
US008522070B2

(12) United States Patent (10) Patent No.: US 8,522,070 B2
Rueegg et al. (45) Date of Patent: Aug. 27, 2013

(54) TENANT RESCUE FOR SOFTWARE CHANGE 2007. O157192 A1* 7, 2007 Hoefer et al. 717,168
PROCESSES IN MULT-TENANT 2008/O12611.0 A1* 5/2008 Haeberle et al. 705/1
ARCHITECTURES 2008. O184225 A1 7/2008 Fitzgerald et al.

2010/0023933 A1* 1/2010 Bryant et al. 717,168
2011/0113424 A1 5/2011 Ewington et al.

(75) Inventors: Andreas Willi Rueegg, Zurich (CH): 2011/0145807 A1 6, 2011 Molinie et al.
Joerg Schmidt, Sinsheim (DE); Karolin 2011/0209139 A1 8/2011 Dominicket al.
Laicher, Rauenberg (DE); Michael 38: 92.? g A. 8.38H Stay

aSak
Segler, Wiesloch (DE) 2011/0296398 A1 12/2011 Vidal et al.

2011/0321031 A1* 12/2011 Dournov et al. 717/171
(73) Assignee: SAP AG, Walldorf (DE) 2012/0030666 A1 2/2012 Laicher et al. 717/173

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 404 days. Primary Examiner — Bryce Bonzo

Assistant Examiner — Elmira Mehrmanesh
(21) Appl. No.: 12/847,470 (74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris

Glovsky and Popeo, P.C.
(22) Filed: Jul. 30, 2010 ky p

57 ABSTRACT (65) Prior Publication Data (57)
A multi-tenant system can be switched to a downtime state to

US 2012/OO305O2A1 Feb. 2, 2012 implement a transition from a current state to a target State of
(51) Int. Cl a core software platform. During a second phase of the tran

Go,F iI/00 (2006.01) sition an error associated with tenant-specific content of a first
52) U.S. C customer tenant of the plurality of customer tenants of the
(52) U.S. Cl. multi-tenant system can be identified. The second phase can USPC 714.f43: 714744: 717/171

... ." irr says • Is be suspended for the first customer tenant while continuing
(58) Field of Classification search 4: 717/171 173 the second phase for a remainder of the plurality of customer

USPC 71.4/4.3, 4.4: tenants for which an error has not been identified. After a
See application file for complete search history. scheduled duration of the downtime state, the multi-tenant

system can be reactivated Such that the multi-tenant system
(56) References Cited includes the remainder of the plurality of customer tenants

U.S. PATENT DOCUMENTS with the transition implemented and the first customer tenant
either with the transition implemented if the error has been

6. E: ck 3. Stal 299; corrected or without the transition implemented if the error

8,205,564 B2 6/2012 Vidaletal. 7.438 has not been corrected.
8,239,851 B2 * 8/2012 Laicher et al. 717,168

2006/0059253 A1 3/2006 Goodman et al. 21 Claims, 8 Drawing Sheets

400

N. 402

404

406

410

SWITCH MULT-TENANT SYSTEM TODOWNTIME STATE TO MPLEMENT
TRANSITION FROM CURRENT STATE TO TARGETSTATE OF CORE

SOFTWARE PLATFORM

IDENTIFYERRORASSOCATED WITH TENANT-SPECIFICCONTENT OF FIRST
CUSTOMERTENANT DURING SECOND PHASE OF TRANSITION THAT

INCLUDESMODIFYING, IN PARALLELANDSUBSEQUENT TO COMPLETION OF
THE FIRST PHASE, TENANT-SPECIFICCONTENT OF EACH CUSTOMER

TENANT ACCORDINGTO DEPENDENCIES OF TENANT-SPECIFIC CONTENT
ONCORE SOFTWARE PLATFORM CONTENT

SUSPEND SECOND PHASE FOR FIRST CUSTOMERTENANT WHILE
CONTINUING SECOND PHASE FOR REMAINDER OF CUSTOMERTENANTS

HAVINGNOERRORS

AFTERSCHEDULEDDURATION OF DOWNTIME STATE, REACTIVATE MULT
TENANT SYSTEM TO INCLUDE REMAINDER OF CUSTOMERTENANTS WITH
TRANSITIONIMPLEMENTED ANDFIRST CUSTOMERTENANTEITHER WITH
TRANSITIONIMPLEMENTED IF ERRORHAS BEEN CORRECTED OR WITHOUT

TRANSITION IMPLEMENTED IF ERROR HAS NOT BEEN CORRECTED

U.S. Patent Aug. 27, 2013 Sheet 1 of 8 US 8,522,070 B2

s

U.S. Patent Aug. 27, 2013 Sheet 2 of 8 US 8,522,070 B2

SIEEE & Dill

s

US 8,522,070 B2 Sheet 3 of 8 Aug. 27, 2013 U.S. Patent

(| || 905

009

US 8,522,070 B2 Sheet 5 of 8 Aug. 27, 2013 U.S. Patent

009

US 8,522,070 B2 Sheet 6 of 8

909

Aug. 27, 2013 U.S. Patent

709 Z09

009

US 8,522,070 B2 U.S. Patent

00/

US 8,522,070 B2 Sheet 8 of 8 Aug. 27, 2013 U.S. Patent

978 #778 708 Z08

ZZ8

senss? ?o eseo

US 8,522,070 B2
1.

TENANT RESCUE FOR SOFTWARE CHANGE
PROCESSES IN MULT-TENANT

ARCHITECTURES

TECHNICAL FIELD

The subject matter described herein relates to addressing
tenant-specific errors and other issues that can arise in the use
of a multi-tenant software architecture.

