

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2014227811 C1

(54) Title
Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds

(51) International Patent Classification(s)
C12P 19/00 (2006.01) **C12P 7/00** (2006.01)
C12N 9/10 (2006.01) **C12P 15/00** (2006.01)
C12N 9/16 (2006.01) **C12P 17/00** (2006.01)
C12N 9/88 (2006.01) **C12P 23/00** (2006.01)
C12P 5/00 (2006.01) **C12P 33/00** (2006.01)

(21) Application No: **2014227811** (22) Date of Filing: **2014.03.14**

(87) WIPO No: **WO14/144135**

(30) Priority Data

(31) Number (32) Date (33) Country
61/800,356 **2013.03.15** **US**

(43) Publication Date: **2014.09.18**
(44) Accepted Journal Date: **2018.03.22**
(44) Amended Journal Date: **2018.09.27**

(71) Applicant(s)
Amyris, Inc.;Total Marketing Services

(72) Inventor(s)
Hawkins, Kristy Michelle;Mahatdejkul-Meadows, Tina Tipawan;Meadows, Adam Leon;Pickens, Lauren Barbara;Tai, Anna;Tsong, Annie Ening

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, PO Box 323, Collins Street West, VIC, 8007, AU

(56) Related Art
US 2012276587 A1
EP 2546336 A1

(43) International Publication Date
18 September 2014 (18.09.2014)

(51) International Patent Classification:

<i>C12P 19/00</i> (2006.01)	<i>C12P 15/00</i> (2006.01)
<i>C12P 23/00</i> (2006.01)	<i>C12P 17/00</i> (2006.01)
<i>C12P 33/00</i> (2006.01)	<i>C12N 9/10</i> (2006.01)
<i>C12P 5/00</i> (2006.01)	<i>C12N 9/16</i> (2006.01)
<i>C12P 7/00</i> (2006.01)	<i>C12N 9/88</i> (2006.01)

(21) International Application Number:

PCT/US2014/028421

(22) International Filing Date:

14 March 2014 (14.03.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

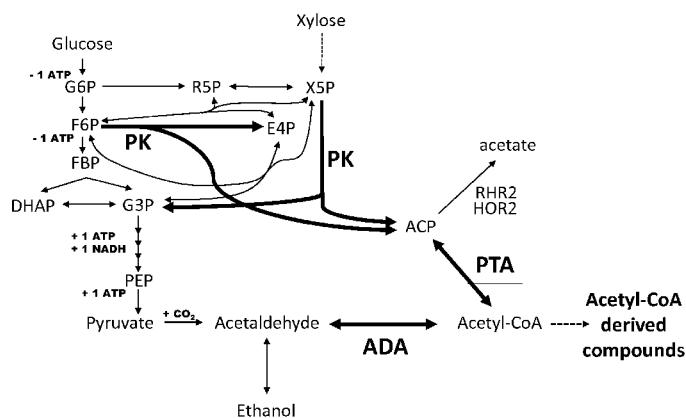
61/800,356 15 March 2013 (15.03.2013) US

(71) Applicants: **AMYRIS, INC.** [US/US]; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US). **TOTAL MARKETING SERVICES** [FR/FR]; 24, Cours Michelet, F-92800 Puteaux (FR).

(72) Inventors: **HAWKINS, Kristy Michelle**; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US). **MATHATDEJKUL-MEADOWS, Tina Tipawan**; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US). **MEADOWS, Adam Leon**; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US). **PICKENS, Lauren Barbara**; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US).

fornia 94608 (US). **TAI, Anna**; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US). **TSONG, Annie Ening**; 5885 Hollis Street, Suite 100, Emeryville, California 94608 (US).

(74) Agents: **PATHAK, Rahul** et al.; Squire Patton Boggs (US) LLP, 275 Battery Street, Suite 2600, San Francisco, California 94111 (US).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: USE OF PHOSPHOKETOLASE AND PHOSPHOTRANSACETYLASE FOR PRODUCTION OF ACETYL-COENZYME A DERIVED COMPOUNDS

Figure 1

(57) Abstract: Provided herein are compositions and methods for improved production of acetyl-CoA and acetyl-CoA derived compounds in a host cell. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding a phosphoketolase (PK), and a functional disruption of an endogenous enzyme that converts acetyl phosphate to acetate. In some embodiments, the host cell further comprises a heterologous nucleotide sequence encoding a phosphotransacetylase (PTA). In some embodiments, the enzyme that converts acetyl phosphate to acetate is a glycerol-1-phosphatase. In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2. The compositions and methods described herein provide an efficient route for the heterologous production of acetyl-CoA-derived compounds, including but not limited to, isoprenoids, polyketides, and fatty acids.

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))* — *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))* — *with sequence listing part of description (Rule 5.2(a))*

(88) Date of publication of the international search report:
23 October 2014

Published:

- *with international search report (Art. 21(3))*

USE OF PHOSPHOKETOLASE AND PHOSPHOTRANSACETYLASE FOR PRODUCTION OF ACETYL-COENZYME A DERIVED COMPOUNDS

[0001] This application claims benefit of priority of U.S. Provisional Application No. 61/800,356, filed on March 15, 2013, the contents of which are hereby incorporated by reference in their entirety.

1. FIELD OF THE INVENTION

[0002] The present disclosure relates to compositions and methods for producing acetyl-CoA derived compounds in engineered host cells.

2. BACKGROUND

[0003] Acetyl coenzyme A (acetyl-CoA) is a key intermediate in the synthesis of essential biological compounds, including polyketides, fatty acids, isoprenoids, phenolics, alkaloids, vitamins, and amino acids. Among the metabolites derived from acetyl-CoA are primary and secondary metabolites, including compounds of industrial utility. In yeast, acetyl-CoA is biosynthesized from pyruvate metabolism (**FIG. 1**). However, in this biosynthetic pathway, CO₂ is lost via the reactions catalyzed by pyruvate carboxylase and/or pyruvate dehydrogenase. In an industrial fermentation setting, one benefit of providing an alternative to pyruvate metabolism and lower glycolysis is that less CO₂ is produced in the decarboxylation of pyruvate, and thus more carbon can be captured in the end product, thereby increasing the maximum theoretical yield. A second benefit is that less NADH is produced, and therefore significantly less oxygen is needed to reoxidize it. This can be accomplished by expressing phosphoketolase (PK; EC 4.1.2.9) in conjunction with phosphoacetyltransferase (PTA; EC 2.3.1.8).

[0004] PK and PTA catalyze the reactions to convert fructose-6-phosphate (F6P) or xylulose-5-phosphate (X5P) to acetyl-CoA. As shown in **FIG. 1**, PK draws from the pentose phosphate intermediate xylulose 5-phosphate, or from the upper glycolysis intermediate D-fructose 6-phosphate (F6P). PK splits X5P into glyceraldehyde 3-phosphate (G3P) and acetyl phosphate, or F6P into erythrose 4-phosphate (E4P) and acetyl phosphate. PTA then converts the acetyl phosphate into acetyl-CoA. G3P can re-enter lower glycolysis, and E4P can re-enter the pentose phosphate pathway or glycolysis by cycling through the non-oxidative pentose phosphate pathway network of transaldolases and transketolases.

[0005] The applicants have previously described the improved efficiency of heterologous isoprenoid production that can be gained with the introduction of PK and PTA enzymes. *See* U.S. Application No. 13/673,819 (now U.S. Patent No. 8,415,136), filed on

November 9, 2012, the contents of which are hereby incorporated by reference in their entirety. In particular, when cytosolic acetyl-CoA is synthesized from glucose using only the chemical reactions which occur in the native yeast metabolic network, the maximum possible stoichiometric yield for conversion of glucose to the isoprenoid farnesene via the mevalonate pathway is 23.6 wt%. By including the reactions catalyzed by acetaldehyde dehydrogenase, acetylating (ADA; EC 1.2.1.10) and NADH-using HMG-CoA reductase into the metabolic network for mevalonate production, the maximum theoretical stoichiometric yield is improved to 25.2 wt%. With the further introduction of PK and PTA, the reaction network, at optimality, is able to reach 29.8 wt% mass yield or greater, a significant increase in maximum theoretical yield.

[0006] Sondregger *et al.* have also described the benefits of PK and PTA with respect to ethanol production in a xylose-utilizing yeast strain. See Sondregger *et al.*, *Applied and Environmental Microbiology* 70(5):2892-2897 (2004), the contents of which are hereby incorporated by reference in their entirety. The heterologous phosphoketolase pathway (PK, PTA, and ADA) was introduced in *S. cerevisiae* to address low ethanol yields that result from overexpression of NAD(P)H-dependent xylose reductase and NAD⁺-dependent xylitol dehydrogenase from *Pichia stipitis*. The different cofactor preferences in the two oxidoreductase reactions caused an anaerobic redox balancing problem that manifested in the extensive accumulation of the reduced reaction intermediate xylitol, and thus, low ethanol yields. Redox metabolism was balanced by introducing the phosphoketolase pathway, which lead to the net reoxidation of one NADH per xylose converted to ethanol, and an improvement in ethanol yield by 25%. However, overexpression of PK also leads to an increase in acetate accumulation and a reduction in fermentation rate. Although some acetate accumulation could be reduced by combining the phosphoketolase pathway with a mutation of ALD6, which converts acetaldehyde to acetate, the flux through the recombinant phosphoketolase pathway was about 30% of the optimum flux that would be required to completely eliminate xylitol and glycerol accumulation. The authors suggested that higher activities of phosphotransacetylase and/or acetaldehyde dehydrogenase may be necessary to prevent phosphoketolase pathway-based acetate formation.

[0007] Thus, while the introduction of a heterologous PK pathway can lead to substantial improvements in the yields of acetyl-CoA derived compounds, further improvements in the implementation of this pathway appear to be required to achieve optimal

carbon flux through PK and PTA. The compositions and methods provided herein address this need and provide related advantages as well.

3. SUMMARY OF THE INVENTION

[0008] Provided herein are compositions and methods for the improved utilization of phosphoketolase (PK) and phosphotransacetylase (PTA) for the production of industrially useful compounds. These compositions and methods are based on the surprising discovery that phosphoketolase pathway-based acetate accumulation results from the enzyme-catalyzed hydrolysis of acetyl phosphate, the product of PK catalysis. Hydrolysis of acetyl phosphate is an undesirable side-reaction that can negatively impact production, via depletion of carbon, of any type of product derived from acetyl-CoA, including isoprenoids, polyketides, and fatty acids. By functionally disrupting native enzymes in the host cell that catalyze acetyl phosphate hydrolysis, acetate accumulation is reduced and carbon flux through the PK/PTA pathway towards acetyl-CoA production is increased.

[0009] The compositions and methods provided herein are further based on the unexpected discovery of native enzymes in yeast that catalyze the hydrolysis of acetyl phosphate to acetate, namely GPP1/RHR2, and its closely related homolog GPP2/HOR2. Both of these enzymes have only been previously characterized as having glycerol-1-phosphatase (EC 3.1.3.21; alternately referred to as “glycerol-3-phosphatase”) activity, and thus, the promiscuous acetyl-phosphatase activity of these enzymes is unexpected. In cells heterologously expressing PK and PTA, deletion of one or both of the genes encoding RHR2 and HOR2 leads to a reduction in acetate accumulation, with deletion of the gene encoding RHR2 alone leading to a substantial reduction in acetate levels. Moreover, deletion of the *RHR2* gene in cells engineered to comprise PK, PTA and a mevalonate pathway resulted in a substantial increase in the production of farnesene, an acetyl-CoA derived isoprenoid.

[0010] Thus, provided herein are genetically modified host cells and methods of their use for the production of industrially useful compounds. In one aspect, provided herein is a genetically modified host cell comprising: a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9); and a functional disruption of an endogenous enzyme that converts acetyl phosphate to acetate. In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC 2.3.1.8).

[0011] In another aspect, provided herein is a genetically modified host cell comprising: a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC

2.3.1.8); and a functional disruption of an endogenous enzyme that converts acetyl phosphate to acetate. In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9).

[0012] In some embodiments, the enzyme that converts acetyl phosphate to acetate is a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is selected from the group consisting of GPP1/RHR2, GPP2HOR2, and homologues and variants thereof. In some embodiments, the genetically modified host cell comprises a functional disruption of GPP1/RHR2. In some embodiments, the genetically modified host cell comprises a functional disruption of GPP2/HOR2. In some embodiments, the genetically modified host cell comprises a functional disruption of both GPP1/RHR2 and GPP2/HOR2.

[0013] In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding an acylating acetylaldehyde dehydrogenase (ADA; EC 1.2.1.10). In some embodiments, the genetically modified host cell further comprises a functional disruption of one or more enzymes of the native pyruvate dehydrogenase (PDH) - bypass. In some embodiments, the one or more enzymes of the PDH-bypass are selected from acetyl-CoA synthetase 1 (ACS1), acetyl-CoA synthetase 2 (ACS2), and aldehyde dehydrogenase 6 (ALD6).

[0014] In some embodiments, the genetically modified host cell is capable of producing a heterologous acetyl-CoA derived compound. In some embodiments, the heterologous acetyl-CoA derived compound is selected from the group consisting of an isoprenoid, a polyketide, and a fatty acid. In particular embodiments, the genetically modified host cell is capable of producing an isoprenoid.

[0015] In some embodiments, the genetically modified host cell comprises one or more heterologous nucleic acids encoding one or more enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate. In some embodiments, the one or more enzymes of the MEV pathway comprise an NADH-using HMG-CoA reductase. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that condenses two molecules of acetyl-CoA to form acetoacetyl-CoA. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that converts HMG-CoA to mevalonate. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate. In some embodiments, the one or

more enzymes of the MEV pathway comprise an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate. In some embodiments, the one or more enzymes of the MEV pathway are selected from HMG-CoA synthase, mevalonate kinase, phosphomevalonate kinase and mevalonate pyrophosphate decarboxylase. In some embodiments, the host cell comprises a plurality of heterologous nucleic acids encoding all of the enzymes of the MEV pathway. In some embodiments, the one or more heterologous nucleic acids encoding one or more enzymes of the MEV pathway are under control of a single transcriptional regulator. In some embodiments, the one or more heterologous nucleic acids encoding one or more enzymes of the MEV pathway are under control of multiple heterologous transcriptional regulators. In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding an enzyme that can convert isopentenyl pyrophosphate (IPP) into dimethylallyl pyrophosphate (DMAPP). In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding an enzyme that can condense IPP and/or DMAPP molecules to form a polyprenyl compound. In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding an enzyme that can modify IPP or a polyprenyl to form an isoprenoid compound.

[0016] In some embodiments, the enzyme that can modify IPP or a polyprenyl to form an isoprenoid compound is selected from the group consisting of carene synthase, geraniol synthase, linalool synthase, limonene synthase, myrcene synthase, ocimene synthase, α -pinene synthase, β -pinene synthase, γ -terpinene synthase, terpinolene synthase, amorphadiene synthase, α -farnesene synthase, β -farnesene synthase, farnesol synthase, nerolidol synthase, patchouliol synthase, nootkatone synthase, and abietadiene synthase.

[0017] In some embodiments, the isoprenoid is selected from the group consisting of a hemiterpene, monoterpene, diterpene, triterpene, tetraterpene, sesquiterpene, and polyterpene. In some embodiments, the isoprenoid is a sesquiterpene. In some embodiments, the isoprenoid is a C₅-C₂₀ isoprenoid. In some embodiments, the isoprenoid is selected from the group consisting of abietadiene, amorphadiene, carene, α -farnesene, β -farnesene, farnesol, geraniol, geranylgeraniol, isoprene, linalool, limonene, myrcene, nerolidol, ocimene, patchouliol, β -pinene, sabinene, γ -terpinene, terpinolene, and valencene.

[0018] In another aspect, provided herein is a genetically modified host cell capable of producing an isoprenoid, the cell comprising: one or more heterologous nucleic acids encoding one or more enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate; a heterologous nucleic acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0019] In another aspect, provided herein is a genetically modified host cell capable of producing an isoprenoid, the cell comprising: one or more heterologous nucleic acids encoding one or more enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate; a heterologous nucleic acid encoding an acetylaldehyde dehydrogenase, acetylating (ADA); a heterologous nucleic acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0020] In another aspect, provided herein is a genetically modified host cell capable of producing an isoprenoid, the cell comprising: one or more heterologous nucleic acids encoding one or more enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate; a heterologous nucleic acid encoding an acetylaldehyde dehydrogenase, acetylating (ADA); a functional disruption of at least one enzyme of the native PDH-bypass selected from the group consisting of acetyl-CoA synthetase 1 (ACS1), acetyl-CoA synthetase 2 (ACS2), and aldehyde dehydrogenase 6 (ALD6); a heterologous nucleic acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0021] In another aspect, provided herein is a genetically modified host cell capable of producing an isoprenoid, the cell comprising: one or more heterologous nucleic acids encoding one or more enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate, wherein the one or more enzymes comprise a NADH-using HMG-CoA

reductase; a heterologous nucleic acid encoding an acetylaldehyde dehydrogenase, acetylating (ADA); a functional disruption of at least one enzyme of the native PDH-bypass selected from the group consisting of acetyl-CoA synthetase 1 (ACS1), acetyl-CoA synthetase 2 (ACS2), and aldehyde dehydrogenase 6 (ALD6); a heterologous nucleic acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0022] In another aspect, provided herein is genetically modified host cell capable of producing an isoprenoid, the cell comprising: one or more heterologous nucleic acids encoding a plurality of enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate, wherein the plurality of enzymes comprise an acetyl-CoA:malonyl-CoA acyltransferase; a heterologous nucleic acid encoding an acetylaldehyde dehydrogenase, acetylating (ADA); a functional disruption of at least one enzyme of the native PDH-bypass selected from the group consisting of acetyl-CoA synthetase 1 (ACS1), acetyl-CoA synthetase 2 (ACS2), and aldehyde dehydrogenase 6 (ALD6); a heterologous nucleic acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0023] In another aspect, provided herein is a genetically modified host cell capable of producing an polyketide, the cell comprising: one or more heterologous nucleic acids encoding one or more enzymes of polyketide biosynthetic pathway; a heterologous nucleic acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0024] In another aspect, provided herein is a genetically modified host cell capable of producing a fatty acid, the cell comprising: one or more heterologous nucleic acids encoding one or more enzymes of fatty acid biosynthetic pathway; a heterologous nucleic

acid encoding a phosphoketolase (PK); a heterologous nucleic acid encoding a phosphotransacetylase (PTA); and a functional disruption of a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is GPP1/RHR2, or a homologue or variant thereof. In some embodiments, the glycerol-1-phosphatase is GPP2/HOR2, or a homologue or variant thereof.

[0025] In some embodiments, the genetically modified host cell provided herein is selected from the group consisting of a bacterial cell, a fungal cell, an algal cell, an insect cell, and a plant cell. In some embodiments, the cell is a yeast cell. In some embodiments, the yeast is *Saccharomyces cerevisiae*.

[0026] In some embodiments, the genetically modified host cell produces an increased amount of an acetyl-CoA derived compound (e.g., an isoprenoid, polyketide, or fatty acid) compared to a yeast cell not comprising a functional disruption of an endogenous enzyme that converts acetyl phosphate to acetate.

[0027] In another aspect, provided herein are methods for producing a heterologous acetyl-CoA derived compound, the method comprising: culturing a population of genetically modified host cells, capable of producing a heterologous acetyl-CoA derived compound as described herein, in a medium with a carbon source under conditions suitable for making said heterologous acetyl-CoA derived compound; and recovering said heterologous acetyl-CoA derived compound from the medium. In some embodiments, heterologous acetyl-CoA derived compound is selected from the group consisting of an isoprenoid, a polyketide, and a fatty acid.

[0028] In another aspect, provided herein is a method for increasing the production of acetyl-CoA or an acetyl-CoA derived compound in a host cell, the method comprising: expressing in the host cell a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9); and functionally disrupting an endogenous enzyme that converts acetyl phosphate to acetate. In some embodiments, the method further comprises expressing in the host cell a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC 2.3.1.8).

[0029] In another aspect, provided herein is a method for increasing the production of acetyl-CoA in a host cell, the method comprising: expressing in the host cell a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC 2.3.1.8); and functionally disrupting an endogenous enzyme that converts acetyl phosphate to acetate. In some embodiments, the method further comprises expressing in the host cell a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9).

2014227811 28 Feb 2018

[0030] In some embodiments, the enzyme that converts acetyl phosphate to acetate is a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the glycerol-1-phosphatase is selected from GPP1/RHR2, GPP2/HOR2, and homologues and variants thereof. In some embodiments, GPP1/RHR2, or a homologue or variant thereof, is functionally disrupted. In some embodiments, GPP2/HOR2, or a homologue or variant thereof, is functionally disrupted. In some embodiments, both GPP1/RHR2 and GPP2/HOR2, or both a homologue or variant of GPP1/RHR2 and a homologue or variant of GPP2/HOR2, are functionally disrupted. In some embodiments, the host cell is selected from the group consisting of a bacterial cell, a fungal cell, an algal cell, an insect cell, and a plant cell. In some embodiments, the host cell is a yeast cell. In some embodiments, the yeast is *Saccharomyces cerevisiae*. In some embodiments, the host cell produces an increased amount of acetyl-CoA or an acetyl-CoA derived compound compared to a yeast cell not comprising a functional disruption of an endogenous enzyme that converts acetyl phosphate to acetate.

[0030a] In one aspect, provided herein is a genetically modified yeast host cell comprising: (a) a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9); (b) a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC 2.3.1.8); and (c) a functional disruption of an endogenous glycerol-1-phosphatase enzyme (EC 3.1.3.21) that converts acetyl phosphate to acetate, wherein conversion from acetyl phosphate to acetate is functionally disrupted.

[0030b] In another aspect, provided herein is a method for increasing the production of acetyl-CoA or an isoprenoid in a yeast host cell, the method comprising: (a) expressing in the yeast host cell a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9) and a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC 2.3.1.8); and (b) functionally disrupting an endogenous glycerol-1-phosphatase enzyme (EC 3.1.3.21) that converts acetyl phosphate to acetate, wherein conversion from acetyl phosphate to acetate is functionally disrupted.

4. BRIEF DESCRIPTION OF THE FIGURES

[0031] **FIG. 1** provides a schematic representation of the pathways involved in the conversion of sugar (glucose and xylose) to acetyl-CoA, and acetyl-CoA derived compounds, in a yeast host cell. The bold arrows indicate the recombinant phosphoketolase pathway. Acetyl phosphate is an intermediate of the phosphoketolase (PK) / phosphotransacetylase (PTA) pathway to acetyl-CoA, and is hydrolyzed to acetate by RHR2 and HOR2.

