A thrombocytopenia remedy containing an indolocarbazole derivative represented by general formula (I) or a pharmaceutically acceptable salt thereof as the active ingredient, and a novel indolocarbazole derivative.

(51) 国際特許分類 5
C07D 487/14, 498/22
A61K 31/40

(11) 国際公開番号
WO 94/06799

(43) 国際公開日
1994年3月3日 (03.03.1994)

(21) 国際出願番号
PCT/JP93/01346

(22) 国際出願日
1993年9月20日 (20.09.93)

(30) 優先権データ
特願4/250941
1992年9月21日 (21.09.92)

(71) 出願人（米国を除くすべての指定国について）
協和発酵工業株式会社
KYOWA HAKKO KOGYO CO., LTD. [JP/JP]

(72) 発明者；および

(75) 発明名／出願人（米国についてのみ）
株式会社TAMAOKI, Tatsuya [JP/JP]

(81) 指定国

(54) Title : THROMBOCYTOPENIA REMEDY

(54) 発明の名称
血小板減少症治療剤
本発明は下記式（I）で表わされるインドロカルパゾール誘導体またはその薬理的に許容される塩を有効成分として含有する血小板減少症治療剤および新規なインドロカルパゾール誘導体に関する。
明細書
血小板減少症治療剤

技術分野
本発明は血小板減少症治療剤及び新規なインドロカルパゾール誘導体に関する。血小板減少症治療剤は癌化学療法や骨髄移植時の副作用である血小板減少の軽減あるいは血小板減少症を伴う各種疾患の治療薬として期待される。

背景技術
種々の造血障害による血小板の減少は出血傾向を招くなどの重篤な症状をひきおこす。その対応として、現状では血小板輸血が有力な手段である。しかし必ずしも十分量の血小板が供給されている状況ではない。
血小板の産生を促進する造血因子としてはインターロイキン（IL）6やIL11が知られている。

発明の開示
本発明によれば、一般式（I）
式中、R^1は水素、低級アルキル、低級アルカノイル、ベンジルまたはアミノを表し、R^2は水素、ヒドロキシ、低級アルコキシ、低級アルカノイル、ハロゲンまたは式(i)

\[-\text{SO}_2\text{N} - \text{NCH}_3\] (i)

を表し、R^3は水素、低級アルカノイル、ハロゲン、ヒドロキシまたは低級アルコキシを表し、W^1およびW^2は一方が水素で他方が水素、ヒドロキシ、低級アルキルオキソであるかもしくは両者が一体となって酸素を表し、A^1およびA^2は同一で水素であるかもしくは両者が一体となって式(ii)

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{H}_3\text{C} \\
\text{NCH}_3 \\
\text{R}^6
\end{array}
\] (ii)

（式中、R^6は水素、ベンジルオキシカルボニル、低級アルキルまたは低級アルカノイルである。）
または式(iii)

\[
\begin{array}{c}
\text{H}_3\text{C} \\
\text{R}^4\text{O} \\
\text{R}^5
\end{array}
\] (iii)

（式中、R^4は水素、低級アルキル、メトキシメチルまたは低級アルカノイルであり、R^5は水素または低級アルコキシカルボニルである。）を表す。）で表されるインドロカルバゾール誘導体（以下、化合物Iと略記する。）またはその薬理的に許容される塩を有効成分として含有する血小板減少症治療剤を提供することができる。本願発明の治療剤は減少した血小板を増加させるのに有効である。
化合物 I の各基の定義において低級アルキルとは、炭素数 1 〜 6 の直鎖または分岐状の、例えばメチル、エチル、プロピル、イソプロピル、プチル、イソプチル、sec-プチル、 tert-プチル、ベンチル、ネオベンチル、ヘキシルなどがあげられる。

低級アルコキシ、低級アルコキシカルボニルおよび低級アルキルチオのアルキル部分は前記低級アルキルの定義と同じである。

低級アルカノイルとは、炭素数 1 〜 7 のホルミル、アセチル、プロピオニル、イソプロピオニル、プチリル、パレリル、ピパロイル、ヘキサノイル、ヘプタノイルなどがあげられる。

化合物 I の薬理的に許容される塩としては塩酸塩、硫酸塩、リン酸塩等の無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、酒石酸塩、クエン酸塩、乳酸塩、アスパラギン酸塩、グルタミン酸塩等の有機酸塩があげられる。

化合物 I の具象例を第 1 表に示す。

表中、n-Prは-(CH₂)sCH₃を表し、i-Prは-CH(CH₃)sを表し、n-Buは-(CH₂)sCH₃を表し、n-Hexは-(CH₂)sCH₃を表し、Bnはベンジルを表す。

* 化合物 I - 4 は W¹ = H 、 W² = OH および W¹ = OH 、 W² = H の立体異性体混合物であり、化合物 I - 14 は W¹ = H 、 W² = -SCH₂CH₃ および W¹ = -SCH₂CH₃ 、 W² = H の立体異性体混合物である。
<table>
<thead>
<tr>
<th>化合物番号</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>W¹</th>
<th>W²</th>
<th>A¹</th>
<th>A²</th>
<th>塩</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-2</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-3</td>
<td>NH₂</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-4</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-6</td>
<td>H</td>
<td>O-n-Pr</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-7</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-8</td>
<td>CH₃CO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-9</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>化合物番号</td>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
<td>W¹</td>
<td>W²</td>
<td>A¹</td>
<td>A²</td>
<td>塩</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>I-10</td>
<td>H</td>
<td>O-n-Bu</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-11</td>
<td>H</td>
<td>-SO₂N</td>
<td>NCH₃</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-12</td>
<td>H</td>
<td>O-n-Pr</td>
<td>O-n-Pr</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-13</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>一体となってO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-14</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>SCH₂CH₃</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-15</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-16</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I-17</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-18</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物番号</td>
<td>R¹</td>
<td>R²</td>
<td>R³</td>
<td>W¹</td>
<td>W²</td>
<td>A¹</td>
<td>A²</td>
<td>塩</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>I-19</td>
<td>n-Pr</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-20</td>
<td>n-Hex</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-21</td>
<td>Bn</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HBr</td>
<td></td>
</tr>
<tr>
<td>I-22</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>I-23a</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-23b</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-24</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-25</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第1表（つづき3）

<table>
<thead>
<tr>
<th>化合物番号</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>W¹</th>
<th>W²</th>
<th>A¹</th>
<th>A²</th>
<th>塩</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-26</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-27</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-28</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-29</td>
<td>H</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-30</td>
<td>H</td>
<td>COCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-31</td>
<td>H</td>
<td>COCH₃</td>
<td>COCH₃</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-32</td>
<td>H</td>
<td>CHO</td>
<td>CHO</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-33</td>
<td>H</td>
<td>O-n-Pr</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物番号</td>
<td>R^1</td>
<td>R^2</td>
<td>R^3</td>
<td>W^1</td>
<td>W^2</td>
<td>A^1</td>
<td>A^2</td>
<td>塩</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>I-34</td>
<td>CH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-35</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-36</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-37</td>
<td>COCH$_3$</td>
<td>COCH$_3$</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-38</td>
<td>CH$_3$</td>
<td>O-n-Pr</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-39</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-40</td>
<td>H</td>
<td>Br</td>
<td>Br</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第1表（つづき5）

<table>
<thead>
<tr>
<th>化合物番号</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>W¹</th>
<th>W²</th>
<th>A¹</th>
<th>A²</th>
<th>塩</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-42</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-43</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>一体となってO</td>
<td></td>
</tr>
<tr>
<td>I-44</td>
<td>n-Pr</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>一体となってO</td>
<td></td>
</tr>
<tr>
<td>I-45</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-46</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-47</td>
<td>CH₃</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-48</td>
<td>CH₃</td>
<td>OH</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-49</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>HCl</td>
<td></td>
</tr>
<tr>
<td>I-50</td>
<td>CH₃</td>
<td>CHO</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-51</td>
<td>CH₃</td>
<td>COCH₃</td>
<td>COCH₃</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-52</td>
<td>H</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
本願発明によれば、さらに下記式（II）及び（III）で表されるインドロカルバゾール誘導体またはその薬理的に許容される塩を提供することができる。

(a) \(R^{1A} \) がヘキシルであり、\(R^{2A} \), \(R^{3A} \) および \(R^{6A} \) が水素であるか、
(b) \(R^{1A} \) がベンジルであり、\(R^{2A} \), \(R^{3A} \) および \(R^{6A} \) が水素であるか、
(c) \(R^{1A} \) がメチルであり、\(R^{2A} \) および \(R^{3A} \) が水素であり、\(R^{6A} \) が低級アルキルであるか
(d) \(R^{1A} \) が水素または低級アルキルであり、\(R^{3A} \) および \(R^{6A} \) が水素であり、\(R^{2A} \) がハロゲンまたは低級アルカノイルであるか、
(e) \(R^{1A} \) が水素または低級アルキルであり、\(R^{6A} \) が水素であり、\(R^{2A} \) および \(R^{3A} \) が低級アルカノイルであるか、
(f) \(R^{1A}, R^{3A} \) および \(R^{6A} \) が水素であり、\(R^{2A} \) が低級アルコキシであるかまたは
(g) \(R^{1A} \) が低級アルキルであり、\(R^{6A} \) が水素であり、\(R^{2A} \) がヒドロキシであり、\(R^{3A} \) がヒドロキシまたは水素である。}
一般式（II）で表わされる化合物の具体例としては、化合物 I-20、I-21、I-24、I-29、I-30、I-31、I-32、I-33、I-39、I-47、I-48、I-49、I-50 および I-51 があげられる。

