
JP 6817469 B2 2021.1.20

10

20

(57)【特許請求の範囲】
【請求項１】
　コンピュータシステムのイベントに対してアプリケーション間依存性分析を実行するこ
とによって、コンピュータシステムにおける脅威検出を改善するためのシステムであって
、
　プログラムコードを記憶するためのメモリ装置と、
　前記メモリ装置に動作可能に結合され、前記メモリ装置に格納されたプログラムコード
を実行することによって前記アプリケーション間依存性分析を実行するように構成された
プロセッサと、を含み、
　　追跡分析を実行するための追跡記述言語（ＴＤＬ）クエリと、前記追跡分析を実行す
るための一般的な制約を含む前記ＴＤＬクエリと、分析される前記コンピュータシステム
の少なくともイベントを指定する追跡宣言と、前記追跡分析によって生成された追跡グラ
フを格納する位置を指定する出力仕様と、を受信し、
　　言語パーサを使用して前記ＴＤＬクエリを構文解析し、
　　前記追跡分析の結果を生成するために漸進的追跡方法を実施することによって、前記
構文解析されたＴＤＬクエリに基づいて前記追跡分析を実行し、
　　前記ＴＤＬクエリの制約を満たさないすべてのノードを除去し、前記追跡分析の前記
結果をクリーニングすることによって追跡グラフを生成し、
　　前記追跡グラフに基づいて、前記追跡グラフおよび前記追跡グラフの最適化されたバ
ージョンのうちの少なくとも１つを含むクエリ結果を、インタフェースを介して出力する

(2) JP 6817469 B2 2021.1.20

10

20

30

40

50

、システム。
【請求項２】
　前記メモリ装置に格納されたプログラムコードは、さらに、
　前記追跡分析の前記実行を一時停止し、
　更新されたＴＤＬクエリを受信し、
　前記更新されたＴＤＬクエリに基づいて前記追跡分析の前記実行を再開する、請求項１
に記載のシステム。
【請求項３】
　前記メモリ装置に格納されたプログラムコードは、さらに、所与のコンピュータシステ
ムイベントの依存関係を、それぞれが前記依存関係のサブセットを含む複数の実行ウィン
ドウに分割することによって、前記漸進的追跡方法を実施する、請求項１に記載のシステ
ム。
【請求項４】
　実行ウィンドウは３タプル＜begin,finish,e＞として定義され、beginは開始時点であ
り、finishは終了時点であり、そしてeはコンピュータシステムイベントである、請求項
３に記載のシステム。
【請求項５】
　前記メモリ装置に格納されたプログラムコードは、さらに、前記複数の実行ウィンドウ
を、それぞれの終了時点に基づいて優先順位付けすることによって前記漸進的追跡方法を
実施する、請求項４に記載のシステム。
【請求項６】
　前記メモリ装置に格納されたプログラムコードは、さらに、複数のワーカースレッドを
使用して前記漸進的追跡方法を適応的に並列化することによって前記追跡分析を実行する
、請求項１に記載のシステム。
【請求項７】
　前記漸進的追跡方法は、所与の深さを有するイベントの数が閾値を超えるという決定に
応答して、適応的に並列化される、請求項６に記載のシステム。
【請求項８】
　前記メモリ装置に格納されたプログラムは、さらに、前記追跡グラフを取り除くことに
よって前記追跡グラフの最適化されたバージョンを生成し、１または複数のフィルタを使
用することによって取り除かれた結果を生成し、前記取り除かれた結果を要約する、請求
項１に記載のシステム。
【請求項９】
　前記取り除かれた結果は、前記取り除かれた結果からノードを併合することによって要
約される、請求項８に記載のシステム。
【請求項１０】
　コンピュータシステムのイベントに対してアプリケーション間依存性分析を実行するこ
とによって、コンピュータシステムにおける脅威検出を改善する方法をコンピュータに実
行させるためのコンピュータによって実行可能なプログラム命令が具体化されたプログラ
ム命令を有する非一時的なコンピュータ可読記憶媒体を含むコンピュータプログラム製品
の前記方法は、
　追跡分析を実行するための追跡記述言語（ＴＤＬ）クエリと、前記追跡分析を実行する
ための一般的な制約を含む前記ＴＤＬクエリと、分析される前記コンピュータシステムの
少なくともイベントを指定する追跡宣言と、前記追跡分析によって生成された追跡グラフ
を格納する位置を指定する出力仕様と、を受信することと、
　言語パーサを使用して前記ＴＤＬクエリを構文解析することと、
　前記追跡分析の結果を生成するために漸進的追跡方法を実施することを含み、前記構文
解析されたＴＤＬクエリに基づいて前記追跡分析を実行することと、
　前記ＴＤＬクエリの制約を満たさないすべてのノードを除去することを含み、前記追跡
分析の前記結果をクリーニングすることによって追跡グラフを生成することと、

(3) JP 6817469 B2 2021.1.20

10

20

30

40

50

　前記追跡グラフに基づいて、前記追跡グラフおよび前記追跡グラフの最適化されたバー
ジョンのうちの少なくとも１つを含むクエリ結果を、インタフェースを介して出力するこ
とと、を含む。
【請求項１１】
　コンピュータシステムのイベントに対してアプリケーション間依存性分析を実行するこ
とによって、コンピュータシステムにおける脅威検出を改善するためのコンピュータで実
施される方法であって、
　メモリに動作可能に結合されたプロセッサによって、追跡分析を実行するための追跡記
述言語（ＴＤＬ）クエリと、前記追跡分析を実行するための一般的な制約を含む前記ＴＤ
Ｌクエリと、分析されるコンピュータシステムの少なくともイベントを指定する追跡宣言
と、前記追跡分析によって生成された追跡グラフを格納する位置を指定する出力仕様と、
を受信することと、
　前記プロセッサによって、言語パーサを使用して前記ＴＤＬクエリを構文解析すること
と、
　前記プロセッサによって、前記追跡分析の結果を生成するために漸進的追跡方法を実施
することを含み、前記構文解析されたＴＤＬクエリに基づいて前記追跡分析を実行するこ
とと、
　前記プロセッサによって、前記ＴＤＬクエリの制約を満たさないすべてのノードを除去
することを含み、前記追跡分析の前記結果をクリーニングすることによって追跡グラフを
生成することと、
　前記プロセッサによって、前記追跡グラフに基づいて、前記追跡グラフおよび前記追跡
グラフの最適化されたバージョンのうちの少なくとも１つを含むクエリ結果を、インタフ
ェースを介して出力することと、を含む方法。
【請求項１２】
　前記プロセッサによって、前記追跡分析の前記実行を一時停止することと、
　前記プロセッサによって、更新されたＴＤＬクエリを受信することと、
　前記プロセッサによって、前記更新されたＴＤＬクエリに基づいて前記追跡分析の前記
実行を再開することと、をさらに含む、請求項１１に記載のコンピュータで実施される方
法。
【請求項１３】
　前記漸進的追跡方法を実施する方法は、所与のコンピュータシステムイベントの依存関
係を、それぞれが前記依存関係のサブセットを含む複数の実行ウィンドウに分割すること
をさらに含む、請求項１１に記載のコンピュータで実施される方法。
【請求項１４】
　実行ウィンドウは３タプル＜begin，finish，e＞として定義され、beginは開始時点で
あり、finishは終了時点であり、eはコンピュータシステムイベントである、請求項１３
に記載のコンピュータで実施される方法。
【請求項１５】
　前記漸進的追跡方法を実施する方法は、前記複数の実行ウィンドウを、それぞれの終了
時点に基づいて優先順位付けすることをさらに含む、請求項１４に記載のコンピュータで
実施される方法。
【請求項１６】
　前記追跡分析を実行することは、複数のワーカースレッドを使用して前記漸進的追跡方
法を適応的に並列化することをさらに含む、請求項１１に記載のコンピュータで実施され
る方法。
【請求項１７】
　前記漸進的追跡方法は、所与の深さを有するイベントの数が閾値を超えるという決定に
応答して、適応的に並列化される、請求項１６に記載のコンピュータで実施される方法。
【請求項１８】
　前記追跡グラフの最適化されたバージョンを生成することをさらに含む、請求項１１に

