wO 2016/205044 A1 I} 1] A1 000 0O 0 O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

22 December 2016 (22.12.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/205044 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 21/53 (2013.01) GO6F 21/62 (2013.01)
GO6F 21/60 (2013.01) GO6F 9/455 (2006.01)

International Application Number:
PCT/US2016/036540

International Filing Date:

9 June 2016 (09.06.2016)
Filing Language: English
Publication Language: English
Priority Data:
14/743,567 18 June 2015 (18.06.2015) US

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US).

Inventors: HEPKIN, David Alan; Microsoft Technology
Licensing, LLC, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). SRIVATSAN, Shreyas; Microsoft
Technology Licensing, LLC, Attn: Patent Group Docketing

(74

(8D

(84)

(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

Agents: MINHAS, Sandip et al.; Microsoft Corporation,
Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: VIRTUAL MACHINE DATA PROTECTED FROM HOST

[N
\
L___
7

(57) Abstract: The secure making available of virtual machine data of a vir-

400

Host 300

31

PN
3
&

N
3

080C

=
=

416

AN [~ 404

PP \

VMD -1 Encryption |-~
402

Figure 4

tual machine operating to a host computing system. In order to make such
data available to the host operating system, a component that is not native to
the host operating system intercepts a command to make available the data
that is within a protected portion of the host memory. In response, the com-
ponent encrypts and makes the data available to the host operating system.
Once the virtual machine data enters the domain of the host operating system
the data remains encrypted while in custody of the host operating system. To
make received encrypted virtual data available to the virtual machine, the
component causes the encrypted data to be decrypted and made available to
the virtual machine.

WO 2016/205044 A1 |IIWAT 00N 0 0 00 X O A

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, __
GW, KM, ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

VIRTUAL MACHINE DATA PROTECTED FROM HOST

BACKGROUND
[0001] Computing systems have changed the way in which human beings work, play,
communicate, problem solve, and so forth. Traditionally, computing systems have
processed and stored information locally on a single physical computer. With the advent
of the internet, however, services (such as processing and storage service) are offered
remotely, thereby allowing a local computing system to offload processing, storage, or other
tasks to the services offered over the network. Such services may be offered by a single
server or by a network of servers.
[0002] Even more recently, cloud-based computing environments (often referred to as
simply “the cloud”) have become available. The cloud is so termed because from a user
perspective, the user may at least conceptually reach up into the sky using the device from
practically any location and extract the desired service. Of course, complex networks of
hardware are required in order to provide this illusion.
[0003] For instance, a cloud computing environment typically includes one or more, and
often numerous, host computing systems, which are physical. The host computing system
runs thereon a host operating system. The host operating system may run applications, such
as virtual machine applications.
[0004] The virtual machine application emulates an entire computing system (hence the
term “virtual machine”) to a remote user. While the host computing system has thereon
physical hardware, such as processors, memory, storage, network interface cards, and so
forth, the virtual machines do not directly access such hardware. Instead, the virtual
machines call into a hypervisor, which provides only the appearance that the virtual machine
is interacting directly with hardware. For instance, the hypervisor might provide the
appearance that the virtual machine has access to a storage device. Such appearance might
be termed a “virtual storage device”. The same applies for other hardware capabilities as
well.
[0005] In addition to emulation of hardware, the hypervisor also ensures separation of
data in the case where the various virtual machines are serving clients whose data should
not be shared. For instance, suppose a user of one virtual machine is from one corporation,
and a user of a second virtual machine is from another corporation. The first and second
virtual machines should not share data, at least not without consent. Accordingly, the

hypervisor ensures such data isolation.

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

[0006] From a user perspective, the user simply interacts with the local device as if there
were a direct interaction with a physical computing system that is not emulated by the virtual
machine. The user need not be aware of the remoteness of the processing or the data at all.
[0007] Each host computing system has an associated host administrator that performs
administrative tasks with respect to the host computing system as a whole. As such, the
host administrator may perform tasks normally permitted by the host operating system,
including interactions with the virtual machine and the hypervisor.

[0008] The subject matter claimed herein is not limited to embodiments that solve any
disadvantages or that operate only in environments such as those described above. Rather,
this background is only provided to illustrate one exemplary technology area where some

embodiments described herein may be practiced.

BRIEF SUMMARY

[0009] At least some embodiments described herein relate to the secure making
available of virtual machine data to a host operating system operating within the context of
the corresponding virtual machine that owns the data operating within a host computing
system. For instance, the host operating system might not be able to even access the virtual
machine data in the clear. Rather, when sending and receiving or otherwise accessing the
virtual machine data, the host operating system sees the encrypted form of the virtual
machine data. Thus, host administrators cannot easily see the proprietary information of the
virtual machine. The accessing of such data occurs in a context in which the virtual machine
operating system has access to a protected portion of host memory that cannot be seen during
normal modes of the host operating system, and the clear form of the virtual machine data
is present within the protected portion of host memory.

[0010] In order to make the virtual machine data available (such as when sending), a
component that is not native to the host operating system intercepts a command to make
available the virtual machine data that is within that protected portion of the host memory.
In response, the component causes the virtual machine data to be encrypted prior to being
made available to the host operating system. Once the virtual machine data enters the
domain of the host operating system in preparation (e.g., in preparation for sending), the
host operating system sees only the encrypted form of the data.