以下に上記新規化合物の製造法について説明する。

(1) R^1 がヘキシルまたはベンジルである化合物（I a）
(式中、R₁⁺はヘキシルまたはベンジルを表し、Yはベンジルまたはtert-プチルを表し、XはI、BrまたはClを表し、W¹、W²、R²およびR³は前記と同義である）
化合物（A）をジメチルホルムアミド（DMF）等の適当な溶媒中水素化ナトリウム等の塩基の存在下R₁⁺Xで反応させ化合物（E G）を得る。
水素化ナトリウム、R₁⁺Xは化合物（A）に対し1〜5当量用いられ、反応は−23〜30℃で1〜8時間で終了する。
ついて化合物（E G）において、Yがベンジルである化合物はDMF等の適当な溶媒中、10% Pd/Cまたは10%Pd(OH)₂/C等の触媒存在下、水素気流中で脱保護を行うことにより化合物（I a）を得ることができる。触媒は化合物（E G）に対し重量比で0.1〜2倍用いられ、反応は0〜80℃で1〜8時間で終了する。
また、Yがtert-プチルである化合物は、クロロホルム等の適当な溶媒中、臭化水素酸／酢酸等の適当な酸存在下で脱保護を行うことにより、化合物（I a）を得ることができる。反応は0〜50℃で1時間で終了する。
(2) R₈が低級アルキルである化合物（I b）
（式中、R^{6^a}は水素またはC1～C5の低級アルキルを表し、R^1、R^2、R^3、W^1およびW^2は前記と同義である。）化合物（N）をテトラヒドロフラン（THF）等の適当な溶媒中シアノ水素化ホウ素ナトリウム等の還元剤の存在下R^{6^a}CHOと反応させることにより化合物（Ib）を得ることができる。化合物（N）に対し還元剤は1～2当量、R^{6^a}CHOは1～5当量用いられ、反応は0～30℃で1～5時間で終了する。

(3) R^2がハロゲンである化合物（Ic）
（式中、R^{2}はC1またはBrを表し、R^{1}、R^{6}、W^{1}およびW^{2}は前記と同義である）

化合物（O）をクロロホルム等の適當な溶媒中、ハロゲンまたは化合物（P）等で反応させることにより化合物（Ic）を得ることができる。ハロゲンまたは化合物（P）は、化合物（O）に対し0.8～1.5当量用いられ、反応は1～8時間で終了する。

(4) R^{2}が炭素数2～7のアルカノイルでR^{3}が水素または炭素数2～7のアルカノイルである化合物（Id）
\[
\begin{align*}
\text{(Q)} & \xrightarrow{\text{AlCl}_3, R^{2b}\text{Cl}} \\
& \quad \xrightarrow{\text{接触}} \\
& \quad \text{(R)} + \text{(Id)}
\end{align*}
\]
（式中、R^{2b}は炭素数 2 〜 7 のアルカンオイルを表し、R^{3c}は水素または
R^{2b}を表し、R^1、W^1およびW^2 は前記と同義である）

化合物 (Q) をジクロロメタン等の適当な溶媒中、塩化アルミニウム
等の適当なルイス酸存在下塩化アルカンオイルを反応させることにより化
合物 (R) および化合物 (I d) を得ることができる。塩化アルカンオイ
ル、ルイス酸は化合物 （Q）に対し 1 〜 8 当量用いられ、反応は10
〜30°Cで 1 〜 8 時間で終了する。

また化合物 (R) を化合物 (I a) の場合と同様に接触還元すること
によっても化合物 (I d) を得ることができる。

(5) R^2がホルミルでR^3が水素またはホルミルである化合物 (I e)

![Chemical structure](image)

（式中、R^{3c}は水素またはホルミルであり、R^1、W^1およびW^2は前記
と同義である）

化合物 (Q) をジクロロメタン等の適当な溶媒中、四塩化チタン等の
ルイス酸存在下ジクロロメチルメチルエーテルと反応させることにより
化合物 (I e) を得ることができる。四塩化チタン、ルイス酸は化合物
(Q) に対し 1.5 〜 3 当量用いられる。反応は$10〜30^\circ\text{C}$で 1 〜 5 時間
で終了する。

(6) R^2が低級アルコキシである化合物 (I f)

![Chemical Structures]

(R-1) \[\text{(R-2)} \]

(S) \[\text{(I)} \]

(R²⁻X) 塩基

接触還元

(I f)
（式中、R^2は低級アルキルを表し、Xは前記と同義である）
化合物($R - 1$)をTHF等の適当な溶媒中、4-ジメチルアミノピリジン等の塩基の存在下無水酢酸等と反応させることにより化合物($R - 2$)を得ることができる。化合物($R - 1$)に対し4-ジメチルアミノピリジンは、1〜8当量、無水酢酸は5〜20当量用いられ、反応は20〜90℃で5〜15時間で終了する。
化合物($R - 2$)をクロロホルム等の適当な溶媒中炭酸水素ナトリウム等の塩基存在下メタクロロ過安息香酸等の酸化剤を用いることにより化合物(S)を得ることができる。炭酸水素ナトリウム、メタクロロ過安息香酸は化合物($R - 2$)に対し3〜8当量用いられ、反応は0〜50℃で5時間〜1日で終了する。
化合物(S)をジクロロメタン等の適当な溶媒中、ナトリウムメチラート等で処理することにより化合物(T)を得る。メトキシメチラートは1〜5当量用いられ反応は5〜30分で終了する。
化合物(T)をDMF等の適当な溶媒中水素化ナトリウム等の塩存在下R^2Xと反応させ化合物(U)を得る。化合物(T)に対し水素化ナトリウムは0.8〜1.2当量、R^2Xは1〜5当量用いられる。反応は-10〜20℃で1〜5時間で終了する。
化合物(U)を化合物(Ia)の場合と同様に接触還元することにより化合物(If)を得る。
(7) R^4がメトキシメチルである化合物(Ig)
（式中、R²、R³およびR⁵は前記と同義である）
化合物（V）をTHF等の適当な溶媒中水素化ナトリウム等の塩基存在下メトキシメチルクロライドと反応させることにより化合物（Ig）を得ることができる。水素化ナトリウム、メトキシメチルクロライドは化合物（V）に対し1〜1.5当量用いられ、反応は0〜30℃で1〜2日で終了する。
(8) R¹が低級アルキル、R²がヒドロキシ、R³がヒドロキシまたは水素である化合物（Ih）
（R^1_bは低級アルキルを表し、R^2_bはヒドロキシンまたは水素を表し、
R \^7 はO R^3_aまたは水素を表し、W^1_ 、W^2_ 、R^2_bおよびR^3_aは前記と
同義である）

化合物 (R - 3) を化合物 (S) の場合と同様の操作を行うことによ
り化合物 (X) を得ることができる。化合物 (X) を化合物 (T) の場
合と同様に行うことにより化合物 (Z) を得ることができる。また化合
物 (Z) を化合物 (I a) と同様に行うことにより化合物 (I h) を得
ることができる。

上記製造法における生成物の単離、精製は、通常の有機合成で用いら
れる方法、例えば抽出、結晶化、各種クロマトグラフィー等を適宜組み
合わせ行うことができる。

つぎに、公知化合物 I - 1 ～18、28、35～37、42～46の各々の物性値
を示す。

・化合物 I - 1 mp 245-250°C（分解）
[\alpha]_D \^23 +132.0° (c=0.3, メタノール)
・化合物 I - 2 MS(m/z): 480 (M\^+)
・化合物 I - 3 MS(m/z); 496 (M⁺+1)
・化合物 I - 4 MS(m/z); 484 (M⁺+1)
・化合物 I - 5 mp 145-147.5°C
・化合物 I - 6 MS(m/z); 526 (M⁺+1)
・化合物 I - 7 MS(m/z); 495 (M⁺)
・化合物 I - 8 MS(m/z); 551 (M⁺)
・化合物 I - 9 MS(m/z); 494 (M⁺)
・化合物 I -10 MS(m/z); 581 (M⁺)
・化合物 I -11 MS(m/z); 630 (M⁺+1)
・化合物 I -13 MS(m/z); 571 (M⁺)
・化合物 I -14 MS(m/z); 528 (M⁺+1)
・化合物 I -15 MS(m/z); 509 (M⁺)
・化合物 I -16 MS(m/z); 311 (M⁺)
・化合物 I -17 MS(m/z); 466 (M⁺)
・化合物 I -18 MS(m/z); 615 (M+1)⁺
・化合物 I -28 MS(m/z); 509 (M+1)⁺
・化合物 I -35 MS(m/z); 468 (M+1)⁺
・化合物 I -36 MS(m/z); 481 (M⁺)
・化合物 I -37 MS(m/z); 594 (M+1)⁺
・化合物 I -42 MS(m/z); 495 (M)⁺
・化合物 I -43 MS(m/z); 523 (M)⁺
・化合物 I -44 MS(m/z); 523 (M)⁺
・化合物 I -45 MS(m/z); 495 (M)⁺
・化合物 I -46 MS(m/z); 409 (M)⁺

合物I-1)、W089-07105 (EP-A-383919) (化合物I-2, 3, 9, 18, 28)、特開平
(化合物I-5, 15, 36, 42, 45)、特開昭63-295588 (化合物I-6, 7, 10, 11, 37)、
ジャーナル・オブ・アンチバイオティクス (J. Antibiotics), 38, 1437
(1985) (化合物I-8)、特開昭63-295589 (化合物I-13, 43, 44) およびジ
ャーナル・オブ・アンチバイオティクス, 39, 1066 (1986) (化合物I-16)、
特開昭56-73501 (化合物I-17)、特開昭60-41489 (EP-A-137632, USP455
5402) (化合物I-35) 及びW088-07045 (化合物I-46) にそれぞれ記載さ
れている。

化合物Iの薬理効果について試験例により説明する。
試験例1. 巨核球コロニー形成促進作用

8週令Balb/cマウスを屠殺後、大腿骨、顎骨を取り出し両端を切断し
た。IMDM (ギブロ社製 430-2200EA) 溶液を入れた注射器を用いて大腿骨、
顎骨の切断片から骨髄細胞を取得し、該骨髄細胞を試験管に吹き出した。
5分間静置後、ピペットを用いて上清を得た。骨髄細胞 (50000cells)、
牛血清アルブミン (2% : シグマ社製 A4508)、トランスフェリン (600
μg/ml : ベーリングーマンハイム社製 652202)、IL-3 (100U/ml)、
コレステロール (16 μg/ml : ワコー社製 036-0641)、寒天 (0.6% :
ディフコ社製 0142-02) からなる反応組成物中に各濃度の試験化合物を
添加し、ラックス社製 3.5 mmディッシュに1 mlずつ入れ、37℃、5%
CO₂、9.5%以上の湿潤の条件下、7日間培養した。なお、骨髄細
胞にIL-3を単独添加したものをコントロールとし、上記反応組成物中
にIL-6を 200U／mlになるように添加したものをポジティブ コントロ
ールとした。培養終了後、濾紙 (ワットマン社製 1001-055) を用いて
寒天を乾燥させ、2.5%グルタルアルデヒドにより固定した後、アセ
チルコリンエステラーゼ染色 (ACHE染色) を行った。

23

新たな用紙
なお、ACHE染色は以下の方法により行った。

ACHE染色法：ヨウ化アセチルチオコリン 0.67mg/ml，クエン酸ナトリウム 2.94mg/ml，硫酸銅(II) 7.5mg/ml，フェリシアン化カリウム 1.65mg/ml の溶液をサンプルに加え室温、暗所で 4 ～ 6 時間放置した。

