- PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

_ INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 10 December 1998 (10.12.98)

(30) Priority Data:

08/988,857 Us

11 December 1997 (11.12.97)

(71) Applicant (for all designated States except US): SUN MI-
CROSYSTEMS, INC. [US/US]; 901 San Antonio Road,
Palo Alto, CA 94303 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): GONG, Li [CN/US]; 917
Florence Lane, Menlo Park, CA 94025 (US).

(74) Agents: CARLSON, Stephen, C. et al.; McDermott, Will &
Emery, Suite 300, 99 Canal Center Plaza, Alexandria, VA
22314 (US).

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/30218
GOGF 1/00 Al . o

(43) International Publication Date: 17 June 1999 (17.06.99)

(21) International Application Number: PCT/US98/26077 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, T™, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR,
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(57) Abstract

A method and apparatus for estab-
lishing and maintaining complex security
rules is provided. The security rules are
established through the use of "permis-
sion” classes that take advantage of the
power and simplicity various features of
object oriented programming, including
the ability to inherit attributes and meth-
ods. For example, a permission super
class is established that defines an inter-
face to a validation method. A permis-
sion subclass may then be created which
provides an implementation of the valida-
tion method. When invoked, the valida-
tion method indicates whether a given per-
mission represented by one object belong-
ing to a permission class encompasses the
permission represented by another object
belonging to a permission class. Classes
are also provided for grouping permis-
sions into sets, and for establishing pro-
tection domains for classes of objects.

R T T

¥,

282

Permission
Super Class

210

Permission Object
"disable” :"Channel 5"

(54) Title: TYPED, PARAMETERIZED, AND EXTENSIBLE ACCESS CONTROL PERMISSIONS

Action Field 222
Abstract Validation Method (Permission p) 224

get_Action Method() 226

Action Field 222
get_Action Method() 224
Validation Method Implementation 242

TV Subclass
230

Target Fleld 244
Get Target Method() 246

Permission Object
*Watch" :"Channel §"

286

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
Us
vz
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

TYPED, PARAMETERIZED, AND EXTENSIBLE ACCESS CONTROL PERMISSIONS

RELATED APPLICATIONS

The present application is related to U.S. Patent Application No. 08/988,431, entitled
"CONTROLLING ACCESS TO A RESOURCE", filed by Li Gong, on the equal day
herewith, (attorney docket no. 3070-007/P2244/TJC), the contents of which are incorporated
herein by reference.

The present application is related to U.S. Patent Application No. 08/988,660, entitled
"SECURE CLASS RESOLUTION, LOADING, AND DEFINITION", filed by Li Gong, on
the equal day herewith, (attorney docket no. 3070-008/P2245/TJC), the contents of which are
incorporated herein by reference.

The present application is related to U.S. Patent Application No. 08/988,439, entitled
"PROTECTION DOMAINS TO PROVIDE SECURITY IN A COMPUTER SYSTEM", filed
by Li Gong, on the equal day herewith, (attorney docket no. 3070-009/P2435/TJC), the
contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to security mechanisms in a computer system.
BACKGROUND OF THE INVENTION

As the use of computer systems grows, organizations are becoming increasingly reliant
upon them. A malfunction in the computer system can severely hamper the operation of such
organizations. Thus organizations that use computer systems are vulnerable to users who may
intentionally or unintentionally cause the computer system to malfunction.

One way to compromise the security of a computer system is to cause the computer
system to execute software that performs harmful actions on the computer system. There are
various types of security measures that may be used to prevent a computer system from
executing harmful software. One example is to check all software executed by the computer
system with a “virus” checker. However, virus checkers only search for very specific software
instructions. Many methods of using software to tamper with a computer’s resources would
not be detected by a virus checker.

Another very common measure used to prevent the execution of software that tampers
with a computer’s resources is the “trusted developers approach”. According to the trusted
developers approach, system administrators limit the software that a computer system can
access to only software developed by trusted software developers. Such trusted developers
may include, for example, well know vendors or in-house developers.

Fundamental to the trusted developers approach is the idea that computer programs are
created by developers, and that some developers can be trusted to not have produced software
that compromises security. Also fundamental to the trusted developers approach is the notion

that a computer system will only execute programs that are stored at locations that are under
control of the system administrators.

10

15

20

25

30

35

WO 99/30218 ‘ PCT/US98/26077

Recently developed methods of running applications involve the automatic and
immediate execution of software code loaded from remote sources over a network. When the
remote sources include computer systems that are outside the control of system administrators,
the trusted developers approach does not work.

One attempt to adapt the trusted developers approach to systems that can execute code
from remote sources is referred to as the sand box method. The sand box method allows all
code to be executed, but places restrictions on remote code. Specifically, the sand box method
permits all trusted code full access to a computer system’s resources and all remote code
limited access to a computer system’s resources. Trusted code is usually stored locally on the
computer system under the direct control of the owners or administrators of the computer
system, who are accountable for the security of the trusted code.

One drawback to the sandbox approach is that the approach is not very granular. The
sandbox approach is not very granular because all remote code is restricted to the same limited
set of resources. Very often, there is a need to permit remote code from one source access to
one set of computer resources while permitting remote code from another source access to
another set of computer resources. For example, there may be a need to limit access to one set
of files associated with one bank to remote code loaded over a network from a source
associated with that one bank, and limit access to another set of files associated with another
bank to remote code loaded over a network from a source associated with the other bank.

Providing security measures that allow more granularity than the sand box method
involves establishing a complex set of relationships between principals and permissions. A
“principal” is an entity in the computer system to which permissions are granted. Examples of
principals include processes, objects and threads. A “permission” is an authorization by the
computer system that allows a principal to perform a particular action or function.

Establishing sets of permissions for principals that may be received from multiple
sources on a vast network, such as the Internet, typically requires developing complex security
software. After such security software is developed, it must often be changed in order to meet
changing security requirements. Often, changing security requirements entail modifying
permissions or creating new kinds of permissions. Typically, the security software of a
computer system must be reprogrammed to incorporate these new kinds of permissions.
Programming security software requires substantial effort and in-depth knowledge about a
computer’s security mechanisms and a computer’s architecture.

Based on the foregoing, it is clearly desirable to develop a method which reduces the
effort and in-depth knowledge required to modify permissions established for the sources of
code being executed by a computer system. It is further desirable to develop a method which
reduces the effort and in-depth knowledge required to create new permissions.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

SUMMARY OF THE INVENTION

A method and system for providing security using typed and extensible control
permissions is provided. According to one aspect of the invention, the establishment and
maintenance of complex security rules are enforced in a way that takes advantage of the power
and simplicity of the inheritance feature of object oriented programming.

Specifically, a “ permission super class” is established from which subclasses may be
created. Objects that belong to subclasses of the permission super class represent permissions,
and are therefore referred to as permission objects.

The permission subclasses inherit the methods and attributes of the permission super
class. According to one embodiment, one of the methods defined by the permission super
class and inherited by the permission subclasses is a validation method. Each permission
subclass inherits the validation method from the permission super class and provides an
implementation of the validation method.

When the validation method is invoked for a particular permission object belonging to
a permission subclass, the validation method indicates whether a given permission is
encompassed by the permission represented by the particular permission object. For example,
the validation method of a permission object PO1 may be invoked to determine whether the
permission represented by another permission object PO2 is encompassed in the permission
represented by PO1, where both PO1 and PO2 belong to classes that descend from said
permission super class. In this we can determine whether a permission to perform a first
action, represented by PO1, authorizes a request to perform a second action, which requires a
second permission represented by PO2, by invoking the validation method of PO1 to
determine whether the first permission represents an authorization to perform the requested
second action.

