woO 2007/128753 A1 |10 0000 OO A0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

) IO OO

International Bureau

(43) International Publication Date
15 November 2007 (15.11.2007)

(10) International Publication Number

WO 2007/128753 Al

(51) International Patent Classification:
GOG6F 17/50 (2006.01)

(21) International Application Number:

PCT/EP2007/054255
(22) International Filing Date: 2 May 2007 (02.05.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/381,437 3 May 2006 (03.05.2006) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; Armonk, New York 10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; Portsmouth Hampshire PO6 3AU
(GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BOBOK, Ga-
bor [HU/US]; 1345 Hawthorn Road, Niskayuna, New

(74)

(81)

(34)

York 12309 (US). ROESNER, Wolfgang [DE/US];
10717 Chestnut Ridge Road, Austin, Texas 78726 (US).
WILLIAMS, Derek, Edward [US/US]; 9406 Slate Creek
Trail, Austin, Texas 78717 (US).

Agent: WALDNER, Philip; IBM United Kingdom
Limited, Intellectual Property Law, Winchester Hampshire
SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: METHOD, SYSTEM AND PROGRAM PRODUCT SUPPORTING SPECIFICATION OF SIGNALS FOR SIMULA-

TION RESULT VIEWING

345 qg 40
HDL files Directives 350
§3 42
HDL Compiler
34 4? 34 (343

(57) Abstract: According to a method
of data processing, a data set including at
least one entry specifying a signal group
by a predetermined signal group name
is received by a data processing system.
In response to receipt of the data set,
the entry in the data set is processed to
identify the signal group name. Signal
group information associated with an
event trace file containing simulation
results is accessed to determine signal
names of multiple signals that are
members of the signal group. Simulation
results from the event trace file that
are associated with instances of said

y)
Design Entity Design Entity SGl
Proto Filss Proto Data Structures 4100

Design Entity Instance
Data Structures

multiple signals are then included within
a presentation of simulation results.

346} |

Modet! Build Tool

q34 8
Simulation
Signal Group
Executable Info. (SGI) 400

Model

t
re
las

WO 2007/128753 A1 | NIIAI] DA 000 0 000 00 0

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, N1, PL., ning of each regular issue of the PCT Gazette.
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

WO 2007/128753 PCT/EP2007/054255

METHOD, SYSTEM AND PROGRAM PRODUCT SUPPORTING
SPECIFICATION OF SIGNALS FOR SIMULATION RESULT VIEWING

BACKGROUND OF THE INVENTION

Technical Field

The present invention relates in general to simulating digital devices, modules and systems,

and in particular, to computer simulation of digital devices, modules and systems.

Description of the Related Art

Verifying the logical correctness of a digital design and debugging the design, if necessary,
are very important steps in most digital design processes. Logic networks are tested either
by actually building networks or by simulating networks on a computer. As logic networks
become highly complex, it becomes necessary to simulate a design before the design is
actually built. This is especially true when the design is implemented as an integrated
circuit, since the fabrication of integrated circuits requires considerable time and correction
of mistakes is quite costly. The goal of digital design simulation is the verification of the

logical correctness of the design.

In a typical automated design process that is supported by a conventional electronic
computer-aided design (ECAD) system, a designer enters a high-level description utilizing a
hardware description language (HDL), such as VHDL, producing a representation of the
various circuit blocks and their interconnections. The ECAD system compiles the design
description into a format that is best suited for simulation. A simulator is then utilized to

verify the logical correctness of the design prior to developing a circuit layout.

A simulator is typically a software tool that operates on a digital representation, or
simulation model of a circuit, and a list of input stimuli (i.e., testcase) representing inputs of
the digital system. A simulator generates a numerical representation of the response of the
circuit, which may then either be viewed on the display screen as a list of values or further
interpreted, often by a separate software program, and presented on the display screen in
graphical form. The simulator may be run either on a general-purpose computer or on

another piece of electronic apparatus, typically attached to a general purpose computer,

WO 2007/128753 PCT/EP2007/054255

specially designed for simulation. Simulators that run entirely in software on a general-
purpose computer will hereinafter be referred to as “software simulators”. Simulators that
are run with the assistance of specially designed electronic apparatus will hereinafter be

referred to as “hardware simulators”.

Usually, software simulators perform a very large number of calculations and operate slowly
from the user’s point of view. In order to optimize performance, the format of the
simulation model is designed for very efficient use by the simulator. Hardware simulators,
by nature, require that the simulation model comprising the circuit description be
communicated in a specially designed format. In either case, a translation from an HDL
description to a simulation format, hereinafter referred to as a simulation executable model,

is required.

The result of the application of the testcase to the simulation executable model by the
simulator is referred to herein as an “all events trace” (AET). The AET contains the logic
values of signals and/or storage elements within the simulation executable model. An AET
viewer can be utilized to present by the contents of the AET to the user for review and

analysis.

As will be appreciated, for large simulation executable models, a vast amount of data will be
present in the AET, not all of which will be relevant to the user. Accordingly, conventional
AET viewers permit a user to input an Input/Output (I/O) list specifying signals in the
simulation executable model that the user desires to view. In response, a conventional AET
viewer presents to the user only those signals within the simulation executable model that
are identified within the I/O list.

SUMMARY OF THE INVENTION

The present invention recognizes that user entry of the 1/0 list (e.g., utilizing a keyboard) is
tedious and time consuming, particularly for complex simulation executable models.
Accordingly, the present invention provides to a method, system and program product for

simulation processing.

According to an exemplary method, a data set including at least one entry specifying a signal

group by a predetermined signal group name is received by a data processing system. In

WO 2007/128753 PCT/EP2007/054255

response to receipt of the data set, the entry in the data set is processed to identify the signal
group name. Signal group information associated with an event trace file containing
simulation results is accessed to determine signal names of multiple signals that are members
of the signal group. Simulation results from the event trace file that are associated with
instances of said multiple signals are then included within a presentation of simulation

results.

All objects, features, and advantages of the present invention will become apparent in the

following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the appended
claims. The invention itself however, as well as a preferred mode of use, further objects and
advantages thereof, will best be understood by reference to the following detailed description
of an illustrative embodiment when read in conjunction with the accompanying drawings,

wherein;

FIG. 1 is a pictorial representation of a data processing system in accordance with the

present invention;

FIG. 2 depicts a representative hardware environment of the data processing system

illustrated in FIG. 1;

FIG. 3A is a simplified block diagram illustrating a digital design entity in accordance with

the teachings of the present invention;

FIG. 3B is a diagrammatic representation depicting a simulation model in accordance with

the teachings of the present invention;

FIG. 3C is a flow diagram illustrating of a model build process in accordance with the

teachings of the present invention;

WO 2007/128753 PCT/EP2007/054255

FIG. 3D is a block diagram depicting simulation model data structures representing a design

in accordance with the teachings of the present invention;

FIG. 4 is a flow diagram depicting simulation of a simulation executable model and

presenting the results of simulation to a user;

FIG. 5A depicts a first conventional 1/O list in accordance with the prior art;

FIG. 5B depicts a second conventional I/O list in accordance with the prior art;

FIGS. 5C-5D illustrate exemplary 1/O lists in accordance with the present invention;

FIG. 6A depicts an exemplary design entity HDL file including signal group descriptors in

accordance with the present invention;

FIG. 6B illustrates an exemplary design entity HDL file including nested signal group

descriptors in accordance with the present invention; and

FIGS. 7A-7C together form a high-level logical flowchart of an exemplary process by
which an AET viewer processes an 1/O list to generate a presentation of an AET file in

accordance with the present invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

With reference now to the figures, and in particular with reference to FIG. 1, there is
depicted a pictorial representation of a data processing system 10 with which the present
invention may be advantageously utilized. As illustrated, data processing system 10
comprises a workstation 12 to which one or more nodes 13 are connected. Workstation 12
preferably comprises a high performance multiprocessor computer, such as one of the
POWER line of computer systems available from International Business Machines (IBM)

Corporation of Armonk, New York. Workstation 12 preferably includes nonvolatile and

WO 2007/128753 PCT/EP2007/054255

volatile internal storage for storing software applications comprising an ECAD system,
which can be utilized to develop and verify a digital circuit design in accordance with the
method and system of the present invention. As depicted, nodes 13 include a display device
14, a keyboard 16, and a mouse 20. The ECAD software applications executed within
workstation 12 preferably display a graphic user interface (GUI) within display screen 22 of
display device 14 with which a digital circuit designer can interact using a keyboard 16 and
mouse 20. Thus, by entering appropriate inputs utilizing keyboard 16 and mouse 20, the
digital circuit designer is able to develop and verify a digital circuit design according to the

method described further hereinbelow.