赤褐色に染まった巨核球細胞 4 個以上を 1 コロニーとして、1 ディッシュあたりのコロニー数を顕微鏡により計算し、結果をコントロールに対する相対値として第 2 表に示す。

（表中、相対値はコントロールを 1.0.0 とした場合の値を示す）
<table>
<thead>
<tr>
<th>化合物番号</th>
<th>濃度(nM)</th>
<th>相対値</th>
<th>化合物番号</th>
<th>濃度(nM)</th>
<th>相対値</th>
</tr>
</thead>
<tbody>
<tr>
<td>コントロール</td>
<td>100</td>
<td></td>
<td>I-13</td>
<td>0.1</td>
<td>100</td>
</tr>
<tr>
<td>I-1</td>
<td>1</td>
<td>127</td>
<td></td>
<td>1</td>
<td>113</td>
</tr>
<tr>
<td>I-2</td>
<td>0.01</td>
<td>125</td>
<td></td>
<td>0.1</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>168</td>
<td></td>
<td>1</td>
<td>115</td>
</tr>
<tr>
<td>I-3</td>
<td>0.01</td>
<td>98.8</td>
<td></td>
<td>0.1</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>127</td>
<td></td>
<td>1</td>
<td>121</td>
</tr>
<tr>
<td>I-4</td>
<td>0.01</td>
<td>94.3</td>
<td></td>
<td>10</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-5</td>
<td>0.01</td>
<td>112</td>
<td></td>
<td>0.1</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>104</td>
<td></td>
<td>88.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>103</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>I-6</td>
<td>0.01</td>
<td>112</td>
<td></td>
<td>1.0</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>132</td>
<td></td>
<td>(pM)</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>117</td>
<td></td>
<td>1.0</td>
<td>118</td>
</tr>
<tr>
<td>I-7</td>
<td>0.01</td>
<td>93</td>
<td></td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>101</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>108</td>
<td></td>
<td>1.0</td>
<td>94</td>
</tr>
<tr>
<td>I-8</td>
<td>0.01</td>
<td>95.6</td>
<td></td>
<td>10</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>118</td>
<td></td>
<td>10</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>89.6</td>
<td></td>
<td>16</td>
<td>2.0</td>
</tr>
<tr>
<td>I-9</td>
<td>0.1</td>
<td>135</td>
<td></td>
<td>0.1</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>117</td>
<td></td>
<td>1.0</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>92.2</td>
<td></td>
<td>1.0</td>
<td>95</td>
</tr>
<tr>
<td>I-10</td>
<td>0.1</td>
<td>122</td>
<td></td>
<td>0.1</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>139</td>
<td></td>
<td>0.1</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>133</td>
<td></td>
<td>0.1</td>
<td>120</td>
</tr>
<tr>
<td>I-11</td>
<td>0.1</td>
<td>88.4</td>
<td></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-12</td>
<td>0.1</td>
<td>133</td>
<td></td>
<td>0.1</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>113</td>
<td></td>
<td>1.0</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>化合物番号</td>
<td>濃度(nM)</td>
<td>相対値</td>
<td>化合物番号</td>
<td>濃度(nM)</td>
<td>相対値</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>I - 24</td>
<td>0.1</td>
<td>88</td>
<td>I - 37</td>
<td>0.1</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>87</td>
<td></td>
<td>1.0</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>109</td>
<td></td>
<td>10</td>
<td>114</td>
</tr>
<tr>
<td>I - 25</td>
<td>0.1</td>
<td>119</td>
<td>I - 38</td>
<td>0.1</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>124</td>
<td></td>
<td>1.0</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>100</td>
<td></td>
<td>10</td>
<td>136</td>
</tr>
<tr>
<td>I - 26</td>
<td>0.1</td>
<td>108</td>
<td>I - 39</td>
<td>0.1</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>121</td>
<td></td>
<td>1.0</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>111</td>
<td></td>
<td>10</td>
<td>92</td>
</tr>
<tr>
<td>I - 27</td>
<td>0.1</td>
<td>76</td>
<td>I - 40</td>
<td>0.1</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>109</td>
<td></td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>97</td>
<td></td>
<td>10</td>
<td>114</td>
</tr>
<tr>
<td>I - 28</td>
<td>0.1</td>
<td>89</td>
<td>I - 42</td>
<td>0.1</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>101</td>
<td></td>
<td>1.0</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>95</td>
<td></td>
<td>10</td>
<td>122</td>
</tr>
<tr>
<td>I - 29</td>
<td>0.1</td>
<td>90</td>
<td>I - 43</td>
<td>0.1</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>113</td>
<td></td>
<td>1.0</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>112</td>
<td></td>
<td>10</td>
<td>87</td>
</tr>
<tr>
<td>I - 30</td>
<td>0.1</td>
<td>111</td>
<td>I - 44</td>
<td>0.1</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>119</td>
<td></td>
<td>1.0</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>117</td>
<td></td>
<td>10</td>
<td>118</td>
</tr>
<tr>
<td>I - 31</td>
<td>0.1</td>
<td>76</td>
<td>I - 45</td>
<td>0.1</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>94</td>
<td></td>
<td>1.0</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>109</td>
<td></td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>I - 32</td>
<td>0.1</td>
<td>76</td>
<td>I - 46</td>
<td>0.1</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>94</td>
<td></td>
<td>1.0</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>109</td>
<td></td>
<td>10</td>
<td>112</td>
</tr>
<tr>
<td>I - 33</td>
<td>0.1</td>
<td>101</td>
<td>I - 49</td>
<td>0.1</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>114</td>
<td></td>
<td>1.0</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>105</td>
<td></td>
<td>10</td>
<td>128</td>
</tr>
<tr>
<td>I - 35</td>
<td>1.0(pM)</td>
<td>130</td>
<td>I - 50</td>
<td>1.0</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>10(pM)</td>
<td>140</td>
<td></td>
<td>10</td>
<td>128</td>
</tr>
<tr>
<td>I - 36</td>
<td>0.1</td>
<td>130</td>
<td>I L - 6</td>
<td>200U/ml</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>173</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

新たな用紙
試験例2. マウスにおける血小板産生促進作用

Balb/cマウス（雄、7週令）を2群に分け、内一～群は対照群として溶媒（1％乳酸、4％グルコース水溶液）のみを投与した。一方、試験群（化合物1-1投与群）は化合物1-1を上記溶媒に溶解し、7.5 mg/kgの用量で一日一回5日間マウスの尾静脈より0.2 mlを投与した（Day1-Day5）。薬剤投与前（Day0）、7日目（Day7）、9日目（Day9）、14日目（Day14）および21日目（Day21）に、各群のマウスの眼底静脈より20μlの血液を採取し、ミクロセルカウンター（東亜医用電子社製、CC-180 A型）により血小板数を計測した。結果を第3表に示す。
第3表

コントロール群

<table>
<thead>
<tr>
<th>マウス番号</th>
<th>Day 0</th>
<th>血小板数</th>
<th>板数（×10⁴/mm³）</th>
<th>Day 7</th>
<th>Day 9</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td># 1</td>
<td>141.0</td>
<td>141.0</td>
<td>135.1</td>
<td>94.1</td>
<td>102.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 2</td>
<td>113.0</td>
<td>139.6</td>
<td>107.6</td>
<td>104.5</td>
<td>106.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 3</td>
<td>109.6</td>
<td>125.5</td>
<td>116.9</td>
<td>117.7</td>
<td>131.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 4</td>
<td>104.8</td>
<td>133.8</td>
<td>109.9</td>
<td>112.3</td>
<td>123.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 5</td>
<td>85.9</td>
<td>127.1</td>
<td>102.8</td>
<td>117.0</td>
<td>107.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（平均）

| | 110.9 | 133.4 | 114.5 | 109.1 | 114.3 |

（標準偏差）

| | 19.8 | 7.0 | 12.6 | 9.9 | 12.4 |

%相対値

| | 100 | 120.3 | 103.2 | 98.4 | 103.1 |

化合物１－１（7.5mg/kg/day×5）投与群

<table>
<thead>
<tr>
<th>マウス番号</th>
<th>Day 0</th>
<th>血小板数</th>
<th>板数（×10⁴/mm³）</th>
<th>Day 7</th>
<th>Day 9</th>
<th>Day 14</th>
<th>Day 21</th>
</tr>
</thead>
<tbody>
<tr>
<td># 8</td>
<td>92.6</td>
<td>103.1</td>
<td>125.3</td>
<td>125.3</td>
<td>133.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 9</td>
<td>90.5</td>
<td>91.8</td>
<td>160.0</td>
<td>106.4</td>
<td>202.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 10</td>
<td>94.2</td>
<td>119.4</td>
<td>160.0</td>
<td>121.1</td>
<td>153.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 11</td>
<td>117.6</td>
<td>155.7</td>
<td>144.5</td>
<td>145.4</td>
<td>139.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 13</td>
<td>111.7</td>
<td>136.3</td>
<td>136.1</td>
<td>112.3</td>
<td>135.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td># 14</td>
<td>95.5</td>
<td>111.2</td>
<td>146.8</td>
<td>115.0</td>
<td>163.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（平均）

| | 100.4 | 119.6 | 145.5 | 120.9 | 154.8 |

（標準偏差）

| | 11.4 | 23.2 | 13.6 | 13.6 | 26.2 |

%相対値

| | 100 | 119.1 | 144.9 | 120.4 | 154.2 |
試験例3. 酸性毒性試験

6週令、雄のDDYマウス（1群3匹）に対して、試験化合物の酸酸緩衝生理食塩水0.2mlを腹腔内に投与した。24時間後の生存率から50％生存投与量（LD50）を算出した結果、化合物1-1, 17, 25, 26, 30, 33, 35, 40および52におけるLD50は＞1mg/kgであり、それ以外の化合物におけるLD50はいずれも＞30mg/kgであった。

化合物Iまたはその薬理的に許容される塩はその薬理作用に応じて、投与目的に対し、そのままあるいは各種の製薬形態で使用することができる。本発明の製薬組成物は活性成分として、有効な量の化合物Iまたはその薬理的に許容される塩を薬理的に許容される担体と均一に混合して製造できる。この担体は投与に対して望ましい製剤の形態に応じて、広い範囲の形態をとることができる。これらの製薬組成物は、経口的または軟膏、注射などの非経口的投与に対して適する単位服用形態にあることが望ましい。

