604 includes a storage area for holding one or
more watch requests, in an embodiment. In a particular embodiment, a watch

5 request may be held in the virtual waiting area as a user thread, which may be held
or suspended by the system and later activated in response to a triggering event.
[0081] User objects storage 606 may include a user object for each player
who has joined the game. In an embodiment, each user object includes a user
identifier (ID), which is a persistent value that is unique to each user, and a session

10 ID (or login ID), which may be associated with the user throughout a particular
session. Further, in an embodiment, each user object may include a record of the
user’s account (e.g., outstanding bets, an uncommitted user balance, etc.).

[0082] Still further, in an embodiment, a user object may include a “reported
state sequence indicator”, which indicates the most recently-reported state ‘

15 information that the server sent to the user. For example, when the server sends a
game update message to a particular user, the information contained within the
message may be associated with the then-current state sequence indicator (e.g.,
sequence number “104”). The server may then update the reported state sequence
indicator within the user object (e.g., to a value of “104”). As will be described

20 later, the reported state sequence indicator, within a user object, may be used to
determine whether a particular user has not been sent a previous game update
message.

[0083] Figure 7 illustrates a flowchart of a method for a server to facilitate a
network-based, multiplayer game, in accordance with an example embodiment. The

25 method begins, in an embodiment, when the server initiates and configures a game,
in block 702. Initiating a game may include loading and starting an instance of the
game application. Configuring a game may include, for example, establishing a
data structure, such as that illustrated in Figure 6, and populating the data structure
with state information (e.g., game state information 602, Figure 6) and user objects

30 (assuming one or more users have joined the game) (e.g., within user objects storage

606). The state information may dynamically change during game play. In

19

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

addition, user objects may be added to and removed from user objects storage
during game play, as users join and leave a game, respectively. The contents of
each user object also may be dynamically changed during game play.

[0084] The server may enable one or more users to join the game, in block
703. A user may join the game, for example, by accessing a website associated with
the game, and indicating that the user wishes to join. When a user joins the game, a
user object corresponding to the user is stored within the user object storage.

[0085] In an embodiment, the server initially configures the game’s virtual
waiting area (e.g., virtual waiting area 604) for a multiple-user action stage, in block
704. In an embodiment, this includes indicating, to the waiting area, release
conditions that may trigger activation of any user messages or threads that may be
stored within the waiting area during a multiple-user action stage of the game. For
example, if a first game stage corresponds to a betting stage, then the virtual waiting
area may be configured to hold received user action requests until such messages
are received for some or all players, or until a timeout period has elapsed.

[0086] In block 706, a multiple-user action stage of the game may be
performed. As will be described in more detail in conjunction with Figure 8, a
multiple-user action stage, such as a betting stage, includes the server starting a
timer (e.g., a timer thread), and receiving and holding some or all action requests
(e.g., bets and “PLAY” indications) until a release condition occurs. In an
embodiment, the action requests are held in a virtual waiting area. In a further
embodiment, a first release condition may be the server’s determination that it has
received action requests for some or all players that are joined in the game. A
second release condition may be an expiration of the timer. If any players have not
responded prior to expiration of the timer, then they are assumed to be sitting out for
that game iteration, and messages from the non-responsive players are essentially
ignored by the server. Once either release condition has occurred, the server
releases (e.g., acts upon or executes) the action requests or threads within the
waiting queue, changes the state of the game, and sends game update messages to

all of the players joined in the game.

20

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

[0087] Referring again to Figure 7, in block 708, the server configures the
game’s virtual waiting area (e.g., virtual waiting area 604) for a single-user action
stage. In an embodiment, this includes indicating, to the waiting area, release
conditions that may trigger activation of any user messages or threads that may be
stored within the waiting area during a single-user action stage of the game. For
example, if a next game stage corresponds to a player’s turn, then the virtual waiting
area may be configured to hold received watch messages until a user action request
is received for the in-turn player or until a timeout period has elapsed.