FIG. 2 is a more detailed block diagram of data processing system 10. As illustrated, data
processing system 10 includes one or more Central Processing Units (CPUs) 24, such as a
conventional microprocessor, and a number of other components interconnected via system
interconnect 26. Although not depicted in FIG. 2, CPUs such as CPU 24 typically include a
control unit that organizes data and program storage in a computer memory and transfers the
data and other information between the various parts of the computer system. CPUs also
generally include one or more arithmetic logic units that execute arithmetical and logical

operations, such as addition, comparison, multiplication and so forth.

Data processing system 10 further includes a random-access memory (RAM) 28, a read-only
memory (ROM) 30, a display adapter 32 supporting connection of a display device 14, and
an 1/O adapter 34 for connecting peripheral devices (e.g., disk and tape drives 33). Data
processing system 10 further includes a communications adapter 42 for connecting data
processing system 10 to a communications network and a user interface adapter 36 for
connecting keyboard 16, mouse 20, speaker 38, microphone 40, and/or other user interface

devices to system interconnect 26.

As will be appreciated by those skilled in the art, data processing system 10 operates under
the control of an operating system (e.g., AIX) and one or more other programs, which may
reside in any suitable computer-readable media such as RAM 28, ROM 30, a magnetic disk,
magnetic tape, or optical disk (the last three being located in disk and tape drives 33).

WO 2007/128753 PCT/EP2007/054255

Simulated digital circuit design models are comprised of at least one and usually many sub-
units referred to hereinafter as design entities. FIG. 3A is a block diagram representation of
an exemplary design entity 300 in which the method and system of the present invention
may be implemented. Design entity 300 is defined by a number of components: an entity
name, entity ports, and a representation of the function performed by design entity 300.
Each entity within a given model has a unique name (not explicitly shown in FIG. 3A) that
is declared in the HDL description of each entity. Furthermore, each entity typically
contains a number of signal interconnections, known as ports, to signals outside the entity.
These outside signals may be primary input/outputs (I/Os) of an overall design or signals

connecting to other entities within an overall design.

Typically, ports are categorized as belonging to one of three distinct types: input ports,
output ports, and bi-directional ports. Design entity 300 is depicted in as having a number of
input ports 303 that convey signals into design entity 300. Input ports 303 are connected to
input signals 301. In addition, design entity 300 includes a number of output ports 306 that
convey signals out of design entity 300. Output ports 306 are connected to a set of output
signals 304. Bi-directional ports 305 are utilized to convey signals into and out of design
entity 300. Bi-directional ports 305 are in turn connected to a set of bi-directional signals
309. An entity, such as design entity 300, need not contain ports of all three types, and in the
degenerate case, contains no ports at all. To accomplish the connection of entity ports to
external signals, a mapping technique, known as a “port map”, is utilized. A port map (not
explicitly depicted in FIG. 3A) consists of a specified correspondence between entity port
names and external signals to which the entity is connected. When building a simulation
model, ECAD software is utilized to connect external signals to appropriate ports of the

entity according to a port map specification.

Finally, design entity 300 contains a body section 308 that describes one or more functions
performed by design entity 300. In the case of a digital design, body section 308 contains an
interconnection of logic gates, storage elements, etc., in addition to instantiations of other
entities. By instantiating an entity within another entity, a hierarchical description of an
overall design is achieved. For example, a microprocessor may contain multiple instances of

an identical functional unit. As such, the microprocessor itself will often be modeled as a

WO 2007/128753 PCT/EP2007/054255

single entity. Within the microprocessor entity, multiple instantiations of any duplicated

functional entities will be present.

Referring now to FIG. 3B, there is illustrated a diagrammatic representation of an exemplary
simulation model 329 that may be utilized in a preferred embodiment of the present
invention. Simulation model 329 includes multiple hierarchical design entities. For visual
simplicity and clarity, many of the ports and signals interconnecting the entities within
simulation model 329 have not been explicitly shown. In any model, one and only one
entity is the so-called “top-level entity”. A top-level entity 320 is that entity which
encompasses all other entities within simulation model 329. That is to say, top-level entity
320 instantiates, either directly or indirectly, all descendant entities within a design.
Simulation model 329 consists of top-level entity 320 which directly instantiates two
instances, 321a and 321b, of an FXU entity 321. Each instantiation has an associated
description, which contains an entity name and a unique instantiation name. For top-level
entity 320, description 310 is labeled “TOP:TOP”. Description 310 includes an entity name
312, labeled as the “TOP” preceding the colon, and also includes an instantiation name 314,

labeled as the “TOP” following the colon.

It is possible for a particular entity to be instantiated multiple times as is depicted with
instantiations 321a and 321b of FXU entity 321. Instantiations 321a and 321b are distinct
instantiations of FXU entity 321 with instantiation names FXUO and FXU], respectively.
Top-level entity 320 is at the highest level within the hierarchy of simulation model 329. An
entity that instantiates a descendant entity will be referred to hereinafter as an “ancestor” of
the descendant entity. Top-level entity 320 is therefore the ancestor that directly instantiates
FXU entity instantiations 321a and 321b. At any given level of a simulation model

hierarchy, the instantiation names of all instantiations must be unique.

Within instantiation 321a of FXU entity 321, single instance entities 325a and 326a of entity
A 325 and entity B 326 respectively, are directly instantiated. Similarly, instantiation 321b
of the same FXU entity contains instantiations 325b and 326b of entity A 325 and entity B
326 respectively. In a similar manner, instantiation 326a and instantiation 326b each

directly instantiate a single instance of entity C 327 as entities 327a and 327b, respectively.

WO 2007/128753 PCT/EP2007/054255

The nesting of entities within other entities can continue to an arbitrary level of complexity
provided that all entities instantiated, whether singly or multiply, have unique entity names
and the instantiation names at any given level of the hierarchy are unique with respect to one
another. Each entity is constructed from one or more HDL files that contain the information

necessary to describe the entity.

Associated with each entity instantiation is a so called “instantiation identifier”. The
instantiation identifier for a given instantiation is a string consisting of the enclosing entity
instantiation names proceeding from the top-level entity instantiation name. For example,
the instantiation identifier of instantiation 327a of entity C 327 within instantiation 321a of
FXU entity 321 is “TOP.FXUO0.B.C”. This identifier serves to uniquely identify each

instantiation within a simulation model.

Within exemplary simulation model 329, a variety of signals are instantiated (e.g., signals E,
FO, F1, G, HO, H1, L, M, N, P and Q). Each signal has an associated signal name (e.g., “M”)
and a signal instantiation identifier, which in a preferred embodiment, is a string consisting
of the enclosing entity instantiation names proceeding from the top-level entity instantiation
name and terminating with the signal name. Thus, the instantiation identifier of signal M
within instantiation 321a of FXU entity 321 is “TOP.FXUO0.A.M”. This instantiation
identifier serves to uniquely identify each signal instantiation within a simulation model. It
should be noted that signals, for example, signal P(0..4), can be multi-bit signal vectors. It
should also be noted that some signals (e.g., signals TOP.FXUO.E, TOP.FXUI.E,
TOP.FXUO.G and TOP.FXU1.G) are renamed (as signals TOP.FXUO0.FO, TOP.FXUI1.F1,
TOP.FXUO0.HO and TOP.FXU1.H1, respectively) as they cross design entity boundaries.