錠剤の調製にあたっては、例えば乳糖、グルコース、ショ糖、マンニット、メチルセルロース等の賦形剤、例えばデンプン、アルギン酸ナトリウム、カルボキシメチルセルロースカルシウム、結晶セルロース等の崩壊剤、例えばステアリン酸マグネシウム、タルク等の滑沢剤、例えばゼラチン、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、メチルセルロース等の結合剤、例えばショ糖脂肪酸エステル、ソルビット脂肪酸エステル等の界面活性剤などを常法に従って用いよう。錠剤1個あたり500～2000mgの活性成分を含有する錠剤が好適である。

顆粒剤の調製にあたっては例えば乳糖、ショ糖等の賦形剤、澱粉等の崩壊剤、ゼラチン等の結合剤などを常法により用いよう。粉剤の調製にあたっては、例えば乳糖、マンニット等の賦形剤などを常法に従っ
て用いればよい。カプセル剤の調製にあたっては、ゼラチン、水、ショ糖、アラビアガム、ソルビット、グリセリン、結晶セルロース、ステアリン酸マグネシウム、タルク等を常法により用いればよい。カプセル1個あたり50〜200mgの活性成分を含有するカプセルが好適である。シロップ剤の調製にあたっては、例えばショ糖などの糖、水、エタノール等を常法により用いればよい。

軟膏の調製にあたっては例えばワセリン、液体パラフィン、ラノリン、マクロゴール等の軟膏基剤、例えばラウリル乳酸ナトリウム、塩化ベンザルコニウム、ソルビタンモノ脂肪酸エステル、カルボキシメチルセルロースナトリウム、アラビアガム等の乳化剤などを常法により用いればよい。

注射剤の調製にあたっては例えば水、生理食塩水、植物油（例えばオリーブ油、落花生油など）、オレイン酸エチル、プロピレングリコール等の溶剤、例えば安息香酸ナトリウム、サリチル酸ナトリウム、ウレタン等の可溶化剤、例えば食塩、グルコースなどの等張化剤、例えばフェノール、クレゾール、p-ヒドロキシ安息香酸エステル、クロロブタノール等の保存剤、例えばアスコルビン酸、ピロリア硫酸ナトリウム等の抗酸化剤などを常法により用いればよい。

化合物Iもしくはその薬理的に許容される塩は、経口的または軟膏、注射として非経口的に投与可能であり、その有効容量および投与回数は投与形態、患者の年齢、体重、症状等により異なるが、通常一日当たり、22.5〜100mg/m²を1〜4回に分けて投与するのが好ましい。

発明を実施するための最良の形態

実施例1. 注射剤

化合物I-1.2.0gをエタノール20リットルに溶解した後、ミリポアフィルター（孔径0.22μ）で加圧濾過して無菌化を行った。
得られた無菌溶液5.0 mlを褐色バイアルに分注し、常法により凍結乾燥し、0.5 mg/バイアルの凍結乾燥剤を得た。

実施例2 錠剤
化合物I-1、180 mg、ラクトース90 mg、コーンスターチ40 mg、ポリビニルアルコール4 mg、アビセル28 mgおよびステアリン酸マグネシウム1 mgより常法により錠剤を作成した。

実施例3 注射剤
化合物I-22、2.0 gをエタノール20リットルに溶解した後、ミリポアフィルター（孔径0.22 μ）で加圧濾過して無菌化を行った。得られた無菌溶液5.0 mlを褐色バイアルに分注し、常法により凍結乾燥し、0.5 mg/バイアルの凍結乾燥剤を得た。

実施例4 錠剤
化合物I-22、180 mg、ラクトース90 mg、コーンスターチ40 mg、ポリビニルアルコール4 mg、アビセル28 mgおよびステアリン酸マグネシウム1 mgより常法により錠剤を作成した。

実施例5 注射剤
化合物I-48、2.0 gをエタノール20リットルに溶解した後、ミリポアフィルター（孔径0.22 μ）で加圧濾過して無菌化を行った。得られた無菌溶液5.0 mlを褐色バイアルに分注し、常法により凍結乾燥し、0.5 mg/バイアルの凍結乾燥剤を得た。

実施例6 錠剤
化合物I-48、180 mg、ラクトース90 mg、コーンスターチ40 mg、ポリビニルアルコール4 mg、アビセル28 mgおよびステアリン酸マグネシウム1 mgより常法により錠剤を作成した。
実施例 7 I -20の合成

\[\text{(A-1)} \quad \xrightarrow{\text{CH}_3(\text{CH}_2)_5\text{I}} \quad \text{NaH} \quad \text{(E)} \]

\[
\begin{align*}
\text{H}_2 & \quad \xrightarrow{10\% \text{ Pd/C}} \quad \text{I-20}
\end{align*}
\]

参考例 2 記載の I -19 の合成と同様の方法により化合物 (A-1) 100mg (0.16mmol) およびヨウ化ヘキシル70μl(0.48mmol) より化合物 (E) 60.6mg (55.4%) を得た。

\(^1\text{H-NMR(DMSO-d}_6\) \(\delta: 0.880(\text{t, 3H, J=7.1Hz}), 1.302-1.385(\text{m, 6H}), 1.780(\text{m, 2H}), 2.683(\text{s, 3H}), 2.740(\text{s, 3H}), 3.696(\text{m, 1H}), 5.059(\text{d, 1H, J=17.9Hz}), 5.100(\text{d, 1H, J=17.9Hz}), 7.007(\text{br. s, 1H}), 7.274-8.112(\text{m, 7H}), 9.304(\text{d, 1H, J=8.0Hz})。

Fab-MS(m/z): 685(M+1)

参考例 2 記載の I -19 の合成と同様の方法により化合物 (E) 50mg および10% Pd/C 50mg より I -20 15mg (36%) を得た。

\(^1\text{H-NMR(DMSO-d}_6\) \(\delta: 0.883(\text{t, 3H, J=7.2Hz}), 1.306-1.406(\text{m, 6H}), 1.751-1.794(\text{m, 2H}), 2.102(\text{m, 1H}), 2.299(\text{s, 3H}), 3.693(\text{m, 2H}), 4.034(\text{m, 1H})。

32
実施例 8 I - 21 の合成

(A-2) → (G)

HBr/CH₃COOH → I-21

参考例 2 記載の I - 19 の合成と同様の方法により化合物 (A - 2) 113.2 mg (0.2mmol) および臭化ベンジル 47.5 μl (0.4mmol) より化合物 (G) 40mg (31%) を得た。

1H-NMR (DMSO-d₆) δ ; 2.176(dt, 1H, J=6.6, 13.0Hz), 2.343(s, 3H), 2.644(s, 3H), 2.777(s, 3H), 4.271(s, 1H), 4.904(d, 1H, J=15.6Hz), 4.954(d, 1H, J=15.6Hz), 5.028(s, 2H), 7.030(dd, 1H, J=6.9, 8.3Hz), 7.277-8.049(m, 12H), 9.327(d, 1H, J=7.8Hz).

Fab-MS(m/z) ; 657(M+1)

化合物 (G) 18mg (0.027mmol) をクロロホルム 0.5ml に溶解し 25% 臭
化水素酸／酢酸 26.2 μl を加え室温下 1 時間摂拌し析出物をろ取し、
1 - 2 1. 14.4mg (83.7%) を得た。

^1H-NMR(DMSO-d₆) δ : 2.082(m, 1H), 2.271(s, 3H), 2.708(t, 3H, J=5.1Hz),
4.049(m, 1H), 4.425(d, 1H, J=1.0Hz), 4.893(d, 1H, J=15.2Hz), 4.943(d,
1H, J=15.2Hz), 5.013(d, 1H, J=18.1Hz), 5.061(d, 1H, J=18.1Hz), 6.957
(dd, 1H, J=3.0, 9.3Hz), 7.280-8.082(m, 12H), 8.642(br. s, 1H), 8.813
(br. s, 1H), 9.355(d, 1H, J=8.1Hz).

Fab-MS(m/z) ; 557(M+1) ^

実施例 9 1 - 2 4 の合成

1 - 2 , 135mg(0.28mmol) をテトラヒドロフラン (THF) 5ml に溶
解し、プロピオンアルデヒド81.7mg(1.41mmol), シアノ水素化ホウ素ナ
トリウム28.3mg(0.45mmol) を加え、3 N塩酸により p H 5 ～ 6 に調整
した後、3.5 時間摂拌した。3 N塩酸で p H 1 ～ 2 とした後、3 N水酸
化ナトリウムで塩基性にし、クロロホルムで抽出した。水洗、硫酸ナト
リウムで乾燥後、クロロホルムを減圧濃縮し、粗生成物を得た。これを
シリカゲルカラムクロマトグラフィー（メタノール／クロロホルム＝
1 /50）で精製し、I - 24, 73.8mg (収率50%) を得た。

^1H-NMR(400MHz, DMSO-d₆, δ); 9.324(d, 1H, J=8.0Hz), 8.038(m, 2H), 7.576
(d, 1H, J=8.3Hz), 7.469(m, 2H), 7.321(m, 2H), 6.835(dd, 1H, J=3.1, 11.7
Hz), 5.060(s, 2H), 4.205(s, 1H), 3.279(s, 3H), 2.622(s, 3H), 2.399(s,
3H), 1.973(s, 3H), 1.088(m, 2H), 0.578(t, 3H, J=7.3Hz).

Fab-MS(m/z) ; 523(M+1) ^

実施例 1 0 I - 2 9 の合成

スタウロスポリシン (I - 1 7), 513mg(1.1mmol) をクロロホルム 30ml
に溶解し臭素66 μl を -2 3℃で加え 4 時間摂拌した。反応溶液にエー
テル20mlを加え析出物をろ取し、ついでHPLC（28%水酸化アンモニウム

3 4

H₂O / メタノール=1/15/85）により精製を行い1-29, 273mg(43％)を得た。

H-NMR(DMSO-d₆) δ: 1.422(s, 3H), 2.307(s, 3H), 4.066(d, 1H, J=3.5Hz), 4.959(s, 2H), 6.710(dd, 1H, J=2.2, 4.8Hz), 7.271-7.998(m, 6H), 8.561(s, 1H), 9.454(d, 1H, J=1.9Hz).