2014227811 28 Feb 2018

Abbreviations: G6P, glucose-6-phosphate; R5P, ribulose-5-phosphate; X5P, xyulose-5-phosphate; F6P, fructose-6-phosphate; E4P, erythrose-4-phosphate; FBP, fructose-1,6-biphosphate; DHAP, dihydroxyacetone phosphate; G3P, glyceraldehyde-3-phosphate; PEP, phosphoenolpyruvate; ADA, acetaldehyde dehydrogenase, acetylating; ACP, acetyl phosphate.

[0032] **FIG. 2** provides representative enzymes of the mevalonate pathway for isoprenoid production. Abbreviations: AcCoA, acetyl-CoA; AcAcCoA, acetoacetyl-CoA; HMGCoA, 3-hydroxy-3-methylglutaryl-CoA; Mev5P, mevalonate-5-phosphate; Mev5DP, mevalonate-5-diphosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl pyrophosphate; Erg10, acetyl-CoA thiolase; ACC1, acetyl-CoA carboxylase; AACs, acetoacetyl-CoA synthase; Erg13, 3-hydroxy-3-methylglutaryl-CoA synthase; HMGr, 3-hydroxy-3-methylglutaryl-CoA reductase; Erg12, mevalonate kinase; Erg8, phosphomevalonate kinase; Erg19, mevalonate pyrophosphate decarboxylase.

[0033] **FIGS. 3A-3B** provides the sugar consumption (**A**) and acetate production (**B**) of wild-type (strain Y967, left) and recombinant yeast cells (middle, right) comprising: a heterologous acetaldehyde dehydrogenase acylating (Dz.eutE) and deletion of the native PDH-bypass (*acs1Δ acs2Δ ald6Δ*) (strain Y12869; middle); and further comprising a heterologous phosphoketolase (Lm.PK) and phosphotransacetylase (Ck.PTA) (strain Y12746; right).

[0034] **FIGS. 3C-3D** provides the sugar consumption (**C**) and acetate production (**D**) of recombinant yeast cells comprising: a heterologous acetaldehyde dehydrogenase acylating (Dz.eutE) and deletion of the native PDH-bypass (*acs1Δ acs2Δ ald6Δ*) (strain Y12869; left); and further comprising a heterologous phosphoketolase (Lm.PK) (strain Y19390; middle) or phosphotransacetylase (Ck.PTA) (strain Y19391; right).

[0035] **FIG. 4** provides a demonstration of acetyl phosphate hydrolysis in cell free extracts (CFE) of wild-type *S. cerevisiae* strain Y967 over a 120 minute timecourse. Shown are CFE only (left); CFE plus 30 mM sodium fluoride, a broad spectrum phosphatase inhibitor (middle); and CFE that has been heat inactivated (right).

[0036] **FIG. 5** provides results of anion exchange chromatography on Y967 cell free extracts. Protein was eluted with a 0-100% gradient of buffer B (20 mM Tris-Cl pH 7, 1M NaCl, 10% glycerol) over 30 column volumes at a flow rate of 0.5 mL/minute, and 1 mL fractions were collected, analyzed by protein gel electrophoresis (**FIG. 5B**), and assayed for acetyl phosphatase activity (**FIG. 5A**). ACP, acetyl phosphate.

[0037] **FIG. 6A** provides results of anion exchange chromatography on fraction #10 of Y967. The most active fraction from this purification, # 14, was analyzed by mass spectrometry to determine the identity of the proteins in the fraction (**FIG. 6B**). RHR2 was identified as a phosphatase in the active fraction.

[0038] **FIG. 7** provides results of acetyl phosphatase activity assays on CFEs of a wild-type yeast strain (Y968) or recombinant yeast strains comprising a deletion of *RHR2*, *HOR2* or both *RHR2* and *HOR2*.

[0039] **FIGS. 8A-8C** provides acetate levels (**A**), glycerol levels (**B**) and optical densities (**C**) of recombinant yeast strain populations. Strain Y12746.ms63909.ms64472 comprises a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*), and heterologously expresses acetaldehyde dehydrogenase acylating (Dz.eutE), phosphoketolase (Lm.PK), phosphotransacetylase (Ck.PTA), and genes in the farnesene production pathway. Strain

Y12746.ms63909.ms64472 rhr2⁺ is isogenic to strain Y12746.ms63909.ms64472 but further comprises a deletion of RHR2 (rhr2⁺).

[0040] **FIGS. 8D-8E** provides acetate levels (**D**) and optical densities (**E**) of recombinant yeast strain populations. Strain Y12745 comprises a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*), and heterologously expresses acetaldehyde dehydrogenase acetylating (Dz.eutE), phosphoketolase (Lm.PK), and phosphotransacetylase (Ck.PTA). Strain Y12746 rhr2⁺ is isogenic to strain Y12746 but further comprises a deletion of RHR2 (rhr2⁺).

[0041] **FIG. 9** provides relative farnesene levels (top) and relative optical densities (bottom) of recombinant yeast strain populations wherein the *RHR2* gene is intact (RHR2⁺) or deleted (rhr2⁻). Y968 (right panel) is a wild-type yeast strain. Y12869.ms63907.ms64472 (“Y12869”; 2nd from right panel) comprises a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*), and heterologously expresses acetaldehyde dehydrogenase acetylating (Dz.eutE) and genes in the farnesene production pathway, but does not express phosphoketolase or phosphotransacetylase. Y12746.ms63907.ms64472 (“Y12746”; 2nd from left panel) comprises a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*), and heterologously expresses acetaldehyde dehydrogenase acetylating (Dz.eutE) and genes in the farnesene production pathway, and uses phosphoketolase and phosphotransacetylase as a pathway to produce cytosolic acetyl-CoA, which is used for synthesis of farnesene. Y12745.ms63907.ms64472 (“Y12745”; left panel) comprises a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*), and genes in the farnesene production pathway, and uses phosphoketolase and phosphotransacetylase as a pathway to produce cytosolic acetyl-CoA, which is used for synthesis of farnesene.

5. DETAILED DESCRIPTION OF THE EMBODIMENTS

5.1 Terminology

[0042] As used herein, the term “heterologous” refers to what is not normally found in nature. The term “heterologous nucleotide sequence” refers to a nucleotide sequence not normally found in a given cell in nature. As such, a heterologous nucleotide sequence may be: (a) foreign to its host cell (*i.e.*, is “exogenous” to the cell); (b) naturally found in the host cell (*i.e.*, “endogenous”) but present at an unnatural quantity in the cell (*i.e.*, greater or lesser quantity than naturally found in the host cell); or (c) be naturally found in the host cell but positioned outside of its natural locus. The term “heterologous enzyme” refers to an enzyme that is not normally found in a given cell in nature. The term encompasses an enzyme that is: (a) exogenous to a given cell (*i.e.*, encoded by a nucleotide sequence that is not naturally

present in the host cell or not naturally present in a given context in the host cell); and (b) naturally found in the host cell (*e.g.*, the enzyme is encoded by a nucleotide sequence that is endogenous to the cell) but that is produced in an unnatural amount (*e.g.*, greater or lesser than that naturally found) in the host cell.

[0043] On the other hand, the term “native” or “endogenous” as used herein with reference to molecules, and in particular enzymes and nucleic acids, indicates molecules that are expressed in the organism in which they originated or are found in nature, independently of the level of expression that can be lower, equal, or higher than the level of expression of the molecule in the native microorganism. It is understood that expression of native enzymes or polynucleotides may be modified in recombinant microorganisms.

[0044] As used herein, to “functionally disrupt” or a “functional disruption” *e.g.*, of a target gene, for example, one or more genes of the PDH-bypass, means that the target gene is altered in such a way as to decrease in the host cell the activity of the protein encoded by the target gene. In some embodiments the functional disruption of a target gene results in a reduction by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the expression level of the target gene compared to its expression when not functionally disrupted. Similarly, to “functionally disrupt” or a “functional disruption” *e.g.*, of a target protein, for example, a protein having acetyl phosphatase activity, means that the target protein is altered in such a way as to decrease in the host cell the activity of the protein. In some embodiments the functional disruption of a target protein results in a reduction by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the activity or expression level of the target protein compared to its activity or expression when not functionally disrupted. In some embodiments, the activity of the target protein encoded by the target gene is eliminated in the host cell. In other embodiments, the activity of the target protein encoded by the target gene is decreased in the host cell. Functional disruption of the target gene may be achieved by deleting all or a part of the gene so that gene expression is eliminated or reduced, or so that the activity of the gene product is eliminated or reduced. Functional disruption of the target gene may also be achieved by mutating a regulatory element of the gene, *e.g.*, the promoter of the gene so that expression is eliminated or reduced, or by mutating the coding sequence of the gene so that the activity of the gene product is eliminated or reduced. In some embodiments, functional disruption of the target gene results in the removal of the complete open reading frame of the target gene.

[0045] As used herein, the term “parent cell” refers to a cell that has an identical genetic background as a genetically modified host cell disclosed herein except that it does not comprise one or more particular genetic modifications engineered into the modified host cell, for example, one or more modifications selected from the group consisting of: heterologous expression of an ADA, heterologous expression of an NADH-using HMG-CoA reductase, heterologous expression of an AACs, heterologous expression of a phosphoketolase, heterologous expression of a phosphotransacetylase, and heterologous expression of one or more enzymes of the mevalonate pathway.

[0046] As used herein, the term “production” generally refers to an amount of an isoprenoid produced by a genetically modified host cell provided herein. In some embodiments, production is expressed as a yield of isoprenoid by the host cell. In other embodiments, production is expressed as a productivity of the host cell in producing the isoprenoid.

[0047] As used herein, the term “productivity” refers to production of an isoprenoid by a host cell, expressed as the amount of isoprenoid produced (by weight) per amount of fermentation broth in which the host cell is cultured (by volume) over time (per hour).

[0048] As used herein, the term “yield” refers to production of an isoprenoid by a host cell, expressed as the amount of isoprenoid produced per amount of carbon source consumed by the host cell, by weight.

[0049] As used herein, the phrase “acetyl-CoA derived compound” refers to a compound which uses acetyl-CoA as a substrate in its biosynthesis. Exemplary acetyl-CoA derived compounds include, but are not limited to, isoprenoids, polyketides, fatty acids, and alcohols. In some embodiments, an acetyl-CoA derived compound is ethanol, for example, bioethanol produced from pentose substrates, as described in U.S. Patent No. 7,253,001, the contents of which are hereby incorporated by reference in their entirety.

[0050] As used herein, the term “variant” refers to a polypeptide differing from a specifically recited “reference” polypeptide (*e.g.*, a wild-type sequence) by amino acid insertions, deletions, mutations, and substitutions, but retains an activity that is substantially similar to the reference polypeptide. In some embodiments, the variant is created by recombinant DNA techniques, such as mutagenesis. In some embodiments, a variant polypeptide differs from its reference polypeptide by the substitution of one basic residue for another (*i.e.* Arg for Lys), the substitution of one hydrophobic residue for another (*i.e.* Leu for Ile), or the substitution of one aromatic residue for another (*i.e.* Phe for Tyr), *etc.* In some

embodiments, variants include analogs wherein conservative substitutions resulting in a substantial structural analogy of the reference sequence are obtained. Examples of such conservative substitutions, without limitation, include glutamic acid for aspartic acid and vice-versa; glutamine for asparagine and vice-versa; serine for threonine and vice-versa; lysine for arginine and vice-versa; or any of isoleucine, valine or leucine for each other.

5.2 Host Cells

[0051] Host cells useful compositions and methods provided herein include archae, prokaryotic, or eukaryotic cells.

[0052] Suitable prokaryotic hosts include, but are not limited, to any of a variety of gram-positive, gram-negative, or gram-variable bacteria. Examples include, but are not limited to, cells belonging to the genera: *Agrobacterium*, *Alicyclobacillus*, *Anabaena*, *Anacystis*, *Arthrobacter*, *Azobacter*, *Bacillus*, *Brevibacterium*, *Chromatium*, *Clostridium*, *Corynebacterium*, *Enterobacter*, *Erwinia*, *Escherichia*, *Lactobacillus*, *Lactococcus*, *Mesorhizobium*, *Methylobacterium*, *Microbacterium*, *Phormidium*, *Pseudomonas*, *Rhodobacter*, *Rhodopseudomonas*, *Rhodospirillum*, *Rhodococcus*, *Salmonella*, *Scenedesmus*, *Serratia*, *Shigella*, *Staphylococcus*, *Streptomyces*, *Synneccoccus*, and *Zymomonas*. Examples of prokaryotic strains include, but are not limited to: *Bacillus subtilis*, *Bacillus amyloliquefacines*, *Brevibacterium ammoniagenes*, *Brevibacterium immariophilum*, *Clostridium beigerinckii*, *Enterobacter sakazakii*, *Escherichia coli*, *Lactococcus lactis*, *Mesorhizobium loti*, *Pseudomonas aeruginosa*, *Pseudomonas mevalonii*, *Pseudomonas pudica*, *Rhodobacter capsulatus*, *Rhodobacter sphaeroides*, *Rhodospirillum rubrum*, *Salmonella enterica*, *Salmonella typhi*, *Salmonella typhimurium*, *Shigella dysenteriae*, *Shigella flexneri*, *Shigella sonnei*, and *Staphylococcus aureus*. In a particular embodiment, the host cell is an *Escherichia coli* cell.

[0053] Suitable archae hosts include, but are not limited to, cells belonging to the genera: *Aeropyrum*, *Archaeoglobus*, *Halobacterium*, *Methanococcus*, *Methanobacterium*, *Pyrococcus*, *Sulfolobus*, and *Thermoplasma*. Examples of archae strains include, but are not limited to: *Archaeoglobus fulgidus*, *Halobacterium sp.*, *Methanococcus jannaschii*, *Methanobacterium thermoautotrophicum*, *Thermoplasma acidophilum*, *Thermoplasma volcanium*, *Pyrococcus horikoshii*, *Pyrococcus abyssi*, and *Aeropyrum pernix*.

[0054] Suitable eukaryotic hosts include, but are not limited to, fungal cells, algal cells, insect cells, and plant cells. In some embodiments, yeasts useful in the present methods include yeasts that have been deposited with microorganism depositories (e.g. IFO, ATCC,

etc.) and belong to the genera *Aciculococonidium*, *Ambrosiozyma*, *Arthroascus*, *Arxiozyma*, *Ashbya*, *Babjevia*, *Bensingtonia*, *Botryoascus*, *Botryozyma*, *Brettanomyces*, *Bullera*, *Bulleromyces*, *Candida*, *Citeromyces*, *Clavispora*, *Cryptococcus*, *Cystofilobasidium*, *Debaryomyces*, *Dekkara*, *Dipodascopsis*, *Dipodascus*, *Eeniella*, *Endomycopsisella*, *Eremascus*, *Eremotheicum*, *Erythrobasidium*, *Fellomyces*, *Filobasidium*, *Galactomyces*, *Geotrichum*, *Guilliermondella*, *Hanseniaspora*, *Hansenula*, *Hasegawaea*, *Holtermannia*, *Hormoascus*, *Hyphopichia*, *Issatchenka*, *Kloeckera*, *Kloeckeraspora*, *Kluyveromyces*, *Kondoa*, *Kuraishia*, *Kurtzmanomyces*, *Leucosporidium*, *Lipomyces*, *Lodderomyces*, *Malassezia*, *Metschnikowia*, *Mrakia*, *Myxozyma*, *Nadsonia*, *Nakazawaea*, *Nematospora*, *Ogataea*, *Oosporidium*, *Pachysolen*, *Phachytichospora*, *Phaffia*, *Pichia*, *Rhodosporidium*, *Rhodotorula*, *Saccharomyces*, *Saccharomycodes*, *Saccharomycopsis*, *Saitoella*, *Sakaguchia*, *Saturnospora*, *Schizoblastosporion*, *Schizosaccharomyces*, *Schwanniomyces*, *Sporidiobolus*, *Sporobolomyces*, *Sporopachydermia*, *Stephanoascus*, *Sterigmatomyces*, *Sterigmatosporidium*, *Symbiotaphrina*, *Sympodiomyces*, *Sympodiomycopsis*, *Torulaspora*, *Trichosporiella*, *Trichosporon*, *Trigonopsis*, *Tsuchiyaea*, *Udeniomyces*, *Waltomyces*, *Wickerhamia*, *Wickerhamiella*, *Williopsis*, *Yamadazyma*, *Yarrowia*, *Zygoascus*, *Zygosaccharomyces*, *Zygowilliopsis*, and *Zygozyma*, among others.

[0055] In some embodiments, the host microbe is *Saccharomyces cerevisiae*, *Pichia pastoris*, *Schizosaccharomyces pombe*, *Dekkera bruxellensis*, *Kluyveromyces lactis* (previously called *Saccharomyces lactis*), *Kluyveromyces marxianus*, *Arxula adeninivorans*, or *Hansenula polymorpha* (now known as *Pichia angusta*). In some embodiments, the host microbe is a strain of the genus *Candida*, such as *Candida lipolytica*, *Candida guilliermondii*, *Candida krusei*, *Candida pseudotropicalis*, or *Candida utilis*.

[0056] In a particular embodiment, the host microbe is *Saccharomyces cerevisiae*. In some embodiments, the host is a strain of *Saccharomyces cerevisiae* selected from the group consisting of Baker's yeast, CBS 7959, CBS 7960, CBS 7961, CBS 7962, CBS 7963, CBS 7964, IZ-1904, TA, BG-1, CR-1, SA-1, M-26, Y-904, PE-2, PE-5, VR-1, BR-1, BR-2, ME-2, VR-2, MA-3, MA-4, CAT-1, CB-1, NR-1, BT-1, and AL-1. In some embodiments, the host microbe is a strain of *Saccharomyces cerevisiae* selected from the group consisting of PE-2, CAT-1, VR-1, BG-1, CR-1, and SA-1. In a particular embodiment, the strain of *Saccharomyces cerevisiae* is PE-2. In another particular embodiment, the strain of *Saccharomyces cerevisiae* is CAT-1. In another particular embodiment, the strain of *Saccharomyces cerevisiae* is BG-1.

[0057] In some embodiments, the host microbe is a microbe that is suitable for industrial fermentation. In particular embodiments, the microbe is conditioned to subsist under high solvent concentration, high temperature, expanded substrate utilization, nutrient limitation, osmotic stress due to sugar and salts, acidity, sulfite and bacterial contamination, or combinations thereof, which are recognized stress conditions of the industrial fermentation environment.

5.3 The Phosphoketolase (PK) / Phosphotransacetylase (PTA) Pathway to Acetyl-CoA

[0058] In some embodiments, the phosphoketolase pathway is activated in the genetically modified host cells provided herein by engineering the cells to express polynucleotides and/or polypeptides encoding phosphoketolase and, optionally, phosphotransacetylase. Thus, in some embodiments, the genetically modified host cells provided herein comprise a heterologous polynucleotide encoding a polypeptide having phosphoketolase activity. In other embodiments, particularly where acetyl phosphate can be supplied as a metabolic intermediate independent of phosphoketolase activity, the genetically modified host cells provided herein comprise a heterologous polynucleotide encoding a polypeptide having phosphotransacetylase activity. In other embodiments, the genetically modified host cells provided herein comprise both a heterologous polynucleotide encoding a polypeptide having phosphoketolase activity and a heterologous polynucleotide encoding a polypeptide having phosphotransacetylase activity.

5.3.1 Phosphoketolase (PK)

[0059] Phosphoketolase (EC 4.1.2.9) catalyzes the conversion of xylulose 5-phosphate into glyceraldehyde 3-phosphate and acetyl phosphate; and/or the conversion of fructose-6-phosphate into erythrose-4-phosphate and acetyl phosphate. Phosphoketolase activity has been identified in several yeast strains growing with xylose as the sole carbon source but not in yeast strains grown with glucose (Evans and Ratledge, *Arch. Microbiol.* 139: 48-52; 1984). Inhibitors of phosphoketolase include, but are not limited to, erythrose 4-phosphate and glyceraldehyde 3-phosphate.

[0060] Numerous examples of polynucleotides, genes and polypeptides encoding phosphoketolase activity are known in the art and can be used in the genetically modified host cell provided herein. In some embodiments, such a polynucleotide, gene and/or polypeptide is the xylulose 5-phosphateketolase (XpkA) of *Lactobacillus pentosus* MD363 (Posthuma *et al.*, *Appl. Environ. Microbiol.* 68: 831-7; 2002). XpkA is the central enzyme of

the phosphoketolase pathway (PKP) in lactic acid bacteria, and exhibits a specific activity of 4.455 μ mol/min/mg (Posthuma *et al.*, *Appl. Environ. Microbiol.* 68: 831-7; 2002). In other embodiments, such a polynucleotide, gene and/or polypeptide is the phosphoketolase of *Leuconostoc mesenteroides* (Lee *et al.*, *Biotechnol Lett.* 27(12):853-858 (2005)), which exhibits a specific activity of 9.9 μ mol/min/mg and is stable at pH above 4.5 (Goldberg *et al.*, *Methods Enzymol.* 9: 515-520; 1966). This phosphoketolase exhibits a Km of 4.7 mM for D-xylulose 5-phosphate and a Km of 29 mM for fructose 6-phosphate (Goldberg *et al.*, *Methods Enzymol.* 9: 515-520; 1966). Representative phosphoketolase nucleotide sequences of *Leuconostoc mesenteroides* includes accession number AY804190, and SEQ ID NO: 1 as provided herein. Representative phosphoketolase protein sequences of *Leuconostoc mesenteroides* include accession numbers YP_819405, AAV66077.1, and SEQ ID NO: 2 as provided herein. In other embodiments, such a polynucleotide, gene and/or polypeptide is the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene xfp from *B. lactis*, as described, for example, in a pentose-metabolizing *S. cerevisiae* strain by Sonderegger *et al.* (*Appl. Environ. Microbiol.* 70: 2892-7; 2004).

[0061] Other useful phosphoketolases include, but are not limited to, those from *Bifidobacterium dentium* ATCC 27678 (ABIX02000002.1:2350400..2352877; EDT46356.1); *Bifidobacterium animalis* (NC_017834.1:1127580..1130057; YP_006280131.1); and *Bifidobacterium pseudolongum* (AY518216.1:988..3465; AAR98788.1); *Aspergillus nidulans* FGSC A4 (CBF76492.1); *Bifidobacterium longum* (AAR98787.1); *Bifidobacterium bifidum* NCIMB 41171 (ZP 03646196.1); *Bifidobacterium animalis* subsp. *lactis* HN019 (ZP 02962870.1); *Lactobacillus plantarum* WCFS1 (NP_786060.1); *Lactobacillus brevis* subsp. *gravesensis* ATCC 27305 (ZP_03940142.1); *Lactobacillus reuteri* 100-23 (ZP_03073172.1); and *Leuconostoc mesenteroides* subsp. *mesenteroides* ATCC 8293 (YP_818922.1).