(4) JP 6817469 B2 2021.1.20

10

20

30

40

50

記載のコンピュータで実施される方法。
【請求項１９】
　前記追跡グラフの最適化されたバージョンを生成することは、１または複数のフィルタ
を使用することによって取り除かれた結果を生成し、前記追跡グラフを取り除くことをさ
らに含む、請求項１８に記載のコンピュータで実施される方法。
【請求項２０】
　前記追跡グラフの最適化されたバージョンを生成することは、前記取り除かれた結果を
要約することをさらに含む、請求項１９に記載のコンピュータで実施される方法。
【発明の詳細な説明】
【技術分野】
【０００１】
（関連出願情報）
　本出願は２０１７年８月９日に出願された仮出願シリアル番号６２／５４３，０３２、
２０１７年１１月２９日に出願された仮出願シリアル番号６２／５９１，８１９、および
２０１８年６月１２日に出願された非仮出願シリアル番号１６／００６，１６４の優先権
を主張し、これらは全て、その全体が参照により本明細書に組み込まれる。
【０００２】
　本発明はデータ処理に関し、より詳細には、コンピュータシステムの脅威検出を改善す
るためのアプリケーション間依存性分析のためのシステムおよび方法に関する。
【背景技術】
【０００３】
　高度持続的脅威（ＡＰＴ）攻撃などのますます巧妙化する攻撃はそれらのステルスおよ
び複雑さのために、企業情報技術（ＩＴ）セキュリティにとって深刻な課題となっている
。ＡＰＴ攻撃は、初期段階、内部調査、横方向移動、最終的にはミッション完了を含む複
数の段階で行われる。多くの場合、ＡＰＴ攻撃は、企業ネットワーク内の複数のアプリケ
ーションおよびホストを含むことが多いプロセスによって、企業ネットワークが徐々に侵
害される可能性がある。
【発明の概要】
【０００４】
　本発明の一態様によれば、コンピュータシステムのイベントに対してアプリケーション
間依存性分析を実行することによって、コンピュータシステムにおける脅威検出を改善す
るためのシステムが提供される。このシステムは、プログラムコードを記憶するためのメ
モリ装置を含む。システムはまた、メモリ装置に動作可能に結合されたプロセッサを含む
。プロセッサは追跡分析を実行するための追跡記述言語（ＴＤＬ）クエリを受信するよう
にメモリ装置に格納されたプログラムコードを実行するように構成され、ＴＤＬクエリは
追跡分析を実行するための一般的な制約を含み、追跡宣言は分析されるコンピュータシス
テムの少なくともイベントを指定し、出力仕様は追跡分析によって生成された追跡グラフ
を格納する位置を指定し、言語パーサを使用してＴＤＬクエリを構文解析し、漸進的追跡
方法を実施することによって構文解析されたＴＤＬクエリに基づいて追跡分析を実行し、
追跡分析の結果を生成し、ＴＤＬクエリの制約を満たさないすべてのノードを除去し、追
跡分析の結果をクリーニングすることによって追跡グラフを生成し、追跡グラフに基いて
、追跡グラフおよび追跡グラフの最適化されたバージョンのうちの少なくとも1つを含む
クエリ結果を、インタフェースを介して出力する。
【０００５】
　本発明の別の態様によれば、コンピュータシステムのイベントに対してアプリケーショ
ン間依存性分析を実行することによって、コンピュータシステムにおける脅威検出を改善
するためのコンピュータで実施される方法が提供される。この方法は、メモリに動作可能
に結合されたプロセッサによって、追跡分析を実行するための追跡記述言語（ＴＤＬ）ク
エリと、追跡分析を実行するための一般的な制約を含むＴＤＬクエリと、分析されるコン
ピュータシステムの少なくともイベントを指定する追跡宣言と、追跡分析によって生成さ

(5) JP 6817469 B2 2021.1.20

10

20

30

40

50

れた追跡グラフを格納する位置を指定する出力仕様と、を受信することと、プロセッサに
よって、言語パーサを使用してＴＤＬクエリを構文解析することと、プロセッサによって
、追跡分析の結果を生成するために漸進的追跡方法を実施することを含み、構文分析され
たＴＤＬクエリに基づいて追跡分析を実行することと、プロセッサによって、ＴＤＬクエ
リの制約を満たさないすべてのノードを除去することを含み、追跡分析の結果をクリーニ
ングすることによって追跡グラフを生成することと、プロセッサによって、追跡グラフに
基づいて、追跡グラフおよび追跡グラフの最適化されたバージョンのうちの少なくとも１
つを含むクエリ結果を、インタフェースを介して出力することと、を含む。
【０００６】
　本発明のさらに別の態様によれば、コンピュータプログラム製品が提供される。コンピ
ュータプログラム製品は、プログラム命令によって具体化されたプログラム命令を有する
非一時的なコンピュータ可読記憶媒体を含む。プログラム命令はコンピュータによって実
行可能であり、コンピュータに、コンピュータシステムのイベントに対してアプリケーシ
ョン間依存性分析を実行することによって、コンピュータシステムにおける脅威検出を改
善する方法を実行させる。この方法は、追跡分析を実行するための追跡記述言語（ＴＤＬ
）クエリと、追跡分析を実行するための一般的な制約を含むＴＤＬクエリと、分析される
コンピュータシステムの少なくともイベントを指定する追跡宣言と、追跡分析によって生
成された追跡グラフを格納する位置を指定する出力仕様と、を受信することと、言語パー
サを使用してＴＤＬクエリを構文解析することと、追跡分析の結果を生成するために漸進
的追跡方法を実施することを含み、構文解析されたＴＤＬクエリに基づいて追跡分析を実
行することと、ＴＤＬクエリの制約を満たさないすべてのノードを除去することを含み、
追跡分析の結果をクリーニングすることによって追跡グラフを生成することと、追跡グラ
フに基づいて、追跡グラフおよび追跡グラフの最適化されたバージョンのうちの少なくと
も１つを含むクエリ結果を、インタフェースを介して出力することと、を含む。
【０００７】
　これらおよび他の特徴および利点は添付の図面に関連して読まれる、その例示的な実施
形態の以下の詳細な説明から明らかになるであろう。
【図面の簡単な説明】
【０００８】
　本開示は、以下の図面を参照して、好ましい実施形態の以下の説明において詳細を提供
する。
【図１】本発明の一実施形態による、本発明を適用することができる例示的な処理システ
ム１００を示すブロック図である。
【図２】本発明の一実施形態による、攻撃例の例示的な依存性グラフを示すブロック図で
ある。
【図３】本発明の一実施形態による、例示的なシステムアーキテクチャを示す高レベルブ
ロック図である。
【図４】本発明の一実施形態による、例示的なＴＤＬクエリを示す図である。
【図５】本発明の一実施形態による、実行ウィンドウの例示的な分割を示す図である。
【図６】本発明の一実施形態による、アプリケーション間依存性分析のための例示的なシ
ステム／方法を示すブロック／フロー図である。
【発明を実施するための形態】
【０００９】
　本明細書で説明する実施形態による追跡分析は、異なるアプリケーションとホストとの
間のデータフロー（例えば、アプリケーション間データフローまたは情報フロー）に関連
するシステムイベント（例えば、システムアクティビティを記録しているシステムアクテ
ィビティログ）を監視および追跡することによって、複数のプロセスまたはアプリケーシ
ョン（例えば、ＡＰＴ攻撃）を含む巧妙なシステムレベルセキュリティ脅威に対して検出
し、防御するために使用される。システムイベントはシステムオブジェクト（例えば、プ
ロセス、ファイル、およびネットワーク通信インスタンス）間の対話である。システムイ

(6) JP 6817469 B2 2021.1.20

10

20

30

40

50

ベントは（１）サブジェクト（例えば、対話を開始するプロセスインスタンス）、（２）
サブジェクトが対話するシステムオブジェクト、（３）データフローの方向（サブジェク
トからシステムオブジェクトへの、またはその逆の）、および（４）対話のタイムスタン
プの４つの属性を含むことができる。
【００１０】
　本明細書で説明される実施形態による、複数のセキュリティアラートを接続し、攻撃シ
ナリオを再構築するために使用され得る１つの技術は、後戻り追跡である。後戻り追跡技
術は、システムイベント間の後方イベント依存性を追跡することができる。事象Ａは（１
）Ａの前にＢが発生し、Ｂのデータフローの宛先がＡのデータフローの源である場合、別
の事象Ｂに後方依存するといわれる。後方追跡技術は、それらの依存性に基づいてシステ
ム事象を接続する追跡グラフを生成することができる。例えば、システムイベントは有向
グラフとして編成することができ、グラフのノードはシステムオブジェクトであり、エッ
ジは開始タイムスタンプを有するシステムイベントであり、追跡分析は有向グラフを検索
することによってデータフローを回復することができる。異常が検出された場合、異常の
根本原因を回復し、脅威があるかどうかを判定するために追跡分析が使用され得る。
【００１１】
　脅威を検出するために追跡分析を実行することに関連する様々な問題が生じる可能性が
あり、それによって、例えば企業環境において脅威を検出するための追跡分析の有用性が
制約される。例えば、ＡＰＴ攻撃のような脅威を検出することは、いくつかの追跡分析の
反復を含むことができる。各反復が実行するのに数時間（または数日）を要する場合、脅
威は企業環境に既にかなりの損害を引き起こした後に検出され得る。したがって、追跡分
析速度は複雑な攻撃（例えば、数時間または数日）に対して法外に長くなり得る。他の例
として、追跡分析の結果は何十万ものアイテムを含むことができ、アイテムの多くは、セ
キュリティ脅威とは無関係である。したがって、追跡分析技術は多くの雑音を含む追跡グ
ラフを生成することができ、これは、システム攻撃を発見するための追跡分析の結果の効
果的な解釈を妨げることができる。したがって、追跡分析の結果は、システム攻撃のデー
タフローが非常に複雑になり得るので、解釈することが困難であり得る。
【００１２】
　システム攻撃を検出するための追跡分析に関連する上記の問題（例えば、追跡分析速度
および結果解釈の困難性）は、現代のオペレーティングシステムおよび企業環境の複雑さ
によって引き起こされる。例えば、企業環境では、攻撃に関連するデータフローが多くの
アプリケーションおよびホストを含み得る。さらに、現代のオペレーティングシステムは
アプリケーション全体にわたる多くのノイズデータフローを生成することができ、攻撃の
足跡は、大量のシステムノイズの背後に隠すことができる。例えば、ユーザがフォルダを
開くと、フォルダ内の各ファイルからデータフローパスを作成することができる（例えば
、フォルダが１００００のファイルを含む場合、１００００のデータフローパスが作成さ
れる）。このようなデータフローパスは追跡分析中に追跡することもでき、これは、非常
に遅いプロセスをもたらし、解釈不能な結果を生成する可能性がある。さらに、これらの
データフローパスは、セキュリティ脅威とは無関係であるため、攻撃を検出し防御する状
況ではノイズである。
【００１３】
　システムノイズを除去することは、追跡分析時間を著しく短縮し、はるかに解釈可能な
結果を生成することができる。しかしながら、システムノイズを除去する（例えば、フィ
ルタリングする）ための厳密に自動化された技術の使用は不利益に直面する。例えば、攻
撃者は、そのような厳密に自動化された技術の利益を利用する新しい攻撃を設計すること
ができる。さらに、追跡分析技術はシステムアクティビティに関する意味レベルの情報を
欠いている可能性があり、これは、効果的に追跡分析に自動的に統合することができない
。例えば、多くの場合、追跡はライブラリファイル（例えば、.dllファイル）に到達し得
る。これらのファイルは、多くの場合、複数のアプリケーションによって共有され、した
がって、攻撃に関係しないデータフローを導入する可能性がある。しかしながら、自動化