BACKGROUND

Various organizations make use of enterprise resource
planning (ERP) software architectures to provide an inte
grated, computer-based system for management of internal
and external resources, such as for example tangible assets,
financial resources, materials, customer relationships, and
human resources. In general, an ERP software architecture is
designed to facilitate the flow of information between busi
ness functions inside the boundaries of the organization and
manage the connections to outside service providers, stake
holders, and the like. Such architectures often include one or
more centralized databases accessible by a core Software
platform that consolidates business operations, including but
not limited to those provided by third party vendors, into a
uniform and organization-wide system environment. The
core software platform can reside on a centralized server or
alternatively be distributed across modular hardware and
Software units that provide 'services and communicate on a
local area network or over a network, Such as for example the
Internet, a wide area network, a local area network, or the like.
As part of the installation process of the core software

platform on computing hardware owned or operated by the
organization, one or more customized features, configura
tions, business processes, or the like may be added to the
default, preprogrammed features such that the core software
platform is configured for maximum compatibility with the
organization’s business processes, data, and the like.
The core software platform of an ERP software architec

ture can be provided as a standalone, customized software
installation that runs on one or more processors that are under
the control of the organization. This arrangement can be very
effective for a large-scale organization that has very Sophis
ticated in-house information technology (IT) staff and for
whom a sizable capital investment in computing hardware
and consulting services required to customize a commercially
available ERP solution to work with organization-specific
business processes and functions is feasible. Smaller organi
zations can also benefit from use of ERP functionality. How
ever, Such an organization may lack the necessary hardware
resources, IT Support, and/or consulting budget necessary to
make use of a standalone ERP software architecture product
and can in some cases be more effectively served by a soft
ware as a service (SaaS) arrangement in which the ERP
system architecture is hosted on computing hardware such as
servers and data repositories that are maintained remotely
from the organization's location and accessed by authorized
users at the organization via a thin client, such as for example
a web browser, over a network.

SUMMARY

In one aspect, a computer-implemented method includes
Switching a multi-tenant system that comprises at least one
processor, an application server implemented on the at least
one processor, and a data repository to a downtime state to
implement a transition from a current state to a target State of

10

15

25

30

35

40

45

50

55

60

65

2
a core software platform. The application server provides
access for each of a plurality of organizations to one of a
plurality of customer tenants. Each of the plurality of cus
tomer tenants includes an organization-specific business con
figuration of the core software platform. The data repository
storescore software platform content relating to the operation
of the core software platform that is common to all of the
plurality of customer tenants and tenant-specific content that
relates to the organization-specific business configuration
and that is available to only one of the plurality of customer
tenants. During a second phase of the transition, an error
associated with the tenant-specific content of a first customer
tenant of the plurality of customer tenants is identified. The
second phase includes modifying, in parallel and Subsequent
to completion of the first phase, the tenant-specific content of
each of the plurality of customer tenants according to depen
dencies of the tenant-specific content on the core software
platform content. The second phase is suspended for the first
customer tenant while the second phase is continued for a
remainder of the plurality of customer tenants for which an
error has not been identified. After a scheduled duration of the
downtime state, the multi-tenant system is reactivated Such
that the multi-tenant system includes the remainder of the
plurality of customer tenants with the transition implemented
and the first customer tenant either with the transition imple
mented if the error has been corrected or without the transi
tion implemented if the error has not been corrected.

In Some variations one or more of the following can option
ally be included. A first phase of the transition that can include
modifying the core software platform content prior to the
second phase can be completed. The error associated with the
tenant-specific content of the first customer tenant can be
analyzed in an error analysis copy of the multi-tenant system.
The transition can include a lifecycle management event that
can include at least one of a business configuration deploy
ment, an application-to-application (A2A) regeneration, or a
Fast Search Infrastructure (FSI) load. If the error has not been
corrected, a reprocessing of the first customer tenant can be
commenced. The reprocessing can include performing
troubleshooting to correct the error and continuing the second
phase for the first customer tenant. A selection of a first
Subsequence of first Sub-phases of the second phase for the
first customer tenant and a second Subsequence of second
Sub-phases of the second phase for a second customer tenant
for which the second phase has also been Suspended can be
received from an administrator. The first Subsequence can be
executed on the first customer tenant in parallel with the
second Subsequence on the second customer tenant. At least
one correction can be imported for application to the first
customer tenant while the second phase for the first customer
tenant has been Suspended, the at least one correction
addressing the error.

Articles are also described that comprise a tangibly embod
ied machine-readable medium operable to cause one or more
machines (e.g., computers, etc.) to result in operations
described herein. Similarly, computer systems are also
described that may include a processor and a memory
coupled to the processor. The memory may include one or
more programs that cause the processor to perform one or
more of the operations described herein.
The subject matter described herein provides many advan

tages. For example, a standardized procedure can be provided
for applying updates and corrections to a multi-tenant soft
ware delivery system. Updates and corrections to the core
Software package can be performed using a common, stan
dardized process pattern, and errors that arise in one or more
customer tenants during transitioning of the multi-tenant sys

US 8,522,070 B2
3

tem from a current state or version to a target state or version
can be addressed individually without affecting the transi
tioning process for customer tenants that do not experience
COS.

It should be noted that, while the descriptions of specific
implementations of the current Subject matter discuss deliv
ery of enterprise resource planning Software to multiple orga
nizations via a multi-tenant system, the current Subject matter
is applicable to other types of software and data services
access as well. Furthermore, all discussions of possible user
interface interactions in the following description of various
implementations of the current Subject matter are intended to
be merely illustrative and completely non-limiting. The scope
of the subject matter claimed below therefore should not be
limited except by the actual language of the claims.
The details of one or more variations of the subject matter

described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, show certain aspects
of the subject matter disclosed herein and, together with the
description, help explain some of the principles associated
with the disclosed implementations. In the drawings,

FIG. 1 is a diagram showing an example of a multi-tenant
approach to providing customized software services to mul
tiple organizations from a single architecture;

FIG. 2 is a diagram showing storage of both core software
package data objects and tenant-specific data objects for each
of multiple tenants of a multi-tenant system;

FIG. 3 is a diagram showing operation of a tenant multi
plexer;

FIG. 4 is a process flow diagram illustrating a method;
FIG. 5 is a screenshot showing features according to an

implementation of the current Subject matter,
FIG. 6 is a screenshot showing additional features accord

ing to an implementation of the current Subject matter;
FIG. 7 is a screenshot showing more additional features

according to an implementation of the current Subject matter;
and

FIG. 8 is a process flow chart illustrating a method.
When practical, similar reference numbers denote similar

structures, features, or elements.

