WO 01/33441 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

0 00

(10) International Publication Number

10 May 2001 (10.05.2001) PCT WO 01/33441 A2
(51) International Patent Classification’: GO6F 17/50 Naresh; 3240 Cabrillo Avenue, Santa Clara, CA 95051
(US). GUPTA, Rajesh; 53 Harvey Court, Irvine, CA
(21) International Application Number: PCT/US00/30546 92612 (US).

(22) International Filing Date:
3 November 2000 (03.11.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/435,112 5 November 1999 (05.11.1999) US

(71) Applicant: INTEL CORPORATION [US/US]; 2625
Walsh Avenue, Santa Clara, CA 95052 (US).

(72) Inventors: KALE, Sudhaker; 385 Daisy Drive, San Jose,
CA 95123 (US). CHOWDHARY, Amit; 1202 Muscat Ct.,
Sunnyvale, CA 94087 (US). SARIPELLA, Phani; 2066
Kimberlin Place, Santa Clara, CA 95051 (US). SEHGAL,

74

@1

(o)

Agent: VIKSNINS, Ann; Schwegman, Lundberg, Woess-
ner and Kluth, P.O. Box 2938, Minneapolis, MN 55402
(US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU,ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ,L.C,LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL,PT,RO,RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: STRUCTURAL REGULARITY EXTRACTION AND FLOORPLANNING IN DATAPATH CIRCUITS USING VEC-

TORS

FUNCTIONAL
REGULARITY
EXTRACTION
COMPONENT

T
SET OF
TEMPLATES

pd

STRUCTURAL
REGULARITY
EXTRACTION
COMPONENT

SET OF
VECTORS

8

~

FLOORPLANNING
COMPONENT

(57) Abstract: In some embodiments, a computer-aided design system comprises
a functional regularity extraction component, a structural regularity extraction com-
ponent and a floorplanning component. The functional regularity extraction compo-
nent provides a method to extract regularity for circuits (and in particular datapath
circuits) based on the functional characteristics of a logic design. Some embodi-
ments of the functional regularity extraction component automatically generate a
set of templates to cover a circuit. A template is a representation of a subcircuit
with at least two instances in the circuit. The templates generated by the functional
regularity extraction component are used by a structural regularity extraction com-
ponent. The structural regularity extraction component provides a method to extract
regularity for circuits (and in particular datapath circuits) based on the structural
characteristics of a logic design. Some embodiments of the structural regularity ex-
traction component automatically generate a set of vectors for the logic design. A
vector is a group of template instances that are identical in function and in structure.
The vectors generated by the structural regularity extraction component are used
by a floorplanning component. The floorplanning component provides a method
of generating a circuit layout from the set of vectors. In some embodiments, each
vectors corresponds to a row in the circuit layout.

wO 01/33441 A2 UGN A0 O OE0 0A

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, For two-letter codes and other abbreviations, refer to the "Guid-
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.
Published:
— Without international search report and to be republished
upon receipt of that report.

WO 01/33441 PCT/US00/30546

10

15

20

25

30

STRUCTURAL REGULARITY EXTRACTION AND
FLOORPLANNING IN DATAPATH CIRCUITS USING VECTORS

This application is a Continuation-In-Part of U.S. Application No.
09/187,543 filed November 6, 1998.
Background of the Invention

Technical Field of the Invention: The present invention relates to

computer-aided design (CAD) and, more particularly, to regularity extraction in

the design of integrated circuits.

Background Art: In high-performance custom integrated circuit designs,
designers take advantage of the high degree of regularity often present in circuits
to generate efficient layouts in terms of area and performance as well as to
reduce the design effort. Datapath circuits perform various arithmetic and
multiplexing operations on wide buses. Such circuits have a very high degree of
regularity. The design effort can be reduced by identifying or extracting
regularity in circuits, thus improving the productivity of designers. Currently,
however, datapath circuits in general-purpose microprocessors are designed
almost entirely by hand. Existing CAD tools can not extract and utilize
regularity to the extent necessary for competitive designs.

Various techniques for extraction of functional regularity have been
proposed 1n the literature. For example, D.S. Rao et al., “On clustering for
maximal regularity extraction,” IEEE Trans. on CAD of Integrated Circuits and
Systems, Vol. 12, No. 8 (Aug. 1993), pp. 1198-1208, describes a string matching
algorithm to find all instances of user-specified templates in the circuit, and then
heuristically choose a subset of the set of templates to cover the circuit. The
final cover is sensitive to the templates provided by the designer. M. R. Corazao

et al., “Performance optimization using template mapping for datapath-intensive

WO 01/33441 C PCT/US00/30546

10

15

20

25

30

high-level synthesis,” IEEE Trans. on CAD of Integrated Circuits and Systems,
Vol. 15, No. 8 (Aug. 1996), pp. 877-887, also assumes that a template library is
provided, but claims to generate all complete as well as partial instances of a
given template in the circuit. Another approach described in R.X.T. Nijssen et.
al., “Regular layout generation of logically optimized datapaths,” Proc. Int’]
Symp. on Physical Design, (1997), pp. 42-47, involves choosing small logic
components, such as latches, as templates, and then growing them to obtain
bigger templates. This approach is highly dependent on the initial choice of
templates.

Various techniques for extraction of structural regularity have also been
proposed in the literature. For example, G. Odawara et al., “Partitioning and
Placement Technique for CMOS Gate Arrays,” IEEE Trans. on CAD, Vol. 6,
No. 3 (May 1987), pp. 355-363, presents a methodology to identify structural
regularity in highly-regular datapaths. Odawara’s method chooses latches driven
by the same control signals as initial templates, and uses them to grow larger
templates. Odawara’s approach identifies one-dimensional regularity in terms of
bit-slices of the datapath. Other approaches by R.X.T. Nijssen et al, “Regular
Layout Generation of Logically Optimized Datapaths,” Proc. Int’s Symp. on
Physical Design, (1997) pp. 42-47, and S. R. Arikati et al., “A Signature Based
Approach to Regularity Extraction,” Proc. Int’l Conf. on CAD, (Nov. 1997), pp.
542-545, extend Odawara’s methodology to identify bit slices as well as stages
of datapath circuits. However, these structural methods are not sufficient for
circuits with a mix of datapath and control logic.

In the approaches in the above-listed articles opportunities for regularity
extraction are missed. Furthermore, there is a need for a regularity extraction
approach which would speed up technology mapping and layout generation of
datapath circuits without comprising the final design quality.

Accordingly, there is a need for techniques for systematic regularity

extraction.

WO 01/33441 S PCT/US00/30546

10

15

20

25

30

Summary

In some embodiments, the invention includes a computerized method for
identifying structural regularity in a logic design. The method includes receiving
a plurality of templates covering the logic design, receiving one or more control
signals for the logic design, and receiving one or more databus identifiers for the
logic design. The method generates a first vector for the logic design through
computer automated operations to combine at least one instance of one of the
plurality of templates based on the control signals, the databus identifiers and
connectivity of the logic design.

Brief Description of the Drawings

The mvention will be understood more fully from the detailed description
given below and from the accompanying drawings of embodiments of the
invention which, however, should not be taken to limit the invention to the
specific embodiments described, but are for explanation and understanding only.

FIG. 1 is a block diagram of a computer-aided design system according
to one embodiment of the present invention.

FIG. 2 1s a schematic representation of a circuit and three templates that
cover different portions of the circuit.

FIG. 3 is a schematic and graphical representation of a 2-to-1
multiplexer.

FIG. 4 is a schematic and graphical representation of an AND-OR gate.

FIG. 5A is a graph G'.

FIG. 5B illustrates two templates obtained by permuting the incoming
edges of the nodes of FIG. 5A.

FIG. 5C illustrates a graph G with the number of templates given by
o2Y).

FIG. 6 illustrates representations for an HDL assignment.

FIG. 7 illustrates tree templates for the graph of FIG. 5A.

FIG. 8 is a schematic representation of a multiplier circuit which is
covered by different instances of two templates.

3

WO 01/33441 = PCT/US00/30546

10

15

20

25

30

FIG. 9 illustrates a graph corresponding to the multiplier of FIG. 8.

FIG. 10A illustrates two functionally-equivalent subgraphs of the graph
of FIG. 9.

FIG. 10B illustrates two templates with overlapping nodes.

FIG. 10C illustrates a template formed from merging the two templates
of FIG. 10B.

FIG. 11A illustrates a datapath circuit and a cover of two single-PO
templates.

FIG. 11B illustrates a datapath circuit with a dummy node and a cover of
a single template using a single dummy output bus.

FIG. 12 illustrates a template hierarchy of the circuit of FIG. 2.

FIG. 13 is a block diagram of an example embodiment of the structural
regularity extraction component shown in FIG. 1.

FIG. 14 is a high-level flow chart of a method of identifying vectors for a
logic design according to one embodiment of the invention.

FIGS. 15A, 15B, 15C, 15D, 15E, 15F, 15G, 15H, 151 and 157 are
schematic diagrams of a logic design used to illustrate a method of identifying
vectors according to the embodiment shown in FIG. 14.

FIG. 16 1s a block diagram of one embodiment of the floorplanning
component shown in FIG. 1.

FIG. 17 1s a high-level flow chart of a method of generating a floorplan
using vectors according to one embodiment of the invention.

FIG. 18 is a high-level flow chart of a method of generating a floorplan
using vectors according to an alternate embodiment of the invention.

FIG. 19 1s a floorplan for the vectors of the logic design shown in FIG.
15J according to one embodiment of the invention.

FIG. 20 is an alternate floorplan for the vectors of the logic design shown
in FIG. 15]J.

FIG. 21 illustrates a computer system that can be used in regularity

extraction.

WO 01/33441 PCT/US00/30546

10

15

20

25

30

Detailed Description

In the following detailed description of the preferred embodiments,
reference 1s made to the accompanying drawings which form a part hereof, and
in which is shown by way of illustration specific embodiments in which the
invention may be practiced. It is to be understood that other embodiments may
be utilized and structural changes may be made without departing from the scope
of the present invention.