(7) JP 6817469 B2 2021.1.20

10

20

30

40

50

された技術は、全ての.dllが危険にさらされる可能性があるため、追跡分析から全ての.d
llファイルを直接除去することはできない。.dllを除去する前に、ファイルの追跡分析は
、未だにマニュアル検査技術を利用して、.dllファイルに不審な変更がないことを確認す
る必要がある。
【００１４】
　コンピュータシステム（例えば、企業環境）上の攻撃（例えば、ＡＰＴ）を検出するた
めの追跡分析技術（例えば、後戻り追跡）に関連する少なくとも上記の懸念および問題に
対処するために、本発明の態様は、攻撃検出を改善するためのアプリケーション間データ
フロークエリシステムおよび方法を提供する。例えば、本明細書で説明される実施形態は
悪意のある行動（例えば、ＡＰＴ脅威）を良性の行動（例えば、通常の企業環境動作）か
ら区別する能力を改善するために、知識（例えば、セキュリティの専門知識）を効果的に
組み込むことができる。
【００１５】
　本明細書に記載の実施形態は、追跡分析をカスタマイズする方法、ならびに追跡分析を
「調整可能」にする方法を提供する。すなわち、本明細書で説明される実施形態による攻
撃シナリオを再構築するために追跡分析技術を使用することは、「デバッギング」処理と
見做すことができ、その結果、追跡分析処理を漸進的に監視することができ、データフロ
ーの中間結果を検査することができ、処理対話を統合して追跡分析への案内を提供するこ
とができる。したがって、本明細書に記載される実施形態は、セキュリティ専門家が追跡
分析を対話的かつ漸進的にデバッグすることを可能にする。
【００１６】
　追跡分析をカスタマイズするためのインタフェースを提供するために、本明細書で説明
される実施形態は、本明細書で追跡記述言語（ＴＤＬ）と呼ばれるドメイン固有言語（Ｄ
ＳＬ）を利用する。ＴＤＬはセキュリティ専門家によって使用され、追跡分析をカスタマ
イズするために、それらのドメイン知識（例えば、無関係なデータフローを除外するか、
または攻撃経路の一部を指定すること）を提供することができる。これらの仕様は、例え
ば、システムノイズを取り除くために、追跡分析に自動的に組み込まれ得る。例えば、追
跡分析（例えば、追跡分析グラフ）の結果から偽陽性を取り除くことができる。
【００１７】
　上記の課題にさらに対処するために、本明細書に記載の実施形態は追跡分析の結果を漸
進的に報告し、追跡分析を対話型処理に変換することができる。例えば、追跡分析の実行
を一時停止することができ、中間結果に基づいてＴＤＬクエリを修正してノイズを除去す
ることができ、修正されたＴＤＬクエリに基づいて追跡分析の実行を再開することができ
る。
【００１８】
　漸進的な追跡分析の滑らかさを確保するために、本明細書で説明される実施形態は追跡
分析の各ステップをいくつかの部分に適切に分割し、各部分が終了するのに多くの時間を
必要としないことを確保し、結果をリアルタイムまたは略リアルタイムで滑らかに更新す
ることができる。そうすることによって、少なくともいくつかの結果を迅速に得ることが
できる。ヒントは追跡分析を加速するために発見することができ、追跡分析プロセス全体
が終了する前に追跡仕様を最適化することを可能にする。
【００１９】
　本明細書に記載される実施形態は追跡分析の速度を加速し、結果の簡潔さを高めること
ができる。例えば、本明細書に記載される実施形態はマルチスレッド追跡分析を可能にす
るための改善された並列化スキームを提供することができ、それによって追跡分析の速度
を増加させる。したがって、本明細書で説明する実施形態によれば、追跡分析からのより
簡潔かつ可読な結果が生成され得るし、それによって攻撃からの回復に関連するコストを
低減し得る。
【００２０】
　図１は、本発明の一実施形態による、本発明の原理を適用することができる例示的な処

(8) JP 6817469 B2 2021.1.20

10

20

30

40

50

理システム１００を示すブロック図である。処理システム１００は、システムバス１０２
を介して他の構成要素に動作可能に結合された少なくとも１つのプロセッサ（ＣＰＵ）１
０４を含む。キャッシュ１０６、読出し専用メモリ（ＲＯＭ）１０８、ランダムアクセス
メモリ（ＲＡＭ）１１０、入出力（Ｉ／Ｏ）アダプタ１２０、サウンドアダプタ１３０、
ネットワークアダプタ１４０、ユーザインタフェースアダプタ１５０、およびディスプレ
イアダプタ１６０が、システムバス１０２に動作可能に結合される。少なくとも１つのグ
ラフィック処理ユニット（ＧＰＵ）１９４は、システムバス１０２に動作可能に結合され
る。
【００２１】
　第１の記憶装置１２２および第２の記憶装置１２４は、Ｉ／Ｏアダプタ１２０によって
システムバス１０２に動作可能に結合される。記憶装置１２２および１２４は、ディスク
記憶装置（例えば、磁気または光ディスク記憶装置）、ソリッドステート磁気装置などの
何れであってもよい。記憶装置１２２および１２４は、同じタイプの記憶装置であっても
、異なるタイプの記憶装置であってもよい。
【００２２】
　スピーカ１３２は、サウンドアダプタ１３０によってシステムバス１０２に動作可能に
結合される。トランシーバ１４２は、ネットワークアダプタ１４０によってシステムバス
１０２に動作可能に結合される。ディスプレイ装置１６２は、ディスプレイアダプタ１６
０によってシステムバス１０２に動作可能に結合される。
【００２３】
　第１のユーザ入力装置１５２、第２のユーザ入力装置１５４、および第３のユーザ入力
装置１５６は、ユーザインタフェースアダプタ１５０によってシステムバス１０２に動作
可能に結合される。ユーザ入力装置１５２、１５４、および１５６は、キーボード、マウ
ス、キーパッド、画像キャプチャ装置、モーションセンシング装置、マイクロフォン、前
述の装置のうちの少なくとも２つの機能を組み込んだ装置などの何れかとすることができ
る。もちろん、本発明の精神を維持しながら、他のタイプの入力装置を使用することもで
きる。ユーザ入力装置１５２、１５４、および１５６は、同じタイプのユーザ入力装置ま
たは異なるタイプのユーザ入力装置とすることができる。ユーザ入力装置１５２、１５４
、および１５６は、システム１００との間で情報を入出力するために使用される。
【００２４】
　依存性アナライザ１７０は、システムバス１０２に動作可能に結合される。依存性アナ
ライザ１７０は、本明細書で説明される動作のうちの１つまたは複数を実行するように構
成される。依存性アナライザ１７０はスタンドアロンの専用ハードウェア装置として実現
することができ、またはストレージ装置に格納されたソフトウェアとして実現することが
できる。依存性アナライザ１７０がソフトウェアで実現される実施形態では、コンピュー
タシステム１００の別個の構成要素として示されているが、依存性アナライザ１７０は例
えば、第１の記憶装置１２２および／または第２の記憶装置１２９に格納され得る。ある
いは、依存性アナライザ１７０は別個の記憶装置（図示せず）に格納され得る。
【００２５】
　もちろん、処理システム１００は当業者によって容易に考えられるように、他の要素（
図示せず）を含んでもよく、また、特定の要素を省略してもよい。例えば、当業者によっ
て容易に理解されるように、様々な他の入力装置および／または出力装置が、処理システ
ム１００の特定の実現に応じて、処理システム１００に含まれ得る。例えば、様々なタイ
プの無線および／または有線の入力および／または出力装置を使用することができる。さ
らに、様々な構成の追加のプロセッサ、コントローラ、メモリなども、当業者によって容
易に認識されるように利用され得る。処理システム１００のこれらおよび他の変形は、本
明細書で提供される本発明の教示を与えられれば、当業者によって容易に考えられる。
【００２６】
　さらに、図３に関して以下で説明するアーキテクチャ３００は、本発明のそれぞれの実
施形態を実現するためのアーキテクチャであることを認識されたい。処理システム１００

