

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 9/00		A2	(11) International Publication Number: WO 00/39285
			(43) International Publication Date: 6 July 2000 (06.07.00)
(21) International Application Number: PCT/GB99/04399			(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 23 December 1999 (23.12.99)			
(30) Priority Data: 9828712.1 24 December 1998 (24.12.98) GB 9828715.4 24 December 1998 (24.12.98) GB 9828713.9 24 December 1998 (24.12.98) GB			
(71) Applicant (for all designated States except US): UNIVERSITY COLLEGE LONDON [GB/GB]; Gower Street, London WC1E 6BT (GB).			
(72) Inventors; and (75) Inventors/Applicants (for US only): SCHOFIELD, Julian [GB/GB]; 59 Moorgreen House, Wynnyatt Street, London EC1V 7JA (GB). RADEMACHER, Thomas, William [US/GB]; Foxcombe, The Ridgeway, Boars Hill, Oxford OX1 5EY (GB).			Published <i>Without international search report and to be republished upon receipt of that report.</i>
(74) Agents: KIDDLE, Simon, J. et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).			
(54) Title: GLYCOSYL PHOSPHATIDY LINOSITOL SPECIFIC PHOSPHOLIPASE D PROTEINS AND USES THEREOF			
(57) Abstract			
<p>Glycosyl phosphatidyl linositol specific phospholipase D (GPI-PLD) proteins and their medical uses are disclosed, in particular in the treatment and diagnosis of diabetes and complications of diabetes such as insulin resistance, liver dysfunction, disorders involving pancreatectomies and conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, such as septic shock. The present invention further relates to variant GPI-PLD polypeptides modified at the phosphorylation site at amino acids 689-692 of the mature human wild-type protein.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Glycosylphosphatidylinositol Specific Phospholipase D
Proteins and Uses Thereof

Field of the Invention

5 The present invention relates to glycosylphosphatidylinositol specific phospholipase D (GPI-PLD) proteins and uses of these proteins, in particular in the treatment and diagnosis of diabetes and complications of diabetes such as insulin resistance, 10 liver dysfunction, disorders involving pancreatectomies and conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, such as septic shock. The present invention further relates to variant GPI-PLD polypeptides.

15

Background of the Invention

Studies have shown that a number of cell surface proteins are attached to the cell membrane by covalent linkage to a glycosylphosphatidylinositol (GPI) anchor. It has been 20 shown that the enzyme GPI-PLD cleaves the phosphodiester bond linking glycosylphosphatidylinositol to phosphatidic acid, thereby releasing anchored proteins.

25 GPI-PLD enzymes are abundantly present in human and bovine serum (5-10mg/ml in human serum). US Patent No: 5,418,147 (Huang et al) describes the purification of GPI-PLD from bovine liver, and the subsequent cloning of three GPI-PLD enzymes from bovine liver, human liver and human pancreas cDNA libraries. This patent reports the 30 full length cDNA and amino acid sequences of the GPI-PLDs from human and bovine liver, and the partial cDNA and amino acid sequences of the human pancreatic form of the enzyme. Subsequently, the full length sequence of the pancreatic form of GPI-PLD was reported in Tsang et al 35 (1992), and this enzyme has been found in cDNA libraries from breast, eye, spleen and tonsil. The three forms of

the enzymes are highly homologous with the predicted mature protein sequences of bovine liver GPI-PLD sharing 82% sequence identity with the human liver enzyme and 81% sequence identity with the human pancreatic enzyme. The 5 amino acid sequences of human liver and pancreatic forms of GPI-PLD were deposited at GenBank under accession numbers L11701 and L11702 and consist of 841 and 840 amino acids respectively. The human liver and pancreatic forms of GPI-PLD share 94.6% sequence identity. The 10 structure of GPI-PLDs is further discussed in Scallon et al, 1991.

However, despite cloning three forms of GPI-PLD, there is no suggestion in these references as to the *in vivo* role 15 of the enzymes. Further, the only application of the enzymes suggested is in an expression system in which a heterologous protein is expressed in a host cell as a fusion with a GPI-signal peptide, leading to the heterologous protein becoming anchored to the cell 20 membrane by a GPI anchor, where it can be cleaved off by coexpressed or added GPI-PLD.

GPI-PLD has also been isolated from human serum by Hoener 25 et al (1992) and this form of the enzyme was found to be identical to the human pancreatic GPI-PLD apart from changes at 531 to 534 where VIGS is replaced by MLGT. This paper also showed that treatment of serum GPI-PLD with N-glycosidase F reduced the apparent molecular weight from 123 kD to 87 kD. Similarly, Li et al (1994) 30 have shown that GPI-PLD was cleaved by trypsin into 3 fragments (2 x 40 kD and 30 kD), and Heller et al (1994) have shown that 33, 39 and 47kD species were produced, with only the N-terminal 39 kD fragment moiety showing enzyme activity after renaturation.

It has been proposed that one function of GPI-PLD enzyme is to produce inositolphosphoglycans (IPGs) by the cleavage of "free" GPIs in the plasma membrane in response to binding of a growth factor to its receptor 5 (Rademacher et al, 1994). This role for GPI-PLD has been demonstrated in mast cells where IgE-dependent activation of these cells results in release of their granule contents, which include substances such as histamine, a mediator of the inflammatory response. In the presence 10 of antigen, histamine is released; this release can be mimicked by addition of IPGs and is blocked by addition of anti-GPI-PLD antibodies (Lin et al, 1991).

The role of GPI-PLD in cleaving GPI-anchored proteins, 15 and especially inositolphosphoglycans (IPGs), is examined in Jones et al (1997). However, the authors reflect the uncertainty in the art regarding the mechanism of IPG generation, noting that "The definitive activated enzyme, being a GPI-PLC or a GPI-PLD, has yet to be unequivocally 20 identified" and that "little attention has been payed to the role of GPI-PLD as the hydrolysing enzyme".

In summary, despite the cloning of GPI-PLD enzymes and investigation as to their biochemical properties, the 25 role of the enzyme *in vivo* or any possible medical use remains unknown.

Summary of the Invention

Broadly, the present invention relates to GPI-PLD for 30 medical use, and in particular for the treatment of conditions which respond to GPI-PLD or which are characterised by reduced levels of active GPI-PLD in patients. The present invention relates in particular to the use of GPI-PLD in the treatment and diagnosis of 35 diabetes and complications of diabetes, liver dysfunction

and disorders involving pancreatectomies, conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, such as septic shock. The GPI-PLD can be the forms of the enzyme disclosed in the 5 prior art, or the GPI-PLDs disclosed for the first time here, including GPI-PLD variants which have a reduced susceptibility to phosphorylation by cAMP dependent protein kinase (PKA).

10 Accordingly, in first aspect, the present invention provides GPI-PLD for use in a method of medical treatment.

15 In a further aspect, the present invention provides a nucleic acid molecule encoding GPI-PLD for use in a method of medical treatment.

20 In a further aspect, the present invention provides the use of glycosylphosphatidylinositol specific phospholipase D (GPI-PLD) for the preparation of a medicament for the treatment of conditions that respond to GPI-PLD or which are characterised by reduced levels of active GPI-PLD as compared to a normal patient.

25 In a first embodiment, the present invention relates to the role of GPI-PLD in diabetes and diabetic complications.

30 Insulin is a major anabolic hormone and has both mitogenic and metabolic effects. Whilst much effort has been directed towards study of the cascade of intracellular phosphorylation events initiated by the binding of insulin to its cell surface receptor, the signalling arm mediated by IPGs has been largely 35 overlooked. In one aspect, the present invention is

based on the realisation that GPI-PLDs are in fact the enzymes responsible for production of IPGs second messengers following the binding of insulin to its receptor. The IPGs then interact with other cellular enzymes instigating some of the metabolic effects of the hormone. In particular, diabetic complications such as insulin resistance may be caused by deficiencies in GPI-PLD. Pancreatic islet cells produce and secrete GPI-PLD, which is transported in blood complexed with apolipoprotein A1, and may therefore represent the major source of circulating enzyme.

Insulin resistance is seen in both the early stages of type I (IDDM) and type II diabetes mellitus (NIDDM). If 15 GPI-PLD levels are depleted by the destruction of pancreatic b-cells, as is seen in streptozotocin-treated rats, then this could be an important factor in the development of insulin resistance. This in turn suggests the treatment of such patients with GPI-PLD, optionally 20 in combination with other diabetes therapies.

In a further aspect, the present invention provides the use of GPI-PLD for the preparation of a medicament for the treatment of diabetes, and in particular insulin 25 dependent forms of diabetes.

In a further aspect, the present invention provides the use of GPI-PLD for the preparation of a medicament for the treatment of complications of diabetes, and in 30 particular the treatment of insulin resistance.

In a further aspect, the present invention provides a method of treating a patient having diabetes or complications arising from diabetes, the method 35 comprising administering to the patient a therapeutically

effective amount of GPI-PLD.

In all of the above aspects, GPI-PLD can be administered alone or in conjunction with other treatments for 5 diabetes or diabetic complications, either sequentially or simultaneously.

In a further aspect, the present invention provides a kit comprising a composition including GPI-PLD and a second 10 composition for the treatment of diabetes.

In a further aspect, the present invention provides the use of GPI-PLD levels or the levels of a product of GPI-PLD action, for example IPG or acyl-IPG, in the diagnosis 15 of diabetes or diabetic complications. Thus, the present invention provides a method of diagnosing diabetes or diabetic complications, the method comprising determining the presence or amount of GPI-PLD or a product of GPI-PLD action in a biological sample from a 20 patient. This determination can help in the diagnosis or prognosis of the patient, allowing the treatment of the patient to be tailored accordingly to the patient's individual needs.

25 In a second embodiment, the present invention relates to the role of GPI-PLD in liver dysfunction and conditions involving pancreatectomies.

30 Thus, in a further aspect, the present invention provides the use of GPI-PLD for the preparation of a medicament for the treatment of liver dysfunction. Preferably, the GPI-PLD is administered in combination with apolipoprotein A1.

35 Treatment with GPI-PLD may also be applicable for

patients with pancreatectomies and disorders associated with this state, in which case it is preferably administered with apolipoprotein A1 or another suitable carrier such as a liposome.

5

In a further aspect, the present invention provides a method of treating a patient having liver dysfunction, the method comprising administering to the patient a therapeutically effective amount of GPI-PLD.

10

In all of the above aspects, GPI-PLD can be administered alone or in conjunction with other treatments for liver dysfunction, either sequentially or simultaneously.

15

In a further aspect, the present invention provides a kit comprising a composition including GPI-PLD, and optionally apolipoprotein A1, and a second composition for the treatment of liver dysfunction.

20

In a further aspect, the present invention provides a pharmaceutical composition comprising a nucleic acid molecule encoding a GPI-PLD protein and apolipoprotein A1.

25

In a further embodiment, the present invention relates to the role of GPI-PLD in conditions mediated by a product of an infectious organism, such as septic shock.

30

Thus, in a further aspect, the present invention provides the use of GPI-PLD in the treatment of conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD. The GPI-PLD can be of the forms of the enzyme disclosed in the prior art, or the GPI-PLDs disclosed for the first time here. An example of such a condition includes septic shock which commonly

35

occurs following abdominal surgery, severe burns, trauma or cardiac failure. Septic shock is generally preceded by a reduction in splanchnic blood flow, resulting in ischaemia and epithelial damage on reperfusion, allowing ingress of microorganisms and subsequent sepsis.

5 The present invention is based on the observation that in conditions such as septic shock, endotoxin is released from the microorganisms causing sepsis, leading to the clinical symptoms of septic shock such as total organ failure and fatal shock. The endotoxins can be glycolipids released from gram negative bacteria or glycolipids such as LAM released from *Mycobacteria* such as *Tuberculosis*. Without wishing to be bound by any particular theory, these endotoxins are believed to act 10 by inhibiting GPI-PLD.

15 At present, despite many attempts in the art to develop a treatment for septic shock and other related conditions, there are no approved treatments available. In particular, a reliable diagnostic test for determining whether a patient has or is at risk of developing conditions such as septic shock would be useful as an early warning of the condition and to allow timely treatment to be given.

20 25 Accordingly, in a further aspect, the present invention provides the use of GPI-PLD for the preparation of a medicament for the treatment of a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD.

30 35 In a further aspect, the present invention provides a method of treating a patient having a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, the method comprising

administering to the patient a therapeutically effective amount of GPI-PLD.

5 In the above aspects, the product of the infectious organism is typically an endotoxin, such as the glycolipids produced by gram negative or mycobacteria mentioned above.

10 In a further aspect, the present invention provides the use of GPI-PLD or IPG levels in the diagnosis of conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, and especially to the diagnosis of septic shock and/or distinguishing between different forms of septic shock.

15 By way of example, the GPI-PLD or a product of GPI-PLD action can be determined by measuring the amount of the material and/or a characteristic activity of the material in the biological sample.

20 Thus, the present invention provides a method of diagnosing a condition mediated by a product of an infectious organism, the method comprising determining the presence or amount of GPI-PLD or a product of GPI-PLD action in a biological sample from a patient. This determination can help in the diagnosis or prognosis of the patient, allowing the treatment of the patient to be tailored accordingly to the patient's individual needs. IPGs or the acyl IPGs produced by GPI-PLD action can be used in this diagnosis as the inhibition of GPI-PLD by endotoxins is likely to cause the level of IPGs (e.g. in urine, blood etc) to drop since the GPI-PLD causes the release of IPG precursors. Thus, monitoring either or both of the level of GPI-PLD or the IPGs provides a way of assessing the likelihood of developing conditions such as septic shock or their prognosis. A determination of

25

30

35

the amount of GPI-PLD can be carried out using immobilised binding agents or by determining one or more of the activities associated with GPI-PLD and/or IPGs (see further below).

5

In a further general aspect, the present invention provides an expression vector comprising nucleic acid encoding GPI-PLD for use in a method of gene therapy, e.g. in the treatment of patients unable to produce sufficient GPI-PLD. The GPI-PLD encoding nucleic acid can be a sequence shown in Figures 4 to 6 or one of the known nucleic acid sequences.

In a further general aspect, the present invention provides a cell line for transplantation into a patient, wherein the cell line is transformed with nucleic acid encoding GPI-PLD, and is capable of expressing and secreting GPI-PLD. In one embodiment, the cell line is encapsulated, e.g. in a biocompatible polymer, so that the GPI-PLD produced by the cell line can be secreted into the patient, while preventing rejection by the immune system of the host. Methods for encapsulating cells in biocompatible polymers are described in WO93/16687 and WO96/31199.

25

In a further general aspect, the present invention provides a pharmaceutical composition comprising a nucleic acid molecule encoding a GPI-PLD protein.

30 In a further aspect, the present invention provides a pharmaceutical composition comprising a GPI-PLD protein.

35 The present invention also relates to novel GPI-PLD proteins and nucleic acid molecules, and in particular to forms of the protein having sequence differences compared

to the known human liver and pancreatic forms reported in the prior art.

5 In a further aspect, the present invention provides a substance which is an isolated polypeptide comprising a polypeptide having the amino acid sequence set out in Figure 3.

10 In a further aspect, the present invention provides isolated nucleic acid molecules encoding any one of the above polypeptides. Examples of such nucleic acid sequences are the nucleic acid sequences set out in Figures 4 to 6. The present invention also includes nucleic molecules having, for example, greater than 90% 15 sequence identity with the nucleic acid sequences shown in these figures.

20 In further aspects, the present invention provides an expression vector comprising the above GPI-PLD proteins, nucleic acid operably linked to control sequences to direct its expression, and host cells transformed with the vectors. The present invention also includes a method of producing the above GPI-PLD proteins comprising culturing the host cells and isolating the GPI-PLD thus 25 produced.

30 We have now also identified a phosphorylation site on GPI-PLD acted on by cAMP protein dependent kinase (PKA) which switches off the activity of the enzyme. This in turn makes it possible to make GPI-PLD variants having a reduced tendency to be phosphorylated, and consequently have an improved activity profile, and utility *in vitro* or *in vivo*.

35 Accordingly, the present invention provides variant GPI-

PLD polypeptides differing in amino acid sequence in the region corresponding to amino acid residues 689-692

(RRFS) of mature human wild-type GPI-PLD (corresponding to residues 713-716 of the sequence shown in Figure 7).