[0088] In block 710, a single-user action stage of the game may be
performed. As will be described in more detail in conjunction with Figure 9, a
single-user action stage, such as player’s turn, includes the server starting a timer
(e.g., a timer thread), and receiving and holding some or all watch messages from
out-of-turn players until a release condition occurs. In an embodiment, the watch
messages are held in a virtual waiting area. In a further embodiment, a first release
condition may be the server’s determination that it has received an action request
(e.g., “HIT,” “STAND” or “SPLIT”) from the in-turn player. A second release
condition may be an expiration of the timer. If the in-turn player has not responded
prior to expiration of the timer, then an action may be assumed for the player (e.g.,
“STAND?”). Once either release condition has occurred, the server changes the state
of the game, releases (e.g., acts upon or executes) the watch messages or threads
within the waiting queue, and sends game update messages to all of the players
joined in the game.

[0089] Once an in-turn player has sent an action request or his turn has
timed out, then a next turn may begin, if any are left in the game iteration.
Referring again to Figure 7, a determination is made, in block 712, whether another
player turn remains in the game iteration. The next player turn may go to the same
player as the previous turn (e.g., when a player previously sent a “HIT” action
request and has not exceeded a card total of “21”), or the next player turn may go to
another player (e.g., the player sitting to the left of the previous player). When

another player turn remains in the game iteration, then the procedure iterates as

21

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

shown, where the waiting area may be re-configured for a single-user action stage
(or simply cleared), and another single-user action stage is performed.

[0090] When no further player turns remain in the game iteration, then in
block 714, the server may notify players of results of the game iteration. For
example, the server and/or clients may simulate the dealer exposing his cards,
performing one or more “HIT” actions (e.g., if the dealer’s card total is less than one
or more player card totals), and may send messages to the clients to indicate which
players have won, lost or drawn, as well as the players winnings or losses. In an
embodiment, the server also updates some or all of the user objects to reflect the
user’s new balances, if they have changed. In a further embodiment, the server may
interact with a database (e.g., database 220, Figure 2) to update a persistent version
of the user’s balance, as well.

[0091] In block 716, a determination is made whether another iteration of
the game should be played. In an embodiment, if any players remain at the table
with a positive balance, then another iteration may be assumed. In an alternate
embodiment, the server may seek user inputs to determine if each player would like
to play again (e.g., “Another Round?” popup). When another iteration should be
played, the game iterates as shown, where the waiting area may be re-configured for
a multiple-user action stage, and another multiple-user action stage is performed. If
no further iterations are to be played, then the game ends.

[0092] The flowchart of Figure 7 includes a sequence of processes that may
be applicable to an embodiment of a blackjack game. Other types of games may be
performed in different sequences. For example, other types of games may perform
only multiple-user action stages or single-user action stages, but not both.
Alternatively, other types of games may perform multiple-user action stages and
single-user action stages in different orders from the order illustrated in Figure 7,
and/or more or fewer of either type of stage may be performed during a game
iteration. In other words, the flow of processes may be modified to suit a particular
game.

[0093] Figures 8 and 9 illustrate more detailed descriptions of embodiments

of a multiple-user action stage and a single-user action stage, respectively. In

22

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

particular, Figure 8 illustrates a flowchart of a method for a server to perform a
multiple-user action stage (e.g., block 706, Figure 7), in accordance with an
example embodiment.

[0094] The method begins, in block 802, by the server initiating a timer
associated with the multiple-user action stage. In an embodiment, the timer is
implemented as a timing or maintenance thread, which is executed by the server. A
purpose of the timer is to serve as a backup release condition, in case a primary
release condition (e.g., the server receiving action requests from all participaﬁng
players, indicating they have placed a bet and selected “PLAY”) has not occurred
prior to expiration of the timer. In an embodiment, the timer is initiated to a first
value (e.g., 15 seconds, or more or less), and the timer counts down until it reaches a
value of zero.

[0095] In block 804, a determination may be made whether a timeout
condition has occurred. In an embodiment, a timeout condition may occur when the
timer has expired (e.g., in the case of a timer that counts down), or has reached a
timeout value (e.g., in the case of a timer that counts up). In an embodiment, when
such a condition occurs, a server interrupt may be produced, thus enabling the
server to determine that a timeout condition has occurred.