DETAILED DESCRIPTION

In a software delivery configuration in which services pro
vided to each of multiple organizations are hosted on a dedi
cated system that is accessible only to that organization, the
Software installation at the dedicated system can be custom
ized and configured in a manner similar to the above-de
scribed example of a standalone, customized software instal
lation running locally on the organizations hardware.
However, to make more efficient use of computing resources
of the SaaS provider and to provide important performance
redundancies and better reliability, it can be advantageous to
host multiple tenants on a single system that includes multiple
servers and that maintains data for all of the multiple tenants
in a secure manner while also providing customized solutions
that are tailored to each tenants business processes.

FIG. 1 shows a block diagram of a multi-tenant implemen
tation of a software delivery architecture 100 that includes an
application server 102, which can in some implementations

10

15

25

30

35

40

45

50

55

60

65

4
include multiple server systems 104 that are accessible over a
network 106 from client machines operated by users at each
of multiple organizations 110A-110C (referred to herein as
“tenants' of a multi-tenant system) Supported by a single
software delivery architecture 100. One example of such a
software delivery architecture can include features similar to
those of the Business ByDesignTM software available from
SAP AG (Walldorf, Germany). For a system in which the
application server 102 includes multiple server systems 104,
the application server can include a load balancer 112 to
distribute requests and actions from users at the one or more
organizations 110A-110C to the one or more server systems
104. A user can access the software delivery architecture
across the network using a thin client, Such as for example a
web browser or the like, or other portal software running on a
client machine. The application server 102 can access data
and data objects stored in one or more data repositories 114.
To provide for customization of the core software platform

for each of multiple organizations Supported by a single soft
ware delivery architecture 100, the data and data objects
stored in the repository or repositories 114 that are accessed
by the application server 102 can include three types of con
tent as shown in FIG. 2: core software platform content 202,
system content 204, and tenant content 206. Core software
platform content 202 includes content that represents core
functionality and is not modifiable by a tenant. System con
tent 204 can in some examples be created by the runtime of
the core software platform and can include core data objects
that are modifiable with data provided by each tenant. For
example, if the core software platform is an ERP system that
includes inventory tracking functionality, the system content
204A-204N can include data objects for labeling and quanti
fying inventory. The data retained in these data objects are
tenant-specific: for example, each tenant 110A-110N stores
information about its own inventory. Tenant content 206A
206N includes data objects or extensions to other data objects
that are customized for one specific tenant 110A-110N to
reflect business processes and data that are specific to that
specific tenant and are accessible only to authorized users at
the corresponding tenant. Such data objects can include a key
field (for example “client' in the case of inventory tracking)
as well as one or more of master data, business configuration
information, transaction data or the like. For example, tenant
content 206 can include condition records in generated con
dition tables, access sequences, price calculation results, or
any other tenant-specific values. A combination of the Soft
ware platform content 202 and system content 204 and tenant
content 206 of a specific tenant are presented to users from
that tenant such that each tenant is provided access to a
customized solution whose data are available only to users
from that tenant.
A multi-tenant system Such as that described herein can

include one or more of support for multiple versions of the
core software and backwards compatibility with older ver
sions, stateless operation in which no user data or business
data are retained at the thin client, and no need for tenant
configuration on the central system. As noted above, in some
implementations, Support for multiple tenants can be pro
vided using an application server 102 that includes multiple
server systems 104 that handle processing loads distributed
by a load balancer 112. Potential benefits from such an
arrangement can include, but are not limited to, high and
reliably continuous application server availability and mini
mization of unplanned downtime, phased updating of the
multiple server systems 104 to permit continuous availability
(one server system 104 can be taken offline while the other
systems continue to provide services via the load balancer

US 8,522,070 B2
5

112), scalability via addition or removal of a server system
104 that is accessed via the load balancer 112, and de-coupled
lifecycle processes (such as for example system maintenance,
Software upgrades, etc.) that enable updating of the core
Software independently of tenant-specific customizations
implemented by individual tenants.

FIG. 3 shows a box diagram 300 of multiple tenants in a
multi-tenant software architecture, such as that show in FIG.
1 and FIG. 2. An administrative tenant 302 is included in the
software architecture along with the plurality of customer
tenants 304,306, and 310. It should be readily understood that
while FIG. 3 shows 3 customer tenants, this should not be
construed as limiting the actual number of tenants in a system
consistent with an implementation of the current Subject mat
ter. A tenant multiplexer 312 at the administrative tenant 302
receives input 314, for example instructions for software
upgrades, a report format to be run for each tenant in the
multi-tenant software architecture, or the like. The input 314
can specify that the required operations are to be processed
for all tenants (both administrative and customer), for the
administrative tenant 302 and some subset of the customer
tenants, or for only the administrative tenant. The multiplexer
can then call an administrative tenant agent 316, which calls
one or more of a set 320 of reports, modification frameworks,
or other procedures or architectures for implementing the
operations required by the input 314. If the input 314 specifies
that all or some subset of the customer tenants are to be
operated upon, the multiplexer 312 accesses the designated
customer tenants via a trusted connection that does not
require use of normal authentication procedures like user
names and passwords. In one example, the multiplexer
accesses the designated customer tenants via a remote func
tion call (RFC). Via the trusted connection, the multiplexer
312 passes the set 320 of reports, modification frameworks, or
other procedures or architectures for implementing the opera
tions required by the input 314 to a tenant agent 322 at each
CuStOmer tenant.