Fab-MS(m/z) ; 546(M+1)⁺

実施例11 I-30の合成

塩化アルミニウム333mg (2.5mmol) を乾燥ジクロロメタン50mlに溶解し、0℃に冷却後、塩化アセチル88.9μl (1.25mmol) を加え30分間攪拌した。ジクロロメタン25mlに溶解させた化合物(A-1)500mg (0.83mmol)を加え0℃で5時間攪拌した。反応終了に饱和炭酸水素ナトリウム水溶液を加え、クロロホルムで抽出し、硫酸ナトリウムで乾燥した。

溶媒を留去後、シリカゲルカラムクロマトグラフィー(2% メタノール/クロロホルム) で精製し、化合物 (R-1) 333.3mg (収率62％)を得た。

H-NMR(400MHz, DMSO-d₆) δ: 10.015(s, 1H), 8.630(s, 1H), 8.111-8.071(m, 2H), 7.988(br, s, 1H), 7.725(d, 1H, J=8.6Hz), 7.541-7.362(m, 7H), 7.076(s, 1H), 5.201(s, 2H), 5.028(s, 2H), 4.683(br, s, 1H), 4.295(br.
化合物（R-1）39.6mg (0.062mmol) を、I-31と同様な反応を行い、I-30, 16.3mg (収率52%)を得た。

1H-NMR(400MHz, DMSO-d$_6$) δ: 10.015(s, 1H), 8.531(s, 1H), 8.087(dd, 1H, J=1.8, 8.7Hz), 7.981(t, 2H, J=7.1Hz), 7.700(d, 1H, J=8.8Hz), 7.451-7.408(m, 1H), 7.294(t, 1H, J=7.4Hz), 6.774(br.s, 1H), 4.978(s, 2H), 4.648(d, 1H, J=7.1Hz), 4.090(d, 1H, J=3.4Hz), 3.384(s, 3H), 2.757(s, 3H), 2.326(s, 3H), 1.417(s, 3H).

Fab-MS(m/z): 509(M+1) +

実施例12 I-31の合成

塩化アルミニウム1.11g (8.33mmol) を乾燥ジクロロメタン30mlに溶解し、0℃に冷却後、塩化アセチル0.59ml (8.33mmol)を加えて30分間攪拌した。さらにジクロロメタン15mlに溶解させた化合物 (A-1) 1.00g (1.67mmol) を加えて、0℃で1時間攪拌した。飽和炭酸水素ナトリウムでクエンチし、クロロホルムで抽出後、水、食塩水で洗浄し、硫酸ナトリウムで乾燥させた。溶媒を留去後、残渣をシリカゲルカラムクロマ
トグラフィー（メタノール／クロロホルム＝1/50）で精製し、化合物（H）546.8mg（収率48％）を得た。

\(^{1}\text{H}-\text{NMR}(400\text{MHz}, \text{DMSO-}d_{6})\delta; 10.016(\text{s, 1H}), 8.715(\text{s, 1H}), 8.603(\text{s, 1H})
\), 8.291(\text{s, 1H}), 8.125-8.099(\text{m, 3H}), 7.742(\text{d, 1H}, \text{J}=8.8\text{Hz}), 7.408(\text{br. s, 5H}), 7.094(\text{t, 1H}, \text{J}=7.5\text{Hz}), 5.206(\text{s, 2H}), 5.130(\text{s, 2H}), 4.666(\text{br. s, 1H}), 4.332(\text{br. s, 1H}), 2.693(\text{s, 3H})
\)

\text{Fab-MS(m/z): 685(M+1)}^+

化合物（H）50mg（0.073mmol）をDMF 3mlに溶解し10％Pd/C 25mgを加え、H\(_2\)気流下、室温で5時間攪拌した。反応終了後、セライトろ過し、溶媒を留去することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー（メタノール／クロロホルム＝1/9）で精製し、I-31, 13.6mg（収率34％）を得た。

\(^{1}\text{H}-\text{NMR}(400\text{MHz}, \text{DMSO-}d_{6}, \delta); 10.024(\text{s, 1H}), 8.626(\text{s, 1H}), 8.520(\text{s, 1H}), 8.289(\text{s, 1H}), 8.111-8.015(\text{m, 3H}), 7.729(\text{d, 1H}, \text{J}=8.7\text{Hz}), 6.803(\text{d, 1H}, \text{J}=4.4\text{Hz}), 5.084(\text{s, 2H}), 4.116(\text{d, 1H}, \text{J}=3.4\text{Hz}), 3.420(\text{s, 3H}), 2.733(\text{s, 3H}), 2.699(\text{s, 3H}), 2.341(\text{s, 3H}), 1.350(\text{br. s, 3H})
\)

\text{Fab-MS(m/z): 551(M+1)}^+

実施例13 I-32の合成

乾燥ジクロメタン4mlに、化合物（A-1）50mg（0.081mmol）を溶解させ、0℃に冷却下、四塩化チタン149μl（0.16mmol）、α, α-ジクロロメチルメチルエーテル38μl（0.16mmol）を加え、0℃で2.5時間攪拌した。反応終了後、クロロホルム50mlで希釈し、飽和炭酸水素ナトリウム水溶液及び水で洗浄し、硫酸ナトリウムで乾燥した。溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー（メタノール／クロロホルム＝1/20）で精製し、I-32, 22.2mg（収率51％）を得た。

\(^{1}\text{H}-\text{NMR}(500\text{MHz}, \text{DMSO-}d_{6})\delta; 10.099(\text{s, 1H}), 9.821(\text{s, 1H}), 9.227(\text{s, 1H}),
8.698 (s, 1H), 8.592 (s, 1H), 7.994 (m, 3H), 7.800 (d, 1H, J=8.6Hz), 6.811 (br.s, 1H), 4.986 (s, 2H), 4.100 (br.s, 1H), 3.382 (s, 3H), 2.328 (s, 3H), 1.417 (br. s, 3H).

Fab-MS (m/z): 523 (M+1) *

実施例 14 I - 33 の合成

(R-1) \((\text{CH}_3\text{CO})_2\text{O}\) \(\xrightarrow{\text{DMAP}}\) \(\rightarrow\) (R-2)

1) mCPBA
2) NaOCH$_3$

(T) \(\xrightarrow{\text{CH}_3\text{(CH}_2\text{)}_2\text{l}}\) \(\xrightarrow{\text{NaH}}\) (M)

\(\xrightarrow{\text{H}_2\ 10\% \text{Pd/C}}\) I - 33
化合物（R－1）219.3mg（0.34mmol）を、テトラヒドロフラン10mlに溶解した後、無水酢酸0.32ml（3.42mmol）、4-ジメチルアミノビリジン208.7mg（1.71mmol）を加え、60℃で9時間反応させた。メタノール10mlを加え、反応液を1/2量まで濃縮した後、食塩水を加えクロロホルムで抽出し、硫酸ナトリウムで乾燥した。溶媒留去後残渣をシリカゲルカラムクロマトグラフィー（メタノール/クロロホルム＝1/100）で精製し、化合物（R－2）226.8mg（収率97％）を得た。

1H-NMR（400MHz, DMSO-d₆）δ：9.808(s, 1H), 8.088(dd, 1H, J=1.7, 8.8Hz), 8.060(d, 1H, J=7.6Hz), 7.716(d, 1H, J=8.5Hz), 7.562-7.395(m, 8H), 7.049(s, 1H), 5.351(s, 2H), 5.198(s, 1H), 4.666(br.s, 1H), 4.280(br.s, 1H), 3.264(s, 3H), 2.733(s, 3H), 2.650(s, 3H).

Fab-MS（m/z）：685（M+1）⁺

化合物（R－2）170mg（0.25mmol）を、クロロホルム10mlに溶解した後、炭酸水素ナトリウム105mg（1.25mmol）及びメタクロロ過安息香酸24mg（1.25mmol）を加え、室温で8時間反応させた。反応終了液を飽和亜硫酸ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液及び水で洗浄し、硫酸ナトリウムで乾燥した。溶媒留去後、残渣をジクロロメタン10mlに溶解した後、0℃に冷却し、28％ナトリウムメチラートメタノール溶液246μl（1.25mmol）を加え、10分間攪拌した。反応終了液に2N希塩酸を加え中和した後、クロロホルムで抽出し、水洗後、硫酸ナトリウムで乾燥した。溶媒留去後残渣をシリカゲルカラムクロマトグラフィー（5％メタノール/クロロホルム）で精製し、化合物（T）90.9mg（収率59％）を得た。

1H-NMR（500MHz, DMSO-d₆）δ：9.032(br.s, 1H), 8.712(s, 1H), 8.495(s, 1H), 8.032(d, 1H, J=7.4Hz), 7.579-7.304(m, 8H), 6.959(dd, 1H, J=2.5, 8.6Hz), 6.893(br.s, 1H), 5.190(s, 2H), 4.957(s, 2H), 4.675(br.s, 1H), 4.038(m, 2H), 2.678(s, 3H), 2.016(s, 3H).
4.260(br.s.1H), 2.746(s.3H), 2.686(br.s.3H).
Fab-MS(m/z): 616(M+1)

乾燥DMF 2mlに化合物(T) 50mg(0.081mmol)を溶解させ、0℃に冷却下、60%水素化ナトリウムin oil 3.2mg(0.081mmol)を加えて30分間攪拌した。さらに、1-ヨードプロパン 41µl(5当量)を加え、0℃で3時間攪拌した。反応終了後、クロロホルム50mlで希釈し、飽和塩化アンモニウム水溶液及び食塩水で洗浄し、硫酸ナトリウムで乾燥した。溶媒を留去後残渣をシリカゲルカラムクロマトグラフィー（メタノール/クロロホルム＝1/200）で精製し、化合物(M)20.5mg(収率38%)を得た。

1HNMR(400MHz, DMSO-d6) δ: 8.909(s.1H), 8.510(s.1H), 8.050(d.1H, J=8.1Hz), 7.527-7.331(m.8H), 7.132(dd, 1H, J=2.7, 8.8Hz), 6.942(br.s.1H), 5.193(s.2H), 4.977(s.2H), 4.678(br.s.1H), 4.262(br.s.1H), 4.042(t.2H, J=6.6Hz), 2.741(s.3H), 2.675(s.3H), 1.850-1.798(m.2H), 1.055(t.3H, J=7.4Hz).