[0011] At least some embodiments described may alternatively, or in addition, relate to
receiving. In order to receive, a component (perhaps the same component that was used to

send or otherwise make the data available to the host operating system) that is not native to

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

the host operating system receives encrypted data and such remains encrypted while in
custody of the host operating system. However, the component causes the encrypted data
to be decrypted and made available to the virtual machine. Thus, again, the clear form of
the virtual machine data is not seen during normal modes of the operating system.
[0012] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is it
intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0013] In order to describe the manner in which the above-recited and other advantages
and features can be obtained, a more particular description of various embodiments will be
rendered by reference to the appended drawings. Understanding that these drawings depict
only sample embodiments and are not therefore to be considered to be limiting of the scope
of the invention, the embodiments will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:
[0014] Figure 1 abstractly illustrates a computing system in which some embodiments
described herein may be employed.
[0015] Figure 2 abstractly illustrates a cloud computing environment in which some
embodiments described herein may be employed.
[0016] Figure 3 abstractly illustrates a host computing system in which embodiments
presented herein may be employed.
[0017] Figure 4 illustrates an example flow diagram for making virtual machine data
securely available to a host operating system.
[0018] Figure 5 illustrates an example flow diagram for receiving encrypted data.
[0019] Figure 6 illustrates an example flowchart of a method for making virtual machine
data securely available to a host operating system.
[0020] Figure 7 illustrates an example flowchart of a method for a virtual machine to

receive encrypted data.

DETAILED DESCRIPTION
[0021] At least some embodiments described herein relate to the secure making
available of virtual machine data to a host operating system operating within the context of
the corresponding virtual machine that owns the data operating within a host computing

system. For instance, the host operating system might not be able to even access the virtual

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

machine data in the clear. Rather, when sending and receiving or otherwise accessing the
virtual machine data, the host operating system sees the encrypted form of the virtual
machine data. Thus, host administrators cannot easily see the proprietary information of the
virtual machine. The accessing of such data occurs in a context in which the virtual machine
operating system has access to a protected portion of host memory that cannot be seen during
normal modes of the host operating system, and the clear form of the virtual machine data
is present within the protected portion of host memory.

[0022] In order to make the virtual machine data available (such as when sending), a
component that is not native to the host operating system intercepts a command to make
available the virtual machine data that is within that protected portion of the host memory.
In response, the component causes the virtual machine data to be encrypted prior to being
made available to the host operating system. Once the virtual machine data enters the
domain of the host operating system in preparation (e.g., in preparation for sending), the
host operating system sees only the encrypted form of the data.

[0023] At least some embodiments described may alternatively, or in addition, relate to
receiving. In order to receive, a component (perhaps the same component that was used to
send or otherwise make the data available to the host operating system) that is not native to
the host operating system receives encrypted data and such remains encrypted while in
custody of the host operating system. However, the component causes the encrypted data
to be decrypted and made available to the virtual machine. Thus, again, the clear form of
the virtual machine data is not seen during normal modes of the operating system.

[0024] Some introductory discussion of a computing system will be described with
respect to Figure 1. Thereafter, an example cloud computing environment will be described
with respect to Figure 2. Then, an example host computing system that has thereon
operating virtual machines will be described with respect to Figure 3. The principles of
securely sending and receiving virtual machine data or otherwise make the data available to
the host operating system in a manner hidden from the host will then be described with
respect to Figures 4 through 7.

[0025] Computing systems are now increasingly taking a wide variety of forms.
Computing systems may, for example, be handheld devices, appliances, laptop computers,
desktop computers, mainframes, distributed computing systems, or even devices that have
not conventionally been considered a computing system. In this description and in the
claims, the term “computing system” is defined broadly as including any device or system

(or combination thereof) that includes at least one physical and tangible processor, and a

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

physical and tangible memory capable of having thereon computer-executable instructions
that may be executed by the processor. The memory may take any form and may depend
on the nature and form of the computing system. A computing system may be distributed
over a network environment and may include multiple constituent computing systems.
[0026] As illustrated in Figure 1, in its most basic configuration, a computing system
100 typically includes at least one processing unit 102 and memory 104. The memory 104
may be physical system memory, which may be volatile, non-volatile, or some combination
of thetwo. The term “memory” may also be used herein to refer to non-volatile mass storage
such as physical storage media. If the computing system is distributed, the processing,
memory and/or storage capability may be distributed as well. As used herein, the term
“module” or “component” can refer to software objects or routines that execute on the
computing system. The different components, modules, engines, and services described
herein may be implemented as objects or processes that execute on the computing system
(e.g., as separate threads).

[0027] In the description that follows, embodiments are described with reference to acts
that are performed by one or more computing systems. If such acts are implemented in
software, one or more processors of the associated computing system that performs the act
direct the operation of the computing system in response to having executed computer-
executable instructions. For example, such computer-executable instructions may be
embodied on one or more computer-readable media that form a computer program product.
An example of such an operation involves the manipulation of data. The computer-
executable instructions (and the manipulated data) may be stored in the memory 104 of the
computing system 100. Computing system 100 may also contain communication channels
108 that allow the computing system 100 to communicate with other message processors
over, for example, network 110.