5 These proteins have a reduced tendency or cannot be phosphorylated by the PKA (which is itself activated by the A-type IPGs released by GPI-PLD), and so are likely to have increased activity or half-life when used *in vitro* or *in vivo*.

10 Thus, present invention identifies for the first time a region between amino acids 689-692 which when modified, e.g. by a substitution, deletion or insertion of one or more amino acids, disrupts the phosphorylation site in 15 this region. Preferred modifications are substitutions, and in particular substitutions to change the serine residue at position 692 to an amino acid other than serine or threonine.

20 Accordingly, in a first aspect, the present invention provides a variant GPI-PLD polypeptide comprising a modification within the motif RRFS present at amino acids 689 to 692 of wild-type mature human GPI-PLD.

25 In a further aspect, the present invention provides an isolated nucleic acid molecule encoding the variant GPI-PLD polypeptide.

30 In a further aspect, the present invention provides an expression vector comprising nucleic acid encoding a variant GPI-PLD polypeptide, operably linked to control sequences to direct its expression.

35 In further aspects, the present invention provides host cells transformed with said nucleic acid encoding a GPI-

PLD variant polypeptide, and methods of producing a variant GPI-PLD polypeptide comprising culturing the host cells so that the variant GPI-PLD polypeptide is expressed and isolating the polypeptide thus produced.

5 The method may comprise the further step of then formulating the variant GPI-PLD polypeptide in a composition.

10 In a further aspect, the present invention provides the above variant GPI-PLD polypeptides or the nucleic acid molecules encoding them for use in methods of medical treatment, in particular the conditions described above.

15 In a further aspect, the present invention provides the use of a variant GPI-PLD polypeptide, or a nucleic acid molecule encoding it, for the preparation of a medicament for the treatment of conditions that respond to GPI-PLD.

20 These and other aspects of the present invention are described in more detail below.

25 By way of example, embodiments of the present invention will now be described in more detail with reference to the accompanying figures.

Brief Description of the Figures

Figure 1 shows an alignment of the deduced amino acid sequences of GPI-PLD encoded by cDNA clone A1 and the bovine and human liver GPI-PLD sequences disclosed in US Patent No: 5,418,147 (Huang et al).

30 Figure 2 shows the nucleic acid sequence from cDNA clone A1 aligned with the pancreatic forms of GPI-PLD disclosed in US Patent No: 5,418,147 (Huang et al) (partial sequence) and the corresponding full length nucleic acid

35

sequence deposited at GenBank.

5 Figure 3 shows the amino acid sequences of the GPI-PLDs in clones a1, b2 and d3, and consist of 840, 795 and 510 amino acids respectively.

Figure 4 shows the nucleic acid sequence of cDNA clone a1 encoding GPI-PLD, consisting of 2832 bp.

10 Figure 5 shows the nucleic acid sequence of cDNA clone b2 encoding GPI-PLD, consisting of 2472 bp.

Figure 6 shows the nucleic acid sequence of cDNA clone d3 encoding GPI-PLD, consisting of 1942 bp.

15 Figure 7 shows an alignment of the deduced amino acid sequences of GPI-PLDs encoded by cDNA clones a1, b2 and d3 with the pancreatic form of the enzyme deposited at GenBank under accession number 11702.

20 Figure 8 shows an alignment of the nucleic acid sequences from cDNA clones a1, b2 and d3 with the cDNA sequence encoding the human pancreatic form of GPI-PLD deposited at GenBank under accession number L11702.

25 **Detailed Description**

GPI-PLD Proteins

30 The term "GPI-PLD biological activity" is herein defined as the enzymatic activity of GPI-PLD in cleaving the photodiester bond linking glycosylphosphatidylinositol to phosphatidic acid, e.g. releasing a GPI-anchored protein. As noted in Heller et al (1994), this activity has been localised to the N-terminal 39 kD portion of full length GPI-PLD.

35 The medical uses of GPI-PLD described herein can use the

novel GPI-PLD variants or the forms of the enzyme disclosed in the prior art. In either event, the skilled person can use the techniques described herein and others well known in the art to produce large amounts of these 5 proteins, or fragments or active portions thereof, for use as pharmaceuticals, in the developments of drugs and for further study into its properties and role *in vivo*.

In a further aspect of the present invention provides a 10 polypeptide having the amino acid sequence shown in Figure 3, which may be in isolated and/or purified form, free or substantially free of material with which it is naturally associated. In one embodiment, the clone al has an amino acid sequence consisting of 840 amino acids, 15 a 23 amino acid signal peptide and a 817 amino acid mature protein. The present invention relates to both GPI-PLD proteins (and variants thereof) with and without the signal peptide, i.e. comprising amino acids 1-840 or 24-840 as shown in the figures.

20 GPI-PLD proteins which are amino acid sequence variants or alleles can also be used in the present invention. A polypeptide which is a variant or allele may have an amino acid sequence which differs from that given in 25 Figures 1 or 3 by one or more of addition, substitution, deletion and insertion of one or more amino acids. Preferred polypeptides have GPI-PLD enzymatic function as defined above.

30 A GPI-PLD protein which is an amino acid sequence variant or allele of an amino acid sequence shown in Figures 1 or 3 may comprise an amino acid sequence which shares greater than about 70%, greater than about 80%, greater than about 90%, greater than about 95%, greater than 35 about 97%, greater than about 98% or greater than about

99% sequence identity with an amino acid sequence shown in Figures 1 or 3. Sequence comparison and identity calculations were carried out using the Cluster program (Thompson et al, 1994), using the following parameters

5 (Pairwise Alignment Parameters: Weight Matrix: pam series; Gap Open Penalty: 10.00; Gap Extension Penalty: 0.10). Alternatively, the GCG program could be used which is available from Genetics Computer Group, Oxford Molecular Group, Madison, Wisconsin, USA, Version 9.1.

10 Particular amino acid sequence variants may differ from those shown in Figures 1 and 3 by insertion, addition, substitution or deletion of 1 amino acid, 2, 3, 4, 5-10, 10-20 20-30, 30-50, 50-100, 100-150, or more than 150 amino acids.

15 The variant GPI-PLD polypeptides of the present invention differ in amino acid sequence as compared to human GPI-PLD at the phosphorylation site from amino acids 689 to 692 of the mature sequence (corresponding to amino acids 20 713-716 shown in Figure 7), i.e. within the amino acid motif RRFS. The term 'variant GPI-PLD polypeptide' is intended, inter alia, to include polypeptides which are modified within this region by deletion, substitution and/or insertion of one or more amino acids. These 25 sequence differences may be the result of varying the GPI-PLD amino acid sequence of a parent GPI-PLD polypeptide, either a wild type GPI-PLD polypeptide or a GPI-PLD polypeptide comprising one or more other modifications, e.g. by manipulation of the nucleic acid 30 encoding the polypeptide, by altering the polypeptide itself or by the *de novo* synthesis of the variant protein. In preferred embodiments, the GPI-PLD retains, at least in part, one of its biological activities, e.g. by the presence of a functional N-terminal domain.

A deletion may take the form of the deletion of one, two, three or all four amino acids within the region. In some embodiments, the deletion may be part of a larger deletion encompassing a greater part of the GPI-PLD molecule. In a preferred embodiment, the variant GPI-PLD polypeptides have an amino acid sequence which differs from the amino acid sequence of human wild type GPI-PLD by the deletion comprising residues 689 to 692 inclusive.

An insertion may take the form of 1, 2, 3, 4 or 5 or more additional amino acids inserted between amino acids within the RRFS motif to disrupt it.

A substitution may take the form of the substitution of one, two, three or all of the four amino acids within the region corresponding to amino acids 689 to 692 of wild type human GPI-PLD. The substitutions within this region may be part of a more extensive series of substitutions encompassing other parts of the GPI-PLD polypeptide. In particular, mutant forms of GPI-PLD which may have practical use differ from the wild type sequence. Some of these mutants are used in the experiments described below.

In all cases, it is preferred that the resulting GPI-PLD variant retains or has an increased GPI-PLD biological activity as compared to human wild type GPI-PLD, and more especially the enzymatic activity of GPI-PLD in cleaving the photodiester bond linking GPI to phosphatidic acid, and thereby releasing a GPI-anchored protein.

The present invention also includes the use of active portions and fragments of the GPI-PLD proteins.

An "active portion" of GPI-PLD protein is a polypeptide

which is less than said full length GPI-PLD protein, but which retains at least one its essential biological activity, e.g. the enzyme activity mentioned above known to be located in the N-terminal 39kD portion of the 5 enzyme. For instance, portions of GPI-PLD protein can act as sequestrators or competitive antagonists by interacting with other proteins.

10 A "fragment" of the GPI-PLD protein means a stretch of amino acid residues of at least about 5 to 7 contiguous amino acids, often at least about 7 to 9 contiguous amino acids, typically at least about 9 to 13 contiguous amino acids, more preferably at least about 20 to 30 or more contiguous amino acids, more preferably greater than 40 15 amino acids, more preferably greater than 100 amino acids.

20 A polypeptide according to the present invention may be isolated and/or purified (e.g. using an antibody) for instance after production by expression from encoding nucleic acid (for which see below). Polypeptides according to the present invention may also be generated wholly or partly by chemical synthesis. The isolated and/or purified polypeptide may be used in formulation of 25 a composition, which may include at least one additional component, for example a pharmaceutical composition including a pharmaceutically acceptable excipient, vehicle or carrier. A composition including a polypeptide according to the invention may be used in 30 prophylactic and/or therapeutic treatment as discussed below.

35 The GPI-PLD polypeptides can also be linked to a coupling partner, e.g. an effector molecule, a label, a drug, a toxin and/or a carrier or transport molecule. Techniques

for coupling the peptides of the invention to both peptidyl and non-peptidyl coupling partners are well known in the art. In one embodiment, the carrier molecule is a 16 aa peptide sequence derived from the 5 homeodomain of *Antennapedia* (e.g. as sold under the name "Penetratin"), which can be coupled to a peptide via a terminal Cys residue. The "Penetratin" molecule and its properties are described in WO91/18981.

10 **A and P-type IPGs**

Studies have shown that A-type mediators modulate the activity of a number of insulin-dependent enzymes such as cAMP dependent protein kinase (inhibits), adenylate cyclase (inhibits) and cAMP phospho-diesterases 15 (stimulates). In contrast, P-type mediators modulate the activity of insulin-dependent enzymes such as pyruvate dehydrogenase phosphatase (stimulates), glycogen synthase phosphatase (stimulates), and cAMP dependent protein kinase (inhibits). The A-type mediators mimic the 20 lipogenic activity of insulin on adipocytes, whereas the P-type mediators mimic the glycogenic activity of insulin on muscle. Both A-and P-type mediators inhibit cAMP dependent protein kinase and are mitogenic when added to 25 fibroblasts in serum free media. The ability of the mediators to stimulate fibroblast proliferation is enhanced if the cells are transfected with the EGF-receptor. A-type mediators can stimulate cell proliferation in the chick cochleovestibular ganglia.

30 Soluble IPG fractions having A-type and P-type activity have been obtained from a variety of animal tissues including rat tissues (liver, kidney, muscle brain, adipose, heart) and bovine liver. A-type and P-type IPG biological activity has also been detected in human liver 35 and placenta, malaria parasitized RBC and mycobacteria.

5 The ability of an anti-inositolglycan antibody to inhibit insulin action on human placental cytotrophoblasts and BC3H1 myocytes or bovine-derived IPG action on rat diaphragm and chick cochleovestibular ganglia suggests cross-species conservation of many structural features.

10 A-type substances are cyclitol-containing carbohydrates, also containing Zn^{2+} ions and optionally phosphate and having the properties of regulating lipogenic activity and inhibiting cAMP dependent protein kinase. They may also inhibit adenylate cyclase, be mitogenic when added to EGF-transfected fibroblasts in serum free medium. A-type IPGs isolated from sources such as human or bovine liver have the property of stimulating lipogenesis in 15 adipocytes. In contrast, the A-type substances from porcine tissue have the properties of inhibiting lipogenesis and lowering blood glucose levels when administered to diabetics, i.e. patients or a suitable animal model.

20 P-type substances are cyclitol-containing carbohydrates, also containing Mn^{2+} and/or Zn^{2+} ions and optionally phosphate and having the properties of regulating glycogen metabolism and activating pyruvate dehydrogenase 25 phosphatase. They may also stimulate the activity of glycogen synthase phosphatase, be mitogenic when added to fibroblasts in serum free medium, and inhibit cAMP dependent protein kinase.

30 Methods for obtaining A-type and P-type IPGs are set out in Caro et al, 1997, and in WO98/11116 and WO98/11117.

Pharmaceutical Compositions

35 As mentioned above, GPI-PLD proteins including the variant proteins can be used for treating diabetes and the

complications of diabetes (e.g. insulin resistance), optionally in conjunction with other treatments for these disorders.

5 GPI-PLD proteins can be administered alone or in combination with other treatments for diabetes or diabetic complications, either simultaneously or sequentially. Examples of known diabetes treatments include (a) insulin, which is typically delivered by
10 injection, (b) oral insulin compositions, (c) glucose sparing or insulin enhancing drugs, (d) α -glucosidase inhibitors to reduce carbohydrate absorption (precose and miglitol), and (e) drugs used to treat patients with insulin sensitivity, e.g. thiazolidinediones, such as
15 Rezulin, rosiglitazone, piogliazone and tyrosine phosphatase inhibitors.

20 In further embodiments, the GPI-PLD can be administered with P and/or A-type IPGs, and/or antagonists of these substances. Methods for obtaining A-type and P-type IPGs and their antagonists are set out in Caro et al, 1997, and in WO98/11116 and WO98/11117.

25 The role of P and A-type IPGs and their use in the diagnosis and treatment of diabetes is disclosed in WO98/11435. In summary, this application discloses that in some forms of diabetes the ratio of P:A type IPGs is imbalanced and can be corrected by administering a medicament comprising the appropriate ratio of P or A-type IPGs or antagonist thereof. In particular, WO98/11435 describes the treatment of obese type II diabetes (NIDDM) patients with a P-type IPG or with an A-type IPG antagonist, such as antibodies which bind specifically to the A-type IPG, and the treatment of IDDM or lean type II diabetes (NIDDM) (body mass index < 27)

with a mixture of A and P-type IPGs, typically in a P:A ratio of about 6:1 for males and 4:1 for females.

5 The compositions of the invention can be used in the treatment of diabetes, in particular insulin dependent forms of diabetes (type I and type II diabetes). They can also be used in the treatment of the complications of diabetes and in particular forms of insulin resistance such as insulin resistance in type I or type II diabetes
10 and brittle diabetes.

15 In a further aspect, GPI-PLD proteins can be used for treating liver dysfunction, optionally in conjunction with other treatments for these disorders. Preferably, the GPI-PLD is administered with apolipoprotein A1, and more preferably, as a complex with this substance. The isolation of apolipoprotein A1 is described in Hoener et al (1993), Deeg et al (1994) and Brewer et al (1986).
20 The compositions can be used to treat liver dysfunction conditions which are characterised by reduced levels of apolipoprotein A1 and/or GPI-PLD and/or apolipoprotein A1/GPI-PLD complex.

25 GPI-PLD proteins can be administered alone or in combination with other treatments for liver dysfunction, either simultaneously or sequentially.

30 In a further aspect, GPI-PLD proteins and IPGs can be used for treating treatment of conditions caused by a product of an infectious organism which is capable of inhibiting GPI-PLD.

35 As mentioned above, in further embodiments, the GPI-PLD can be administered alone or in combination with P and/or A-type IPGs.

In all of the above embodiments, the GPI-PLD proteins and any accompanying compositions can be formulated in pharmaceutical compositions, which may comprise, in 5 addition to one of the above substances, a pharmaceutically acceptable excipient, carrier, buffer, stabiliser or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active 10 ingredient. The precise nature of the carrier or other material may depend on the route of administration, e.g. oral, intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.