According to another aspect of the invention, permissions represent actions on targets.
Thus, a first permission object can specify a first action and a first target, and a second
permission object can specify a second action and a second target. A determination is made of
the whether the permission represented by the first permission object encompasses the
permission represented by the second permission object based on whether the first action
implies the second action and the first target implies the second target. In this we can
determine, for example, whether a permission to perform a first action on a first target,
represented by the first permission object, authorizes a request to perform a second action on
second target, which requires a second permission represented by the second object, by

determining whether first action implies the second action, and the first target implies the
second target.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in
the figures of the accompanying drawings and in which like reference numerals refer to
similar elements and in which:

Figure 1 is a block diagram of a computer system on which the present invention may
be implemented;

Figure 2 is a block diagram showing attributes and methods associated with a
permission super class and a subclass of the permission super class and permission objects
belonging to the subclass of the permission super class in accordance with one embodiment of
the present invention;

Figure 3 is a flow chart showing the steps for establishing a permission super class and
a subclass of the permission super class in accordance with one embodiment of the present
invention;

Figure 4 is a block diagram outlining a security mechanism using permission objects in
accordance with one embodiment of the present invention;

Figure 5 is a block diagram showing an exemplary policy file;

Figure 6 is a block diagram showing a call stack associated with a thread and the
protection domains containing permission objects associated with the objects represented by
the call stack in accordance with one embodiment of the present invention; and

Figure 7 is a flow chart showing steps followed by a security mechanism to determine
whether a particular action is authorized in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for providing typed permissions is described. In the
following description, for the purposes of explanation, numerous specific details are set forth
in order to provide a thorough understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention may be practiced without these
specific details. In other instances, well-known structures and devices are shown in block
diagram form in order to avoid unnecessarily obscuring the present invention.

HARDWARE OVERVIEW

Figure 1 is a block diagram that illustrates a computer system 100 upon which an
embodiment of the invention may be implemented. Computer system 100 includes a'bus 102 or
other communication mechanism for communicating information, and a processor 104 coupled
with bus 102 for processing information. Computer system 100 also includes a main memory
106, such as a random access memory (RAM) or other dynamic storage device, coupled to bus
102 for storing information and instructions to be executed by processor 104. Main memory
106 also may be used for storing temporary variables or other intermediate information during
execution of instructions to be executed by processor 104. Computer system 100 further

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

includes a read only memory (ROM) 108 or other static storage device coupled to bus 102 for
storing static information and instructions for processor 104. A storage device 110, suchas a
magnetic disk or optical disk, is provided and coupled to bus 102 for storing information and

instructions.

Computer system 100 may be coupled via bus 102 to a display 112, such as a cathode
ray tube (CRT), for displaying information to a computer user. An input device 114, including
alphanumeric and other keys, is coupled to bus 102 for communicating information and
command selections to processor 104. Another type of user input device is cursor control 116,
such as a mouse, a trackball, or cursor direction keys for communicating direction information
and command selections to processor 104 and for controlling cursor movement on display 112.
This input device typically has two degrees of freedom in two axes, a first axis (e.g., X) and a
second axis (e.g., y), that allows the device to specify positions in a plane. ‘

The invention is related to the use of computer system 100 for establishing typed
permissions. According to one embodiment of the invention, establishing typed permissions
is provided by computer system 100 in response to processor 104 executing one or more
sequences of one or more instructions contained in main memory 106. Such instructions may
be read into main memory 106 from another computer-readable medium, such as storage
device 110. Execution of the sequences of instructions contained in main memory 106 causes
processor 104 to perform the process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combination with software instructions to
implement the invention. Thus, embodiments of the invention are not limited to any specific
combination of hardware circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 104 for execution. Such a medium may take
many forms, including but not limited to, non-volatile media, volatile media, and transmission
media. Non-volatile media includes, for example, optical or magnetic disks, such as storage
device 110. Volatile media includes dynamic memory, such as main memory 106.
Transmission media includes coaxial cables, copper wire and fiber optics, including the wires
that comprise bus 102. Transmission media can also take the form of acoustic or light waves,
such as those generated during radio-wave and infra-red data communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a
carrier wave as described hereinafter, or any other medium from which a computer can read.

Various forms of computer readable media may be involved in carrying one or more
sequences of one or more instructions to processor 104 for execution. For example, the

instructions may initially be carried on a magnetic disk of a remote computer. The remote

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 100 can receive the data on
the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An
infra-red detector coupled to bus 102 can receive the data carried in the infra-red signal and
place the data on bus 102. Bus 102 carries the data to main memory 106, from which processor
104 retrieves and executes the instructions. The instructions received by main memory 106 may
optionally be stored on storage device 110 either before or after execution by processor 104.

Computer system 100 also includes a communication interface 118 coupled to bus
102. Communication interface 118 provides a two-way data communication coupling to a
network link 120 that is connected to a local network 122. For example, communication
interface 118 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 118 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication interface 118 sends and receives
electrical, electromagnetic or optical signals that carry digital data streams representing
various types of information.

Network link 120 typically provides data communication through one or more
networks to other data devices. For example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data equipment operated by an
Internet Service Provider (ISP) 126. ISP 126 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as the
“Internet” 128. Local network 122 and Internet 128 both use electrical, electromagnetic or
optical signals that carry digital data streams. The signals through the various networks and
the signals on network link 120 and through communication interface 118, which carry the
digital data to and from computer system 100, are exemplary forms of carrier waves
transporting the information.

Computer system 100 can send messages and receive data, including program code,
through the network(s), network link 120 and communication interface 118. In the Internet
example, a server 130 might transmit a requested code for an application program through
Internet 128, ISP 126, local network 122 and communication interface 118. In accordance
with the invention, one such downloaded application provides for establishing typed
permissions as described herein.

The received code may be executed by processor 104 as it is received, and/or stored in
storage device 110, or other non-volatile storage for later execution. In this manner, computer
system 100 may obtain application code in the form of a carrier wave.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

FUNCTIONAL OVERVIEW

As mentioned above, systems that allow execution of software from remote sources
present difficult security problems. The systems that have been developed to address those
problems are complex, often requiring the use of elaborate permission rules to deal with
principals received from numerous sources. As the security needs of the systems change, the
permission rules must be updated by someone who understands the complexities of the
system.

According to one aspect of the invention, the complexities associated with elaborate
permission rules and systems are reduced by making use of a powerful object-oriented concept
understood by most programmers, known as “inheritance”, to establish relationships between
classes of permissions. The general concepts of object orientation, inheritance and classes are
described in Appendix I.

As shall be described in greater detail hereafter, a “ permission super class” is
established from which subclasses may be created. Objects that belong to subclasses of the
permission super class represent permissions, and are therefore referred to as permission
objects. The permission subclasses inherit the methods and attributes of the permission super
class, including a validation method. Each permission subclass provides an implementation of
the validation method. .

When the validation method is invoked for a particular permission object belonging to
a permission subclass, the validation method indicates whether a given permission is
encompassed by the permission represented by the particular permission object. For example,
the validation method of a permission object PO1 may be invoked to determine whether the
permission represented by another permission object PO2 is encompassed in the permission
represented by PO1, where both PO1 and PO2 belong to classes that descend from said
permission super class.

Because the establishment and management of permissions is implemented around the
class and inheritance mechanism that is familiar to most programmers, permission
management tends to be simpler and more intuitive. As the security needs of a system
changes, the typed permission system provided herein allows easy modification to adapt to the
changes, without requiring specialized knowledge of complex security-management
techniques.

PERMISSIONS

As mentioned above, a permission is an authorization by the computer system that
allows a principal to perform a particular action or function. According to one embodiment of
the invention, permissions can be organized into categories that correlate to categories of
actions that are performed on computer systems. Each category is characterized by one or
more attributes shared by all permissions belonging to the category or subcategory. Attributes
of each category include an action associated with the permission, and can include various

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

other attributes that further qualify the action attribute, such as a target attribute. A target is
any entity, such as a bank account, an adult TV channel, or a computer resource (e.g. files,
memory, printers, database records), to which an action is directed.

For example, one common permission category is the file system permission category.
A file system permission has an action attribute and a target attribute. The target is a particular
file or set of files upon which an action can be performed. The action attribute is an action that
can be performed on a file, such as “ writing” to a file. The target attribute serves to further
qualify the action by limiting the entities upon which the action can be performed. An
example of a file system permission is an authorization to * write” (i.e. the action) to a
particular file like “/anyfile” (i.e. the target). Note that in the examples provided herein, the
file(s) and directory in which the file(s) is contained are represented in a form recognized by
those skilled in the art.