[0096] If a timeout condition has not yet occurred, then a further
determination may be made whether the server has received an action request, in
block 806. For example, an action request received during a betting round may
indicate a player’s bet, and that the player has selected a “PLAY” element of the
game. Ifno action request has been received, then the method may iterate as shown.
In an embodiment, a server interrupt may be produced upon receipt of an action
request, thus enabling the server to determine that an action request has been
received.

[0097] If an action request has been received, as determined in block 806, a
further determination may be made, in block 808, whether the server has received
action requests from all players joined at the table. If not, then in block 810, the

server places and holds the received action request in a virtual waiting area, in an

23

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

embodiment. For example, this may be achieved by blocking a thread associated
with servicing the received action request. The method may then iterate as shown.
[0098] In an embodiment, receipt of action requests from all participating
players may be considered a primary “release condition,” which may trigger the
server to release the action requests that have been received and held in the virtual
waiting area. In an embodiment, this includes unblocking previously-blocked
threads associated with those action requests. A secondary release condition may be
the expiration of a timer (e.g., a timeout condition occurring).

[0099] Accordingly, when a determination is made, in block 804, that a
timeout condition has occurred or when a determination is made, in block 808, that
the server has received action requests from all players joined at the table, then any
action requests being held in the virtual waiting area may be released, in block 812.
In an embodiment, this includes unblocking the threads associated with the held
action requests. In addition, the last-received action request, which may or may not
have been placed in the virtual waiting area, also may be serviced. In an
embodiment, request servicing (e.g., thread execution) may result in the state of the
game being changed. For example, the game state may be changed to reflect each
participating player’s bet, and also to indicate the first player to be the in-turn
player.

[00100] In block 814, the server may generate and send a “current” (as
opposed to “previous,” as will be described later) game update message to the
participating players, in an embodiment. In addition, a current game update
message may be sent to players who are sitting out the round. A game update
message may include, for example, each player’s current bet, and an indication of
the player who is the “in-turn” player for the next game stage. In an embodiment,
the current game update message is stored, in block 816, for possible future
transmission. Each game update message may be assigned a sequence number or
other identifier, which may be stored with the game update message, in an
embodiment.

[00101] In block 818, user objects (e.g., user objects stored in user objects
storage 606, Figure 5) for the participating players may be updated. In an

24

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

embodiment, this may include decrementing a volatile version of the user’s balance
to reflect the user’s bet. In addition, in an embodiment, this may include updating a
reported state sequence indicator, within the user object, which indicates the most
recently-reported game update message sent from the server to the client device
associated with the user. As will be described later, the reported state sequence
indicator, within a user object, may be used to determine whether a particular user
has not been sent a previous game update message.

[00102] In block 820, the virtual waiting area may be cleared (e.g.,
overwritten with initialization values), and the method for a server to perform a
multiple-user action stage may end. In an embodiment, after a multiple-user action
stage of a game, one or more single-user action stages may be performed. In
another embodiment, another multiple-user action stage may be performed or the
game iteration may end.

[00103] Figure 9 illustrates a flowchart of a method for a server to perform a
single-user action stage (e.g., block 710, Figure 7), in accordance with an example
embodiment. The method begins, in block 902, by the server initiating a timer
associated with the single-user action stage. In an embodiment, the timer is
implemented as a timing or maintenance thread, which is executed by the server. A
purpose of the timer is to serve as a backup release condition, in case a primary
release condition (e.g., the server receiving an action requests from an in-turn
player) has not occurred prior to expiration of the timer. In an embodiment, the
timer is initiated to a first value (e.g., 15 seconds, or more or less), and the timer
counts down until it reaches a value of zero.

[00104] In block 904, a determination may be made whether a timeout
condition has occurred. In an embodiment, a timeout condition may occur when the
timer has expired (e.g., in the case of a timer that counts down), or has reached a
timeout value (e.g., in the case of a timer that counts up). In an embodiment, when
such a condition occurs, a server interrupt may be produced, thus enabling the
server to determine that a timeout condition has occurred.

[00105] If a timeout condition has not yet occurred, then a further

determination may be made whether the server has received a watch request, in

25

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

block 906. For example, a watch request received from a first client during another
client’s turn may indicate that the first client recognized that it is not its turn, and
sent the watch request with the intention of waiting to be notified of the in-turn
player’s decision. In an embodiment, a server interrupt may be produced upon
receipt of a watch request, thus enabling the server to determine that a watch request
has been received.