15 Pharmaceutical compositions for oral administration may be in tablet, capsule, powder or liquid form. A tablet may include a solid carrier such as gelatin or an adjuvant. Liquid pharmaceutical compositions generally include a liquid carrier such as water, petroleum, animal 20 or vegetable oils, mineral oil or synthetic oil. Physiological saline solution, dextrose or other saccharide solution or glycols such as ethylene glycol, propylene glycol or polyethylene glycol may be included.

25 For intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability. Those of 30 relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as sodium chloride injection, Ringer's injection, lactated Ringer's injection. Preservatives, stabilisers, buffers, antioxidants and/or other additives may be 35 included as required.

Whether it is a polypeptide, peptide, nucleic acid molecule, small molecule or other pharmaceutically useful compound of the invention that is to be given to an individual, administration is preferably in a 5 "prophylactically effective amount" or a "therapeutically effective amount" (as the case may be, although prophylaxis may be considered therapy), this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of 10 administration, will depend on the nature and severity of what is being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, 15 the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. (ed), 20 1980.

GPI-PLD nucleic acid

"GPI-PLD nucleic acid" includes a nucleic acid molecule which has a nucleotide sequence encoding a polypeptide 25 which includes the amino acid sequence shown in Figures 4 to 6, and in some embodiments of the invention extends to the known human liver and pancreatic forms of GPI-PLD (L11701 and L11702). These forms of GPI-PLD have been mapped to human chromosome 6 and are contained in the 4 centimorgan region of D6S1660-D6S1558 at positions 95.95 30 and 99.71 (NCBI GeneMap'98). The gene starts in the cytogenic region corresponding to 6p22.3 and extends into 6p21.3. This region also contains the IDDM1 and HLA loci (although the HLA genes map to the adjacent D6S1558- 35 D6S1616 interval). The mouse GPI-PLD gene has also been

mapped to chromosome 13, near the *fim 1* locus, which is found in humans on chromosome 6.

5 The GPI-PLD coding sequence may be that shown in Figures 2, 4 to 6 or 8, a complementary nucleic acid sequence, or it may be a mutant, variant, derivative or allele of these sequences. The sequence may differ from that shown by a change which is one or more of addition, insertion, deletion and substitution of one or more nucleotides of 10 the sequence shown. Changes to a nucleotide sequence may result in an amino acid change at the protein level, or not, as determined by the genetic code.

15 The encoded polypeptide may comprise an amino acid sequence which differs by one or more amino acid residues from the amino acid sequence shown in the figures.

20 Nucleic acid encoding a polypeptide which is an amino acid sequence mutant, variant or allele of the sequence shown in Figures 1, 3 or 7 is further provided by the present invention. Such polypeptides are discussed below. Nucleic acid encoding such a polypeptide may show greater than about 70% identity, greater than about 80% identity, greater than about 90% identity, greater than about 95% identity, greater than about 98% identity, or 25 greater than about 99% identity with a sequence shown in the figures.

30 The present invention also includes fragments of the GPI-PLD nucleic acid sequences described herein, the fragments preferably being at least 12, 15, 30, 45, 60, 120 or 240 nucleotides in length.

35 Generally, nucleic acid according to the present invention is provided as an isolate, in isolated and/or purified form, or free or substantially free of material

with which it is naturally associated, such as free or substantially free of nucleic acid flanking the gene in the human genome, except possibly one or more regulatory sequence(s) for expression. Nucleic acid may be wholly or partially synthetic and may include genomic DNA, cDNA or RNA. Where nucleic acid according to the invention includes RNA, reference to the sequence shown should be construed as reference to the RNA equivalent, with U substituted for T.

10

Nucleic acid sequences encoding all or part of the GPI-PLD gene and/or its regulatory elements can be readily prepared by the skilled person using the information and references contained herein and techniques known in the art (for example, see Sambrook, Fritsch and Maniatis, "Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989, and Ausubel et al, Short Protocols in Molecular Biology, John Wiley and Sons, 1992). These techniques include (i) the use of the polymerase chain reaction (PCR) to amplify samples of such nucleic acid, e.g. from genomic sources, (ii) chemical synthesis, or (iii) amplification in *E. coli*. Modifications to the GPI-PLD sequences can be made, e.g. using site directed mutagenesis, to provide expression of modified GPI-PLD protein or to take account of codon preference in the host cells used to express the nucleic acid.

In order to obtain expression of the GPI-PLD nucleic acid sequences, the sequences can be incorporated in a vector having control sequences operably linked to the GPI-PLD nucleic acid to control its expression. The use of expression systems has reached an advanced degree of sophistication. The vectors may include other sequences such as promoters or enhancers to drive the expression of

35

the inserted nucleic acid, nucleic acid sequences so that the GPI-PLD protein is produced as a fusion and/or nucleic acid encoding secretion signals so that the polypeptide produced in the host cell is secreted from the cell. 5 GPI-PLD protein can then be obtained by transforming the vectors into host cells in which the vector is functional, culturing the host cells so that the GPI-PLD protein is produced and recovering the GPI-PLD protein from the host cells or the surrounding medium. 10 Prokaryotic and eukaryotic cells are used for this purpose in the art, including strains of *E. coli*, yeast, and eukaryotic cells such as COS or CHO cells. The choice of host cell can be used to control the properties of the GPI-PLD protein expressed in those 15 cells, e.g. controlling where the polypeptide is deposited in the host cells or affecting properties such as its glycosylation and phosphorylation.

PCR techniques for the amplification of nucleic acid are 20 described in US Patent No:4,683,195. In general, such techniques require that sequence information from the ends of the target sequence is known to allow suitable forward and reverse oligonucleotide primers to be 25 designed to be identical or similar to the polynucleotide sequence that is the target for the amplification. PCR comprises steps of denaturation of template nucleic acid (if double-stranded), annealing of primer to target, and polymerisation. The nucleic acid probed or used as 30 template in the amplification reaction may be genomic DNA, cDNA or RNA. PCR can be used to amplify specific sequences from genomic DNA, specific RNA sequences and cDNA transcribed from mRNA, bacteriophage or plasmid 35 sequences. The GPI-PLD protein nucleic acid sequences provided herein readily allow the skilled person to design PCR primers. References for the general use of

PCR techniques include Mullis et al, Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Ehrlich (ed), PCR Technology, Stockton Press, NY, 1989; Ehrlich et al, Science, 252:1643-1650, 1991; "PCR protocols; A Guide to Methods and Applications", Eds. Innis et al, Academic Press, New York, 1990.

Nucleic acid according to the present invention is obtainable using one or more oligonucleotide probes or primers designed to hybridize with one or more fragments of the nucleic acid sequence shown in the figures, particularly fragments of relatively rare sequence, based on codon usage or statistical analysis. A primer designed to hybridize with a fragment of the nucleic acid sequence shown in the above figures may be used in conjunction with one or more oligonucleotides designed to hybridize to a sequence in a cloning vector within which target nucleic acid has been cloned, or in so-called "RACE" (rapid amplification of cDNA ends) in which cDNA's in a library are ligated to an oligonucleotide linker and PCR is performed using a primer which hybridizes with a GPI-PLD nucleic acid sequence shown in figures and a primer which hybridizes to the oligonucleotide linker.

Such oligonucleotide probes or primers, as well as the full-length sequence (and mutants, alleles, variants and derivatives) are also useful in screening a test sample containing nucleic acid for the presence of alleles, mutants and variants, especially those that lead to the production of inactive forms of GPI-PLD protein, the probes hybridizing with a target sequence from a sample obtained from the individual being tested. The conditions of the hybridization can be controlled to minimise non-specific binding, and preferably stringent to moderately stringent hybridization conditions are

preferred. The skilled person is readily able to design such probes, label them and devise suitable conditions for the hybridization reactions, assisted by textbooks such as Sambrook et al (1989) and Ausubel et al (1992).

5

Examples of "stringent conditions" are those which: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulphate at 50°C; (2) employ during hybridisation a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% BSA/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750mM sodium chloride, 75mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50mg/ml), 0.1% SDS, and 10% dextran sulphate at 42°C, with washes at 42°C in 0.2 x SSC and 50% formamide at 55°C, followed by high stringency wash consisting of 0.1 x SSC containing EDTA at 55°C. These hybridisation conditions may be used in the context of defining nucleic acid sequences which hybridize with GPI-PLD nucleic acid sequences.

20

25

Uses of GPI-PLD Nucleic Acid

The GPI-PLD nucleic acid sequences can be used in the preparation of cell lines capable of expressing GPI-PLD and included in expression vectors or otherwise formulated, e.g. for use in gene therapy techniques.

30

35

Thus, the present invention provides a cell line for transplantation into a patient, the cell line being transformed with nucleic acid encoding GPI-PLD, and being capable of expressing and secreting GPI-PLD. In one

embodiment, the cell lines are encapsulated, e.g. in a biocompatible polymer, so that the GPI-PLD produced by the cell line can be secreted into the patient, while preventing rejection by the immune system of the host.

5 Methods for encapsulating cells in biocompatible polymers are described in WO93/16687 and WO96/31199.

As a further alternative, the nucleic acid encoded the GPI-PLD protein could be used in a method of gene 10 therapy, to treat a patient who is unable to synthesize the active polypeptide or unable to synthesize it at the normal level, thereby providing the effect provided by wild-type GPI-PLD protein and suppressing the occurrence of diabetes in the target cells.

15 Vectors such as viral vectors have been used in the prior art to introduce genes into a wide variety of different target cells. Typically, the vectors are exposed to the target cells so that transfection can take place in a sufficient proportion of the cells to provide a useful 20 therapeutic or prophylactic effect from the expression of the desired polypeptide. The transfected nucleic acid may be permanently incorporated into the genome of each of the targeted tumour cells, providing long lasting 25 effect, or alternatively the treatment may have to be repeated periodically.

30 A variety of vectors, both viral vectors and plasmid vectors, are known in the art, see US Patent No: 5,252,479 and WO93/07282. In particular, a number of viruses have been used as gene transfer vectors, including papovaviruses, such as SV40, vaccinia virus, herpesviruses, including HSV and EBV, and retroviruses. Many gene therapy protocols in the prior art have used 35 disabled murine retroviruses.

As an alternative to the use of viral vectors other known methods of introducing nucleic acid into cells includes electroporation, calcium phosphate co-precipitation, mechanical techniques such as microinjection, transfer 5 mediated by liposomes and direct DNA uptake and receptor-mediated DNA transfer.

As mentioned above, the aim of gene therapy using nucleic acid encoding the GPI-PLD protein, or an active portion 10 thereof, is to increase the amount of the expression product of the nucleic acid in cells in which the level of the wild-type GPI-PLD protein is absent or present only at reduced levels. Target cells for gene therapy include insulin secreting b-cells or any neuron derived 15 cells. Cell engineering can be used to provide the overexpression or repression of GPI-PLD protein in transfected cell lines which can then be subsequently transplanted to humans. Gene therapy can be employed using a promoter to drive GPI-PLD protein expression in a 20 tissue specific manner (i.e. an insulin promoter linked to GPI-PLD cDNA will overexpress GPI-PLD protein in b-cells and transiently in the brain). If defective function of GPI-PLD protein is involved in neurological 25 disease, GPI-PLD protein can be overexpressed in transformed cell lines for transplantation.

Gene transfer techniques which selectively target the GPI-PLD nucleic acid to target tissues are preferred. Examples of this included receptor-mediated gene 30 transfer, in which the nucleic acid is linked to a protein ligand via polylysine, with the ligand being specific for a receptor present on the surface of the target cells.

Methods for determining the concentration of analytes in biological samples from individuals are well known in the art and can be employed in the context of the present invention to determine the presence or amount of GPI-PLD or a product of GPI-PLD action in a biological sample from a patient. This in turn can allow a physician to determine whether a patient suffers from one of the conditions discussed above and so optimise the treatment of it.

10

As discussed above, the conditions include diabetes and diabetic complications, liver dysfunction or disorders involving pancreatectomies, and conditions mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, such as septic shock.

15 Broadly, the methods divide into those screening for the presence of GPI-PLD protein nucleic acid sequences and those that rely on detecting the presence or absence of the GPI-PLD protein polypeptide or a product of GPI-PLD action (e.g. IPGs or acyl-IPGs). The methods make use of biological samples from individuals that are suspected of contain the nucleic acid sequences or polypeptide.

20 25 These diagnostic methods can employ biological samples such as blood, serum, tissue samples or urine. In view of the fact that the activity of GPI-PLD is thought to be due to the level of the enzyme circulating in serum, the use of serum or blood samples is preferred.

30

35 The assay methods for determining the amount or concentration of GPI-PLD protein typically either employ binding agents having binding sites capable of specifically binding to GPI-PLD or the product of GPI-PLD action in preference to other molecules or measure a

characteristic biological activity of GPI-PLD. Examples of binding agents include antibodies, receptors and other molecules capable of specifically binding the enzyme. Conveniently, the binding agent(s) are immobilised on solid support, e.g. at defined locations, to make them easy to manipulate during the assay.

5 In one format, the methods of diagnosing the conditions relating to GPI-PLD disclosed herein comprises the steps of:

- 10 (a) contacting a biological sample obtained from the patient with a solid support having immobilised thereon a binding agent having binding sites specific for GPI-PLD or a product of GPI-PLD action;
- 15 (b) contacting the solid support with one or more labelled developing agents capable of binding to unoccupied binding sites, bound GPI-PLD or product, or occupied binding sites; and,
- 20 (c) detecting the label of the developing agents specifically binding in step (b) to obtain a value representative of the amount of GPI-PLD or the product of GPI-PLD action in the sample.

25 Alternatively or additionally, the method can assess GPI-PLD levels by measuring one of its biological activities, which are discussed further below.

30 The products of GPI-PLD action include acyl-IPGs and IPGs, the characteristic activities of which are discussed above. Antibodies which are capable of binding to IPGs are disclosed in WO98/1116, WO98/11117 and WO99/47565.

35 The sample is generally contacted with the binding agent(s) under appropriate conditions so that GPI-PLD

present in the sample can bind to the binding agent(s). The fractional occupancy of the binding sites of the binding agent(s) can then be determined using a developing agent or agents. Typically, the developing agents are labelled (e.g. with radioactive, fluorescent or enzyme labels) so that they can be detected using techniques well known in the art. Thus, radioactive labels can be detected using a scintillation counter or other radiation counting device, fluorescent labels using a laser and confocal microscope, and enzyme labels by the action of an enzyme label on a substrate, typically to produce a colour change. The developing agent(s) can be used in a competitive method in which the developing agent competes with the analyte for occupied binding sites of the binding agent, or non-competitive method, in which the labelled developing agent binds analyte bound by the binding agent or to occupied binding sites. Both methods provide an indication of the number of the binding sites occupied by the analyte, and hence the concentration of the analyte in the sample, e.g. by comparison with standards obtained using samples containing known concentrations of the analyte.

Experimental

In one embodiment, the present invention is based on the realisation that GPI-PLD is responsible for the production of IPG second messengers following binding of insulin to its receptor. The IPGs then interact with other cellular enzymes instigating some of the metabolic effects of the hormone. In view of this, insulin resistance may be caused by deficiencies in GPI-PLD; it has been shown that pancreatic islet cells produce and secrete GPI-PLD, which is transported in blood complexed with apolipoprotein A1, and may therefore represent the major source of circulating enzyme. If this is indeed the case

then the insulin resistance seen in early type I diabetes mellitus (IDDM) may result from decreased circulating GPI-PLD levels. This may have direct therapeutic relevance in that co-infusion of insulin with GPI-PLD may 5 in fact be a far more effective therapy for diabetic patients than insulin.

In a further embodiment, the present invention is based 10 on the realisation that GPI-PLD can be used in the treatment of liver dysfunction, and in particular combination with apolipoprotein A1 to which it is bound in human serum and blood. As GPI-PLD is transported in blood complexed with apolipoprotein A1, liver 15 dysfunction, and especially dysfunction characterised by reduced apolipoprotein A1 levels, can be treated using GPI-PLD.

In a third embodiment, the present invention is based on 20 the observation that in conditions such as septic shock, endotoxin is released from the microorganisms causing sepsis, leading to the clinical symptoms of septic shock such as total organ failure and fatal shock. The endotoxins can be glycolipids released from gram negative bacteria or glycolipids such as LAM released from 25 *Mycobacteria* such as *Tuberculosis*. Without wishing to be bound by any particular theory, these endotoxins are believed to act by inhibiting GPI-PLD.