The phrase "some embodiments" refers to at least some embodiments of
the invention. The various appearances of “some embodiments™ are not
necessarily referring to the same embodiments. If the specification states a
component, feature, structure, or characteristic “may”, “might”, or “could” be
included, that particular component, feature, structure, or characteristic is not
required to be included. Reference in the specification to “an embodiment” or
"one embodiment" means that a particular feature, structure, or characteristic

described in connection with the embodiment is included in at least some

embodiments, but not necessarily all embodiments, of the invention.

A. System Level Overview

A system level overview of the operation of an example embodiment of
the invention is described by reference to FIG. 1. The computer-aided design
system 2, as shown in FIG. 1, comprises a functional regularity extraction
component 4, a structural regularity extraction component 6 and a floorplanning
component §.

The functional regularity extraction component 4 provides a method to
extract regularity for circuits (and in particular datapath circuits) based on the
functional characteristics (i.e. logic functions) of a logic design. Some
embodiments of the functional regularity extraction component 4 automatically
generate a set of templates to cover a circuit. A template is a representation of a
subcircuit with at least two instances in the circuit. The functional regularity

extraction component 4 is described in detail in section B of the detailed

5

WO 01/33441 » : PCT/US00/30546

description. The templates generated by the functional regularity extraction
component 4 are used by the structural regularity extraction component 6.
The structural regularity extraction component 6 provides a method to
extract regularity for circuits (and in particular datapath circuits) based on the
5 structural characteristics of a logic design. Some embodiments of the structural
regularity extraction component 6 automatically generate a set of vectors for the
logic design. A vector is a group of template instances that are identical in
function and in structure. The structural regularity extraction component 4 is
described in detail in section C of the detailed description. The vectors
10 generated by the structural regularity extraction component 6 are used by the
floorplanning component §.
The floorplanning component 8 provides a method of generating a
floorplan for the logic design using the vectors. The floorplanning component 8
generates a one-dimensional circuit layout using the vectors generated by the
15 structural regularity extraction component 6. Each vector forms a row in the

circuit layout for the logic design.

B. Functional Regularity Extraction
Bl. Overview

20 The invention includes a general approach to extract functional regularity
for circuits (and in particular datapath circuits) from high level behavioral or
structural descriptions, such as hardware descriptor language (HDL)
descriptions. Verilog or VHDL are well know examples of HDL. Embodiments
of the invention involve automatically generating a set of templates, where a

25 template is a representation of a subcircuit with at least two instances in the
circuit. In that a circuit may be represented as a graph, a subcircuit may be
called a subgraph. A subgraph may be an instance of a template. In some
embodiments, the set of templates is the complete set of all possible templates
under some simplifying assumptions. The set of templates may include more

30 than one class of templates. For example, in some embodiments, one class of

6

WO 01/33441 : ' PCT/US00/30546

10

15

20

25

30

template is a tree template and another class is a special class of multi-output
templates, called single-principal output (single-PO) templates, where all outputs
of the template are in the transitive fanin of a particular output of the template.

A tree could be viewed as a special case of a single-PO template, having only
one output. Nevertheless, a tree template is considered to be a different class
than a single-PO template. In some embodiments, different algorithms are used
to generate tree and single-PO templates.

As 1s described below, a subset of this set of templates is chosen to cover
the circuit. Unlike prior art techniques, a user does not have to specify the
templates to be used. In some embodiments, however, a user may designate
some templates.

The components of a circuit in the high level descriptions may be logic
gates (such as AND, OR and multiplexers) or arithmetic operators (such as
adders and shifters). The task of regularity extraction is to identify a set of
templates, and cover the circuit by a subset of these templates, where the
objective may be to use large templates with many instances. However, the
regularity extraction often involves a tradeoff, since a large template usually has
a fewer instances, while a small template may have many instances.
Formulation of a good set of templates may allow tradeoffs among multiple
criteria, such as area, timing and power, and allow a user to build multi-
technology designs, such as using a combination of static and dynamic logic.
Prior art techniques will miss many of these tradeoffs and produce suboptimal
covers. There may be different templates with the same functional description
where the high level language specifies a difference (e.g., the loading on a
component in the templates).

The following is an example of an HDL description.

Inputs a[3:0], b[3:0], ¢[3:0], sO;
Clock clk;
Outputs x[1:0], y[3:0];

begin main

WO 01/33441 PCT/US00/30546

10

15

20

25

30

fori=0to3 do

{d[i] =a[i] AND y[i];

e[i] := d[i] on rising clk;

yli] :=if sO then e[i]

else b[i]}
fori=0to 1do

{f[1] = c[i] OR y[i];

x[i] = f[i] on falling clk;}
end main,;

FIG. 2 illustrates a circuit 10 that could be created from the above HDL
description. Circuit 10 include four bit slices (0 - 3). The HDL description
includes two do-loops. A first template S1 includes the elements of the first do-
loop. (The "S" in S1 represents "sub".) Because in the first do-loop, 1 goes from
0 to 3, S1 is included in each of the four bit slices (0 - 3). A second template S2
includes the elements in the second do-loop. Because in the second do-loop, i
goes from O to 1, S2 is included in only bit slices 0 and 1. A third template S3
includes S1 and S3 in bit slices 0 and 1. The invention can be used to extract
regularity from the HDL description by systematically generating templates S1,
S2, and S3 and then covering circuit 10 with a subset of the templates. One
cover includes the four instances of S1 and the two instances of S2. Another
cover includes the two instances of S3 and the two instances of S1 not included
in S3. In some embodiments, as part of the cover process, S2 and the two
instances of S1 included in S3 would be removed from the list of possible
templates in the cover. Templates S1 and S2 are examples of a tree template and
template S3 is an example of a single-PO template. From a broader perspective,
templates S1 and S2 are also single-PO templates.

A maximal template is the maximum size it could be and still be a
template. A submaximal template is a template within another template. For
example, there are four instances of an AND gate template, which is a

submaximal template because it is inside template S1. In some embodiments,

8

WO 01/33441 PCT/US00/30546

10

15

20

25

30

such submaximal templates are not generated. In other embodiments, they are
generated, but are eliminated from consideration as part of the covering process.
A template may be a maximal template for purposes of tree templates, but a
submaximal template when considered for single-PO templates. For example,
for purposes of tree templates, S2 is a maximal template. For purposes of single-
PO templates, S2 is a submaximal template because it is within template S3.

Regularity in a given circuit can be either functional, structural or
topological. Given a high-level (behavioral or structural) description, a
functionally-regular circuit uses a set of functionally-equivalent operations or
subcircuits (templates). Functional regularity can be used to restructure the HDL
code, for instance to improve the quality of high-level synthesis results by
identifying opportunities for resource sharing. Structure in an HDL description
typically refers to declaratively specified blocks including a netlist which can be
described schematically by assigning a horizontal or vertical direction to the
nets. Finally, a topologically regular design having an ordered set of blocks
which gives a good initial placement for the circuit.

B2. Problem formulation

The following provides details used in connection with some
embodiments. However, the invention is not limited to the particular details.
The 1nput to regularity extraction is a circuit C composed of components that can
be logic gates or arithmetic operators. C is usually described using an HDL. We
may represent C by a directed graph G(V,E), where the nodes in V correspond to
the logic components or the primary inputs of C, and the edges in E correspond
to the interconnection among the components and primary inputs of C. The set
V can be partitioned into two subsets I and L, which correspond to the sets of
primary inputs and logic components, respectively. The set O of primary outputs
1s a subset of L. We represent the logic functions of components of C in G by a
pair of functions. We first define a logic function l.L — {1,..,l0}, where 10 is the
total number of distinct types of logic functions. If1[u] =I[v], then u and v

correspond to the same logic function, e.g. a 2-to-1 multiplexer. Similarly, we

9

WO 01/33441 PCT/US00/30546

10

15

20

25

associate an index k : E — {1,..,ko} with every edge in e, where k(u1,v)=k(u2,v)
implies that the two incoming edges of v are equivalent. For example, FIG. 3
shows a multiplexer whose input edges have all distinct indices, while the AND-
OR gate of FIG. 4 has four edges assigned to only two indices.

A subgraph of G is a graph Gi(Vi,Ei) such that Vic Vand Eic E. Viis
partitioned into Ii and Li. The set Oi of primary outputs is again a subset of Li.
A subgraph of G corresponds to a subcircuit of C. We consider only those
subgraphs which satisfy the condition that if v € Li, then u € Ii U Li for every
node u connected to v by an edge (u, v) in G. We call the subgraphs which
satisfy the condition feasible subgraphs of G, since they correspond to
meaningful subcircuits of C. From here on, a subgraph will imply a feasible
subgraph.

We consider two subgraphs Gi and Gj functionally equivalent, if and only
if (a) they are isomorphic, i.e. there exists a one-to-one mapping ¢ between Vi
and Vj, (b) the logic functions of corresponding nodes are same, i.e. I[v] =
1[¢[v]], and (c) the indices of corresponding edges are also the same, i.e. k[u,v] =
k{o[u], 6[v]]. We call the equivalence class of this relation a template. Any set
S of subgraphs of G can be partitioned into m templates, S1,...,Sm, where a
template Si contains |Si| subgraphs. We estimate the area of a subcircuit that
corresponds to the template Si by area[Si] = 2 veLi a[l[v]], where a[j] is the area
estimate of a node of logic function j.

A cover of G is a set C(G) = {G1,...,Gn} of feasible subgraphs of G that
satisfies the following conditions:

1. Every node of G belongs to at least one subgraph in C(G), 1.e.
VcViu...uVn.

2. If a node v is a primary input of a subgraph, then it is either a
primary input of G or an output of another subgraph, i.e. for all veli,

veluO1u...uOn.