[0062] Other useful phosphoketolases include those described in International Publication No. WO 2011/15985, the contents of which are hereby incorporated by reference in their entirety. These phosphoketolases include: (YP_001601863.1; *Gluconacetobacter diazotrophicus* Pal 5), (YP_001093221.1; *Shewanella loihica* PV-4), (YP_926792.1; *Shewanella amazonensis* SB2B), (YP_735093.1; *Shewanella* sp. MR-4), (YP_001049439.1; *Shewanella baltica* OS155), (ZP_02157884.1; *Shewanella benthica* KT99), (YP_001472925.1; *Shewanella sediminis* HAW-EB3), (YP_001759669.1; *Shewanella woodyi* ATCC 51908), (YP_001673352.1; *Shewanella halifaxensis* HA W-EB4), (YP_563733.1;

Shewanella denitrificans OS217), (ZP_05111697.1; Legionella drancourtii LLAP 12), (EEQ84307.1; Ajellomyces dermatitidis ER-3), (XP_002626734.1; Ajellomyces dermatitidis SLH14081), (XP_001539009.1; Ajellomyces capsulatus NAm1), (EEH04133.1; Ajellomyces capsulatus G186AR), (EEH20258.1; Paracoccidioides brasiliensis Pb03), (EEH44652.1; Paracoccidioides brasiliensis Pb 18), (XP_002582752.1; Uncinocarpus reesii 1704), (EER26377.1; Coccidioides posadasii C735 delta SOWgp), (EEQ28085.1; Microsporum canis CBS 113480), (XP_001819785.1; Aspergillus oryzae RIB40), (XP_001399780.1; Aspergillus niger), (XP_001263382.1; Neosartorya fischeri NRRL 181), (XP_001271080.1; Aspergillus clavatus NRRL 1), (XP_001213784.1; Aspergillus terreus NIH2624), (CBF76492.1; Aspergillus nidulans FGSCA4), (XP_002561913.1; Penicillium chrysogenum Wisconsin 54-1255), (XP_002480391.1; Talaromyces stipitatus ATCC 10500), (XP_002144014.1; Penicillium stipitatus ATCC 10500), (XP_002144014.1; Penicillium mameeffei ATCC 18224), (XP_754543.1; Aspergillus fumigatus Af293), (XP_001556635.1; Botryotinia fuckeliana B05.1 0), (XP_001592549.1; Sclerotinia sclerotiorum 1980), (XP_386729.1; Gibberella zeae PH-1), (EEU47171.1; Nectria haematococca mp VI 77-13-4), (EEY16637.1; Verticillium alboatrum VaMs.l 02), (XP_956649.1; Neurospora crassa OR74A), (XP_364271.2; Magnaporthe grisea 70-15), (XP_001904585.1; Podospora anserine), (XP_001836159.1; Coprinopsis cinerea okayama7#130), (NP_595963.1; Schizosaccharomyces pombe), (XP_002173441.1; Schizosaccharomyces japonicus yFS275), (XP_570860.1; Cryptococcus neoformans var. neoformans JEC21), (XP_759561.1; Ustilago maydis 521), (ZP_05027078.1; Microcoleus chthonoplastes PCC 7420), (YP_003101114.1; Actinosynnema mirum DSM 43827), (ZP_03568244.1; Atopobium rimae ATCC 49626), (YP_003180237.1; Atopobium parvulum DSM 20469), (ZP_03946928.1; Atopobium vaginae DSM 15829), (ZP_03296299.1; Collinsella stercoris DSM 13279), (AAR98787.1; Bifidobacterium longum), (ZP_03618909.1; Bifidobacterium breve DSM 20213), (ZP_03646196.1; Bifidobacterium bifidum NCIMB 41171), (ZP_04448101.1; Bifidobacterium angulatum DSM 20098), (ZP_03324204.1; Bifidobacterium catenulatum DSM 16992), (AAR98790.1; Bifidobacterium sp. CFAR 172), (AAR98789.1; Bifidobacterium pullorum), (ZP_03937610.1; Gardnerella vaginalis ATCC 14019), (ZP_05965201.1; Bifidobacterium gallicum DSM 20093), (ZP_02962870.1; Bifidobacterium animalis subsp. lactis HNO19), (AAR98788.1; Bifidobacterium pseudolongum subsp. Globosum), (ZP_03946518.1; Atopobium vaginae DSM 15829), (YP_001511171.1; Frankia sp. EANlpec), (YP_713678.1; Frankia alni ACN14a), (YP_002778395.1; Rhodococcus

opacus B4), (YP_701466.1; *Rhodococcus jostii* RHA1), (ZP_04383880.1; *Rhodococcus erythropolis* SK121), (YP 947598.1; *Arthrobacter aurescens* TC 1), (CAD48946.1; *Propionibacterium freudenreichii* subsp. *Shermanii*), (NP_791495.1; *Pseudomonas syringae* pv. *Tomato* str. DC3000), (YP_003125992.1; *Chitinophaga pinensis* DSM 2588), (ABX56639.1; *Verrucomicrobiae bacterium* V4), (YP_002371883.1; *Cyanothece* sp. PCC 8801), (YP_001806596.1; *Cyanothece* sp. ATCC 51142), (ZP_01730652.1; *Cyanothece* sp. CCY0110), (CAQ48286.1; *Planktothrix rubescens* NIVA-CYA 98), (ZP_03276298.1; *Arthospira maxima* CS-328), (ZP_03157277.1; *Cyanothece* sp. PCC 7822), (YP_002379031.1; *Cyanothece* sp. PCC 7424), (YP_001658501.1; *Microcystis aeruginosa* NIES-843), (ZP_01621774.1; *Lyngbya* sp. PCC 8106), (NP_485524.1; *Nostoc* sp. PCC 7120), (ZP_05036350.1; *Synechococcus* sp. PCC 7335), (YP_001514813.1; *Acaryochloris marina* MBIC 11 017), (ZP_05039537.1; *Synechococcus* sp. PCC 7335), (ZP_02886235.1; *Burkholderia graminis* C4 DIM), (ZP_03264503.1; *Burkholderia* sp. H160), (ZP_01085819.1; *Synechococcus* sp. WH 5701), (ZP_05045603.1; *Cyanobium* sp. PCC 7001), (ZP_01123645.1; *Synechococcus* sp. WH 7805), (YP_001223932.1; *Synechococcus* sp. WH 7803), (ZP_01079038.1; *Synechococcus* sp. RS9917), (YP_001889002.1; *Burkholderia phytofirmans* PsJN), (YP_553967.1; *Burkholderia xenovorans* LB400), (ZP_02881709.1; *Burkholderia graminis* C4DIM), (ZP_03270532.1; *Burkholderia* sp. H160), (YP_001861620.1; *Burkholderia phymatum* STM815), (YP_002755285.1; *Acidobacterium capsulatum* ATCC 51196), (EDZ38884.1; *Leptospirillum* sp. Group II '5-way CO'), (EES53204.1; *Leptospirillum ferrodiazotrophum*), (YP_172723.1; *Synechococcus elongatus* PCC 6301), (NP_681976.1; *Thermosynechococcus elongatus* BP-1), (YP_114037.1; *Methylococcus capsulatus* str. Bath), (YP_002482577.1; *Cyanothece* sp. PCC 7425), (NP_442996.1; *Synechocystis* sp. PCC 6803), (YP_002482735.1; *Cyanothece* sp. PCC 7425), (ZP_04774866.1; *Allochromatium vinosum* DSM 180), (ZP_01453148.1; *Mariprofundus ferrooxydans* PV-1), (ZP_04830548.1; *Gallionella ferruginea* ES-2), (XP_001273863.1; *Aspergillus clavatus* NRRL 1), (XP_001258643.1; *Neosartorya fischeri* NRRL 181), (XP_001727680.1; *Aspergillus oryzae* RIB40), (XP_001396306.1; *Aspergillus niger*), (XP_001216075.1; *Aspergillus terreus* NIH2624), (XP_002567130.1; *Penicillium chrysogenum* Wisconsin 54-1255), (XP_002143851.1; *Penicillium marneffei* ATCC 18224), (XP_002480216.1; *Talaromyces stipitatus* ATCC 10500), (XP_001559949.1; *Botryotinia fuckeliana* B05.10), (XP_001593100.1; *Sclerotinia sclerotiorum* 1980), (XP_001932192.1; *Pyrenophora triticirepentis* Pt-IC-BFP), (XP_001793729.1; *Phaeosphaeria nodorum* SN 15),

(XP_567776.1; *Cryptococcus neofornans* var. *neofornans* JEC21), (XP_386504.1; *Oibberella zae PH-1*), (EEU46265.1; *Nectria haematococca* mp VI 77-13-4), (AC024516.1; *Metarhizium anisopliae*), (XP_959985.1; *Neurospora crassa* OR74A), (XP_001904686.1; *Podospora anserine*), (YP_002220141.1; *Acidithiobacillus ferrooxidans* ATCC 53993), (YP_001220128.1; *Acidiphilium cryptum* JF -5), (YP_001471202.1; *Thermotoga lettingae* TMO), (YP_002352287.1; *Dictyoglomus turgidum* DSM 6724), (YP_571790.1; *Nitrobacter hamburgensis* X14), (ZP_01092401.1; *Blastopirellula marina* DSM 3645), (YP_001340809.1; *Marinomonas* sp. MWYLI), (NP_866384.1; *Rhodopirellula baltica* SH 1), (ZP_05108502.1; *Legionella drancourtii* LLAP 12), (ZP_04995817.1; *Streptomyces* sp. MgI), (ZP_04023055.1; *Lactobacillus reuteri* SD2112), (ZP_03960060.1; *Lactobacillus vaginalis* ATCC 49540), (ZP_03073172.1; *Lactobacillus reuteri* 100-23), (ZP_05553031.1; *Lactobacillus coleohominis* 101-4-CHN), (ZP_05863347.1; *Lactobacillus fermentum* 28-3-CHN), (ZP_04021289.1; *Lactobacillus acidophilus* ATCC 4796), (ZP_03995194.1; *Lactobacillus crispatus* IV-V0I), (ZP_04010922.1; *Lactobacillus ultunensis* DSM 16047), (ZP_05549961.1; *Lactobacillus crispatus* 125-2-CRN), (ZP_03951361.1; *Lactobacillus gasseri* IV-V03), (ZP_05744515.1; *Lactobacillus iners* DSM 13335), (YP_618635.1; *Lactobacillus delbrueckii* subsp. *bulgaricus* ATCC 11842), (ZP_03955917.1; *Lactobacillus jensenii* IV-VI6), (ZP_03942415.1; *Lactobacillus buchneri* ATCC 11577), (ZP_01544800.1; *Oenococcus oeni* ATCC BAA-1163), (NP_786060.1; *Lactobacillus plantarum* WCFSI), (Q937F6; XPKA_LACPE), (YP_394903.1; *Lactobacillus sakei* subsp. *sakei* 23K), (YP_803891.1; *Pediococcus pentosaceus* ATCC 25745), (BAI40727.1; *Lactobacillus rhamnosus* GG), (ZP_03940142.1; *Lactobacillus brevis* subsp. *Gravesensis* ATCC 27305), (ZP_04009273.1; *Lactobacillus salivarius* ATCC 11741), (ZP_03958643.1; *Lactobacillus ruminis* ATCC 25644), (ZP_04431433.1; *Bacillus coagulans* 36D1), (ZP_04601906.1; *Kingella oralis* ATCC 51147), (ZP_05736927.1; *Granulicatella adiacens* ATCC 49175), (YP_001449631.1; *Streptococcus gordonii* str. *Challis* substr. CHI), (NP_736274.1; *Streptococcus agalactiae* NEM316), (ZP_04442854.1; *Listeria grayi* DSM 20601), (ZP_05646360.1; *Enterococcus casseliflavus* EC30), (ZP_05650322.1; *Enterococcus gallinarum* EG2), (ZP_05675307.1; *Enterococcus faecium* Com12), (BAH69929.1; *Mycoplasma fermentans* PG 18), (YP_002000006.1; *Mycoplasma arthritidis* 15 8L3-1), (YP_001256266.1; *Mycoplasma agalactiae* PG2), (YP_001988835.1; *Lactobacillus casei* BL23), (NP_786753.1; *Lactobacillus plantarum* WCFS 1), (ZP_04009976.1; *Lactobacillus salivarius* ATCC 11741), (YP_818922.1; *Leuconostoc mesenteroides* subsp. *Mesenteroides*

ATCC 8293), (YP_794669.1; Lactobacillus brevis ATCC 367), (ZP_04782553.1; Weissella paramesenteroides ATCC 33313), (YP_001727454.1; Leuconostoc citreum KM20), (YP_819405.1; Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293), (ABX75772.1; Lactococcus lactis subsp. Lactis), (YP_811314.1; Oenococcus oeni PSU-1), (ZP_02951191.1; Clostridium butyricum 5521), (ZP_05390294.1; Clostridium carboxidivorans P7), (NP_347971.1; Clostridium acetobutylicum ATCC 824), (ZP_03800296.1; Coprococcus comes ATCC 27758), (ZP_04857624.1; Ruminococcus sp. 5_1_39B FAA), (ZP_04743029.2; Roseburia intestinalis L 1-82), (ZP_02038271.1; Bacteroides capillosus ATCC 29799), (XP_002180542.1; Phaeodactylum tricomutum CCAP 1055/1), (YP_568630.1; Rhodopseudomonas palustris BisB5), (YP_487462.1; Rhodopseudomonas palustris HaA2), (NP_947019.1; Rhodopseudomonas palustris CGA009), (YP_533660.1; Rhodopseudomonas palustris BisB18), (YP_973512.1; Polaromonas naphthalenivorans CJ2), (ZP_01464191.1; Stigmatella aurantiaca DW4/3-1), (YP_001267778.1; Pseudomonas putida Fl), (YP_829644.1; Arthrobacter sp. FB24), (YP_002486392.1; Arthrobacter chlorophenolicus A6), (ZP_05816651.1; Sanguibacter keddieii DSM 10542), (YP_002883053.1; Beutenbergia cavemae DSM 12333), (YP_003161540.1; Jonesia denitrificans DSM 20603), (ZP_03911482.1; Xylanimonas cellulosilytica DSM 15894), (CAJ57850.1; Cellulomonas flavigena), (YP_001134605.1; Mycobacterium gilvum PYR-GCK), (YP 953877.1; Mycobacterium vanbaalenii PYR-1), (YP_003155611.1; Brachybacterium faecium DSM 4810), (YP_003148127.1; Kytococcus sedentarius DSM 20547), (YP_001221168.1; Clavibacter michiganensis subsp. michiganensis NCPPB 382), (YP_001158426.1; Salinisporea tropica CNB-440), (YP_001536420.1; Salinisporea arenicola CNS-205), (ZP_04608302.1; Micromonospora sp. ATCC 39149), (YP_887914.1; Mycobacterium smegmatis str. MC2 155), (YP_639956.1; Mycobacterium sp. MCS), (ZP_04749157.1; Mycobacterium kansasii ATCC 12478), (YP_001851039.1; Mycobacterium marinumM), (NP_960507.1; Mycobacterium avium subsp. paratuberculosis K-10), (ZP_05224330.1; Mycobacterium intracellulare ATCC 13950), (YP_001703240.1; Mycobacterium abscessus), (ZP_00995133.1; Janibacter sp. HTCC2649), (YP_291026.1; Thermobifida fusca YX), (ZP_04031845.1; Thermomonospora curvata DSM 43183), (ZP_04475514.1; Streptosporangium roseum DSM 43021), (ZP_04335641.1; Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111), (ZP_04482201.1; Stackebrandtia nassauensis DSM 44728), (YP_003099712.1; Actinosynnema mirum DSM 43827), (NP_733508.1; Streptomyces coelicolor A3(2)),

(CAJ88379.1; *Streptomyces ambofaciens* ATCC 23877), (ZP_05536883.1; *Streptomyces griseoflavus* Tu4000), (ZP_05020421.1; *Streptomyces sviceus* ATCC 29083), (CBG67625.1; *Streptomyces scabiei* 87.22), (NP_822448.1; *Streptomyces avermitilis* MA-4680), (ZP_04689547.1; *Streptomyces ghanaensis* ATCC 14672), (ZP_05530021.1; *Streptomyces viridochromogenes* DSM 40736), (ZP_05512501.1; *Streptomyces hygroscopicus* ATCC 53653), (ZP_05800927.1; *Streptomyces flayogriseus* ATCC 33331), (YP_001828275.1; *Streptomyces griseus* subsp. *griseus* NBRC 13350), (ZP_04705493.1; *Streptomyces albus* JI074), (ZP_04996963.1; *Streptomyces* sp. *Mgl*), (ZP_05485309.1; *Streptomyces* sp. *SPB78*), (ZP_03860882.1; *Kribbella flayida* DSM 17836), (YP_117539.1; *Nocardia farcinica* IFM 10152), (YP_001505556.1; *Frankia* sp. *EANlpec*), (YP_482627.1; *Frankia* sp. *CcI3*), (YP_003116893.1; *Catenulispora acidiphila* DSM 44928), (YP_872280.1; *Acidothermus lolyticus* IIB), (YP_924807.1; *Nocardioides* sp. *JS614*), (YP_001104157.1; *Saccharopolyspora erythraea* NRRL 2338), (YP_002282673.1; *Rhizobium leguminosarum* by. *trifolii* WSM2304), (YP_002977256.1; *Rhizobium leguminosarum* by. *trifolii* WSM1325), (YP_001979796.1; *Rhizobium etli* CIAT 652), (YP_470926.1; *Rhizobium etli* CFN 42), (YP_002540633.1; *Agrobacterium radiobacter* K84), (ZP_05182366.1; *Brucella* sp. 83/13), (ZP_04683384.1; *Ochrobactrum intermedium* LMG 3301), (YP_001373254.1; *Ochrobactrum anthropi* ATCC 49188), (YP_001204109.1; *Bradyrhizobium* sp. ORS278), (YP_001238418.1; *Bradyrhizobium* sp. *BTAi1*), (NP_769158.1; *Bradyrhizobium japonicum* USDA 110), (YP_577164.1; *Nitrobacter hamburgensis* X14), (YP_002961612.1; *Methylobacterium extorquens* AM 1), (YP_674792.1; *Mesorhizobium* sp. *BNCI*), (ZP_05813617.1; *Mesorhizobium opportunistum* WSM2075), (YP_318559.1; *Nitrobacter winogradskyi* Nb-255), (YP_001755280.1; *Methylobacterium radiotolerans* JCM 2831), (YP_001753119.1; *Methylobacterium radiotolerans* JCM 2831), (YP_003066011.1; *Methylobacterium extorquens* DM4), (YP_002964777.1; *Methylobacterium extorquens* AM 1), (YP_002501292.1; *Methylobacterium nodulans* ORS 2060), (YP_002495265.1; *Methylobacterium nodulans* ORS 2060), (YP_001770387.1; *Methylobacterium* sp. 4-46), (YP_002944712.1; *Variovorax paradoxus* S110), (ZP_01156757.1; *Oceanicola granulosus* HTCC2516), (ZP_01628787.1; *Nodularia spumigena* CCY9414), (YP_001865546.1; *Nostoc punctiforme* PCC 73102), (YP_321015.1; *Anabaena variabilis* ATCC 29413), (ZP_03769140.1; *Nostoc azollae* 0708), (NP_923943.1; *Gloeobacter violaceus* PCC 7421), (YP_477385.1; *Synechococcus* sp. JA-2-3B'a(2-13)), (YP_001328659.1; *Sinorhizobium medicae* WSM419), (YP_765670.1; *Rhizobium leguminosarum* bv. *viciae* 3841),

(NP_384212.2; *Sinorhizobium meliloti* 1021), (ZP_02928455.1; *Verrucomicrobium spinosum* DSM 4136), (YP_001637539.1; *Methylobacterium extorquens* Pal), (ZP_01045825.1; *Nitrobacter* sp. Nb-311A), (ZP_02736602.1; *Gemmata obscuriglobus* UQM 2246), (YP_003157871.1; *Desulfomicrobium baculum* DSM 4028), (ZP_03631304.1; *bacterium* Ellin514), (ZP_04577558.1; *Oxalobacter formigenes* HOxBLS), (ZP_04579712.1; *Oxalobacter formigenes* OXCC13), (YP_826169.1; *Solibacter usitatus* Ellin6076), (YP_002018753.1; *Pelodictyon phaeoclathratiforme* BU-1), (YP_002016285.1; *Prosthecochloris aestuarii* DSM 271), (YP_001943369.1; *Chlorobium limicola* DSM 245), (NP_662409.1; *Chlorobium tepidum* TLS), (ZP_01386179.1; *Chlorobium ferrooxidans* DSM 13031), (YP_375422.1; *Chlorobium luteolum* DSM 273), (YP_285277.1; *Dechloromonas aromatic* RCB), (YP_314589.1; *Thiobacillus denitrificans* ATCC 25259), (YP_545002.1; *Methylbacillus flagellatus* KT), (NP_842139.1; *Nitrosomonas europaea* ATCC 19718), (YP_748274.1; *Nitrosomonas eutropha* C91), (YP_411688.1; *Nitrosospira multiformis* ATCC 25196), (YP_344700.1; *Nitrosococcus oceanus* ATCC 19707), (YP_007004.1; *Candidatus Protochlamydia amoebophila* UWE25), (NP_435833.1; *Sinorhizobium meliloti* 1021), (ZP_04421874.1; *Sulfurospirillum deleyianum* DSM 6946), (NP_107054.1; *Mesorhizobium loti* MAFF303099), (YP_002289797.1; *Oligotropha carboxidovorans* OM5), (YP_001833312.1; *Beijerinckia indica* subsp. *indica* ATCC 9039).

[0063] Phosphoketolases also useful in the compositions and methods provided herein include those molecules which are said to be “derivatives” of any of the phosphoketolases described herein. Such a “derivative” has the following characteristics: (1) it shares substantial homology with any of the phosphoketolases described herein; and (2) is capable of catalyzing the conversion of X5P into glyceraldehyde 3-phosphate (G3P) and acetyl phosphate; or F6P into erythrose 4-phosphate (E4P) and acetyl phosphate. A derivative of a phosphoketolase is said to share “substantial homology” with the phosphoketolase if the amino acid sequences of the derivative is at least 80%, and more preferably at least 90%, and most preferably at least 95%, the same as that of the phosphoketolase.

5.3.2 Phosphotransacetylase (PTA)

[0064] In some embodiments, the genetically modified host cell provided herein comprises a heterologous nucleotide sequence encoding a phosphotransacetylase. Phosphotransacetylase (EC 2.3.1.8) converts acetyl phosphate into acetyl-CoA.