Referring now to FIG. 3C, there is depicted a flow diagram of a model build process which
may be implemented in a preferred embodiment of the present invention. The process
begins with one or more design entity HDL source code files 340 and, potentially, one or
more design entity intermediate format files 345, hereinafter referred to as “proto files” 345,
available from a previous run of an HDL compiler 342. HDL compiler 342 processes HDL
file(s) 340 beginning with the top level entity of a simulation model and proceeding in a

recursive fashion through all HDL or proto file(s) describing a complete simulation model.

WO 2007/128753 PCT/EP2007/054255

For each of HDL files 340 during the compilation process, HDL compiler 342 examines
proto files 345 to determine if a previously compiled proto file is available and consistent. If
such a file is available and consistent, HDL compiler 342 will not recompile that particular
file, but will rather refer to an extant proto file. If no such proto file is available or the proto
file is not consistent, HDL compiler 342 explicitly recompiles the HDL file 340 in question
and creates a proto file 344 for use in subsequent compilations. Such a process will be
referred to hereinafter as “incremental compilation” and can greatly speed the process of
creating a simulation executable model 348. Once created by HDL compiler 342, proto files

344 are available to serve as proto files 345 in subsequent compilations.

In addition to proto files 344, HDL compiler 342 also creates two sets of data structures,
design entity proto data structures 341 and design entity instance data structures 343, in
memory 44 of computer system 10. Design entity proto data structures 341 and design
entity instance data structures 343, serve as a memory image of the contents of a simulation
executable model 348. Data structures 341 and 343 are passed, via memory 44, to a model

build tool 346 that processes data structures 341 and 343 into simulation executable model

348.

It will be assumed hereinafter that each entity is described by a single HDL file. Depending
on convention or the particular HDL in which the current invention is practiced, this
restriction may be required. However, in certain circumstances or for certain HDLs it is
possible to describe an entity by utilizing more than one HDL file. Those skilled in the art
will appreciate and understand the extensions necessary to practice the present invention if
entities are permitted to be described by multiple HDL files. Furthermore, it will be
assumed that there is a direct correspondence, for each entity, between the entity name and
both of the following: the name of the HDL file representing the entity, and the name of the
proto file for the entity.

In the following description, an HDL source code file corresponding to a given entity will be
referred to by an entity name followed by ".vhdl". For example, the HDL source code file

that describes top-level entity 320 will be referred to as TOP.vhdl. This labeling convention

WO 2007/128753 PCT/EP2007/054255
10

serves as a notational convenience only and should not be construed as limiting the

applicability of the present invention to HDLs other than VHDL.

Returning to FIG. 3B, it can be seen that each entity may instantiate, either directly or
indirectly, one or more other entities. For example, the FXU entity directly instantiates A
entity 325 and B entity 326. Furthermore, B entity 326 directly instantiates C entity 327.
Therefore, FXU entity 321 instantiates, directly or indirectly, A entity 325, B entity 326 and
C entity 327. Those entities, that are directly or indirectly instantiated by another entity, will
be referred to hereinafter as "descendants". The descendants of top level entity 320 are FXU
entity 321, A entity 325, B entity 326, and C entity 327. It can be seen that each entity has a
unique set of descendants and that each time an entity is instantiated, a unique instance of the
entity and its descendants is created. Within simulation model 329, FXU entity 321 is
instantiated twice, FXU:FXUO 321a and FXU:FXU1 321b, by top-level entity 320. Each
instantiation of FXU entity 321 creates a unique set of instances of the FXU, A, B, and C

entities.

For each entity, it is possible to define what is referred to as a "bill-of-materials" or BOM. A
BOM is a list of HDL files having date and time stamps of the entity itself and the entity’s
descendants. Referring again to FIG. 3C, the BOM for an entity is stored in proto file 344
after compilation of the entity. Therefore, when HDL compiler 342 compiles a particular
HDL source code file among HDL files 340, a proto file 344 is generated that includes a
BOM listing the HDL files 340 that constitute the entity and the entity’s descendants, if any.
The BOM also contains the date and time stamp for each of the HDL files referenced as each

appeared on disk/tape 33 of computer system 10 when the HDL file was being compiled.

If any of the HDL files constituting an entity or the entity’s descendants is subsequently
changed, proto file 344 will be flagged as inconsistent and HDL compiler 342 will recompile
HDL file 340 on a subsequent re-compilation as will be described in further detail below.
For example, going back to FIG. 3B, the HDL files referenced by the BOM of FXU entity
321 are FXU.vhdl, A.vhdl, B.vhdl and C.vhdl, each with appropriate date and time stamps.
The files referenced by the BOM of top-level entity 320 are TOP.vhdl, FXU.vhdl, A.vhdl,
B.vhdl, C.vhdl, and FPU.vhdl with appropriate date and time stamps.

WO 2007/128753 PCT/EP2007/054255
11

Returning to FIG. 3C, HDL compiler 342 creates an image of the structure of a simulation
model in main memory 44 of computer system 10. This memory image is comprised of the
following components: "proto" data structures 341 and "instance" data structures 343. A
proto is a data structure that, for each entity in the model, contains information about the
ports of the entity, the body contents of the entity, and a list of references to other entities
directly instantiated by the entity (in what follows, the term "proto" will be utilized to refer
to the in-memory data structure described above and the term "proto file" will be utilized to
describe intermediate format file(s) 344). Proto files 344 arc therefore on-disk

representations of the in-memory proto data structure produced by HDL compiler 342.

An instance data structure is a data structure that, for each instance of an entity within a
model, contains the instance name for the instance, the name of the entity the instance refers
to, and the port map information necessary to interconnect the entity with external signals.
During compilation, each entity will have only one proto data structure, while, in the case of
multiple instantiations of an entity, each entity may have one or more instance data

structures.

In order to incrementally compile a model efficiently, HDL compiler 342 follows a recursive
method of compilation in which successive entities of the model are considered and loaded
from proto files 345 if such files are available and are consistent with the HDL source files
constituting those entities and their descendants. For each entity that cannot be loaded from
existing proto files 345, HDL compiler 342 recursively examines the descendants of the
entity, loads those descendant entities available from proto file(s) 345 and creates, as needed,
proto files 344 for those descendants that are inconsistent with proto files 345. Pseudocode
for the main control loop of HDL compiler 342 is shown below (the line numbers to the right
of the pseudocode are not a part of the pseudocode, but merely serve as a notational

convenience).

WO 2007/128753 PCT/EP2007/054255

12

process HDL file(file) 5
{ 10
if (NOT proto_loaded(file)) { 15
if (exists_proto_file(file) AND check bom(file)) { 20
load_proto(file); 25
} else { 30
parse HDL file(file) 35
for (all instances in file) { 40
process HDL _file(instance); 45
} 50
create_proto(file); 55
write_proto_file(file); 60
} 65
} 70
create_instance(file): 75
} 80

When compiler 342 is initially invoked, no proto data structures 341 or instance data
structures 343 are present in memory 44 of computer system 10. The main control loop,
routine process HDL file() (line 5), is invoked and passed the name of the top level entity
by means of parameter "file". The algorithm first determines if a proto data structure for the
current entity is present in memory 44 by means of routine proto_loaded() (line 15). Note
that the proto data structure for the top level entity will never be present in memory because
the process starts without any proto data structures loaded into memory 44. If a matching
proto data structure is present in memory 44, instance data structures for the current entity
and the current entity's descendants, if any, are created as necessary in memory 44 by routine

create_instance() (line 75).