Screening of human liver cDNA library

30 A human liver cDNA library (Gibco BRL, cat # 10422-012, lot # HF4703) was screened for GPI-PLD, resulting in the isolation of 3 cDNA clones. The nucleic acid sequences of the clones are shown in Figures 4 to 6, with the deduced amino acid sequences shown in Figure 3.

Clone a1 represents the full length cDNA. There are only two differences within the coding region of this sequence when compared to that of the human GPI-PLD pancreatic form described in the GenBank database (accession number L11702). These are a *g* to *a* conversion at positions 88 (L11702), 199 (a1) and a *t* to *g* conversion at positions 797 (L11702), 908(a1). Interestingly this latter conversion creates a unique *HindIII* restriction site in the a1 clone. Both conversions result in amino acid differences, the first changes amino acid 30 from a valine in L11702 to an isoleucine in a1, and the second changes amino acid 266 from an isoleucine in L11702 to a serine in a1. Clone a1 also differs from L11702 in that it contains 5' untranslated region (UTR) and only shares the first 168 bases of the 3' UTR before terminating in a poly-A tail.

Clone b2 lacks exons 23-25 of GPI-PLD, which begins at position 2469 in the a1 nucleotide sequence. However, the sequence from here to the end of b2 (2444-2473) does not contain a stop codon. It is therefore not clear whether b2 represents a cDNA with a different final exon or is the produce of aberrant processing.

Clone d3 shared the 3' coding and 3' UTR sequence of the a1 clone from position 1119 onwards, however the initial 1008 base pairs of coding sequence representing the initial 12 exons, are absent from this clone. Clone d3 contains a methionine initiation codon in frame to the coding sequence at position 202 and a unique 5' UTR. Translation of d3 from this codon would result in a unique sequence of 6 amino acids (1-6). Clone d3 therefore appears to represent a true transcript, in that it contains initiation and stop codons and both 5' and 3' UTRs. The predicted protein product of this transcript

would apparently lack the catalytic domain, which has been localised to the N-terminus of the GPI-PLD enzyme (amino acids 1-375), however the 4 EF hand-like domains would still be present.

5

Huang et al and Tsang et al (1992) reported that two variants or isoenzymes of GPI-PLD exist, the so-called liver and pancreatic forms (accession numbers L11701 and 11702). Other workers have detected L11702 cDNAs in human breast, eye, spleen, tonsil, and pancreas, as well as in liver. However, we failed to detect the liver form of GPI-PLD in the liver or in any other tissues.

Gene mapping and localisation

15 The chromosomal gene isolated in the experiments above is over 100 kb in length. The gene was also isolated on a PAC and mapped by fluorescence-in situ hybridisation (FISH) to 6p22.3 extending into 6p21.3, agreeing with recent radiation hybrid maps as seen on GeneMap'98; 20 NCBI). The IDDM1 susceptibility gene also maps to 6p21.3, although recent evidence suggests that at least two closely-linked loci for IDDM1 are in the MHC region. The MHC locus itself seems to map to a region adjoining the GPI-PLD locus rather than within the same 25 microsatellite band, so the significance of the proximity of the GPI-PLD and IDDM1 loci is unclear.

30 Northern blots of the mRNA species found in liver have shown two presumed splice variants as well as the full-length transcript. One has a deletion of about 160 amino acids from the mature 817 amino acid protein. The other seems to be a C-terminal deletion, which may therefore be non-functional if other authors are correct in finding that the C-terminus is necessary for enzyme activity.

35

The predominant GPI-PLD species detected after tissue extraction by antibodies (Western blots) has apparent molecular weight of about 47 kD, which agrees with other authors that full-length GPI-PLD is taken up from the plasma and processed to smaller active species.

PCR Analysis of GPI-PLD isoforms

PCR was used to compare the expression of putative cDNAs L11701 and L11702 using oligos pairs in cDNA made from human liver mRNA or in genomic DNA. cDNA synthesis reactions from which reverse transcriptase was omitted served as negative controls.

Two regions of the cDNAs were found to have a sufficient number of base differences to enable the synthesis of isoform-specific oligonucleotides. Region 1 contained 6 base pair changes over a total length of 25 nucleotides. From this region two isoform-specific reverse oligos were made:

P2 cag**cag**aggctgc**gcgtc**agat**atg** (L11702: 2115-2091)
L2 cag**cg**tggtgc**agg**tcggat**tg** (L11701: 2150-2126)

These were matched with forward oligos for gc content from a region approximately 700bp upstream. This region is shown below with differences highlighted in bold and the oligo sequences underlined:

P1 gtgttggacttaac**gtggac**ggcgtgccctgacctggccg
(L11702: 1366-1405)
L1 **atgttggacttaac**atggat**ggcgtgc**cctgacctggccg
(L11701: 1400-1440)

Region 2 (1 (L11701; L11702) contained 9 base pair

changes over a total length of 32 nucleotides and was used to make two isoform-specific reverse oligos as before:

5 P19 **gtacgt**aggggctcc**aaccaggcagcacttgtt** (L11702: 2019-1988)
L4 **acgtgt**cggggctcc**caccaggcagcacctggg** (L11701: 2054-2023)

10 These oligos were paired with a single oligo which recognizes both isoforms approximately 300bp upstream which would also enable PCR from genomic DNA:

U2 tggttggagccgaccctggaagaatgccagc
(L11702: 1787-1818; L11701: 1822-1853)

15 5mg total human liver RNA (Invitrogen) was reverse transcribed using Superscript II (GibcoBRL) for 90 mins in a total volume of 35ul. Negative controls contained 5mg of RNA but no reverse transcriptase (lanes 2, 4, 6 and 9). 2.5ml of this reaction or 888ng of human genomic
20 DNA (Promega) was transferred to a 50ml PCR reaction containing 25pmoles of each oligo. After an initial 4 min 94°C denaturing cycle, 30 cycles were performed (25 secs denaturing - 94°C, 30 secs annealing, 30 secs extension - 72°C) and PCR products resolved on a 1% agarose gel. Annealing temperatures of the oligo pairs were as follows: P1 & P2 - 62°C; L1 & L2 - 66°C; U2 & P19 - 68.3°C; U2 & L4 - 71.5°C).

Southern Blot

30 A Southern blot of PAC 282J10 DNA and human genomic DNA was hybridised with a cDNA probe containing exons 15-19. The same bands hybridise in both PAC and genomic DNA therefore suggesting that only one copy of the GPI-PLD gene is present in the human genome. This result is in
35 accord with the finding of only one gene in the mouse.

(LeBoeuf et al, Mammalian Genome 9:710-714, 1998).

4mg of human genomic DNA or 1mg of PAC 282J10 DNA was digested with the restriction enzymes ApaI, EcoRI or NsiI 5 (Promega) at 37°C overnight and run on 1% agarose gel, which was denatured, neutralised and blotted in 20XSSC overnight. DNA was UV crosslinked onto the blot and then hybridised with ³²P-labelled P1/P2 PCR product. The blot was then washed with decreasing SSC concentrations, the 10 final wash being 0.2XSSC, 0.1%SDS for 20 mins at 65°C. Autoradiographs were exposed at -80°C for 1h (282J10) or 3 days (genomic).

GPI-PLD gene structure

15 The structure of the human GPI-PLD gene has been determined. It comprises 25 exons and extends over more than 100 kb of chromosome 6p22.3 into 6p21.3. We have used Southern blot analysis to determine that only one GPI-PLD gene exists in the human genome.

20 Using PCR analysis as described above, we have been unable to prove the existence of the so-called liver form of GPI-PLD (GenBank accession number L11701), whereas the so called pancreas form (L11702) is the form we have 25 detected in human liver. These data show that the two forms do not exist alongside each other in the human liver, however it is still possible that L11701 represents a polymorphic variant not seen in the subjects from whom our liver RNA was obtained.

30

GPI-PLD gene expression

Using PCR we have compared the expression of GPI-PLD in cDNA libraries made from human tissues. GPI-PLD appears most abundant in the liver followed by the lung. A very 35 low level of expression was seen in kidney and heart and

skeletal muscle, however we were unable to detect expression in pancreas, brain or placenta.

Recombinant GPI-PLD has been purified from stable CHO 5 cell lines transfected with the full-length human GPI-PLD cDNA clone a1 isolated previously from a human liver cDNA library. Recombinant GPI-PLD cleaves the GPI substrate mfVSG, and like its counterpart purified from serum, this action is inhibited by prior incubation with the 10 transition metal ion chelator 1,10-phenanthroline.

We have identified at least two systems which do not appear to express the GPI-PLD gene, namely the human 15 placenta and the rat basophil-like cell line RBL2H3. However in both cases abundant GPI-PLD protein and enzyme activity is detectable, thus confirming our prediction that in tissues which do not express the gene, protein is still expressed and is presumably taken up from the vast reserves found in serum. Experiments using the mouse 20 skeletal muscle cell line C2C12 indicate that over 70% of the GPI-PLD activity present within the cells is derived from serum.

25 GPI-PLD obtained from serum by cells is required for second messenger signalling

The principle goal of these experiments was to determine the role of glycosylphosphatidylinositol phospholipase D (GPI-PLD) in a type one hypersensitivity reaction. This 30 reaction involved the cross-linking of IgE receptors on the mast cell surface, leading to the release of allergic mediators.

Such an allergic reaction has been experimentally 35 reproduced in our laboratory, using a rat basophilic leukaemia cell line, RBL-2H3. These cells naturally have

unoccupied IgE receptors (Fc ϵ R I , or high-affinity receptors), allowing them to be passively sensitised with an IgE isotype of choice.

5 RBL-2H3 cell culture was maintained in Eagles minimum essential medium, containing 10% Foetal Bovine Serum (FBS) (heat activated), 100 U/ml Penicillin, 100 mg/ml Streptomycin and 2 mM L-glutamine.

10 Previous research indicates that RBL-2H3 cells derive their GPI-PLD from the culture serum (data not shown). Therefore, it follows that inactivation of this external source of GPI-PLD would deprive the cells of any further enzyme.

15 Inactivation of GPI-PLD activity in foetal bovine serum was achieved according to the method of Kung et al (Biochimica et Biophysica Acta, 1357:329-338, 1997). Briefly, FCS was adjusted to pH 11 using concentrated hydrochloric acid, and incubated for 1 hour at 37°C using. After this time, the pH was adjusted to 7.4, and GPI-PLD activity was determined using an enzymatic assay (Davitz et al, J. Biol. Chem., 264:13760-13764, 1989). Results indicated that this alkaline incubation severely 20 depleted GPI-PLD activity (data not shown).

25

To determine the effect of culture of RBL-2H3 cells in GPI-PLD inactive serum, the supplemented MEM was replaced with MEM in which the FBS had been inactivated. Although 30 the cell appearance was not dramatically altered by the altered culture conditions, determination of GPI-PLD activity showed a dramatic reduction in activity.

35 **GPI-PLD activity in cells cultured with GPI-PLD active/inactive FBS:**

Active = 0.66 units GPI-PLD activity/mg of protein.

Inactive = 0.11 units GPI-PLD activity/mg of protein.

5 The effect of a reduced GPI-PLD activity on the cell's ability to respond to IgE cross-linking was determined as follows:

10 RBL-2H3 cells were grown to confluence, after which time the adherent cells were removed from the culture flask using a cell scraper. The cell density was determined, using a haemocytometer, and adjusted to 2×10^5 per ml. The cells were seeded at 1 ml per well in a 24 well culture plate and cultured for overnight at 37°C in a humidified 5% CO₂ incubator.

15 The overnight culture media was aspirated and replaced with fresh media containing Rat IgE anti-DNP 3mg/ml. After a 2 hour incubation period, the media was aspirated, and the cells were washed twice, with HEPES 20 Buffered Saline. Cross-linking was achieved by the addition of 200 ml of DNP-Albumin at 100 ng/ml, and incubation for 2 hours. Mediator release was determined using a colorimetric assay to detect the presence of b-hexosaminidase and compared with the total cell b-hexosaminidase content (as determined by incubation with 25 200 ml 5% Triton X-100 detergent). (Yasuda et al, Int. Immunol., 7:251-258, 1995). As shown in the table below, the responsiveness to cross-linking was significantly reduced in those cells that were cultured in GPI-PLD 30 inactive media.

**Percentage release in IgE linking activity assay
(compared with total):**

Active GPI-PLD culture = 48.79%

Inactive GPI-PLD culture = 5.07%

Phosphorylation of GPI-PLD

The phosphorylation state of the GPI-PLD enzymes was 5 determined using MALDI-TOF mass spectrometry as described by Yip & Hutchins (1992). Spectrums of tryptic digests of the proteins can be compared before and after treatment with calf intestinal alkaline phosphatase. The specific kinases responsible for phosphorylation of GPI- 10 PLD can then be determined by incubation of the GPI-PLD tryptic fragments with ATP in the presence of various kinases. Motif analysis of the amino acid sequence of human GPI-PLD using the HGMP "motif" package has revealed the presence of numerous potential phosphorylation sites 15 for the enzymes cAMP-dependent protein kinase A, protein kinase C and protein kinase ck2 (formerly known as casine kinase II). Of these sites we have found that the site at amino acids 689-692 is a key site which when phosphorylated, e.g. by PKA, inhibits GPI-PLD biological 20 activity.

These enzymes may therefore be involved in the activation/inactivation of GPI-PLD. Intriguingly the activity of protein kinase ck2 has been shown to be 25 modulated by IPGs (Alemany et al, 1990) and there is also indirect evidence suggesting that IPGs may act through protein kinase C, thus suggesting the possibility of feedback loops regulating the production of IPGs.

Discussion

GPI-PLD is a metalloenzyme with 5 and 10 atoms per molecule of calcium and zinc, respectively. It circulates in a complex with apolipoprotein A1. GPI-PLD is produced in the pancreas by both a and b-cells in the 35 islets of Langerhans. It is also produced by a mouse

insulinoma cell line (bTC3), with GPI-PLD and insulin generally colocalised intracellularly. The enzyme was shown to be secreted in response to insulin secretagogues. Both isoenzymes of GPI-PLD also seem to 5 be present in liver; a major part of the activity could be washed away from the tissue by extraction with detergent-free buffer (thus, likely to be the plasma enzyme). There is some suggestions that the liver, as well as the pancreas, may contribute to the serum pool of 10 GPI-PLD as patients with liver disease have lower levels of active enzyme, which is correlated with the reduced albumin levels.

15 It has been shown that streptozotocin-induced diabetes mellitus in the rat reduced the basal content of insulin-sensitive IPG in isolated hepatocytes by about 60%. The authors conclude that insulin resistance in these rats is related to the impairment of IPG metabolism. It has also been shown that the mRNA for a GPI-PLD-like gene was 20 over expressed in genetically obese (ob/ob) mice in comparison to lean litter mates. In the context of the invention described herein, this latter finding suggests that GPI-PLD levels are responsive to the obese/diabetic genotype.

References:

The references mentioned herein are all incorporated by reference in their entirety.

5 Huang et al, US Patent No: 5,418,147.

10 Tsang et al, FASEB J. (supp), 6:A1922, 1992.

15 Scallon et al, Science, 252:446-448, 1991.

20 Hoener et al, Eur. J. Biochem., 206:747-757, 1992.

25 Li et al, J. Biol. Chem., 269:28963-28971, 1994.

30 Heller et al, Eur. J. Biochem., 224:823-833, 1994.

35 Jones et al, Biochem. Biophys. Res. Comm., 233:432-437, 1997.

40 Rademacher et al, Brazilian J. Med. Biol. Res., 27:327-341, 1994.

45 Lin et al, J. Cell Biol., 115:220a, 1991

50 Thompson et al, Nucleic Acid Research, 22:4673-4680, 1994, with algorithm from Higgins et al, CABIOS, 8(2):189-191, 1992.