Another example of a permission category is a bank account permission for a computer
application used to manage bank accounts. A bank account permission can have an action
attribute, an account attribute, and an amount attribute. An example of a bank account
permission would be an authorization to “ withdraw” from bank account “ 1233456” an
amount of three dollars.

Note that permissions categories can further comprise subcategories that are useful for
organizing permissions. For example, a subcategory of a bank account permissions can be
permissions associated with a particular bank.

IMPLIED PERMISSIONS

One permission can imply another. When one permission implies another permission,
that one permission is said to encompass the other permission. For example, a permission to
write to a directory, such “c:/”, can imply a permission to write to any file in the directory,
such as “ c/thisfile” . Furthermore, an attribute of a permission can imply an attribute of
another permission. For example, in some implementations, the action attribute of a
permission to “write” implies an action attribute of a permission to “read”. An amount
attribute of a permission to withdraw three hundred dollars implies another attribute of a
permission to withdraw two hundred dollars.

Usually, a permission encompasses another permission when all the permission
attributes of one permission imply all the corresponding permission attributes of another
permission. For example, a permission to “ write” to file © d:/somefile” implies a permission
to “read” from file “ d:/somefile” because a “write” implies a “read”. However, a permission
to “write” to file “d:/somefile” does not imply a permission to “read” from file
“d:/otherfile” because “d:/somefile” does not imply “d:/otherfile”

REPRESENTING PERMISSIONS WITH CLASSES AND OBJECTS

Using the techniques described herein, classes are used to represent categories of and

subcategories of permissions, and objects of those classes are used to represent the particular

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

permissions in a category or subcategory of permissions. A permission represented by a class
is herein referred to as a typed permission. Classes used to represent categories of permissions
are herein referred to as permission classes. Objects which belong to a permission class are
herein referred to as permission objects. Furthermore, the fields of a permission class are used
to represent the attributes of the category or subcategory of permissions represented by the
permission class.

For example, a FilePermission permission class can represent the category of file
system permissions. The FilePermission class can have an action field which corresponds to
the action attribute, and a target field which corresponds to the target attribute.

Each permission object contains fields with values corresponding to attributes of a
particular permission represented by the permission object. For example, a given object
belonging to the FilePermission class can have an action field with a value representing a
«write” action, and a target field with a value representing the directory “d:/”. In this
example, the given object represents a permission to “ write” to directory “d./.

Note that each permission object is an instance of a permission class. Likewise, a
permission object and the permission it represents are said to represent an instance of a
permission category or subcategory.

THE PERMISSION SUPER CLASS

Because all permissions share some common attributes, it is useful and efficient to
represent all categories of permissions with one class that is a super class of all permission
classes. The super class for all permission classes is herein referred to as the permission super
class. Each permission class is a subclass of the permission super class.

The permission super class contains fields which represent attributes common to all
permissions. One such field is an action field, which represents the action attribute common to
all permissions.

In addition to sharing attributes, the permission super class establishes a set of
common methods that are useful for and inherited by all permission objects, such as a
get_action method. The common action method returns a value representing the action field.
An implementation for the get_action method may be provided in the permission super class.
According to one embodiment, the implementation for the get_action method simply returns
the value of the action field.

THE VALIDATION METHOD

In addition to implementing a set of common methods shared by permission

subclasses, the permission super class also establishes the interface to methods that should be

supported by every object but whose implementation depends on the particular permission
class of the object.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

-10-

An example of such method is a validation method that indicates whether a permission
represented by one permission object encompasses another permission represented by another
permission object. As noted earlier, a permission typically encompasses another permission
when each attribute of the one permission implies the corresponding attribute of the other
permission. Because attributes of one permission category may differ from attributes of
another permission category, the permission classes which represent permission categories
may contain different sets of fields, thus necessitating a different implementation of the
validation method for some of the permission classes. Furthermore, the rules that govern
whether a particular attribute implies another attribute may vary from one permission category
to another. Hence, the implementation required for the validation methods which carry out the
rules can vary.

For example, the FilePermission permission class has an action field and a target field.
The target field could represent a file or a set of files (e.g.. “ d:/somedirectory/somefile”). A
permission class representing a bank account, AccountPermission, can have an action field, an
account field, and a maximum amount field. The two permission classes, FilePermission and
AccountPermission have a different number attributes and different kinds of attributes.

The rules governing whether one attribute of one permission implies a corresponding
attribute of another permission may differ from permission class to permission class as well.
Specifically, the implementation of determining whether a permission for one set of files
implies a permission for another set of files differs significantly from an implementation that
determines whether a permission for one maximum amount implies another amount. Itis
worth noting that permissions of different permission classes usually cannot encompass each
other.

Although the implementation of some methods supported by all permission objects can
vary from one permission class to another, the permission super class may be used to ensure
that the result type of a method and its parameters can remain constant across all permission
classes. Defining the interface to method in the permission super class without providing the
implementation for the method establishes an interface that can be relied upon by all objects
and object implementers (i.e. programmers) when interacting with permission objects.

Those skilled in the art will recognize various techniques can be used to provide such
an interface. One method would be to provide a super class with an abstract method that
would be implemented by subclasses of the super class. Another method would be to provide
a permission super class that defines a default implementation that subclasses can override. A
default implementation can be, for example, to always return a value indicating that one

permission is not encompassed by another permission. Another method uses Java Interfaces
instead of abstract classes.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

-11-

CREATING TYPED PERMISSIONS

Techniques for creating and using typed permissions shall now be described with
reference to the permission classes shown in Fig. 2. The classes shown in Fig. 2 are used to
create objects that represent permissions to manage access to a television (TV). For purposes
of illustration, assume that permissions associated with accessing a TV have an action
attribute and a target attribute. The action attribute can either be to “watch”, “enable”, or
“disenable” a channel. The target attribute represents a particular channel.

Several examples of permission objects representing several TV permissions are
shown in Fig. 2. Permission Object 282 represents a permission to “disenable” “channel 57,
and permission objects 286 represents a permission to “watch” “channel 5”. Permission
object 282 and permission object 286 are objects belonging to the subclass TV subclass 230.
TV subclass 230 is a subclass of permission super class 210.

Referring to Figure 3, in step 310 the attributes of the permission super class are
established. In this example, an action field 222 is established for permission super class 210.
The action field 222 is a string data type. The action field 222 represents the permission
attribute of any category of permission.

In step 320, a validation method and other methods for a permission object are
established. In this example, an abstract validation method 224 is provided. The validation
method accepts as its first parameter an object reference of the data type (i.e. class) Permission
class. Thus an object reference referring to an object belonging to any permission class is an
acceptable parameter. The data type of the value returned by the method is Boolean. The
Boolean value returned by the validation method indicates whether the permission represented
by the permission object referred to by the object reference is encompassed by the permission
represented by the permission object whose validation method is invoked. For example,
assume X and Y are permission objects. The method invocation X.Validation(Y) will return
True if the permission represented by Y is encompassed in the permission represented by X,
and False if the permission represented by Y is not encompassed in the permission represented
by X.

According to one embodiment, no implementation of the abstract validation method
224 is provided in permission super class 210. The implementation is left to the subclasses of
permission super class 210.

A get_action method is also provided in the permission super class 210. The get_action
method returns a string value representing the value contained in the action field 222. An
implementation is provided for the get_action method. The implementation merely returns the
value of the action field as the return value of the get_action method.