However, if a matching proto data structure is not present in memory 44, control passes to
line 20 where routine exists_proto_file() examines proto files 345 to determine if a proto file
exists for the entity. If and only if a matching proto file exists, routine check bom() is called
to determine whether proto file 345 is consistent. In order to determine whether the proto
file is consistent, the BOM for the proto file is examined. Routine check bom() examines
each HDL source code file listed in the BOM to determine if the date or time stamps for the
HDL source code file have changed or if the HDL source code file has been deleted. If
either condition occurs for any file in the BOM, the proto file is inconsistent and routine

check bom() fails. However, if check bom() is successful, control is passed to line 25

WO 2007/128753 PCT/EP2007/054255
13

where routine load_proto() loads the proto file and any descendant proto files into memory
44, thus creating proto data structures 341 for the current entity and the current entity’s
descendants, if any. The construction of process HDL file() ensures that once a proto file

has been verified as consistent, all of its descendant proto files, if any, are also consistent.

If the proto file is either non-existent or is not consistent, control passes to line 35 where
routine parse HDL file() loads the HDL source code file for the current entity. Routine
parse HDL file() (line 35) examines the HDL source code file for syntactic correctness and
determines which descendant entities, if any, are instantiated by the current entity. Lines 40,
45, and 50 constitute a loop in which the routine process HDL file() is recursively called to
process the descendent entities that are called by the current entity. This process repeats
recursively traversing all the descendants of the current entity in a depth-first fashion
creating proto data structures 341 and proto data files 344 of all descendants of the current
entity. Once the descendant entities are processed, control passes to line 55 where a new
proto data structure is created for the current entity in memory 44 by routine create proto().
Control then passes to line 60 where a new proto file 344, including an associated BOM, is
written to disk 33 by routine write proto file(). Finally, control passes to line 75 where
routine create instance() creates instance data structures 343 for the current entity and any
descendant entities as necessary. In this manner, process HDL file() (line 5) recursively
processes the entire simulation model creating an in-memory image of the model consisting

of proto data structures 341 and instance data structures 343.

As further shown in FIG. 3C, the present invention further permits the designer to include
within design entity HDL files 340 one or more signal group directives 350 identifying
particular signals that are likely to be of interest when viewing the results of simulating
simulation executable model 348. Exemplary semantics for signal group directives 350 is
described below with reference to FIGS. 6A-6B. HDL compiler 342, in addition to the
processing described above, preferably processes signal group directives 350 to generate
signal group information (SGI) 400, which represents the signal instantiation identifiers of
the signals of interest utilizing any convenient data structure (e.g., linked list, table, etc.).
Model build tool 346 then places the signal group information (SGI) 400, optionally with

some additional transformation in format, within simulation executable model 348.

WO 2007/128753 PCT/EP2007/054255
14

With reference now to FIG. 3D there is depicted a block diagram representing compiled data
structures, which may be implemented in a preferred embodiment of the present invention.
Memory 44 contains proto data structures 361, one for each of the entities referred to in
simulation model 329. In addition, instantiations in simulation model 329 are represented by
instance data structures 362. Instance data structures 362 are connected by means of
pointers indicating the hierarchical nature of the instantiations of the entities within
simulation model 329. Finally, memory 44 contains SGI 400. Model build tool 346 in FIG.
3C processes the contents of memory 44 into memory data structures in order to produce

simulation executable model 348.

Referring now to FIG. 4, there is depicted a flow diagram of a process for simulating a
design and viewing simulation results in accordance with the present invention. As shown,
once a simulation executable model 348 has been obtained by the process of FIG. 3C, a
software and/or hardware simulator 404 is utilized to stimulate simulation executable model
348 with a testcase 402 to simulate operation of a digital design. During the simulation, an
all events trace (AET) file 406 records data representing the response of simulation
executable model 348 to testcase 402. The data within AET file 406 includes values of
various signals and/or storage elements within simulation executable model 348 over time as

well as SGI 400.

In order to review the contents of AET file 406, a user generally employs a separate or
integrated viewer program, referred to herein as AET viewer 410. For example, the user
may request AET viewer 410 to present data from AET file 406 either in a graphical format
within display screen 22 or in hardcopy format. As described hereinabove, the user can
advantageously restrict the presentation of data by AET viewer 410 to particular signals of
interest by specifying in a data set (referred to herein as an 1/O list 408) the signals of

interest.

As illustrated in FIG. SA, a conventional 1/O list 500 in accordance with the prior art is a list
containing a large number of entries each setting forth a signal instantiation identifier of one
of the signals of interest, which in this case comprise all of the signals within FXU

instantiation 321a of FIG. 3B. Thus, as will be appreciated from the simplified example

WO 2007/128753 PCT/EP2007/054255
15

given in FIG. 5A, in the prior art the user must enter each of a potentially large number of
signal instantiation identifiers utilizing keyboard 16. This conventional technique of

manually keying in signal instantiation identifiers is tedious and error prone.

Additionally, some simulators 404 do not preserve the signal names of signals in descendant
design entities that cross design entity boundaries into higher level design entities. Instead,
to eliminate signal duplication in the AET file, such simulators 404 only identify a signal in
the AET file by its signal name in the highest level design entity in which it appears.
Consequently, if a simulator 404 that does not preserve signal names is employed, the user
must specify a signal within the I/O list 500 utilizing a signal instantiation identifier that
employs the signal name of the signal from the highest level design entity in which the
signal appears. For example, as can be seen by comparing entry 502 of FIG. 5A with
corresponding entry 504 of 1/O list 500° of FIG. 5B, the user of a simulator 404 that does
not preserve signal names must utilize the signal instantiation identifier FO as depicted at
reference numeral 504 rather than the signal instantiation identifier FXU.E as illustrated at
reference numeral 502. As will be appreciated, a user of AET viewer 410 whose work
predominantly pertains to a descendant design entity may have difficulty in determining or
casily recalling signal names utilized in a higher level design entity that instantiates the

lower level design entity with which the user is familiar.

In place of a conventional I/O list 500 or 500°, the present invention permits a user of AET
viewer 410 to instead filter presentation of data from AET file 406 utilizing one or more
improved 1/O lists 408 in accordance with FIG. 5C. As depicted in FIG. 5C, 1/O list 408 is
list containing one or more entries. In addition to zero or more entries containing
conventional signal instantiation identifiers as depicted in FIG. SA or 5B, an entry of 1/O list
408, such as entry 510, may identify a group of one or more signals of interest by a signal

group instantiation identifier corresponding to information within SGI 400.

As shown, the signal group instantiation identifier is formed similarly to a signal
instantiation identifier and consists of a string of the enclosing entity instantiation names
proceeding from the top-level entity instantiation name and terminating with the signal

group name enclosed by a pair of angular brackets (“<” and “>”) indicating that the

WO 2007/128753 PCT/EP2007/054255
16

bracketed contents are a member of a separate signal group namespace. Thus, the six signals
of interest within FXU entity instantiation 321a can simply be identified by the single entry
“FXUO0.<FXU_Group>”, rather than by individually entering the signal instantiation
identifiers within I/O list 408. As indicated above, the individual signals comprising the
signal group FXU Group are specified utilizing signal group directives 350 within design

entity HDL files 340.

With reference now to FIG. 6A, there is illustrated an exemplary embodiment of a design
entity HDL file 340a in accordance with the present invention. As will be appreciated by
those skilled in the art, design entity HDL file 340a includes conventional HDL source code
describing a design entity, which in this case is design entity FXU 321. The conventional
HDL source code includes a port map 600 and signal assignment statements 602. In
addition, design entity HDL file 340a includes unconventional HDL. comments containing

signal group directives 350 (FIG. 3C) in accordance with the present invention.