Such an approach can introduce several challenges. Mak
ing modifications to the core software platform, for example
updating to a new version, implementing a change to the core
functionality, or the like, can become a complicated and
unpredictable process if each tenants customized data
objects and other tenant-specific configurations do not react
in the same manner to the modifications. Additionally, during
a lifecycle management (LM) event, Such as for example an
upgrade or update, many application specific actions, tasks,
or the like, which are hereinafter referred to as LM actions,
may have to be executed in a multi-tenant system. One or
more of these LM actions have to run on every business tenant
that exists in the multi-tenant system. Co-pending and co
owned application Ser. No. 12/847,919 entitled “Multiplexer
for Multi-Tenant Architectures”), the disclosure of which is
incorporated herein by reference in its entirety, describes one
possible approach by which lifecycle management tasks or
events can be initiated in parallel on multiple tenants of multi
tenant system.

Applying updates, changes, hot fixes, or the like (herein
after referred to as “updates') to any aspect of the provided
Software solution or to the infrastructures Supporting delivery
of the Software solution can require that access to the Software
solution by end users be suspended for a period of time that is
commonly referred to as downtime. Minimization of down
time is very desirable in nearly any Software installation,
especially if the software provides one or more business criti
cal functions. When updates are required, they are often
scheduled fortimes when the downtime will have the smallest
possible impact on the organization, for example over a week

10

15

25

30

35

40

45

50

55

60

65

6
end, at night, or during some other period when as few as
possible users associated with the organization are expected
to be attempting to access Software features or data. The
downtime required for an update generally varies depending
on the content of the update, and in a multi-tenant system can
also depend strongly upon dependencies between core soft
ware platform content 202, system content 204, and tenant
content 206. As an example, applying an update for a tenant
whose installation includes numerous and complicated cus
tomizations and extensions that depend upon a large number
of core software data objects and the like can require Substan
tially longer downtime than a similar software change,
update, or correction for a tenant whose installation lacks as
much complexity and interdependency on standard data
objects of the core Software package.

Infrastructures that might need to be updated can include
metadata repository frameworks, such as for example MDRS
and XRepository. Both a meta data repository framework as
well as the contents of such a framework can be fully inte
grated into design time. Changes can be delivered as part of a
main interface Software component, that can in some imple
mentations be provided in the advanced business application
programming (ABAP) language, as is for example Business
ByDesignTM available from SAP AG (Walldorf, Germany).
Such changes can be applied using one or more software
deployment tools, such as service provisioning and account
management (SPAM), which can in some examples be imple
mented in an ABAP environment.

Lifecycle management events can include one or more
phases of actions to be performed in each of the customer
tenants of the multi-tenant system and can result in transition
ing the multi-tenant system and all of its customer tenants
from a current state or version to a target State or version. Such
lifecycle management events can include, but are not limited
to, business configuration (BC) deployments, application-to
application (A2A) regeneration, or Fast Search Infrastructure
(FSI) loads. A multiplexer 312, such as for example that
shown in FIG. 3, can be used used to start and monitor the
actions required to implement desired lifecycle management
events synchronously for all tenants and to propagate the
protocols into a single protocol. However, after such LM
actions are initiated, a further issue can arise with monitoring
progress of the LM actions across the multiple customer
tenants. As each customer tenant can include customer-spe
cific extensions that can include dependencies on core soft
ware features, data, data objects, and the like, the progression
of LM actions may not proceed at the same rate or even with
Success across all customer tenants in the multi-tenant sys
tem.

With a large number of LM actions being performed in
parallel across a large number of customer tenants, analyzing
and/or finding solutions to errors, faults, interruptions, or the
like to the process of executing the LM actions can be very
labor intensive. Additionally, if multiple sequential LM
actions are to be performed, an error causing an interruption
or delay for even one customer tenant can cause the entire
process to be interrupted for all customer tenants unless a
procedure or framework is provided to allow isolation and
analysis of customer tenants experiencing erroneous execu
tion of an LM action independent of the progression of
executing Subsequent LM actions for customer tenants that
have not experienced an error or interruption.
To complete the transition process from the current state or

version of the core software platform to the target state, the
transition is advantageously applied to each customer tenant.
This transition process can include both tenant independent
steps or actions and tenant dependent steps or actions. Tenant

US 8,522,070 B2
7

independent steps or actions can include, but are not limited
to, changes, modifications, upgrades, etc. to the core Software
platform and to business objects that are not tenant modifi
able. Tenant-dependent steps or actions can include, but are
not limited to business configuration features including data
and data objects, and fast search infrastructure loads, which
can be customized for the organization assigned to each cus
tomer tenant. Each customer tenant can have its own business
configuration, data, which has to be loaded into the FSI.
As part of the transition process from the current state of

the core software platform to the target or updated state of the
core software platform, a shadow copy or "snapshot' of the
multi-tenant system can be made. The shadow copy, which
can include all functionality, data objects, data, and the like of
the active version of the multi-tenant system as of the time
that the shadow copy is prepared, can be upgraded in parallel
to productive use of the active system. After the shadow
system has been upgraded, it can be copied back to the active/
productive system to complete the transition to the target
version.

In the shadow system, the tenant independent features can
be transitioned to the target version in a first phase. After the
tenant independent processes are completed, processing of
the tenant-dependent aspects can be initiated in parallel in a
“tenant-dependent' second phase. A multiplexer 312 can call
an update program for each customer tenant in batch mode to
initiate transitioning of the tenant-dependent content for each
customer tenant in parallel. If all of the customer tenants of
the multi-tenant system are successfully transitioned to the
target State, the active system is placed into a downtime,
inactive state during which all of the content. Such as for
example, functionality, data objects, data tables, etc. from the
shadow system are copied back into the active system.