[00106] If a watch request has been received, as determined in block 906,
then in block 908, the server places and holds the received watch request in a virtual
waiting area, in an embodiment. For example, this may be achieved by blocking a
thread associated with servicing the received watch request. The method may then
iterate as shown.

[00107] If no watch request has been received or after placing a watch request
in the virtual waiting area, then a further determination is made, in block 910,
whether the server has received an action request from the in-turn player. For
example, the server may receive an indication that the in-turn player has selected
“HIT” or “STAND.” In an embodiment, a server interrupt may be produced upon
receipt of an action request, thus enabling the server to determine that an action
request has been received. If an action request has not yet been received, then the
method iterates as shown.

[00108] In an embodiment, receipt of an action request from the in-turn
player may be considered a primary “release condition,” which may trigger the
server to release the watch requests that have been received and held in the virtual
waiting area. In an embodiment, this includes unblocking previously-blocked
threads associated with those watch requests. A secondary release condition may be
the expiration of a timer (e.g., a timeout condition occurring).

[00109] Accordingly, when a determination is made, in block 904, that a
timeout condition has occurred or when a determination is made, in block 910, that
the server has received an action request from the in-turn player, then the received
action request is serviced, and the game state is updated accordingly, in block 912.
In addition, the server may generate a “current” (as opposed to “previous,” as will

be described in conjunction with block 914) game update message, in an

26

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

embodiment. A game update message may include, for example, the in-turn
player’s current bet, new card values (e.g., if the in-turn player requested a “HIT*),
and an indication of the player who is the “in-turn” player for the next game stage.
In an embodiment, the current game update message is stored for possible future
transmission, along with a sequence number or other identifier.

[00110] A possibility may exist that the server receives an action request
from the in-turn player before the server receives watch requests from all out-of-turn
players. If this situation occurs, then the server may not have a watch request to
service for all participating players when the watch requests are released from the
virtual waiting area. A “late-responding, out-of-turn player” is defined herein as an
out-of-turn player for whom the server did not receive a watch request prior to
receiving an action request from an in-turn player. In an embodiment, a reported
state sequence indicator stored in each user object may be used by the server to
identify a late-responding, out-of-turn player during a next single-user action stage
or multiple-user action stage.

[00111] In an embodiment, a server may evaluate the reported state sequence
indicator within some or all user objects to determine whether each user has
received all previously-sent game update messages. For example, if the current
game update message has a sequence number of “104,” and each user object
indicates that the last game update message sent to each user had a sequence number
of “103,” then an assumption may be made that each client has received all
previously-sent game update messages. However, if a user object indicates that the
last game update message set to a particular client has a sequence number of “102,”
it may indicate that the client was a late-responding, out-of-turn player during a
previous turn. Accordingly, that client may not have been sent a previous game
update message. In an embodiment, when the server identifies such a situation, the
server may, in block 914, send one or more previous game update messages to those
clients, if any, that had not been sent the previous game update messages. This may
enable the client to bring its game state up to date. In an embodiment, previous
game update messages, if any, are sent to late-responding, out-of-turn players

together with the current game update message (e.g., in the same message). In other

27

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

words, blocks 914 and 916 may be performed together. However, for ease of
description, blocks 914 and 916 are shown separately. In an alternate embodiment,
previous game update messages, if any, are sent to late-responding, out-of-turn
players before sending the current game update message. In another alternate
embodiment, previous game update messages and current game update messages
may be sent in different orders, and the client device may determine the sequence in
which the client will apply updates.

[00112] In block 916, the server may send the current game update message
(created in block 912) to the participating players, in an embodiment. In addition, a
current game update message may be sent to players who are sitting out the round.
When a client receives a current game update message, the client may update the
displayed table to reflect the game’s current state.

[00113] In block 918, user objects (e.g., user objects stored in user objects
storage 606, Figure 5) for the in-turn and out-of-turn players may be updated. In an
embodiment, this may include decrementing a volatile version of the in-turn
player’s balance to reflect the player’s additional bet, if any. In addition, in an
embodiment, this may include updating a reported state sequence indicator, within
the user object, for each user to whom a current game update message was sent. As
indicated previously, the reported state sequence indicator indicates the most
recently-reported game update message sent from the server (e.g., the current game
update message) to the client device associated with the user.