Those skilled in the art will recognize that other methods and attributes can be
provided. Only some of these methods and attributes have been illustrated in order to avoid
unnecessarily obscuring the techniques described herein.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

-12-

An example code implementation of a permission super class 210 is illustrated below.
Although the code example may resemble the JAVA programming language by Sun

Microsystems Inc., the example is merely for illustrative purposes and is not meant to be
representative of an actual code implementation.

abstract class Permission {
protected String action;

abstract Boolean validate(Permission p);

}

ESTABLISHING PERMISSION SUBCLASSES

In step 330, an implementation of the abstract validation method 224 is provided in the
form of a validation implementation 242 of a subclass of Permission super class 210. In this
example, a TV subclass 230 is defined as a subclass of Permission super class 210. The
implementation 242 of abstract validation method 224 includes code which, when executed,
initially determines whether the object reference parameter refers to a permission object of
same class as that of the permission object whose validation method is being invoked.

When the classes of permission objects differ, one permission represented by a
permission object does NOT encompass the permission represented by the other permission
object because a permission of one category does not encompass a permission of another
category. For example, a TV permission does not encompass a file system permission.

Next, the code in the implementation 242 ensures that each attribute of the permission
represented by the object reference is implied by each attribute of the permission represented
by the object whose validation method is invoked. For example, if the action field and the
target field of the permission object referred to by the object reference are identical to the
action field and target field of the permission object whose validation method is invoked, then
the validation method returns a true Boolean value.

In step 340, attributes and other methods of the TV subclass 230 are established. The
other methods may include both new methods, and new implementations that override the
implementations of inherited methods. In this example, a target field representing the target
attribute of a TV permission is defined. A get_target method 246 is also provided. The
get_target method simply returns a string value representing the channel attribute of the
permission represented by the TV permission object.

An example code implementation of the TV subclass 230 is illustrated below.
Although the code example may resemble the JAVA programming language by Sun

Microsystems Inc., the example is merely for illustrative purposes and is not meant to be
representative of an actual code implementation.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077
13-

class TV extends Permission {

protected String target;

public string get_target() {

return target;

}

TV(String a, String t){
action = a;
target =t;

public Boolean validate(Permission p) {

if (p instanceof TV = false)
return false;

TV reqPerm = (TV)p;

if (reqPerm.get_action() != action)
return false;

if (reqPerm.get_target() != target)
return false;

return true

}

In step 350, the permission super class 210 and subclasses of the permission super
class 210 are compiled and placed in a software library. Those skilled in the art are familiar
with software tools and techniques used to compile the classes described above and to place
them in software libraries. An example of such a tool is the Java Development Kit by Sun
Microsystems Inc.

Those skilled in the art will recognize that, in addition to the ones illustrated above,
other attributes and methods are possible in permission subclasses. Only some these attributes
and methods have been illustrated in order to avoid unnecessarily obscuring the techniques
described herein.

Furthermore, techniques described above are not limited to permission classes whose

parent class is the permission super class 210. The techniques are applicable to subclasses of

10

15

20

25

30

35

WO 99/30218 14 PCT/US98/26077

other permission classes which themselves are descendants of the permission super class. For

example, it may be useful to provide a TV permission class, and then a subclass of the TV

permission class that corresponds to a particular cable company.
PERMISSIONCOLLECTION OBJECTS

In an embodiment of the invention, a PermissionCollection super class is provided to
allow security administrators to easily manage sets of permissions. A PermissionCollection
class is used to create objects that each contain a set of zero or more permission objects. An
object that is a subclass of the PermissionCollection super class is herein referred to as a
PermissionCollection object. A PermissionCollection object manages a set of permission
objects contained by the PermissionCollection object. A homogenous PermissionCollection
object may only contain permission objects belonging to the same class, a heterogeneous
PermissionCollection object may contain permission objects belonging to different classes.

The PermissionCollection super class defines several methods. One method returns an
enumeration of the permission objects contained in the PermissionCollection object.

Another method, add_permission, adds a permission object to the set of permission
objects contained in the PermissionCollection object. The add_permission method has a
parameter of the type Permission. In the case of a homogenous PermissionClass object, for
example, the method to add a permission object does not add a permission object if it is not of
the same type (i.. class) as any other permission object already contained in the
PermissionCollection object. The method returns a Boolean flag indicating whether or not a
permission object was added.

A group validation method is another method defined by the PermissionCollection
super class. The method accepts one parameter of the data type Permission. The method
indicates whether or not any of the permissions represented by the permission objects
contained in a PermissionCollection object encompass the permission represented by the
permission object specified by the parameter. The method processes each permission object by
invoking each permission objects validation method until either (1) the validation methods of
all permission objects in the set have returned False or (2) a validation method for a
permission object in the set returns True.

A PermissionCollection object used to manage a set of permission objects can be
created directly for the PermissionCollection super class, or from a subclass of the
PermissionCollection class. A subclass of the PermissionCollection super class can contain
methods that provide functionality specific to a particular permission class. ‘

For example, a PermissionCollection object for FilePermissions can provide an
IsTargetImplied method. The IsTargetimplied method indicates whether or not a particular

target is implied by another target. For example, the method could syntactically determine
whether ““/sys/sysfile” is implied by “/sys/*”.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077
- -15-

SECURITY USING “FINAL” DESIGNATION

Many programming languages provide the keyword “final” to designate that
something cannot be overridden. For example, if a class X is defined as final, then the
compiler will generate an error if subsequent code attempts to define a subclass of class X.
Alternatively, a class that is not final may have one or more methods that are declared to be
final. For example, class Y may not be final, but class Y may define five methods, three of
which are declared to be final. Under these circumstances, the compiler will allow subsequent
code to define a subclass of class Y, but the subclass will inherit the three methods as is. The
subclass will not be able to override the three inherited methods by defining alternative
implementations for the methods.

According to one embodiment of the invention, support for the “final” keyword is
combined with permission classes to implement strong but flexible security mechanisms. For
example, assume that a first developer defines a FilePermission subclass of the Permission
super class. Assume further that the Validation method for the FilePermission class returns
True when the invoked permission is *write c:*” and the input permission is * write
c:\sys\config.txt”. The first developer may want to distribute the FilePermission class in a
runtime library for use by other developers.

If a user of the library is allowed to create a subclass of the FilePermission class and
override the validation method, the security policy programmed into the FilePermission logic
may be compromised. For example, security would be compromised if the validate method of
the FilePermission class is overridden with logic that returns True when the invoked
permission is “ write ¢:*” and the input permission is “ write d:*”.

For the first developer, it may be critical for the applications developed by the users of
the runtime library to reflect the same degree of security as is programmed into the
FilePermission logic. To prevent security loopholes, the first developer may declare the
FilePermission class to be final. As a result, any user of the library would be unable to use
any security policies with respect to file access other than the security policies embodied in the
original FilePermission class. '

While declaring the FilePermission class to be final will prevent security breaches, it
limits the flexibility of the library. For example, users of the library should be allowed to
implement security policies with respect to file access that are more restrictive than the
FilePermission class policies. Thus, a user of the library may decide to implement a system
that requires exact directory matches. In such a system “write c:*”” would encompass “write
c:\hello.txt” but would not encompass “ write c:\sys\joe.txt”.

To allow library users to enforce more restrictive security policies, the FilePermission
class may be non-final, while all methods of the class but one are declared as final. The non-
final method, which may be called the AdditionalCheck method, may be overridden by the
library user. The Validation Method, which is ©nal, may call the AdditionalCheck method as

10

15

20

25

30

35

WO 99/30218 16 PCT/US98/26077

a final step to determine whether a particular permission is encompassed by the invoked
permission object. The Boolean value generated by the Validation Method logic are
combined in a logical AND operation with the Boolean value generated by the
AdditionalCheck method to produce the Boolean value that is ultimately returned by the
Validation Method.

Because the value returned by the Validation Method is always false if the validation
method logic is false, the security policy employed by the application developed by a library
user is at least as restrictive as those embodied in the original FilePermission class logic.
However, because the library user is allowed to override the AdditionalCheck method, the
library user has the flexibility to implement security rules that are more restrictive than the
original FilePermission class logic.

EXEMPLARY SECURITY MECHANISM

An exemplary security mechanism illustrating one use of typed permissions is shown
in Figure 4. Referring to Fig. 4, the exemplary security mechanism includes a policy file 444,
a policy object 440, a domain mapper object 448, an access controller 480, and one or more
protection domains 482. The security mechanism is implemented using a code executor 410.