10

WO 01/33441 PCT/US00/30546

10

15

20

In some embodiments, a problem of regularity extraction is stated as
follows. Given a circuit represented by a graph G, find a cover C(G) =
{G1,...,Gn}, which is partitioned into m templates S1,...,Sm, such that the

number of n of subgraphs and the overall area ¥, ared[Si] of the templates are

maximized. Maximizing the number of subgraphs will reduce the effort needed
to design the circuit, while maximizing the area of templates will reduce the
overall area and delay by facilitating better optimization during technology
mapping and layout. The above two objectives are conflicting, since a large
template usually has only a few subgraphs.

In general, finding an optimal cover is NP-complete (not polynomial time
solvable), even when the subgraphs are selected from a given set. Here, the
problem is even more complex, since there is no such set of subgraphs for
selecting the cover. In some embodiments, the problem complexity is reduced
by decomposing it into two parts, where a set of templates is first generated,
followed by selecting a subset of the template set to cover G. Two sub-problems
are stated below.

In some embodiments, with respect to graph covering, given a circuit
represented by a graph G, the complete set of tree and/or single-PO templates 1s
generated given certain assumptions.

T ared|Si)

In some embodiments, with respect to graph covering, given a circuit
represented by a graph G and its set ST (G) = {S1,...,Sp} of templates, find a
cover C(G, St) = {G1,...,Gn} of G, which is partitioned into m(< p) templates,

such that the number n of subgraphs and the overall area ¥ ared|Si] of the

templates are maximized.

B3. Complexity of template generation

The following are some practical assumptions used in some

embodiments, which will reduce the number of templates addressed to within V>

11

WO 01/33441 : PCT/US00/30546

10

15

20

25

30

(i.e., V * V). These assumptions will be justified in the context of regularity
extraction.

Assumption 1. The set of templates includes all maximal templates of a
given class. (The definition of templates assumes there must be at least two
instances.) In some embodiments, the set may also include submaximal
templates, which may be removed in the covering process.

The number of templates can be O(2") (i.e., on the order of 2¥) even after
considering Assumption 1. Consider the graph G’ of FIG. 5A composed of two
unconnected trees, where the incoming edges of every node have the same index.
It has two templates shown in FIG. 5B. The graph G of FIG. 5C is composed of
two unconnected binary trees such that all the internal nodes have the same
function 1[v] = 1, while the leaf level is composed of one of the two subgraphs,
G1 or G2. The number of templates of G is O(2"), since every pair of subgraphs
G1 and G2 can be matched using either of the templates of FIG. 5B.

In some embodiments, we make the following assumption that does not
allow permuting the incoming edges of a node even though the two edges (u1,v)
and (u2,v) have the same index k[ul,v]=k[u2,v]. For example, the two input
edges of a node corresponding to an OR gate would be assigned different
indices, even though they are equivalent.

Assumption 2. A template is not generated through permuting gate
inputs. From another perspective, for every node v of G with incoming edges
from nodes ut,...,uf, every edge is assigned a unique index of k[ui,v]=i, for all
1<i<f. In some embodiments, templates are not generated from permuted inputs.
In other embodiments, the templates are generated from permuted inputs, but are
eliminated in the covering process.

Assumption 2 disallows S2 (shown in FIG. 5B) as a template for the
graph of FIG. 5A because S2 would be created by permuting nodes f and g and
nodes j and k. As a result, the graph G’ of Fig. 5C also has a single template.
The justification for the above assumption is that G is constructed from an HDL

description of C, which ensures that nodes with the same function are defined

12

WO 01/33441 PCT/US00/30546

10

15

20

25

30

identically. For example, as illustrated in FIG. 6, the HDL assignment statement
“fori1=4to 6 {x[1] = a[i] b[i] + c[1] d[i]}” will correspond to three nodes which
are transformed identically in building G. The above assumption does not rule
out the regularity inherent in the HDL description. The edge indices are
different from those in FIG. 4 as a result of Assumption 2. Different
embodiments of the invention may follow Assumption 1 and/or Assumption 2
and/or other assumptions.

Details regarding generation of tree templates and single-PO templates in
some embodiments are now considered.

B4. Generation of tree templates

A tree template is a template having a single output and no internal
reconvergence. An example of internal reconvergence 1s a path that separates to
parallel paths (where one or both of the parallel paths may have an intermediate
node) and reconverges to a node. We present an algorithm (e.g., Pseudocode
Sample 1) for generating all tree templates of a given graph G. Pseudocode
Sample 1 assures Assumption 2 but may generate sub-maximal templates in
violation of Assumption 1. However, the sub-maximal templates can be
removed prior to completion of covering. It can be shown that the number of
tree templates is reduced to within V* under assumptions 1 and 2, which makes
the enumeration of such templates practical. We will analyze the complexity for
the case where the fanin of the nodes in G is bounded. The templates are stored
in a set ST = {S1,...,Sm} where every template Si is a class of functionally-
equivalent subgraphs. In some embodiments, instead of storing each template
completely, we store a template as a set of hierarchically organized templates. A
template Si can be completely defined by the logic function of its root node,
denoted by root_fn[i], and the list of templates children_templates[i] =
{S1,...,Sf} to which the subgraphs rooted at the f fanin nodes of the root node
belong.

For example, FIG. 7 illustrates templates S1, ..., S8 of the graph G’ (in
Fig. 5A). The template S8 can be precisely defined by root fn[8] =1 and

13

WO 01/33441 7 PCT/US00/30546

10

15

20

25

30

35

children_templates[8] = {S6, S7}. We also reduce the space required for storing
the subgraphs of each template by simply storing the root node of the subgraphs
in the list root_nodes[i]. In case of the template S8 in FIG. 7, root_nodes[8] =
{o,p}. It can be shown that the subgraphs of a template Si can be precisely
reconstructed using root_fn[i], and the lists children_templates[i] and
root_nodes[i].

For efficiency reasons, the template list ST may be sorted by a composite
key of size f + 1, defined as key = {root_fn, children templates}, where f'is the
number of fan-in nodes. A tree template generation algorithm as used in some
embodiments of the invention is presented in Pseudocode Sample 1, below:

/* A tree template Si is completely defined by (i) root fn[i] (logic function of the
root node); (i1) children_templates[i] (a list of children templates that form Si);
(1i1) root_nodes[n] (a list of the root nodes of subgraphs of Si (all the subgraphs
of Si can be constructed form these three fields)) */

01 Generate_Templates(G(V,E))

02 begin

03 topologically sort the nodes of G as {v1, ..., VN};

04 ST := &; /* St stores the list of templates */

05 m := 0; /* m is number of templates generated so far */

06 templates [vl ... VN, vl ... VN] :=0;
/* template [vi, vj], if non-zero, gives the index of template to which
functionally-equivalent subgraphs rooted at nodes vi and vj belong */

07 fori=1toN

08 forj=1+1toN

09 m :=m + 1; /*new template to be stored in Sm */

10 Sm := Largest Template(vi, vj);
/* generates a template with two largest functionally-equivalent
subgraphs
Gi and Gj rooted at vi and vj, respectively */

11 if Sm=¢

12 k :=Find Equivalent Template(Sm, ST); /* find Sk in ST

equivalent to Sm */

13 template[vi, vj] :=Kk;

14 ifk=m /* Smis a new template */

15 ST :=ST1 U {Sm}; /* add Sm to ST, such that it remains

sorted */
16 else
17 root_nodes[k] :=root nodes[k] U {vi, vj};

14

WO 01/33441 PCT/US00/30546

18 m:=m-1;
19 return ST;
20 end
5 /* generates largest trees rooted at u and v that are functionally equivalent
*/
21 Largest Template (u, v)
22 if l[u] # 1[v] /* u and v have different logic functions */
23 return &;
10 24 else
25 root_fn[m] := 1[u]; /* setting fields of template Sm */
26 fori=1to fdo
/* both u and v each have f fanin nodes, {ul, ..., uf} and {vi, ...,
v} */
15 27 if ui and vi have a single fanout each
28 add template [ui, vi] to children_templates [m];
29 else add & to children templates[m];
30 root_nodes[m] := {u, v}; /* Sm has two subgraphs, Gu and Gv */
31 return Sm;

20
/* Stisalist {Si, ..., Sj} of templates sorted by key = (root_fn,
children_templates).
This function finds the template in ST, equivalent to Sm, by performing a
binary search on ST = {Si, ..., Sj} */

25 32 Find Equivalent Template (Sm, ST)

33 if St=92

34 return m

35 if key[m] <key [(i +j)/2] /* check first half of ST */

36 return Find_Equivalent Template (Sm, {Si, ..., S((i +j)2 + 1)});
30 37 else if key[m] > key [(i +j)/2] /* check second half of ST */

38 return Find_Equivalent_Template(Sm, {S((i+j)/2 + 1), ..., Sj});

39 return (i +J)/2; /* S(i +j)/2 and Sm are equivalent */

Pseudocode Sample 1

35 It should be emphasized the invention may be implemented with different
details than those recited in Pseudocode Sample 1. Pseudocode Sample 1
generates a complete set of tree templates meeting Assumption 2. Some
embodiments could use an algorithm that generates a smaller set of tree
templates than does Pseudocode Sample 1. Further, an algorithm could generate

40 acomplete or partial list of single output templates that may include

15

WO 01/33441 | PCT/US00/30546

10

15

20

25

30

reconvergence, although the complexity may be significantly greater than with
Pseudocode Sample 1.