[0065] Numerous examples of polynucleotides, genes and polypeptides encoding phosphotransacetylase activity are known in the art and can be used in the genetically modified host cell provided herein. In some embodiments, such a polynucleotide, gene and/or polypeptide is the phosphotransacetylase from *Clostridium kluyveri*. Representative phosphotransacetylase nucleotide sequences of *Clostridium kluyveri* includes accession number NC_009706.1:1428554..1429555, and SEQ ID NO: 3 as provided herein. Representative phosphotransacetylase protein sequences of *Clostridium kluyveri* include accession number YP_001394780 and SEQ ID NO: 4 as provided herein. Other useful phosphotransacetylases include, but are not limited to, those from *Lactobacillus reuteri* (NC_010609.1:460303..461277; YP_001841389.10); *Bacillus subtilis* (NC_014479.1:3671865..3672836; YP_003868063.1); *Methanosarcina thermophile* (L23147.1:207..1208; AAA72041.1); *Lactobacillus sanfranciscensis* (BAB19267.1); *Lactobacillus plantarum* WCFS1 (NP_784550.1); *Lactobacillus fermentum* ATCC 14931 (ZP 03944466.1); *Bacillus subtilis* subsp. *subtilis* str. 168 (NP_391646.1); *Methanosarcina thermophila* (AAA72041.1); *Clostridium thermocellum* DSM 4150 (ZP 03152606.1); *Clostridium acetobutylicum* ATCC 824 (NP_348368.1); *Clostridium kluyveri* DSM 555 (YP 001394780.1); *Veillonella parvula* DSM 2008 (ZP 03855267.1); and *Salmonella enterica* subsp. *enterica* serovar *Paratyphi A* str. ATCC 9150 (YP_149725.1).

[0066] Other useful phosphotransacetylases include those described in International Publication No. WO 2011/15985, the contents of which are hereby incorporated by reference in their entirety. These phosphotransacetylases include: (ZP_05427766.1; *Eubacterium saphenum* ATCC 49989), (ZP_03627696.1; *bacterium Ellin514*), (ZP_03131770.1; *Chthonio bacter flavus* *Ellin428*), (YP_001878031.1; *Akkermansia muciniphila* TCCBAA-835), (ZP_04562924.1; *Citrobacter* sp.30_2), (YP_001451936.1; *Citrobacter koseri* ATCC BAA-895), (YP_149725.1; *Salmonella enterica* subsp. *enterica* serovar *Paratyphi A* str. ATCC 9150), (YP_001569496.1; *Salmonella enterica* subsp. *anzonae* serovar 62:z4,z23:--), (NP_416953.1; *Escherichia coli* str. *K-12* substr. *MG1655*), (YP_002920654.1; *Klebsiella pneumoniae* NTUH-K2044), (ZP_04637797.1; *Yersinia intermedia* ATCC 29909), (ZP_01222604.1; *Photobacterium profundum* 3TCK), (ZP_02156855.1; *Shewanella benthica* KT99), (YP_958508.1; *Marinobacter aquaeolei* VT8), (YP_066771.1; *Desulfotalea psychrophila* LSv54), (YP_002780531.1; *Rhodococcus opacus* B4), (YP_703506.1; *Rhodococcus jostii* RHA1), (ZP_05479963.1; *Streptomyces* sp. AA4), (YP_002761398.1; *Gemmimonas aurantiaca* T-27), (ZP_04670189.1; *Clostridiales* *bacterium* 1_7_47FAA),

(ZP_05493958.1; *Clostridium papyrosolvens* DSM 2782), (YP_003143506.1; *Slackia heliotrinireducens* DSM 20476), (ZP_05090822.1; *Ruegeria* sp. R11), (ZP_01748021.1; *Sagittula stellata* E-37), (NP_604069.1; *Fusobacterium nucleatum* subsp. *nucleatum* ATCC 25586), (ZP_05814734.1; *Fusobacterium* sp. 3_1_33), (ZP_06026613.1; *Fusobacterium periodonticum* ATCC 33693), (ZP_05617632.1; *Fusobacterium* sp. 3_1_5R), (ZP_05628030.1; *Fusobacterium* sp. D12), (ZP_04860946.1; *Fusobacterium vanum* ATCC 27725), (ZP_04567444.1; *Fusobacterium mortiferum* ATCC 9817), (YP_001489437.1; *Arcobacter butzleri* RM4018), (YP_003163236.1; *Leptotrichia buccalis* C-1013-b), (ZP_05902420.1; *Leptotrichia hofstadii* F0254), (ZP_06011308.1; *Leptotrichia goodfellowii* F0264), (ZP_04479548.1; *Streptobacillus moniliformis* DSM 12112), (ZP_03855267.1; *Veillonella parvula* DSM 2008), (ZP_03928523.1; *Acidaminococcus* sp. D21), (NP_970659.1; *Treponema denticola* ATCC 35405), (ZP_05621510.1; *Treponema vincentii* ATCC 35580), (NP_218534.1; *Treponema pallidum* subsp. *pallidum* str. *Nichols*), (ZP_04047318.1; *Brachyspira murdochii* DSM 12563), (YP_002720478.1; *Brachyspira hyodysenteriae* WAI), (YP_001740706.1; *Candidatus Cloacamonas acidaminovorans*), (EER05013.1; *Perkinsus mannes* ATCC 50983), (YP_945582.1; *Borrelia turicatae* 91E135), (YP_001884013.1; *Borrelia hermsii* DAH), (YP_002222233.1; *Borrelia duttonii* Ly), (ZP_03675306.1; *Borrelia spielmanii* A14S), (ZP_03435394.1; *Borrelia afzelii* ACA-I), (ZP_03540018.1; *Borrelia garinii* Far04), (ZP_03672928.1; *Borrelia valaisiana* VS116), (NP_212723.1; *Borrelia burgdorferi* B31), (YP_001956287.1; uncultured Termite group 1 bacterium phylotype Rs-D17), (NP_975268.1; *Mycoplasma mycoides* subsp. *mycoides* SC str. PGI), (YP_424216.1; *Mycoplasma capricolum* subsp. *capricolum* ATCC 27343), (YP_053283.1; *Mesoplasma florum* LI), (CAK99540.1; *Spiroplasma citri*), (NP_072966.1; *Mycoplasma genitalium* G37), (NP_110116.1; *Mycoplasma pneumoniae* M129), (NP_853403.1; *Mycoplasma gallisepticum* R), (NP_757889.1; *Mycoplasma penetrans* HF-2), (YP_116016.1; *Mycoplasma hyopneumoniae* 232), (YP_002960607.1; *Mycoplasma conjunctivae*), (YP_001256282.1; *Mycoplasma agalactiae* PG2), (BAH69503.1; *Mycoplasma fermentans* PG18), (YP_278771.1; *Mycoplasma synoviae* 53), (NP_326068.1; *Mycoplasma pulmonis* UAB CTIP), (YP_015865.1; *Mycoplasma mobile* 163K), (YP_001256630.1; *Mycoplasma agalactiae* PG2), (YP_802685.1; *Buchnera aphidicola* str. Cc (*Cinara cedri*)), (YP_001885432.1; *Clostridium botulinum* B str. Eklund 17B), (YP_001308302.1; *Clostridium beijerinckii* NCIMB 8052), (ZP_05131280.1; *Clostridium* sp. 7_2_43FAA), (ZP_02948604.1; *Clostridium butyricum* 5521), (NP_562641.1; *Clostridium*

perfringens str. 13), (ZP_05391232.1; Clostridium carboxidivorans P7), (YP_001394780.1; Clostridium kluyveri DSM 555), (ZP_02995419.1; Clostridium sporogenes ATCC 15579), (NP_781870.1; Clostridium tetani E88), (ZP_04862192.1; Clostridium botulinum D str. 1873), (YP_878298.1; Clostridium novyi NT), (ZP_04804960.1; Clostridium cellulovorans 743B), (NP_348368.1; Clostridium acetobutylicum ATCC 824), (ACA51668.1; Thermoanaero bacterium saccharolyticum), (ZP_05336886.1; Thermoanaero bacterium thermosaccharolyticum SM 571), (NP_623097.1; Thermoanaero bacter tengcongensis MB4), (YP_001663354.1; Thermoanaero bacter sp. X514), (YP_002508771.1; Halothermoth rix orenii H 168), (YP_003190679.1; Desulfotomaculum acetoxidans DSM 771), (YP_001917776.1; Natranaerobius thermophiles JWINM-WN-LF), (YP_360288.1; Carboxydothermus hydrogenoformans Z-2901), (EY83551.1; Bacteroides sp.2_1_33B), (ZP_02033408.1; Parabacteroides merdae ATCC 43184), (NP_905297.1; Porphyromonas gingivalis W83), (ZP_04056000.1; Porphyromonas uenonis 60-3), (ZP_04389884.1; Porphyromonas endodontalis ATCC 35406), (ZP_02068815.1; Bacteroides uniformis ATCC 8492), (ZP_03460749.1; Bacteroides eggerthii DSM 20697), (ZP_03676944.1; Bacteroides cellulosilyticus DSM 14838), (YP_097761.1; Bacteroides fragilis YCH46), (ZP_04545825.1; Bacteroides sp. D1), (ZP_03643544.1; Bacteroides coprophilus DSM 18228), (ZP_03207078.1; Bacteroides plebeius DSM 17135), (YP_001297855.1; Bacteroides vulgatus ATCC 8482), (ZP_05736702.1; Prevotella tannerae ATCC 51259), (ZP_06007587.1; Prevotella bergensis DSM 17361), (ZP_05858935.1; Prevotella veroralis F0319), (ZP_05916997.1; Prevotella sp. oral taxon 472 str. F0295), (YP_002308782.1; Candidatus Azo bacteroides pseudotrichon ympae genomovar. CFP2), (YP_753459.1; Syntrophomonas wolfei subsp. wolfei str. Goettingen), (ZP_01771389.1; Collinsella aerofaciens ATCC 25986), (ZP_03296849.1; Collinsella stercoris DSM 13279), (ZP_04445308.1; Collinsella ntestinalis DSM 13280), (ZP_03567515.1; Atopobium rima ATCC 49626), (YP_003179667.1; Atopobium parvulum DSM 20469), (ZP_03946133.1; Atopobium vaginae DSM 15829), (ZP_03990654.1; Oribacterium sinus F0268), (ZP_04450849.1; Abiotrophia defective ATCC 49176), (ZP_05797601.1; Oribacterium sp. oral taxon 078 str. F0262), (ZP_03730247.1; Clostridium sp. M62/I), (ZP_04856252.1; Ruminococcus sp. 5_1_39BFAA), (ZP_01966332.1; Ruminococcus obeum ATCC 29174), (ZP_05345616.1; Bryantella formatexigens DSM 14469), (ZP_03780829.1; Blautia hydrogenotro phica DSM 10507), (ZP_03289360.1; Clostridium nexile DSM 1787), (ZP_02042092.1; Ruminococcus gnarus ATCC 29149), (ZP_03168112.1; Ruminococcus

lactaris ATCC 29176), (ZP_01968837.1; *Ruminococcus torques* ATCC 27756), (ZP_02430426.1; *Clostridium scindens* ATCC 35704), (ZP_03779744.1; *Clostridium hylemonae* DSM 15053), (ZP_02234595.1; *Dorea formicigenerans* ATCC 27755), (ZP_01994673.1; *Dorea longicatena* DSM 13814), (YP_001558442.1; *Clostridium phytofermentans* ISDg), (ZP_04667085.1; *Clostridiales bacterium 1_7_47FAA*), (ZP_02085391.1; *Clostridium bolteae* ATCC BAA-613), (ZP_05790853.1; *Butyrivibrio crossotus* DSM 2876), (ZP_02026034.1; *Eubacterium ventriosum* ATCC 27560), (YP_002930513.1; *Eubacterium eligens* ATCC 27750), (ZP_04808213.1; *Helicobacter pullorum* MIT 98-5489), (ZP_03656120.1; *Helicobacter Canadensis* MIT 98-5491), (ZP_04583217.1; *Helicobacter winghamensis* ATCCBAA-430), (NP_860840.1; *Helicobacter hepaticus* ATCC 51449), (ZP_03657896.1; *Helicobacter cinaedi* CCUG 18818), (ZP_02417779.1; *Anaerostipes caccae* DSM 14662), (ZP_02437622.1; *Clostridium* sp. SS211), (ZP_02205430.1; *Coprococcus eutactus* ATCC 27759), (ZP_02692616.1; *Epulopiscium* sp. 'N.t. morphotype B'), (YP_003182082.1; *Eggerthella lenta* DSM 2243), (YP_003151027.1; *Cryptobacterium curtum* DSM 15641), (YP_003143601.1; *Slackia heliotrinireducens* DSM 20476), (ZP_05498135.1; *Clostridium papyrosolvens* DSM 2782), (ZP_03152606.1; *Clostridium thermocellum* JW20), (YP_001180817.1; *Caldicellulosiruptor saccharolyticus* DSM 8903), (AAA72041.1; *Methanosarcina thermophile*), (NP_618482.1; *Methanosarcina acetivorans* C2A), (YP_305342.1; *Methanosarcina barkeri* str. Fusaro), (ZP_02142278.1; *Roseobacter litoralis* Och 149), (YP_681184.1; *Roseobacter denitrificans* OCh 114), (YP_001533168.1; *Dinoroseo bacter shibae* DFL 12), (ZP_05124935.1; *Rhodobacteraceae bacterium* KLH11), (ZP_05786337.1; *Silicibacter lacuscaerulensis* ITI-1157), (YP_001313586.1; *Sinorhizobium medicae* WSM419), (NP_437512.1; *Sinorhizobium meliloti* 1021), (ZP_04682129.1; *Ochrobactrum intermedium* LMG 3301), (YP_001372036.1; *Ochrobactrum anthropic* ATCC 49188), (YP_001888115.1; *Burkholderia phytofirmans* PsJN), (YP_554613.1; *Burkholderia xenovorans* LB400), (YP_001862297.1; *Burkholderia phymatum* STM815), (YP_297974.1; *Ralstonia eutropha* JMP134), (YP_002008219.1; *Cupriavidus taiwanensis*), (YP_001584488.1; *Burkholderia multivorans* multivorans), (YP_002233797.1; *Burkholderia cenocepacia* J2315), (ZP_01220235.1; *Photobacterium profundum* 3TCK), (ZP_03698361.1; *Lutiella nitroferrum* 2002), (ZP_01811515.1; *Vibrionales bacterium* SWAT-3), (ZP_00988349.1; *Vibrio splendidus* 12B01), (ZP_01866234.1; *Vibrio shilonii* AK1), (ZP_05885163.1; *Vibrio coralliilyticus* ATCCBAA-450), (AAS78789.1; *Paracoccus denitrificans*), (YP_345196.1; *Rhodobacter*

sphaeroides 2.4.1), (AAN08490.1; *Castellaniella defragrans*), (ZP_00961345.1; *Roseovarius nubinhibens ISM*), (YP_168755.1; *Ruegeria pomeroyi DSS-3*), (ZP_01901193.1; *Roseobacter sp. AzwK-3b*), (ZP_01752570.1; *Roseobacter sp. SK209-2-6*), (ZP_02140073.1; *Roseobacter litoralis Och 149*), (YP_510789.1; *Jannaschia sp. CCS1*), (ZP_05073153.1; *Rhodobacter es bacterium HTCC2083*), (YP_822367.1; *Candidatus Solibacter usitatus Ellin6076*), (ZP_01313101.1; *Desulfuromonas acetoxidans DSM 684*), (YP_357950.1; *Pelobacter carbinolicus DSM 2380*), (YP_002537084.1; *Geobacter sp. FRC-32*), (YP_001232124.1; *Geobacter uraniireducens Rf4*), (NP_953751.1; *Geobacter sulfurreducens PCA*), (YP_384000.1; *Geobacter metallireducens GS-15*), (YP_900968.1; *Pelobacter propionicus DSM 2379*), (YP_001951452.1; *Geobacter lovleyi SZ*), (ZP_05311922.1; *Geobacter sp. M18*), (YP_003021758.1; *Geobacter sp. M21*), (YP_358255.1; *Pelobacter carbinolicus DSM 2380*), (ZP_03906856.1; *Denitrovibrio acetiphilus DSM 12809*), (YP_001997093.1; *Chloroherpeton thalassium ATCC 35110*), (ZP_01924858.1; *Victivallis vadensis ATCCBAA-548*), (ZP_03439825.1; *Helicobacter pylori 98-10*), (YP_003057614.1; *Helicobacter pylori B38*), (YP_001910417.1; *Helicobacter pylori Shi470*), (NP_223559.1; *Helicobacter pylori J99*), (YP_665033.1; *Helicobacter acinonychis str. Sheeba*), (ZP_01810337.1; *Campylobacter jejuni subsp. jejuni CG8486*), (ZP_00366840.1; *Campylobacter coli RM2228*), (ZP_00370527.1; *Campylobacter upsaliensis RM3195*), (YP_002575219.1; *Campylobacter lari RM2100*), (YP_001406718.1; *Campylobacter hominis ATCCBAA-381*), (ZP_05624820.1; *Campylobacter gracilis RM3268*), (YP_891988.1; *Campylobacter fetus subsp. fetus 82-40*), (YP_001466901.1; *Campylobacter concisus 13826*), (YP_001408221.1; *Campylobacter curvus 525.92*), (ZP_05363348.1; *Campylobacter showae RM3277*), (ZP_03742933.1; *Bifidobacterium pseudocatenulatum DSM 20438*), (ZP_02918887.1; *Bifidobacterium dentium ATCC 27678*), (ZP_02028883.1; *Bifidobacterium adolescentis L2-32*), (ZP_04448100.1; *Bifidobacterium angulatum DSM 20098*), (ZP_03618886.1; *Bifidobacterium breve DSM 20213*), (ZP_03976084.1; *Bifidobacterium longum subsp. *infantis* ATCC 55813*), (YP_002323183.1; *Bifidobacterium longum subsp. *infantis* ATCC 15697*), (ZP_03646187.1; *Bifidobacterium bifidum NCIMB 41171*), (ZP_03937611.1; *Gardnerella vaginalis ATCC 14019*), (ZP_02962869.1; *Bifidobacterium animalis subsp. *lactis* HN019*), (ZP_05965185.1; *Bifidobacterium gallicum DSM 20093*), (ZP_02043408.1; *Actinomyces odontolyticus ATCC 17982*), (ZP_03925176.1; *Actinomyces coleocanis DSM 15436*), (NP_601948.1; *Corynebacterium glutamicum ATCC 13032*), (NP_739201.1; *Corynebacteriurn efficiens YS*-

314), (NP_940379.1; *Corynebacterium diphtheria* NCTC 13129), (ZP_04835255.1; *Corynebacteriurn glucuronolyticum* ATCC 51867), (ZP_05708623.1; *Corynebacteriurn genitalium* ATCC 33030), (ZP_03977910.1; *Corynebacterium lipophiloflavum* DSM 44291), (ZP_03932064.1; *Corynebacterium accolens* ATCC 49725), (ZP_05366890.1; *Corynebacterium tuberculostearicum* SK141), (YP_002835817.1; *Corynebacterium aunnmucosum* ATCC 700975), (YP_250020.1; *Corynebacterium jeikeium* K411), (YP_001801132.1; *Corynebacterium urealyticum* DSM 7109), (YP_002906954.1; *Corynebacterium kroppenstedtii* DSM 44385), (ZP_03393297.1; *Corynebacterium amycolatum* SK46), (ZP_03718987.1; *Neisseria flavescens* NRL30031/H 210), (ZP_05318956.1; *Neisseria sicca* ATCC 29256), (YP_001598731.1; *Neisseria meningitides* 053442), (ZP_04602977.1; *Kingella oralis* ATCC 51147), (YP_426466.1; *Rhodospirillum rubrum* ATCC 11170), (NP_871183.1; *Wigglesworthia glossinidia* endosymbiont of *Glossina brevipalpis*), (NP_777793.1; *Buchnera aphidicola* str. Bp (*Baizongia pistaciae*)), (YP_003249406.1; *Fibrobacter succinogenes* subsp. *succinogenes* S85), (ZP_03535302.1; *Mycobacterium tuberculosis* T17), (ZP_04056438.1; *Capnocytophaga gingivalis* ATCC 33624), (YP_003108500.1; *Candidatus Sulcia muelleri* SMDSEM), (P77844; *Corynebacterium glutamicum*), (ZP_03994160.1; *Mobiluncus mulieris* ATCC 35243), (ZP_03922640.1; *Mobiluncus curtisii* ATCC 43063), (ZP_03716209.1; *Eubacterium hallii* DSM 3353), (ZP_03718143.1; *Eubacterium hallii* DSM 3353), (ZP_05614434.1; *Faecalibacterium prausnitzii* A2-165), (ZP_02034852.1; *Bacteroides capillosus* ATCC 29799), (ZP_03753543.1; *Roseburia inulinivorans* DSM 16841), (ZP_04745275.2; *Roseburia intestinalis* Ll-82), (YP_002937332.1; *Eubacterium rectale* ATCC 33656), (ZP_02074244.1; *Clostridium* sp. L2-50), (ZP_04455374.1; *Shuttleworthia satelles* DSM 14600), (ZP_03488480.1; *Eubacterium biforme* DSM 3989), (ZP_02078327.1; *Eubacterium dolichum* DSM 3991), (ZP_02077559.1; *Eubacterium dolichum* DSM 3991), (ZP_03305532.1; *Anaerococcus hydrogenalis* DSM 7454), (ZP_05473291.1; *Anaerococcus vaginalis* ATCC 51170), (ZP_03931050.1; *Anaerococcus tetradius* ATCC 35098), (YP_003153463.1; *Anaerococcus prevotii* DSM 20548), (ZP_03916048.1; *Anaerococcus lactolyticus* ATCC 51172), (NP_607213.1; *Streptococcus pyogenes* MGAS8232), (AAK34003.1; *Streptococcus pyogenes* M1GAS), (YP_002562185.1; *Streptococcus uberis* 01401), (YP_002744451.1; *Streptococcus equi* subsp. *Zooepidemicus*), (BAH88016.1; *Streptococcus mutans* NN2025), (ZP_02920305.1; *Streptococcus infantarius* subsp. *infantarius* ATCCBAA-102), (YP_329798.1; *Streptococcus agalactiae* A909),