55 Alemany et al, Nature, 330:77-79, 1987.

60 Caro et al, Biochem. Molec. Med., 61:214-228, 1997.

65 Deeg & Verchere, Endocrinology, 136:819-826, 1997.

70 LeBoeuf et al, Mammalian Genome 9:710-714, 1998.

Claims:

1. Glycosylphosphatidyl inositol specific phospholipase D (GPI-PLD) for use in a method of medical treatment.

5 2. The GPI-PLD of claim 1, wherein the GPI-PLD is simultaneously or sequentially administered with apolipoprotein A1.

10 3. A nucleic acid molecule encoding GPI-PLD for use in a method of medical treatment.

15 4. Use of GPI-PLD for the preparation of a medicament for the treatment of conditions that respond to GPI-PLD or which are characterised by reduced levels of GPI-PLD as compared to a normal patient.

20 5. Use of the presence or amount of GPI-PLD in a sample from a patient in the diagnosis of a condition that responds to GPI-PLD or which is characterised by reduced levels of GPI-PLD as compared to a normal patient.

25 6. The use of claim 5, wherein the presence or amount of GPI-PLD is determined by measuring one of its biological activities.

7. Use of glycosylphosphatidyl inositol specific phospholipase D (GPI-PLD) for the preparation of a medicament for the treatment of diabetes or diabetic complications.

30 8. The use of claim 7, wherein the diabetes is an insulin dependent form of diabetes.

35 9. The use of claim 7 or claim 8, wherein the diabetes is Type I or Type II diabetes.

10. The use of claim 7, wherein the complications of diabetes are due to insulin resistance.

5 11. The use of any one of claims 7 to 10, wherein the medicament further comprises insulin, a glucose sparing or insulin enhancing drug, an α -glucosidase inhibitor or drug to treat insulin sensitivity, a P and/or A-type inositolphosphoglycan (IPG) and/or an IPG antagonist.

10 12. Use of a nucleic acid molecule encoding GPI-PLD, in the preparation of a medicament for the treatment of diabetes or diabetic complications.

15 13. Use of glycosylphosphatidyl inositol specific phospholipase D (GPI-PLD) for the preparation of a medicament for the treatment of liver dysfunction or disorders involving pancreatectomies.

20 14. The use of claim 13, wherein the medicament further comprises apolipoprotein A1.

25 15. Use of a nucleic acid molecule encoding GPI-PLD in the preparation of a medicament for the treatment of liver dysfunction.

16. The use of any one of the preceding claims, wherein the liver dysfunction is characterised by reduced levels of apolipoprotein A1 and/or GPI PLD and/or apolipoprotein A1/GPI-PLD complex as compared to a normal patient.

30 17. Use of glycosylphosphatidyl inositol specific phospholipase D (GPI-PLD) for the preparation of a medicament for the treatment of a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD.

18. The use of claim 17, wherein the condition is mediated by an endotoxin.

5 19. The use of claim 18, wherein the endotoxin is a glycolipid from a *Mycobacterium* or gram negative bacteria.

20. The use of any one of claims 17 to 19, wherein the condition is septic shock.

10

15

21. Use of a nucleic acid molecule encoding glycosylphosphatidyl inositol specific phospholipase D (GPI-PLD) for the preparation of a medicament for the treatment of a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD.

20

22. A cell line transformed with nucleic acid encoding GPI-PLD, and capable of expressing and secreting GPI-PLD, for use in a method of medical treatment.

25

23. The cell line of claim 22, wherein the cell line is capable of producing apolipoprotein A1.

30

24. The use of the cell line of claim 22 or claim 23, in the preparation of a medicament for treatment of diabetes or diabetic complications, liver dysfunction or disorders involving pancreatectomies, or a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, such as septic shock.

25. A pharmaceutical composition comprising a nucleic acid molecule encoding a GPI-PLD protein.

35

26. A pharmaceutical composition comprising a GPI-PLD

protein.

27. The composition of claim 22, further comprising apolipoprotein A1.

5

28. A method of diagnosing a condition selected from diabetes or diabetic complications, liver dysfunction or disorders involving pancreatectomies, a condition mediated by a product of an infectious organism which is capable of inhibiting GPI-PLD, the method comprising:

10 determining the amount of GPI-PLD or a product of GPI-PLD action in a sample from a patient and correlating the amount to standards to determine whether the patient has or is at risk from said condition.

15

29. The method of claim 28, which comprises the steps of:

20 (a) contacting a biological sample obtained from the patient with a solid support having immobilised thereon a binding agent having binding sites specific for GPI-PLD or the product of GPI-PLD action;

25 (b) contacting the solid support with one or more labelled developing agents capable of binding to unoccupied binding sites, bound GPI-PLD or product, or occupied binding sites; and,

(c) detecting the label of the developing agents specifically binding in step (b) to obtain a value representative of the amount of GPI-PLD or the product of GPI-PLD action in the sample.

30

30. The method of claim 28, wherein the amount of GPI-PLD in the sample is determined by measuring GPI-PLD activity.

35

31. The method of claim 28 or claim 29, wherein the

product of GPI-PLD action are acyl-IPGs or IPGs.

32. An isolated or substantially isolated GPI-PLD protein with an amino acid sequence as shown in Figure 3.

5

33. An isolated nucleic acid sequence encoding a GPI-PLD as shown in any one of Figures 4 to 6.

10 34. An isolated nucleic acid sequence encoding a GPI-PLD, with greater than 90% identity with any one of the nucleic acid sequences shown in Figures 4 to 6.

15 35. An expression vector comprising nucleic acid sequence encoding a GPI-PLD protein as shown in any one of Figures 4 to 6.

20 36. A variant GPI-PLD polypeptides differing in amino acid sequence in the region corresponding to amino acid residues 689-692 inclusive (RRFS) of human wild-type GPI-PLD.

25 37. The variant of claim 36 which comprises a substitution in the region corresponding to amino acids 689-692 of mature human wild-type GPI-PLD.

30 38. The variant of claim 37, wherein the substitution changes the serine residue at position 692 to an amino acid other than serine or threonine.

35 39. The variant of any one of claims 36 to 38 for use in a method of medical treatment.

40. An isolated nucleic acid molecule encoding the variant GPI-PLD polypeptide of any one of claims 36 to 38.

41. The nucleic acid of any one of claims 36 to 38 for use in a method of medical treatment.

42. An expression vector comprising the nucleic acid molecule of claim 41, operably linked to control sequences to direct its expression.

43. A host cell transformed with the nucleic acid molecule of claim 41 encoding a GPI-PLD variant polypeptide.

44. A method of producing a variant GPI-PLD polypeptides which comprises culturing the host cells of claim 43 so that the variant GPI-PLD polypeptide is expressed and isolating the polypeptide thus produced.

45. The method of claim 44 which comprises the further step of then formulating the variant GPI-PLD polypeptide in a composition.

1/20

Figure 1

Top: protein produced from cDNA clone A1
 Mid: protein produced from Roche patent bovine liver sequence
 Bot: protein produced from Roche patent human liver sequence

MSAFRLWPGLLIMLG-SLCHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDA
 MSAFRFWSGLLMLLG-FLCPRSSPCGISTHIEIGHRALEFLHLQDGSIINYKELLLRHQDA
 MSAFRLWPGLLIVMASLCHRGSSCGLSTHIEIGHRALEFLHLHNGHVNYKELLLEHQDA

YQAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFL
 YQAGSVFPDSFYPSICERGQFHDVSESTHWTPFLNASVHYIRKNYPLPWEKDTEKLVAFL
 YQAGTVFPDCFYPSLCKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFL

FGITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSAAGDFGGDVLSQFEFNFNYLA
 FGITSHMVADVNWHSLGIENGFLRTMAAIDFHNSYPEAHPAGDFGGDVLSQFEFKFNYLS
 FGITSHMVADVSWHSLGIEQGFLRTMGAIDFHGSYSEAHSAAGDFGGDVLSQFEFNFNYLA

RRWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFL
 RHWYVPAEDLLGIYRELYGRIVITKAIIVDCSYLQFLEMYAEMLAISKLYPTYSVKSPFL
 RRWYVPVKDLLGIYEKLYGREVITENVIVDCSHIQFLEMYGEMLAVSKLYPSYSTKSPFL

VEQFQEYFLGGLDDMAFWSTNIYHLTFSMLENGTSDCNLPENPENPLFIACGGQQNHTQG
 VEQFQEYFLGGLEDMAFWSTNIYHLTSTMLKNGTSNCNLPEP---LFITCGGQQNNTHG
 VEQFQEYFLGGLDDMAFWSTNIYHLTFSMLENGTSDCSLFENPENPLFIACGGQQNHTQG

SKMQKNDFHRLNTTSLTEVDRNINYTERGVFFSVNSWTPSMSFIYKALERNIRTMFIG
 SKVQKNGFHKNVTAALKHINYTKRGVFFSVDSWTMFLSFMYKSLERSIREMFIG
 SKMQKNDFHRLNTSSLTENIDRNINYTERGVFFSVNSWTPSMSFIYKALERNVRTMFIG

GSQLSQKHSSPLASYFLSPYARLGWAMTSADLNQDGHDGVLSVVGAPGYSRPGHIHIGRV
 SSQP-LTHVSSPAASYYLSFPYTRLGWAMTSADLNQDGHDGVLSVVGAPGYSRPGRIHVGRV
 GSQLSQKHSSPLASYFLSPYARLGWAMTSADLNQDGHDGVLSVVGAPGYSRPGRIHIGRV

YLIYGNGLGLPPVVDLDDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSVGS
 YLIYGNGLG-PRIDLDLDEAHGILEGFQPSGRFGSAVAVLDFNVDGVPDLAVGAPSVGS
 YLIYGNELGLPPVVDLDDKEAHRILEGFQPSGRFGSALAMLDNFMDGVPDLAVGAPSVGS

EQLTYKGAVVYFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPD-LVIGSP
 EKLTYTGAVVYFGSKQGQLSSSPNVTISCQDTYCNLGWTLLAADVGDSEPDLFVIGSP
 EQLTYKGAVVYFGSKQGRMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPD-LVIGSP

FAPGGGKQKGIVAAFYSGPSLSDKEKLNVEAANWTRGEEDFSWFGYSLHGVTVDNRTLL
 FAFGGGKQKGIVAAFYSGSSYSSREKLNVEAANWMVKGEEDFAWLGYSLHGVNVNRTLL
 FAPGGGKQKGIVAAFYSGPSLSNKEKLNVEAANWTRGEEDFAWFGYSLHGVTVDNRTLL

LVGSPTWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGH
 LAGSPTWKDTSSQGHFRTRDEKQSPGRVYGYFPPICQSWFTISGDKAMGKLGTSLSSGH
 LVGSPTWKNASRLGRLLHIRDEKKSLGRVYGYFPPNSQSWFTIVGDKAMGKLGTSLSSGH

2/20

Figure 1 continued

VLMNGTLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLLSTFSGDRRF
VIVNGTRTQVLLVGAPTQDVSKS - FLTMTLHQGGSTRMYELTPDSQPSLLSTFSGNRRF
VLMNGTLTQVLLVGAPTRDDVSKMAFLTMTLHQGGATRMYALTSDLQPPLLSTFSGDRRF

SRFGGVVLHLSLDDDGGLDEIIIMAAPIRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKC
SRFGGVVLHLSLDDNDGLDEIIIVAAPLRTDATAGLMGEEDGRVYVFNGKQITVGDVTGKC
SRFGGVVLHLSLDDDGVDEIIIVAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKC

KSWITPCPEEKAQYVLISPEASSRGSSLITVRSKAKNQV р IAAGRSSLGARLSGALHVY
KSWVTPCPEEKAQYVLISPEAGSRFGSSVITVRSKEKNQV р IAAGRSSLGARLSGVLHIY
KSWMTPCPEEKAQYVLISPEASSRGSSLITVRSKAKNQV р IAAGRSSLGARLSGALHVY

SLGSD
RLGQD
SLGSD

3/20

Figure 2

Top: pancreatic-form cDNA sequence from GenBank database
 mid: our sequence cloned from human liver cDNA library
 bot: Roche patent pancreatic-form partial cDNA sequence

1	GTGACCTGCTTAGAGAGAACGGTGGGCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	60
1	-----ATGTCTGCT	9
61	GCAGCTCTGAGCATTCCCACGTACCCAGAGAACGCCGGTGGCAATGAGAGCATGCTGCT	120
10	-----	
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGTTCTCTGCCATAGAGGTTACCG	69
121	TTCAGGTTGTGGCCTGGCCTGCTGATCATGTTGGTTCTCTGCCATAGAGGTTACCG	180
70	-----	
181	TGTGGCCTTCAACACACAGTAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	129
181	TGTGGCCTTCAACACACATAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	240
130	-----	
241	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	189
241	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATGCGTATCAGGCTGGA	300
190	-----	
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	249
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	360
250	-----	
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	309
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	420
310	-----	
421	TATCCCCTCCCTGGGAGAACGGACACAGAGAAACTGGTAGCTTCTGTTGGAATTACT	369
421	TATCCCCTCCCTGGGAGAACGGACACAGAGAAACTGGTAGCTTCTGTTGGAATTACT	480
370	-----	
481	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCTTAGG	429
481	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGCCTTGAACAAGGATTCTTAGG	540
430	-----	
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTATT	489
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATTCAAGAGGCTCATTGGCTGGTATT	600
490	-----	
601	GGAGGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGACGACGCTGGTAT	549
601	GGAGGGAGATGTGTTGAGCCAGTTGAATTAAATTACCTTGACGACGCTGGTAT	660
550	-----	
661	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGTCGAAAAGTCATCACC	609
661	GTGCCAGTCAAAGATCTACTGGGAATTATGAGAAACTGTATGGTCGAAAAGTCATCACC	720

4/20

Figure 2 continued

610	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTTAGAAATGTATGGTGAGATGCTA	669
721	GAAAATGTAATCGTTGATTGTTCACATATCCAGTTCTTAGAAATGTATGGTGAGATGCTA	780
<hr/>		
670	GCTTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATT	729
781	GCTTTCCAAGTTATATCCCACTTACTCTACAAAGTCCCCGTTTGGTGGAACAAATT	840
<hr/>		
730	CAAGAGTATTTCTTGGAGGACTGGATGATATGGCATTGGTCCACTAATATTAACAT	789
841	CAAGAGTATTTCTTGGAGGACTGGATGATATGGCATTGGTCCACTAATATTAACAT	900
<hr/>		
790	CTAACAACTTCATGTTGGAGAATGGGACCAAGTGACTGCAACCTGCCTGAGAACCCCTCTG	849
901	CTAACAAAGCTTCATGTTGGAGAATGGGACCAAGTGACTGCAACCTGCCTGAGAACCCCTCTG	960
<hr/>		
850	TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTAAAAATGCAGAAAATGAT	909
961	TTCATTGCATGTGGCGGCCAGCAAAACACACCCAGGGCTAAAAATGCAGAAAATGAT	1020
<hr/>		
910	TTTCACAGAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAACTATACT	969
1021	TTTCACAGAAATTGACTACATCCCTAACTGAAAGTGTGACAGGAATATAACTATACT	1080
<hr/>		
970	GAAAGAGGAGTGTCTTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTATCTAC	1029
1081	GAAAGAGGAGTGTCTTGTAAATTCCCTGGACCCCGGATTCCATGTCCTTATCTAC	1140
<hr/>		
1030	AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAG	1089
1141	AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAG	1200
<hr/>		
1090	CACGTCTCCAGCCCCCTAGCATCTTACTTGTCAATTCTTATGCGAGGCTGGCTGG	1149
1201	CACGTCTCCAGCCCCCTAGCATCTTACTTGTCAATTCTTATGCGAGGCTGGCTGG	1260
<hr/>		
1150	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTACCTCGTGGTGGCGCACCA	1209
1261	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTACCTCGTGGTGGCGCACCA	1320
<hr/>		
1210	GGCTACAGCCGCCCCGGCACATCCACATGGGCGCGTGTACCTCATCTACGGCAATGAC	1269
1321	GGCTACAGCCGCCCCGGCACATCCACATGGGCGCGTGTACCTCATCTACGGCAATGAC	1380
<hr/>		
1270	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTGAAGGC	1329
1381	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGCCACAGGATCCTGAAGGC	1440
<hr/>		
1330	TTCCAGCCCTCAGGTGGTTGGCTGGCCTTGGCTGTGGACTTTAACGTGGACGGC	1389
1441	TTCCAGCCCTCAGGTGGTTGGCTGGCCTTGGCTGTGGACTTTAACGTGGACGGC	1500
<hr/>		
1390	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACAAAGGT	1449
1501	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGCTCCGAGCAGCTCACAAAGGT	1560