[00114] In block 920, the virtual waiting area may be cleared (e.g.,
overwritten with initialization values), and the method for a server to perform a
single-user action stage may end. In an embodiment, after a single-user action stage
of a game, one or more additional single-user action stages may be performed. In
another embodiment, a multiple-user action stage may be performed or the game
iteration may end.

[00115] The various procedures described herein can be implemented in
hardware, firmware or software. A software implementation could use microcode,
assembly language code, or a higher-level language code to define a set of program

instructions. The program instructions may be stored on one or more volatile or

28

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

non-volatile computer readable media which, during execution, may perform
various embodiments of the methods described herein. These computer readable
media may reside at a server, a client device, or both, and may include hard disks,
removable magnetic disks, removable optical disks, magnetic cassettes, flash
memory cards, digital video disks, Bernoulli cartridges, random access memories
(RAMs), read only memories (ROMs), and the like.

[00116] Figure 10 shows a diagrammatic representation of machine in the
example form of a computer system 1000, within which a set of instructions, for
causing the machine to perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to other machines. In a
networked deployment, the machine may operate in the capacity of a server or a
client machine in server-client network environment, or as a peer machine in a peer-
to-peer (or distributed) network environment. The machine may be a personal
computer, a laptop computer, a personal digital assistant (PDA), a two-way pager, a
cellular telephone, a television set and set-top box, an interactive television (ITV)
system, a gaming system, a consumer electronics device, a web appliance or any
machine capable of executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine. Further, while only a single machine is
illustrated, the term “machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple sets) of instructions
to perform any one or more of the methodologies discussed herein.

[00117] The exemplary computer system 1000 inclﬁdes a processor 1002
(e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a
main memory 1004, and a static memory 1006, which communicate with each other
via a bus 1008. The computer system 1000 may further include a video display unit
1010 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The
computer system 1000 also may include an alphanumeric input device 1012 (e.g., a
keyboard), a user interface (UI) navigation device 1014 (e.g., a mouse), a disk drive
unit 1016, a signal generation device 1018 (e.g., a speaker), and a network interface
device 1020.

29

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

30

[00118] The disk drive unit 1016 includes a machine-readable medium 1022
on which is stored one or more sets of instructions and data structures (e.g., software
1024) embodying or utilized by any one or more of the methodologies or functions
described herein. The software 1024 may also reside, completely or at least
partially, within the main memory 1004 and/or within the processor 1002 during
execution thereof by the computer system 1000, the main memory 1004 and the
processor 1002 also constituting machine-readable media. The software 1024 may
further be transmitted or received over a network 1026 via the network interface
device 1020 utilizing any one of a number of well-known transfer protocols (e.g.,
HTTP).

[00119] While the machine-readable medium 1022 is shown in an exemplary
embodiment to be a single medium, the term “machine-readable medium” should be
taken to include a single medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the one or more sets of
instructions. The term “machine-readable medium” shall also be taken to include
any medium that is capable of storing, encoding or carrying a set of instructions for
execution by the machine and that cause the machine to perform any one or more of
the methodologies of the present invention, or that is capable of storing, encoding or
carrying data structures utilized by or associated with such a set of instructions. The
term “machine-readable medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, optical and magnetic media, and carrier wave
signals.

[00120] Thus, various embodiments of a method, apparatus, and system have
been described which facilitate network-based, multiplayer games. Embodiments
may be used in conjunction with numerous different systems, including but not
limited to wired or wireless computer networks, cellular communication systems,
cable systems, satellite communication systems, interactive television systems, two-
way paging systems, and casino-style gaming networks, among others. Further,
embodiments may be used in conjunction with numerous different client platforms,

including but not limited to wired or wireless computers (portable or stationary),

30

WO 2005/079938 PCT/1B2005/000190

10

cellular telephones, interactive television terminals, pagers, and gaming terminals,
among others.