(9) JP 6817469 B2 2021.1.20

10

20

30

40

50

の一部または全部は、アーキテクチャ３００の要素のうちの１つまたは複数において実現
することができる。
【００２７】
　さらに、処理システム１００は、例えば、図６の方法６００および図７の方法７００の
少なくとも一部を含む、本明細書で説明される方法の少なくとも一部を実行することがで
きることを認識されたい。同様に、アーキテクチャ３００の一部または全部を使用して、
図６の方法６００および図７の方法７００の少なくとも一部を実行することができる。
【００２８】
　図２を参照して、追跡グラフの動機付けの例を説明する。
【００２９】
　図２を参照すると、フィッシング電子メール攻撃を示す例示的な追跡グラフ２００が提
供されている。この攻撃シナリオでは、攻撃者が不正プログラムを介してファイル（例え
ば、テキストファイル）をスキャンすることによって、被害者のホストから機密認証情報
を盗んでいる。攻撃は、いくつかのステップを有している。第１に、攻撃者は、Ｍｉｃｒ
ｏｓｏｆｔ　Ｅｘｃｅｌ（登録商標）の添付ファイル（「excel.exe」）を含んでいるも
のとして示される電子メールを被害者に送信する。「excel.exe」ファイルは、不正プロ
グラム（「dropper.exe」）を作成し実行することができる悪意のあるマクロを含み得る
。被害者がＭｉｃｒｏｓｏｆｔ　Ｏｕｔｌｏｏｋ（登録商標）（「outlook.exe」）で「e
xcel.exe」を開くと、「dropper.exe」は「cmd.exe」を使用して「findstr.exe」を実行
し、ホームディレクトリー上で、被害者のマシン内の重要な認証を検索し、認証を「find
str.out」としてダンプする。それからdropper.exeは、ネットワークを介して攻撃者に「
findstr.out」をアップロードする。空間が限られているため、攻撃経路内の重要なオブ
ジェクトのみが図２の追跡グラフに示されている。例えば、＊.dll、＊.iniなどのオブジ
ェクトまたは「findstr.exe」によってスキャンされたファイルの詳細は省略され、追跡
グラフ内の１つのノードのみがそれらのセットを表すために使用された。
【００３０】
　図２に示す攻撃では「dropper.exe」が実行されると、システム（例えば、企業システ
ム）の異常検出器は未知のプログラムの実行による警告を生成することができる。この警
告に基づいて、セキュリティ専門家のチームは攻撃シナリオを再構築し、「dropper.exe
」の根本原因を見つけるために後戻り追跡分析を開始することができる。しかしながら、
この攻撃の追跡グラフは非常に大きく（例えば、３０．７５Ｋのイベントを含む）、この
サイズの追跡グラフを生成するには、多くの時間がかかる可能性がある。このような大き
な追跡グラフおよび長い生成時間は、チームが攻撃シナリオの根本原因を効果的に発見す
ることを妨げる可能性がある。
【００３１】
　図２の追跡グラフにおけるノードの９９％以上は、無関係なシステムノイズに対応する
。ノイズの１つの原因はライブラリ（例えば、.dllファイル）であり、これは、この例示
的な例では危険にさらされておらず、攻撃と関係がない。もう１つの原因は、「findstr.
exe」であり、色々なアプリケーションで作成された多くの（テキスト）ファイルを読み
込み、そのファイルを作成したアプリケーションが、攻撃に無関係の数千のノードに繋が
る可能性がある。この攻撃では、その根本的な原因とは対照的に、「findstr.exe」が不
正プログラム「dropper.exe」によって使用されるツールである。したがって、この攻撃
から「findstr.exe」を除いたものが、根本原因を見つけることから後戻り追跡分析を妨
げることはない。
【００３２】
　.dllファイルや「findstr.exe」の全てを除去することは、自動化された技術にとって
非常に困難であり得る。例えば、.dllファイルを除去するために、後戻り追跡分析は、.d
llファイルに不審な変更がないことを最初に確認する必要があり、「findstr.exe」を除
去するために、後戻り追跡分析は、「findstr.exe」が根本原因ではなく不正プログラム
によって引き起こされたものであることを知る必要がある。しかしながら、この情報を後

(10) JP 6817469 B2 2021.1.20

10

20

30

40

50

戻り追跡分析に自動的に正確に組み込むことは非常に困難である。
【００３３】
　攻撃では、セキュリティ専門家がプロセスを「デバッグ」することを可能にする対話型
および漸進的な追跡分析（例えば、後戻り追跡分析）を実行することが有用であり得る。
図２の追跡グラフの状況を読むことによって、セキュリティ専門家のチームは、本明細書
に記載の実施形態によれば、「findstr.exe」が結果であり、「dropper.exe」の原因では
ないことを確認することができ、また、後戻り追跡分析から「findstr.exe」も同様に除
外することができる。本明細書に記載される実施形態によれば、.dllファイルと「findst
r.exe」を除外することによって、図２の追跡グラフのサイズは９９．８％を超えて削減
することができ、セキュリティ専門家のチームによって、「dropper.exe」の根本原因を
時間ではなく分単位で見つけることができる。
【００３４】
　次に、本発明の一実施形態による、コンピュータシステムにおける脅威検出を改善する
ために対話型および漸進的な追跡分析を適用することができるシステムアーキテクチャに
ついて説明する。
【００３５】
　図３は、本発明の一実施形態による、例示的なシステムアーキテクチャ３００を示す高
レベルブロック図である。システム３００は、大規模で同種の企業ＩＴ環境に配備される
ように設計することができる。
【００３６】
　図示のように、システム３００は、言語パーサ３２０、実行部３３０、ホスト３４２お
よびデータベース（ＤＢ）３４４を有するデータ収集および記憶装置、ならびに結果ビュ
ーア３５０を含み得る。
【００３７】
　言語パーサ３２０は追跡記述言語（ＴＤＬ）クエリ３１０を受信し、ＴＤＬクエリ３１
０を解析するように構成される。例えば、図示のように、言語パーサ３２０は、字句解析
構成要素３２２および構文解析構成要素３２４を含むことができる。字句解析構成要素３
２２は文字のシーケンスをトークンのシーケンス（例えば、意味が割り当てられた文字列
）に変換することを含む語彙分析またはトークン化を実行する。構文解析３２４は入力と
してトークンを受け取り、トークンの構造表現を提供するためにデータ構造（例えば、ツ
リー）を構築する。言語パーサ３２０は別個の字句解析および構文解析３２２および３２
４を含むように示されているが、字句解析および構文解析３２２および３２４の機能は単
一の構成要素（例えば、スキャナレス構文解析）として具現化され得る。
【００３８】
　上述のように、ＴＤＬは、ユーザが追跡分析において条件および制約を簡潔に指定する
ことを可能にするドメイン固有言語である。ＴＤＬクエリ３１０は、例えば、時間範囲、
ホスト範囲、後戻り追跡の開始点、後戻り追跡の終了条件、および探索すべき経路を含む
制約を指定することができる。ＴＤＬクエリ３１０の実行中に、漸進的に更新される後戻
り追跡グラフが出力され得る。
【００３９】
　ＴＤＬクエリ３１０は、（１）一般的な制約、（２）追跡宣言、および（３）出力仕様
の３つの部分を含むものとして見ることができる。
【００４０】
　一般的な制約は、例えば、追跡分析のための時間範囲制約およびホスト範囲制約を含み
得る。時間範囲およびホスト範囲は、実際にはシステムログが時間的および特別な局所性
を持つ性質を有するので、一般的な制約とみなされる。警報を受信すると、長い履歴を持
つすべてのホストのシステムログを探索することが実用的になる。しかし、より現実的な
方法は、時間およびホスト範囲の簡潔な表現をサポートする一般的な制約を提供すること
によって、最近の時間範囲で関連するホストを最初に研究することである。
【００４１】