Code executor 410 executes code which code executor 410 receives from code stream
420. One example of a code executor is a Java virtual machine. A Java virtual machine
interprets code called byte code. Byte code is code generated by a Java compiler from source
files containing text. The Java virtual machine is described in detail in Tim Lindholm & Frank
Yellin, The Java Virtual Machine Specification (1996).

For the purposes of explanation, it shall be assumed that code from code stream 420 is
object oriented software. Consequently, the code is in the form of methods associated with
objects that belong to classes. One or more class definitions for a class are contained in code
from code stream 420. The fields and methods of the objects belonging to a class are defined
by a class definition. These class definitions are used by code executor 410 to create objects
which are instances of the classes defined by the class definitions.

These class definitions are generated from source code written by a programmer. For
example, a programmer using a Java Development Kit enters source code that conforms to the
Java programming language into a source file. The source code embodies class definitions and
other instructions which are used to generate byte code which controls the execution of a code
executor (i.. a Java virtual machine). Techniques for defining classes and generating code
executed by a code executor, such as a Java virtual machine, are well known to those skilled in
the art.

Each class defined by a class definition from code stream 420 is associated with a class
name 438 and a code source 436. Code executor 410 maintains an association between a class
and its class name and code source. The code source represents a source of code from which is

code received. A "source of code" is an entity from which computer instructions are received.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

-17-

Examples of sources of code include a file or persistent object stored on a data server
connected over a network, a FLASH_EPROM reader that reads instructions stored on a
FLASH_EPROM, or a set of system libraries.

The code source may be a composite record containing a uniform resource locator
(“URL”) 434 and set of public cryptographic keys 432. A URL identifies a particular source.
The URL is a string used to uniquely identify any server connected to the world wide web. A
URL may also be used to designate sources local to computer system 100. Typically, the URL
includes the designation of the file and directory of the file that is the source of the code
stream that a server is providing.

A public cryptographic key, herein referred to as a key, is used to validate the digital
signature which may be included in a file used to transport related code and data. Public
cryptographic keys and digital signatures are described in Schneier, Applied Cryptography,
(1996). The keys may be contained in the file, may be contained in a database associating keys
with sources (e.g. URLS), or be accessible using other possible alternative techniques.

A class may be associated with the digital signature associated with the file used to
transport code defining the class, or the class definition of the class may be specifically
associated with a digital signature. A class that is associated with a valid digital signature is
referred to as being signed. Valid digital signatures are digital signatures that can be verified
by known keys stored in a database. If a class is associated with a digital signature which can
not be verified, or the class is not associated with any digital signature, the class is referred to
as being unsigned. Unsigned classes may be associated with a default key. A key may be
associated with a name, which may be used to look up the key in the database.

While one code source format has been described as including data indicating a
cryptographic key and URL, alternate formats are possible. Other information indicating the
source of the code, or combinations thereof, may be used to represent code sources. Therefore,
it is understood that the present invention, is not limited to any particular format for a code
source.

TRUSTED AND UNTRUSTED SOURCES

The source of code stream 420 may be from zero or more untrusted sources 424 or
zero or more trusted sources 428. Untrusted sources 424 and trusted sources 428 may be file
servers, including file servers that are part of the World Wide Web network of servers
connected to the Internet. An untrusted source is typically not under the direct control of the
operators of computer system 100. Code from untrusted sources is herein referred to as
untrusted code.

Because untrusted code is considered to pose a high security risk, the set of computer
resources that untrusted code may access is usually restricted to those which do not pose
security threats. Code from a trusted source is code usually developed by trusted developers.
Trusted code is considered to be reliable and pose much less security risk than remote code.

10

15

20

25

30

35

WO 99/30218
-18-

Software code which is loaded over the network from a remote source and
immediately executed is herein referred to as remote code. Typically, a remote source is a
computer system of another separate organization or individual. The remote source is often
connected to the Internet.

Normally untrusted code is remote code. However, code from sources local to
computer system 100 may pose a high security risk. Code from such local sources may be
deemed to be untrusted code from an untrusted source. Likewise, code from a particular
remote source may be considered to be reliable and to pose relatively little risk, and thus may
be deemed to be trusted code from a trusted resource.

According to one embodiment of the invention, typed permissions are used in
conjunction with protection domains to implement security policies that allow trusted code to
access more resources than untrusted code. A security policy thus established determines
what actions code executor 410 will allow the code within code stream 420 to perform. The
use of typed permissions and protection domains allows policies that go beyond a simple
trusted/untrusted dichotomy by allowing relatively complex permission groupings and
relationships.

Protection domains and policies that may be used in conjunction with typed
permissions shall now be described in greater detail with continued reference to Figure 4.

PROTECTION DOMAINS AND POLICIES

Protection domains are used to enforce security within computer systems. A protection
domain is a set of permissions granted to one or more principals. As described above,
permissions are represented by permission objects. Libraries, usually located in trusted
sources, contain class definitions for the permission super class 210 and permission classes.
Typically these libraries are accessible by code being executed by code executor 410.

The correlation between permissions and principals constitutes the policy of the
system. Figure 4 illustrates an exemplary policy implemented through use of a policy file 444.
A protection domain in this exemplary policy is defined as the set of permissions granted to
the objects associated with a particular code source. The policy of the system is represented by
one or more files containing instructions. The instructions map code sources to permission
objects which represent the permissions authorized for the protections domain corresponding
to the code source. Each instruction establishes a mapping between a particular code source
and a particular permission object. An instruction represents one authorized permission for the
objects belonging to the classes associated with the code source in the instruction.

The format of a typical instruction in the exemplary policy file 444 is:

<“permission”> <URL> <key name> <permission class name> <action> <target>
The <URL> and the key corresponding to the <key name> represent a code source. The key

name is associated with a key. The key and corresponding key name are stored together in a

PCT/US98/26077

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077
-19-

database. The key name can be used to find the key in the database. The <permission class
name> represents data identifying a permission class. The <action> and <target> represents
data used to initialize (i.e. using an permission object constructor) the action and target fields
in a permission object belonging to the identified permission class. Instruction 520-1 in Fig. 5,
for example, is an authorization of a permission to write to any file in “/tmp/*” by any object
of the class associated with code source “file://somesource” -“ somekey” (i.e. URL-key
name).

Referring to Fig. 4, in order to efficiently and conveniently implement the policy and
establish protection domains, policy object 440, domain mapper object 448, and one or more
protection domain objects 482 are provided. Policy object 440 provides a mapping of code
source to permission objects based on the policy file. Policy object 440 is initialized when
code executor 410 is initialized. The policy object 440 parses the policy file 444. For each
instruction, a permission object of the permission class designated in the instruction is created
using the values of the action and target attributes that are designated in the instruction.
Finally, the permission object is mapped to the code source designated in the instruction.

While one method for representing the security policy of computer system has been
described, other methods are possible. For example, a policy data base may contain fields that
represent the code source, permission class, action and target. Therefore, it is understood that
the techniques described herein are not limited to any specific method of storing a
representation of security policy of a computer system.

Note that even though the instruction illustrated above contains data used to initialize
two fields, a permission object may in fact have more or less than two fields to initialize. For
example, a bank account permission may have an action, account, and maximum amount
attribute. When a bank account permission object is initialized, the values in instruction
corresponding to action, account, and maximum amount attributes would be used to initialize
the permission object.

The domain mapper object 448 contains a mapping between classes and protection
domains objects. Protection domain objects 482 contain a set of permissions. Protection
domain objects are associated with the permission objects they contain, and with the classes to
which a protection domain object is mapped to by domain mapper object 448.

Protection domain objects 482 are created when new classes are received by code
executor 410. When a new class is received, domain mapper 448 determines whether a
protection domain is already associated with the code source. The domain mapper maintains
data indicating which protection domains have been created and the code sources associated
with the protection domains. If a protection domain is already associated with the code source,
the domain mapper adds a mapping of the new class and protection domain to a mapping of
classes and protection domains maintained by the domain mapper 448.