[00121] The foregoing description of specific embodiments reveals the
general nature of the inventive subject matter sufficiently that others can, by
applying current knowledge, readily modify and/or adapt it for various applications
without departing from the generic concept. Therefore such adaptations and
modifications are within the meaning and range of equivalents of the disclosed
embodiments. The phraseology or terminology employed herein is for the purpose
of description and not of limitation. Accordingly, the inventive subject matter
embraces all such alternatives, modifications, equivalents and variations as fall

within the spirit and broad scope of the appended claims.

31

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

CLAIMS

What is claimed is;

1. A method performed by a server, the method comprising:
enabling one or more users to join a network-based, multiplayer game from
one or more client devices;
receiving one or more requests from the one or more client devices;
holding the one or more requests in a virtual waiting area; and

releasing the one or more requests upon an occurrence of a release condition.

2. The method of claim 1, further comprising:
initiating the network-based, multiplayer game, wherein the network-based,
multiplayer game includes a game selected from a group of games that includes

blackjack, poker, keno, roulette, and craps.

3. The method of claim 1, wherein receiving the one or more requests
comprises:
receiving one or more action requests during a multiple-user action stage of

the game, wherein at least one of the one or more action requests indicates a bet.

4, The method of claim 3, wherein the release condition is a condition in which
action requests have been received for all users joined in the game, and wherein
releasing the one or more requests comprises:

determining whether the action requests have been received for all of the
users joined in the game; and

when the action requests have been received for all of the users joined in the
game, servicing the action requests by updating a game state, and sending messages

to the one or more client devices indicating a current game state.

32

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

5. The method of claim 1, wherein receiving the one or more requests
comprises:
receiving one or more watch requests during a single-user action stage of the

game.

6. The method of claim 5, wherein the release condition is a condition in which
an action request from an in-turn user has been received, and wherein releasing the
one or more requests comprises:

determining whether the action request from the in-turn user has been
received; and

when the action request has been received, servicing the watch requests by
updating a game state, and sending messages to the one or more client devices

indicating a current game state.

7. A method performed by a server, the method comprising:

enabling one or more users to join a network-based, multiplayer game from
one or more client devices;

performing a multiple-user action stage of the game, which includes
receiving and holding one or more action requests from at least some of the one or
more users, and servicing the one or more action requests upon an occurrence of a
first release condition; and

performing a single-user action stage of the game, which includes receiving
and holding one or more watch requests from one or more out-of-turn users, and
servicing the one or more watch requests upon receipt of an action request from an

in-turn user.

8. The method of claim 7, further comprising:
initiating the network-based, multiplayer game, wherein the network-based,
multiplayer game includes a game selected from a group of games that includes

blackjack, poker, keno, roulette, and craps.

33

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

9. The method of claim 7, wherein performing the single-user action stage of
the game comprises:

receiving the one or more action requests using a Hyper-Text Transfer
Protocol;

holding the one or more action requests in a virtual waiting area;

determining whether action requests have been received for all of the users
joined in the game; and

when the action requests have been received for all of the users joined in the
game, servicing the action requests by updating a game state, and sending messages

to the one or more client devices indicating a current game state.

10. The method of claim 7, wherein performing the multiple-user action stage of
the game comprises:

receiving the one or more watch requests using a Hyper-Text Transfer
Protocol;

holding the one or more watch requests in a virtual waiting area;

determining whether the action request from the in-turn user has been
received; and

when the action request from the in-turn user has been received, servicing
the watch requests by updating a game state, and sending messages to the one or

more client devices indicating a current game state.

11. A method performed by a client device, the method comprising:

displaying a game context for a network-based, multiplayer game, wherein
the game context is received over a network from a server;

enabling a user of the client device to join the network-based, multiplayer
game; and

when the user is not an in-turn player during a single-user action stage of the

game, sending a watch request to the server.

34

WO 2005/079938 PCT/1B2005/000190

12. The method of claim 11, wherein displaying the game context comprises:
displaying a visual representation of a physical embodiment of a game
selected from a group of games that includes blackjack, poker, keno, roulette, and

craps.

5 13. The method of claim 11, wherein sending the watch request to the server
comprises:

sending the watch request using a Hyper-Text Transfer Protocol.