However, it is not always the case that the parallel process
ing of all customer tenants in the multi-tenant system pro
ceeds to completion uninterrupted by errors. According to
implementations of the current Subject matter, errors in the
processing of one or more customer tenants during the tenant
dependent second phase can be handled by phasing out or
deactivating the transition process in the customer tenant or
tenants that have experienced errors. Error analysis can be
performed in parallel to the continuing processing of the
transition for the other customertenants that are unaffected by
the error.
A tenant rescue framework according to one or more

implementations of the current Subject matter can show the
current multiplexer execution status for all customer tenants
and thereby enable an administrator of the multi-tenant sys
tem to inactivate customer tenants experiencing errors. These
inactivated customer tenants can then be bypassed by the
multiplexer 312 so that processing the lifecycle management
event can be continued for the other customer tenants of the
multi-tenant system. Further errors occurring in later phases
of the LM process can also require inactivation of additional
customer tenants in the same way. Once the remaining cus
tomer tenants reach the end of the initial lifecycle manage
ment event successfully, or alternatively in parallel to the
processing of the initial lifecycle management event for the
remaining customer tenants, the problems of the inactive
customer tenants can be addressed, for example by importing
corrections. Such corrections may not cure the issues with
one or more customer tenants which can therefore have to
remain inactivated.

Reprocessing of inactivated customer tenants can be per
formed either after completion of the LM process or during
the LM process. This can be necessary in Some instances to
ensure that all customer tenants are updated with a well

5

10

15

25

30

35

40

45

50

55

60

65

8
defined systems state that is valid for all of customer tenants.
The current Subject matter provides an approach that can
address this objective. A tenant rescue framework can permit
an administrator to select Subsequences of Sub-phases of the
second phase for each inactive tenant and to execute them in
parallel. Inactive tenants that ultimately pass the last phase in
the sequence can have their states changed from inactive to
active.

FIG. 4 shows a process flow chart 400 illustrating a method
consistent with implementations of the current Subject matter.
At 402, a multi-tenant system that includes an application
server and a data repository can be switched to a downtime
state to implement a transition from a current state to a target
state of a core software platform. The application server can
provide access for each of a plurality of organizations to one
of a plurality of customer tenants. Each of the plurality of
customer tenants can include an organization-specific busi
ness configuration of the core software platform. The data
repository can store core software platform content relating to
the operation of the core software platform that is common to
all of the plurality of customer tenants and tenant-specific
content that relates to the organization-specific business con
figuration and that is available to only one of the plurality of
customer tenants. At 404, during a second phase of the tran
sition, an error associated with the tenant-specific content of
a first customer tenant of the plurality of customer tenants is
identified. The second phase can include modifying, in par
allel and Subsequent to completion of a first phase of the
transition, the tenant-specific content of each of the plurality
of customer tenants according to dependencies of the tenant
specific content on the core software platform content. The
first phase can include modifying the core software platform
content prior to the second phase. At 406, the second phase
can be suspended for the first customer tenant while continu
ing the second phase for a remainder of the plurality of cus
tomer tenants for which an error has not been identified.
Optional features can include analyzing, in an error analysis
copy of the multi-tenant system, the error associated with the
tenant-specific content of the first customer tenant and
attempting to remediate the error for the first customer tenant
based on the analysis results. At 410, after a scheduled dura
tion of the downtime state, the multi-tenant system can be
reactivated Such that the multi-tenant system includes the
remainder of the plurality of customer tenants with the tran
sition implemented and the first customer tenant either with
the transition implemented if the error has been corrected or
without the transition implemented error has not been cor
rected.

FIG.5 shows a screenshot of a table 500 in a user interface
for managing tenant rescue operations according to an imple
mentation of the current subject matter. The current execution
status of all, or alternatively a Subset of customer tenants of
the multi-tenant system can be displayed. The table 500
includes a tenant activity column 502 indicating whether each
customer tenant is currently active or inactive. Via the user
interface, a system administrator or other authorized user
(hereinafter referred to as a “user') can change the status of
each customer tenant, for example, the “sequence' 504,
“position'506, and “phase name'510 columns in FIG.5 can
indicate the progress attained by each customer tenant during
the tenant dependent part of the transition from the current
state to the target state of the core software platform. If an
error has caused the progression of the transition to stop for
one or more of the customer tenants, an indication can be
shown in the "error column 512. Refreshing of the screen,
for example using a clickable user interface element, key
board command, or the like, can enable updating of the Screen

US 8,522,070 B2

to reflect recent changes in the processing status due to activi
ties of the multiplexer 312 as it progresses through the
required actions associated with the LM event. The current
setting, for example a configuration in which specific cus
tomer tenants are inactivated or activated can be saved or
persisted using similar input functionality. Selections of
phases, sequences, or other actions to be performed by the
multiplexer 312 can be written into a corresponding database
table.

To commence a rescue action for one or more tenants that
have been inactivated, for example due to errors detected
during the tenant-dependent phase of the core software plat
form transition, a user can mark the row in the table corre
sponding to the tenant to be rescued followed by selection a
clickable user interface element, keyboard command, or the
like to commence execution of the rescue operations as
described herein.

Selection and activation of a line entry in the table 500
representing the status of an inactive tenant can in some
variations open an additional window 600 for the particular
tenant, such as for example that shown in the screenshot of
FIG. 6. In this example, a drop down menu button 602 can be
provided to allow a system administrator or other user to
select the phase list. The table can then list all multiplexer
phases of the chosen sequence, such as for example "SWT" in
the sequence column 604 as shown in FIG. 6. In the right
most column 606, the system administrator or other user can
mark which of the available tenant rescues actions should be
executed to rescue the corresponding customer tenant.
Former selections can also be changed.

Phases of upgrade, modification, and correction that are
executed using a tenant multiplexer 312 can also be persisted
in a database table 700, such as for example that shown in the
screenshot of FIG. 7. The database table 700 can optionally
include key fields “Sequence” 702 and “Phase Position” 704
to assign a particular multiplexer phase to a sequence at a
certain position. This position can be used to order the phases
within a sequence. Additionally “Report 706 and “Variant”
710 fields can specify which report and variant is to be
executed for a given phase. In one example, two sequences (or
multiplexer phase lists) can be saved in the table
sequence="SWT" or “switch’ can define the multiplexer
phase list used by the upgrade, and sequence="DLT or
"delta' can contain the multiplexer phases passed during
upgrade, correction, and a new put step of the transport sys
tem.