An example of the operation of Pseudocode Sample 1 can be given with
reference to FIG. 7. First, the nodes of G are topologically sorted (line 03).
Topologically sorting means sorting from primary inputs to outputs (or left to
right). A number level is assigned to each node. For example, in FIG. 5A, a first
level includes nodes e, f, g, h, i, j, k, and 1; a second level include nodes a, b, c,
and d; and a third level includes nodes o and p. In line 06, the template has two
indices, where each index represents each node. The loops of lines 07 and 08,
cause each node pair to be considered. For every pair of nodes, the function
Largest_Template generates a template with two subgraphs, one rooted at each
node. Largest_Template compares the logic function of the two nodes, and then
constructs the list of children templates. The template Sm, thus generated, is
compared with previously-generated templates by a binary search on ST using
key. If Smis equivalent to an existing template Sk, then its subgraphs are added
to Sk; otherwise Sm is stored in ST as a new template. Referring to FIGS. SA
and 7, first the trivial templates S1,...,S4 are generated. Then, from the
remaining nodes {a, b, ¢, d, o, p}, S5 is generated by comparing a and b, and S6
1s generated by comparing a and c. The template obtained by comparing a and d
is found to be equivalent to S5, so d is stored in the root_nodes of S5. The
remaining two templates S7 and S8, are generated by comparing the node pairs,
(b,d) and (o,p), respectively. Largest Template returns a NULL template, in the
case of remaining node pairs. Note that every template has only two subgraphs,
except S5 with six subgraphs given by root nodes = {a,b,c,d,0,p}.

Largest_Template works recursively and starts from the leafs (inputs) and
works toward the rootnode (output) of the tree template, so that a larger template
1s constructed from smaller templates. Referring to FIGS. 5A and 7, the
rootnode of the template S8 is node o or p, which is the right most node of S8 in
FIG. 7. The rootnode of S6 is node a or c. The rootnode of S7 is node b or d.
Templates S6 and S7 are constructed before template S8. The rootnode of S6

16

WO 01/33441 PCT/US00/30546

10

15

20

25

and S7 are children with respect to S8. The intermediate rootnode of templates
S6 and S7 they are joined to node a or ¢ and node b or d (see FIGS 5A and 7) to
form template S8.

Lines 26-28 assure that Assumption 2 is met by disallowing input
permutations.

In some embodiments, Largest Template takes a constant time for
bounded-fanin graphs. Binary search on ST (lines 32-39) as well as insertion of
Sm in ST (line 15) take O(logV) time, both of which are called for every node-
pair. Thus, the overall time complexity is O(V? logV). We store root_fn and
children templates for every template, which requires a memory of O(V?). The
storage required for subgraphs is also O(V?), since a subgraph is stored just as its
root node. Thus, the overall storage complexity is O(V?).

The Find_Equivalent_Template function (lines 32-29) is used to find a
short hand way to identify a template. For example, if a template is created, it
may contain a fairly large amount of information to specify its nodes. Another
instance of the template can be expressed with much less information by merely
observing that it is the same as the first template.

BS5. Multi-output templates

The template generation algorithm Pseudocode Sample 1 gives excellent
covers for datapath circuits composed of sparsely interconnected subcircuits, but
it might not perform well for circuits with a high number of multiple-fanout
nodes. More specifically, in addition to generating tree templates, some
embodiments of the invention can generate a special class of multi-output
templates referred to herein as a single principal-output (PO) subgraph
(template). A single-PO subgraph is a multi-output subgraph, whose every
output lies in the transitive fanin of a particular output. For example, in FIG. 2,
template S3 is an example of a single-PO template because it is a multi-output
template (it has outputs x and y), but output y is in the transitive fanin of output

X.

17

WO 01/33441 | PCT/US00/30546

10

15

20

25

30

Single-PO graphs have several interesting properties. They can have
internal reconvergence as well as cycles, and can have any number of outputs, in
contrast to trees. A main advantage of using single-PO subgraphs is that despite
their complex structure, the number of such subgraphs of G under the
Assumptions 1 and 2 is also restricted to V?, provided the subgraphs satisfy the
convex property that if u, v € V (Gi), then every node w on a path fromuto v
also belongs to V(Gi).

As another example, FIG 8 illustrates a 4 x 4 multiplier 20, in which a
template S1 includes diagonal arrays and a templates S2 includes AND gates.
C/S represents the CARRY and SUM functions. Multiplier 20 is covered by 3
instances of template S1 and 4 instances of template S2. Template S1 is not a
tree template. Accordingly, if we apply the algorithm of Pseudocode Sample 1
to the multiplier of FIG. 8, then numerous instances of three trivial tree
templates: AND gate, CARRY and SUM functions, are obtained. Template S1
is also not a single-PO template. Nevertheless, as illustrated and described
below, the three diagonal arrays of FIG. 8 include single-PO templates. FIG. 9 is
a graph version of multiplier 20 of FIG. 8. The two subgraphs shown in FIG.
10A are two functionally-equivalent single-PO subgraphs GP5 and GP6, with P5
and P4 (see FIG. 9) as the respective principal outputs. A single-PO template
has instances of single-PO subgraphs.

As described above, a tree template may be represented by a list of
children templates which are non-overlapping. However, the children templates
can overlap in single-PO templates. FIG. 10B illustrates templates S1 and S2 of
the graph of FIG. 10A. FIG. 10C shows the template S3 with two subgraphs of
FIGS. 10A and 10B. S3 has two children templates, S1 and S2, which have
overlapping nodes, such as c1 of subgraph Gps and ¢2 of Gr4. Therefore, S3
cannot be completely specified just by the list of its children templates. Instead,
every template is specified individually. The nodes of a subgraph Gu can be
stored by a list nodelist using the depth-first search order. A depth-first order
may be unique for all isomorphic subgraphs. The subgréph of template S1

18

WO 01/33441 PCT/US00/30546

10

15

20

25

30

35

40

rooted at node al has nodelist = {al, bl, c1, d1, el, fl, gl}. With every node in
nodelist, we store its fanin and fanout links as well. Thus, in some
embodiments, memory required to store a subgraph is O(V) for bounded-fanin
graphs.

Pseudocode Sample 2, below, may be used to generate a complete set of
single-PO templates.
Repeat lines 01-20 of pseudocode Sample 1

/*generates the largest equivalent single-PO subgraphs (templates) rooted
atuand v */

01 Largest_Template(u, v)

02 if l[u] = 1[v]

03 return J;

04 else

05 nodelist[Gu] := {u}; /* root node is the first node in nodelist*/

06 nodelist[Gv] := {v};

07 fori=1tofdo /*uandv eachhave ffanin nodes {ul, ..., uf} and
({v1, ..., v} ¥/

08 add nodelist [Gui] at the end of nodelist [Gu];

09 add nodelist [Gvi] at the end of nodelist [Gv];

10 for wl € nodelist [Gui] and w2 e nodelist [Gvi];

/* there is a path from w1 (w2) to u (v) through the incoming edge of u
(v) with index 1 */

11 add 1 to path[w1, u];

12 add 1 to path[w2, v];

13 for wl e nodelist [Gu] and w2 € nodelist[Gv]

14 if path [w1, u] # path[w2, v]

15 delete all copies of w1 (w2) from nodelist [Gu] (nodelist [Gv]);

16 else if path {[w1, u] has more than one element /*here, path [w1, u] =
path[w2, v] */

17 delete remaining copies of wi(w2) from nodelist [Gu] (nodelist [Gv]);

18 Sm = {Gu, Gv};
19 return Sm;

/* St 1s a list of k templates S1, ..., Sk. This function finds the
template ST, equivalent to Sm, if any; otherwise returns m */
20 Find_Equivalent_ Template(Sm, ST)
21 fori=1tok
22 1f nodelist [Si] = nodelist [Sm]
23 return i;
24 return m;

19

WO 01/33441 PCT/US00/30546

10

15

20

25

30

Pseudocode Sample 2

It should be emphasized the invention may be implemented with different
details than those recited in pseudocode Sample 2. A complete set of single-PO
templates includes at least all those single-PO templates in the circuit that
meeting Assumptions 1 and 2, above. It may also include additional single-PO
templates, some or all of which may be removed from the list of templates later,
for example, as part of or prior to covering the circuit.

As can be observed, pseudocode Sample 2 is the same as Pseudocode
Sample 1 except that the function Largest Template (u, v) (called from line 10)
and the function Find_Equivalent Template (Sm, ST) (called from line 12) are
different. As described above, a reason for the difference is that with single-PO
templates, children templates can overlap (e.g., see FIG. 10C).

An example of the operation of Pseudocode Sample 2 is provided in
connection with FIGS. 10A, 10B, and 10C. Prior to the call Largest Template
(P5, P4), the template S1 is already generated with two subgraphs, Gal and Ga2.
Similarly, S2 is also generated with subgraphs Gh1 and Gh2. The nodelists of
Gal and Gh1 (Ga2 and Gh2) are combined to obtain the nodelist of Gps (Gpa4).
After lines 07-09, nodelist[Gps] = {P5, al, bl, cl, dl1, el, f1, g1, hl, i1, cl, dl,
el, f1} and nodelist[Gp4] = {P4, a2, b2, c2, d2, €2, {2, g2, h2, 12, c2, d2, €2, {2}.

There can be multiple paths from a node w to the root node v through
different incoming edges of v. As a result, w occurs multiple times in nodelist
[Gv]. For example, cl is connected to P5 through the edges (al, P5) and (h1, P5)
in FIG. 10A, and hence, it occurs twice in nodelist [GPs]. We define a list
path[w, v] (lines 10-12) which contains the indices of the incoming edges of v
through which w is connected to v, e.g. path[bl, P5] = {1}, while path[c1, P5] =
{1,2}. We then pairwise compare the nodes in nodelist of Gu and Gv (line 13).
If the path lists of the corresponding nodes are different, then these nodes have to
be removed from the respective subgraphs (lines 14-15). Otherwise, if the two

path lists are same, but have multiple indices, then the remaining copies of these

20

WO 01/33441 PCT/US00/30546

10

15

20

25

30

nodes have to be removed. For example, the second occurrence of the node cl
(c2) in GP5 (GP4) is deleted. Finally, after line 21, nodelist{GPs5] = {P5, al, b1,
cl,dl, el, g1, hl, i1} and nodelist [Gp4] = {P5, al, bl, cl, d1, el, g1, hl, i1}
and nodelist [GP4] = {P4, a2, b2, c2,d2, e2, g2, h2,i2}. The function
Find_Equivalent Template compares a template with every other template in the
set ST by matching corresponding nodes in the two nodelist’s, since the depth-
first order of the nodes of a graph is unique.