5/20

Figure 2 continued

1450 GCCGTGTATGCTACTTGGTCAAACAAGGAGGAATGCTTCTTCCCCTAACATCACC 1509
 1561 GCCGTGTATGCTACTTGGTCAAACAAGGAGGAATGCTTCTTCCCCTAACATCACC 1620

 1510 ATTTCTGCCAGGACATCTACTGTAACCTGGCTGGACTCTCTGGCTGCAGATGTGAAT 1569
 1621 ATTTCTGCCAGGACATCTACTGTAACCTGGCTGGACTCTCTGGCTGCAGATGTGAAT 1680

 1570 GGAGACAGTGAACCGATCTGGTCATCGGCTCCCTTTGCACCAGGTGGAGGGAAGCAG 1629
 1681 GGAGACAGTGAACCGATCTGGTCATCGGCTCCCTTTGCACCAGGTGGAGGGAAGCAG 1740

 1630 AAGGAAATTGTTGGCTGCCTTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 1689
 1741 AAGGAAATTGTTGGCTGCCTTTATTCTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 1800
 1 -----CTGGCCCCAGCCTGAGCGACAAAGAAAAACTGAAC 35
 1690 GTGGAGGCAGCCAACGGACGGTGAGAGGCGAGGAAGACTTCTCCTGGTTGGATATTCC 1749
 1801 GTGGAGGCAGCCAACGGACGGTGAGAGGCGAGGAAGACTTCTCCTGGTTGGATATTCC 1860
 36 GTGGAGGCAGCCAACGGACGGTGAGAGGCGAGGAAGACTTCTCCTGGTTGGATATTCC 95
 1750 CTTCACGGTGTCACTGTGGACAACAGAACCTGCTGTTGGTGGAGCCGACCTGGAAG 1809
 1861 CTTCACGGTGTCACTGTGGACAACAGAACCTGCTGTTGGTGGAGCCGACCTGGAAG 1920
 96 CTTCACGGTGTCACTGTGGACAACAGAACCTGCTGTTGGTGGAGCCGACCTGGAAG 155
 1810 AATGCCAGCAGGCTGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 1869
 1921 AATGCCAGCAGGCTGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 1980
 156 AATGCCAGCAGGCTGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG 215
 1870 GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 1929
 1981 GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 2040
 216 GTGTATGGCTACTTCC-ACCAAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA 275
 1930 ATGGGGAAACTGGGTACTTCCCCTTCCAGTGGCCACGTACTGATGAATGGGACTCTGAAA 1989
 2041 ATGGGGAAACTGGGTACTTCCCCTTCCAGTGGCCACGTACTGATGAATGGGACTCTGAAA 2100
 276 ATGGGGAAACTGGGTACTTCCCCTTCCAGTGGTACGTACTGATGAATGGGACTCTGAAA 335
 1990 CAAGTGCTGCTGGTGGAGCCCTACGTACGATGACGTGCTAAGGTGGCATTCTGACC 2049
 2101 CAAGTGCTGCTGGTGGAGCCCTACGTACGATGACGTGCTAAGGTGGCATTCTGACC 2160
 336 CAAGTGCTGCTGGTGGAGCCCTACGTACGATGACGTGCTAAGGTGGCATTCTGACC 395
 2050 GTGACCCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT 2109
 2161 GTGACCCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT 2220
 396 GTGACCCCTACACCAAGGCGGAGCCACTCGCGTGTACGCACTCATATCTGACGCGCAGCCT 455
 2110 CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGTGGCGTTCTGCAC 2169
 2221 CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGTGGCGTTCTGCAC 2280
 456 CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGTGGCGTTCTGCAC 515
 2170 TTGAGTGACCTGGATGATGGTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 2229
 2281 TTGAGTGACCTGGATGATGGTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 2340
 516 TTGAGTGACCTGGATGATGGTTAGATGAAATCATCATGGCAGCCCCCTGAGGATA 575

6/20

Figure 2 continued

2230 GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGGAGTATATGTATATAATGGC 2289
 2341 GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGGAGTATATGTATATAATGGC 2400
 576 GCAGATGTAACCTCTGGACTGATTGGGGAGAACGCGGAGTATATGTATATAATGGC 635

 2290 AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 2349
 2401 AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 2460
 636 AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA 695

 2350 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 2409
 2461 GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 2520
 696 GAAGAAAAGCGCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC 755

 2410 CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAGGAGTTCT 2469
 2521 CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAGGAGTTCT 2580
 756 CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTATTGCTGCTGGAAGGAGTTCT 815

 2470 TTGGGAGCCCAGCTCTCGGGGCACTTCACGTCTATAGCCTGGCTCAGATTGAAGATT 2529
 2581 TTGGGAGCCCAGCTCTCGGGGCACTTCACGTCTATAGCCTGGCTCAGATTGAAGATT 2640
 816 TTGGGAGCCCAGCTCTCGGGGCACTTCACGTCTATAGCCTGGCTCAGATTGAAGATT 875

 2530 CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 2589
 2641 CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 2700
 876 CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT 935

 2590 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC 2649
 2701 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC 2760
 936 TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC 995

 2650 CTGGGA----- 2655
 2761 CTGGGA----- 2766
 996 CTGGGACAGTGAACCGATCTGGTCATCGGCTCCCCTTTGACCAAGGTGGAGGAAGCA 1055

 2656 -----GTAGAGAGACACACTAACAGCCACACCCCTCTG 2687
 2767 -----GTAGAGAGACACACTAACAGCCACACCCCTCTG 2798
 1056 GAAGGGATTGTGGCTCGTTTATTGAGTAGAGAGACACACTAACAGCCACACCCCTCTG 1115

 2688 GAAATCTGATACAGTAAATATATGACTGCACCAGAAATATGTGAAATAGCAGACATTCTG 2747
 2799 GAAATCTGATACAGTAAATATATGACTGCACCAAG----- 2833
 1116 GAAATCTGATACAGTAAATATGACTACACCAGAAATATGTGAAATAGCAGACATTCTG 1175

 2748 CTTACTCATGTCCTCCACAGTTACTCCTCGCTCCCTTGCATCTAACACCTTCTT 2807

 1176 CTTACTCATGTCCTCCACAGTTACTCCTCGCTCCCTTGCATCTAACACCTTCTT 1235

 2808 CTTTCCCAACTTATTGCCTGTAGTCAGACCTGCTGTACAACCTATTCCTCTCTTG 2867

 1236 CTTTCCCAACTTATTGCCTGTAGTC----- 1261

 2868 AATGTCTTCCAGTGGCTGGAAAGGTCCCTGTGGTTATCTGTTAGAACAGTCTCTGTA 2927

7/20

Figure 2 continued

2928 CACAATTCCCTCTAAAAACATCCTTTAAAAAGAATTGTTAGCCATAAAGAAAGA 2987

2988 ACAAGATCATGCCCTTGCAGGGACATGGATGGAGCTGGAGGCCATTATCCTTCATAAAC 3047

3048 TATTGCAGGAACAGAAAACCAAACACTCCATATTCTCACTGTAAAGTGGAGCTAAGTGA 3107

3108 GAACACGTGGACACATAGAGGGAAACAACACACACTGGGGCCTATGAGAGGGCGGAAGGT 3167

3168 GGGAGGAGGGAGAGATCAGGAAAATAACTAATGGATACTTAGGGTGATGAAATAATCTG 3227

3228 TGTAACAAACCCCCATGACACACCTTATGTATGTAACAAACCAGCACTCCTGCGCATG 3287

3288 TACCCCTGAACCTAAAGTTAAAAAGTTGAACCTAAAAATAACAGATTGGCCATGC 3347

3348 CAATCAAAGTATAATAGAAAGCATAGTATAC 3378

8/20

Figure 3**cDNA clone d3**

MILLFQDSMSFIYKALERNIRTMFIGGSQLSQKHVVSSPLASYFLSFYARLGWAMTSADL
 NQDGHGDLVVGAPGYSRPGHIHIGRVYLIYGNGLGLPPVLDLDKEAHRILEGFQPSGRF
 GSALAVLDFNVDGVPDLAVGAPSGVGSEQLTKGAVVVYFGSKQGGMSSSPNITISCQDIYC
 NLGWTLAADVNGDSEPDLVIGSPFAPGGKQKGIVAAFYSGPSLSDKEKLNVEAANWTV
 RGEEDFSWFGYSLHGVTVDNRTLLLGVGPTWKNAASRLGHLLHIRDEKKSLGRVYGYFPPN
 GQSWFTISGDKAMGKLGTSLSGGHVLMNGLKQVLLVGAPTYDDVSKVAFLTTLHQGGA
 TRMYALISDAQPLLSTFSGDRRFSRFGGVHLHLSLDLDDGLDEIIMAAPLRIADVTSGLI
 GGEDGRVYVYNGKETTLGDMTGKCKSWITPCPEEKAQYVLISPEASSRGSSLITVRSKA
 KNQVIAAGRSSLGARLSGALHVYSLGSD

cDNA clone b2

MSAFRLWPGLLIMLGSCLHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY
 QAGIVFPDCFYPICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLF
 GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGDFGGDVLSQFEFNFNYLAR
 RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAWSKLYPTYSTKSPFLV
 EQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ
 KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL
 SQKHVVSSPLASYFLSFYARLGWAMTSADLNQDGHDGVVAGPGYSRPGHIHIGRVYLIY
 GNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSGVGSEQLT
 YKGAVVVYFGSKQGGMSSSPNITISCQDIYCNLGWTLAADVNGDSEPDLVIGSPFAPGG
 GKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVSP
 TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSGGHVLMNG
 TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGG
 VLHLSLDLDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT
 PCPEEKVSEKKKKKK

cDNA clone a1

MSAFRLWPGLLIMLGSCLHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY
 QAGIVFPDCFYPICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLF
 GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGDFGGDVLSQFEFNFNYLAR
 RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAWSKLYPTYSTKSPFLV
 EQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ
 KNDFHRNLTTSLTESVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL
 SQKHVVSSPLASYFLSFYARLGWAMTSADLNQDGHDGVVAGPGYSRPGHIHIGRVYLIY
 GNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSGVGSEQLT
 YKGAVVVYFGSKQGGMSSSPNITISCQDIYCNLGWTLAADVNGDSEPDLVIGSPFAPGG
 GKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVSP
 TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSGGHVLMNG
 TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGG
 VLHLSLDLDDGLDEIIMAAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT
 PCPEEKVSEKKKKKK

9/20

Figure 4

2832 bp: 690 a 688 c 735 g 719 t

1 gtgacctgct tagagagaag cgggtggat tttggagttcc cagtgtgt
 61 gcagctctga gcattccac gtcaccagag aagccgggtgg gcaatgagag catgtctgt
 121 ttcaggttgc ggcctggct gctgatcatg ttgggttctc tctgccatag aggttcaccg
 181 tgtggccctt caacacacat agaaatagga cacagagctc tggagtttct tcagcttcac
 241 aatgggcgtg ttaactacag agagctgtt ctagaacacc aggatgcgtc tcaggctgga
 301 atcgtgtttc ctgattgtt ttaccctagc atctgcaaag gaggaaaatt ccatgatgtg
 361 tctgagagca ctcactggac tccggttctt aatgcaagcg ttcattatat ccgagagaac
 421 tatccccttc cctggagaa ggacacagag aaactggtag ctttcttgg tggaaattact
 481 tctcacatgg cggcagatgt cagctggcat agtctggcc ttgaacaagg attccttagg
 541 accatggag ctattgatt tcacggctcc tattcagagg ctcattcggc tggtagttt
 601 ggaggagatg tggtgagcca gtttgaattt aattttaaat accttgcacg acgctggat
 661 gtgccagtca aagatctaact gggaaattt gagaactgt atggtcgaaa agtcatcacc
 721 gaaaatgtaa tcgttgattt ttcacatatac cagttcttag aatgtatgg tgagatgtca
 781 gctgttcca agttatatcc cacttactt acaaagtccc cgtttttgtt ggaacaattc
 841 caagagtatt ttcttgagg actggatgtat atggcatttt gttccactaa tatttaccat
 901 ctaacaagct tcacgttggaa gaatgggacc agtgcacta acctgcctga gaaccctctg
 961 ttcattgcattt gttccggccca gcaaaaccac acccagggtt caaaaatgca gaaaatgtat
 1021 tttcacagaa atttgcatac atccctaact gaaagtgttgc acaggaatataaactataact
 1081 gaaagaggag tggttcttag tgtaaattcc tggacccccc attccatgtc ctttatctac
 1141 aaggcttgg aaaggaacat aaggacaatg ttcataggtt gctctcagggtt gtcacaaaag
 1201 cacgtctcca gccccttagc atcttacttcc ttgtcatttc cttatgcggat gcttggctgg
 1261 gcaatgaccc cagctgaccc caaccaggat gggcacgggtt acctcgtgtt gggcgcacca
 1321 ggctacagcc gccccggccca catccacatc gggcgcgtgtt acctcatcta cggcaatgac
 1381 ctgggcctgc caccctgttga cctggacctg gacaaggagg cccacaggat ctttgaaggc
 1441 ttccagccctt caggtcggtt tggctcgccc ttggctgtgtt tggactttaa cgtggacggc
 1501 gtgcctgacc tggccgtggg agctccctcg gtggctccg agcagctcac ctacaaaggt
 1561 gccgtgtatg tctactttgg ttccaaacaa ggaggaaatgt tttttccccca taacatcacc
 1621 atttcttgcc aggacatcta ctgtacttgc ggctggactc tcttggctgc agatgtgaat
 1681 ggagacagtg aaccgcgtt gtcacgcgc tccccctttt caccagggtt agggaaaggc
 1741 aagggaaattt tggctcggtt ttattctggc cccagcctga ggcacaaaga aaaactgaac
 1801 gtggaggcag ccaactggac ggtgagaggc gaggaagact ttcctgggtt tggatattcc
 1861 cttcacgggtt tcactgttggaa caacagaacc ttgctgttgg ttggagccccc gacctggaaag
 1921 aatgccagca ggctggccca ttgttacac atccgagatg agaaaaagag ctttggagg
 1981 gtgtatggct acttcccacc aaacggccaa agctggttt ccatttctgg agacaaggca
 2041 atggggaaac tgggtacttc cttttccagt ggccacgtac tgatgaatgg gactctgaaa
 2101 caagtgtgc tgggtggagc ccctacgtac gatgacgtgtt ctaaggtggc attctgtacc
 2161 gtgaccctac accaaggcgg agccactcgc atgtacgcac tcataatctga cgcgcagcc
 2221 ctgctgtca gcacccctcag cggagaccgc cgcttctccc gatttgggtgg cgttctgcac
 2281 ttgagtgacc tggatgttga tggcttagat gaaatcatca tggcagccccc cctgaggata
 2341 gcagatgtaa cctctggact gattggggga gaagacggcc gagtatatgt atataatggc
 2401 aaagagacca cccttgggttga catgactggc aaatgcaaat catggataac tccatgtcca
 2461 gaagaaaagg cccaaatatgt attgattttc cctgaagccca gctcaagggtt tggagctcc
 2521 ctcacatcccg tgaggtccaa ggccaaagaac caagtcgtca ttgctgttgg aaggagttct
 2581 ttgggagccc gactctccgg ggcacttccac gtctatagcc ttggctcaga ttgaagattt
 2641 cactgcattt ccccaatctg cccaccccttc tcacatgttgc ttcatatccat ggtgagcc
 2701 ttgatggaca aagtggcaca tccagttggag cgggtggtaga tcctgtataga catggggctc
 2761 ctgggagtag agagacacac taacagccac accctctggaa aatctgtatagc agtaaatata
 2821 tgactgcacc ag