In various implementations, the tenant multiplexer 312 can
administer a database table that persists the processing status
of planned and executed jobs. This database table can used by
the tenant rescue to extract the data shown in FIG. 7. To do so,
the last report executed by the multiplexerfor a certain tenant
can be retained. The phase list can be used to assign the
corresponding phase. This mapping may not be unique if a
report and variant appears at several positions in the same
sequence (therefore, this condition is advantageously not
allowed to occur), and if the same report is part of several
sequences (this condition can occur when also earlier execu
tion results from a multiplexer state table are taken into con
sideration to determine sequence and phase). Generally, for
all tenants only data from the database table persisting the
processing status of planned and executed jobs is considered.
These data represent in Some variation executions not older
than the starting time of the current lifecycle management
event, if no tenant is inactive, and the starting time of the
earliest lifecycle management event during which a tenant
changed from active to inactive. Tenants not processed by the

10

15

25

30

35

40

45

50

55

60

65

10
multiplexer 312 within this timeframe can optionally repre
sented by empty lines or the like in the user interface dis
played to the user.
As shown in FIG. 6, a user can select Subsequences of

phase lists that should be executed for a corresponding inac
tive tenant. For each phase of execution of the LM event by
the tenant multiplexer 312 only one sequence can be chosen.

Phase subsequences can be entered as described above for
some inactive tenants. Referring back to the table 500 of FIG.
5, the user can now mark (one or many) table lines represent
ing inactive customer tenants. Upon receiving a run condition
selection, for example via the UI, a save can be performed, the
multiplexer phases selected to execute can be ordered by
sequence and phase position, the multiplexer can be called
with the corresponding report and variant for all (if any)
customer tenants for which a phase represented by a combi
nation of sequence and phase position should be executed to
start the executions in parallel such that execution by the
multiplexer 312 is set at “initial as opposed to “restart,” and
the processing status can be analyzed. If the execution fails
for a certain customer tenant, the phases remaining to execute
for that customer tenant can be marked “obsolete” so that they
will not be executed during the current run. The persistency of
the phases the user wants to execute can be updated accord
ingly. The next pair of sequence and phase position can then
be executed and post-processed as above for the remaining
customer tenants. Customer tenants passing the last phase of
the sequence Successfully can be changed to active, and a save
can be performed.

While a user changes tenant specific data in the UI, or if
there are phases running or planned to run for a customer
tenant, no other changes can be allowed until corresponding
saves are performed. A log file can contain log information for
processing of the various phases of a LM event by a tenant
multiplexer 312. Additionally, state changes of customer ten
ants from active to inactive and vice versa can also be stored
in the log file.

FIG. 8 is a process flow chart 800 illustrating aspects of a
further implementation of the current subject matter for a
parallel upgrade process for multiple tenants of a multi-tenant
system with rescue of customer tenants for which issues or
errors arise during deployment of a transition from a current
state of the system to a target state. At 802, deployment of a
lifecycle management event is initiated. This aspect is gener
ally tenant-independent, as indicated by the black border. At
804, workspace consistency checks are performed for the
specific tenants. If any issues are identified by this initial,
pre-downtime check, at 806 the LM event can be stopped to
correct the issue or issues. If the issues are cured, a new LM
event can be scheduled if the current LM event cannot be
completed in a timely manner after immediate resumption. At
810, software is deployed to transition the multi-tenant sys
tem to the target state. This generally can include the system
entering a downtime period where productive use is not avail
able for end users. This aspect, as noted by the black border,
is also tenant independent and can include modifications, etc.
to the core software package content. At 812, if issues are
identified at this stage, the multi-tenant system can be
restored to its current condition—the LM event is terminated
and, if possible, rescheduled.
At 814, the transition process Switches to a tenant-depen

dent phase at which workspace upgrades, transitions, etc. are
performed in parallel for the customer tenants. These
upgrades and transitions can include modifications to tenant
specific content Such as data, etc. that are associated with
system content, such as for example aspects of the core soft
ware platform functionality that are not tenant customizable

US 8,522,070 B2
11

but that can include tenant-specific data. At 816, business
configuration deployment, table updates, and the like can be
rolled out for each customer tenant. This content can include
data, data objects, and the like that are customizable to com
ply with the business configuration and processes of the orga
nization to which each customer tenant is tasked. Such con
tent can include numerous dependencies on other content that
are changed by the LM event. As such, one or more issues or
errors can arise for one or more of the customer tenants. At
820, if such an issue is of sufficient severity to potentially
impact completion of the LM event for other customertenants
than the customer tenant for which the issue is first identified,
the LM event can be stopped and the system restored at 812.
If necessary, a new LM event can be scheduled.

Alternatively, if the issue is determined at 820 to be tenant
specific and unlikely to cause issues for other customer ten
ants, at 822 a determination is made whether the issue can be
solved during the scheduled downtime. If so, after resolution
of the issue, the customer tenant can be reactivated for the
transition process and the step or function for which the issue
arose can be re-triggered at 824. If the issue can not be
resolved during the scheduled downtime, a determination is
made at 826 whether the customer tenant experiencing the
issue can be released at 830 for end user productive use,
perhaps with restrictions on functionality. If the customer
tenant cannot be released at 832, a determination can be made
at 834 of how to proceed. Options can include restoring the
entire system at 836, moving the customer tenant to an alter
nate system that has not undergone the LM event at 840, or
other remediative actions at 842.
AS customer tenants complete the transition process either

without issues arising or with any arising issues remediated,
Such customer tenants can have business content for one or
more third party service providers activated at 844. At 846,
deployment of the transition of the multi-tenant system to the
target state required by the LM event is completed and the
multi-tenant system exits downtime to make all successfully
transitioned customer tenants available for end user produc
tive use.

The subject matter described herein can be embodied in
systems, apparatus, methods, and/or articles depending on
the desired configuration. In particular, various implementa
tions of the subject matter described herein can be realized in
digital electronic circuitry, integrated circuitry, specially
designed application specific integrated circuits (ASICs),
computer hardware, firmware, Software, and/or combinations
thereof. These various implementations can include imple
mentation in one or more computer programs that are execut
able and/or interpretable on a programmable system includ
ing at least one programmable processor, which can be
special or general purpose, coupled to receive data and
instructions from, and to transmit data and instructions to, a
storage system, at least one input device, and at least one
output device.