In some embodiments, Largest Template takes O(V) time, since it
constructs two nodelist’s and then traverses them twice.

Find Equivalent_Template takes O(V>) time, since it compares two nodelist’s at
most V*times. These two functions are called for every node-pair (line 07-08,
Pseudocode Sample 1), resulting in the time complexity of O(V?). The nodelist
of every subgraph requires a storage of O(V), resulting in a storage complexity
of O(V?). If the number of single-PO templates of G is bounded by S, then the
overall time and space complexity may be given by O(S* V) and O(S V),
respectively.

If designer provides a template GT, we can generate all its complete as
well as partial matches in the input graph G by calling the function
Largest_Template (line 10, Pseudocode Sample 1) for every node-pair (vi, vj)
where vi and vj belong to G and GT, respectively. This feature allows the
designer to control the extraction approach and improve the circuit cover as
desired.

B6. Covering of graph by templates

The above described algorithms generate a set of ST templates for G. St
can be either a set of all tree templates or a set of all single-PO templates of G
under the Assumptions 1 and 2. The set of all templates generated includes the
sum of the sets of templates of the different classes of templates (e.g, ST =
ST(TreeTemplates) + ST(Single-POTemplates).)

In many circuits, all components and associated paths of the circuit can

be included in at least one template. However, other circuits may include one or

21

WO 01/33441 PCT/US00/30546

10

15

20

25

30

more components that cannot be in a template because they appear only once.
Accordingly, the phrase "covering the circuit" means to cover those components
of the circuit that are included in an instance of a generated template. In some
embodiments, in some cases, a component may initially be part of an instance of
a template, but can be left out of a template during the covering process. In
many circuits, there will be many possible covers (combinations of instances of
templates that include the entire circuit). In that case, the "subset of the
templates" will be fewer than all generated templates. However, where the only
possible cover involves using instances of all generated templates, the phrase
"subset of the templates" includes all the generated templates.

If sub-maximal templates are generated, Assumption 1 (only maximal
templates) is met during the covering process.

Let S denote the set of all subgraphs in the templates stored in ST. Now,
we present a solution to the graph covering problem, where given G and ST, the
objective is to find a subset C(G, ST) of the set S of all subgraphs that forms a
cover of G.

In some embodiments, heuristics are used to select the cover. In some
embodiments, the following process is used. First, a template Si with a
maximum objective function out of all templates in St is selected. (A template
with the maximum objective function is the one that most meets the heuristic or
is the tie breaking template in the case of a tie.) Next, all nodes that belong to
the non-overlapping subgraphs of Si are deleted and other templates of ST are
removed from a list of templates. Then, a new set ST of templates for the
remaining graph (uncovered circuit) is generated, which regeneration may result
in different templates than existed before the templates of ST other than Si were
removed from the list. A new template Si with a maximum objection function is
selected. This process is repeated until either all nodes of G are covered, or ST is
found to be NULL. If some nodes are left uncovered and ST becomes NULL,
then the remaining nodes may be stored in a template with a single subgraph. (In

case of datapath circuits, this template correlates to its control logic.)

22

WO 01/33441 PCT/US00/30546

10

15

20

25

30

Note that in the process of regenerated templates ST for the remaining
graph, there may be nodes that are not contained in a template because there is
no repetition, although they were initially in an instance of a template. Non-
overlapping subgraphs of Si are ones in which there is not a node (component)
shared by the two. Overlapping subgraphs of Si are ones in which there is a
node (component) shared. For example, in FIG. 2, if the AND gate of S1 of bit
slice 1 were deleted, but the output of the AND gate of S1 of bit slice 0 were fed
into the input of the latch of S1 of bit slice 1, then, in some embodiments, they
would be overlapping subgraphs of S1. In the covering process, the latch and
MUX of bit slice 1 may not be included in a template after regeneration of
templates.

In other embodiments, first, template Si is selected. Next, all nodes
inside template Si are deleted, but other templates in ST are retained as is. Then,
another template Si is selected from the remaining templates in ST, rather than
regenerating a new set of ST for the uncovered portion of the circuit. It is
possible that a better cover will be obtained by regenerating the set of templates,
but it also takes more time.

The following are two covering heuristics based on an objective function
that may be used for selecting templates.

1. Largest-Fit-First (LFF) heuristic: Select the template Si with the
maximum area area[Si].

2. Most-frequent-Fit-First (MFF) heuristic: Select Si with the
maximum number |Si| of subgraphs (instances). In some embodiments, heuristic
2 is further modified as follows. Where two templates have an equal number of
instances, and one template is larger than another, the larger template is selected
as Si. Heuristic 2 might also be modified such that a submaximal template must
have at least two nodes to be selected where an instance of the submaximal
template is included in a template with more than one node.

Usually, the MFF and LFF heuristics give different covers, since a

template with a large area has few subgraphs, and vice-versa. Heuristics other

23

WO 01/33441 PCT/US00/30546

10

15

20

25

30

than LFF and MFF (e.g., combination of the LFF and MFF) could be used, and
there may be additional modifications (e.g., as mentioned with respect to the
MFF).

Consider examples with respect to FIG. 2. If the LFF heuristic is chosen,
template S3 is selected as Si. Templates S2 and the two instances of templates
S1 in the instances of template S3 are removed from consideration. In some
embodiments, the other two instances of template S1 (bits slices 2 and 3) would
be deleted, but templates for the remaining portion of the circuit (i.e., bit slices 2
and 3) would be regenerated. In other embodiments, templates in the remaining
portion of the circuit (i.e., the circuit other than in instances of S3) are not
deleted and not regenerated. Whether retained or regenerated, the two instances
of S1 would then be selected to cover the remaining portion of the circuit. The
result would be the circuit is covered by instances of S3 for bit slices 0 and 1 and
instances of S1 for bits slices 2 and 3.

If the MFF heuristic is chosen, template S1 would be selected as Si.
There are also four instances of AND, latch, and MUX components but (1) S1 is
larger and (2) the AND, latch, and MUX templates have only one node
(component) each. If the two latches in S2 were the same as the latch in S1,
there would be six instances of the latch. However, in some embodiments, that
latch would not be selected, because such a template would have only one node
and S1 would have more than one node (note modification to Assumption 1).
(One disadvantage of allowing single node templates is it could break up other
larger templates that would be more useful.) Once template S1 are selected, all
sub-maximal templates in S1 are removed from consideration. Then, depending
on the embodiment, template S2 is either removed and regenerated, or simply
retained. The final cover would be four instances of template S1 and two of
template S2.

The cover of the 4 x 4 multiplier of FIG. 9 obtained using the LFF
heuristic contains six templates, where the largest template shown in FIGS. 10A

and 10B covers more than half of the circuit. (The cover of two templates shown

24

WO 01/33441 PCT/US00/30546

10

15

20

25

30

in FIG. 8 cannot be obtained, since our algorithm is restricted to tree and single-
PO templates.) If the MFF heuristic is used, then the cover of three small
templates-AND gate, CARRY and SUM functions, is obtained.

B7. Applications of template generation

The following are some useful extensions of the above-described
template generation algorithms.

Hierarchical representation of regularity: Consider the two covers for the

circuit graph of FIG. 2 generated by the extraction approach described above:
one with two subgraphs of S3 and S1each, and another one with two subgraphs
of S2 and four of S1. The fact that S3 is composed of S1 and S2 is not captured
by these two covers. We can compactly represent these two covers by
identifying the hierarchy of templates. As describe above, in the case of tree
templates, a template is stored hierarchically as a set of children templates. This
notion of template hierarchy can be generalized. For a given G, every template
is either hierarchically composed of other templates or is a leaf template. Let S1,
..., Sm be the templates in a cover generated by a regularity extraction approach,
described above. The complete template hierarchy can be generated by
recursively extracting the regularity from the graph composed of m independent
subgraphs, S1, ..., Sm, until we are left with leaf templates only. The templates
in the two covers of FIG. 2 can be compactly represented by the hierarchy shown
in FIG. 12. In general, any set of covers of G can be represented by a template
hierarchy, which allows the user to select the most desirable cover for
subsequent physical design stages.

Generating subgraphs for a user-given template: Given a template S', a

template generation algorithm can be modified to identify all subgraphs of S' as
well as its children templates. For example, if the user provides the template S3
for the circuit of FIG. 2, then all subgraphs of S3 as well as its children templates
S1 and S2 can be generated. A user might also specify template S1 of FIG. 8. In
some embodiments, the only modification to the template generation algorithm

of Pseudocode Sample 1 is that the function Largest Template (line 10) is called

25

WO 01/33441 PCT/US00/30546

10

15

20

25

for every node-pair (vi, vj), where vi and vj belong to G and S', respectively. The
covering can be easily generalized such that G is covered by a mix of user-
specified and automatically-generated templates.

General multi-output templates: Usually, the primary outputs of datapath
circuits are specified by busses. The primary outputs can be group with the same
bus index to form a dummy node, thus creating a dummy bus of the same width.
A heuristic of adding a dummy output bus can be used such that a template
generation algorithm finds a general multi-output template. For example, FIG.
11A illustrates a circuit 100 having bits slices 0 and 1 that are each by templates
S1 and S2. As illustrated in FIG. 11B, circuit 100 can be modified to create a
circuit 104 in which output busses x and y are grouped with a dummy node 108
so as to create a single dummy bus and a template S3 formed in place of S1 and
S2. Each bit slice of circuit 104 can be covered by a single template S3. After
the regularity has been extracted, the dummy bus [0] and dummy node 108 can

be ignored at a later stage of design.

C. Structural Regularity Extraction

A functional regularity extraction component of a computer-aided design
system according to one embodiment of the present invention has been
described. This section further describes a structural regularity extraction
component as referred to in block 6 of FIG. 1.

FIG. 13 is a block diagram of the structural regularity extraction
component shown in FIG. 1. The structural regularity extraction component
1300 comprises inputs, processing modules and outputs. The inputs include a
set of templates, a set of control signals, and a set of databus identifiers.