10/20

Figure 5

2472 bp: 617 a 588 c 639 g 628 t

1 gtctgcacct ggattttgga gtcccagtgc tgctgcagct ctgagcattc ccacgtcacc
61 agagaagccg gtgggcaatg agagcatgtc tgcttcagg ttgtggcctg gcctgctgat
121 catgttgggt tctctgcctc atagaggttc accgtgtggc cttcaacac acatagaaat
181 aggacacaga gctctggagt ttcttcagct tcacaatggg cgtgttaact acagagagct
241 gttactagaa caccaggatg cgtatcaggc tggaatcgtg tttcctgatt gtttttaccc
301 tagcatctgc aaaggaggaa aattccatga tggatgtctgag agcactcact ggactccggt
361 tcttaatgcg agcgttcatt atatccgaga gaactatccc cttccctggg agaaggacac
421 agagaaaactg gtagcttct tggttggaaat tacttctcac atggcggcag atgtcagctg
481 gcatagtctg ggccttgaac aaggattccct taggaccatg ggagctattt attttacccg
541 ctccttattca gagggtcatt cggctgggtga ttttggagga gatgtgttga gccagtttga
601 atttaatttt aattaccttg cacgacgctg gtatgtgcca gtcaaagatc tactggaaat
661 ttatgagaaa ctgtatggtc gaaaaagtcat caccggaaat gtaatcggtt attgttcaca
721 tatccagttc ttagaaatgt atgggtgagat gctagctgtt tccaagttat atcccactta
781 ctctacaaag tccccgtttt tggtggaaaca attccaaagag tattttctt gaggactgga
841 tgatatggca ttttggtcca ctaatattt ccacatctaaca agcttcatgt tggagaatgg
901 gaccagtgac tgcaacctgc ctgagaaccc tctgttcatt gcatgtggcg gccagcaaaa
961 ccacacccag ggctaaaaaa tgcaaaaaaa tgattttcac agaaatttga ctacatccct
1021 aactgaaagt gttgacagga atataaaacta tactgaaaga ggagtgttct ttagtgtaaa
1081 ttcctggacc ccggattcca tgcctttat ctacaaggct ttggaaagga acataaggac
1141 aatgttcata ggtggctctc agttgtcaca aaagcacgtc tccagccccct tagcatctt
1201 cttcttgc tttcctttag cgaggcttgg ctggcaatg acctcagctg acctcaacca
1261 ggtatgggcac ggtacccctcg tgggtggcgc accaggtac agccgccccg gccacatcca
1321 catcgccgcg gttgtacctca tctacggca tgacctggc ctgcccacctg ttgacactgga
1381 cctggacaag gaggcccaca ggatccttga aggctccag ccctcagggtc ggtttggctc
1441 ggccttggct gtgttggact ttaacgttggc cggcgtgcct gacctggccg tggagactcc
1501 ctcgggtggc tccgagcagc tcacccataa aggtggcgtg tatgtctact ttgggtccaa
1561 acaaggagga atgtcttctt cccctaaatc caccatttct tgccaggaca tctactgtaa
1621 cttgggctgg actctcttgg ctgcagatgt gaatggagac agtgaaccccg atctgtcat
1681 cggctccct tttgcaccag gtggagggaa gcagaaggaa attgtggctg cgtttatttc
1741 tggccccagc ctgagcgcaca aagaaaaactt gaacgtggag gcagccaaactt ggacgggtgag
1801 aggcgaggaa gacttctctt ggtttggata ttcccttcac ggtgtactg tggacaacag
1861 aaccttgcgt ttgggtggc gcccgcacccgt gaagaatgcc agcaggctgg gccatttgg
1921 acacatccga gatgagaaaa agagccttgg gagggtgtat ggctacttcc caccacacgg
1981 cccaaagctgg tttaccattt ctggagacaaa ggcaatgggg aaactgggtt cttcccttcc
2041 cagtggccac gtactgtatga atgggactct gaaacaagtg ctgctgggtt gggccctac
2101 gtacgtatgac gtgtcttggc tggcattccctt gaccgtgacc ctacaccaag gcccggccac
2161 tcgcgtatgtac gcactcatat ctgacgcgcga gcctctgctg ctcagccaccc ttggacatgg
2221 cccgcgccttc tcccgatttg gtggcggttgc gacttgagt gacctggatg atgtatggctt
2281 agatgaaatc atcatggcag ccccccgttgg gataggcagat gtaacctctg gactgtattgg
2341 gggagaagac ggccgcgttggat atgttatataa tggcaagag accaccctt gtcacatgac
2401 tggcaaatgc aaatcatggc taactccatg tccagaagaa aaggtaaatg aaaaaaaaaaaa
2461 aaaaaaaaaaa aa

11/20

Figure 6

1942 bp: 455 a 496 c 502 g 489 t

```

1 gggctgtaac tctgccatcc ctcagcataa tttggggta tgatttcaact atcctaattg
61 cctgtcctaa gtgatcttac ttgctgatag gacctaattgt tttattttat tgtttagcac
121 ttctaaaaac tcatttcctt tacacaagtca aatactttg gacagggaaac agtagctttg
181 ttgattatgc tacgtgtctt tactgtctat aatgattctt ttatccagg attccatgtc
241 ctttatctac aaggcttgg aaaggaacat aaggacaatg ttcataggtg gcttcagtt
301 gtcacaaaag cacgtctcca gccccttagc atcttacttc ttgtcatttc cttatgcgag
361 gcttggctgg gcaatgaccc cagctgaccc caaccaggat gggcacggtg acctcgtggt
421 gggcgcacca ggctacagcc gccccggcca catccacatc gggcgcggt acctcatcta
481 cggcaatgac ctgggcctgc cacctgttga cctggacctg gacaaggagg cccacaggat
541 ctttgaaggc ttccagccct caggtcggtt tggctcgcc ttggctgtgt tggactttaa
601 cgtggacggc gtgcctgacc tggccgtgg agctccctcg gtggctccg agcagctcac
661 ctacaaaaggc gccgtgtatg tctacttttg ttccaaacaa ggaggaatgt cttttcccc
721 taacatcacc atttcttgcc aggacatcta ctgttaacttg ggctggactc tcttggctgc
781 agatgtgaat ggagacagtg aacccgatct ggtcatcgcc tcccctttt caccagggtgg
841 agggaaagcag aagggaaatttgg tggctgcgtt ttattctggc cccagcctga ggcacaaaaga
901 aaaaactgaac gtggaggcag ccaactggac ggtgagaggc gaggaagact tctcctggtt
961 tggatattcc cttcacggc tcactgttga caacagaacc ttgctgttgg ttggagggccc
1021 gacctggaaag aatgccagca ggctgggcca ttttttacac atccgagatg agaaaaagag
1081 ctttgggagg gtgtatggct atttccacc aaacggccaa agctggttt ccatttctgg
1141 agacaaggca atggggaaac tgggtacttc ctttccagt ggccacgtac tgatgaatgg
1201 gactctgaaa caagtgtgc tgggtggagc ccctacgtac gatgacgtgt ctaaggtggc
1261 attcctgacc gtgaccctac accaaggcgg agccactcgatgtacgcac tcataatctga
1321 cggcgcagcct ctgctgtca gcaccccttag cggagaccgc cgcttctccc gatttgggtgg
1381 ctttctgcac ttgagtgacc tggatgttga tggcttagat gaaatcatca tggcagcccc
1441 cctgaggata gcagatgtaa cctctggact gattggggga gaagacggcc gagtatatgt
1501 atataatggc aaagagacca cccttggtga catgactggc aaatgcaaat catggataac
1561 tccatgtcca gaagaaaagg cccaatatgt attgatttct cctgaaggcca gctcaagggtt
1621 tgggagctcc ctcacccatcg tgaggtccaa ggcaaaaac caagtgtca ttgctgttgg
1681 aaggagtttct ttgggagggcc gactctccgg ggcacttcac gtctatagcc ttggctcaga
1741 ttgaagattt cactgcattt cccactctg cccaccccttc tcacatgttga tcacatccat
1801 ggtgagcatt ttgatggaca aagtggcaca tccagtgag cgggtttaga tcctgtataga
1861 catggggctc ctgggagtag agagacacac taacagccac accctcttggaa aatctgtatc
1921 agtaaatata tgactgcacc ag

```

12/20

Figure 7

database	MSAFRLWPGLLIMLGSUCHRGSPCGLSTHVEIGHRALEFLQLHNGRVNYRELLLEHQDAY	60
d3	-----	
b2	MSAFRLWPGLLIMLGSUCHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY	60
a1	MSAFRLWPGLLIMLGSUCHRGSPCGLSTHIEIGHRALEFLQLHNGRVNYRELLLEHQDAY	60
database	QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLF	120
d3	-----	
b2	QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLF	120
a1	QAGIVFPDCFYPSICKGGKFHDVSESTHWTPFLNASVHYIRENYPLPWEKDTEKLVAFLF	120
database	GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGDFGGDVLSQFEFNFLYALAR	180
d3	-----	
b2	GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGDFGGDVLSQFEFNFLYALAR	180
a1	GITSHMAADVSWHSLGLEQGFLRTMGAIDFHGSYSEAHSGDFGGDVLSQFEFNFLYALAR	180
database	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLV	240
d3	-----	
b2	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLV	240
a1	RWYVPVKDLLGIYEKLYGRKVITENVIVDCSHIQFLEMYGEMLAVSKLYPTYSTKSPFLV	240
database	EQFQEYFLGGLDDMAFWSTNIYHLTIFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
d3	-----	
b2	EQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
a1	EQFQEYFLGGLDDMAFWSTNIYHLTSFMLENGTSDCNLPENPLFIACGGQQNHTQGSKMQ	300
database	KNDFHRLTTSVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
d3	-----	
b2	KNDFHRLTTSVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
a1	KNDFHRLTTSVDRNINYTERGVFFSVNSWTPDSMSFIYKALERNIRTMFIGGSQL	360
database	SQKHVSSPLASYFLSPYARLGWAMTSADLNQDGHDGLVVGAPGYSRPGHIHIGRVYLIY	420
d3	SQKHVSSPLASYFLSPYARLGWAMTSADLNQDGHDGLVVGAPGYSRPGHIHIGRVYLIY	90
b2	SQKHVSSPLASYFLSPYARLGWAMTSADLNQDGHDGLVVGAPGYSRPGHIHIGRVYLIY	420
a1	SQKHVSSPLASYFLSPYARLGWAMTSADLNQDGHDGLVVGAPGYSRPGHIHIGRVYLIY	420
database	GNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSVGSEQLT	480
d3	GNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSVGSEQLT	150
b2	GNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSVGSEQLT	480
a1	GNDLGLPPVLDLDKEAHRILEGFQPSGRFGSALAVLDFNVDGVPDLAVGAPSVGSEQLT	480
database	YKGAVVVFYFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPDLVIGSPFAPGG	540
d3	YKGAVVVFYFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPDLVIGSPFAPGG	210
b2	YKGAVVVFYFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPDLVIGSPFAPGG	540
a1	YKGAVVVFYFGSKQGGMSSSPNITISCQDIYCNLGWTLLAADVNGDSEPDLVIGSPFAPGG	540

13/20

Figure 7 continued

database	GKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVSP	600
d3	GKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVSP	270
b2	GKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVSP	600
a1	GKQKGIVAAFYSGPSLSDKEKLNVEAANWTVRGEEDFSWFGYSLHGVTVDNRTLLLGVSP	600
database	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVLMNG	660
d3	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVLMNG	330
b2	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVLMNG	660
a1	TWKNASRLGHLLHIRDEKKSLGRVYGYFPPNGQSWFTISGDKAMGKLGTSLSSGHVLMNG	660
database	TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGG	720
d3	TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGG	390
b2	TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGG	720
a1	TLKQVLLVGAPTYDDVSKVAFLTTLHQGGATRMYALISDAQPLLSTFSGDRRFSRFGG	720
database	VLHLSLDDDGGLDEIIIMAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	780
d3	VLHLSLDDDGGLDEIIIMAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	450
b2	VLHLSLDDDGGLDEIIIMAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	780
a1	VLHLSLDDDGGLDEIIIMAPLRIADVTSGLIGGEDGRVYVYNGKETTLGDMTGKCKSWIT	780
database	PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQV р VIAAGRSSLGARLSGALHVYSLGSD	840
d3	PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQV р VIAAGRSSLGARLSGALHVYSLGSD	510
b2	PCPEEKVSEKKKKK-----	795
a1	PCPEEKAQYVLISPEASSRGSSLITVRSKAKNQV р VIAAGRSSLGARLSGALHVYSLGSD	840
Database	840 aa	
d3	510 aa	
b2	795 aa	
a1	840 aa	

14/20

Figure 8

1: pancreatic-form: cDNA sequence from GenBank database (L11702)
 2: cDNA clone A1
 3: cDNA clone B2
 4: cDNA clone D3

1	GTGACCTGCTTAGAGAGAAGCGGTGGTCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	60
1	-----GTCTGCACCTGGATTTGGAGTCCCAGTGCTGCT	34
1	-----ATGTCTGCT	9
61	GCAGCTCTGAGCATTCCCACGTCACCAAGAGAAGCCGGTGGCAATGAGAGCATGTCTGCT	120
35	GCAGCTCTGAGCATTCCCACGTCACCAAGAGAAGCCGGTGGCAATGAGAGCATGTCTGCT	94
10	-----	
121	TTCAAGGTTGTGGCCTGGCTGCTGATCATGTTGGGTTCTCTCTGCCATAGAGGTTACCG	69
95	TTCAAGGTTGTGGCCTGGCTGCTGATCATGTTGGGTTCTCTCTGCCATAGAGGTTACCG	180
95	TTCAAGGTTGTGGCCTGGCTGCTGATCATGTTGGGTTCTCTCTGCCATAGAGGTTACCG	154
70	-----	
181	TGTGGCCTTCAACACACAGTAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	129
155	TGTGGCCTTCAACACACATAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	240
155	TGTGGCCTTCAACACACATAGAAATAGGACACAGAGCTCTGGAGTTCTTCAGCTTCAC	214
130	-----	
241	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATCGTATCAGGCTGGA	189
215	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATCGTATCAGGCTGGA	300
215	AATGGGCGTGTAACTACAGAGAGCTGTTACTAGAACACCAAGGATCGTATCAGGCTGGA	274
190	-----	
301	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	249
275	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	360
275	ATCGTGTTCCTGATTGTTTACCTAGCATCTGCAAAGGAGGAAATTCCATGATGTG	334
250	-----	
361	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	309
335	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	420
335	TCTGAGAGCACTCACTGGACTCCGTTCTTAATGCAAGCGTTCATTATATCCGAGAGAAC	394
310	-----	
421	TATCCCTCCCTGGGAGAAGGACACAGAGAACTGGTAGCTTCTTGGAAATTACT	369
395	TATCCCTCCCTGGGAGAAGGACACAGAGAACTGGTAGCTTCTTGGAAATTACT	480
395	TATCCCTCCCTGGGAGAAGGACACAGAGAACTGGTAGCTTCTTGGAAATTACT	454
370	-----	
481	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGGCCTTGAACAAGGATTCTTAGG	429
541	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGGCCTTGAACAAGGATTCTTAGG	540
541	TCTCACATGGCGGCAGATGTCAGCTGGCATAGTCTGGGCCTTGAACAAGGATTCTTAGG	514

15/20

Figure 8 continued

430	ACCATGGGAGCTATTGATTTCACGGCTCCTATT	CAGAGGCTCATT	CGGCTGGT	GATTT	489					
541	ACCATGGGAGCTATTGATTTCACGGCTCCTATT	CAGAGGCTCATT	CGGCTGGT	GATTT	600					
515	ACCATGGGAGCTATTGATTTCACGGCTCCTATT	CAGAGGCTCATT	CGGCTGGT	GATTT	574					

490	GGAGGAGATGTGTTGAGCCAGTTGAATT	TAATT	ACCTTG	CACGACG	CTGGT	TAT	549			
601	GGAGGAGATGTGTTGAGCCAGTTGAATT	TAATT	ACCTTG	CACGACG	CTGGT	TAT	660			
575	GGAGGAGATGTGTTGAGCCAGTTGAATT	TAATT	ACCTTG	CACGACG	CTGGT	TAT	634			