(11) JP 6817469 B2 2021.1.20

10

20

30

40

50

　追跡宣言は、どのイベントを分析すべきか、および追跡分析をいつ終了すべきかを指定
する。追跡宣言は、「追跡」陳述および「何処」陳述を含み得る。
【００４２】
　追跡陳述は、開始点、終了点、および任意の重要な中間点を含む点を指定する。多くの
場合、特定のパターンのみを満たす経路を探索するために後戻り追跡を指定する必要があ
るため、中間点がサポートされる。追跡陳述は、例示的に以下のように宣言することがで
きる：
　　　　backward (type var [condition _ list]) (->
　　　　　type var [condition _ list]) +
【００４３】
　この追跡陳述において、追跡陳述の開始を示すキーワード「backward」の後にノードの
リストが続く。ノードはイベントのフィルタであり、「type var [condition _ list]」
と宣言することができる。システムオブジェクトのタイプを宣言する語句「type」は、プ
ロセスオブジェクトの「proc」、「ファイルオブジェクトの「file」、およびネットワー
ク接続オブジェクトの「ip」を含む値を有することができる。語句「var」は、ユーザ定
義の変数名であり、語句「condition _ list」は、システムオブジェクトをフィルタリン
グする制約のリストである。制約は、論理演算によって接続され得る。「condition _ li
st」内の制約は「field op value」の形式において二項演算陳述とすることができ、「fi
eld」は変数の属性名である。「field」のオプションのタイプは、共有オプションおよび
オブジェクト固有オプション（例えば、「file」オプション、「proc」オプションおよび
「ip」オプション）を含む。「event _ id」および「event _ time」などの共有オプショ
ンは、すべてのタイプのシステムオブジェクト（例えば、「proc」、「file」および「ip
」）で使用することができ、その手段は、ノードが指定されたＩＤおよび時間をそれぞれ
有するイベントのみを含むべきである。「file」の場合、可能なオプションは、「filena
me」、「host」、「path」、「last _ modification _ time」、「last _ access time」
、「creation _ time」を含む。「proc」の場合、可能なオプションは、「host」、「exe
name」、「pid」、および「starttime」を含む。「ip」の場合、可能なオプションは、「
source _ ip」、「destination _ ip」、および「start _ time」を含む。操作「op」は
、「<」、「<=」、「>」、「>=」、「=」、および「!=」を含む可能なオプションを有す
る二項演算である。「op」の後の「value」は、文字列、数値、または時間文字列とする
ことができる。「value」が文字列である場合、「=」および「!=」は、それぞれ正規表現
（regex）の一致および不一致として解釈することができる。
【００４４】
　例えば、ノードのリストがｎ１→ｎ２→．．．→ｎｋのフォーマットを有するように、
ｋ個のノードがあると仮定する。このリストでは、ｎ１は開始点であり、ｎｋは終了点で
あり、ｎ２～ｎｋ-１は中間点である。「＊」のような記号を終了点として使用して、終
了点に関する特定の制約がないことを指定することができる。
【００４５】
　where陳述はオプションであり、特定の条件を満たすイベントを除外する制約、または
後戻り追跡の時間を制限する制約のような特定のシステムオブジェクトに関連付けられて
いない制約を定義する。これらの制約は、追跡分析中にシステムオブジェクトをフィルタ
リングするために使用することができる。where陳述内の制約を満たさないシステムオブ
ジェクトは、さらに探索せずに追跡分析から削除される。where陳述は、以下のように例
示的に宣言することができる:
　　　　where (type. field |hop| time) op value
【００４６】
　このwhere陳述において、ユーザは、「type. field op value」の形式で制約のリスト
を指定することができる。制約はまた、論理演算によっても接続される。「type」、「fi
eld」、および「op」は、追跡陳述において同じ値のセットを有する。「type field」の
他に、where陳述はまた、２つの特別なフィールド、すなわち、「time」および「hop」を

(12) JP 6817469 B2 2021.1.20

10

20

30

40

50

受け入れる。これらのフィールドは追跡分析を終了するために使用することができ、「<=
」操作と共に使用することができる。「time」フィールドは追跡分析の時間を制限するた
めに使用することができ、「hop」フィールドは追跡分析における経路の最大長を制限す
るために使用することができる。追跡分析は「hop」フィールドによって指定された閾値
よりも長い経路を見つけると、経路の探索を停止し、もしあれば、他のより短い経路に切
り替えることができる。
【００４７】
　出力仕様は、生成された追跡グラフをどこに記憶すべきかを指定する。
【００４８】
　機密ファイルを盗み、それをネットワークに送る２つの悪意のあるアプリケーションの
経路を追跡する例示的なＴＤＬクエリ４００が、図４を参照して示される。図示のように
、ＴＤＬクエリ４００の１～２行は、一般的な制約を含む。時間範囲制約はＴＤＬクエリ
４００の第１行に見られるように、「from」および「to」というキーワードによって指定
することができる。ホスト範囲制約はＴＤＬクエリ４００の２行目に見られるように、キ
ーワード「in」によって指定することができる。この例示的な例では、ＴＤＬクエリ４０
０は、追跡分析が「０１／０２／２０１７」と「０２／０１／２０１７」の日付の間の「
desktop1」および「desktop2」内のシステムイベントの追跡のみを追跡分析することを示
す。ＴＤＬクエリ４００の一般的な制約は、オプションの制約であることに留意されたい
。一般的な制約が指定されていない場合、すべてのホストがデフォルトの時間範囲で検索
される。
【００４９】
　図示のように、ＴＤＬクエリ４００の３～７行は、追跡宣言を含む。追跡陳述は、ＴＤ
Ｌクエリ４００の３行目における「backward」で開始する。実行中、システム（例えば、
図３のシステム３００）は、他の経路の前に中間点を通る経路を自動的に探索する。ＴＤ
Ｌクエリ４００の３行目は、「C://Sensitive/important.doc」のファイルに、追跡分析
の開始点として「01/16/2017:06:15:14」に書き込むイベントを定義する。ＴＤＬクエリ
４００の４行目は、追跡分析の開始点から終了点までの経路がすべて、名前が「malware1
」または「malware2」であり、ＩＤが１２であるプロセスを通過すべきであることを示す
。ＴＤＬクエリ４００の５行目は、追跡分析の終了点を、ＩＰアドレス「１６８．１２０
.１１．１１８」を有するネットワーク通信として定義する。あるいは、終了点に対する
制約がない場合、記号（例えば、「＊」）を終了点として定義することができる。
【００５０】
　ＴＤＬクエリ４００の６行目の「where」で始まるこの陳述は、追跡分析が実行可能名
「explorer」を有する処理を除外すべきであることを示し、実行が１０分を超える場合、
プロセス全体が終了されるべきであり、追跡グラフの直径（「hop」）は２５未満である
べきである。
【００５１】
　ＴＤＬクエリ４００の８行目の出力仕様は、生成された追跡グラフがパス「./result.d
ot」に格納されるべきであることを指定する。
【００５２】
　図４のＴＤＬクエリ４００などのＴＤＬクエリはシステム（例えば、図３のシステム３
００）によって実行される対話型プロセスを反映する複数のバージョンを有することがで
きる。例えば、作成されたＴＤＬクエリ４００の最初のバージョンｖ１は、４行目または
７行目なしで作成された。第１のバージョンは、制限時間内に興味深いまたは有意義な結
果を発見することができなかったことが決定された。しかし、システムとの対話を通じて
情報を得ることによって、追跡分析を加速するための４行目を含むように第２のバージョ
ンｖ２が作成された。同様に、第３のバージョンｖ３は、追跡分析からexplorerを除去す
るための７行目を含むように作成され、それによって、不審なＩＰを時間制限内に見つけ
られることを可能にした。
【００５３】

(13) JP 6817469 B2 2021.1.20

10

20

30

40

50

　再び図３を参照すると、実行部３３０は言語パーサ３２０によって出力され構文解析さ
れたＴＤＬクエリ３１０に基づいて追跡分析を実行し、追跡分析の結果として追跡グラフ
を生成する。一般に、実行部３３０は、以下のように動作する。まず、実行部３３０はＤ
Ｂ３４４からイベントを検索するためのクエリ（例えば、ＳＱＬクエリ）を生成する。ク
エリは、結果の更新を漸進的にサポートすることができる。次に、実行部３３０は中間点
を追跡する優先順位付け方式を採用することができ、この優先順位付け方式は、指定され
た中間点を含む経路に優先順位を付けることによって達成することができる。実行部３３
０は同じクエリを２回実行することを回避するために、インクリメンタル実行ソリューシ
ョンを使用することができる。次に、実行部３３０はＴＤＬクエリ３１０によって指定さ
れた要件を満たすように最終結果をフィルタリングすることができ、追跡分析処理を加速
するために適応的並列化を利用することができる。
【００５４】
　より具体的には、実行部３３０が漸進的な追跡分析を実施して追跡分析の結果を漸進的
に記録する漸進的実行構成要素３３２を含み得る。これにより、追跡分析全体が完了する
のを待つ必要なく、追跡分析の更新された結果を見ることができる。
【００５５】
　漸進的実行構成要素３３２によって実施される漸進的な追跡分析は、実例として、実行
ウィンドウを分割することによって達成され得る。一般に、システムイベントが多くの他
のイベント（「従属」）に依存する場合、漸進的な追跡分析は、依存関係を、各々が従属
関係の部分集合を含む複数の実行ウィンドウに分割することができる。追跡分析の結果は
、実行ウィンドウの単位で漸進的に更新することができる。イベントが最近であるほど、
結果は追跡グラフにより早く更新される。この実行ウィンドウベースのアプローチは、漸
進的な追跡分析の滑らかさを改善し得る。例えば、現実世界の環境では、システムイベン
トが均等に分散されないことがあり、１つのイベントは多数（例えば、数百万）の他のイ
ベントに依存し得る。
【００５６】
　形式的には、実行ウィンドウが３－タプル<begin,finish,e>として定義することができ
、ここで、beginは開始時点であり、finishは終了時点であり、eは探索される必要がある
イベントである。イベントは、実行ウィンドウの単位でＤＢ３４４から取り戻すことがで
きる。
【００５７】
　例示的な漸進的な追跡方法を提供する表１が、以下のように提供される。
【００５８】
【表１】