The set of templates 1s received from the functional regularity extraction
component. A template is a representation of a subcircuit with at least two
instances in the circuit. In one embodiment, the set of templates is received in

the form of a net list. The set of control signals includes the signals used to

26

WO 01/33441 PCT/US00/30546

10

15

20

25

control the operation of the circuit. The set of databus identifiers includes the
names or other identifiers for the databuses in the circuit.

The processing modules comprise program modules that perform the
functions for computer automated structural regularity extraction according to
the present invention. Generally, program modules include routines, programs,
objects, components, data structures, etc., that perform particular functions or
implement particular abstract data types. The processing modules group the
template instances generated by the functional regularity extraction component
into vectors. A vector is a group of template instances that are identical in
function and structure. In the context of the structural regularity extraction
component, templates that are identical in structure have the following
characteristics: a) the templates have the same number of input and output
signals, and b) the templates have the same type of signals on all interfaces (the
type of signal refers to whether the signal is a data signal or a control signal).
Each vector forms a row in the circuit layout for the logic design. In other
words, the vectors are used to form the rows in a physical layout for the logic
design. One output of the structural regularity extraction component 1300 is a
grouping of the template instances forming the set of vectors. A method of
creating vectors according to one embodiment of the invention is shown in the
flow chart of FIG. 14.

FIG. 14 is high-level flow chart of a method of generating vectors for a
logic design according to one embodiment of the invention. The method begins
by identifying control logic in the logic design (block 1402). In one
embodiment, the control logic is excluded from the vectors. Instead, the control
logic is treated separately. Control logic is identified using the set of control
signals that is received by the structural regularity extraction component. The
control logic is the logic that generates the control signals. For example, the
control logic generates a clock signal for the sequential elements and a select

signal for the multiplexers.

27

WO 01/33441 PCT/US00/30546

10

15

20

25

30

After the control logic is identified, the control signals and the databuses
are used to generate vectors (block 1404). If two or more instances of a template
share the same control signal or set of control signals and the instances of the
template feed into the same databus, the template instances are grouped into a
single vector. Thus, structural information (in this case, the control signals and
the databus identifiers) is used to form the vectors. After all possible vectors are
identified using the control signals and the databuses; the circuit connectivity is
used to generate vectors from the remaining template instances (block 1406).

An example embodiment of the method of generating vectors shown in
FIG. 14 is now described. FIGS. 15A, 15B, 15C, 15D, 15E, 15F, 15G, 15H, 151
and 15]J are schematic diagrams of a logic design used to illustrate the method of
generating vectors according to the example embodiment shown in FIG. 14.

FIG. 15A is a schematic diagram of a logic design 1500 having templates
identified according to one embodiment of the invention. Logic design 1500
shown in FIG. 15A is covered with multiple instances of seven different
templates (S1, S2, S3, S4, S5, S6 and S7). Template S1 comprises a 6-to-1
multiplexer and a latch. The logic design 1500 comprises sixty-four instances of
template S1. Template S2 comprises a 2-to-1 multiplexer. There are sixty-four
instances of template S2 in the logic design 1500. Template S3 comprises a 2-
input NAND gate. There are one hundred twenty-eight instances of template S3
in the logic design 1500. Template S4 comprises a 2-input NOR gate. There are
one hundred twenty-eight instances of template S4 in the logic design 1500.
Template S5 comprises an exclusive OR gate. There are sixty-four instances of
template S5 in the logic design 1500. Template S6 comprises a latch. There are
sixty-four instances of template S6 in logic design 1500. Template S7 comprises
a 2-to-1 multiplexer. There are sixty-four instances of template S7 in the logic
design 1500. The logic design 1500 is not limited to the templates shown in
FIG. 15A. Alternate embodiments having additional or differing templates are
contemplated. The templates shown in FIG. 15A are for illustrative purposes

only.

28

WO 01/33441 PCT/US00/30546

10

15

20

25

30

In one embodiment of the present invention, the method of generating
vectors begins by identifying control logic. The control logic is the logic that
generates the control signals such as the select signals for the multiplexers and
the clock signals for the latches. FIG. 15A does not show the control logic.

After identifying the control logic, the method of identifying vectors uses
databus identifiers and control signals to identify vectors. For example, the
sixty-four instances of template S1 share the same control signals. The control
signals include the select signal for the 6-to-1 multiplexer and the clock signal
for the latch. The sixty-four instances of template S1 also feed the same databus.
Therefore, the sixty-four instances of template S1 are structurally similar and the
sixty-four instances of template S1 are grouped together to form a single vector
V1 as shown in FIG. 15B.

Template S2 comprises a 2-to-1 multiplexer which is driven by the same
select signal in all sixty-four instances. The sixty-four instances of template S2
are grouped to form a single vector V2 as shown in FIG. 15C. Likewise, the
sixty-four instances of template S7 comprises a 2-to-1 multiplexer which is
driven by the same select signal in all instances. All instances of template S7
also drive the same databus. Therefore, the sixty-four instances of template S7
are grouped to form a single vector V3 as shown in FIG. 15D.

In this example embodiment, the instances of template S6 are not
grouped to form a vector at this time even though the instances of template S6
have a common signal. If the second input to the latch (the non-clock input) of
template S6 1s from the same control bus, then the instances of template S6
would form a vector at this point. In this example embodimen, however, the
instances of template S6 are grouped as a vector in the next step based on circuit
connectivity which is described below.

After all possible vectors are identified using the control signal
information and the databus information, the circuit connectivity is used to
identify the remaining vectors. In the example shown in FIGS. 15A-15], three
vectors (V1, V2, and V3) were identified using the control signal data and the

29

WO 01/33441 PCT/US00/30546

databus identifiers. However, in the example, control signal data and databus
identifiers are not available for the remaining template instances (S3, S4, S5, and
S6). In order to form vectors from the remaining template instances (S3, S4, S5
and S6), the circuit connectivity is used to identify vectors.

5 There are one hundred twenty-eight instances of template S3 (2-input
NAND gate). However, all one hundred twenty-eight instances will not be
grouped together in a single vector because the connections for the instances are
structurally different. Of the one hundred twenty-eight instances of template S3,
only sixty-four of the instances are connected to vector V2. As shown in FIG.

10 15D, vector V2 drives a first instance of template S3 (1502) and a second
instance of template S3 (1504) and so on for sixty-four instances of template S3.
The sixty-four instances of template S3 connected to vector V2 are grouped to
form vector V4 as shown in FIG. 15E. Thus, by examining the previously
formed vector V2 and the circuit connectivity, the vector V4 is identified.

15 Vector V4 comprises sixty-four of the one hundred twenty-eight instances of
template S3.

There are also one hundred twenty-eight instances of template S4 (2-
input NOR gate). Of the one hundred twenty-eight instances of template S4,
sixty-four of the instances are connected to vector V4. These sixty-four

20 instances are grouped to form vector V5 as shown in FIG. 15F. The remaining
sixty-four instances of template S4 are not grouped with vector V5 because the
remaining instances of template S4 have different connections. Thus, by
examining the previously formed vector V4 and the circuit connectivity, the
vector V5 is generated. Vector V5 comprises sixty-four of the one hundred

25 twenty-eight instances of template S4.

Vector V5 1s connected to the remaining sixty-four instances of template
S3 (2-input NAND gate). The remaining sixty-four instances of template S3 are
grouped to form vector V6 as shown in FIG. 15G. Likewise, vector V6 is

connected to the remaining sixty-four instances of template S4 (2-input NOR

30

WO 01/33441 PCT/US00/30546

10

15

20

25

gate). The remaining sixty-four instances of template S4 are grouped to form
vector V7 as shown in FIG. 15 H.

Vector V7 is connected to all sixty-four instances of template S5 (2-input
exclusive OR gate). The sixty-four instances of template S5 are grouped to form
vector V8 as shown in FIG. 151. Finally, vector V8 is connected to all sixty-four
instances of template S6 (a latch). The sixty-four instances of template S6 are
grouped to form vector V9 as shown in FIG. 15].

In the example embodiment of the invention described above, the five
hundred seventy-six template instances shown in FIG. 15A are grouped into nine
vectors as shown in FIG. 15J. Each of the nine vectors will form a row in the
circuit layout. The placement of vectors in the circuit layout is discussed in more

detail in section D.

D. Floorplanning

A structural regularity extraction component of a computer-aided design
system according to one embodiment of the present invention has been
described. This section further describes a floorplanning component as referred
to in block 8 of FIG. 1.

FIG. 16 is a block diagram of one embodiment of the floorplanning
component shown in FIG. 1. The floorplanning component 1600 comprises
mnputs, processing modules and outputs. The inputs include a set of vectors and
connectivity information for the vectors. In some embodiments, critical path
information for the vectors is also received as an input.

The set of vectors is received from the structural regularity extraction
component. For example, for the logic design shown in FIGS. 15A-15], a set of
nine vectors is received as an input to the floorplanning component. The
connectivity information for the vectors identifies the interconnections between
the vectors. The critical path information identifies a path through the circuit

that is considered the most important path. In one embodiment, predefined

31

WO 01/33441 PCT/US00/30546

10

15

20

25

30

timing goals are used to identify the most important path. The most important
path is a path that does not meet the requirements of the predefined timing goals.

The processing modules comprise program modules that perform the
functions for computer automated floorplanning according to the present
invention. Generally, program modules include routines, programs, objects,
components, data structures, etc., that perform particular functions or implement
particular abstract data types. The processing modules identify a one-
dimensional ordering of the vectors generated by the structural regularity
extraction component. In one embodiment, each vector forms a row in the
circuit layout for the logic design. In an alternate embodiment, a row in the
circuit layout can also be formed from two or more small vectors. In one
embodiment, the ordering of the vectors is selected to minimize the total wiring
length. In an alternate embodiment, the ordering of the vectors is selected based
on a critical path. One output of the floorplanning component 1600 is the one-
dimensional ordering of the vectors for the circuit layout.