These computer programs, which can also be referred to
programs, software, Software applications, applications,
components, or code, include machine instructions for a pro
grammable processor, and can be implemented in a high-level
procedural and/or object-oriented programming language,
and/or in assembly/machine language. As used herein, the
term “machine-readable medium” refers to any computer
program product, apparatus and/or device. Such as for
example magnetic discs, optical disks, memory, and Pro
grammable Logic Devices (PLDS), used to provide machine
instructions and/or data to a programmable processor, includ
ing a machine-readable medium that receives machine
instructions as a machine-readable signal. The term

10

15

25

30

35

40

45

50

55

60

65

12
“machine-readable signal” refers to any signal used to pro
vide machine instructions and/or data to a programmable
processor. The machine-readable medium can store Such
machine instructions non-transitorily, such as for example as
would a non-transient Solid state memory or a magnetic hard
drive or any equivalent storage medium. The machine-read
able medium can alternatively or additionally store such
machine instructions in a transient manner, such as for
example as would a processor cache or other random access
memory associated with one or more physical processor
COCS.

To provide for interaction with a user, the subject matter
described herein can be implemented on a computer having a
display device, such as for example a cathode ray tube (CRT)
ora liquid crystal display (LCD) monitor for displaying infor
mation to the user and a keyboard and a pointing device. Such
as for example a mouse or a trackball, by which the user may
provide input to the computer. Other kinds of devices can be
used to provide for interaction with a user as well. For
example, feedback provided to the user can be any form of
sensory feedback, Such as for example visual feedback, audi
tory feedback, or tactile feedback; and input from the user
may be received in any form, including, but not limited to,
acoustic, speech, or tactile input.
The subject matter described herein can be implemented in

a computing system that includes a back-end component,
Such as for example one or more data servers, or that includes
a middleware component, such as for example one or more
application servers, or that includes a front-end component,
Such as for example one or more client computers having a
graphical user interface or a Web browser through which a
user can interact with an implementation of the subject matter
described herein, or any combination of Such back-end,
middleware, or front-end components. The components of
the system can be interconnected by any form or medium of
digital data communication, Such as for example a commu
nication network. Examples of communication networks
include, but are not limited to, a local area network (“LAN”),
a wide area network (“WAN”), and the Internet.
The computing system can include clients and servers. A

client and server are generally, but not exclusively, remote
from each other and typically interact through a communica
tion network. The relationship of client and server arises by
virtue of computer programs running on the respective com
puters and having a client-server relationship to each other.
The implementations set forth in the foregoing description

do not represent all implementations consistent with the Sub
ject matter described herein. Instead, they are merely some
examples consistent with aspects related to the described
subject matter. Although a few variations have been described
in detail above, other modifications or additions are possible.
In particular, further features and/or variations can be pro
vided in addition to those set forth herein. For example, the
implementations described above can be directed to various
combinations and Subcombinations of the disclosed features
and/or combinations and subcombinations of several further
features disclosed above. In addition, the logic flows depicted
in the accompanying figures and/or described herein do not
necessarily require the particular order shown, or sequential
order, to achieve desirable results. Other implementations
may be within the scope of the following claims.

What is claimed is:
1. A computer program product comprising a non-transi

tory machine-readable medium storing instructions that,
when executed by at least one processor, cause the at least one
processor to perform operations comprising:

US 8,522,070 B2
13

Switching a multi-tenant system that comprises an appli
cation server and a data repository to a downtime state to
implement a transition from a current state to a target
state of a core software platform, the application server
providing access for each of a plurality of organizations
to one of a plurality of customer tenants, each of the
plurality of customer tenants comprising an organiza
tion-specific business configuration of the core software
platform, the data repository storing core Software plat
form content relating to the operation of the core soft
ware platform that is common to all of the plurality of
customer tenants and tenant-specific content that relates
to the organization-specific business configuration and
that is available to only one of the plurality of customer
tenants,

identifying, during a second phase of the transition, an
error associated with the tenant-specific content of a first
customer tenant of the plurality of customer tenants, the
second phase comprising modifying, in parallel and Sub
sequent to completion of a first phase, the tenant-specific
content of each of the plurality of customer tenants
according to dependencies of the tenant-specific content
on the core software platform content;

Suspending the second phase for the first customer tenant
while continuing the second phase for a remainder of the
plurality of customer tenants for which an error has not
been identified; and

reactivating, after a scheduled duration of the downtime
state, the multi-tenant system such that the multi-tenant
system comprises the remainder of the plurality of cus
tomer tenants with the transition implemented and the
first customer tenant either with the transition imple
mented if the error has been corrected or without the
transition implemented if the error has not been cor
rected.

2. A computer program product as in claim 1, wherein the
operations further comprise completing a first phase of the
transition, the first phase comprising modifying the core soft
ware platform content prior to the second phase.

3. A computer program product as in claim 1, wherein the
operations further comprise analyzing, in an error analysis
copy of the multi-tenant system, the error associated with the
tenant-specific content of the first customer tenant.

4. A computer program product as in claim 1, wherein the
transition comprises a lifecycle management event compris
ing at least one of a business configuration deployment, an
application-to-application (A2A) regeneration, or a Fast
Search Infrastructure (FSI) load.

5. A computer program product as in claim 1, wherein the
operations further comprise commencing, if the error has not
been corrected, a reprocessing of the first customer tenant, the
reprocessing comprising performing troubleshooting to cor
rect the error and continuing the second phase for the first
CuStOmer tenant.

6. A computer program product as in claim 1, wherein the
operations further comprise:

receiving a selection from an administrator of a first Sub
sequence of first Sub-phases of the second phase for the
first customer tenant and a second Subsequence of Sec
ond Sub-phases of the second phase for a second cus
tomer tenant for which the second phase has also been
Suspended; and

executing the first Subsequence on the first customer tenant
in parallel with the second Subsequence on the second
CuStOmer tenant.