In design entity HDL file 340a, the signal group directives 350 include two different types of
signal group directives: a signal group declaration 610 and a signal preservation directive
620. Signal group declaration 610 begins with an HDL comment of the form “--!! Signal
Group signal _group name;” and ends with an HDL comment of the form “--!! END Signal
Group signal group name;”, where signal group name is a signal group name (in this
example, FXU Group) that is unique for the given target design entity. Between the
beginning and ending statements of signal group declaration 610, the signal names of one or
more signals of interest are listed in the desired order of presentation by AET viewer 410. In
this embodiment, signal names are specified relative to the target design entity (e.g., FXU
design entity 321). At least some embodiments of the present invention permit signal names
higher in the design entity hierarchy to be specified relative to the target design entity

utilizing the conventional syntax “..\” to indicate a next higher level of hierarchy.

The user is preferably permitted to further specify additional attributes related to the
presentation of signals within signal group declaration 610. For example, the user can
specify a desired color for a signal, a default to a waveform or binary signal representation, a

desired justification of unaligned bit vectors, etc. Thus, in statement 612 of signal group

WO 2007/128753 PCT/EP2007/054255
17

declaration 610 the user has specified a left justification of the 5-bit signal vector

B.C.P(0..4).

As further depicted in design entity HDL file 340b of FIG. 6B, a signal group declaration,
such as signal group declaration 630, also preferably permits the user to specify nested signal
groups to any legal depth. To specify a nested signal group comprising a portion of a larger
signal group, the user simply includes a statement in a signal group declaration referring to
the instantiation identifier of the nested signal group with the signal group enclosed in
angular brackets (i.e., “<” and *>"). The use of angular brackets permits HDL compiler 342

to discriminate between the namespaces of signals and signal group names.

Referring back to FIG. 6A, a signal preservation directive 620 is utilized to instruct a
simulator 404 that by default does not preserve the lower-level signal name of a renamed
signal to do so for a particular renamed signal (e.g., signal G). Thus, assuming simulator
404 does not preserve the lower-level names of renamed signals by default, AET file 406
will contain data for signal instantiation identifiers TOP.FXUO.G and TOP.FXU1.G. As
discussed above with reference to FIG. 5B, the capability to preserve a familiar signal name
eliminates the need for the user to enter into an I/O list the possibly unfamiliar signal
instantiation identifiers TOP.FXU1.HO and TOP.FXU1.HI to view the signal data of

preserved signal G.

With reference now to FIGS. 7A-7C, there is depicted a high level logical flowchart of an
exemplary process by which AET viewer 410 processes an 1/O list 408 in accordance with
the present invention. As a logical flowchart, operations are depicted logically rather than
sequentially, and many of the illustrated operations can be performed in parallel or in an

alternative order.

As illustrated, the process begins at block 700 of FIG. 7A and then proceeds to block 702,
which illustrates a determination of whether or not a user has entered a reference scope for
the 1/0 list 408, that is, a scope of simulation executable model 348 by reference to which all
other I/O list entries will be parsed. By default, the reference scope is the top level design

entity instance in the simulation executable model 348, for example, top-level design entity

WO 2007/128753 PCT/EP2007/054255
18

instance 320 of FIG. 3B. In one embodiment, the user is permitted to enter a command
further limiting the reference scope of the form “Scope
limit:instance _string(.|design_entity).instance stringl”, where instance string0 and
instance_stringl are optional design entity instance strings (that for instrance string0) begins
with the top-level design entity instance) and design_entity enclosed in square brackets is an
optional design entity name. A legal reference scope command includes at least one of the
three optional fields instance string0, [design_entity], and instance stringl. The reference
scope command can be communicated to AET viewer 410, for example, via a command line
or within I/O list 408. If inserted within an I/O list 408, the reference scope command

preferably applies to all entries in that 1/O list 408.

As indicated at block 702, if the user has not entered a different reference scope, AET
viewer 410 sets the reference scope by default to the top level design entity instance of the
simulation executable model 348, as illustrated at block 704. Thereafter, the process passes
through page connector A to FIG. 7B. If AET viewer 410 determines at block 702 that the
user has entered a different reference scope, AET viewer 410 further parses the reference
scope command to determine at block 710 whether or not the reference scope command
contains bracketed syntax (e.g., [design_entity]). If not, the process proceeds to block 713,
which illustrates AET viewer 410 determining whether of not the design entity instance
specified by the reference scope command exists in the simulation executable model 348. If
not, processing terminates with an error at block 715. If so, the process passes from block
713 to block 720, which depicts AET viewer 410 setting the reference scope to the particular
design entity instance specified within the instance string0 field of the reference scope
command. For example, assuming simulation executable model 329 of FIG. 3B, the
reference scope command “Scope limit:TOP.FXUO” sets the reference scope to instance
321a of FXU design entity 321. With this reference scope, entry 510 of I/O list 408 of FIG.
5C can be simplified as <FXU_Group>. Thereafter, the process passes through page
connector A to FIG. 7B.

Returning to block 710, in response to a determination that the reference scope command
employs bracketed syntax, AET viewer 410 next determines at block 712 whether or not the

named design entity exists within simulation executable model 348. If not, processing ends

WO 2007/128753 PCT/EP2007/054255
19

with an error at block 714. If, however, the specified design entity is present in simulation
executable model 348, AET viewer 410 recursively searches simulation executable model
348 to identify all the instances of the design entity that are present within the portion of
simulation executable model 348 defined by instance string0, if present. As indicated at
block 718, if no instances of the specified design entity exist within the specified scope,
processing terminates with an error at block 714. If AET viewer 410 determines at block
718 that at least one instance of the specified design entity was located within the specified
scope, AET viewer 410 further determines at block 722 if only a single instance of the
design entity was found within the specified scope. If so, the process passes to block 720,
which illustrates AET viewer 410 setting that single instance of the design entity as the

reference scope. Thereafter, the process passes through page connector A to FIG. 7B.

If AET viewer 410 determines at block 722 that more than one instance of the specified
design entity was found within the specified scope, AET viewer 410 presents a list of the
design entity instances to the user for selection, for example, via a graphical menu displayed
within display screen 22 (block 724). AET viewer 410 then receives user input designating
a single one of the multiple design entity instances as defining the desired reference scope,
as illustrated at block 726. For example, assuming simulation executable model 329 of FIG.
3B and 1/0 list 408’ of FIG. 5D, the reference scope command “Scope limit:[FXU]” given
at reference numeral 512 of FIG. 5D would cause AET viewer 410 to locate FXU instances
321a and 321b within simulation executable model 329 and present instance identifiers of
instances 321a and 321b to the user for selection. Advantageously, regardless of which of
FXU instance 321a and 321b is of interest and therefore selected by the user, the signal
group can be specified as <FXU_Group>, as shown in entry 512 of I/O list 408’ of FIG. 5D.
Thereafter, the process passes to block 720, which has been described.

Referring now to FIG. 7B, the process begins at page connector A and then proceeds to
block 730, which represents a processing loop in which AET viewer 410 processes each
entry within one or more I/O lists to 408 to construct a presentation of AET file 406. If AET
viewer 410 determines at block 730 that all entries within the I/O list(s) have been processed
the process passes to block 732, which is described below. If, however, at least one entry

within an 1/O list 408 remains to be processed, the process proceeds to block 740, which

WO 2007/128753 PCT/EP2007/054255
20

depicts AET viewer 410 moving to the first or next signal-identifying entry within the 1/O
list 408 and initializing a working scope for the entry to the reference scope. Signal-
identifying entries within 1/O lists 408 are processed with respect to (i.e., as impliedly

limited by) the reference scope and take the general form:

instance_string2.[design_entity *.instance_string3.signals

where:

instance string? and instance string3 are optional design entity
instance strings;

design_entity enclosed in square brackets (ie., “[“ and “]”) is an
optional design entity name;

* is an optional universal operator indicating all design entity
instances within the specified scope; and

signals is a required parameter that specifies a signal name, a signal
group name enclosed in angular brackets (i.e., “<” and “>”), or empty angular

brackets signifying all signal groups within the specified scope.