FIG. 17 is high-level flow chart of a method of generating a floorplan
using vectors according to one embodiment of the invention. The method begins
by enumerating the possible solutions for the floorplan (block 1702). In an
embodiment in which the ordering of the vectors is selected to minimize the total
wiring length in the layout, the wire length is calculated for each solution (block
1704). The solution with the minimum total wire length is selected for the
floorplan (block 1706).

FIG. 18 is high-level flow chart of a method of generating a floorplan
using vectors according to an alternate embodiment of the invention. In the
embodiment shown in FIG. 18, the ordering of the vectors is selected based on a
critical path. The method begins by enumerating the possible solutions for the
floorplan (block 1802). The cost of each solution is calculated (block 1804). In
an example embodiment, calculating the performance of each solution is
performed by assigning a weight to each wire. Wires in the critical path are

assigned a greater weight than wires that are not in the critical path. A total

32

WO 01/33441 PCT/US00/30546

10

15

20

25

weighted wiring length is calculated as the sum of each wire length multiplied by
the weight of the wire. The solution with an optimized cost for the critical path
is selected (block 1806). In alternate embodiments, the cost of each solution is
calculated in terms of other resources such as area on the die, timing, power
consumption, and the like.

FIG. 19 is a floorplan for the vectors of the logic design shown in FIG.
15J according to one embodiment of the invention. Each of the nine vectors
shown in FIG. 15J directly correspond to a row in the circuit layout shown in
FIG. 19. For example, vector V1 forms one row in the circuit layout. Vector V2
forms another row in the circuit layout, and so on. For the example shown in
FIG. 19, vector V1 and vector V2 are first level vectors which receive inputs
from the same input bus. In FIG. 19, vector V1 is placed first in the layout
followed by vector V2. Based on the circuit connectivity, the following vectors
are placed in the following order after vector V2: vector V4, vector V5, vector
Vo6, vector V7, vector V8 and vector V9. Vector V3 is placed after vector V9.
As shown in FIG. 19, vector V3 receives inputs from both vector V9 and vector
V1.

The floorplan for the vectors of the logic design shown in FIG. 15] is not
limited to the floorplan shown in FIG. 19. FIG. 20 is an alternate floorplan for
the vectors of the logic design shown in FIG. 15J. As shown in FIG. 20, the first
level vector V2 is placed first in the layout. Based on the circuit connectivity, the
following vectors are placed in the following order after vector V2: vector V4,
vector V5, vector V6, vector V7, vector V8 and vector V9. Vector V1 is placed
after vector V9. Vector V3 which receives inputs from both vector V9 and
vector V1 is placed after vector V1.

The invention is not limited to the placement of the vectors as shown in
FIGS. 19 and 20. The floorplans shown in FIGS. 19 and 20 are for illustrative
purposes only. Alternate embodiments having the vectors placed in a different

order are contemplated as within the scope of the invention. For example, the

33

WO 01/33441 PCT/US00/30546

10

15

20

25

30

placement of the vectors may be optimized for area or to reduce the total wire
length as shown in FIGS. 17 and 18.

The floorplanning component of embodiments of the present invention
uses computer-automated operations to place the vectors in a one-dimensional
ordering for a circuit layout. Previous floorplanning methods placed circuit
components almost entirely by hand in a two-dimensional manner. The
computer automated floorplanning method of the present invention improves the

productivity of circuit designers.

E. Computer Hardware and Operating Environment

This section provides an overview of the hardware and the operating
environment in conjunction with which embodiments of the invention can be
practiced. FIG. 21 is a diagram of a computerized system in conjunction with
which embodiments of the invention may be implemented.

Referring to FIG. 21, a computer system 120 includes memory 122,
processor 124, display 126, interface 128, and printer 130. In some
embodiments, processor 124 executes a program from memory 122 that
performs functional regularity extraction, structural regularity extraction and
floorplanning as described herein. Memory 122 may hold the descriptor
language from which regularity is to be extracted, etc. The floorplan for vectors
can be presented, for example, visually on display 126 or printed through printer
130. The user can select options through interface 128 (e.g., a keyboard or
mouse). Memory 122 is intended as a generalized representation of memory and
may include a variety of forms of memory, such as a hard drive, CD-ROM, and
random access memory (RAM) and related circuitry. A hard drive, CD-ROM,
and RAM are examples of articles including machine readable media. For
example, the computer-aided design program performing the functional
regularity extraction, structural regularity extraction or floorplanning may be
included on a CD-ROM and loaded from the CD-ROM to a hard drive. The high

level description may be received, for example, on a disk or remotely through,

34

WO 01/33441 PCT/US00/30546

for example, a modem. The hardware and operating environment in conjunction
with which embodiments of the invention can be practiced has been described.
Those skilled in the art having the benefit of this disclosure will
appreciate that many other variations from the foregoing description and
5 drawings may be made within the scope of the present invention. Accordingly,
it is the following claims including any amendments thereto that define the scope

of the invention.

WO 01/33441 PCT/US00/30546

10

15

20

25

What is claimed is:

1. A computerized method for identifying structural regularity in a logic design,
the method comprising:

receiving a plurality of templates covering the logic design;

receiving one or more control signals for the logic design;

receiving one or more databus identifiers for the logic design; and

generating a first vector for the logic design through computer automated
operations to combine at least one instance of one of the plurality of templates
based on the control signals, the databus identifiers and connectivity of the logic

design.

2. The computerized method of claim 1 wherein the first vector comprises each
one of the instances of a first one of the templates having a same set of the

control signals and feeding a same databus.
3. The computerized method of claim 2 wherein a second vector is generated
from each one of the instances of a second one of the templates having a same

set of connections in the logic design.

4. The computerized method of claim 1 wherein the plurality of templates is

received in a net list.

5. The computerized method of claim 1 wherein at least one of the plurality of

templates is a tree template.

6. The computerized method of claim 1 wherein at least one of the plurality of

templates is a multi-output template.

36

WO 01/33441 PCT/US00/30546

10

15

20

25

7. The computerized method of claim 1 wherein at least one of the plurality of

templates is a single-principal output template.

8. A computerized method for generating a set of vectors for a logic design
through computer-automated operations, the method comprising:

identifying logic for generating at least one control signal and excluding
the logic from the set of vectors;

identifying at least one instance of a first template to group as a first
vector in the set of vectors by using databus identifiers and the control signals;
and

identifying at least one instance of a second template to group as a
second vector in the set of vectors by using circuit connectivity and a previously

formed vector.

9. The computerized method of claim 8, wherein identifying at least one
instance of the second template using circuit connectivity and a previously
formed vector is performed after all possible vectors are identified using the

databus 1dentifiers and the control signals.

10. The computerized method of claim 8 wherein the logic design is for a

datapath circuit.

11. A computerized method of generating a layout for a logic design using
vectors, the method comprising:

receiving one or more vectors for the logic design;

receiving connectivity data for the logic design; and

generating a one-dimensional circuit layout for the logic design through

computer automated operations using the vectors and the connectivity data.

37

WO 01/33441 PCT/US00/30546

10

15

20

25

30

12. The computerized method of claim 11 wherein generating the one-
dimensional layout further comprises:

enumerating a plurality of solutions for the layout;

calculating a total wire length for each one of the solutions; and

selecting the solution with a minimum wire length.

13. The computerized method of claim 11 further comprising receiving critical

path data for the logic design.

14. The computerized method of claim 13 wherein generating the one-
dimensional layout further comprises:

enumerating a plurality of solutions for the layout;

calculating a cost for each one of the solutions; and

selecting the solution with a minimum cost for the critical path.

15. The computerized method of claim 11 wherein each one of the vectors forms

arow in the one-dimensional circuit layout.

16. The computerized method of claim 11 wherein the logic design is for a

datapath circuit.

17. A machine-readable media having machine-executable components
comprising:

a functional regularity extraction component to generate a plurality of
templates to cover a logic design;

a structural regularity extraction component to generate a set of vectors
from the plurality of templates; and

a floorplanning component to generate a circuit layout from the set of

vectors.

38

WO 01/33441 PCT/US00/30546

10

15

20

25

18. The machine-readable media of claim 17, wherein a vector in the set of
vectors is a group of template instances that are identical in function and

structure.

19. The machine-readable media of claim 17 wherein the structural regularity
extraction component further comprises:

a control logic identifying component to identify logic for generating at
least one control signal and excluding the logic from the set of vectors;

a first vector identifying component to identify at least one instance of a
first template to group as a first vector in the set of vectors by using databus
identifiers and the control signals; and

a second vector identifying component to identify at least one instance of
a second template to group as a second vector in the set of vectors by using

circuit connectivity and a previously formed vector.

20. An article comprising:

a machine-readable media including instructions that when executed
cause a computer to:

receive a plurality of templates covering the logic design;

receive one or more control signals for the logic design;

receive one or more databus identifiers for the logic design; and

generate a first vector for the logic design through computer automated
operations to combine at least one of the plurality of templates based on the

control signals, the databus identifiers and connectivity of the logic design.

21. The article of claim 20 wherein the first vector comprises each one of the
instances of a first one of the templates having a same set of control signals and

feeding a same databus.

39

WO 01/33441 PCT/US00/30546

10

15

20

25

30

22. The article of claim 21 wherein a second vector is generated from each one
of the instances of a second one of the templates having a same set of

connections in the logic design.

23. An article comprising:

a machine-readable media including instructions that when executed
cause a computer to:

identify logic for generating at least one control signal and excluding the
logic from the set of vectors;

identifying at least one instance of a first template to group as a first
vector in the set of vectors by using databus identifiers and the control signals;
and

identifying at least one instance of a second template to group as a
second vector in the set of vectors by using circuit connectivity and a previously

formed vector.

24. The article of claim 23, wherein identifying at least one instance of a second
template using circuit connectivity and a previously formed vector is performed
after all vectors are identified using the databus identifiers and the control

signals.

25. An article comprising:
a machine-readable media including structural regularity extraction
instructions that when executed cause a computer to generate a set of vectors

from a plurality of templates.
26. An article comprising:

a machine-readable media including floorplanning instructions that when

executed cause a computer to generate a circuit layout from a set of vectors.