【００５９】
　表１に示すように、現在のイベントのすべての依存関係をキューに追加する代わりに、

(14) JP 6817469 B2 2021.1.20

10

20

30

40

50

現在のイベントの依存関係を含む実行ウィンドウが１～６行に追加される。グラフ探索の
whileループ（２～６行目）では、漸進的な追跡方法がキューから実行ウィンドウを引き
出し、現在の実行ウィンドウ内のすべてのイベントを最終追跡グラフに追加する。イベン
トは、追跡グラフ（４行目）の端として使用される。次に、ループ（５～７行目）におい
て、漸進的な追跡方法はＤＢ３４４から現在の実行ウィンドウ内で発生するすべてのイベ
ントを列挙し、それらの実行ウィンドウを取得し、これらの実行ウィンドウを将来の探索
のためにキューに追加する。関数gen Exe Window（）は、イベントｅを入力として受け入
れ、イベントのすべての実行ウィンドウを返す。これを行うため、gen Exe Window（）関
数は、入力イベント（te）のタイムスタンプを取得し得る。次に、gen Exe Window（）関
数は＜ts,te,e＞として実行ウィンドウを生成することができ、ここでtsは（予め定義さ
れた）グローバル開始時間である。一実施形態では、実行ウィンドウはモノリシック実行
ウィンドウである。そして、gen Exe Window（）関数は、モノリシック実行ウィンドウを
teからtsまでk個に切ることができる。第一実施形態ではkはユーザが構成可能なパラメー
タである。第１の実行ウィンドウは＜ts１,te,e＞であり、ここで、ts１＝σおよびσ＝
（te－ts）／（２ｋ－１）である。モノリシック実行ウィンドウにさらに時間が残ってい
る場合、第２の実行ウィンドウ＜ts２,ts１,e＞が生成され、ここで、ts２＝ts１－２σ
である。この切断処理は、実行ウィンドウ全体がカバーされるまで繰り返される。したが
って、各ステップにおいて、新たに生成された実行ウィンドウの長さは、最後の実行ウィ
ンドウの２倍である。実行ウィンドウの生成を示す例示的なダイヤグラム５００を、図５
を参照して説明する。
【００６０】
　図５を参照すると、ダイヤグラム５００は６つの実行ウィンドウ（例えば、ｋ＝６）を
描くことを示す。入力イベントは、ダイヤグラム５００において端としてマークされてい
る。仕切りは、時間の降順で左から右に始まる。図示されるように、２つの連続する実行
ウィンドウの対は、前者の２倍の長さのウィンドウサイズを有する。
【００６１】
　再び図３を参照すると、表１に示すように、生成された実行ウィンドウは、１行目およ
び６行目で優先キュー、priキューに追加される。優先キューは、実行ウィンドウの終了
時間に基づいて実行ウィンドウに優先する。例えば、ユーザは、より最近のデータを気に
するので、より最近の終了時間を有する実行ウィンドウが、列内で優先され、より早い終
了時間を有する実行ウィンドウの前に配置される。このように実行ウィンドウに優先順位
を付けることによって、より最近の結果がより早く返される可能性が高い。同様の理由で
、より小さい実行ウィンドウは、より最近のデータに割り当てられ得る。
【００６２】
　追跡分析の速度を加速するために、追跡分析処理を並列化することができる。例えば、
図示のように、実行部３３０は、追跡分析処理を並列化するために適応解を利用する適応
並列化構成要素３３４を含み得る。言い換えれば、適応並列化構成要素３３４は、長期間
続くと予想される追跡分析を並列化するだけである。追跡分析を並列化することは計算オ
ーバヘッドを有するので、適応並列化を実行することができる。さらに、追跡分析が短期
間内に終了する場合、並列化は実質的な利点をもたらさない。企業環境では、多くのＴＤ
Ｌクエリが存在する可能性がある。短期間の追跡分析に過度に多くの計算資源が費やされ
るのであれば、複数のＴＤＬクエリを適用することは拡張可能性がない。
【００６３】
　より具体的には、現在の追跡分析が潜在的に長時間持続すると判定された場合、適応並
列化構成要素３３４は漸進的な追跡方法（例えば、表１）を実行するｎ個のワーカースレ
ッドを使用することができる。現在の追跡分析が潜在的に長時間持続することができるか
どうかを判定するために、追跡経路内の深さｄを有する多数のイベントをチェックするこ
とができる。深さｄを有するイベントの数が閾値Ｔを超える場合、現在の追跡分析が潜在
的に長時間続き得ると判定される。一実施形態では、ｄ＝３およびＴ＝１０である。ｎ個
のワーカースレッドは同じ優先キューを共有することができ、キューから排他的実行ウィ

(15) JP 6817469 B2 2021.1.20

10

20

30

40

50

ンドウを同時に読み込み、データベース３４２からイベントを取り戻し、出力を更新し、
新しく生成された実行ウィンドウを優先キューに挿入することができる。
【００６４】
　システム３００は、中間点を順次通過する経路のみを探索すべきである。上述したよう
に、システム３００が全てのイベントの探索を終了することなく（例えば、先見性がない
場合であってもイベントを取り除くために）各中間ポイントを順次進める方法を知るため
に、実行部３３０は、優先順位付け方式を活用して中間ポイントを追跡することができる
。一般に、中間点のプレフィックスを含む追跡グラフのサブ経路が見つかると、そのサブ
経路を他の方向の前に探索することができる。一実施形態では、状態伝播方法を使用して
、優先順位付け方式を達成することができる。例えば、ＴＤＬクエリ３１０の追跡宣言声
明において宣言されたノードのリストが、フォーマットｎ１→ｎ２→…→ｎｋを有すると
仮定する。このリストでは、ｎ１が始点であり、ｎｋが終点であり、ｎ２～ｎｋ-１が中
間点である。実行部３３０は、各ノードを対応する状態に割り当てることができる。追跡
分析中に、状態siに関連付けられた現在のノードnｉがｎｉ＋１（ｉ＋１＜ｋ）の制約を
満たす後続ノードを有することを実行部３３０が見つけた場合、実行部３３０は、ｎｉ＋

１を状態ｓｉ＋１に割り当てることができる。
【００６５】
　実行部３３０はユーザがＴＤＬクエリ３１０の実行を一時停止して、ユーザがＴＤＬク
エリ３１０を更新し、更新されたＴＤＬクエリに基づいて実行を再開することを可能にす
ることができる。実行部３３０は追跡分析における制約を自動的に更新し、更新されたＴ
ＤＬクエリに基づいて実行を継続することができる。この処理では、実行における増分更
新が行われ、前回の実行は最初からやり直されない。したがって、実行部３３０は、更新
されたＴＤＬクエリの新しい制約を使用して、将来の探索をガイドする。
【００６６】
　増分更新をサポートするために、実行部３３０は、以下の解決策を活用することができ
る。ある時点で、ユーザが実行を一時停止し、ＴＤＬクエリＣを更新されたバージョンＣ
´に更新し、その後、実行を再開すると仮定する。実行部３３０は更新されたＣ´の制約
条件を受け取ると、Ｃ´で指定された開始点がＣで指定された開始点と同じであるか否か
を判定する。同じでない場合、ユーザが異なる開始点から新たな追跡分析を開始したいこ
とを意味し、実行部３３０は、現在の分析を放棄する。開始点が変更されない場合、ユー
ザがいくつかの新しい条件を追加しただけであることを意味する。この場合、実行部３３
０は、次いで、開始点から現在の探索された追跡グラフを精査し、上述の優先順位付け方
式（例えば、状態伝播方法）をやり直すことによって、各ノードの状態を再計算する。こ
のとき、追跡グラフは既にメモリにキャッシュされているので、優先順位付け方式は以前
よりも高速に実行され得ることに留意されたい。状態が再計算された後、実行部３３０は
検出されるが探索されないノードのセットである追跡分析の「フロンティア」内のノード
を再順序付けし、フロンティア内のノードをフィルタリングするために新しい条件を使用
する。フロンティアが更新された後、実行部３３０は、新しい制約に基づいて現在の実行
を再開することができる。
【００６７】
　追跡分析が終了した後、実行部３３０は（更新された）ＴＤＬクエリの制約を満たさな
いすべてのノードを除去するために、最終追跡グラフをクリーニングすることができる。
これを行うために、実行部３３０はすべてのノードを解析し、ＴＤＬクエリのwhereステ
ートメントにおける制約を満たさないノードを除去し、最終追跡グラフ（例えば、メモリ
内にキャッシュされている）を精査して、開始点に接続されていないノードを除去し、中
間点の制約を満たさないノードおよびエッジを除去することができる。例えば、ＤＦＳ（
Depth First Search）を適用して、始点から終点までのすべての経路を再帰的に見つけ、
中間点の制約を満たす経路を最終結果に追加することができる。開始点と終了点との間の
経路の数は追跡グラフのサイズに対して指数関数的であり得るが、全ての経路がリスト化
される必要はない。パスを生成する間、実行部３３０は、それがどの中間点を通過するか