[0028] Embodiments described herein may comprise or utilize a special purpose or
general-purpose computer including computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail below. Embodiments
described herein also include physical and other computer-readable media for carrying or
storing computer-executable instructions and/or data structures. Such computer-readable
media can be any available media that can be accessed by a general purpose or special
purpose computer system. Computer-readable media that store computer-executable
instructions are physical storage media. Computer-readable media that carry computer-

executable instructions are transmission media. Thus, by way of example, and not

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

limitation, embodiments of the invention can comprise at least two distinctly different kinds
of computer-readable media: computer storage media and transmission media.

[0029] Computer storage media includes RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any other
medium which can be used to store desired program code means in the form of computer-
executable instructions or data structures and which can be accessed by a general purpose
or special purpose computer.

[0030] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry
desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within the scope of computer-readable
media.

[0031] Further, upon reaching various computer system components, program code
means in the form of computer-executable instructions or data structures can be transferred
automatically from transmission media to computer storage media (or vice versa). For
example, computer-executable instructions or data structures received over a network or
data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and
then eventually transferred to computer system RAM and/or to less volatile computer
storage media at a computer system. Thus, it should be understood that computer storage
media can be included in computer system components that also (or even primarily) utilize
transmission media.

[0032] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code. Although
the subject matter has been described in language specific to structural features and/or

methodological acts, it is to be understood that the subject matter defined in the appended

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

claims is not necessarily limited to the described features or acts described above. Rather,
the described features and acts are disclosed as example forms of implementing the claims.
[0033] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, pagers, routers, switches, and the like. The invention may also be
practiced in distributed system environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data links, or by a combination of
hardwired and wireless data links) through a network, both perform tasks. In a distributed
system environment, program modules may be located in both local and remote memory
storage devices.

[0034] Figure 2 abstractly illustrates an environment 200 in which the principles
described herein may be employed. The environment 200 includes multiple client
computing systems, or clients 201, interacting with a system 210 using an interface 202.
The environment 200 is illustrated as having three clients 201A, 201B and 201C, although
the ellipses 201D represent that the principles described herein are not limited to the number
of clients interfacing with the system 210 through the interface 202. The system 210 may
provide services to the clients 201 on-demand and thus the number of clients 201 receiving
services from the system 210 may vary over time.

[0035] Each client 201 may, for example, be structured as described above for the
computing system 100 of Figure 1. Alternatively or in addition, the client may be an
application or other software module that interfaces with the system 210 through the
interface 202. The interface 202 may be an application program interface that is defined in
such a way that any computing system or software entity that is capable of using the
application program interface may communicate with the system 210.

[0036] The system 210 may be a distributed system, although not required. In one
embodiment, the system 210 is a cloud computing environment. Cloud computing
environments may be distributed, although not required, and may even be distributed
internationally and/or have components possessed across multiple organizations.

[0037] In this description and the following claims, “cloud computing” is defined as a
model for enabling on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services). The definition of

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

“cloud computing” is not limited to any of the other numerous advantages that can be
obtained from such a model when properly deployed.

[0038] For instance, cloud computing is currently employed in the marketplace so as to
offer ubiquitous and convenient on-demand access to the shared pool of configurable
computing resources. Furthermore, the shared pool of configurable computing resources
can be rapidly provisioned via virtualization and released with low management effort or
service provider interaction, and then scaled accordingly.

[0039] A cloud computing model can be composed of various characteristics such as
on-demand self-service, broad network access, resource pooling, rapid elasticity, measured
service, and so forth. A cloud computing model may also come in the form of various
service models such as, for example, Software as a Service (“SaaS”), Platform as a Service
(“PaaS”), and Infrastructure as a Service (“TaaS”). The cloud computing model may also
be deployed using different deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description and in the claims, a “cloud
computing environment” is an environment in which cloud computing is employed.

[0040] The system 210 includes multiple hosts 211, that are each capable of running
virtual machines. Although the system 200 might include any number of hosts 211, there
are three hosts 211A, 211B and 211C illustrated in Figure 2, with the ellipses 211D
representing that the principles described herein are not limited to the exact number of hosts
that are within the system 210. There may be as few as one, with no upper limit.
Furthermore, the number of hosts may be static, or might dynamically change over time as
new hosts are added to the system 210, or as hosts are dropped from the system 210. Each
of the hosts 211 may be structured as described above for the computing system 100 of
Figure 1.

[0041] Each host is capable of running one or more, and potentially many, virtual
machines. For instance, Figure 3 abstractly illustrates a host, host computing system 300,
in further detail. As an example, the host computing system 300 might represent any of the
hosts 211 of Figure 2. In the case of Figure 3, the host computing system 300 is illustrated
as operating three virtual machines 310 including virtual machines 310A, 310B and 310C.
However, the ellipses 310D once again represents that the principles described herein are
not limited to the number of virtual machines running on the host computing system 300.
There may be as few as zero virtual machines running on the host with the only upper limit

being defined by the physical capabilities of the host computing system 300.