40

WO 01/33441 PCT/US00/30546

\ /28

7

FUNCTIONAL
REGULARITY
EXTRACTION
COMPONENT

l
SET OF
TEMPLATES

6

ed

STRUCTURAL
REGULARITY
EXTRACTION
COMPONENT

I
SET OF
VECTORS

8

i

FLOORPLANNING
COMPONENT

FIG. 1

PCT/US00/30546

WO 01/33441

2/28

F-——-

[0]A [ox

1 €S

1
!
|
(|
|
[
1
[
[
.
—— . n e —]

[cle [glqg
€ 3017 Lig

{ RN PRSI A

!
|
i
{
l
§

[¢le [2Z]q
2 3017S L9

L 301718 118

[e e e e e s e s o e] s - e e b — e ——

F————t—————— -

|
|
|
|
|
|
)
!
|
I
i
|
1
|
|
|
|
|
|
|
!
!
|
|

— — W'ﬁlln'
|||||||||||| L
g

0 30I17S 1ig

[o]e [o0lg [olo

N

0s

A9

WO 01/33441 . PCT/US00/30546

2/28
d0 ¢
d1
S
FIG. 3

Convention

u k[] \Y
u,v
@@

FIG. 4

WO 01/33441

u/ze

PCT/US00/30546

FIG. 5B

FIG. 5A

PCT/US00/30546

WO 01/33441

5/28

9 Ol4

[1]

[p

WO 01/33441 PCT/US00/30546

P

a, b, c, d,
o, or
S5

g or | horl
S3 S4

-
o
- 0
g1
= o) o)
o _ @© Q
(D] = — —
0p) o (o]
1)) e

S6
S7

FIG. 7

PCT/US00/30546

WO 01/33441

728

d Gd 9d /d
A F 3 A
\\.. ||||||| \.l\\. llllllll ;" R DN g
v s/ /
0-<—loisl4<—sloss o sossp’
mrn_ \\\ y \\ﬂ\ A \\\\\ ’ \\
' Yard
A 2 A TS
/7 /7 7 7/ 7/
/7 7 7 i
N 7EA A O
ed .~ 2D1ors| o ZDyors| o7 ors| .7
A \\ O ;\\\\\ rx y W2 \\ N
\\\ \\\\\\ \\\\\ \\\\ I\A.Nw
\\ \\\\ \\\\\\ \,\ L :
Ve 7/ 7 /7 \\
\\\N> \\\\\\N\f \\\\\&&/ \\\ N> mx
a2 =DoIs|,,r” DoIs| " ZDFais| -
il OX»x—57,7 b 5,77 X ‘ 4
’ A7 A7 ot ¢S uojouny
\ s o o'y ans 9778
o 7 AT Tex !
oIS \\\\MW \\\\uw g e
o /18| % I8! 7
7 0X d LX il ZX d uopounj
ALy =Y avo 870
X OA''2ZX OA' '€X ARVO F
/ ug” vy
o4

PCT/US00/30546

WO 01/33441

g8

0d

®

° o \.@ i@»)\mw lo

ma Y
@’r @'
uopouny m
‘ NNS
@.V e‘r) r c_o

ld uonouny 9 ¢
@ AHHVYO up’z 1V

Q.V 41@ 9. 9‘! v

sindul omy

5 o yum a1eb gNv @

WO 01/33441 PCT/US00/30546

alze

FIG. 10 A

WO 01/33441 PCT/US00/30546

10/2%

&) (&
(c—® ()—®
(&)

® G@

TEMPLATE TEMPLATE
s1 S2
FIG. 10B
S1 S2
TEMPLATE
S3

FIG. 10C

PCT/US00/30546

WO 01/33441

WX,

dill 9l
[L] AWNNG [0] AWWNQ
R i B s i
TS Lo “
| Lo || _
(LA [Lx| |0l [olx |
_ o “
LA N N
| | "
]		
}		
“ Lo "		
m N		
“ I 0 o [l O '	os	
“ L _		
“ A " “ JAN _		
“ L — _ “		
_ Lo e		
m S		
LI LT
[Lle [Lla [1]o [o]e [olq [olo -
L 3017S Lig 0 32I7S 1ig

14012

[Lle [Llq [1]o
L 3017S 1I9

Vil 9ld
[LIA [L]x [0]A [olx

TTATTT I TTTT TN I A I M
Zs “ vw“ “ ¢S " rw“
“ o ! “
| [| |
A A “ " Al A “
Q! Lo Q| @
m I | |
! o I |
| [| l
I o I |
...... . . -1Lw w “
i | |
|

L 0 L Ll 0 | 0S
|
NN NI
_ | [“

N KL
SRR
_ﬁ L _ﬁ _
lllllllllll J | II;..IIL

[ole [0lq [o]o
03017S 119
™ 00!

WO 01/33441

i2]2%
CIRCUIT
2/
S3 2
1N
S2 S1

FIG. 12

PCT/US00/30546

WO 01/33441 PCT/US00/30546

(2/29

1300
INPUTS OUTPUTS
Vs A\ \ Ve N— N\
TEMPLATES = PROCESSING
MODULES FOR CTOR
CONTROL SIGNALS STRUCTURAL VECTORS -
REGULARITY
DATABUS NAMES EXTRACTION
FIG. 13
(BEGIN)
| 1402

IDENTIFY CONTROL LOGIC
| 1404

USE DATABUSES AND CONTROL SIGNALS
TO IDENTIFY VECTORS

| 1406

USE CIRCUIT CONNECTIVITY
TO IDENTIFY VECTORS

|
END

FIG. 14

PCT/US00/30546

WO 01/33441

VGl "Old

28]
a
3
r s A)
| |
) "
] 7 I
| 11 I
| I |
1 (SIONVISNI +9) | yg 1
Lo e e e o e o e - — 4 I |
| ", N
[h 7 — |
S
_ (SIONVISMI #9) /_/ |
\\ 15D U SO o -
0051

PCT/US00/30546

WO 01/33441

15628

¥9

00G1

(1S 40
(SIONVISNI ¥9)

PCT/US00/30546

WO 01/33441

i0[2%

oGL Ol

!
i
!
|
|
]
|
|
L

(SIONVISNI #9)

00G1

L/ / S
(1S 40
(SIONVISNI ¥9)

PCT/US00/30546

17 /2%

asit 'old

WO 01/33441

(¢S 40
(SIONVISNI #9)

\}/ / =
(1s 40 -
(SFONVISNI +9)

0061

{
|
!
L

PCT/US00/30546

1Rz

351 'Ol

WO 01/33441

P A |
|]
“ ¥9 !
| 7]
| (£s 4o Lt _ |
1 (SIONVLSNI ¥9) | iyg — |
L oo e e e e e e e e - J | I,
" ", —
| \/ V4 — |
_ (1S 40 /7I|| _
! (SIONVLSNI #9) _
\ L e o e e e e e e e e L e e e e e e - ——— -

00St

PCT/US00/30546

o 2@

451 "Old

WO 01/33441

(£s 40
(S3ONVISNI +9)

N\

\/ /
(1S 40 /_/
(SIONVISNI +9)

00S1

PCT/US00/30546

WO 01/33441

20/2%

961 "Old

(£s 40
(SIONVISNI +9)

L/ / R
(1S 30
(SIONVISNI +9)

PCT/US00/30546

21028

HGL "Old

WO 01/33441

(£s 40
(S3ONVISNI ¥9)

N

L

\/ 7 b
(1S 40 A
(S3ONVLSNI +9)

00S1

PCT/US00/30546

WO 01/33441

22 /29

(£s 0

S3IONVLSNI ¥9)

b . e e - - -

00S1

|/ / L
(¢S 40
S3IONVISNI ¥9)

PCT/US00/30546

WO 01/33441

23/29

!
|
I
|
!
|
|
|
L

GA 1

(£s 0
SIONVLISNI #9)

N

L / f——
(48 40 |I||
SIONVISNI #9)

ﬂl@l>lq_ r—--=—aar—-~—~

WO 01/33441 - PCT/US00/30546

v |2
/1 600
INPUTS OUTPUTS
, A ~ s N N\
VECTORS
VY PROCESSING
—— " PLOORPLANNNG | ONE-DIMENSIONAL
FLOORPLANNING -
CRTICAL PATHS ORDERING OF
THE VECTORS
FIG. 16
(BEGN)
, 1702
-~
ENUMERATE_POSSIBLE
SOLUTIONS FOR FLOORPLAN
] 1704
~
CALCULATE WIRE LENGTH
OF EACH SOLUTION
| 1706
~
SELECT SOLUTION WITH MINIMUM
WIRE LENGTH FOR FLOORPLAN

1F
END

FIG. 17

WO 01/33441

xs /2o

BEGIN
1802

ENUMERATE POSSIBLE
SOLUTIONS FOR FLOORPLAN

-; 180

CALCULATE COST
OF EACH SOLUTION

, 1806
~

SELECT SOLUTION WITH OPTIMIZED
COST FOR THE CRITICAL PATH

ad

PCT/US00/30546

WO 01/33441 PCT/US00/30546

20 [2®

\
VECTOR V1

VECTOR V2

VECTOR V4

VECTOR V5

VECTOR V6

VECTOR V7

VECTOR V8

VECTOR V9

Y
VECTOR V3

|

FIG. 19

WO 01/33441 PCT/US00/30546

27 /28

VECTOR V2

VECTOR V4

VECTOR V5

VECTOR V6

VECTOR V7

VECTOR V8

|
VECTOR V9

VECTOR V1

|| !
VECTOR V3

L

FIG. 20

WO 01/33441

PCT/US00/30546

2l2g

120 DISPLAY
\ 126
y N
MEMORY ‘| PROCESSOR
122 124
INTERFACE (E.G.,
KEYBOARD, l¢— —p PRINTER
MOUSE) 128 130

FIG. 21

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