10

15

20

25

30

35

WO 99/30218 20 PCT/US98/26077

If a protection domain object is not associated with the code source of the new class, a
new protection domain object is created and populated with permissions. The protection
domain is populated with those permission that are mapped to the code source of the new class
based on the mapping of code sources to permissions in the policy object. Finally, the domain
mapper adds a mapping of the new class and protection domain to the mapping of classes and
protection domains as previously described.

In other embodiments of the invention, instead of storing the mapping of classes to
protection domains in a domain mapper object, the mapping is stored as static fields in the
protection domain class. The protection domain class is the class to which protection domain
objects belong. There is only one instance of a static field for a class no matter how many
objects belong to the class. The data indicating which protection domains have been created
and the code sources associated with the protection domains is stored in static fields of the
protection domain class. Alternatively, a mapping between a class and protection domains
associated with the class is stored as static fields in the class.

Static methods are used to access and update the static data mentioned above. Static
methods are invoked on behalf of the entire class, and may be invoked without referencing a
specific object.

EXEMPLARY ACCESS CONTROL

An exemplary method using access controller 480 according to steps shown in Fig. 7
illustrates a use of permission objects. The calling stack, protection domains, and permission
objects shown in Fig. 6 are used as an example illustrating the performance of the steps shown
in Fig. 7.

A code executor, such as a Java virtual machine, maintains for each thread or process a
call stack of the object methods invoked by the thread or process. The call stack reflects the
calling hierarchy between the methods that have been invoked but not yet completed by the
thread or process. The call stack includes information identifying the objects with methods on
the call stack. For example, assume that a thread executes a.x (where “a” is an object and “x”
is a method associated with object “a”). Assume that a.x invokes b.y which invokes c.z.
While c.z is executing, the call stack will contain data identifying a.x, b.y, and c.z. At this
point, call stack 610, in Fig. 6, represents the calling hierarchy of the methods invoked by the
thread but have not yet been completed by the thread. When the thread finishes execution of
c.z, the data identifying c.z will be removed from call stack 610.

Note that each object represented by the call stack is associated with a protection
domain. Object a is associated with protection domain I and object b and object ¢ are
associated with protection domain J. Each protection domain object shown in Fig. 6 is
associated with permission objects. The association between the objects, protection domain
objects, and the permission objects is based on the a domain mapper object 448, policy object

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

-21-

440, policy file 444, and constitutes the security policy with respect to the objects shown in
Fig. 6.

Assume that a thread invokes a.x, b.y, and c.z in the manner described so that call
stack 610 is as it appears in Fig. 6. Referring to Fig. 7, assume that b.y requests an action, the
action being to “disenable” “channel-5”. Typically, a request is in the form of an attempt to
invoke a particular method that performs a particular operation. In this example, the particular
request is made by object b. In other words, a method associated with object b invoked a
method that may perform the particular action.

Typically, access to a resource by code being executed by a code executor can only be
made by invoking a resource manager. A resource manager is an object assigned the
responsibility of managing access to its respective resource. In this example, object a is the
resource manager. It is the resource manager, object a, that receives the request from object b.

In step 754, the resource manager creates a permission object based on the permission
required to perform the requested action. In this example, the permission required to perform
this action is to “disenable” “channel-5". A permission object belonging to TV subclass 230
is created based on the permission required, using “disenable” and “channel-5" as values for
the action and target fields respectively. The permission required to perform a requested action
is herein referred to as a required permission. The permission object created on the basis of the
permission required is herein referred to as the required permission object. Control passes to
step 760.

DETERMINING WHETHER AN ACTION IS AUTHORIZED

In step 754, a request is received for a determination of whether the action is
authorized. The determination is based on the permission required to perform the action. In
this example, the resource manager invokes an access controller to determine whether the
permission required is authorized for the entity requesting access. The access controller
receives the request and a required permission object which was transmitted by the resource
manager.

In step 754, the validation methods of one or more permission objects is invoked in
order to determine whether an action is authorized based on the permission required. An
action is authorized if every protection domain object associated with an object requesting a
determination of whether an action is authorized contains a permission represented by a
permission object that encompasses the required permission for the action.

The protection domains associated with an object requesting the determination are the
protection domain objects associated with each object represented by the calling hierarchy
when the request was made. Any protection domain object associated with an object
requesting a determination of whether an action is authorized is herein referred to as
associated protection domain object. Finding the protection domain objects associated with a

given object begins by determining the class of a given object. A code executor, such as a Java

10

15

20

25

30

35

WO 99/30218 2 PCT/US98/26077

virtual machine, provides that each object incorporate a method which returns the class of an
object. Next, the method of the class/domain mapper that returns the protection domain object
associated with a class is invoked. '

For each of the associated protection domain objects, the validation methods of each
permission object contained in the protection domain object are invoked passing in the
permission required object as a parameter. The validation methods of each permission object
contained in the associated protection domain are invoked until a permission object indicates
that the permission it represents encompasses the required permission. If none of the
permission objects in a protection domain indicates that the permission the permission object
encompasses the required permission, then the remainder of the associated protection domain
objects are ignored.

In this example, the access controller first determines the protection domain associated
with the first object represented on call stack 610, which is object a. The protection domain
associated with object a is protection domain I. The validation method of the first permission
object, permission object 282 (in Fig. 6), is invoked, passing in the required permission object
as a parameter. As mentioned earlier, the required permission represented by the required
permission object is a permission to “ disenable” “ channel-5”. When the validation method of
the first permission object is invoked the validation method indicates that the required
permission is not encompassed. Next, the validation method of permission object 286 (in Fig.
6) is invoked. The invocation of the validation method of permission object 286 indicates that
the required permission is encompassed.

The access controller then invokes the validation methods of the permission objects in
the next protection domain object, protection domain object J, in the manner described. Each
invocation of the validation methods of permission object 622 and permission object 626
indicates that the required permission is not encompassed.

At step 764, a determination is made of whether the action requested was authorized. If
every associated protection domain contains a permission object that represents a permission
encompassing the required permission, then the requested action is authorized. When the
requested action is authorized, control passes to step 768, where the action is performed before
execution of the steps ceases. In this example, because not every protection domain object
contained a permission encompassing the required permission, performance of the steps ends.
The requested action is not executed.

Typed permissions facilitate the establishment of new permissions. When a new category of
permissions is desired, a new subclass is created. The particular rules or policy that govern
whether the permissions granted a principal are encompassed by permission in the new

category are implemented in the validation method of the new subclass representing
permissions in the new subclass.

10

WO 99/30218 PCT/US98/26077

223-

Providing an abstract method for the determining whether a particular permission is
encompassed by another establishes an standard interface for determining whether a particular
permission represented by an permission object is encompassed by the permission represented
by another permission object. The interface can be used and relied upon by any security
mechanism. The security mechanisms that use the standard interface automatically effectuate
rules or particular policy of a new permission category represented by the new subclass.

In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the

invention. The specification and drawings are, accordingly, to be regarded in an illustrative
rather than a restrictive sense.

10

15

20

25

30

35

WO 99/30218 PCT/US98/26077

4.

APPENDIX I
OBJECT ORIENTATION AND INHERITANCE

In object oriented programming, the world is modeled in terms of objects. An object is
a record combined with the procedures and functions that manipulate it. All objects of a class
have the same fields, and are manipulated by the same procedures and functions ("methods").
An object is said to be an "instance" of the class to which it belongs.

Sometimes an application requires the use of classes that are similar, but not identical.
For example, the classes used to model both dolphins and dogs might include the fields for the
nose, mouth, length and age. However, the dog class may require a hair color field, while the
dolphin class requires a fin size field.

To facilitate programming in situations in which an application requires multiple
similar fields, object oriented programming supports "inheritance". Without inheritance, a
programmer would have to write one set of code for the dog class, and a second set of code for
the dolphin class. The code implementing the fields and methods common to object classes
would appear redundantly in both classes. Duplicating code in this manner is very inefficient,
especially when the number of common fields and methods is much greater than the number
of unique fields. Further, code duplication between classes complicates the process of
revising the code, since changes to a common fields will have to be duplicated at multiple
places in the code in order to maintain consistency between all classes that have the field.