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

[0042] During operation, the virtual machine emulates a fully operational computing
system including at least one operating system, and perhaps one or more other applications
as well. Each virtual machine is assigned to a particular client, and is responsible to support
the desktop environment for that client.

[0043] The virtual machine generates a desktop image or other rendering instructions
that represent a current state of the desktop, and then transmits the image or instructions to
the client for rendering of the desktop. For instance, referring to Figures 2 and 3, suppose
that the host computing system 300 of Figure 3 represents the host 211A of Figure 2, and
that the virtual machine 310A 1is assigned to client 201A (referred to herein as “the primary
example”), the virtual machine 310A might generate the desktop image or instructions and
dispatch such instructions to the corresponding client 201 A from the host 211A via a service
coordination system 213 and via the system interface 202.

[0044] As the user interacts with the desktop at the client 201A, the user inputs are
transmitted from the client 201A to the virtual machine 310A. For instance, in the primary
example and referring to Figures 2 and 3, the user of the client 201 A interacts with the
desktop, and the user inputs are transmitted from the client 201A to the virtual machine
310A via the interface 202, via the service coordination system 213 and via the host 211A.
[0045] The virtual machine 310A processes the user inputs and, if appropriate, changes
the desktop state. If such change in desktop state is to cause a change in the rendered
desktop, then the virtual machine 310A alters the image or rendering instructions, if
appropriate, and transmits the altered image or rendered instructions to the client computing
system 201A for appropriate rendering. From the prospective of the user, it is as though the
client computing system 201A is itself performing the desktop processing.

[0046] In the illustrated example, the services 200 include five distinct services 212A,
212B, 212C, 212D and 212E, although the ellipses 212F represent that the principles
described herein are not limited to the number of service in the system 210. A service
coordination system 213 communicates with the hosts 211 and with the services 212 to
thereby provide services 212 as requested by the clients 201, and other services (such as
authentication, billing, and so forth) that may be prerequisites for the requested service.
[0047] The host computing system 300 includes a hypervisor 320 that emulates virtual
resources for the virtual machines 310 using physical resources 321 that are abstracted from
view of the virtual machines 310. The hypervisor 320 also provides proper isolation
between the virtual machines 310. Thus, from the perspective of any given virtual machine,

the hypervisor 320 provides the illusion that the virtual machine is interfacing with a

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

physical resource, even though the virtual machine only interfaces with the appearance (e.g.,
a virtual resource) of a physical resource, and not with a physical resource directly. In
Figure 3, the physical resources 321 are abstractly represented as including resources 321A
through 321F. Examples of physical resources 321 include processing capacity, memory,
disk space, network bandwidth, media drives, and so forth. For instance, in the example
below, resource 321A is host memory.

[0048] The host computing system 300 may operate a host agent 302 that monitors the
performance of the host computing system 300, and performs other operations that manage
the host computing system 300. Additionally, the host computing system 300 may operate
other components 303. The host computing system 300 may include a host operating system
305 that operates various applications. For instance, the applications could be virtual
machines such as virtual machines 310A through 310D. The host agent 302 may also
perform operations directed to the applications and virtual machines 310A through 310D.
[0049] Unfortunately, elements of the host may operate to violate reasonable
expectations of privacy of the virtual machine 310 data. For instance, a rogue party may
plant malware 304A or 304B to gain access to or takes over a host agent’s access rights.
The malware components 304A and 304B are illustrated as having cross-hatched filler to
emphasize that these components are unwanted within the host computing system 300.
Thus, the undesirable malware 304A or 304B is permitted opportunities to perform
operations rightfully belonging to the host agent 302. As shown, undesirable third party
host agent 304A may be present in the host computing system 300. Alternatively, or in
addition, undesirable third party host agent 304B may be present in the host operating
system 305. Even the host users themselves might use the host agent 302 in an attempt to
view private data of the virtual machine. This represents a security violation, as virtual
machine owners expect their data to be private from all parties, including often the host. By
encrypting virtual machine data that the host operating system sees, host administrators, and
thus undesirable third party agents 304A and 304B, cannot easily see or access the
proprietary information of the virtual machine.

[0050] The virtual machine 310A operates thereon virtual machine operating system
311 that has access to a “protected portion” 312 of host memory 321A allocated for use by
the virtual machine operating system 311. Such allocation is represented symbolically in
Figure 3 by the arrow 313. The “protected portion” 312 of host memory 321A is defined as
a memory space that is restricted in use such that it is not available to others, including the

host manager and undesirable third party agents, in the host computing system 300, unless

10

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

they have the same access privileges (e.g., two virtual machines belonging to the same
customer or “tenant”).

[0051] In this description and in the claims, software or other modules running on the
host computing system in a “secure operating mode” are able to access the protected portion
312 of host memory 321A, whereas software or other modules running the host computing
system in a “normal operating mode” are not able to access the protected portion 312 of host
memory 321A. The normal operating mode is the normal or usual operating state in which
the host computing system 300 runs. This normal operating mode and secure operating
mode are modes of operation that can be provided by hardware or software. For example,
the hypervisor could provide these two operating modes and ensure that the normal/standard
host operating system is only able to run in the “normal operating mode” and thus does not
have access to the secure memory. Only secure operating system components that are not
part of the normal operating system can run in the secure operating mode.