(16) JP 6817469 B2 2021.1.20

10

20

30

40

50

を維持する。したがって、実行部３３０は経路が終点に到達したとき（例えば、Ｏ（１）
時間の複雑さで）、経路が中間点の制約を満たすかどうかを迅速に判定することができる
。したがって、実行部３３０は、ＤＦＳと同じ時間複雑性で最終追跡グラフをクリーニン
グすることができる。
【００６８】
　結果ビューワ３５０は実行部３３０によって生成された追跡グラフを入力として受け取
り、追跡グラフのグラフィカルビューを含むクエリ結果３６０を出力するインタフェース
（例えば、グラフィカルユーザインターフェース（ＧＵＩ））を提供する。結果ビューア
３５０は追跡分析に関するユーザの見通しを助けるために、追跡グラフのフルバージョン
に基づいて追跡グラフの最適化バージョンを作成し得る。追跡グラフの最適化されたバー
ジョンは、追跡グラフのフルバージョン内のいくつかのノードを除去および／または併合
することによって作成することができる。結果ビューワ３５０は、追跡グラフから如何な
るノードも削除せず、ユーザからいくつかのノードを隠すことに留意されたい。したがっ
て、ユーザは、結果ビューア３５０において、追跡グラフのフルバージョンと追跡グラフ
の最適化バージョンとの間で切り替えることができる。最適化の複数のタイプを結果ビュ
ーワ３５０に組み込むことができる。例えば、図示のように、結果ビューアは、除去構成
要素３５２および要約構成要素３５４を含むことができる。
【００６９】
　除去構成要素３５２は、実行部３３０によって出力された結果を取り除いて、データフ
ローを他のノードに伝播しない「デッドエンド」ノードを排除する。一実施形態では、除
去構成要素３５２が追跡グラフを取り除くために１つまたは複数のフィルタを使用する。
例えば、１つ以上のフィルタは、分析されている期間内に読み出されたが書き込まれなか
ったファイルを排除する読み出し専用フィルタを含むことができる。しばしば、これらの
ファイルは、一般にセキュリティ攻撃に関係しないデフォルト構成または共通ライブラリ
である。他の例として、１つまたは複数のフィルタは、１つの処理によってのみ読み書き
されたファイルを取り除く自己読み出し専用フィルタを含むことができる。このようなフ
ァイルは通常、ログであり、一般に、セキュリティ攻撃とは無関係である。
【００７０】
　要約構成要素３５４は結果をより簡潔にするために、取り除かれた結果を要約する。例
えば、要約構成要素３５４は、追跡グラフ内のノードを併合することができる。追跡グラ
フ内のノードを併合するために使用され得る方法は、（１）同様のノードを併合すること
、（２）過渡的な処理を併合すること、および（３）同じリモートＩＰに接続されたソケ
ットを併合することを含む。
【００７１】
　同様のノードを併合する方法には以下の４つの記述が真である場合、ノードＡおよびＢ
は類似している：（１）ＡおよびＢはそれぞれ、１つの先行および１つの後続のみを有す
る；（２）ＡおよびＢの親は同じである；（３）ＡおよびＢの子は同じである；および（
４）ＡおよびＢは同じタイプのシステムオブジェクトを表す。これらの類似のノードは、
通常、バッチとして生成され、追跡グラフにおいて類似の意味を有する。要約構成要素３
５４は、追跡グラフの最適化されたバージョン内の１つのノードとして類似のノードを併
合することができる。
【００７２】
　併合過渡的処理方法では追跡グラフ内のノードが以下の３つの条件を満たす場合、過渡
処理ノードとして定義される：（１）ノードはプロセスを表し；（２）ノードは１つの先
行ノードおよび１つの後続ノードのみを有し、先行ノードおよび後続ノードの両方は処理
であり；（３）ノードの実行可能名は、その先行ノードの実行可能名と同じである。過渡
処理は、その親に併合される。
【００７３】
　リモートホストにアクセスするとき、ローカルホストは同じリモートＩＰアドレスおよ
びポートを有する同じ処理に接続するための、異なるソケットを生成することができる。

(17) JP 6817469 B2 2021.1.20

10

20

30

40

50

同じ遠隔ＩＰ進入路に接続された併合ソケットでは、同じ入出力エッジを有するすべての
隣接するソケットノードを単一の仮想ソケットノードに併合することができる。
【００７４】
　図２の動機付けとなる例に戻って参照すると、この攻撃事例の攻撃シナリオを再構築す
るために、チームは、警告の根本原因についての考えを持っていないのであるが、例示的
なセキュリティ専門家チームが、「dropper.exe」（例えば、異常検出器によって警告さ
れた後）を実行するイベントから後戻り追跡を開始した。したがって、現時点では如何な
るガイダンスもなく、チームは基本的な後戻り追跡分析を実行することしかできなかった
。そうするために、チームは、初期ＴＤＬクエリとして基本的な後戻り追跡のために以下
のＴＤＬクエリを実行した：
 １from "01/02/2017" to "02/01/2017"
 ２backward proc alert [exename = "dropper.exe"
 and event _ time = "01/17/2017:03:01:07"
 and type="start"]-＞ ＊

 ３output ="./result.dot"
【００７５】
　初期ＴＤＬクエリは、与えられた時間に「dropper.exe」という名前の処理を開始する
イベントから後戻り追跡が開始すること、および、追跡分析が、１行目の「from to」記
述で与えられた開始点のデータ依存関係を１月以内に検索することを宣言した。初期ＴＤ
Ｌクエリはまた、追跡グラフを「result.dot」にファイルに格納するために、３行目に出
力仕様を提供する。しかし、初期ＴＤＬクエリ内に他の制約は提供されなかった。
【００７６】
　初期ＴＤＬクエリが実行されると、追跡グラフが漸進的に表示され始めた。１分以内に
２つのイベントを見た後、チームは追跡グラフが「excel.exe」を含むことに気づき、こ
れはたまたま多くの.dllファイルをロードした。この時点で、チームは追跡分析を一時停
止し、異常検出器からの他の警報を検索し、.dllファイルに不審な変更がないことを見出
した。したがって、チームは、攻撃は、.dllファイルに注入されたコードからのものでは
なく、追跡分析の焦点は、他のデータ依存関係に置かれるべきであると断定した。したが
って、チームは、以下に示すwhere記述を含むことによって、すべての.dllファイルを除
外するために初期ＴＤＬクエリを修正した。
 １from "01/02/2017" to "02/01/2017"
 ２backward proc alert [exename = "dropper.exe"
 and event time = "01/17/2017:03:01:07"
 and type="start"] -＞ ＊

 ３where file. path != "＊.dll"
 ４output = "./result. dot"
【００７７】
　この修正の後、チームは、更新されたＴＤＬクエリを用いて追跡分析の実行を再開した
。２分間でさらに８つのイベントを見た後、チームは追跡グラフが「findstr.out」を介
して「findstr.exe」に到達したことに気づいた。「findstr.exe」の後の最初の１００の
イベントを見た後、チームは「findstr.exe」が多くのファイルをスキャンするために使
用されること、および「findstr.exe」の後の依存関係グラフを完全に探索するのに長い
時間がかかることに気付いた。チームはさらに、「findstr.exe」がその根本的な原因で
はなく、むしろ「dropper.exe」によって使用される可能性が高いことに気づいた。した
がって、セキュリティチームは追跡分析を再び一時停止し、以下のようにwhere記述を変
更することによって、グラフから「findstr.exe」を除外するように更新されたＴＤＬク
エリを修正した。
 １from "01/02/2017" to "02/01/2017"
 ２backward proc alert [exename = "dropper.exe"
 and event time = "01/17/2017:03 :01 :07"