Fab-MS(m/z): 658(M+1)

化合物(M)19.6mg(0.030mmol)をDMF 2mlに溶解し、10% Pd/C 10mgを加え、H2雰囲気下、室温で2時間攪拌した。反応終了後、セライトろ過し、溶媒を留去することにより粗生成物を得た。分取TLC(10%メタノール/クロロホルム)で精製し、I-33, 11.3mg(収率72%)を得た。

1HNMR(500MHz, DMSO-d6) δ: 8.902(s.1H), 8.426(br.s.1H), 7.986-7.944(m.2H), 7.490(d.2H, J=8.8Hz), 7.409(t.1H, J=7.9Hz), 7.279(t.1H, J=7.4Hz), 7.111(dd, 1H, J=2.6, 8.8Hz), 6.672(br.s.1H), 4.932(s.2H), 4.081(br.s.1H), 4.042(t.2H, J=6.8Hz), 2.317(s.3H), 1.849-1.807(m, 2H), 1.063(t.3H, J=7.4Hz).
Fab-MS(m/z) : 525(M+1) *

実施例15 I - 3 9 の合成

K-252a (I - 3 5), 103mg(0.224mmol)をTHF11mlに溶解し、室温下60% 水素化ナトリウム14mgを加え10分間攪拌後メトキシメチルクロライド20μLを加え1晩攪拌した。反応溶液をクロロホルムで希釈後水、食塩水で洗浄し硫酸ナトリウムで乾燥した。溶媒留去後残渣をシリカゲルカラムクロマトグラフィー（クロロホルム）で精製し I - 3 9,
34.8mg (30.9%) を得た。

1H-NMR(CDC13) δ ; 2.258(s,3H), 2.467(dd,1H, J=5.4,13.9Hz), 2.625(s,3H), 3.378(dd,1H, J=7.3,13.9Hz), 4.025(s,3H), 4.480(d,1H, J=7.4 Hz), 4.560(d,1H, J=7.4Hz), 5.075(s,2H), 6.537(br.s,1H), 7.001(dd, 1H, J=5.3,7.2Hz), 7.346-7.953(m,7H), 9.334(d,1H, J=7.9Hz).
SIMS(m/z) ; 512(M+1) *
実施例16 I-51の合成

(I-18) → CH₃COCl, AlCl₃ → (R-4), (R-5), (I-51)
塩化アルミニウム1.05 g（7.89 mmol）を乾燥ジクロロメタン100 ml に溶解し0 ℃に冷却後、塩化アセチル0.56 ml（7.89 mmol）を加えて、30分間攪拌した。さらに、ジクロロメタン25 mlに溶解させた化合物 I - 18 0.97 g（1.58 mmol）を加えて、0 ℃で3 時間攪拌した。飽和炭酸水素ナトリウムで塩基性とし、クロロホルムで抽出後、水、食塩水で洗浄し、硫酸ナトリウムで乾燥させた。溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー（メタノール/クロロホルム = 1 / 50）にて精製し、化合物（R - 4）0.21 g（収率21%）、化合物（R - 5）0.40 g（収率35%）及び I - 51, 0.15 g（収率17%）を得た。

化合物（R - 4）

1H-NMR(500 MHz, DMSO-d$_6$) δ: 10.041(s, 1H), 8.085(t, 2H, J=8.8 Hz), 7.721(d, 2H, J=9.3 Hz), 7.543-7.312(m, 8H), 5.197(s, 2H), 5.116(s, 2H), 4.693(br. s, 1H), 4.288(br. s, 1H), 2.744(s, 3H), 2.698(s, 3H).

Fab-MS(m/z); 657(M+1) +

化合物（R - 5）

1H-NMR(500 MHz, DMSO-d$_6$) δ: 10.032(s, 1H), 8.587(s, 1H), 8.106-8.086 (m, 3H), 7.724(d, 1H, J=8.6 Hz), 7.402(br. s, 5H), 7.077(t, 1H, J=7.6 Hz), 5.234(s, 4H), 2.755(s, 3H), 2.738(s, 3H), 2.690(s, 6H).

Fab-MS(m/z); 699(M+1) +

化合物 I - 51

1H-NMR(500 MHz, DMSO-d$_6$) δ: 10.044(s, 1H), 8.514(s, 1H), 8.103-8.030 (m, 3H), 7.729(d, 1H, J=8.8 Hz), 6.795(d, 1H, J=5 Hz), 5.161(s, 2H), 4.113(s, 1H), 3.412(s, 3H), 2.732(s, 3H), 2.701(s, 3H), 2.340(s, 3H).

Fab-MS(m/z); 565(M+1) +
実施例17 I - 48の合成

化合物 (R - 5) 222.9 mg (0.32 mmol) をクロロホルム20mlに溶解した後、炭酸水素ナトリウム108.9mg (1.30 mmol) 及びメタクロロ過安息香酸419.3mg(2.43 mmol) を加え、室温にて8時間反応させた。反応終了後、飽和亜硫酸ナトリウム水溶液、飽和炭酸水素ナトリウム水溶液及び水で洗浄し、硫酸ナトリウムで乾燥した。

溶媒留去後、残渣をジクロロメタン20mlに溶解した後、0℃に冷却し、28％ナトリウムメチルラートメタノール溶液237μl(0.97mmol)を加え10分間攪拌した。反応終了後に2N 塩酸を加え中和した後、クロロホルムで抽出し、水洗の後、硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー (5％メタノール／クロロホルム)にて精製し、化合物 (Z - 1) 112.6mg (収率54％) を得た。

\(^1\)H-NMR(500MHz, DMSO-\(d_6\)) δ : 9.208(s, 1H), 9.007(s, 1H), 8.716(s, 1H), 7.718-7.646(m, 2H), 7.571-7.300(m, 6H), 6.973-6.937(m, 2H), 6.855(br. s, 1H), 5.181(s, 2H), 4.977(s, 2H), 4.635(br. s, 1H), 4.137(br. s, 1H), 2.733(s, 3H), 2.635(s, 3H).

Fab-MS(m/z) : 646(M)^+
化合物 (Z-1) 199.3 mg (0.31 mmol) を DMF 10 ml に溶解し、10％ Pd-C 100 mg を加え、水素雰囲気下、室温で 2 時間攪拌した。反応混合物をセライトろ過し、溶媒を留去することにより粗生成物を得た。これを少量のメタノールに溶解し、0.61N 塩酸／酢酸エチル 10 ml を加えろ過し、乾燥することにより I-48, 165 mg (収率 97％) を得た。

\[^1H-NMR(400 MHz, DMSO-d_6) \delta; 8.750 (s, 1H), 7.857 (d, 1H, J=9 Hz), 7.369-7.323 (m, 2H), 7.023-6.969 (m, 2H), 6.828 (dd, 1H, J=3.9, 3 Hz), 4.991 (s, 2H), 4.388 (s, 1H), 3.978 (br, s, 1H), 2.666 (s, 3H), 2.426 (s, 3H), 2.291 (s, 3H). \]

Fab-MS (m/z); 513 (M+1)^+
実施例18 I-47の合成

化合物（R-4）437mg（0.08mmol）を化合物（Z-1）と同様の反応を行い、化合物（Z-2）292mg（収率69%）を得た。

1H-NMR(500MHz, DMSO-d$_6$) δ: 9.039(s, 1H), 8.738(s, 1H), 8.034(d, 1H, J = 7.2Hz), 7.588-7.306(m, 8H), 6.931(dd, 1H, J=2.5, 8.7Hz), 6.889(br.s, 1H), 5.189(s, 2H), 5.044(s, 2H), 4.497(br.s, 1H), 4.256(br.s, 1H), 2.742(s, 3H), 2.665(s, 3H).

Fab-MS(m/z): 630(M)$^+$

(Z-2)
化合物（Z - 2）200mg (0.32mmol)を、化合物（I - 4 8）と同様の反応を行い、化合物（I - 4 7）162 mg（収率95%）を得た。

1H-NMR(400MHz, DMSO-d$_6$) δ: 8.773(s, 1H), 8.076-8.046(m, 2H), 7.529(t, 1H, J=8.6Hz), 7.414-7.344(m, 2H), 7.018(dd, 1H, J=2.5, 8.8Hz), 6.856(dd, 1H, J=3.2, 9.3Hz), 5.057(s, 2H), 4.476(s, 1H), 4.006(br. s, 1H), 2.680(s, 3H), 2.292(s, 3H).

Fab-MS(m/z): 497(M+1)$^+$

実施例19 I - 5 0 の合成

乾燥ジクロロメタン30mlに、化合物（I - 1 8）300mg（0.49mmol）を溶解させ、0 ℃に冷却下、四塩化チタン107μl（0.98mmol）、α, α-ジクロロメチルメチルエーテル133 μl（1.47mmol）を加え、0 ℃で2.5 時間攪拌した。反応終了後、クロロホルム100mlで希釈し、飽和炭酸水素ナトリウム水溶液及び水で洗浄し、硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー（メタノール／クロロホルム= 3/100）にて精製し、I - 5 0, 102.3mg（収率33%）を得た。

1H-NMR(500MHz, DMSO-d$_6$) δ: 10.102(s, 1H), 9.848(s, 1H), 8.014-7.980(m, 3H), 7.793(d, 1H, J=8.5Hz), 7.454(t, 1H, J=7.5Hz), 7.317(t, 1H, J=7.0Hz), 7.085(s, 1H), 6.863(d, 1H, J=7.5Hz), 6.789(d, 1H, J=7.0Hz), 6.550(d, 1H, J=7.0Hz), 6.456(s, 1H), 5.057(d, 1H, J=4.0Hz), 4.476(s, 1H), 4.006(br. s, 1H), 2.680(s, 3H), 2.292(s, 3H).
実施例 2 0 I - 4 9 の合成

化合物 (I - 3 4) 200mg (0.42mmol) を THF 10ml に溶解し 35% ホルムアルデヒド溶液 179μl (2.08mmol)、シアノ水素化ホウ素ナトリウム 26.2mg (0.42mmol) を加え、2 N 塩酸により pH5-6 に精製した後、2.5 時間攪拌した。反応終了後、クロロホルム 100ml で希釈し、飽和炭酸水素ナトリウム水溶液及び食塩水で洗浄し、硫酸ナトリウムで乾燥した。溶媒留去後、残渣をシリカゲルカラムクロマトグラフィー（メタノール/クロロホルム=1/20）にて精製した。遊離の I - 4 9 を少量のクロロホルムに溶解後、0.61N 塩酸/酢酸エチル10mlを加え、ろ過し乾燥することにより、I - 4 9, 157.2mg (71%) を得た。

\[^1H-NMR(400MHz, CDCl_3) \delta : 9.505(d, 1H, J=7.3Hz), 7.943(d, 1H, J=7Hz), 7.847(d, 1H, J=9Hz), 7.516-7.240(m, 6H), 6.649-6.621(m, 1H), 4.984(s, 2H), 3.973(br.s, 1H), 3.004(br.s, 1H), 2.734(s, 3H), 2.657-2.616(m, 2H), 2.415(s, 3H), 1.967(s, 6H). \]