The process shown in FIG. 7B proceeds from block 740 to block 742, which depicts AET
viewer 410 determining whether the current signal-identifying entry has a leading design
entity instance qualifier (e.g., instance string2?). If not, the process passes to block 752,
which is described below. If so, the process proceeds from block 742 to block 744, which
illustrates AET viewer 410 determining whether or not the specified design entity instance
exists within the reference scope of simulation executable model 348. If not, processing
terminates with an error at block 746. If so, the process proceeds to block 750. Block 750
illustrates AET viewer 410 setting the current scope to the scope formed by appending the
scope defined by the design entity instance qualifier to the reference scope. Next, AET
viewer 410 determines at block 752 whether or not the next field within the signal-
identifying entry of I/O list 408 is a design_entity qualifier enclosed in square brackets. If
not, the process passes through page connector B to FIG. 7C. If so, processing of the signal-

identifying entry continues at block 754.

WO 2007/128753 PCT/EP2007/054255
21

Block 754 shows AET viewer 410 recursively searching simulation executable mode 1 348
to locate all design entity instances within the current scope having an entity name matching
the specified design entity name. AET viewer 410 then determines at block 756 whether or
not any such design entity instances exist. If not, processing ends with an error condition at
block 746. 1If so, AET viewer 410 further determines at block 760 whether or not the
bracketed syntax includes an asterisk signifying the inclusion of all design entity instances
within the specified scope. If so, AET viewer 410 narrows the working scope(s) of the entry
to the one or more design entity instance(s) located at block 754 (block 761). Thereafter, the
process passes through page connector B to FIG. 7C.

Returning to block 760, in response to a negative determination, the process proceeds to
block 762, which illustrates AET viewer 410 determining whether a single design entity
instance was discovered at block 754. If so, the working scope is set at block 764 to the
single design entity instance. Thereafter, the process passes through page connector B to
FIG. 7C. If, on the other hand, AET viewer 410 determines at block 762 that more than one
design entity instances was discovered at block 754, AET viewer 410 presents a list of the
design entity instances to the user for selection, for example, via a graphical menu displayed
within display screen 22 (block 770). AET viewer 410 then receives user input designating
one or more of the multiple design entity instances as defining the desired working scope, as
illustrated at block 772. Thereafter, the process passes to block 764, which depicts AET
viewer 410 establishing one or more working scopes in accordance with the user’s selection.

Thereafter, the process passes through page connector B to FIG. 7C.

With reference now to FIG. 7C, the process begins at page connector B and then proceeds to
block 774, which depicts AET viewer 410 further parsing the signal-identifying entry to
determine whether the entry contains a further instance qualifier (e.g., instance string3) to
limit the working scope(s). If not, the process passes to block 780, which is described
below. If so, AET viewer 410 determines at block 776 whether or not the specified design
entity instance(s) exist. If not, the process ends with an error at block 786. If the specified
design entity instance(s) exist, AET viewer 410 narrows the working scope(s) of the current
signal-identifying entry to the design entity instance(s) indicated by the second instance

qualifier (block 778). Thereatfter, the process passes to block 780.

WO 2007/128753 PCT/EP2007/054255
22

Block 780 depicts AET viewer 410 further parsing the signal-identifying entry of I/O list
408 to determine if the terminal signals field of the entry contains a single signal name or a
signal group name. If the signals field contains a signal name, AET viewer 410 next
determines at block 781 if the specified signal exists within the working scope(s). If not,
processing terminates at block 786 with an error condition. If AET viewer 410 determines at
block 781 if the specified signal exists within the working scope(s). If not, processing
terminates at block 786 with an error condition. If so, AET viewer 410 adds the specified
signal(s) to the presentation of AET file 406 (block 782). Thereafter, the process returns to
block 730 of FIG. 7B via page connector C.

Referring again to block 780, in response to determining that the signals field of the signal-
identifying entry does not contain a signal name, the process passes to block 783, which
depicts AET viewer 410 determining whether the signals field contains empty angle
brackets. If so, AET viewer 410 recursively locates all signal group instances within the
design entity instances within the working scope(s), as shown at block 784. If AET viewer
determines that none exists at block 785, processing ends with an error at block 786. If, on
the other hand, AET viewer 410 determines at block 785 that one or more signal groups are
present, AET viewer 410 determines the individual signals comprising the signal groups
from SGI 400 and adds all such signals to the presentation at block 790. Thereafter, the

process returns through page connector C to FIG. 7B.

Returning to block 783, if AET viewer 410 determines that the signals field of the signal-
identifying entry of 1/O list 408 does not contain empty angle brackets, but instead specifies
a signal group name within angle brackets, the process passes to block 787. Block 787
illustrates AET viewer 410 recursively locating instances of the specified signal group
instances within the design entity instances within the working scope(s). As represented by
block 788, if no signal group instances are located, processing ends with an error condition
at block 786. Alternatively, if at least one instance of the named signal group is located,

processing proceeds to block 790 and following blocks which have been described.

As has been described, the present invention provides a method, system and program

product for processing simulation results for presentation. In accordance with the present

WO 2007/128753 PCT/EP2007/054255
23

invention, the amount of user input required to filter the presentation of simulation results is
substantially reduced through the use of predetermined signal groups and, optionally, the use
of scope commands. In addition, the ease of understanding simulation results is enhanced
through support of signal preservation directives that enable a designer to designate signals

for which signal names are to be preserved in the presence of signal renaming.

While the invention has been particularly shown as described with reference to a preferred
embodiment, it will be understood by those skilled in the art that various changes in form
and detail may be made therein without departing from the spirit and scope of the invention.
For example, one of the embodiments of the invention can be implemented with program
code resident in random access memory 28 or non-volatile storage of one or more computer
systems configured generally as described in FIG. 1 and FIG. 2. Until required by
computer system 10, the set of program code may be stored in another computer readable
storage device, such as disk drive 33 or CD-ROM, or in data storage of another computer
and transmitted over a local area network or a wide area network, such as the Internet, when
desired by the user. The program code embodied in a computer usable medium may be

referred to as a computer program product.

WO 2007/128753 PCT/EP2007/054255
24

CLAIMS

1. A method of data processing in a data processing system, said method comprising;:
receiving as an input a data set including at least one entry specifying a signal group
by a predetermined signal group name;
in response to receipt of the data set:
processing the entry in the data set to identify the signal group name;
accessing signal group information associated with an event trace file containing
simulation results to determine signal names of multiple signals that are members of
the signal group; and
including within a presentation of those simulation results from the event trace file

that are associated with instances of said multiple signals.

2. The method of Claim 1, and further comprising establishing membership of the
signal names in the signal group by reference to an HDL source code file describing a design

entity instantiated within the simulation executable model.

3. The method of Claim 1 or 2, wherein said signal group comprises a first signal group
and said first signal group comprises second and third signal groups that collectively have

said multiple signals as members.

4. The method of Claim 1, 2 or 3 and further comprising:

receiving a preservation directive identifying a particular signal for which an
associated signal name is to be preserved from renaming; and

in response to receipt of said preservation directive, identifying said signal by said

associated signal name in the presentation.

5. The method of any one of claims 1 to 4, and further comprising:

receiving as an input a scope command indicating a reference scope in terms of a
design entity instance in the simulation executable model; and

in response to receipt of the scope command, interpreting said at least one entry in

said data set in relation to said reference scope.