[0052] This description will now show how virtual machine data may be sent or
otherwise made available to the host operating system 305 in a manner that prevents the
host operating system 305 from viewing the virtual machine data (e.g., such as when the
virtual machine data is externally sent from the host computing system 300, and when
virtual machine data is received into the host computing system). That said, the principles
described herein apply to prevent any component operating in normal operating mode within
the host computing system from seeing the virtual machine data, regardless of whether that
data is being transmitted or received. This may be helpful when the host sends or receives
such virtual machine data, but is also helpful whenever the virtual machine data is to be kept
from the view (except in encrypted form) of the host operating system (such as for purposes
of migrating the virtual machine). First, the perspective of securely making the virtual
machine data in encrypted for to the host operating system will be described.

In order to make virtual machine data 315 available, virtual machine data 315 that originates
in the protected portion 312 of host memory 321A may be accessed by an “operating system
opaque component” 314. In this description and in the claims, an “operating system
opaque” component is defined as a component that is not native to the host operating system
305 or the virtual machine operating system 311. For instance, the host operating system
305 or virtual machine operating system 311 may be changed and updated without affecting
the operating system opaque component 314. When incorporating one or more operating
system opaque components, or other emulated devices, into the host computing system 300,

there may be no change to a Kernel of the host operating system 305 or to the particular

11

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

virtual machine operating system 311. The operating system opaque component 314 may
be located within a protected portion 312 of a host partition that cannot be accessed through
the normal operating mode of the host operating system.

The operating system opaque component 314 responds to commands regarding the virtual
machine data 315 that is within the protected portion 312 of host memory 321A. The
commands may be issued by the virtual machine operating system 311 or by other sources,
including sources within the host computing system 300 or outside the host computing
system 300.

[0053] Figure 4 illustrates an example flow diagram 400 for making the virtual machine
data 315 available (such as when sending the data from virtual machine 310A) within a
context in which the virtual machine operating system 311 has access to the protected
portion 312 of host memory 321A that cannot be seen during normal modes of the host
operating system 305. As used herein, to “make available” means to securely make the
virtual machine data available in encrypted form to the host operating system. To
“externally send” the virtual machine data is to send virtual machine data 315 from a
protected portion 312 of host memory 321A to an environment outside of the host
computing system 300.

[0054] The flow diagram 400 is performed by the operating system opaque component
314. For instance, the operating system opaque component 314 could be the hypervisor
320, or a system or component of firmware that is outside of the hypervisor 320. The
operating system opaque component 3 14 might alternatively be a driver registered with the
virtual machine operating system 311. For instance, the driver may be loaded at or after
startup of the virtual machine operating system 311 using the existing host operating system
305. In this case, the operating system opaque component 314 may perform the method 400
by emulating physical hardware to the virtual machine operating system 311.

[0055] The flow diagram represents flows that may occur when performing a method
for making the virtual machine data 315 available to the host operating such (such as when
sending the virtual machine data or migrating the virtual machine). Figure 6 illustrates a
flowchart for a method 600 of making the virtual machine data 315 available to the host
operating such (such as when sending the virtual machine data or migrating the virtual
machine). Accordingly, the flowchart of the method 600 of Figure 6 will be described along
with the data flow 400 of Figure 4.

[0056] Referring to Figure 6, the operating system opaque component 314 first

intercepts a command to make the virtual machine data 315 that is within the protected

12

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

portion 312 available to the host operating system (act 601). For instance, in Figure 4, for
the case of sending and receiving, the operating system opaque component 314 intercepts
(as represented by the circle 408) a command 410 that is issued by the virtual machine
operating system 311. In a normal operating state or mode, this step may be performed any
number of times to accumulate data prior to further processing the steps herein. For
migration of a virtual machine, the migration may be triggered by the administrator in the
host operating system rather than something running in the guest operating system.

[0057] If the operating system opaque component 314 is a component that is outside of
the hypervisor 320, the operating system opaque component 314 may perform the act of
intercepting the command by receiving the command from the hypervisor 320 in response
to the hypervisor 320 receiving the command from the virtual machine operating system
311. If the data is to be encrypted (“Yes” in decision block 602), then the operating system
opaque component 314 responds to this interception by causing the virtual machine data
315 to be encrypted (act 603). For instance, in Figure 4, the operating system opaque
component 314 controls (as represented by arrow 412) an encryption process 402 to receive
the virtual machine data 315 and formulate an encrypted form 404 of the virtual machine
data 315.

[0058] The decision regarding whether or not to encrypt may be a split decision,
whereby some virtual machine data is to be encrypted and the remaining virtual machine
data is to be left unencrypted. In other words, there may be at least one circumstance in
which virtual machine data, even the virtual machine data that is within the protected portion
312, would remain unencrypted.

[0059] The operating system opaque component 3 14 further causes the encrypted virtual
machine data 404 to be made available by allowing the host operating system 305 to access
the encrypted virtual machine data 404 (act 604) (such as for externally sending the virtual
machine data, or for migrating the virtual machine).