Fab-MS(m/z) : 495(M+1)^+
参考例1 I - 12 の合成

化合物 (W) (特開昭63-295588) 99mg (0.2mmol) をジェメチルホルムアミド 2ml に溶解し、氷冷下、60％水素化ナトリウム 16mg (0.4mmol) を加えた。10分攪拌後、ヨウ化 n-プロピル 0.04ml (0.4mmol) を加え、さらに氷冷下で1時間攪拌した。得られた反応溶液に飽和塩化アンモニア水を加え、クロロホルム抽出を行なった。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒留去後、得られた残渣をテトラヒドロフランークロロホルムで結晶化し、I - 12 を98mg (収率84％) 得た。

1H-NMR(CDC$_3$/DMSO-d$_6$ 10/1) δ ; 2.09 (t, 6H, J=8Hz), 2.12 (s, 3H, CH$_3$), 4.96 (s, 2H), 6.17 (s, 1H, OH), 8.24 (s, 1H), 8.82 (s, 1H)
MS (m/z) ; 583 (M$^+$)
参考例 2 I-19 の合成

化合物 (A-1) 90mg(0.15mmol) を DMF 4.5ml に溶解し、-23℃で60% 水素化ナトリウム 9mg(0.22mmol) を加え、ついて10分後にヨウ化 n-プロピル45μl を加え 2 時間攪拌した。5%クエン酸水溶液でクエンチし、クロロホルムで希釈後、水、食塩水で洗浄し硫酸ナトリウムで乾燥した。溶媒を留去後残渣をシリカゲルカラムクロマトグラフィー（アセトン/トルエン = 1/9）で精製し、化合物 (B) 78.8mg(82%) を得た。

^1H-NMR(DMSO-d6) δ: 0.975(t, 3H, J=7.3Hz), 1.801(m, 2H), 2.732(s, 3H), 2.736(s, 3H), 3.669(m, 2H), 4.275(br.s, 1H), 4.678(br.s, 1H), 5.086(s, 2H), 5.197(s, 2H), 7.005(br.s, 1H), 7.271-8.110(m, 7H), 9.311(d, 1H, J=7.8Hz).

Fab-MS(m/z): 643(M+1)^+

化合物 (B) 25mg を DMF 1ml に溶解し、10% Pd/C 25mg を加え H₂
霧囲気下50℃で1.5時間攪拌した。反応溶液をセライトろ過後溶媒を留去し残渣を分取TLC（メタノール/クロロホルム＝3/97）で精製した。ついでクロロホルム1mlに溶解し0.6N塩酸/酢酸エチル1mlを加え析出物をろ取し、I-19、10.7mg(51%)を得た。

\(^{1}\)H-NMR(DMSO-d\(_6\)) δ：0.986(t, 3H, J=7.28Hz), 1.807(m, 2H), 2.102(m, 1H), 2.296(s, 3H), 2.686(s, 3H), 3.668(t, 2H, J=7.2Hz), 4.033(m, 1H), 4.516(s, 1H), 5.097(s, 2H), 6.950(dd, 1H, J=3.1, 9.5Hz), 7.305-8.147(m, 7H), 8.978(br.s, 1H), 9.185(br.s, 1H), 9.339(d, 1H, J=8.1Hz).

FAB-MS(m/z)：509(M+1)⁺

参考例3 I-22の合成

I-2, 1.6gをTHF450mlおよびエタノール200mlに溶解しアスパラギン酸444mgの水溶液70mlを加えた。有機溶媒を留去後凍結乾燥を行いI-22, 1.91gを得た。

\(^{1}\)H-NMR(DMSO-d\(_6\)) δ：1.476(s, 3H), 2.316(s, 3H), 2.422(dd, 1H, J=3.2, 15.8Hz), 2.726(dd, 1H, J=11.3, 15.8Hz), 3.752(dd, 1H, J=3.2, 11.3Hz), 4.081(d, 1H, J=3.4Hz), 5.031(s, 2H), 6.723(m, 1H), 7.246-7.999(m, 7H), 9.291(d, 1H, J=7.3Hz).
参考例 4 I - 2 3 a および 2 3 b の合成

化合物 (I - 1 8) 6 1 . 4 mg を酢酸 1 . 0 ml に溶解し、四酢酸鉛（純度 9 5 . 6 %） 4 6 . 3 mg を加え、室温で 3 時間攪拌した。反応液に酢酸エチル約 3 0 ml を加え、水、饱和炭酸ナトリウム水溶液、饱和食塩水で順次洗浄後、酢酸エチル層を硫酸ナトリウムで乾燥、減圧濃縮乾固した。残留物をシリカゲルカラムクロマトグラフィー [溶媒系：トルエン - 酢酸エチル]
（8：1）で精製し、先に溶出する酸化生成物（F a）24.0 mg、後に
溶出する酸化生成物（F b）25.4 mgを得た。

酸化生成物（F a）; 1H-NMR(400MHz)(DMSO-d6. 90℃) δ : 9.28(1H, ddd.
J=0.7, 1.2, 7.8Hz), 8.46(1H, ddd. J=0.7, 1.2, 7.8Hz), 7.87(1H, d. J=8.5Hz),
7.58(1H, d. J=8.3Hz), 7.2 ～ 7.5 (9H, m), 6.95(1H, dd. J=5.9, 8.8Hz), 6.44
(1H, d. J=9.8Hz), 6.27(1H, d. J=9.5Hz), 5.21(2H), 4.68(1H, ddd. J=2.5, 4.8,
12.4Hz), 4.23(1H, br. s), 3.15(3H, s), 2.75(3H, s), 2.7 ～ 2.8(1H, m),
2.65(3H, s), 2.30(3H, s), 2.2 ～ 2.4(1H, m)
FAB-MS(m/z) : 630 [M+]

酸化生成物（F b）; 1H-NMR(400MHz)(DMSO-d6. 90℃) δ : 9.27(1H, ddd.
J=0.7, 1.2, 8.0Hz), 8.51(1H, dt. J=7.3, 0.7Hz), 7.87(1H, d. J=8.8Hz), 7.60
(1H, d. J=8.3Hz), 7.2 ～ 7.5 (9H, m), 6.95(1H, dd. J=6.4, 8.5Hz), 6.44(1H, d.
J=9.8Hz), 6.26(1H, d. J=9.5Hz), 5.21(2H), 4.67(1H, ddd. J=2.9, 4.0, 13.5
Hz), 4.24(1H, br. s), 3.15(3H, s), 2.75(3H, s), 2.7 ～ 2.8(1H, m), 2.73
(3H, s), 2.29(3H, s), 2.2 ～ 2.4(1H, m)
FAB-MS(m/z) : 630 [M+]

酸化生成物（F a）15.7 mgをジメチルホルムアミド1.0 mlに溶解し20
％水酸化パラジウム付活性炭（パールマン触媒）3 mgを加えて水素中で3
時間攪拌した。セラライトを用いて触媒を濾別後、反応液を減圧濃縮し、残
留物をシリカゲルカラムクロマトグラフィー [溶媒系: 0.05％トリエチ
ルアミン添加クロロホルム－メタノール(50: 1)] にて精製し、I - 23 a
8.9 mgを得た。

1H-NMR(400MHz)(DMSO-d6) δ : 9.25(1H, d. J=7.6Hz), 8.37(1H, d.
J=7.4Hz), 7.98(1H, d. J=8.5Hz), 7.60 (1H, d. J=8.3Hz), 7.47(1H, ddd. J=1.2, 7.1, 8.3
Hz), 7.41(1H, ddd. J=1.2, 7.1, 8.3Hz), 7.27(2H, q. J=7.2Hz), 6.71(1H, t. J
=7.2Hz), 6.60(1H, d. J=10.0Hz), 6.23(1H, d. J=9.8Hz), 4.08(1H, d. J=3.5

53
ヘクトル、3.34(3H,s), 3.14(3H,s), 2.30(3H,s), 1.46(3H,s)

FAB-MS(m/z): 497 [M+H] +

同様にして酸化生成物（F b）12.7 mgから1 - 23 b 8.9 mgを得た。

\[^1H-NMR(400MHz)(DMSO-d_6) \delta: 9.26(1H, d, J=7.8Hz), 8.42(1H, dd, J=1.0, 7.8Hz), 7.97(1H, d, J=8.5Hz), 7.60(1H, d, J=8.3Hz), 7.47(1H, ddd, J=1.2, 7.1, 8.3Hz), 7.41(1H, ddd, J=1.2, 7.1, 8.3Hz), 7.27(2H, m), 6.69(1H, t, J=3.7Hz), 6.65(1H, d, J=9.5Hz), 6.25(1H, d, J=9.5Hz), 4.08(1H, d, J=3.5Hz), 3.36(3H,s), 3.13(3H,s), 2.30(3H,s), 1.52(3H,s) \]

FAB-MS(m/z): 497 [M+H] +

参考例5 I - 2 5 の合成

スタウロスポリシン（I - 17），400 mg（0.86mmol）をTHF 15 ml
に溶解し、ホルムアルデヒド 0.12 ml、シアノ水素化ホウ素ナトリウム
27.0 mg（0.43 mmol）を加え、3 N塩酸によりpH 5 〜 6 に調整した後、5
時間攪拌した。3 N塩酸でpH 1 〜 2 とした後、3 N水酸化ナトリウム
で塩基性にし、クロロホルムで抽出した。水洗、硫酸ナトリウムで乾燥
後、溶媒を留去し残渣をシリカゲルカラムクロマトグラフィー（メタノール/クロロホルム＝1 / 2 0）で精製し、I - 2 5，142.9 mg（収率
35％）を得た。

\[^1H-NMR(400MHz,CDCl_3) \delta: 9.445(d, 1H, J=8.0Hz), 7.934(d, 1H, J=7.1Hz), 7.860(d, 1H, J=8.3Hz), 7.516-7.280(m, 5H), 6.674(m, 1H), 6.223(br, s, 1H), 5.020(s, 1H), 3.992(br, s, 1H), 2.761(s, 3H), 2.423(s, 3H), 1.971 (br, S, 6H). \]

FAB-MS(m/z): 481(M+1) +

参考例6 I - 2 6 の合成

スタウロスポリシン（I - 17），50 mg（0.11 mmol）をTHF 2 mlに溶
解し、プロピオアルデヒド 0.04 ml、シアノ水酸化ホウ素ナトリウム 10.9
mg(0.17mmol)を加え、3N塩酸によりpH 5～6に調整した後、3.5 時間攪拌した。
3N塩酸でクエンチ後、3N水酸化ナトリウムで塩基性にし、クロロホルムで抽出した。水洗、硫酸ナトリウムで乾燥後、溶媒を留去し残渣をシリガルカラムクロマトグラフィー（メタノール/クロロホルム=1/20）で精製し、I - 2 6, 43.3mg（収率43%）を得た。

1H-NMR(500MHz, DMSO-d6) δ: 9.458(d, 1H, J=7.9Hz), 7.953(d, 1H, J=7.1Hz), 7.823(d, 1H, J=8.5Hz), 7.515-7.274(m, 5H), 6.705(m, 1H), 6.165(s, 1H), 5.038(s, 2H), 3.963(s, 1H), 3.221(t, 1H, J=7.5Hz), 2.657(m, 2H), 2.562(s, 3H), 2.429(s, 3H), 2.102(s, 3H), 1.256(m, 2H), 0.7074(t, 3H, J=7.3Hz).