WO 2007/128753 PCT/EP2007/054255
25

6. The method of any one of Claims 1 to 5, and further comprising:

processing the entry in the data set to identify within the entry a design entity name
of having multiple design entity instances within the simulation executable model; and

in response to identifying the design entity name, presenting instance identifiers of
the multiple design entity instances for user selection; and

in response to user selection of one of the instance identifiers, narrowing a scope in

which instances of signals belonging to said signal group are located.

7. A program product, comprising:

a computer readable medium; and

program code within the computer readable medium that causes a data processing
system to perform a method including:

receiving as an input a data set including at least one entry specifying a signal group

by a predetermined signal group name;

in response to receipt of the data set:
processing the entry in the data set to identify the signal group name;
accessing signal group information associated with an event trace file containing simulation
results to determine signal names of multiple signals that are members of the signal group;
and

including within a presentation of those simulation results from the event trace file

that are associated with instances of said multiple signals.

8. The program product of Claim 7, wherein the method further includes establishing
membership of the signal names in the signal group by reference to an HDL source code file

describing a design entity instantiated within the simulation executable model.
9. The program product of Claim 7 or 8, wherein said signal group comprises a first
signal group and said first signal group comprises second and third signal groups that

collectively have said multiple signals as members.

10. The program product of Claim 7, 8 or 9, wherein the method further includes:

WO 2007/128753 PCT/EP2007/054255
26

receiving a preservation directive identifying a particular signal for which an
associated signal name is to be preserved from renaming; and
in response to receipt of said preservation directive, identifying said signal by said

associated signal name in the presentation.

11. The program product of any one of Claims 7 to 10, wherein the method further
includes:

receiving as an input a scope command indicating a reference scope in terms of a
design entity instance in the simulation executable model; and

in response to receipt of the scope command, interpreting said at least one entry in

said data set in relation to said reference scope.

12. The program product of any one of Claims 7 to 11, wherein the method further
includes:

processing the entry in the data set to identify within the entry a design entity name
of having multiple design entity instances within the simulation executable model; and

in response to identifying the design entity name, presenting instance identifiers of
the multiple design entity instances for user selection; and

in response to user selection of one of the instance identifiers, narrowing a scope in

which instances of signals belonging to said signal group are located.

13. A data processing system, comprising:

a processor; and

data storage coupled to the processor, said data storage including program code that
causes the data processing system to perform a method including:

receiving as an input a data set including at least one entry specifying a signal group
by a predetermined signal group name;

in response to receipt of the data set:

processing the entry in the data set to identify the signal group name;

accessing signal group information associated with an event trace file containing
simulation results to determine signal names of multiple signals that are members of the

signal group; and

WO 2007/128753 PCT/EP2007/054255
27

including within a presentation of those simulation results from the event trace file

that are associated with instances of said multiple signals.

14. The data processing system of Claim 13, wherein the method further includes
establishing membership of the signal names in the signal group by reference to an HDL
source code file describing a design entity instantiated within the simulation executable

model.

15. The data processing system of Claim 13 or 14, wherein said signal group comprises a
first signal group and said first signal group comprises second and third signal groups that

collectively have said multiple signals as members.

16. The data processing system of Claim 13, 14 or 15, wherein the method further
includes:

receiving a preservation directive identifying a particular signal for which an
associated signal name is to be preserved from renaming; and

in response to receipt of said preservation directive, identifying said signal by said

associated signal name in the presentation.

17. The data processing system of any one of Claims 13 to 16, wherein the method
further includes:

receiving as an input a scope command indicating a reference scope in terms of a
design entity instance in the simulation executable model; and

in response to receipt of the scope command, interpreting said at least one entry in

said data set in relation to said reference scope.

18. The data processing system of any one of Claims 13 to 17, wherein the method
further includes:

processing the entry in the data set to identify within the entry a design entity name
of having multiple design entity instances within the simulation executable model; and

in response to identifying the design entity name, presenting instance identifiers of

the multiple design entity instances for user selection; and

WO 2007/128753 PCT/EP2007/054255
28

in response to user selection of one of the instance identifiers, narrowing a scope in

which instances of signals belonging to said signal group are located.

WO 2007/128753 PCT/EP2007/054255

1713

& SRAN AR FUEL e L1
-V-V- V. (i -V. -vly-vw-v— (11 -v-| 1\ Iy A
A P AN T T =Y
= AN
) v, 5:‘5‘525%’—— ¢ X
£ MM MM
= vv_vrv_v.v.v_v_v_v-‘._': { i

TFrg. 1
Prior Art

PCT/EP2007/054255

WO 2007/128753

2/13

0z
1Y A0LID 8¢
| g >
Z o
ﬁ@)
INVHDOHd H3Ldvav / HALdvav
| 10HINOD 3OV4HIINI H3SN , AV 1dSId
9y
e AHOWAN NIVIN | ¢ o5 s
g9z]
- H3Ldvav Yaldvay
SNOILVIINNIINOD o/l Wivd WoH Ndd
I~ s 87> 06 V0

JAd
3dv.LMsSId

€€

WO 2007/128753

3/13

g?)OO

PCT/EP2007/054255

/5301

Yy Y VY ¥

306 | 5304

¥ ¥V ¥

T1g. 34

PCT/EP2007/054255

4/13

g€ AdNold

WO 2007/128753

e N N] © |oh
b4] 04 | 3 q
K- Sl
azze | m* e/z¢ - w*v-
S 7 o)d| -] ¥0)d
q.z€ 55 BOZE 2
d- q:9g
—— X~
N N
—K— ——
asze - | W egze — | N
VY VY
arze LAX:NX ejze — 0NX=:NX4
oze oo ~dOLdOL~z1e
e 0lE.

WO 2007/128753

§345

513

' g340

PCT/EP2007/054255

Design Entity
Proto Files

¢

Design Entity
HDL files

Signal

)

344?

Directives 350

Group

2
! §34

HDL Compiler

(343

341
¥)

Design Entity
Proto Files

C

, Design Entity SGl
Proto Data Structures | 400
7

~a)
(ff%sign Entity Instance

Data Structures

346
/

¥

Model Build Tool

Z
Cas

Fig. 3C

348
: ¥ <
Simulation
Signal Group
Executable Info. (SGI) 400

Model

WO 2007/128753

6/13

PCT/EP2007/054255

FPU:FPUO

FXU:FXU1

FXU:FXUO

- O
ON)
w <
—
o)
o
N
TTTT TTT TIT TTTT TIT TTT
o o
) >< < (sa) &) o
— i e
111 111 L1l 111 Ul