Inheritance allows a hierarchy to be established between classes. The fields and
methods of a class automatically become fields and methods of the classes that are based upon
the given class in the hierarchy. For example, an "animal" class may be defined to have nose,
mouth, length and age fields, with associated methods. To add these fields and methods to the
dolphin and dog classes, a programmer can specify that the dolphin and dog classes "inherit"
the animal class. A class which inherits its fields and methods from another class is said to be
a subclass of the other class. The other class, the class from which the subclass inherited its
fields and methods, is said to be a parent class. In this example, the dolphin and dog classes
are "subclasses" of the animal class, and the animal class is a parent class of the dog and
dolphin classes.

The code for the inherited fields and methods is located in the parent class and is not
duplicated in any subclasses. The subclasses only contain the code for fields and methods that
supplement or override the fields and methods of the parent class. Consequently, all revisions
to a parent class automatically apply to all subclasses. For example, if the field "age" is
defined as an integer in the animal class and is not overridden in the dog and dolphin classes,
then the dog and dolphin classes will include an integer to store an age value. If the animal

class is revised so that "age" is defined as a real number, then the dog and dolphin classes will
automatically include a real number to store an age value.

10

15

20

25

30

35

WO 99/30218
- 5.

Note a third or greater level in a hierarchy of a classes can be established. A given
class can inherit fields and methods of a class that is itself of a subclass of another class. A
class above a particular class in a hierarchy is said be a super class to that particular class.
Thus a parent class is a super class to its subclasses, and a super class to any class inheriting
from a subclass of that parent class.

METHODS AND ABSTRACT CLASSES

The methods of classes accept zero or more parameters. A class constructor, which is
similar to a method, is used to initialize the fields of an object when objects belonging to that
class are created.

The code containing the instructions to perform the operations associated with a
method is said to be an implementation of the method. A method may be defined for a class
without an implementation. A method with no implementation is said to be an abstract
method; a class which contains an abstract method is said to be an abstract class.

Abstract classes are useful for establishing a common interface for the subclasses of
abstract classes. The interface for an abstract method establishes the name of the method, the
data type returned by a method and the data type of the method’s parameters. The subclasses
of an abstract class is responsible for providing the implementation of the abstract method.

For example, assume that it is desired that all objects provide an interface which
includes a method that indicates the number of legs an animal has. An abstract class, named
animal, with an abstract method called get_legs that returns an integer representing the
number of legs can be defined. Every subclass of the animal class would be responsible for
providing code which implements the get_legs method for the particular type of animal
represented by the subclass. For example, a cow subclass would provide a specific
implementation for get_legs that returned the integer four when the get_legs method of a cow
object was invoked.

The fields and methods of a class are defined by a class definition in software. Class
definitions contained in software are typically created from source code usually received from
a programmer. The source code is compiled into the code which can be executed by computer
system 100. For example, a programmer using a Java Development Kit enters source code in
the Java programming language into a source file. The source code embodies class definitions
and other instructions which are used to generate byte code which control the execution of a
Java code executor, a virtual machine. The JAVA™ virtual machine is described in detail in
“The JAVA™ Virtual Machine Specification,” by Tim Lindholm and Frank Yellin (Sun
Microsystems, Inc.: Addison-Wesley Publishing Co.). The JAVA™ programming language is
described in detail in “ The JAVA™ Language Specification,” by James Gosling, Bill Joy and
Guy Steele (Sun Microsystems, Inc.: Addison-Wesley Publishing Co.), and related texts in
the JAVA™ Series published by Addison-Wesley.

PCT/US98/26077

10

15

20

25

30

WO 99/30218
- -26-

CLAIMS

What is claimed is:

1.

A method for providing security, the method comprising the steps of:
establishing a permission class;

wherein each permission object that is a member of said permission class represents at
least one permission to perform an action;

wherein said permission class includes a validation method;

wherein said validation method, when invoked for a particular permission object
belonging to said permission class, indicates whether a specified permission is

encompassed by a permission represented by the particular permission object.

The method of Claim 1, wherein:
the step of establishing a permission class includes establishing a permission subclass
that is a descendant of a permission super class;

the permission super class defines an interface of said validation method.

The method of Claim 2, further including the steps of:

obtaining a first permission object, wherein said first permission object belongs to said
permission subclass;

obtaining a second object, wherein said second object belongs to a descendent class of
the permission super class; and

determining whether a first permission represented by said first permission object
encompasses a second permission represented by said second object by
invoking a validation method associated with said first permission object.

The method of Claim 3, wherein the step of obtaining a second object includes
obtaining a second object that belongs to said permission subclass.

The method of Claim 3, wherein the step of obtaining a second object includes

obtaining a second object that belongs to a class that is different from said permission
subclass.

The method of Claim 5, wherein:

the method further includes the step of receiving a request to perform a particular
action; and

the step of obtaining said second object includes the step of obtaining said second

object based on said request to perform said particular action.

The method of Claim 6, wherein the step of determining whether said first permission

represented by said first permission object encompasses said second permission

PCT/US98/26077

10

15

20

25

30

35

10.

11.

12.

WO 99/30218
27-

represented by said second object includes sending to the validation method of said
first object data that identifies the second object.

The method of Claim 4, further including the steps of:

obtaining a first permission object, wherein said first permission object belongs to said
permission subclass, wherein said first permission object specifies a first action
and a first target; |

obtaining a second object, wherein said second object belongs to a descendent class of
the permission super class, wherein said second object specifies a second action
and a second target; and

determining whether a first permission represented by said first permission object
encompasses a second permission represented by said second object by
determining whether said first action encompasses said second action and
determining whether said first target encompasses said second target.

The method of Claim 3, further including the steps of obtaining a permission collection
object associated with a plurality of permission objects, wherein said permission
collection object includes a group validation method which, when invoked, indicates
whether a specified permission is encompassed by at least one permission represented
by said plurality of permission objects.

The method of Claim 3, wherein:

the step of establishing a permission class includes establishing a permission subclass
that is a descendant of a permission super class; and

the permission super class defines an interface of said validation method without
providing an implementation for said validation method.

A computer-readable medium carrying one or more sequences of one or more

instructions, wherein the execution of the one or more sequences of the one or more

instructions causes the one or more processors to perform the steps of:

wherein each permission object that is a member of said permission class represents at
least one permission to perform an action;

wherein said permission class includes a validation method;

wherein said validation method, when invoked for a particular permission object
belonging to said permission class, indicates whether a specified permission is
encompassed by a permission represented by the particular permission object.

The computer readable medium of Claim 11, wherein:
the step of establishing a permission class includes establishing a permission subclass

that is a descendant of a permission super class; and

PCT/US98/26077

10

15

20

25

30

35

13.

14.

15.

16.

17.

WO 99/30218 PCT/US98/26077

28

the permission super class defines an interface of said validation method.

The computer readable medium of Claim 12, further including one or more

instructions for performing the steps of:

obtaining a first permission object, wherein said first permission object belongs to said
permission subclass;

obtaining a second object, wherein said second object belongs to a descendent class of
the permission super class; and

determining whether a first permission represented by said first permission object
encompasses a second permission represented by said second object by
invoking a validation method associated with said first permission object.

The computer readable medium of Claim 13, wherein:

the computer readable medium further includes one or more instructions for
performing the step of receiving a request to perform a particular action; and

the step of obtaining said second object includes the step of obtaining said second
object based on said request to perform said particular action.

The computer readable medium of Claim 14, wherein the step of determining whether
said first permission represented by said first permission object encompasses said
second permission represented by said second object includes sending to the validation
method of said first object data that identifies the second object.

The computer readable medium of Claim 12, further including one or more

instructions for performing the steps of:

obtaining a first permission object, wherein said first permission object belongs to said
permission subclass, wherein said first permission object specifies a first action
and a first target;

obtaining a second object, wherein said second object belongs to a descendent class of
the permission super class, wherein said second object specifies a second action
and a second target; and

determining whether a first permission represented by said first permission object
encompasses a second permission represented by said second object by
determining whether said first action encompasses said second action and

determining whether said first target encompasses said second target.