14. The method of claim 11, wherein sending the watch request to the server
comprises:
10 sending only one watch request to the server during the single-user action
stage; and
waiting for a game state update message from the server in response to the

only one watch request.

15. A method comprising:
15 a server enabling one or more users to join a network-based, multiplayer
game from one or more client devices;
a client device displaying a game context for the game, wherein the game
context is received from the server;
the client device enabling a user of the client device to join the network-
20 based, multiplayer game;
the server receiving one or more requests from the one or more client
devices;
the server holding the one or more requests in a virtual waiting area; and

the server releasing the one or more requests upon an occurrence of a release

25 condition.

35

WO 2005/079938 PCT/1B2005/000190

10

15

20

25

16. The method of claim 15, further comprising:
the server initiating the network-based, multiplayer game, wherein the
network-based, multiplayer game includes a game selected from a group of games

that includes blackjack, poker, keno, roulette, and craps.

17. The method of claim 15, wherein receiving the one or more requests
comprises:
receiving one or more action requests during a multiple-user action stage of

the game, wherein at least one of the one or more action requests indicates a bet.

18. The method of claim 15, wherein receiving the one or more requests
comprises:
receiving one or more watch requests during a single-user action stage of the

game.

19. An apparatus comprising:

a server to enable one or more users to join a network-based, multiplayer
game from one or more client devices, to receive one or more requests from the one
or more client devices, to holding the one or more requests in a virtual waiting area,
and to release the one or more requests upon an occurrence of a release condition;
and

one or more data storage mechanisms to store game state information,

information in the virtual waiting area, and user objects.

20. The apparatus of claim 19, wherein the server is further to receive one or
more action requests during a multiple-user action stage of the game, wherein at

least one of the one or more action requests indicates a bet.

21. The apparatus of claim 19, wherein the server is further to receive one or

more watch requests during a single-user action stage of the game.

36

WO 2005/079938 PCT/1B2005/000190

10

15

20

22. An apparatus comprising:

one or more processors to receive a game context for a network-based,
multiplayer game over a network from a server, to enable a user of the apparatus to
join a network-based, multiplayer game, and when the user is not an in-turn player
during a single-user action stage of the game, to send a watch request to the server;
and

a display mechanism to display the game context.

23. The apparatus of claim 22, wherein the apparatus includes a device selected
from a group of devices that includes a personal data assistant, a two-way pager, a
cellular telephone, a television set and set-top box, and an interactive television

System.
24. The apparatus of claim 22, wherein the apparatus includes a computer.

25. A computer readable medium having program instructions stored thereon,

which when executed within a server, perform the method of claim 1.

26. A computer readable medium having program instructions stored thereon to,

which when executed within a client device, perform the method of claim 11.

27. A server comprising:

means for enabling one or more users to join a network-based, multiplayer
game from one or more client devices;

means for receiving one or more requests from the one or more client
devices;

means for holding the one or more requests in a virtual waiting area; and

means for releasing the one or more requests upon an occurrence of a release

condition.

37

WO 2005/079938 PCT/1B2005/000190

1/10
102
SERVER
110
CLIENT CLIENT CLIENT

104 \\\106 108

FIG. 1

WO 2005/079938 PCT/1B2005/000190

2/10
220
200
202 204 206 l
PAGE DATABASE
SERVER API SERVER SERVER
DATA
STORAGE
210

FIG. 2

WO 2005/079938 PCT/1B2005/000190

3/10

304

CURRENT BALANCE
$14,703.50
332 /

334
s
318
e

5
® | L |a
(©) T
@ mBE

2 @

00:07
336 \

320

340

LOUNGE
RULES
QUIT SEAT

FIG. 3

WO 2005/079938 PCT/1B2005/000190

4/10

CURRENT BALANCE
$14,703.50

418

mu

O
(©) "L |5
(@
© :
(© 5] | =

Z I
S g

LOUNGE
RULES
QUIT SEAT

FIG. 4

WO 2005/079938

PCT/1B2005/000190

5/10

BEGIN

RECEIVE AND DISPLAY GAME CONTEXT

Y

504 ~
ENABLE USER TO JOIN GAME

l<

506 ~.] RECEIVE USER INPUTS AND GENERATE
AND SEND ACTION REQUEST TO SERVER

508 +

RECEIVE RESPONSE AND UPDATE GAME

516

AM | THE
IN-TURN
PLAYER?