7. A computer program product as in claim 1, wherein the
operations further comprise, importing at least one correction

10

15

25

30

35

40

45

50

55

60

65

14
for application to the first customer tenant while the second
phase for the first customer tenant has been Suspended, the at
least one correction addressing the error.

8. A computer program product as in claim 1, wherein the
multi-tenant system hosts the plurality of customer tenants,
which are accessible by the plurality of organizations over a
network from client machines.

9. A system comprising:
at least one processor, and
a machine-readable medium storing instructions that,
when executed by the at least one processor, cause the at
least one processor to perform operations comprising:

Switching a multi-tenant system that comprises an appli
cation server and a data repository to a downtime state to
implement a transition from a current state to a target
state of a core software platform, the application server
providing access for each of a plurality of organizations
to one of a plurality of customer tenants, each of the
plurality of customer tenants comprising an organiza
tion-specific business configuration of the core software
platform, the data repository storing core Software plat
form content relating to the operation of the core soft
ware platform that is common to all of the plurality of
customer tenants and tenant-specific content that relates
to the organization-specific business configuration and
that is available to only one of the plurality of customer
tenants,

identifying, during a second phase of the transition, an
error associated with the tenant-specific content of a first
customer tenant of the plurality of customer tenants, the
second phase comprising modifying, in parallel and Sub
sequent to completion of a first phase, the tenant-specific
content of each of the plurality of customer tenants
according to dependencies of the tenant-specific content
on the core software platform content;

Suspending the second phase for the first customer tenant
while continuing the second phase for a remainder of the
plurality of customer tenants for which an error has not
been identified; and

reactivating, after a scheduled duration of the downtime
state, the multi-tenant system such that the multi-tenant
system comprises the remainder of the plurality of cus
tomer tenants with the transition implemented and the
first customer tenant either with the transition imple
mented if the error has been corrected or without the
transition implemented if the error has not been cor
rected.

10. A system as in claim 9, wherein the operations further
comprise completing a first phase of the transition, the first
phase comprising modifying the core software platform con
tent prior to the second phase.

11. A system as in claim 9, wherein the operations further
comprise analyzing, in an error analysis copy of the multi
tenant system, the error associated with the tenant-specific
content of the first customer tenant.

12. A system as in claim 9, wherein the transition com
prises a lifecycle management event comprising at least one
of a business configuration deployment, an application-to
application (A2A) regeneration, or a Fast Search Infrastruc
ture (FSI) load.

13. A system as in claim 9, wherein the operations further
comprise commencing, if the error has not been corrected, a
reprocessing of the first customer tenant, the reprocessing
comprising performing troubleshooting to correct the error
and continuing the second phase for the first customer tenant.

14. A system as in claim 9, wherein the operations further
comprise:

US 8,522,070 B2
15

receiving a selection from an administrator of a first Sub
sequence of first Sub-phases of the second phase for the
first customer tenant and a second Subsequence of Sec
ond Sub-phases of the second phase for a second cus
tomer tenant for which the second phase has also been 5
Suspended; and

executing the first Subsequence on the first customer tenant
in parallel with the second Subsequence on the second
CuStOmer tenant.

15. A system as in claim 9, wherein the operations further 10 comprise, importing at least one correction for application to
the first customer tenant while the second phase for the first
customer tenant has been Suspended, the at least one correc
tion addressing the error.

16. A computer-implemented method comprising:
Switching a multi-tenant system that comprises at least one

processor, an application server implemented on the at
least one processor, and a data repository to a downtime
state to implement a transition from a current state to a
target state of a core Software platform, the application
server providing access for each of a plurality of orga
nizations to one of a plurality of customer tenants, each
of the plurality of customer tenants comprising an orga
nization-specific business configuration of the core soft
ware platform, the data repository storing core software
platform content relating to the operation of the core
software platform that is common to all of the plurality
of customer tenants and tenant-specific content that
relates to the organization-specific business configura
tion and that is available to only one of the plurality of
customer tenants,

identifying, during a second phase of the transition, an
error associated with the tenant-specific content of a first
customer tenant of the plurality of customer tenants, the
second phase comprising modifying, in parallel and Sub
sequent to completion of a first phase, the tenant-specific
content of each of the plurality of customer tenants
according to dependencies of the tenant-specific content
on the core software platform content;

Suspending the second phase for the first customer tenant
while continuing the second phase for a remainder of the
plurality of customer tenants for which an error has not
been identified; and

15

25

30

35

40

16
reactivating, after a scheduled duration of the downtime

state, the multi-tenant system such that the multi-tenant
system comprises the remainder of the plurality of cus
tomer tenants with the transition implemented and the
first customer tenant either with the transition imple
mented if the error has been corrected or without the
transition implemented if the error has not been cor
rected.

17. A computer-implemented method as in claim 16, fur
ther comprising completing a first phase of the transition, the
first phase comprising modifying the core Software platform
content prior to the second phase.

18. A computer-implemented method as in claim 16, fur
ther comprising analyzing, in an error analysis copy of the
multi-tenant system, the error associated with the tenant
specific content of the first customer tenant.

19. A computer-implemented method as in claim 16,
wherein the transition comprises a lifecycle management
event comprising at least one of a business configuration
deployment, an application-to-application (A2A) regenera
tion, or a Fast Search Infrastructure (FSI) load.

20. A computer-implemented method as in claim 16, fur
ther comprising commencing, if the error has not been cor
rected, a reprocessing of the first customer tenant, the repro
cessing comprising performing troubleshooting to correct the
error and continuing the second phase for the first customer
tenant.

21. A computer-implemented method as in claim 16, fur
ther comprising:

receiving a selection from an administrator of a first Sub
sequence of first Sub-phases of the second phase for the
first customer tenant and a second Subsequence of Sec
ond Sub-phases of the second phase for a second cus
tomer tenant for which the second phase has also been
Suspended; and

executing the first Subsequence on the first customer tenant
in parallel with the second Subsequence on the second
CuStOmer tenant.