(ZP_04061789.1; *Streptococcus salivarius* SK126), (YP_139881.1; *Streptococcus thermophiles* LMG 18311), (ZP_04525024.1; *Streptococcus pneumoniae* CCRI 1974), (ZP_06060573.1; *Streptococcus* sp. 2_1_36FAA), (YP_001198423.1; *Streptococcus suis* 05ZYH33), (NP_964739.1; *Lactobacillus johnsonii* NCC 533), (YP_193610.1; *Lactobacillus acidophilus* NCFM), (ZP_04011019.1; *Lactobacillus ultunensis* DSM 16047), (ZP_03995297.1; *Lactobacillus crispatus* JV- VOI), (ZP_05752753.1; *Lactobacillus helveticus* DSM 20075), (ZP_03956024.1; *Lactobacillus jensenii* JV-VI6), (ZP_04645187.1; *Lactobacillus jensenii* 269-3), (YP_618719.1; *Lactobacillus delbrueckii* subsp. *bulgaricus* ATCC 11842), (ZP_05744366.1; *Lactobacillus iners* DSM 13335), (NP_391646.1; *Bacillus subtilis* subsp. *subtilis* str. 168), (YP_001423045.1; *Bacillus amyloliquefaciens* FZB42), (YP_081073.1; *Bacillus licheniformis* ATCC 14580), (ZP_03055101.1; *Bacillus pumilus* ATCC 7061), (YP_002317098.1; *Anoxybacillus flavithermus* WKI), (YP_002951270.1; *Geobacillus* sp. WCH70), (YP_001127443.1; *Geobacillus thermodenitrificans* NG80-2), (YP_149268.1; *Geobacillus kaustophilus* HTA426), (ZP_01861251.1; *Bacillus* sp. SG-1), (ZP_03228176.1; *Bacillus coahuilensis* m4-4), (ZP_01173945.1; *Bacillus* sp. NRRLB-14911), (NP_693944.1; *Oceanobacillus iheyensis* HTE831), (ZP_04314753.1; *Bacillus cereus* BGSC 6E1), (YP_014727.1; *Listeria monocytogenes* str. 4b F2365), (ZP_04443757.1; *Listeria grayi* DSM 20601), (NP_244690.1; *Bacillus halodurans* C-125), (YP_177402.1; *Bacillus clausii* KSM-K16), (YP_002885816.1; *Exiguobacterium* sp. AT1b), (YP_001812721.1; *Exiguobacterium sibiricum* 255-15), (ZP_02169346.1; *Bacillus selenitireducens* MLS10), (ZP_04818386.1; *Staphylococcus epidermidis* M23864:W1), (ZP_03612973.1; *Staphylococcus capitis* SK14), (ZP_04677798.1; *Staphylococcus wameri* L37603), (NP_763914.1; *Staphylococcus epidermidis* ATCC 12228), (ZP_05685678.1; *Staphylococcus aureus* A9635), (YP_254319.1; *Staphylococcus haemolyticus* JCSC1435), (ZP_04059818.1; *Staphylococcus hominis* SK119), (ABR57177.1; *Staphylococcus xylosus*), (YP_302214.1; *Staphylococcus saprophyticus* subsp. *saprophyticus* ATCC 15305), (YP_002633340.1; *Staphylococcus camosus* subsp. *camosus* TM300), (YP_002561236.1; *Macroccoccus caseolyticus* JCSC5402), (ZP_03944466.1; *Lactobacillus fermentum* ATCC 14931), (ZP_05553502.1; *Lactobacillus coleohominis* 101-4-CHN), (ZP_03959629.1; *Lactobacillus vaginalis* ATCC 49540), (YP_001271004.1; *Lactobacillus reuteri* DSM 20016), (ZP_05745668.1; *Lactobacillus antri* DSM 16041), (YP_818931.1; *Leuconostoc mesenteroides* subsp. *mesenteroides* ATCC 8293), (YP_001727831.1; *Leuconostoc citreum* KM20), (ZP_04782044.1; *Weissella paramesentero ides* ATCC 33313), (ZP_01544468.1;

Oenococcus oeni ATCC BAA-1163), (ZP_05737294.1; *Granulicatella adiacens* ATCC 49175), (ZP_05851915.1; *Granulicatella elegans* ATCC 700633), (ZP_02183965.1; *Camobacterium* sp. AT7), (ZP_05649755.1; *Enterococcus gallinarum* EG2), (ZP_03947918.1; *Enterococcus faecalis* TX0104), (ZP_03982224.1; *Enterococcus faecium* TX1330), (YP_395954.1; *Lactobacillus sakei* subsp. *sakei* 23K), (ZP_04449762.1; *Catonella morbi* ATCC 51271), (YP_001032100.1; *Lactococcus lactis* subsp. *cremoris* MG1363), (YP_806234.1; *Lactobacillus casei* ATCC 334), (NP_784550.1; *Lactobacillus plantarum* WCFS1), (YP_794848.1; *Lactobacillus brevis* ATCC 367), (ZP_03954831.1; *Lactobacillus hilgardii* ATCC 8290), (BAB19267.1; *Lactobacillus sanfranciscensis*), (ZP_03958288.1; *Lactobacillus ruminis* ATCC 25644), (YP_536042.1; *Lactobacillus salivarius* UCC118), (ZP_05747635.1; *Erysipelothrix rhusiopathiae* ATCC 19414), (YP_803875.1; *Pediococcus pentosaceus* ATCC 25745), (ZP_02093784.1; *Parvimonas micra* ATCC 33270), (YP_001692923.1; *Finegoldia magna* ATCC 29328), (ZP_04431499.1; *Bacillus coagulans* 36D), (ZP_04775813.1; *Gemella haemolysans* ATCC 10379), (YP_001360609.1; *Kineococcus radiotolerans* SRS30216), (ZP_01115869.1; *Reinekea blandensis* MED297), (YP_003074238.1; *Teredinibac turnterrae* T7901), (YP_958411.1; *Marinobacter quaeolei* VT8), (YP_435580.1; *Hahella chejuensis* KCTC 2396), (YP_001189125.1; *Pseudomonas mendocina* ymp), (YP_792443.1; *Pseudomonas aerugmosa* UCBPP-PA14), (NP_791001.1; *Pseudomonas synngae* pv. *tomato* str. DC3000), (YP_258069.1; *Pseudomonas fluorescens* Pf-5), (YP_606637.1; *Pseudomonas entomophila* L48), (YP_002800579.1; *Azotobacter vinelandii* DJ), (YP_001171663.1; *Pseudomonas stutzeri* A1501), (NP_840385.1; *Nitrosomonas europaea* ATCC 19718), (YP_002801221.1; *Azotobacter vinelandii* DJ), (YP_002787111.1; *Deinococcus deserti* VCD115), (YP_603523.1; *Deinococcus geothermalis* DSM 11300), (NP_293799.1; *Deinococcus radiodurans* R1), (YP_521550.1; *Rhodoferax ferrireducens* T118), (YP_530962.1; *Rhodopseudo monas palustris* BisB18), (YP_531882.1; *Rhodopseudo monas palustris* BisA53), (ZP_02367347.1; *Burkholderia oklahomensis* C6786), (YP_428079.1; *Rhodospirillum rubrum* ATCC 11170), (YP_530535.1; *Rhodopseudo monas palustris* BisB18), (NP_901200.1; *Chromobacterium violaceum* ATCC 12472), (ZP_03698345.1; *Lutiella nitroferrum* 2002), (YP_001279250.1; *Psychrobacter* sp. PRwf-1), (YP_579484.1; *Psychrobacter cryohalolentis* K5), (ZP_05618978.1; *Enhydrobacter aerosaccus* SK60), (ZP_05362319.1; *Acinetobacter radioresistens* SK82), (YP_045288.1; *Acinetobacter* sp. ADP1), (ZP_05823314.1; *Acinetobacter* sp. RUH2624), (ZP_03824416.1; *Acinetobacter* sp. ATCC 27244), (YP_001380280.1; *Anaeromyxobacter* sp.

Fw109-5), (YP_466103.1; *Anaeromyxobacter dehalogenans* 2CP-C), (YP_088190.1; *Mannheimia succiniciproducens* MBEL55E), (YP_001344949.1; *Actinobacillus succmogenes* 130Z), (YP_003007411.1; *Aggregatibacter aphrophilus* NJ8700), (ZP_01788798.1; *Haemophilus influenzae* 3655), (YP_719012.1; *Haemophilus somnus* 129PT), (NP_245642.1; *Pasteurella multocida* subsp. *multocida* str. *Pm70*), (ZP_05920444.1; *Pasteurella dagmatis* ATCC 43325), (ZP_00133992.2; *Actinobacillus pleuropneumoniae* serovar 1 str. 4074), (ZP_04753547.1; *Actinobacillus minor* NM305), (NP_873873.1; *Haemophilus ducreyi* 35000HP), (ZP_04978908.1; *Mannheimia haemolytica* PHL213), (YP_002475022.1; *Haemophilus parasuis* SH0165), (ZP_05730581.1; *Pantoea* sp. At-9b), (YP_001907133.1; *Erwinia tasmaniensis* Et1/99), (YP_455287.1; *Sodalis glossinidius* str. 'morsitans'), (ZP_05723922.1; *Dickeya dadantii* Ech586), (YP_003258889.1; *Pectobacterium wasabiae* WPP163), (YP_002988159.1; *Dickeya dadantii* Ech703), (NP_668938.1; *Yersinia pestis* KIM 10), (YP_001479543.1; *Serratia proteamaculans* 568), (YP_002934098.1; *Edwardsiella ictaluri* 93-146), (YP_002151502.1; *Proteus mirabilis* HI4320), (NP_930328.1; *Photorhabdus luminescens* subsp. *laumondii* TTO1), (YP_002920553.1; *Klebsiella pneumomae* NTUH-K2044), (YP_001177557.1; *Enterobacter* sp.638), (YP_003211286.1; *Cronobacter turicensis*), (BAA04663.1; *Escherichia coli*), (YP_002924403.1; *Candidatus Hamiltonella defensa* 5AT (*Acyrhosiphon pisum*)), (ZP_03827735.1; *Pectobacterium carotovorum* subsp. *brasiliensis* PBR1692), (ZP_01159282.1; *Photobacterium* sp. SKA34), (YP_130973.1; *Photobacterium profundum* SS9), (ZP_06052481.1; *Grimontia hollisae* CIP 101886), (ZP_05877035.1; *Vibrio fumissii* CIP 102972), (ZP_05881960.1; *Vibrio metschnikoyii* CIP 69.14), (ZP_05881960.1; *Vibrio metschnikoyii* CIP 69.14), (ZP_02196748.1; *Vibrio* sp. AND4), (NP_934927.1; *Vibrio vulnificus* YJ016), (ZP_01866446.1; *Vibrio shilonii* AKI), (YP_002416612.1; *Vibrio splendidus* LGP32), (YP_002263486.1; *Aliiyibrio salmonicida* LFI1238), (ZP_04415114.1; *Vibrio cholerae* by. *albensis* VL426), (YP_001143125.1; *Aeromonas salmonicida* subsp. *salmonicida* A449), (YP_002892091.1; *Tolumonas auensis* DSM 9187), (ZP_01215350.1; *Psychromonas* sp. CNPT3), (YP_944598.1; *Psychromonas ingrahamii* 37), (YP_001473443.1; *Shewanella sediminis* HAW-EB3), (YP_001761257.1; *Shewanella woodyi* ATCC 51908), (YP_001094519.1; *Shewanella loihica* PV -4), (YP_001674811.1; *Shewanella halifaxensis* HAW-EB4), (YP_869191.1; *Shewanella* sp. ANA-3), (YP_927371.1; *Shewanella amazonensis* SB2B), (YP_751160.1; *Shewanella frigidimarina* NCIMB 400), (YP_563413.1; *Shewanella denitrificans* OS217), (YP_001475272.1; *Shewanella sediminis* HAW-EB3),

(YP_001674949.1; *Shewanella halifaxensis HAW-EB4*), (ZP_04716660.1; *Alteromonas macleodii* ATCC 27126), (YP_662160.1; *Pseudoalteromonas atlantica* T6c), (ZP_01612225.1; *Alteromonadales bacterium TW-7*), (ZP_01134640.1; *Pseudoalteromonas tunicate* D2), (YP_269873.1; *Colwellia psychrerythrae* a 34H), (YP_001341167.1; *Marinomonas* sp. MWYL1), (ZP_01077352.1; *Marinomonas* sp. MED121), (YP_001209362.1; *Dichelobacter nodosus* VCSI703A), (ZP_05705193.1; *Cardiobacterium hominis* ATCC 15826), (EEY62817.1; *Phytophthora infestans* T30-4), (EEY62816.1; *Phytophthora infestans* T30-4), (XP_001694504.1; *Chlamydomonas reinhardtii*), (XP_001753120.1; *Physcomitrella patens* subsp. *Patens*), (YP_001804510.1; *Cyanothece* sp. ATCC 51142), (ZP_01729220.1; *Cyanothece* sp. CCY0110), (YP_003138337.1; *Cyanothece* sp. PCC 8802), (YP_002380034.1; *Cyanothece* sp. PCC 7424), (YP_001661110.1; *Microcystis aerugmosa* NIES-843), (YP_002485151.1; *Cyanothece* sp. PCC 7425), (NP_441027.1; *Synechocystis* sp. PCC 6803), (ZP_01061171.1; *Leeuwenhoekia* *ella* *blandensis* MED217), (YP_001195862.1; *Flavobacterium johnsoniae* UW101), (YP_003194927.1; *Robiginitalea biformata* HTCC2501), (ZP_01107792.1; *Flavobacteriales* *bacterium* HTCC2170), (ZP_01051731.1; *Polaribacter* sp. MED152), (ZP_01119204.1; *Polaribacter irgensii* 23-P), (ZP_03390929.1; *Capnocytophaga sputigena* ATCC 33612), (YP_003141977.1; *Capnocytophaga ochracea* DSM 7271), (YP_012240.1; *Desulfovibrio vulgaris* str. *Hildenborough*), (YP_002436276.1; *Desulfovibrio vulgaris* str. 'Miyazaki F'), (YP_389730.1; *Desulfovibrio desulfuricans* subsp. *desulfuricans* str. G20), (YP_002992165.1; *Desulfovibrio salexigens* DSM 2638), (YP_003197901.1; *Desulfohalobium retbaense* DSM 5692), (YP_003157577.1; *Desulfomicrobium baculum* DSM 4028), (ZP_03737911.1; *Desulfonatronospira thiodismutans* AS03-1), (YP_002990332.1; *Desulfovibrio salexigens* DSM 2638), (ZP_03312237.1; *Desulfovibrio piger* ATCC 29098), (YP_002478890.1; *Desulfovibrio desulfuricans* subsp. *desulfuricans* str. ATCC 27774), (YP_064294.1; *Desulfotalea psychrophila* LSv54), (YP_594656.1; *Lawsonia intracellularis* PHE/MN1-00), (ZP_01621820.1; *Lyngbya* sp. PCC 8106), (ZP_03272899.1; *Arthrosphaera maxima* CS-328), (YP_845596.1; *Syntrophobacter fumaroxidans* MPOB), (ZP_04773932.1; *Allochromatium vinosum* DSM 180), (NP_869002.1; *Rhodopirellula baltica* SH 1), (YP_392571.1; *Sulfurimonas denitrificans* DSM 1251), (ZP_05071717.1; *Campylobacterales* *bacterium* GD 1), (ZP_04421899.1; *Sulfurospirillum deleyianum* DSM 6946), (YP_001359295.1; *Sulfurovum* sp. NBC37-1), (YP_951544.1; *Mycobacterium vanbaalenii* PYR-1), (YP_001131488.1; *Mycobacterium gilvum* PYR-GCK), (YP_637714.1;

Mycobacterium sp. MCS), (YP_885188.1; *Mycobacterium smegmatis str. MC2 155*), (YP_001704953.1; *Mycobacterium abscessus*), (ZP_04747529.1; *Mycobacterium kansasii ATCC 12478*), (YP_001849024.1; *Mycobacterium marinum M*), (NP_214922.1; *Mycobacterium tuberculosis H37Rv*), (NP_962819.1; *Mycobacterium avium subsp. paratuberculosis K-10*), (ZP_05223872.1; *Mycobacterium intracellulare ATCC 13950*), (YP_002764919.1; *Rhodococcus erythropolis PR4*), (YP_702162.1; *Rhodococcus jostii RHAI*), (YP_121562.1; *Nocardia farcinica IFM 10152*), (ZP_04025361.1; *Tsukamurella paurometabola DSM 20162*), (YP_003275431.1; *Gordonia bronchialis DSM 43247*), (YP_003160610.1; *Jonesia denitrificans DSM 20603*), (ZP_05816650.1; *Sanguibacter keddieii DSM 10542*), (ZP_04368027.1; *Cellulomonas flavigena DSM 20109*), (YP_002883054.1; *Beutenbergia cavemae DSM 12333*), (ZP_03911481.1; *Xylanimonas cellulosilytica DSM 15894*), (YP_924143.1; *Nocardioides sp. IS614*), (ZP_03864789.1; *Kribbella flava DSM 17836*), (ZP_01131057.1; *marine actinobacterium PHSC20C1*), (YP_001708941.1; *Clavibacter michiganensis subsp. Sepedonicus*), (YP_061462.1; *Leifsonia xyli subsp. xyli str. CTCB07*), (YP_748183.1; *Nitrosomonas eutropha C91*), (YP_003116892.1; *Catenulispora acidiphila DSM 44928*), (YP_003199983.1; *Nakamurella multipartita DSM 44233*), (YP_003154321.1; *Brachybacterium faecium DSM 4810*), (ZP_03927492.1; *Actinomyces urogenitalis DSM 15434*), (YP_003148931.1; *Kytococcus sedentarius DSM 20547*), (ZP_05803950.1; *Streptomyces flavogriseus ATCC 33331*), (YP_001823623.1; *Streptomyces griseus subsp. griseus NBRC 13350*), (ZP_05002693.1; *Streptomyces clavuligerus ATCC 27064*), (ZP_05015493.1; *Streptomyces sviceus ATCC 29083*), (ZP_05538660.1; *Streptomyces griseoflavus Tu4000*), (ZP_04685789.1; *Streptomyces ghanaensis ATCC 14672*), (ZP_05534308.1; *Streptomyces viridochromogenes DSM 40736*), (ZP_05523554.1; *Streptomyces lividans TK24*), (NP_823999.1; *Streptomyces avermitilis MA-4680*), (CBG69921.1; *Streptomyces scabiei 87.22*), (ZP_04704905.1; *Streptomyces albus 11074*), (ZP_04997745.1; *Streptomyces sp. Mgl*), (ZP_05509147.1; *Streptomyces sp. C*), (ZP_05514718.1; *Streptomyces hygroscopicus ATCC 53653*), (ZP_04994290.1; *Streptomyces sp. SPB74*), (ZP_04474082.1; *Streptosporangium roseum DSM 43021*), (YP_001160501.1; *Salinispora tropica CNB-440*), (YP_001538853.1; *Salinispora arenicola CNS-205*), (ZP_04605575.1; *Micromonospora sp. ATCC 39149*), (YP_832716.1; *Arthrobacter sp. FB24*), (ABR13603.1; *Arthrobacter oxydans*), (YP_002956296.1; *Micrococcus luteus NCTC 2665*), (ZP_05367249.1; *Rothia mucilaginosa ATCC 25296*), (YP_001854004.1; *Kocuria rhizophila DC2201*), (ZP_04984463.1;

Francisella tularensis subsp. *holarctica* FSC022), (YP_001677422.1; *Francisella philomiragia* subsp. *philomiragia* ATCC 25017), (YP_588827.1; *Baumannia cicadellinicola* str. *Hc* (*Homalodisca oagulata*)), (NP_240007.1; *Buchnera aphidicola* str. *APS* (*Acyrthosiphonpisum*)), (ZP_05057494.1; *Verrucomicrobiae bacterium DG1235*), (ZP_02930252.1; *Verrucomicrobium spinosum* DSM 4136), (ZP_01452386.1; *Mariprofundus ferrooxydans* PV-1), and (ZP_01307392.1; *Bermanella marisrubri*).

[0067] Phosphotransacetylases also useful in the compositions and methods provided herein include those molecules which are said to be “derivatives” of any of the phosphotransacetylases described herein. Such a “derivative” has the following characteristics: (1) it shares substantial homology with any of the phosphotransacetylases described herein; and (2) is capable of catalyzing the conversion of acetyl phosphate into acetyl-CoA. A derivative of a phosphotransacetylase is said to share “substantial homology” with the phosphotransacetylase if the amino acid sequences of the derivative is at least 80%, and more preferably at least 90%, and most preferably at least 95%, the same as that of the phosphotransacetylase.

5.4 Functional Disruption of Acetyl Phosphatase Activity

[0068] In some embodiments, the genetically modified host cell provided herein comprises a functional disruption in an enzyme that converts acetyl phosphate to acetate. In some embodiments, the enzyme is native to the host cell.

[0069] In some embodiments, the enzyme that converts acetyl phosphate to acetate is a glycerol-1-phosphatase (EC 3.1.3.21). In some embodiments, the enzyme having glycerol-1-phosphatase activity is RHR2 (GPP1/RHR2; systematic name: YIL053W), or a homolog or variant thereof. GPP1/RHR2 is a constitutively expressed glycerol-1-phosphatase involved in glycerol biosynthesis, and is induced in response to both anaerobic and osmotic stress.

See, e.g., Norbeck *et al.*, *J Biol Chem* 271(23): 13875-13881 (1996); Norbeck *et al.*, *J Biol Chem* 272(9): 13875-13881 (1996); Pahlman *et al.*, *J Biol Chem* 276(5): 3555-3563 (2001); Nevoigt and Stahl, *FEMS Microbiol Rev* 21(3):231-41 (1997); Byrne and Wolf, *Genome Res* 15(10):1456-61; and Hirayama *et al.*, *Mol Gen Genet* 249(2):127-38, the contents of each of which are hereby incorporated by reference in their entireties. The sequence of the *GPP1/RHR2* gene of *S. cerevisiae* has been previously described. *See, e.g.*, Norbeck *et al.*, *J Biol Chem* 271(23): 13875-13881 (1996); and Pahlman *et al.*, *J Biol Chem* 276(5): 3555-3563 (2001). Gpp1/Rhr2 has been previously described as catalyzing the following reaction:

[0070] glycerol-1-phosphate + H₂O ⇌ glycerol + phosphate.

[0071] Representative *GPP1/RHR2* nucleotide sequences of *Saccharomyces cerevisiae* include accession number NM_001179403.1, and SEQ ID NO:5 as provided herein. Representative Gpp1/Rhr2 protein sequences of *Saccharomyces cerevisiae* include accession number NP_012211, and SEQ ID NO:6 as provided herein.

[0072] A closely related homolog of *GPP1/RHR2* which also catalyzes the hydrolysis of acetyl phosphate to acetate is *HOR2* (*GPP2/HOR2*; systematic name: *YER062C*). *Gpp2/Hor2* has also been previously described as a glycerol-1-phosphatase capable of catalyzing the following reaction: glycerol-1-phosphate + H₂O ⇌ glycerol + phosphate. Accordingly, functional disruption of *GPP2/HOR2* also finds use in the compositions and methods provided herein. The sequence of the *GPP2/HOR2* gene of *S. cerevisiae* has been previously described. *See, e.g.*, Norbeck *et al.*, *J. of Biological Chemistry* 271(23): 13875-13881 (1996); and Pahlman *et al.*, *J. of Biological Chemistry* 276(5): 3555-3563 (2001). Representative *GPP2/HOR2* nucleotide sequences of *Saccharomyces cerevisiae* include accession number NM_001178953.3, and SEQ ID NO:7 as provided herein. Representative Gpp1/Rhr2 protein sequences of *Saccharomyces cerevisiae* include accession number NP_010984, and SEQ ID NO:8 as provided herein.