514

UPDATE
MESSAGE

RECEIVED?

518\

USER Y
ACTION(S)
DICATED? SEND
512 | WATCH
REQUEST
v ' TO SERVER
\
SEND
ACTION
REQUEST
TO SERVER 520
UPDATE

MESSAGE
RECEIVED?

o

UPDATE GAME

FIG. 5

WO 2005/079938 PCT/1B2005/000190

6/10

600
.

602~| GAME STATE
INFORMATION

USER OBJECTS
STORAGE

VIRTUAL
WAITING AREA

FIG. 6

WO 2005/079938

702
N

PCT/1B2005/000190

7110

BEGIN

CONFIGURE AND INITIATE GAME

v

703 ~

ENABLE ONE OR MORE USERS TO
JOIN GAME

»L

CONFIGURE WAITING AREA FOR
MULTIPLE-USER ACTION STAGE

Y

706 ~ PERFORM MULTIPLE-USER ACTION STAGE

(E.G., RECEIVE BETS)

'l"

708 ~

CONFIGURE WAITING AREA FOR
SINGLE-USER ACTION STAGE

Y

PERFORM SINGLE-USER ACTION STAGE

(E.G., RECEIVE HIT OR STAND
INSTRUCTIONS)

712
ANOTHER

TURN IN THIS
ROUND?

N
4

714
™

NOTIFY PLAYERS OF RESULTS
AND UPDATE GAME

ANOTHER

FIG. 7

ITERATION?

END

WO 2005/079938 PCT/1B2005/000190

8/10

BEGIN

802
N INITIATE TIMER

A:
804
N
806
ACTION
Y REQUEST N-»

RECEIVED?
808

ALL
ACTION
REQUESTS
RECEIVED?

N— ¢

810 ~ HOLD RECEIVED
ACTION REQUEST IN
Y WAITING AREA

D‘

RELEASE HELD ACTION

812
™ REQUESTS AND UPDATE
GAME STATE

Y

814 ~_| GENERATE AND SEND
CURRENT GAME UPDATE
MESSAGE TO ALL PLAYERS

v

816 ~. STORE CURRENT GAME
UPDATE MESSAGE

v

818
™| UPDATE USER OBJECTS

v

820
N CLEAR THE WAITING AREA

END

FIG. 8

WO 2005/079938

9/10

(BEGIN)

INITIATE TIMER

PCT/1B2005/000190

WATCH
REQUEST
RECEIVED?

—N

Y 908

HOLD RECEIVED
WATCH REQUEST

910

ACTION

REQUEST
RECEIVED?2

SERVICE ACTION REQUEST, UPDATE
GAME STATE, AND CREATE/STORE
CURRENT GAME UPDATE MESSAGE

914 /

SEND PREVIOUS GAME UPDATE
MESSAGE(S) TO THOSE CLIENT(S), IF
ANY, WHO WERE NOT SENT THE
PREVIOUS GAME UPDATE MESSAGES

FIG. 9

i 216

SEND CURRENT GAME UPDATE
MESSAGE TO ALL PLAYERS

I ot

UPDATE USER OBJECTS

l 920

CLEAR THE WAITING AREA

END

WO 2005/079938 PCT/IB2005/000190
10/10
1000 \
1002 1008 1010
e /
=
PROCESSOR
et P
VIDEO DISPLAY
INSTRUCTIONS |
N 1024
1004 1012 \
MAIN MEMORY
<t > &> ;| PHANUMERIC
INSTRUCTIONS | DEVICE
"\ 1024
. 1006 1014
//
STATIC MEMORY
i > |[¢——» CURSOR CONTROL
INSTRUCTIONS DEVICE
I 1024
. 1020 1016
. "
DRIVE UNIT
NETWORK < >l »
INTERFACE (020 PRI
DEVICE N READABLE
MEDIUM
| INSTRUCTIONS
1024 |

. 1026

FIG. 10

1018
AN

SIGNAL
GENERATION
DEVICE

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