The computer readable medium of Claim 11, further including one or more
instructions for performing the steps of obtaining a permission collection object
associated with a plurality of permission objects, wherein said permission collection
object includes a group validation method which, when invoked, indicates whether a

10

15

20

25

30

18.

19.

20.

21.

22.

WO 99/30218
-29-

specified permission is encompassed by at least one permission represented by said
plurality of permission objects.

The computer readable medium of Claim 11, wherein:

the step of establishing a permission class includes establishing a permission subclass
that is a descendant of a permission super class; and

the permission super class defines an interface of said validation method without
providing an implementation for said validation method.

A computer system comprising:

a processor;

a memory coupled to said processor;

said processor being configured to establish a permission super class,
wherein the permission super class defines an interface of a
validation method; and ,

said processor being configured to establish a permission subclass of the
permission super class, wherein said permission subclass provides
an implementation for said validation method, wherein said
validation method, when invoked for a particular permission
object belonging to said permission subclass, indicates whether a
given permission is encompassed within a permission that is
represented by said particular permission object.

The computer system of Claim 19, wherein the permission super class defines said
interface of said validation method withont defining any implementation of the
validation method.

The computer system of Claim 19,wherein:

said processor is configured to create a first permission object in said memory;

said first permission object belongs to said permission subclass;

said processor is configured to create a second object in said memory,

said second object belongs to a descendant class of the permission super class; and

said processor is configured to determine whether a first permission represented by
said first permission object encompasses a second permission represented by

said second object by invoking a validation method associated with said first
permission object.

The computer system of Claim 21, wherein:

said processor is configured to receive a request to perform a particular action; and

PCT/US98/26077

10

15

23.

24,

WO 99/30218 PCT/US98/26077

-30-

said processor is configured to create said second object by obtaining said second
object based on said request to perform said particular action.

The computer system of Claim 22, wherein said processor is configured to determine

whether said first permission represented by said first permission object encompasses
said second permission represented by said second object by passing as a parameter to
the validation method of said first object data that identifies the second object.

The computer system of Claim 19, wherein:

said processor is configured to create a first permission object in said memory;

said first permission object belongs to said permission subclass;

said first permission object specifies a first action and a first target;

said processor is configured to create a second object in said memory;

said second object belongs to a subclass of the permission super class;

said second object specifies a second action and a second target; and

said processor is configured to determine whether a first permission represented by
said first permission object encompasses a second permission represented by
said second object by determining whether said first action encompasses said

second action and determining whether said first target encompasses said
second target.

PCT/US98/26077

WO 99/30218

17

|, ainbi4

(74}
LSOH
r——— -~~~ "~ -~ " ~- -7
H44] ﬁ _ I 701
YHOMLIN ANIT JOV4YILINI
w001 / FEOMIIN | NOILYOINNWIOD ¥0S$53004d
_
_
|
| —
_ Z01
sng
dsl “
|
1INYTUINI !
|
__ _ 30IA3Q AHOWIW
0El _ J9VHO1S WOY NIVIN
Y3AY3AS _

1
T0HINOD

40SHNO

V

Vi
301A30 LNdNI

b
AY1dSId

SUBSTITUTE SHEET (RULE 26)

WO 99/30218

Permission
Super Class

210

TV Subclass
230

282

Permission Object
"disable" :"Channel §"

PCT/US98/26077

27

Action Field 222
Abstract Validation Method (Permission p) 224

get_Action Method() 226

Action Field 222
get_Action Method() 224
Validation Method Implementation 242

Target Field 244

Get Target Method() 246

Permission Object
"Watch" :"Channel 5"

286

Figure 2

SUBSTITUTE SHEET (RULE 26)

WO 99/30218 PCT/US98/26077

317

Establish Permission Superclass - 310
Attributes

l

Establish Permission Superclass 1~ 320
Validation Method and Other
Methods

l

Establish Subclass Implementation 1330
of Validation Methods

l

Establish Subclass Attributes and T~ 340
Other Methods

l

Compile and Place in Library

+— 350

Figure 3

SUBSTITUTE SHEET (RULE 26)

WO 99/30218 PCT/US98/26077

417

Code Stream 420

Trusted Sources
428
Code Executor
Untrusted 410
Sources
424
Policy Object
Policy File 440
444
URL 434
Keys 432

Code Source 436

Object Class Name 438

462
Class Protection
460 Y APrEEE Domain
) Object
482
: Access Controller
Figure 4 450

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26077

G ainbi4

d-02S 0} 1-0¢G suononJsuj

57

1-025 -

L/, ,OlM, uoIssiuadalid Aayise| wo02°92In0S MMM//d}Y uoissiwiad

,G |]auueys, ,8|qeussip, AL Aeyawos 991n0$19Y)0//:8]1} uoissiwiad

,G-jouueyo, JUdlem, AL Asyowos 92In0SawWos//:aj1} uoissiwiad
¥¥v a4 Aatjod

WO 99/30218

SUBSTITUTE SHEET (RULE 26)

PCT/US98/26077

WO 99/30218

6/7

g ainbi

Aa1jo4 Anoag

«/-|9UUEBYD, ,3]qBUSSIp,

929 }93[qo uoIssiwiag

|
|
(
|
|
I - 20
r

[ulewo(Q uonoalold k=

n/-|3uUeyy, ,yojem
108[qo uotssiwag

¢e9

«§-|9UUBYI, ,3|qeussip,

98¢ }93[qo uolssiwiag

Xe

«G-|9UUBYJ, YJIEM,
1038lqo uoissiwiag

019 %oels bujje)

SUBSTITUTE SHEET (RULE 26)

WO 99/30218

71

Object Based on
Requested Action?

Y

PCT/US98/26077

Create Required Permission 4— 750

1—754
Receive a Request to Make a Determination
of Whether an Action is Authorized?
Invoke Validation Methods of +— 760

Permissions Objects Associated with
Protection Domain?

Is Action Requested
Authorized?

768
/

Perform Requested Action

Figure 7

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intet

PCT/US 98/26077

Jnai Application No

SUBJECT MATTER

00

A. CLAgSlFICATION O

IPC GO6F17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y GB 2 259 590 A (INT COMPUTERS LTD) 1-24

17 March 1993

see abstract; figure 3

see page 2, line 7 - last line

see page 6, line 21 - last line
Y GB 2 308 688 A (IBM) 2 July 1997 1-24

see abstract; figure 3

see page 5, paragraph 1 - page 6,
paragraph 1

see claims 1-10

S

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intemationai filing date but
later than the priority date claimed

g

e

Qo

“T" later document published after the internationai filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
metﬂts, 3uch combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

g

g

Date of the actual completion of the intemational search

26 March 1999

Date of maiiing of the international search report

01/04/1999

Name and mailing address of the iSA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized ofticer

Powell, D

Form PCT/ASA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte onai Application No

PCT/US 98/26077

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication,where appropriate. of the relevant passages

Relevant to claim No.

A DEAN D ET AL: "JAVA SECURITY: FROM
HOTJAVA TO NETSCAPE AND BEYOND"
PROCEEDINGS OF THE 1996 IEEE SYMPOSIUM ON
SECURITY AND PRIVACY, OAKLAND, CA., MAY 6

- 8, 1996,
no. SYMP. 17, 6 May 1996, pages 190-200,
XP000634844
INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS

A HAMILTON M A: "JAVA AND THE SHIFT TO
NET-CENTRIC COMPUTING"
COMPUTER,
vol. 29, no. 8, August 1996, pages 31-39,
XP000632765

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT Inter nal Application No

.formation on patent family members

PCT/US 98/26077

Patent document Publication Patent family Publication
cited in search report date member(s) date
GB 2259590 A 17-03-1993 NONE
GB 2308688 A 02-07-1997 CN 1157962 A 27-08-1997
JpP 9212366 A 15-08-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