[0073] As would be understood in the art, naturally occurring homologs of *GPP1/RHR2* and/or *GPP2/HOR2* in yeast other than *S. cerevisiae* can similarly be inactivated using the methods described herein. Moreover, a polynucleotide, gene and/or polypeptide encoding acetyl-phosphatase activity (*e.g.*, *RHR2* and/or *HOR2*) can be used to identify other polynucleotide, gene and/or polypeptide sequences or to identify homologs having acetyl-phosphatase activity in other host cells. Such sequences can be identified, for example, in the literature and/or in bioinformatics databases well known to the skilled person. For example, the identification of sequences encoding acetyl-phosphatase activity in other cell types using bioinformatics can be accomplished through BLAST (as described above) searching of publicly available databases with known DNA and polypeptide sequences encoding acetyl-phosphatase and/or glycerol-1-phosphatase activity, such as those provided herein. Identities can be based on the Clustal W method of alignment using the default parameters of GAP PENALTY=10, GAP LENGTH PENALTY=0.1, and Gonnet 250 series of protein weight matrix.

[0074] In some embodiments, the activity or expression of an endogenous enzyme that converts acetyl phosphate to acetate (*e.g.*, *RHR2* or *HOR2*) is reduced by at least about 50%. In another embodiment, the activity or expression of an endogenous enzyme that

converts acetyl phosphate to acetate is reduced by at least about 60%, by at least about 65%, by at least about 70%, by at least about 75%, by at least about 80%, by at least about 85%, by at least about 90%, by at least about 95%, or by at least about 99% as compared to a recombinant microorganism not comprising a reduction or deletion of the activity or expression of an endogenous enzyme that converts acetyl phosphate to acetate. In some embodiments, the endogenous enzyme that converts acetyl phosphate to acetate is RHR2, or homologues thereof. In some embodiments, the endogenous enzyme that converts acetyl phosphate to acetate is HOR2, or homologues thereof.

[0075] As is understood by those skilled in the art, there are several mechanisms available for reducing or disrupting the activity of a protein that converts acetyl phosphate to acetate, such as a glycerol-1-phosphatase (*e.g.*, RHR2 and/or HOR2), including, but not limited to, the use of a regulated promoter, use of a weak constitutive promoter, disruption of one of the two copies of the gene encoding the protein in a diploid yeast, disruption of both copies of the gene in a diploid yeast, expression of an anti-sense nucleic acid, expression of an siRNA, over expression of a negative regulator of the endogenous promoter, alteration of the activity of an endogenous or heterologous gene, use of a heterologous gene with lower specific activity, the like or combinations thereof.

[0076] In some embodiments, the genetically modified host cell comprises a mutation in at least one gene encoding acetyl-phosphatase activity (*e.g.*, RHR2, HOR2 or a homolog or variant thereof), resulting in a reduction of activity of a polypeptide encoded by said gene. In another embodiment, the genetically modified host cell comprises a partial deletion of a gene encoding acetyl-phosphatase activity (*e.g.*, RHR2, HOR2 or a homolog or variant thereof), resulting in a reduction of activity of a polypeptide encoded by the gene. In another embodiment, the genetically modified host cell comprises a complete deletion of a gene encoding acetyl-phosphatase activity (*e.g.*, RHR2, HOR2 or a homolog or variant thereof), resulting in a reduction of activity of a polypeptide encoded by the gene. In yet another embodiment, the genetically modified host cell comprises a modification of the regulatory region associated with the gene encoding acetyl-phosphatase activity (*e.g.*, RHR2, HOR2 or a homolog or variant thereof), resulting in a reduction of expression of a polypeptide encoded by said gene. In yet another embodiment, the genetically modified host cell comprises a modification of the transcriptional regulator resulting in a reduction of transcription of a gene encoding acetyl-phosphatase activity (*e.g.*, RHR2, HOR2 or a homolog or variant thereof).

[0077] In some embodiments, disruption of one or more genes encoding a protein capable of catalyzing the conversion of acetyl phosphate to acetate is achieved by using a “disruption construct” that is capable of specifically disrupting such a gene (e.g., *RHR2* or *HOR2*) upon introduction of the construct into the microbial cell, thereby rendering the disrupted gene non-functional. In some embodiments, disruption of the target gene prevents the expression of a functional protein. In some embodiments, disruption of the target gene results in expression of a non-functional protein from the disrupted gene. In some embodiments, disruption of a gene encoding a protein capable of converting acetyl phosphate to acetate is achieved by integration of a “disrupting sequence” within the target gene locus by homologous recombination. In such embodiments, the disruption construct comprises a disrupting sequence flanked by a pair of nucleotide sequences that are homologous to a pair of nucleotide sequences of the target gene locus (homologous sequences). Upon replacement of the targeted portion of the target gene by the disruption construct, the disrupting sequence prevents the expression of a functional protein, or causes expression of a non-functional protein, from the target gene.

[0078] Disruption constructs capable of disrupting a gene may be constructed using standard molecular biology techniques well known in the art. See, e.g., Sambrook *et al.*, 2001, *Molecular Cloning -- A Laboratory Manual*, 3rd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, and Ausubel *et al.*, eds., Current Edition, *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley Interscience, NY. Parameters of disruption constructs that may be varied in the practice of the present methods include, but are not limited to, the lengths of the homologous sequences; the nucleotide sequence of the homologous sequences; the length of the disrupting sequence; the nucleotide sequence of the disrupting sequence; and the nucleotide sequence of the target gene. In some embodiments, an effective range for the length of each homologous sequence is 50 to 5,000 base pairs. In particular embodiments, the length of each homologous sequence is about 500 base pairs. For a discussion of the length of homology required for gene targeting, see Hasty *et al.*, *Mol Cell Biol* 11:5586-91 (1991). In some embodiments, the homologous sequences comprise coding sequences of the target gene. In other embodiments, the homologous sequences comprise upstream or downstream sequences of the target gene. In some embodiments, one homologous sequence comprises a nucleotide sequence that is homologous to a nucleotide sequence located 5' of the coding sequence of the target gene, and the other homologous sequence comprises a nucleotide sequence that is homologous to a

nucleotide sequence located 3' of the coding sequence of the target gene. In some embodiments, the disrupting sequence comprises a nucleotide sequence encoding a selectable marker that enables selection of microbial cells comprising the disrupting sequence. Thus, in such embodiments, the disruption construct has a dual function, *i.e.*, to functionally disrupt the target gene and to provide a selectable marker for the identification of cells in which the target gene is functionally disrupted. In some embodiments, a termination codon is positioned in-frame with and downstream of the nucleotide sequence encoding the selectable marker to prevent translational read-through that might yield a fusion protein having some degree of activity of the wild type protein encoded by the target gene. In some embodiments, the length of the disrupting sequence is one base pair. Insertion of a single base pair can suffice to disrupt a target gene because insertion of the single base pair in a coding sequence could constitute a frame shift mutation that could prevent expression of a functional protein. In some embodiments, the sequence of the disruption sequence differs from the nucleotide sequence of the target gene located between the homologous sequences by a single base pair. Upon replacement of the nucleotide sequence within the target gene with the disrupting sequence, the single base pair substitution that is introduced could result in a single amino acid substitution at a critical site in the protein and the expression of a non-functional protein. It should be recognized, however, that disruptions effected using very short disrupting sequences are susceptible to reversion to the wild type sequence through spontaneous mutation, thus leading to restoration of acetyl-phosphatase function to the host strain. Accordingly, in particular embodiments, the disrupting sequences are longer than one to a few base pairs. At the other extreme, a disrupting sequence of excessive length is unlikely to confer any advantage over a disrupting sequence of moderate length, and might diminish efficiency of transfection or targeting. Excessive length in this context is many times longer than the distance between the chosen homologous sequences in the target gene. Thus, in certain embodiments, the length for the disrupting sequence can be from 2 to 2,000 base pairs. In other embodiments, the length for the disrupting sequence is a length approximately equivalent to the distance between the regions of the target gene locus that match the homologous sequences in the disruption construct.

[0079] In some embodiments, the disruption construct is a linear DNA molecule. In other embodiments, the disruption construct is a circular DNA molecule. In some embodiments, the circular disruption construct comprises a pair of homologous sequences separated by a disrupting sequence, as described above. In some embodiments, the circular

disruption construct comprises a single homologous sequence. Such circular disruption constructs, upon integration at the target gene locus, would become linearized, with a portion of the homologous sequence positioned at each end and the remaining segments of the disruption construct inserting into and disrupting the target gene without replacing any of the target gene nucleotide sequence. In particular embodiments, the single homologous sequence of a circular disruption construct is homologous to a sequence located within the coding sequence of the target gene.

[0080] Disruption constructs can be introduced into a microbial cell by any method known to one of skill in the art without limitation. Such methods include, but are not limited to, direct uptake of the molecule by a cell from solution, or facilitated uptake through lipofection using, *e.g.*, liposomes or immunoliposomes; particle-mediated transfection; *etc.* See, *e.g.*, U.S. Patent No. 5,272,065; Goeddel et al., eds, 1990, Methods in Enzymology, vol. 185, Academic Press, Inc., CA; Krieger, 1990, Gene Transfer and Expression -- A Laboratory Manual, Stockton Press, NY; Sambrook et al., 1989, Molecular Cloning -- A Laboratory Manual, Cold Spring Harbor Laboratory, NY; and Ausubel et al., eds., Current Edition, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, NY. Particular methods for transforming yeast cells are well known in the art. See Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1292-3 (1978); Cregg et al., Mol. Cell. Biol. 5:3376-3385 (1985). Exemplary techniques include, but are not limited to, spheroplasting, electroporation, PEG 1000 mediated transformation, and lithium acetate or lithium chloride mediated transformation.

5.5 Additional Modifications to Improve Acetyl-CoA Production

5.5.1 ADA

[0081] In some embodiments, the genetically modified host cells provided herein further comprise one or more heterologous nucleotide sequences encoding acylating acetaldehyde dehydrogenase (alternately referred to as "acetylaldehyde dehydrogenase, acetylating," "acetylaldehyde dehydrogenase, acylating," or ADA (EC 1.2.1.10)).

[0082] Proteins capable of catalyzing this reaction that are useful for the compositions and methods provided herein include the following four types of proteins:

[0083] (1) Bifunctional proteins that catalyze the reversible conversion of acetyl-CoA to acetaldehyde, and the subsequent reversible conversion of acetaldehyde to ethanol. An example of this type of protein is the AdhE protein in *E. coli* (Gen Bank No: NP_415757). AdhE appears to be the evolutionary product of a gene fusion. The NH₂-terminal region of

the AdhE protein is highly homologous to aldehyde:NAD⁺ oxidoreductases, whereas the COOH-terminal region is homologous to a family of Fe²⁺-dependent ethanol:NAD⁺ oxidoreductases (Membrillo-Hernandez *et al.*, (2000) *J. Biol. Chem.* 275: 33869-33875). The *E. coli* AdhE is subject to metal-catalyzed oxidation and therefore oxygen-sensitive (Tamarit *et al.* (1998) *J. Biol. Chem.* 273:3027-32).

[0084] (2) Proteins that catalyze the reversible conversion of acetyl-CoA to acetaldehyde in strictly or facultative anaerobic microbes but do not possess alcohol dehydrogenase activity. An example of this type of protein has been reported in *Clostridium kluyveri* (Smith *et al.* (1980) *Arch. Biochem. Biophys.* 203: 663-675). An ADA has been annotated in the genome of *Clostridium kluyveri* DSM 555 (accession no: EDK33116). A homologous protein AcdH is identified in the genome of *Lactobacillus plantarum* (accession no: NP_784141). Another example of this type of protein is the *ald* gene product in *Clostridium beijerinckii* NRRL B593 (Toth *et al.* (1999) *Appl. Environ. Microbiol.* 65: 4973-4980, accession no: AAD31841).

[0085] (3) Proteins that are involved in ethanolamine catabolism. Ethanolamine can be utilized both as carbon and nitrogen source by many enterobacteria (Stojiljkovic *et al.* (1995) *J. Bacteriol.* 177: 1357-1366). Ethanolamine is first converted by ethanolamine ammonia lyase to ammonia and acetaldehyde, subsequently, acetaldehyde is converted by ADA to acetyl-CoA. An example of this type of ADA is the EutE protein in *Salmonella typhimurium* (Stojiljkovic *et al.* (1995) *J. Bacteriol.* 177: 1357-1366, accession no: AAL21357; *see also* U18560.1). *E. coli* is also able to utilize ethanolamine (Scarlett *et al.* (1976) *J. Gen. Microbiol.* 95:173-176) and has an EutE protein (accession no: AAG57564; *see also* EU897722.1) which is homologous to the EutE protein in *S. typhimurium*.

[0086] (4) Proteins that are part of a bifunctional aldolase-dehydrogenase complex involved in 4-hydroxy-2-ketovalerate catabolism. Such bifunctional enzymes catalyze the final two steps of the meta-cleavage pathway for catechol, an intermediate in many bacterial species in the degradation of phenols, toluates, naphthalene, biphenyls and other aromatic compounds (Powlowski and Shingler (1994) *Biodegradation* 5, 219-236). 4-Hydroxy-2-ketovalerate is first converted by 4-hydroxy-2-ketovalerate aldolase to pyruvate and acetaldehyde, subsequently acetaldehyde is converted by ADA to acetyl-CoA. An example of this type of ADA is the DmpF protein in *Pseudomonas sp* CF600 (accession no: CAA43226) (Shingler *et al.* (1992) *J. Bacteriol.* 174:71 1-24). *E. coli* has a homologous

MphF protein (Ferrandez *et al.* (1997) *J. Bacteriol.* 179: 2573-2581, accession no: NP_414885) to the DmpF protein in *Pseudomonas sp.* CF600.

[0087] In some embodiments, an ADA (or nucleic acid sequence encoding such activity) useful for the compositions and methods described herein is selected from the group consisting of *Escherichia coli* adhE, *Entamoeba histolytica* adh2, *Staphylococcus aureus* adhE, *Piromyces sp.* E2 adhE, *Clostridium kluyveri* (EDK33116), *Lactobacillus plantarum* acdH, and *Pseudomonas putida* (YP 001268189), as described in International Publication No. WO 2009/013159, the contents of which are incorporated by reference in their entirety. In some embodiments, the ADA is selected from the group consisting of *Clostridium botulinum* eutE (FR745875.1), *Desulfotalea psychrophila* eutE (CR522870.1), *Acinetobacter sp.* HBS-2 eutE (ABQ44511.2), *Caldithrix abyssi* eutE (ZP_09549576), and *Halorubrum lacusprofundi* ATCC 49239 (YP_002565337.1).

[0088] In particular embodiments, the ADA useful for the compositions and methods provided herein is eutE from *Dickeya zaeae*. A representative eutE nucleotide sequence of *Dickeya zaeae* includes accession number NC_012912.1:1110476..1111855, and SEQ ID NO: 9 as provided herein. A representative eutE protein sequence of *Dickeya zaeae* includes accession number YP_003003316, and SEQ ID NO: 10 as provided herein.

[0089] ADAs also useful in the compositions and methods provided herein include those molecules which are said to be “derivatives” of any of the ADAs described herein. Such a “derivative” has the following characteristics: (1) it shares substantial homology with any of the ADAs described herein; and (2) is capable of catalyzing the conversion of acetaldehyde to acetyl-CoA. A derivative of an ADA is said to share “substantial homology” with ADA if the amino acid sequences of the derivative is at least 80%, at least 85% and more preferably at least 90%, and most preferably at least 95%, the same as that of any of the ADAs described herein.

5.5.2 Functional Disruption of the PDH-bypass

[0090] Acetyl-CoA can be formed in the mitochondria by oxidative decarboxylation of pyruvate catalyzed by the PDH complex. However, due to the inability of *S. cerevisiae* to transport acetyl-CoA out of the mitochondria, the PDH bypass has an essential role in providing acetyl-CoA in the cytosolic compartment, and provides an alternative route to the PDH reaction for the conversion of pyruvate to acetyl-CoA. The PDH bypass involves the enzymes pyruvate decarboxylase (PDC; EC 4.1.1.1), acetaldehyde dehydrogenase (ACDH; EC 1.2.1.5 and EC 1.2.1.4), and acetyl-CoA synthetase (ACS; EC 6.2.1.1). Pyruvate

decarboxylase catalyzes the decarboxylation of pyruvate to acetaldehyde and carbon dioxide. Acetaldehyde dehydrogenase oxidizes acetaldehyde to acetic acid. In *S. cerevisiae*, the family of aldehyde dehydrogenases contains five members. *ALD2* (YMR170c), *ALD3* (YMR169c), and *ALD6* (YPL061w) correspond to the cytosolic isoforms, while *ALD4* (YOR374w) and *ALD5* (YER073w) encode the mitochondrial enzyme. The main cytosolic acetaldehyde dehydrogenase isoform is encoded by *ALD6*. The formation of acetyl-CoA from acetate is catalyzed by ACS and involves hydrolysis of ATP. Two structural genes, *ACS1* and *ACS2*, encode ACS.

[0091] In some embodiments, the genetically modified host cell provided herein further comprises a functional disruption in one or more genes of the PDH-bypass pathway. In some embodiments, disruption of the one or more genes of the PDH-bypass of the host cell results in a genetically modified microbial cell that is impaired in its ability to catalyze one or more of the following reactions: (1) the decarboxylation of pyruvate into acetaldehyde by pyruvate decarboxylase; (2) the conversion of acetaldehyde into acetate by acetaldehyde dehydrogenase; and (3) the synthesis of acetyl-CoA from acetate and CoA by acetyl-CoA synthetase.

[0092] In some embodiments, compared to a parent cell, a host cell comprises a functional disruption in one or more genes of the PDH-bypass pathway, wherein the activity of the reduced-function or non-functional PDH-bypass pathway alone or in combination with a weak ADA is not sufficient to support host cell growth, viability, and/or health.

[0093] In some embodiments, the activity or expression of one or more endogenous proteins of the PDH-bypass is reduced by at least about 50%. In another embodiment, the activity or expression of one or more endogenous proteins of the PDH-bypass is reduced by at least about 60%, by at least about 65%, by at least about 70%, by at least about 75%, by at least about 80%, by at least about 85%, by at least about 90%, by at least about 95%, or by at least about 99% as compared to a recombinant microorganism not comprising a reduction or deletion of the activity or expression of one or more endogenous proteins of the PDH-bypass.

5.5.2.1 ALD4 and ALD6

[0094] In some embodiments, one or more genes encoding aldehyde dehydrogenase (ACDH) activity are functionally disrupted in the host cell. In some embodiments, the aldehyde dehydrogenase is encoded by a gene selected from the group consisting of *ALD2*, *ALD3*, *ALD4*, *ALD5*, *ALD6*, and homologs and variants thereof.

[0095] In some embodiments, the genetically modified host cell comprises a functional disruption of ALD4. Representative *ALD4* nucleotide sequences of *Saccharomyces cerevisiae* include accession number NM_001183794, and SEQ ID NO:11 as provided herein. Representative Ald4 protein sequences of *Saccharomyces cerevisiae* include accession number NP_015019.1, and SEQ ID NO:12 as provided herein.

[0096] In some embodiments, the genetically modified host cell comprises a functional disruption of cytosolic aldehyde dehydrogenase (ALD6). Ald6p functions in the native PDH-bypass to convert acetaldehyde to acetate. Representative *ALD6* nucleotide sequences of *Saccharomyces cerevisiae* include accession number SCU56604, and SEQ ID NO:13 as provided herein. Representative Ald6 protein sequences of *Saccharomyces cerevisiae* include accession number AAB01219, and SEQ ID NO:14 as provided herein.

[0097] As would be understood in the art, naturally occurring homologs of aldehyde dehydrogenase in yeast other than *S. cerevisiae* can similarly be inactivated using the methods described herein.

[0098] As would be understood by one skilled in the art, the activity or expression of more than one aldehyde dehydrogenase can be reduced or eliminated. In one specific embodiment, the activity or expression of ALD4 and ALD6 or homologs or variants thereof is reduced or eliminated. In another specific embodiment, the activity or expression of ALD5 and ALD6 or homologs or variants thereof is reduced or eliminated. In yet another specific embodiment, the activity or expression of ALD4, ALD5, and ALD6 or homologs or variants thereof is reduced or eliminated. In yet another specific embodiment, the activity or expression of the cytosolically localized aldehyde dehydrogenases ALD2, ALD3, and ALD6 or homologs or variants thereof is reduced or eliminated. In yet another specific embodiment, the activity or expression of the mitochondrially localized aldehyde dehydrogenases, ALD4 and ALD5 or homologs or variants thereof, is reduced or eliminated.

5.5.2.2 ACS1 and ACS2

[0099] In some embodiments, one or more genes encoding acetyl-CoA synthetase (ACS) activity are functionally disrupted in the host cell. In some embodiments, the acetyl-CoA synthetase is encoded by a gene selected from the group consisting of ACS1, ACS2, and homologs and variants thereof.

[00100] In some embodiments, one or more genes encoding acetyl-CoA synthetase (ACS) activity is functionally disrupted in the host cell. ACS1 and ACS2 are both acetyl-CoA synthetases that can convert acetate to acetyl-CoA. ACS1 is expressed only under

respiratory conditions, whereas ACS2 is expressed constitutively. When ACS2 is knocked out, strains are able to grow on respiratory conditions (e.g. ethanol, glycerol, or acetate media), but die on fermentable carbon sources (e.g. sucrose, glucose).

[00101] In some embodiments, the genetically modified host cell comprises a functional disruption of ACS1. The sequence of the *ACS1* gene of *S. cerevisiae* has been previously described. *See, e.g.*, Nagasu *et al.*, *Gene* 37 (1-3):247-253 (1985). Representative *ACS1* nucleotide sequences of *Saccharomyces cerevisiae* include accession number X66425, and SEQ ID NO:15 as provided herein. Representative Acs1 protein sequences of *Saccharomyces cerevisiae* include accession number AAC04979, and SEQ ID NO:16 as provided herein.

[00102] In some embodiments, the genetically modified host cell comprises a functional disruption of ACS2. The sequence of the *ACS2* gene of *S. cerevisiae* has been previously described. *See, e.g.*, Van den Berg *et al.*, *Eur. J. Biochem.* 231(3):704-713 (1995). Representative *ACS2* nucleotide sequences of *Saccharomyces cerevisiae* include accession number S79456, and SEQ ID NO:17 as provided herein. Representative Acs2 protein sequences of *Saccharomyces cerevisiae* include accession number CAA97725, and SEQ ID NO:18 as provided herein.