550	GTGCCAGTCAAAGATCTACTGGGAATT	TATGAGAA	ACTGT	TATGGTC	GAAGA	GT	CATCACC	609		
661	GTGCCAGTCAAAGATCTACTGGGAATT	TATGAGAA	ACTGT	TATGGTC	GAAGA	GT	CATCACC	720		
635	GTGCCAGTCAAAGATCTACTGGGAATT	TATGAGAA	ACTGT	TATGGTC	GAAGA	GT	CATCACC	694		

610	GAAAATGTAATCGTTGATTGTT	CACAT	ATCCAGTT	CTTAGAA	ATGT	TATGGT	GAGATG	GCTA	669	
721	GAAAATGTAATCGTTGATTGTT	CACAT	ATCCAGTT	CTTAGAA	ATGT	TATGGT	GAGATG	GCTA	780	
695	GAAAATGTAATCGTTGATTGTT	CACAT	ATCCAGTT	CTTAGAA	ATGT	TATGGT	GAGATG	GCTA	754	

670	GCTGTTCCAAGTTATATCCC	ACTT	ACTCT	ACAAAGT	CCCCG	TTTGGT	GGAA	ACAATT	729	
781	GCTGTTCCAAGTTATATCCC	ACTT	ACTCT	ACAAAGT	CCCCG	TTTGGT	GGAA	ACAATT	840	
755	GCTGTTCCAAGTTATATCCC	ACTT	ACTCT	ACAAAGT	CCCCG	TTTGGT	GGAA	ACAATT	814	

730	CAAGAGTATTTCTTGAGGACTGG	GATGAT	ATGGC	ATTTGGT	CCACTA	ATATT	TACCAT		789	
841	CAAGAGTATTTCTTGAGGACTGG	GATGAT	ATGGC	ATTTGGT	CCACTA	ATATT	TACCAT		900	
815	CAAGAGTATTTCTTGAGGACTGG	GATGAT	ATGGC	ATTTGGT	CCACTA	ATATT	TACCAT		874	
	-----							GGGCTGTAAC	10	
790	CTAACAACTTCATGTTG	GAGAAT	GGGACC	AGTGACTG	CAACCT	GCCTG	GAGAAC	CCCTCTG	849	
901	CTAACAACTTCATGTTG	GAGAAT	GGGACC	AGTGACTG	CAACCT	GCCTG	GAGAAC	CCCTCTG	960	
875	CTAACAACTTCATGTTG	GAGAAT	GGGACC	AGTGACTG	CAACCT	GCCTG	GAGAAC	CCCTCTG	934	
11	TCTGCC	CATCCCT	CAGCATA	ATTGGGGT	TATGATT	CACTAT	CCTAATT	GCCTG	70	

850	TTCATTGCATGTGGCGGC	CAGCAAA	ACCAC	ACCCAGGG	CTCAAA	ATGCAG	AAAAATG	GAT	909	
961	TTCATTGCATGTGGCGGC	CAGCAAA	ACCAC	ACCCAGGG	CTCAAA	ATGCAG	AAAAATG	GAT	1020	
935	TTCATTGCATGTGGCGGC	CAGCAAA	ACCAC	ACCCAGGG	CTCAAA	ATGCAG	AAAAATG	GAT	994	
71	GTGATCTTACTTG	GCTGATAGG	ACCTA	ATGTTT	ATTGTT	AGC	ACTT	CTAAAAAC	130	

910	TTTCACAGAAATTG	ACTAC	ATCCCTA	ACTG	AAAGT	GTTGAC	AGGAAT	TATAACT	969	
1021	TTTCACAGAAATTG	ACTAC	ATCCCTA	ACTG	AAAGT	GTTGAC	AGGAAT	TATAACT	1080	
995	TTTCACAGAAATTG	ACTAC	ATCCCTA	ACTG	AAAGT	GTTGAC	AGGAAT	TATAACT	1054	
131	TCATTTCTT	TACACA	AGTCCA	ATCTT	GGACAGG	AAACAGT	AGCTTT	GATTATG	180	

970	GAAAGAGGAGT	GTTCTT	AGTGT	AAATT	CCCTGG	ACCCGG	ATTCC	ATGTC	CTTATCTAC	1029
1081	GAAAGAGGAGT	GTTCTT	AGTGT	AAATT	CCCTGG	ACCCGG	ATTCC	ATGTC	CTTATCTAC	1140
1055	GAAAGAGGAGT	GTTCTT	AGTGT	AAATT	CCCTGG	ACCCGG	ATTCC	ATGTC	CTTATCTAC	1114
181	TACGTGT	CTTACTG	TCTATA	ATGATT	CTTT	ATTCAGG	ATTCC	ATGTC	CTTATCTAC	240

16/20

Figure 8 continued

1030	AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAG	1089
1141	AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAG	1200
1115	AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAG	1174
241	AAGGCTTGAAAGGAACATAAGGACAATGTTCATAGGTGGCTCTCAGTTGTACAAAAG	300
1090	CACGTCTCCAGCCCCCTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTTGGCTGG	1149
1201	CACGTCTCCAGCCCCCTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTTGGCTGG	1260
1175	CACGTCTCCAGCCCCCTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTTGGCTGG	1234
301	CACGTCTCCAGCCCCCTAGCATCTTACTTCTTGTCAATTCTTATGCGAGGCTTGGCTGG	360
1150	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	1209
1261	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	1320
1235	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	1294
361	GCAATGACCTCAGCTGACCTCAACCAGGATGGGCACGGTGACCTCGTGGTGGCGCACCA	420
1210	GGCTACAGCCGCCCCGGCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1269
1321	GGCTACAGCCGCCCCGGCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1380
1295	GGCTACAGCCGCCCCGGCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	1354
421	GGCTACAGCCGCCCCGGCACATCCACATCGGGCGCGTGTACCTCATCTACGGCAATGAC	480
1270	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGGCCACAGGATCCTTGAAGGC	1329
1381	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGGCCACAGGATCCTTGAAGGC	1440
1355	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGGCCACAGGATCCTTGAAGGC	1414
481	CTGGGCCTGCCACCTGTTGACCTGGACCTGGACAAGGAGGGCCACAGGATCCTTGAAGGC	540
1330	TTCCAGCCCTCAGGTGGTTGGCTCGGCCTGGCTGTGGACTTTAACGTGGACGGC	1389
1441	TTCCAGCCCTCAGGTGGTTGGCTCGGCCTGGCTGTGGACTTTAACGTGGACGGC	1500
1415	TTCCAGCCCTCAGGTGGTTGGCTCGGCCTGGCTGTGGACTTTAACGTGGACGGC	1474
541	TTCCAGCCCTCAGGTGGTTGGCTCGGCCTGGCTGTGGACTTTAACGTGGACGGC	600
1390	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGGCTCCGAGCAGCTCACCTACAAAGGT	1449
1501	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGGCTCCGAGCAGCTCACCTACAAAGGT	1560
1475	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGGCTCCGAGCAGCTCACCTACAAAGGT	1534
601	GTGCCTGACCTGGCGTGGAGCTCCCTCGGTGGGCTCCGAGCAGCTCACCTACAAAGGT	660
1450	GCCGTGTATGTTACTTTGGTCCAAACAAGGAGGAATGTCCTCTTCCCCTAACATCACC	1509
1561	GCCGTGTATGTTACTTTGGTCCAAACAAGGAGGAATGTCCTCTTCCCCTAACATCACC	1620
1535	GCCGTGTATGTTACTTTGGTCCAAACAAGGAGGAATGTCCTCTTCCCCTAACATCACC	1594
661	GCCGTGTATGTTACTTTGGTCCAAACAAGGAGGAATGTCCTCTTCCCCTAACATCACC	720
1510	ATTTCTTGCAGGACATCTACTGTAACCTGGGCTGGACTCTCTTGGCTGCAGATGTGAAT	1569
1621	ATTTCTTGCAGGACATCTACTGTAACCTGGGCTGGACTCTCTTGGCTGCAGATGTGAAT	1680
1595	ATTTCTTGCAGGACATCTACTGTAACCTGGGCTGGACTCTCTTGGCTGCAGATGTGAAT	1654
721	ATTTCTTGCAGGACATCTACTGTAACCTGGGCTGGACTCTCTTGGCTGCAGATGTGAAT	780
1570	GGAGACAGTGAACCCGATCTGGTCATCGGCCTCCCTTTGCACCGAGTGGAGGGAAAGCAG	1629
1681	GGAGACAGTGAACCCGATCTGGTCATCGGCCTCCCTTTGCACCGAGTGGAGGGAAAGCAG	1740
1655	GGAGACAGTGAACCCGATCTGGTCATCGGCCTCCCTTTGCACCGAGTGGAGGGAAAGCAG	1714
781	GGAGACAGTGAACCCGATCTGGTCATCGGCCTCCCTTTGCACCGAGTGGAGGGAAAGCAG	840

17/20

Figure 8 continued

1630	AAGGGAATTGTGGCTGCCTTATTCTGGCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1689
1741	AAGGGAATTGTGGCTGCCTTATTCTGGCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1800
1715	AAGGGAATTGTGGCTGCCTTATTCTGGCCCAGCCTGAGCGACAAAGAAAAACTGAAC	1774
841	AAGGGAATTGTGGCTGCCTTATTCTGGCCCAGCCTGAGCGACAAAGAAAAACTGAAC	900
1690	GTGGAGGCAGCCAAGTGGACGGTGAGAGGCAGGAAAGACTTCTCCTGGATATTCC	1749
1801	GTGGAGGCAGCCAAGTGGACGGTGAGAGGCAGGAAAGACTTCTCCTGGATATTCC	1860
1775	GTGGAGGCAGCCAAGTGGACGGTGAGAGGCAGGAAAGACTTCTCCTGGATATTCC	1834
901	GTGGAGGCAGCCAAGTGGACGGTGAGAGGCAGGAAAGACTTCTCCTGGATATTCC	960
1750	CTTCACGGTGTACTGTGACAACAGAACCTGCTGTTGGGAGCCGACCTGGAAG	1809
1861	CTTCACGGTGTACTGTGACAACAGAACCTGCTGTTGGGAGCCGACCTGGAAG	1920
1835	CTTCACGGTGTACTGTGACAACAGAACCTGCTGTTGGGAGCCGACCTGGAAG	1894
961	CTTCACGGTGTACTGTGACAACAGAACCTGCTGTTGGGAGCCGACCTGGAAG	1020
1810	AATGCCAGCAGGCTGGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG	1869
1921	AATGCCAGCAGGCTGGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG	1980
1895	AATGCCAGCAGGCTGGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG	1954
1021	AATGCCAGCAGGCTGGGCATTGTTACACATCCGAGATGAGAAAAAGAGCCTGGGAGG	1080
1870	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	1929
1981	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	2040
1955	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	2014
1081	GTGTATGGCTACTTCCCACCAACGGCAAAGCTGGTTACCATTCTGGAGACAAGGCA	1140
1930	ATGGGGAAACTGGGTACTTCCCTTCCAGTGGCACGTACTGATGAATGGGACTCTGAAA	1989
2041	ATGGGGAAACTGGGTACTTCCCTTCCAGTGGCACGTACTGATGAATGGGACTCTGAAA	2100
2015	ATGGGGAAACTGGGTACTTCCCTTCCAGTGGCACGTACTGATGAATGGGACTCTGAAA	2074
1141	ATGGGGAAACTGGGTACTTCCCTTCCAGTGGCACGTACTGATGAATGGGACTCTGAAA	1200
1990	CAAGTGCTGGTTGGAGCCCTACGTACGATGACGTCTAAGGTGGCATTCTGACC	2049
2101	CAAGTGCTGGTTGGAGCCCTACGTACGATGACGTCTAAGGTGGCATTCTGACC	2160
2075	CAAGTGCTGGTTGGAGCCCTACGTACGATGACGTCTAAGGTGGCATTCTGACC	2134
1201	CAAGTGCTGGTTGGAGCCCTACGTACGATGACGTCTAAGGTGGCATTCTGACC	1260
2050	GTGACCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	2109
2161	GTGACCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	2220
2135	GTGACCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	2194
1261	GTGACCCTACACCAAGGCGGAGCCACTCGCATGTACGCACTCATATCTGACGCGCAGCCT	1320
2110	CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGCGTTCTGCAC	2169
2221	CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGCGTTCTGCAC	2280
2195	CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGCGTTCTGCAC	2254
1321	CTGCTGCTCAGCACCTCAGCGGAGACCGCCGTTCTCCGATTGGCGTTCTGCAC	1380
2170	TTGAGTGACCTGGATGATGGCTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	2229
2281	TTGAGTGACCTGGATGATGGCTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	2340
2255	TTGAGTGACCTGGATGATGGCTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	2314
1381	TTGAGTGACCTGGATGATGGCTAGATGAAATCATCATGGCAGCCCCCTGAGGATA	1440

18/20

Figure 8 continued

2230	GCAGATGTAACCTCTGGACTGATTGGGGGAGAAGACGGCCAGTATATGTATATAATGGC	2289
2341	GCAGATGTAACCTCTGGACTGATTGGGGGAGAAGACGGCCAGTATATGTATATAATGGC	2400
2315	GCAGATGTAACCTCTGGACTGATTGGGGGAGAAGACGGCCAGTATATGTATATAATGGC	2374
1441	GCAGATGTAACCTCTGGACTGATTGGGGGAGAAGACGGCCAGTATATGTATATAATGGC	1500
2290	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	2349
2401	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	2460
2375	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	2434
1501	AAAGAGACCACCCCTGGTACATGACTGGCAAATGCAAATCATGGATAACTCCATGTCCA	1560
2350	GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC	2409
2461	GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC	2520
2435	GAAGAAAAGGTAAGTGAAGG-----	2472
1561	GAAGAAAAGGCCAATATGTATTGATTCTCCTGAAGCCAGCTCAAGGTTGGAGCTCC	1620
2410	CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTCATTGCTGCTGGAAAGGAGTTCT	2469
2521	CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTCATTGCTGCTGGAAAGGAGTTCT	2580
1621	CTCATCACCGTGAGGTCCAAGGCAAAGAACCAAGTCGTCATTGCTGCTGGAAAGGAGTTCT	1680
2470	TTGGGAGCCCAGCTCTCGGGGCACTTCACGTCTATAGCCTTGGCTCAGATTGAAGATT	2529
2581	TTGGGAGCCCAGCTCTCGGGGCACTTCACGTCTATAGCCTTGGCTCAGATTGAAGATT	2640
1681	TTGGGAGCCCAGCTCTCGGGGCACTTCACGTCTATAGCCTTGGCTCAGATTGAAGATT	1740
2530	CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT	2589
2641	CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT	2700
1741	CACTGCATTTCCCCACTCTGCCACCTCTCATGCTGAATCACATCCATGGTGAGCATT	1800
2590	TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC	2649
2701	TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC	2760
1801	TTGATGGACAAAGTGGCACATCCAGTGGAGCGGTGGTAGATCCTGATAGACATGGGCTC	1860
2650	CTGGGAGTAGAGAGACACACTAACAGCCACACCCCTCTGGAAATCTGATACAGTAAATATA	2709
2761	CTGGGAGTAGAGAGACACACTAACAGCCACACCCCTCTGGAAATCTGATACAGTAAATATA	2820
1861	CTGGGAGTAGAGAGACACACTAACAGCCACACCCCTCTGGAAATCTGATACAGTAAATATA	1920
2710	TGACTGCACCAGAAATATGTGAAATAGCAGACATTCTGCTTACTCATGTCTCCTCCACA	2769
2821	TGACTGCACCAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2880
1921	TGACTGCACCAGAAAAAAAAAAAAAA	1952

19/20

Figure 8 continued

2770	GTTTACTTCCTCGCTCCCTTGATCTAAACCTTCTTCTTCCAACTTATTGCCTGTA	2829
2881	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-----	2915
2830	-----	2889
2890	-----	2949
2950	-----	3009
3010	-----	3069
3070	-----	3129
3130	-----	3189
3190	-----	3249
3250	-----	3309

20/20**Figure 8 continued**

3310 AAAAAAGTTGAACTTAAAAATAACAGATTGGCCATGCCAATCAAAGTATAATAGAAAGC 3369

3370 ATAGTATAAC 3378