[0060] For instance, in Figure 4, the operating system opaque component 314 controls
(as represented by arrow 414), or causes, the host operating system 305 to externally send
the encrypted virtual machine data 404. Such sending is represented by the dashed-line
arrow 416.

[0061] Note that if the decision is to not encrypt the virtual machine data 315 (“No” in
decision block 602), then the virtual machine data 315 may simply be made available to the
host operating system (act 604) without encryption (act 603). If the hypervisor 320 is the

13

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

operating system opaque component 314, the hypervisor 320 may cause an encryption
component, or encryption firmware, to perform the encryption in block 603.

[0062] Once the virtual machine data 315 enters the domain of the host operating
system 305 (such as in preparation for sending), the host operating system 305 sees the
encrypted form 404 of the virtual machine data 315 but does not see the virtual machine
data 315 in the clear.

[0063] The making available of the encrypted virtual machine data 404 may result from
a migration command to migrate the particular virtual machine 310A to another location. In
this case, the operating system opaque component 314 causing the virtual machine data to
be encrypted is part of migrating. The migration command may be to send a virtual machine
memory space and not the whole virtual machine. Also, the hypervisor 320 may or may not
be involved in the migration.

[0064] Variations of use for the operating system opaque component 314 may exist. For
example, the operating system opaque component 314 may be used for migration only, and
not for other purposes, such as I/O purposes. Alternatively, the operating system opaque
component 314 may be used for I/O purposes only, and not other purposes, such as
migration. Also, the operating system opaque component 314 may be used for both
migration and I/O purposes. Another example of /O purpose would be to store and read
data from disk.

[0065] Figure 4 illustrates a specific embodiment in which an operating system opaque
component 314 acts on behalf of a single virtual machine 310A running within the host
computing system 300. However, the principles described herein may be extended to
embodiments in which this or other similar operating system opaque components 314
intercept commands to make virtual machine data available for multiple different virtual
machines 310 operating within the host computing system 300. Furthermore, although
Figure 4 illustrates the process associated with making a single item of virtual machine data
315 available to the host operating system, the operating system opaque component 314
may likewise perform a similar process for making available large quantities of virtual
machine data.

[0066] Figure 5 illustrates an example flow diagram 500 for receiving encrypted data
502. In order to receive, the operating system opaque component 314 receives encrypted
data 502 and such remains encrypted while in custody of the host operating system 305. For
instance, in Figure 5, the operating system opaque component 3 14 receives or detects receipt

(as represented by the circle 508) of the encrypted data 502.

14

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

[0067] When the host operating system 305 detects reception of encrypted data 502
destined for the particular virtual machine 310A from outside of the host computing system
300, the operating system opaque component 314 intercepts (again as represented by circle
508) the encrypted data 502. Interception occurs prior to the virtual machine operating
system 311 receiving a decrypted form 504 of the encrypted data 502. The operating system
opaque component 314 causes the encrypted data 502 to be decrypted, as shown by process
506. The controlling of the decryption process is represented by arrow 510. Once
decrypted, the operating system opaque component 314 causes the decrypted data 504 to be
made available to the virtual machine operating system 311. For instance, in Figure 5, the
decrypted data 504 is placed in the protected portion 312 as represented by dashed-line
arrow 512.

[0068] Figure 5 illustrates that the same operating system opaque component 314 that
was used to send the encrypted virtual machine data in Figure 4 is being used to decrypt the
received data. However, this is not required. A separate component may be used to receive
data as compared to sending data. Furthermore, although the operating system opaque
component 314 is illustrated as receiving a single piece of data for a single virtual machine
310A, the operating system opaque component 314 may be used to receive a multiplicity of
data destined for use by perhaps multiple different virtual machines.

[0069] In order to make the decrypted data 504 available to the virtual machine
operating system 311, the operating system opaque component 314 may place the decrypted
data 504 in the protected portion 312 of host memory 321A allocated for use by the virtual
machine operating system 311. The operating system opaque component 314 may further
notify (as represented by arrow 514) the virtual machine operating system 311 of a presence
of the decrypted data 504, such that the virtual machine operating system 311 may retrieve
(as represented by dashed-line arrow 516) the decrypted data 504 from the protected portion
312 of the host memory 321A.

[0070] The flow diagram represents flows that may occur when performing a method
for receiving encrypted data 502. Figure 7 illustrates a flowchart of a method 700 for a
virtual machine 310A to receive encrypted data 502 that is destined for the virtual machine
310A from outside of the host computing system 300. Accordingly, the flowchart of the
method 700 of Figure 7 will be described along with the data flow 500 of Figure 5.

[0071] Referring to Figure 7, the reception of data destined for a particular virtual
machine 315 is first detected (act 701). For instance, in Figure 5, data 502 that is destined

for the virtual machine 310A is detected by the host operating system 305.

15

10

15

20

25

30

WO 2016/205044 PCT/US2016/036540

[0072] Prior to the virtual machine operating system 311 receiving a decrypted form
504 of the data 502, the operating system opaque component 314 intercepts (act 702) the
data 502. The act of intercepting is illustrated in the flow diagram 500 by the circle 508.
Similar to the concept of intercepting a comment to make data available to the host operating
system, the step of intercepting received data may be performed any number of times in a
normal operating state or mode to accumulate data prior to further processing the steps
herein.