[00103] As would be understood in the art, naturally occurring homologs of acetyl-CoA synthetase in yeast other than *S. cerevisiae* can similarly be inactivated using the methods described herein.

[00104] In some embodiments, the host cell comprises a cytosolic acetyl-coA synthetase activity that can convert acetate to acetyl-CoA under respiratory conditions (*i.e.*, when the host cell is grown in the presence of e.g. ethanol, glycerol, or acetate). In some such embodiments, the host cell is a yeast cell that comprises ACS1 activity. In other embodiments, the host cell compared to a parent cell comprises no or reduced endogenous acetyl-CoA synthetase activity under respiratory conditions. In some such embodiments, the host cell is a yeast cell that compared to a parent cell comprises no or reduced ACS1 activity.

[00105] In some embodiments, the host cell comprises a cytosolic acetyl-coA synthetase activity that can convert acetate to acetyl-CoA under non-respiratory conditions (*i.e.*, when the host cell is grown in the presence of fermentable carbon sources (e.g. sucrose, glucose)). In some such embodiments, the host cell is a yeast cell that comprises ACS2 activity. In other embodiments, the host cell compared to a parent cell comprises no or reduced endogenous acetyl-CoA synthetase activity under non-respiratory conditions. In

some such embodiments, the host cell is a yeast cell that compared to a parent cell comprises no or reduced ACS2 activity.

[00106] In some embodiments, the host cell comprises a heterologous PK and a cytosolic acetyl-coA synthetase activity (e.g., ACS1 and/or ACS2). In such embodiments, PK produces acetyl phosphate in the host cell. The intact cytosolic ACS activity can convert acetate that accumulates as a result of RHR2 and/or HOR2-catalyzed acetyl phosphate hydrolysis into acetyl-CoA.

5.6 MEV Pathway for Isoprenoid Production

[00107] In some embodiments, the genetically modified host cell provided herein comprises one or more heterologous enzymes of the MEV pathway. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that condenses acetyl-CoA with malonyl-CoA to form acetoacetyl-CoA. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that condenses two molecules of acetyl-CoA to form acetoacetyl-CoA. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that converts HMG-CoA to mevalonate. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate. In some embodiments, the one or more enzymes of the MEV pathway comprise an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate.

[00108] In some embodiments, the one or more enzymes of the MEV pathway are selected from the group consisting of acetyl-CoA thiolase, acetoacetyl-CoA synthetase, HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase and mevalonate pyrophosphate decarboxylase. In some embodiments, with regard to the enzyme of the MEV pathway capable of catalyzing the formation of acetoacetyl-CoA, the genetically modified host cell comprises either an enzyme that condenses two molecules of acetyl-CoA to form acetoacetyl-CoA, e.g., acetyl-CoA thiolase; or an enzyme that condenses acetyl-CoA with malonyl-CoA to form acetoacetyl-CoA, e.g., acetoacetyl-CoA synthase. In some embodiments, the genetically modified host cell comprises both an enzyme that condenses two molecules of acetyl-CoA to form acetoacetyl-CoA, e.g., acetyl-CoA thiolase;

and an enzyme that condenses acetyl-CoA with malonyl-CoA to form acetoacetyl-CoA, *e.g.*, acetoacetyl-CoA synthase.

[00109] In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding more than one enzyme of the MEV pathway. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding two enzymes of the MEV pathway. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding an enzyme that can convert HMG-CoA into mevalonate and an enzyme that can convert mevalonate into mevalonate 5-phosphate. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding three enzymes of the MEV pathway. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding four enzymes of the MEV pathway. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding five enzymes of the MEV pathway. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding six enzymes of the MEV pathway. In some embodiments, the host cell comprises one or more heterologous nucleotide sequences encoding seven enzymes of the MEV pathway. In some embodiments, the host cell comprises a plurality of heterologous nucleic acids encoding all of the enzymes of the MEV pathway.

[00110] In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding an enzyme that can convert isopentenyl pyrophosphate (IPP) into dimethylallyl pyrophosphate (DMAPP). In some embodiments, the genetically modified host cell further comprises a heterologous nucleic acid encoding an enzyme that can condense IPP and/or DMAPP molecules to form a polyprenyl compound. In some embodiments, the genetically modified host cell further comprise a heterologous nucleic acid encoding an enzyme that can modify IPP or a polyprenyl to form an isoprenoid compound.

5.6.1 Conversion of Acetyl-CoA to Acetoacetyl-CoA

[00111] In some embodiments, the genetically modified host cell comprises a heterologous nucleotide sequence encoding an enzyme that can condense two molecules of acetyl-coenzyme A to form acetoacetyl-CoA, *e.g.*, an acetyl-CoA thiolase. Illustrative examples of nucleotide sequences encoding such an enzyme include, but are not limited to: (NC_000913 REGION: 2324131.2325315; *Escherichia coli*), (D49362; *Paracoccus denitrificans*), and (L20428; *Saccharomyces cerevisiae*).

[00112] Acetyl-CoA thiolase catalyzes the reversible condensation of two molecules of acetyl-CoA to yield acetoacetyl-CoA, but this reaction is thermodynamically unfavorable; acetoacetyl-CoA thiolysis is favored over acetoacetyl-CoA synthesis. Acetoacetyl-CoA synthase (AACS) (alternately referred to as acetyl-CoA:malonyl-CoA acyltransferase; EC 2.3.1.194) condenses acetyl-CoA with malonyl-CoA to form acetoacetyl-CoA. In contrast to acetyl-CoA thiolase, AACS-catalyzed acetoacetyl-CoA synthesis is essentially an energy-favored reaction, due to the associated decarboxylation of malonyl-CoA. In addition, AACS exhibits no thiolysis activity against acetoacetyl-CoA, and thus the reaction is irreversible.

[00113] In host cells comprising acetyl-CoA thiolase and a heterologous ADA and/or phosphotransacetylase (PTA), the reversible reaction catalyzed by acetyl-CoA thiolase, which favors acetoacetyl-CoA thiolysis, may result in a large acetyl-CoA pool. In view of the reversible activity of ADA, this acetyl-CoA pool may in turn drive ADA towards the reverse reaction of converting acetyl-CoA to acetaldehyde, thereby diminishing the benefits provided by ADA towards acetyl-CoA production. Similarly, the activity of PTA is reversible, and thus, a large acetyl-CoA pool may drive PTA towards the reverse reaction of converting acetyl-CoA to acetyl phosphate. Therefore, in some embodiments, in order to provide a strong pull on acetyl-CoA to drive the forward reaction of ADA and PTA, the MEV pathway of the genetically modified host cell provided herein utilizes an acetoacetyl-CoA synthase to form acetoacetyl-CoA from acetyl-CoA and malonyl-CoA.

[00114] In some embodiments, the AACS is from *Streptomyces* sp. strain CL190 (Okamura *et al.*, *Proc Natl Acad Sci USA* 107(25):11265-70 (2010). Representative AACS nucleotide sequences of *Streptomyces* sp. strain CL190 include accession number AB540131.1, and SEQ ID NO:19 as provided herein. Representative AACS protein sequences of *Streptomyces* sp. strain CL190 include accession numbers D7URV0, BAJ10048, and SEQ ID NO:20 as provided herein. Other acetoacetyl-CoA synthases useful for the compositions and methods provided herein include, but are not limited to, *Streptomyces* sp. (AB183750; KO-3988 BAD86806); *S. anulatus* strain 9663 (FN178498; CAX48662); *Streptomyces* sp. KO-3988 (AB212624; BAE78983); *Actinoplanes* sp. A40644 (AB113568; BAD07381); *Streptomyces* sp. C (NZ_ACEW010000640; ZP_05511702); *Nocardiopsis dassonvillei* DSM 43111 (NZ_ABUI01000023; ZP_04335288); *Mycobacterium ulcerans* Agy99 (NC_008611; YP_907152); *Mycobacterium marinum* M (NC_010612; YP_001851502); *Streptomyces* sp. Mg1 (NZ_DS570501; ZP_05002626); *Streptomyces* sp. AA4 (NZ_ACEV01000037; ZP_05478992); *S. roseosporus* NRRL 15998

(NZ_ABYB01000295; ZP_04696763); *Streptomyces* sp. ACTE (NZ_ADFD01000030; ZP_06275834); *S. viridochromogenes* DSM 40736 (NZ_ACEZ01000031; ZP_05529691); *Frankia* sp. CcI3 (NC_007777; YP_480101); *Nocardia brasiliensis* (NC_018681; YP_006812440.1); and *Austwickia chelonae* (NZ_BAGZ01000005; ZP_10950493.1). Additional suitable acetoacetyl-CoA synthases include those described in U.S. Patent Application Publication Nos. 2010/0285549 and 2011/0281315, the contents of which are incorporated by reference in their entireties.

[00115] Acetoacetyl-CoA synthases also useful in the compositions and methods provided herein include those molecules which are said to be “derivatives” of any of the acetoacetyl-CoA synthases described herein. Such a “derivative” has the following characteristics: (1) it shares substantial homology with any of the acetoacetyl-CoA synthases described herein; and (2) is capable of catalyzing the irreversible condensation of acetyl-CoA with malonyl-CoA to form acetoacetyl-CoA. A derivative of an acetoacetyl-CoA synthase is said to share “substantial homology” with acetoacetyl-CoA synthase if the amino acid sequences of the derivative is at least 80%, and more preferably at least 90%, and most preferably at least 95%, the same as that of acetoacetyl-CoA synthase.

5.6.2 Conversion of Acetoacetyl-CoA to HMG-CoA

[00116] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can condense acetoacetyl-CoA with another molecule of acetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), e.g., a HMG-CoA synthase. Illustrative examples of nucleotide sequences encoding such an enzyme include, but are not limited to: (NC_001145, complement 19061.20536; *Saccharomyces cerevisiae*), (X96617; *Saccharomyces cerevisiae*), (X83882; *Arabidopsis thaliana*), (AB037907; *Kitasatospora griseola*), (BT007302; *Homo sapiens*), and (NC_002758, Locus tag SAV2546, GeneID 1122571; *Staphylococcus aureus*).

5.6.3 Conversion of HMG-CoA to Mevalonate

[00117] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can convert HMG-CoA into mevalonate, e.g., a HMG-CoA reductase. In some embodiments, HMG-CoA reductase is an NADH-using hydroxymethylglutaryl-CoA reductase-CoA reductase. HMG-CoA reductases (EC 1.1.1.34; EC 1.1.1.88) catalyze the reductive deacylation of (S)-HMG-CoA to (R)-mevalonate, and can be categorized into two classes, class I and class II HMGRs. Class I includes the enzymes from eukaryotes and most archaea, and class II includes the HMG-CoA reductases of certain

prokaryotes and archaea. In addition to the divergence in the sequences, the enzymes of the two classes also differ with regard to their cofactor specificity. Unlike the class I enzymes, which utilize NADPH exclusively, the class II HMG-CoA reductases vary in the ability to discriminate between NADPH and NADH. *See, e.g., Hedl et al., Journal of Bacteriology* 186 (7): 1927-1932 (2004). Co-factor specificities for select class II HMG-CoA reductases are provided below.

[00118] **Table 1. Co-factor specificities for select class II HMG-CoA reductases**

Source	Coenzyme specificity	$K_m^{\text{NADPH}} (\mu\text{M})$	$K_m^{\text{NADH}} (\mu\text{M})$
<i>P. mevalonii</i>	NADH		80
<i>A. fulgidus</i>	NAD(P)H	500	160
<i>S. aureus</i>	NAD(P)H	70	100
<i>E. faecalis</i>	NADPH	30	

[00119] Useful HMG-CoA reductases for the compositions and methods provided herein include HMG-CoA reductases that are capable of utilizing NADH as a cofactor, *e.g.*, HMG-CoA reductase from *P. mevalonii*, *A. fulgidus* or *S. aureus*. In particular embodiments, the HMG-CoA reductase is capable of only utilizing NADH as a cofactor, *e.g.*, HMG-CoA reductase from *P. mevalonii*, *S. pomeroyi* or *D. acidovorans*.

[00120] In some embodiments, the NADH-using HMG-CoA reductase is from *Pseudomonas mevalonii*. The sequence of the wild-type *mvaA* gene of *Pseudomonas mevalonii*, which encodes HMG-CoA reductase (EC 1.1.1.88), has been previously described. *See Beach and Rodwell, J. Bacteriol.* 171:2994-3001 (1989). Representative *mvaA* nucleotide sequences of *Pseudomonas mevalonii* include accession number M24015, and SEQ ID NO: 21 as provided herein. Representative HMG-CoA reductase protein sequences of *Pseudomonas mevalonii* include accession numbers AAA25837, P13702, MVAA_PSEMV, and SEQ ID NO: 22 as provided herein.

[00121] In some embodiments, the NADH-using HMG-CoA reductase is from *Silicibacter pomeroyi*. Representative *HMG-CoA reductase* nucleotide sequences of *Silicibacter pomeroyi* include accession number NC_006569.1, and SEQ ID NO: 23 as provided herein. Representative HMG-CoA reductase protein sequences of *Silicibacter pomeroyi* include accession number YP_164994, and SEQ ID NO: 24 as provided herein.

[00122] In some embodiments, the NADH-using HMG-CoA reductase is from *Delftia acidovorans*. A representative *HMG-CoA reductase* nucleotide sequences of *Delftia acidovorans* includes NC_010002 REGION: complement(319980..321269), and SEQ ID NO: 25 as provided herein. Representative HMG-CoA reductase protein sequences of *Delftia acidovorans* include accession number YP_001561318, and SEQ ID NO: 26 as provided herein.

[00123] In some embodiments, the NADH-using HMG-CoA reductases is from *Solanum tuberosum* (Crane *et al.*, *J. Plant Physiol.* 159:1301-1307 (2002)).

[00124] NADH-using HMG-CoA reductases also useful in the compositions and methods provided herein include those molecules which are said to be “derivatives” of any of the NADH-using HMG-CoA reductases described herein, *e.g.*, from *P. mevalonii*, *S. pomeroyi* and *D. acidovorans*. Such a “derivative” has the following characteristics: (1) it shares substantial homology with any of the NADH-using HMG-CoA reductases described herein; and (2) is capable of catalyzing the reductive deacylation of (S)-HMG-CoA to (R)-mevalonate while preferentially using NADH as a cofactor. A derivative of an NADH-using HMG-CoA reductase is said to share “substantial homology” with NADH-using HMG-CoA reductase if the amino acid sequences of the derivative is at least 80%, and more preferably at least 90%, and most preferably at least 95%, the same as that of NADH-using HMG-CoA reductase.

[00125] As used herein, the phrase “NADH-using” means that the NADH-using HMG-CoA reductase is selective for NADH over NADPH as a cofactor, for example, by demonstrating a higher specific activity for NADH than for NADPH. In some embodiments, selectivity for NADH as a cofactor is expressed as a $k_{cat}^{(NADH)} / k_{cat}^{(NADPH)}$ ratio. In some embodiments, the NADH-using HMG-CoA reductase has a $k_{cat}^{(NADH)} / k_{cat}^{(NADPH)}$ ratio of at least 5, 10, 15, 20, 25 or greater than 25. In some embodiments, the NADH-using HMG-CoA reductase uses NADH exclusively. For example, an NADH-using HMG-CoA reductase that uses NADH exclusively displays some activity with NADH supplied as the sole cofactor *in vitro*, and displays no detectable activity when NADPH is supplied as the sole cofactor. Any method for determining cofactor specificity known in the art can be utilized to identify HMG-CoA reductases having a preference for NADH as cofactor, including those described by Kim *et al.*, *Protein Science* 9:1226-1234 (2000); and Wilding *et al.*, *J. Bacteriol.* 182(18):5147-52 (2000), the contents of which are hereby incorporated in their entireties.

[00126] In some embodiments, the NADH-using HMG-CoA reductase is engineered to be selective for NADH over NAPDH, for example, through site-directed mutagenesis of the cofactor-binding pocket. Methods for engineering NADH-selectivity are described in Watanabe *et al.*, *Microbiology* 153:3044-3054 (2007), and methods for determining the cofactor specificity of HMG-CoA reductases are described in Kim *et al.*, *Protein Sci.* 9:1226-1234 (2000), the contents of which are hereby incorporated by reference in their entireties.

[00127] In some embodiments, the NADH-using HMG-CoA reductase is derived from a host species that natively comprises a mevalonate degradative pathway, for example, a host species that catabolizes mevalonate as its sole carbon source. Within these embodiments, the NADH-using HMG-CoA reductase, which normally catalyzes the oxidative acylation of internalized (R)-mevalonate to (S)-HMG-CoA within its native host cell, is utilized to catalyze the reverse reaction, that is, the reductive deacylation of (S)-HMG-CoA to (R)-mevalonate, in a genetically modified host cell comprising a mevalonate biosynthetic pathway. Prokaryotes capable of growth on mevalonate as their sole carbon source have been described by: Anderson *et al.*, *J. Bacteriol.* 171(12):6468-6472 (1989); Beach *et al.*, *J. Bacteriol.* 171:2994-3001 (1989); Bensch *et al.*, *J. Biol. Chem.* 245:3755-3762; Fimognari *et al.*, *Biochemistry* 4:2086-2090 (1965); Siddiqi *et al.*, *Biochem. Biophys. Res. Commun.* 8:110-113 (1962); Siddiqi *et al.*, *J. Bacteriol.* 93:207-214 (1967); and Takatsuji *et al.*, *Biochem. Biophys. Res. Commun.* 110:187-193 (1983), the contents of which are hereby incorporated by reference in their entireties.

[00128] In some embodiments of the compositions and methods provided herein, the host cell comprises both a NADH-using HMGr and an NADPH-using HMG-CoA reductase. Illustrative examples of nucleotide sequences encoding an NADPH-using HMG-CoA reductase include, but are not limited to: (NM_206548; *Drosophila melanogaster*), (NC_002758, Locus tag SAV2545, GeneID 1122570; *Staphylococcus aureus*), (AB015627; *Streptomyces* sp. KO 3988), (AX128213, providing the sequence encoding a truncated HMG-CoA reductase; *Saccharomyces cerevisiae*), and (NC_001145: complement (115734.118898; *Saccharomyces cerevisiae*).

5.6.4 Conversion of Mevalonate to Mevalonate-5-Phosphate

[00129] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can convert mevalonate into mevalonate 5-phosphate, *e.g.*, a mevalonate kinase. Illustrative examples of nucleotide sequences encoding such an

enzyme include, but are not limited to: (L77688; *Arabidopsis thaliana*), and (X55875; *Saccharomyces cerevisiae*).

5.6.5 Conversion of Mevalonate-5-Phosphate to Mevalonate-5-Pyrophosphate

[00130] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can convert mevalonate 5-phosphate into mevalonate 5-pyrophosphate, *e.g.*, a phosphomevalonate kinase. Illustrative examples of nucleotide sequences encoding such an enzyme include, but are not limited to: (AF429385; *Hevea brasiliensis*), (NM_006556; *Homo sapiens*), and (NC_001145. complement 712315.713670; *Saccharomyces cerevisiae*).

5.6.6 Conversion of Mevalonate-5-Pyrophosphate to IPP

[00131] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can convert mevalonate 5-pyrophosphate into isopentenyl diphosphate (IPP), *e.g.*, a mevalonate pyrophosphate decarboxylase. Illustrative examples of nucleotide sequences encoding such an enzyme include, but are not limited to: (X97557; *Saccharomyces cerevisiae*), (AF290095; *Enterococcus faecium*), and (U49260; *Homo sapiens*).

5.6.7 Conversion of IPP to DMAPP

[00132] In some embodiments, the host cell further comprises a heterologous nucleotide sequence encoding an enzyme that can convert IPP generated via the MEV pathway into dimethylallyl pyrophosphate (DMAPP), *e.g.*, an IPP isomerase. Illustrative examples of nucleotide sequences encoding such an enzyme include, but are not limited to: (NC_000913, 3031087.3031635; *Escherichia coli*), and (AF082326; *Haematococcus pluvialis*).

5.6.8 Polyprenyl Synthases

[00133] In some embodiments, the host cell further comprises a heterologous nucleotide sequence encoding a polyprenyl synthase that can condense IPP and/or DMAPP molecules to form polyprenyl compounds containing more than five carbons.

[00134] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can condense one molecule of IPP with one molecule of DMAPP to form one molecule of geranyl pyrophosphate (“GPP”), *e.g.*, a GPP synthase. Illustrative examples of nucleotide sequences encoding such an enzyme include, but are not limited to: (AF513111; *Abies grandis*), (AF513112; *Abies grandis*), (AF513113; *Abies grandis*), (AY534686; *Antirrhinum majus*), (AY534687; *Antirrhinum majus*), (Y17376;

Arabidopsis thaliana), (AE016877, Locus AP11092; *Bacillus cereus*; ATCC 14579), (AJ243739; *Citrus sinensis*), (AY534745; *Clarkia breweri*), (AY953508; *Ips pini*), (DQ286930; *Lycopersicon esculentum*), (AF182828; *Mentha x piperita*), (AF182827; *Mentha x piperita*), (MPI249453; *Mentha x piperita*), (PZE431697, Locus CAD24425; *Paracoccus zeaxanthinifaciens*), (AY866498; *Picrorhiza kurrooa*), (AY351862; *Vitis vinifera*), and (AF203881, Locus AAF12843; *Zymomonas mobilis*).