L

Fig. 3D

PCT/EP2007/054255

WO 2007/128753

713

cor
4SvOl1sdl

/ 4
J

¥ F4NOIld

olv
HAMIIA 13V

J 3

oov | 90F
198 | JId 13V

A

17
JOLVINNIS

A

00¥ 19S

8¢ T3IA0OIN
I19v.LNOIXTI NOILLYTNWIS

PCT/EP2007/054255

WO 2007/128753

8/13

as RNOId

4%
/AQ:QoIDXu_v

\Sx&”te__ adoog

dg 3dNOid

13V HORId

/
cls sov-

3G FdNOIA

0Lg o
<dnoin NX-4>0NXd

80v S

70S ~_ o“_

0'o'gonxd
(rro)dogonxd
Tg0NXd
N'0NX4

NV 0NX4

VG F4NOId

14V d0ldd

009 e

Z0S
300X
D'0'a0Nxd
(v0)d D gonxd
g onxd
N'0ONX4
NV 0NXd

00S e

PCT/EP2007/054255

WO 2007/128753

9/13

V9 dNOId

e0vE -

019 <

¢09

-~ {Amus

anNd

08 /5 aAlasald |eubig jj--

-
:dnoisy x4 dnoig [eubis AN ii--
i

_ 0'o'gii—-

AdILSNr 1431 (7ro)d'o'g i
z19 - e
. N ii—-

9 ‘dnoln x4 dnoig jeubis jj--

SUT=>10

o os g

ubisep 10} opco 921nos TAH}
NI©3d

SI NXd 40 NXd &injosiiyoly
(

009 { ‘990N ALS 1NO O

DID0TN dlsS 1No F
) Hod

Sl NX4 Alug

PCT/EP2007/054255

WO 2007/128753

10/13

g9 Fdnoid

qove -

N3

‘led Nxd dnoio jeubis ANF i
<dnoln NXd>"LNXd ii—-
‘<dnoiny NX4>0NX4d ii--

ed Nxd dnois Jeubis ji-—-

0€9
* {Aypue ubisep 1of TAH}
NIBEE!
Sl dOL Jo mOp 81njo8)yoIy
X(
) Hod

Sl dO1 Anug

PCT/EP2007/054255

WO 2007/128753

11/13

V. FHdNOold

AONVLSNI ALILLNS
NOIS3A FT1ONIS

4S8N
O1 SIONVISNI |

¢S1SIX
JONVLSNI

ONIALILNAA! LNdNI [] ALIINA N©ISAA
BREIENESE]S! 40 1SIT INISTAd
VR .
et v ves ATIAISHNDTY
3d400S SIDONVYLSNI
v o JONTFEIAITHSY | ALLLNA
4 JONVLSNI ALILNT | NDISAA
NDIS3IA L3S \mEuo._
VR oL/ |
0cs SIA ["OHYd

{XVINAS
a3LIMOVHd SYH |
ANYIWINOD 3d00S_~g30
BEN

¢S1SIXH
ONV.LSNI

gL/ -
3d02S
JONIHILTY S TNTING v
SV IONVLISNI |« S 3d0O0S 4T < NI©3g
ALILNT NOIS3A be
7AAT1 dOL L3S Z0L 004

y0. S

PCT/EP2007/054255

WO 2007/128753

d3Sn OL S3ONVLSNI
ALILNTI NOIS3d
40 1SI7 INIS3dd

12/13

027 |

(S)3ADONVLSNI
- ALILNTI NOIS3AA
ONIALILNIA! LNdN]
d3asn IAIFDTY

(S)AONVLSNI
ALIINTINSISTA OL
(S)Ad02S 11V L3S

¢cll S

anNd
veL

S31NaidLlyY
31ViddOdddV

A

HLIM d3SN Ol
NOILVLINISIdd
1N3S3dd

492 S

SOAIASIHALSY

¢(NOILV1O0

~C 09/
[saA Ho.L
(S)ADONVLSNI
ALILNT NoIs3ad ON
0Ol (8)3d0os 13S 96/ S
, \ o | .
794 ATIAISHNDIY
» SIONVLSNI ALILNT
7G) S3IA NOISIA FLVD0T
A
! JDONV.LSNI
Sm—— Y ALIINT NOIS3A
| a3141093ds
. Ol 3d0DS 13S

S3dA

3d09S "43Y
0L 3d09S
ONDIHOM
13S%®
AMLNZ LX3N
OL IAOW

&IVNO
JONVLSNI

or. S

4/ 3¥Nnoid

PCT/EP2007/054255

WO 2007/128753

13/13

0L RUNOI o

NOILVY.LINISTHd
&1SIX3 S3X » OL (S)dNOYD TVYNDIS
. NI (S)TIVYNSIS 11V aav
881 A /O@N
(S)AONVLSNI ALILNT NDISTd
NIHLIM FONVLSNI dNOYD
TYNOIS @FIH1D3dS F1LvD01.
A13AISHNOIY S3A
(S)YAONVLSNI ALIINA
NDISIANIHLIM (< elSIXT S5y 4
SAONVLSNI dNOYD
TYNOIS TIV 31V00T | gg,
, NOILV.INISTHd

TVYNDIS S

RVEN S3A SaA| oL (S)1YNSIS aav

8L \Joz zq, -
(S)AONVLSNI .

ALILN4 NOISEA
0L (8)=d00DSs 13S

081

A

| S3A
& IVND 811
JONV.LSNI . »< ¢ LSIXT »(HOHT
SEVY ON
HIHLHN
1L @NNwwy//\\\\\ “ogs

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/054255

CLASSIFICATION OF SUBJECT MATTER

A.
INV. GO6F17/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields séarched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X ADVANCED PROCESSOR TECHNOLOGIES GROUP: 1-18
"GTKWave Electronic Waveform
Viewer"[Online]

20 April 2005 (2005-04-20), XP002444396
Retrieved from the Internet:
URL:http://intranet.cs.man.ac.uk/apt/proje
cts/tools/gtkwave/>

[retrieved on 2007-07-27]

the whole document

X INTERCONNECT SYSTEMS SOLUTION: "Wave VCD 1-18
Viewer"[Online] 24 May 2005 (2005-05-24),
XP002444620

Retrieved from the Internet:
URL:http://web.archive.org/web/20051227174
914/http://www.iss-us.com/wavevcd/index.ht
m> [retrieved on 2007-07-27]

the whole document

m Further documents are listed in the continuation of Box C. E See palent family annex.

* Special categories of cited documents :) . X .
T later document published after the international filing date

"A" document defining the general state of the art which is not or priority dale and rol in conflict with the applicattion but

considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
cilation or ather special reason (as specified)

Q document referring to an oral disclosure, use, exhibition or
olher means

P document published prior to the international filing date but
later than the priority date claimed

cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y® document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
inthe an.

*&" document member of the same patent famity

Date of the actual completion of the international search

27 July 2007

Date of mailing of the intemational search report

13/08/2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Anticoli, Claud

Fom PCT/ASA/210 (sacond sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

ANDERSCH AXEL [DE]; MAENDL WOLFGANG [DE];
SEHR WOLFGA) 6 January 2005 (2005-01-06)
page 1, Tine 1 - page 4, 1ine 30

PCT/EP2007/054255
C(Centinuation), DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
L,X VERIPOOL: "Dinotrace"[Online] 1-18
27 Juty 2007 (2007-07-27), XP002444621
Retrieved from the Internet:
URL:http://www.veripool.com/dinotrace/>
[retrieved on 2007-07-27]
the whole document
A US 2005/131666 Al (TSAI JIEN-SHEN [TW] ET 1-18
AL) 16 June 2005 (2005-06-16)
.paragraphs [0001] - [0022]
A MASTON G A ED - INSTITUTE OF ELECTRICAL 1-18
AND ELECTRONICS ENGINEERS:
"Considerations for STIL data application”
PROCEEDINGS INTERNATIONAL TEST CONFERENCE
2002. ITC 2002. BALTIMORE, ™MD, OCT. 7-10,
2002, INTERNATIONAL TEST CONFERENCE, NEW
YORK, NY : IEEE, US,
7 October 2002 (2002-10-07), pages
290-296, XP010609752
ISBN: 0-7803-7542-4
pages 1-2
A US 2006/015314 Al (ROESNER WOLFGANG [US] 1-18
ET AL) 19 January 2006 (2006-01-19)
abstract
paragraphs [0001] - [0012]
A WO 2005/001720 A (SIEMENS AG [DE]; 1-18

Form PCT/ASA/210 (continuation of sacond sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2007/054255

Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2005131666 Al 16-06-2005 NONE
US 2006015314 Al 19-01-2006 CN 1716264 A 04-01-2006
WO 2005001720 A 06-01-2005 DE 10329147 Al 20-01-2005
EP 1639508 Al 29-03-2006
US 2006178863 Al 10-08-2006

Form PCTASA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report
	Page 45 - wo-search-report
	Page 46 - wo-search-report