[0073] If the data 502 received is encrypted (“Yes” in decision block 703), then the
operating system opaque component 314 responds to this interception by causing the data
502 to be decrypted (act 704). For instance, in Figure 5, the operating system opaque
component 314 controls (as represented by arrow 510) a decryption process 506 to receive
the data 502 and formulate a decrypted form of the data 502 (represented as decrypted data
504). If the decision is to not decrypt the data 502 (“NO” in decision block), then the data
502 may simply be made available to the virtual machine operating system 311 (act 705).
[0074] The decision regarding whether to decrypt may be a split decision, whereby
some data is to be decrypted and the remaining data is to be left encrypted. For example, the
data received may include both encrypted data and unencrypted data in which case only the
encrypted data is decrypted before making the unencrypted data and decrypted data 504
available to the virtual machine operating system 311.

[0075] To make the data available to the virtual machine operating system 311 (act 705),
the data 502 may, if not sensitive, be placed in the non-protected portion of host memory
312 that is allocated to the particular virtual machine 310A. If the data 502 contains
sensitive information, however, it is still placed in the protected portion 312 of host memory
321A (act 711). .

[0076] After being placed in the protected portion 312, the virtual machine operating
system 311 is notified (as represented by arrow 514) by the operating system opaque
component 314 of a presence of the decrypted data 504, such that the virtual machine
operating system 311 may retrieve (as represented by arrow 516) the decrypted data 504
from the protected portion 312 of host memory 321A (act 712). Accordingly, a mechanism
has been described in which the privacy of virtual machine data is preserved. This is true
even if the host operating system is to access the virtual machine data as when receiving and
sending virtual machine data, or otherwise making such virtual machine data available to a

host operating system.

16

WO 2016/205044 PCT/US2016/036540

[0077] The present invention may be embodied in other specific forms without
departing from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the invention
is, therefore, indicated by the appended claims rather than by the foregoing description. All
changes which come within the meaning and range of equivalency of the claims are to be

embraced within their scope.

17

WO 2016/205044 PCT/US2016/036540

CLAIMS

1. A computer-implemented method for an operating system opaque component to
make virtual machine data available to the host operating system, the virtual machine data
originating from the protected portion of the host memory, the computer-implemented
method being performed by one or more processors executing computer executable
instructions for the computer-implemented method, and the computer-implemented method
comprising:

the operating system opaque component intercepting a command to make available
the virtual machine data in the protected portion of the host memory that is allocated to the
particular virtual machine; and

in response to the interception of the command, the operating system opaque
component causing the virtual machine data to be encrypted and made available to the host

operating system in encrypted form.

2. The computer-implemented method in accordance with Claim 1, wherein the

command is issued from the virtual machine operating system.

3. The computer-implemented method in accordance with Claim 1, wherein the
command is a migration command to migrate the particular virtual machine to another
location, and wherein causing the virtual machine data to be encrypted and externally sent

is part of migrating the particular virtual machine to another location.

4. The computer-implemented method in accordance with Claim 1, wherein the
operating system opaque component comprises a hypervisor, and wherein causing the
virtual machine data to be encrypted comprises:

the hypervisor causing an encryption component that is also operating system

opaque to perform the encryption.

5. The computer-implemented method in accordance with Claim 1, wherein the
operating system opaque component is a driver registered with the virtual machine operating
system, and wherein the driver is loaded at or after startup of the virtual machine operating

system.

18

WO 2016/205044 PCT/US2016/036540

6. The computer-implemented method in accordance with Claim 1, wherein the
operating system opaque component is a component that is outside of a hypervisor, and
intercepts a command by receiving the command from the hypervisor in response to the

hypervisor receiving the command from the virtual machine operating system.

7. The computer-implemented method in accordance with Claim 1, wherein the
operating system opaque component causes the virtual machine data to be encrypted and

made available by causing the virtual machine data to be externally sent.

8. The computer-implemented method in accordance with Claim 1, further
comprising:

determining that the virtual machine data is to be encrypted, wherein at least some
data within the protected portion of the host memory that is allocated to the particular virtual

machine is not to be encrypted.

9. A host computing system comprising:

one or more processors;

a host memory; and

a computer program product comprising one or more computer-readable media
having thereon computer-executable instructions which, when executed by the one or more
processors cause the computing system to perform a computer-implemented method for an
operating system opaque component to make virtual machine data available to the host
operating system, the virtual machine data originating from the protected portion of the host
memory, and wherein the computer-implemented method comprises:

the operating system opaque component intercepting a command to make available
the virtual machine data in the protected portion of the host memory that is allocated to the
particular virtual machine; and

in response to the interception of the command, the operating system opaque
component causing the virtual machine data to be encrypted and made available to the host

operating system in encrypted form.