Fab-MS(m/z): 509(M+1)*

参考例7 I - 2 7 の合成

スタウロスポリリン（I - 1 7 ）、50mg(0.11mmol)をTHF 2mlに溶解し、カブロンアルデヒド 0.06ml、シアノ水酸化ホウ素ナトリウム10.9mg(0.17mmol)を加え、3N塩酸によりpH 5～6に調整した後、3.5 時間攪拌した。3N塩酸でpH 1～2とした後、3N水酸化ナトリウムで塩基性にし、クロロホルムで抽出した。水洗、硫酸ナトリウムで乾燥後、溶媒を留去し残渣をシリガルカラムクロマトグラフィー（メタノール/クロロホルム=1/20）で精製し、I - 2 7, 19.8mg（収率34%）を得た。

1H-NMR(400MHz, CDCl3) δ: 9.461(d, 1H, J=7.6Hz), 7.886(d, 1H, J=7.0Hz), 7.808(d, 1H, J=8.6Hz), 7.485-7.211(m, 5H), 6.691(br. s, 1H), 6.611(t, 1H, J=5.9Hz), 4.964(s, 2H), 3.934(br. s, 1H), 3.185(m, 1H), 2.602(m, 2H), 2.545(s, 3H), 2.399(s, 3H), 2.032(s, 3H), 1.561-0.871(m, 8H), 0.827(t, 3H, J=7.2Hz).
Fab-MS(m/z): 551(M+1) +

参考例 8 I - 3 4 の合成
I - 2, 840mg をクロロホルム 10mlに溶解し 0.6N塩酸/酢酸エチル
5mlを加え析出物をろ取し、ついでメタノールより再結晶を行い I - 3 4, 613mg を得た。

\[^1H-NMR(DMSO-d_6) \delta : 2.112(m, 1H), 2.285(s, 3H), 2.678(s, 3H), 4.033 \]
\[(br.s, 1H), 4.508(s, 1H), 5.087(s, 2H), 6.941(dd, 1H, J=3.2, 9.5Hz), \]
\[7.310-8.099(m, 7H), 9.335(d, 1H, J=7.9Hz). \]

参考例 9 I - 3 8 の合成

化化合物 (I - 6), 52.5mg(0.1mmol)をDMF 2mlに溶解し水冷下
60% 水素化ナトリウム12mg(0.3mmol)を加え15分間攪拌後ヨウ化メチル
19μl(0.3mmol)を加え1.5 時間攪拌した。反応溶液を酢酸エチルで希釈
後食塩水で洗浄し硫酸ナトリウムで乾燥した。溶媒留去後残渣を分取TLC（メタノール/クロロホルム = 2 / 98）に精製し I - 3 8, 23mgを
得た。

\[^1H-NMR(CDCl_3) \delta : 1.109(t, 3H, J=7.4Hz), 1.896(m, 2H), 2.219(s, 3H), \]
\[3.130(s, 3H), 3.409(s, 3H), 4.033(s, 3H), 4.200(t, 2H, J=6.5Hz), 4.960 \]
\[(d, 1H, J=17.1Hz), 4.967(d, 1H, J=17.1Hz), 6.924(dd, 1H, J=5.3, 7.1Hz), \]
7.136-7.938(m, 6H), 8.996(d, 1H, J=2.4Hz).

Fab-MS(m/z) ; 554(M+1) +

参考例10 I - 40の合成

化合物(I - 36), 50mg (0.1mmol) をTHF 1.5ml に溶解し室
温下N - プロモプロピルシアニン53.4mg (0.3mmol) を加え2時間攪拌し
た。クロロホルムで希釈し5％チオ硫酸ナトリウム水溶液、水、食塩水で
順次洗浄後、硫酸ナトリウムで乾燥した。溶媒留去後残渣を分取TLC
（メタノール/クロロホルム = 2/98）で精製し、I - 40, 28mgを得た。

1H-NMR(CDCl3) δ : 2.182(s, 3H), 2.213(dd, 1H, J=5.2, 13.5Hz), 3.152
(s, 3H), 3.400(dd, 1H, J=7.4, 13.4Hz), 4.041(s, 3H), 5.030(d, 1H, J=16.7
Hz), 5.072(d, 1H, J=16.8Hz), 6.471(br.s, 1H), 6.940(d, 1H, J=5.3, 7.3
Hz), 7.394-8.015(m, 4H), 8.017(d, 1H, J=1.9Hz), 9.478(d, 1H, J=1.8Hz).

Fab-MS(m/z) ; 640(M+1) +
参考例 11 I - 52 の合成

化合物（T）20μg (0.032mmol) をDMF 2 mlに溶解し、10% Pd-C 20mgを加えて、水素雰囲気下、室温で2日間摂拌した。反応終了後、セライトろ過し、溶媒を留去することにより粗生成物を得た。シリカゲルカラムクロマトグラフィー（メタノール／クロロホルム＝1／9）にて精製し、I - 52, 4.7mg（収率30%）を得た。

\[^1H-NMR(400 MHz, DMSO-d_6) \delta: 8.962(s, 1H), 8.704(s, 1H), 8.428(s, 1H), 7.986-7.938(m, 2H), 7.513-7.258(m, 3H), 6.963(dd, 1H, J=2.4, 8.6Hz), 6.635(br. s, 1H), 4.917(s, 2H), 4.647(d, 1H, J=6.8Hz), 4.092(br. s, 1H), 2.319(s, 3H). \]

Fab-MS (m/z); 483(M+1)

産業上の利用可能性

本発明により、医薬品として有用な血小板減少症治療剤が提供される。
請求の範囲

(1) 一般式 (I)

式中、R⁴は水素、低級アルキル、低級アルカノイル、ベンジルまたはアミノを表し、R²は水素、ヒドロキシ、低級アルコキシ、低級アルカノイル、ハロゲンまたは式 (i)

\[-\text{SO}_2\text{N} = \text{NCH}_3\] (i)

を表し、R³は水素、低級アルカノイル、ハロゲン、ヒドロキシまたは低級アルコキシを表し、W¹およびW²は一方が水素で他方が水素、ヒドロキシ、低級アルキルチオであるかもしくは両者が一体となって酸素を表し、A¹およびA²は同一で水素であるかもしくは両者が一体となって式 (ii)

(ii)

(式中、R⁶は水素、ベンジルオキシカルボニル、低級アルキルまたは低級アルカノイルである。)

または式 (iii)

(iii)
(式中、R₄は水素、低級アルキル、メトキシメチルまたは低級アルカンノイルであり、R₅は水素または低級アルコキシカルボニルである。)を表す。]で表されるインドロカルバゾール誘導体またはその薬理的に許容される塩を有効成分として含有する血小板減少症治療剤。
(2) 一般式(I)で表われるインドロカルバゾール誘導体またはその薬理的に許容される塩

![化合物の構造式](image)

(式中、
(a) R¹がヘキシルであり、R²、R³およびR⁶が水素であるか、
(b) R¹がベンジルであり、R²、R³およびR⁶が水素であるか、
(c) R¹がメチルであり、R²およびR³が水素であり、R⁶が低級アルキルであるか、
(d) R¹が水素または低級アルキルであり、R³およびR⁶が水素であり、R²がハロゲンまたは低級アルカノイルであるか、
(e) R¹が水素または低級アルキルであり、R⁶が水素であり、R²およびR³が低級アルカノイルであるか、
(f) R¹、R³およびR⁶が水素であり、R²が低級アルコキシであるか、
または
(g) R¹が低級アルキルであり、R⁶が水素であり、R²がヒドロキ
シであり、R^{3A}がヒドロキシまたは水素である。}

(3) 下記式（Ⅲ）で表わされるインドロカルバゾール誘導体

![化合物图](image)

(Ⅲ)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int. Cl. C07D487/14, C07D498/22, A61K31/40

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int. Cl. C07D487/14, C07D498/22, A61K31/40

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP, A, 3-72485 (Asahi Chemical Industry Co., Ltd.), March 27, 1991 (27. 03. 91)</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>JP, A, 62-120388 (Meiji Seika Kaisha, Ltd.), June 1, 1987 (01. 06. 87)</td>
<td>1, 3</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
 November 15, 1993 (15. 11. 93)

Date of mailing of the international search report
 December 7, 1993 (07. 12. 93)

Name and mailing address of the ISA/
 Japanese Patent Office

Facsimile No.

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cz C07D487/14, C07D498/22,
A61K31/40

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cz C07D487/14, C07D498/22,
A61K31/40

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

CAS ONLINE

C. 関連すると認められる文献

引用文献の	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する	請求の範囲の番号
カテゴリー			
A	JP, A, 3-72485（旭化成工業株式会社）, 27. 3月. 1991 (27. 03. 91)	1, 2	
A	JP, A, 62-120388（明治製薬株式会社）, 1. 6月. 1987 (01. 06. 87)	1, 3	

C類の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの「E」先行文献であるが、国際出願日以降に公表されたもの「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に及ぼす文献
「P」国際出願日以前、かつ優先権の主張の基礎となる出願の日後出願された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のため引用するもの
「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
「Y」特に関連のある文献であって、当該文献との1以上の文献との関連性をもって進歩性がないと考えられるもの

国際調査を完了した日

15. 11. 93

国際調査報告の発送日

07. 12. 93

名称及びあて先

日本国特許庁（ISA／JP）
郵便番号110
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
鶴見秀紀

電話番号 03－3581－1101 内線 3452

様式PCT／ISA／210（第2ページ）（1992年7月）