(18) JP 6817469 B2 2021.1.20

10

20

30

40

50

 and type="start"] -＞ ＊

 ３where file. path != "＊.dll" and proc. exename
 != "findstr.exe"
 ４output = "./result. dot"
【００７８】
　この修正の後、チームは、新たに更新されたＴＤＬクエリを用いて追跡分析の実行を再
開した。約４分後、チームは「outlook.exe」を見つけ、約３０回以上のイベントをチェ
ックすることによって、それに接続されたソケットを見つけた。この時点で、チームは、
「outlook.exe」によって生成された「excel.exe」によって「dropper.exe」が生成され
たことを発見した。このことから、彼らは「dropper.exe」の根本原因がフィッシング電
子メールであることを確認した。この時点までに、チームは追跡分析を行い、合計約１４
０のイベントをチェックするのに約７分間を費やした。したがって、本明細書で説明され
る実施形態に従って実行されるアプリケーション間依存性分析処理は、例えば、セキュリ
ティ脅威または攻撃の根本原因を発見するための時間を低減することによって、コンピュ
ータシステムにおける脅威検出を改善する。
【００７９】
　図６は、本発明の一実施形態による、アプリケーション間依存性分析のための例示的な
方法６００を示す流れ図である。
【００８０】
　ブロック６１０において、追跡分析を実行するためのＴＤＬクエリが受信される。上述
のように、ＴＤＬは、ユーザが追跡分析において条件および制約を簡潔に指定することを
可能にするドメイン特有の言語である。ＴＤＬクエリ３１０は、例えば、時間範囲、ホス
ト範囲、後戻り追跡の開始点、後戻り追跡の終了条件、および探索すべき経路を含む制約
を指定することができる。ＴＤＬクエリの実行中に、漸進的に更新される後戻り追跡グラ
フが出力され得る。ＴＤＬクエリは、（１）追跡分析を実行するための一般的な制約；（
２）分析されるべきコンピュータシステムの少なくともイベントを指定する追跡宣言；お
よび（３）追跡分析によって生成された追跡グラフを格納するための位置を指定する出力
仕様の３つの部分を含んでいるものと見なすことができる。ＴＤＬクエリに関するさらな
る詳細は、図３および図４を参照して上述されている。
【００８１】
　ブロック６２０において、ＴＤＬクエリは、自然言語パーサを使用して構文解析される
。ＴＤＬクエリの構文解析に関するさらなる詳細は、図３を参照して上述されている。
【００８２】
　ブロック６３０において、追跡分析は、追跡分析の結果を生成するために漸進的な追跡
方法を実施することによって、構文解析されたＴＤＬクエリに基づいて実行される。例え
ば、１つまたは複数のクエリを実行して、データベースから１つまたは複数のイベントを
取り戻すことができ、漸進的な追跡方法は、追跡分析の結果を漸進的に記録して、追跡分
析全体が完了するのを待つ必要なく、追跡分析の更新された結果を見ることができるよう
にすることが可能である。一実施形態では、追跡分析の速度を加速するために（例えば、
現在の追跡分析が長時間持続する可能性があると判定された場合）、複数のワーカースレ
ッドを使用して漸進的な追跡方法を実行することによって、追跡分析を適応的に並列化す
ることができる。追跡分析の実行はＴＤＬクエリの更新を可能にするために一時停止する
ことができ、更新されたＴＤＬクエリに基づいて再開することができる。例えば、追跡分
析における制約は更新されたＴＤＬクエリに基づいて自動的に更新することができ、更新
は、以前の実行が最初からやり直されないようなインクリメンタル更新とすることができ
る。ブロック６３０に関するさらなる詳細は、図３を参照して上述されている。
【００８３】
　ブロック６４０において、追跡分析の結果をクリーニングすることによって追跡グラフ
が生成される。例えば、追跡グラフは、（更新された）ＴＤＬクエリの制約を満たさない
全てのノードを除去することによってクリーニングすることができる。

(19) JP 6817469 B2 2021.1.20

10

20

30

40

【００８４】
　ブロック６５０において、追跡グラフに基づくクエリ結果がインタフェースを介して出
力される。一実施形態では、インタフェースはＧＵＩを含む。追跡グラフの最適化された
バージョンは、追跡グラフのフルバージョンに基づいて、例えば追跡グラフのフルバージ
ョン内のノードのいくつかを除去および／または併合することによって、作成することが
できる。例えば、ブロック６３０における追跡分析によって出力された結果は１つまたは
複数のフィルタ（例えば、読み取り専用フィルタおよび／または自己読み取り専用フィル
タ）を使用することによって「dead end」ノードを排除するように取り除くことができ、
取り除かれた結果は、クエリ結果をより簡潔にするように要約され得る。ブロック６４０
に関するさらなる詳細は、図３を参照して上述されている。
【００８５】
　本明細書で説明される実施形態は、完全にハードウェアであってもよく、完全にソフト
ウェアであってもよく、またはハードウェア要素とソフトウェア要素の両方を含んでもよ
い。好ましい実施形態では、本発明がファームウェア、常駐ソフトウェア、マイクロコー
ドなどを含むがこれらに限定されないソフトウェアで実現される。
【００８６】
　実施形態は、コンピュータまたは任意の命令実行システムによって、またはそれに関連
して使用するためのプログラムコードを提供する、コンピュータ使用可能媒体またはコン
ピュータ可読媒体からアクセス可能なコンピュータプログラム製品を含むことができる。
コンピュータ使用可能媒体またはコンピュータ可読媒体は、命令実行システム、装置、ま
たはデバイスによって、またはそれに関連して使用するためのプログラムを格納、通信、
伝搬、または運搬する任意の装置を含むことができる。媒体は、磁気、光学、電子、電磁
気、赤外線、または半導体システム（または装置またはデバイス）、または伝搬媒体とす
ることができる。媒体は、半導体またはソリッドステートメモリ、磁気テープ、リムーバ
ブルコンピュータディスケット、ランダムアクセスメモリ（ＲＡＭ）、リードオンリメモ
リ（ＲＯＭ）、リジッド磁気ディスク、および光ディスクなどのコンピュータ可読媒体を
含むことができる。
【００８７】
　以下の「／」、「および／または」、および「例えば「Ａ／Ｂ」、「Ａおよび／または
Ｂ」および「ＡおよびＢの少なくとも１つ」の場合の少なくとも１つの使用は、第１のリ
スト化されたオプション（Ａ）のみの選択、または第２のリスト化されたオプション（Ｂ
）のみの選択、または両方のオプション（ＡおよびＢ）の選択を包含することが意図され
ることを理解されたい。さらなる例として、「Ａ、Ｂ、および／またはＣ」および「Ａ、
Ｂ、およびＣのうちの少なくとも１つ」の場合において、このような句は、第１のリスト
化されたオプション（Ａ）のみの選択、または第２のリスト化されたオプション（Ｂ）の
みの選択、または第３のリスト化されたオプション（Ｃ）のみの選択、または第１および
第２のリスト化されたオプション（ＡおよびＢ）のみの選択、または第１および第３のリ
スト化されたオプション（ＡおよびＣ）のみの選択、または第２および第３のリスト化さ
れたオプション（ＢおよびＣ）のみの選択、または３つすべてのオプション（ＡおよびＢ
およびＣ）の選択を包含することが意図される。これは、当業者には容易に明らかなよう
に、列挙された項目の数だけ拡張することができる。
【００８８】
　システムおよび方法の好ましい実施形態（これは例示的であり、限定的ではないことが
意図される）を説明したが、上記の教示に照らして、当業者によって、修正および変形が
なされ得ることに留意されたい。したがって、添付の特許請求の範囲によって概説される
ような本発明の範囲および精神内にある、開示された特定の実施形態に変更を加えること
ができることを理解されたい。このように、本発明の態様を、特許法によって要求される
詳細および特殊性と共に説明してきたが、特許証によって保護されることが請求され、望
まれるものは添付の特許請求の範囲に記載されている。

(20) JP 6817469 B2 2021.1.20

【図１】 【図２】

【図３】 【図４】

(21) JP 6817469 B2 2021.1.20

【図５】 【図６】

(22) JP 6817469 B2 2021.1.20

10

20

30

40

フロントページの続き

(31)優先権主張番号 16/006,164
(32)優先日　　　　 平成30年6月12日(2018.6.12)
(33)優先権主張国・地域又は機関
 米国(US)

(72)発明者 リ、　ディン
 アメリカ合衆国　０８５５０　ニュージャージー州　ウェスト　ウィンザー　テイラー　コート　
 １２２１１
(72)発明者 ジー、　カンクック
 アメリカ合衆国　０８５４０　ニュージャージー州　プリンストン　ジョナソン　デイトン　コー
 ト　１９２
(72)発明者 チェン、　ジェンジャン
 アメリカ合衆国　０８５５０　ニュージャージー州　プリンストン　ジャンクション　ヨーク　ロ
 ード　４４
(72)発明者 タン、　ルーアン
 アメリカ合衆国　０８５３４　ニュージャージー州　ペニントン　マンリー　ロード　１０
(72)発明者 リ、　ジチュン
 アメリカ合衆国　０８５４０　ニュージャージー州　プリンストン　セイヤー　ドライヴ　３０６
 　アパート４１３シー

 審査官 岸野　徹

(56)参考文献 米国特許出願公開第２０１６／０３０８７２５（ＵＳ，Ａ１）　　
 米国特許出願公開第２０１７／０２２０６３９（ＵＳ，Ａ１）　　
 特開２０１２－２４３１２３（ＪＰ，Ａ）　　　
 特開２０１５－１３３０９７（ＪＰ，Ａ）　　　
 米国特許出願公開第２０１６／０３５９８７７（ＵＳ，Ａ１）　　
 米国特許出願公開第２０１６／０２９９９８２（ＵＳ，Ａ１）　　
 米国特許出願公開第２０１２／０１１０５９９（ＵＳ，Ａ１）　　
 米国特許出願公開第２０１２／０２９６９２３（ＵＳ，Ａ１）　　
 中国特許出願公開第１０７２９２１６９（ＣＮ，Ａ）　　　
 千代 英一郎　外２名，“グラフ縮約に基づくＳＰＡＲＱＬクエリ並列化方法の設計および予備
 評価”，情報処理学会論文誌 論文誌ジャーナル Ｖｏｌ．５３ Ｎｏ．１２ ［ＣＤ－ＲＯＭ
 ］，日本，一般社団法人情報処理学会，２０１２年１２月１５日，第５３巻，第１２号，ｐ．２
 ８１５－２８２８

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　２１／５５　　　　
 Ｇ０６Ｆ　　１１／３４　　　　
 Ｇ０６Ｆ　　１６／９０３　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