19

WO 2016/205044 PCT/US2016/036540

10. A computer program product comprising one or more computer-readable media
having thereon computer-executable instructions which, when executed by the one or more
processors cause the one or more processors to perform a computer-implemented method
for an operating system opaque component to make virtual machine data available to the
host operating system, the virtual machine data originating from the protected portion of the
host memory, and wherein the computer-implemented method comprises:

the operating system opaque component intercepting a command to make available
the virtual machine data in the protected portion of the host memory that is allocated to the
particular virtual machine; and

in response to the interception of the command, the operating system opaque
component causing the virtual machine data to be encrypted and made available to the host

operating system in encrypted form.

20

PCT/US2016/036540

WO 2016/205044

1/7

J a4nbi4

SN.IOA-UON

gor

sjouuey)
UONBIIUNWIWOY

O|He[OA

Por
Aiowapy

00f
wialsAg Bupndwo)

or

(s)Jossao01d

PCT/US2016/036540

2/7

Z ainbi4

WO 2016/205044

|

|

|

“

eeo e ANI17 TS |34 |

; 3712 Viiz a5 |

aiiz |

"

|

|

|

|

|

[—— _ |

(¥ “

"

|

|

"

| c0¢ |
| |
i ves | TR at424 o724 Y Vere ae |
] L S9JINIBS “
“ 4212 i
_ _
m 17 Woashg _

PCT/US2016/036540

WO 2016/205044

3/7

¢ ainbi4

Vize ~o €
412 A
L anA 745
eoe | FITE aree J¥43 gree y
T
|- - " """ """ """/ /- /7 mmTTTT/TT/TT/T=T===== =777
4 I
_ " !
143 | _
_. |
gie ~ TOE m
M
\ m
P SOWA oe |
gore WA X
e e SAA |
VOIE A _
|
00¢€ 1sOH

WO 2016/205044 PCT/US2016/036540

4/7

Wa 400
Host 300

408 5314

|
| i
i VM : - » 0SOC
: i
i VMOS | 414
|
|

L3 l
e ~< 416
- \l\
Py e a4 \f\ 412
\\\
AN
N
N L~ 404
N EVMD
"
|
)
/
PP 4 ,/
VMD e Encryption P
X 315 Tl w2
T 312
T 321A

Figure 4

WO 2016/205044 PCT/US2016/036540

5/7
e 500
Host 300
508 s 902
DATA |——
L~ 314
0S0C
L~ 510
Y
Decryption [~ 906
Process
| /
I /
| //
y 512
PP 17
DD |= -7
L 504
T 312
T 321A

Figure §

WO 2016/205044

6/7

Intercept Command To
Make Available

PCT/US2016/036540

Wa 600

~~ 601

602

Virtual

No Machine Data

Encrypted
?

Yes

Cause Virtual Machine
Data To Be Encrypted

~~ 603

i

Cause Virtual Machine
Data To Be Make Available
To Host Operating System

~~ 604

End

Figure 6

WO 2016/205044

PCT/US2016/036540
717
Wa 700
Detect Reception Of Data p~~ 701
Destined For Virtual Machine
Intercept Data Destined |~ 702
For Virtual Machine
703
Is
Data Bs 711
Encr};pted __ | Place Decrypted Data
' In Protection Portion
Yes l
704
pa Bs 712

Decrypt Data

Notify Virtual Machine
Operating System Of

l s70

Presence Of
Decrypted Data

(&3]

Make Data Available To Virtual
Machine Operating System

e o o = o e ——— —

End

Figure 7

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/036540
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F21/53 GO6F21/60 GO6F21/62 GO6F9/455
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 20137097392 Al (ARGES CHRISTOPHER J
[US] ET AL) 18 April 2013 (2013-04-18)
paragraphs [0007], [0048] - [0058],
[0068] - [0071]

figures 2, 3, 6, 7

1-10

X US 7 260 820 B1 (WALDSPURGER CARL A [US]
ET AL) 21 August 2007 (2007-08-21)
column 2, line 45 - column 3, line 65
column 7, line 7 - column 8, line 30
column 15, line 45 - column 16, Tine 7
figure 2

1-10

X US 7 987 497 B1 (GILES AARON [US] ET AL)
26 July 2011 (2011-07-26)
column 3, line 26 - column 3,
column 7, line 49 - column 9,
figures 4B, 5A, 5B

1-10

line 51
line 21

_/__

See patent family annex.

Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 August 2016

Date of mailing of the international search report

10/08/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Volpato, Gian Luca

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/036540

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2009/132804 Al (PAUL PRABIR [US] ET AL)
21 May 2009 (2009-05-21)

paragraphs [0004], [0016] - [0018],
[0021], [0024], [0033], [0034]

figures 1, 2, 3, 4

1-10

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/036540
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013097392 Al 18-04-2013 CN 103858113 A 11-06-2014
DE 112012003988 T5 18-06-2014
GB 2508553 A 04-06-2014
JP 5736090 B2 17-06-2015
JP 2014532201 A 04-12-2014
US 2013097392 Al 18-04-2013
WO 2013054528 Al 18-04-2013
US 7260820 Bl 21-08-2007 US 7260820 Bl 21-08-2007
us 8060877 Bl 15-11-2011
US 2012054747 Al 01-03-2012
US 7987497 Bl 26-07-2011 NONE
US 2009132804 Al 21-05-2009 EP 2065805 Al 03-06-2009
US 2009132804 Al 21-05-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