[00135] In some embodiments, the host cell comprises a heterologous nucleotide sequence encoding an enzyme that can condense two molecules of IPP with one molecule of DMAPP, or add a molecule of IPP to a molecule of GPP, to form a molecule of farnesyl pyrophosphate (“FPP”), e.g., a FPP synthase. Illustrative examples of nucleotide sequences that encode such an enzyme include, but are not limited to: (ATU80605; *Arabidopsis thaliana*), (ATHFPS2R; *Arabidopsis thaliana*), (AAU36376; *Artemisia annua*), (AF461050; *Bos taurus*), (D00694; *Escherichia coli* K-12), (AE009951, Locus AAL95523; *Fusobacterium nucleatum* subsp. *nucleatum* ATCC 25586), (GFFPPSGEN; *Gibberella fujikuroi*), (CP000009, Locus AAW60034; *Gluconobacter oxydans* 621H), (AF019892; *Helianthus annuus*), (HUMFAPS; *Homo sapiens*), (KLPFPSQCR; *Kluyveromyces lactis*), (LAU15777; *Lupinus albus*), (LAU20771; *Lupinus albus*), (AF309508; *Mus musculus*), (NCFPPSGEN; *Neurospora crassa*), (PAFPS1; *Parthenium argentatum*), (PAFPS2; *Parthenium argentatum*), (RATFAPS; *Rattus norvegicus*), (YSCFPP; *Saccharomyces cerevisiae*), (D89104; *Schizosaccharomyces pombe*), (CP000003, Locus AAT87386; *Streptococcus pyogenes*), (CP000017, Locus AAZ51849; *Streptococcus pyogenes*), (NC_008022, Locus YP_598856; *Streptococcus pyogenes* MGAS10270), (NC_008023, Locus YP_600845; *Streptococcus pyogenes* MGAS2096), (NC_008024, Locus YP_602832; *Streptococcus pyogenes* MGAS10750), (MZEFPS; *Zea mays*), (AE000657, Locus AAC06913; *Aquifex aeolicus* VF5), (NM_202836; *Arabidopsis thaliana*), (D84432, Locus BAA12575; *Bacillus subtilis*), (U12678, Locus AAC28894; *Bradyrhizobium japonicum* USDA 110), (BACFDPS; *Geobacillus stearothermophilus*), (NC_002940, Locus NP_873754; *Haemophilus ducreyi* 35000HP), (L42023, Locus AAC23087; *Haemophilus influenzae* Rd KW20), (J05262; *Homo sapiens*), (YP_395294; *Lactobacillus sakei* subsp. *sakei* 23K), (NC_005823, Locus YP_000273; *Leptospira interrogans* serovar *Copenhageni* str. *Fiocruz* L1-130), (AB003187; *Micrococcus luteus*), (NC_002946, Locus YP_208768; *Neisseria gonorrhoeae* FA 1090), (U00090, Locus AAB91752; *Rhizobium* sp. NGR234), (J05091; *Saccharomyces cerevisiae*), (CP000031, Locus AAV93568; *Silicibacter pomeroyi*

DSS-3), (AE008481, Locus AAK99890; *Streptococcus pneumoniae* R6), and (NC_004556, Locus NP 779706; *Xylella fastidiosa* Temecula1).

[00136] In some embodiments, the host cell further comprises a heterologous nucleotide sequence encoding an enzyme that can combine IPP and DMAPP or IPP and FPP to form geranylgeranyl pyrophosphate (“GGPP”). Illustrative examples of nucleotide sequences that encode such an enzyme include, but are not limited to: (ATHGERPYRS; *Arabidopsis thaliana*), (BT005328; *Arabidopsis thaliana*), (NM_119845; *Arabidopsis thaliana*), (NZ_AAJM01000380, Locus ZP_00743052; *Bacillus thuringiensis* serovar *israelensis*, ATCC 35646 sq1563), (CRGGPPS; *Catharanthus roseus*), (NZ_AABF02000074, Locus ZP_00144509; *Fusobacterium nucleatum* subsp. *vincentii*, ATCC 49256), (GFGGPPSGN; *Gibberella fujikuroi*), (AY371321; *Ginkgo biloba*), (AB055496; *Hevea brasiliensis*), (AB017971; *Homo sapiens*), (MCI276129; *Mucor circinelloides* f. *lusitanicus*), (AB016044; *Mus musculus*), (AABX01000298, Locus NCU01427; *Neurospora crassa*), (NCU20940; *Neurospora crassa*), (NZ_AAKL01000008, Locus ZP_00943566; *Ralstonia solanacearum* UW551), (AB118238; *Rattus norvegicus*), (SCU31632; *Saccharomyces cerevisiae*), (AB016095; *Synechococcus elongates*), (SAGGPS; *Sinapis alba*), (SSOGDS; *Sulfolobus acidocaldarius*), (NC_007759, Locus YP_461832; *Syntrophus aciditrophicus* SB), (NC_006840, Locus YP_204095; *Vibrio fischeri* ES114), (NM_112315; *Arabidopsis thaliana*), (ERWCRT; *Pantoea agglomerans*), (D90087, Locus BAA14124; *Pantoea ananatis*), (X52291, Locus CAA36538; *Rhodobacter capsulatus*), (AF195122, Locus AAF24294; *Rhodobacter sphaeroides*), and (NC_004350, Locus NP_721015; *Streptococcus mutans* UA159).

5.6.9 Terpene Synthases

[00137] In some embodiments, the host cell further comprises a heterologous nucleotide sequence encoding an enzyme that can modify a polyprenyl to form a hemiterpene, a monoterpane, a sesquiterpene, a diterpene, a triterpene, a tetraterpene, a polyterpene, a steroid compound, a carotenoid, or a modified isoprenoid compound.

[00138] In some embodiments, the heterologous nucleotide encodes a carene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (AF461460, REGION 43.1926; *Picea abies*) and (AF527416, REGION: 78.1871; *Salvia stenophylla*).

[00139] In some embodiments, the heterologous nucleotide encodes a geraniol synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited

to: (AJ457070; *Cinnamomum tenuipilum*), (AY362553; *Ocimum basilicum*), (DQ234300; *Perilla frutescens* strain 1864), (DQ234299; *Perilla citriodora* strain 1861), (DQ234298; *Perilla citriodora* strain 4935), and (DQ088667; *Perilla citriodora*).

[00140] In some embodiments, the heterologous nucleotide encodes a linalool synthase. Illustrative examples of a suitable nucleotide sequence include, but are not limited to: (AF497485; *Arabidopsis thaliana*), (AC002294, Locus AAB71482; *Arabidopsis thaliana*), (AY059757; *Arabidopsis thaliana*), (NM_104793; *Arabidopsis thaliana*), (AF154124; *Artemisia annua*), (AF067603; *Clarkia breweri*), (AF067602; *Clarkia concinna*), (AF067601; *Clarkia breweri*), (U58314; *Clarkia breweri*), (AY840091; *Lycopersicon esculentum*), (DQ263741; *Lavandula angustifolia*), (AY083653; *Mentha citrate*), (AY693647; *Ocimum basilicum*), (XM_463918; *Oryza sativa*), (AP004078, Locus BAD07605; *Oryza sativa*), (XM_463918, Locus XP_463918; *Oryza sativa*), (AY917193; *Perilla citriodora*), (AF271259; *Perilla frutescens*), (AY473623; *Picea abies*), (DQ195274; *Picea sitchensis*), and (AF444798; *Perilla frutescens* var. *crispa* cultivar No. 79).

[00141] In some embodiments, the heterologous nucleotide encodes a limonene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (+)-limonene synthases (AF514287, REGION: 47.1867; *Citrus limon*) and (AY055214, REGION: 48.1889; *Agastache rugosa*) and (-)-limonene synthases (DQ195275, REGION: 1.1905; *Picea sitchensis*), (AF006193, REGION: 73.1986; *Abies grandis*), and (MHC4SLSP, REGION: 29.1828; *Mentha spicata*).

[00142] In some embodiments, the heterologous nucleotide encodes a myrcene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (U87908; *Abies grandis*), (AY195609; *Antirrhinum majus*), (AY195608; *Antirrhinum majus*), (NM_127982; *Arabidopsis thaliana* TPS10), (NM_113485; *Arabidopsis thaliana* ATTPS-CIN), (NM_113483; *Arabidopsis thaliana* ATTPS-CIN), (AF271259; *Perilla frutescens*), (AY473626; *Picea abies*), (AF369919; *Picea abies*), and (AJ304839; *Quercus ilex*).

[00143] In some embodiments, the heterologous nucleotide encodes a ocimene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (AY195607; *Antirrhinum majus*), (AY195609; *Antirrhinum majus*), (AY195608; *Antirrhinum majus*), (AK221024; *Arabidopsis thaliana*), (NM_113485; *Arabidopsis thaliana* ATTPS-CIN), (NM_113483; *Arabidopsis thaliana* ATTPS-CIN), (NM_117775; *Arabidopsis thaliana* ATTPS03), (NM_001036574; *Arabidopsis thaliana* ATTPS03), (NM_127982;

Arabidopsis thaliana TPS10), (AB110642; *Citrus unshiu* CitMTSL4), and (AY575970; *Lotus corniculatus* var. *japonicus*).

[00144] In some embodiments, the heterologous nucleotide encodes an α -pinene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (+) α -pinene synthase (AF543530, REGION: 1.1887; *Pinus taeda*), (-) α -pinene synthase (AF543527, REGION: 32.1921; *Pinus taeda*), and (+)/(-) α -pinene synthase (AGU87909, REGION: 6111892; *Abies grandis*).

[00145] In some embodiments, the heterologous nucleotide encodes a β -pinene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (-) β -pinene synthases (AF276072, REGION: 1.1749; *Artemisia annua*) and (AF514288, REGION: 26.1834; *Citrus limon*).

[00146] In some embodiments, the heterologous nucleotide encodes a sabinene synthase. An illustrative example of a suitable nucleotide sequence includes but is not limited to AF051901, REGION: 26.1798 from *Salvia officinalis*.

[00147] In some embodiments, the heterologous nucleotide encodes a γ -terpinene synthase. Illustrative examples of suitable nucleotide sequences include: (AF514286, REGION: 30.1832 from *Citrus limon*) and (AB110640, REGION 1.1803 from *Citrus unshiu*).

[00148] In some embodiments, the heterologous nucleotide encodes a terpinolene synthase. Illustrative examples of a suitable nucleotide sequence include, but are not limited to: (AY693650 from *Oscimum basilicum*) and (AY906866, REGION: 10.1887 from *Pseudotsuga menziesii*).

[00149] In some embodiments, the heterologous nucleotide encodes an amorphadiene synthase. An illustrative example of a suitable nucleotide sequence is SEQ ID NO. 37 of U.S. Patent Publication No. 2004/0005678.

[00150] In some embodiments, the heterologous nucleotide encodes a α -farnesene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to DQ309034 from *Pyrus communis* cultivar *d'Anjou* (pear; gene name AFS1) and AY182241 from *Malus domestica* (apple; gene AFS1). Pechoux *et al.*, *Planta* 219(1):84-94 (2004).

[00151] In some embodiments, the heterologous nucleotide encodes a β -farnesene synthase. Illustrative examples of suitable nucleotide sequences include but is not limited to

accession number AF024615 from *Mentha x piperita* (peppermint; gene Tspa11), and AY835398 from *Artemisia annua*. Picaud *et al.*, *Phytochemistry* 66(9): 961-967 (2005).

[00152] In some embodiments, the heterologous nucleotide encodes a farnesol synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to accession number AF529266 from *Zea mays* and YDR481C from *Saccharomyces cerevisiae* (gene Pho8). Song, L., *Applied Biochemistry and Biotechnology* 128:149-158 (2006).

[00153] In some embodiments, the heterologous nucleotide encodes a nerolidol synthase. An illustrative example of a suitable nucleotide sequence includes, but is not limited to AF529266 from *Zea mays* (maize; gene tps1).

[00154] In some embodiments, the heterologous nucleotide encodes a patchouliol synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to AY508730 REGION: 1.1659 from *Pogostemon cablin*.

[00155] In some embodiments, the heterologous nucleotide encodes a nootkatone synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to AF441124 REGION: 1.1647 from *Citrus sinensis* and AY917195 REGION: 1.1653 from *Perilla frutescens*.

[00156] In some embodiments, the heterologous nucleotide encodes an abietadiene synthase. Illustrative examples of suitable nucleotide sequences include, but are not limited to: (U50768; *Abies grandis*) and (AY473621; *Picea abies*).

[00157] In some embodiments, the host cell produces a C₅ isoprenoid. These compounds are derived from one isoprene unit and are also called hemiterpenes. An illustrative example of a hemiterpene is isoprene. In other embodiments, the isoprenoid is a C₁₀ isoprenoid. These compounds are derived from two isoprene units and are also called monoterpenes. Illustrative examples of monoterpenes are limonene, citranellol, geraniol, menthol, perillyl alcohol, linalool, thujone, and myrcene. In other embodiments, the isoprenoid is a C₁₅ isoprenoid. These compounds are derived from three isoprene units and are also called sesquiterpenes. Illustrative examples of sesquiterpenes are periplanone B, gingkolide B, amorphadiene, artemisinin, artemisinic acid, valencene, nootkatone, epi-cedrol, epi-aristolochene, farnesol, gossypol, sanonin, periplanone, forskolin, and patchoulol (which is also known as patchouli alcohol). In other embodiments, the isoprenoid is a C₂₀ isoprenoid. These compounds are derived from four isoprene units and also called diterpenes. Illustrative examples of diterpenes are casbene, eleutherobin, paclitaxel,

prostratin, pseudopterosin, and taxadiene. In yet other examples, the isoprenoid is a C₂₀₊ isoprenoid. These compounds are derived from more than four isoprene units and include: triterpenes (C₃₀ isoprenoid compounds derived from 6 isoprene units) such as arbrusideE, bruceantin, testosterone, progesterone, cortisone, digitoxin, and squalene; tetraterpenes (C₄₀ isoprenoid compounds derived from 8 isoprenoids) such as β -carotene; and polyterpenes (C₄₀₊ isoprenoid compounds derived from more than 8 isoprene units) such as polyisoprene. In some embodiments, the isoprenoid is selected from the group consisting of abietadiene, amorphadiene, carene, α -farnesene, β -farnesene, farnesol, geraniol, geranylgeraniol, isoprene, linalool, limonene, myrcene, nerolidol, ocimene, patchoulol, β -pinene, sabinene, γ -terpinene, terpinolene and valencene. Isoprenoid compounds also include, but are not limited to, carotenoids (such as lycopene, α - and β -carotene, α - and β -cryptoxanthin, bixin, zeaxanthin, astaxanthin, and lutein), steroid compounds, and compounds that are composed of isoprenoids modified by other chemical groups, such as mixed terpene-alkaloids, and coenzyme Q-10.

5.6.10 Methods of Producing Isoprenoids

[00158] In another aspect, provided herein is a method for the production of an isoprenoid, the method comprising the steps of: (a) culturing a population of any of the genetically modified host cells described herein that are capable of producing an isoprenoid in a medium with a carbon source under conditions suitable for making an isoprenoid compound; and (b) recovering said isoprenoid compound from the medium.

[00159] In some embodiments, the genetically modified host cell comprises one or more modifications selected from the group consisting of: heterologous expression of a phosphoketolase, heterologous expression of a phosphotransacetylase, heterologous expression of one or more enzymes of the mevalonate pathway; and optionally, heterologous expression of an ADA, heterologous expression of an NADH-using HMG-CoA reductase, and heterologous expression of an AACS; and the genetically modified host cell produces an increased amount of the isoprenoid compound compared to a parent cell not comprising the one or more modifications, or a parent cell comprising only a subset of the one or more modifications of the genetically modified host cell, but is otherwise genetically identical. In some embodiments, the increased amount is at least 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100% or greater than 100%, as measured, for example, in yield, production, productivity, in grams per liter of cell culture, milligrams per gram of dry cell weight, on a per unit volume of cell culture basis,

on a per unit dry cell weight basis, on a per unit volume of cell culture per unit time basis, or on a per unit dry cell weight per unit time basis.

[00160] In some embodiments, the host cell produces an elevated level of isoprenoid that is greater than about 10 grams per liter of fermentation medium. In some such embodiments, the isoprenoid is produced in an amount from about 10 to about 50 grams, more than about 15 grams, more than about 20 grams, more than about 25 grams, or more than about 30 grams per liter of cell culture.

[00161] In some embodiments, the host cell produces an elevated level of isoprenoid that is greater than about 50 milligrams per gram of dry cell weight. In some such embodiments, the isoprenoid is produced in an amount from about 50 to about 1500 milligrams, more than about 100 milligrams, more than about 150 milligrams, more than about 200 milligrams, more than about 250 milligrams, more than about 500 milligrams, more than about 750 milligrams, or more than about 1000 milligrams per gram of dry cell weight.

[00162] In some embodiments, the host cell produces an elevated level of isoprenoid that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 2-fold, at least about 2.5-fold, at least about 5-fold, at least about 10-fold, at least about 20-fold, at least about 30-fold, at least about 40-fold, at least about 50-fold, at least about 75-fold, at least about 100-fold, at least about 200-fold, at least about 300-fold, at least about 400-fold, at least about 500-fold, or at least about 1,000-fold, or more, higher than the level of isoprenoid produced by a parent cell, on a per unit volume of cell culture basis.

[00163] In some embodiments, the host cell produces an elevated level of isoprenoid that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 2-fold, at least about 2.5-fold, at least about 5-fold, at least about 10-fold, at least about 20-fold, at least about 30-fold, at least about 40-fold, at least about 50-fold, at least about 75-fold, at least about 100-fold, at least about 200-fold, at least about 300-fold, at least about 400-fold, at least about 500-fold, or at least about 1,000-fold, or more, higher than the level of isoprenoid produced by the parent cell, on a per unit dry cell weight basis.

[00164] In some embodiments, the host cell produces an elevated level of an isoprenoid that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 2-fold, at least about 2.5-fold, at least about 5-fold, at least about 10-fold, at least about 20-fold, at least about 30-fold, at least about 40-fold, at least about 50-fold, at least about 75-fold, at least about 100-fold, at least about 200-fold, at least about 300-fold, at least about 400-fold, at least about 500-fold, or at least about 1,000-fold, or more, higher than the level of isoprenoid produced by the parent cell, on a per unit volume of cell culture per unit time basis.

[00165] In some embodiments, the host cell produces an elevated isoprenoid that is at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 2-fold, at least about 2.5-fold, at least about 5-fold, at least about 10-fold, at least about 20-fold, at least about 30-fold, at least about 40-fold, at least about 50-fold, at least about 75-fold, at least about 100-fold, at least about 200-fold, at least about 300-fold, at least about 400-fold, at least about 500-fold, or at least about 1,000-fold, or more, higher than the level of isoprenoid produced by the parent cell, on a per unit dry cell weight per unit time basis.

[00166] In most embodiments, the production of the elevated level of isoprenoid by the host cell is inducible by an inducing compound. Such a host cell can be manipulated with ease in the absence of the inducing compound. The inducing compound is then added to induce the production of the elevated level of isoprenoid by the host cell. In other embodiments, production of the elevated level of isoprenoid by the host cell is inducible by changing culture conditions, such as, for example, the growth temperature, media constituents, and the like.

5.6.11 Culture Media and Conditions

[00167] Materials and methods for the maintenance and growth of microbial cultures are well known to those skilled in the art of microbiology or fermentation science (see, for example, Bailey *et al.*, Biochemical Engineering Fundamentals, second edition, McGraw Hill, New York, 1986). Consideration must be given to appropriate culture medium, pH, temperature, and requirements for aerobic, microaerobic, or anaerobic conditions, depending on the specific requirements of the host cell, the fermentation, and the process.

[00168] The methods of producing isoprenoids provided herein may be performed in a suitable culture medium (e.g., with or without pantothenate supplementation) in a suitable container, including but not limited to a cell culture plate, a flask, or a fermentor. Further, the methods can be performed at any scale of fermentation known in the art to support industrial production of microbial products. Any suitable fermentor may be used including a stirred tank fermentor, an airlift fermentor, a bubble fermentor, or any combination thereof. In particular embodiments utilizing *Saccharomyces cerevisiae* as the host cell, strains can be grown in a fermentor as described in detail by Kosaric, *et al*, in Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, Volume 12, pages 398-473, Wiley-VCH Verlag GmbH & Co. KDaA, Weinheim, Germany.

[00169] In some embodiments, the culture medium is any culture medium in which a genetically modified microorganism capable of producing an isoprenoid can subsist, *i.e.*, maintain growth and viability. In some embodiments, the culture medium is an aqueous medium comprising assimilable carbon, nitrogen and phosphate sources. Such a medium can also include appropriate salts, minerals, metals and other nutrients. In some embodiments, the carbon source and each of the essential cell nutrients, are added incrementally or continuously to the fermentation media, and each required nutrient is maintained at essentially the minimum level needed for efficient assimilation by growing cells, for example, in accordance with a predetermined cell growth curve based on the metabolic or respiratory function of the cells which convert the carbon source to a biomass.

[00170] Suitable conditions and suitable media for culturing microorganisms are well known in the art. In some embodiments, the suitable medium is supplemented with one or more additional agents, such as, for example, an inducer (e.g., when one or more nucleotide sequences encoding a gene product are under the control of an inducible promoter), a repressor (e.g., when one or more nucleotide sequences encoding a gene product are under the control of a repressible promoter), or a selection agent (e.g., an antibiotic to select for microorganisms comprising the genetic modifications).

[00171] In some embodiments, the carbon source is a monosaccharide (simple sugar), a disaccharide, a polysaccharide, a non-fermentable carbon source, or one or more combinations thereof. Non-limiting examples of suitable monosaccharides include glucose, galactose, mannose, fructose, xylose, ribose, and combinations thereof. Non-limiting examples of suitable disaccharides include sucrose, lactose, maltose, trehalose, cellobiose, and combinations thereof. Non-limiting examples of suitable polysaccharides include starch,

glycogen, cellulose, chitin, and combinations thereof. Non-limiting examples of suitable non-fermentable carbon sources include acetate and glycerol.

[00172] The concentration of a carbon source, such as glucose, in the culture medium should promote cell growth, but not be so high as to repress growth of the microorganism used. Typically, cultures are run with a carbon source, such as glucose, being added at levels to achieve the desired level of growth and biomass, but at undetectable levels (with detection limits being about <0.1g/l). In other embodiments, the concentration of a carbon source, such as glucose, in the culture medium is greater than about 1 g/L, preferably greater than about 2 g/L, and more preferably greater than about 5 g/L. In addition, the concentration of a carbon source, such as glucose, in the culture medium is typically less than about 100 g/L, preferably less than about 50 g/L, and more preferably less than about 20 g/L. It should be noted that references to culture component concentrations can refer to both initial and/or ongoing component concentrations. In some cases, it may be desirable to allow the culture medium to become depleted of a carbon source during culture.

[00173] Sources of assimilable nitrogen that can be used in a suitable culture medium include, but are not limited to, simple nitrogen sources, organic nitrogen sources and complex nitrogen sources. Such nitrogen sources include anhydrous ammonia, ammonium salts and substances of animal, vegetable and/or microbial origin. Suitable nitrogen sources include, but are not limited to, protein hydrolysates, microbial biomass hydrolysates, peptone, yeast extract, ammonium sulfate, urea, and amino acids. Typically, the concentration of the nitrogen sources, in the culture medium is greater than about 0.1 g/L, preferably greater than about 0.25 g/L, and more preferably greater than about 1.0 g/L. Beyond certain concentrations, however, the addition of a nitrogen source to the culture medium is not advantageous for the growth of the microorganisms. As a result, the concentration of the nitrogen sources, in the culture medium is less than about 20 g/L, preferably less than about 10 g/L and more preferably less than about 5 g/L. Further, in some instances it may be desirable to allow the culture medium to become depleted of the nitrogen sources during culture.

[00174] The effective culture medium can contain other compounds such as inorganic salts, vitamins, trace metals or growth promoters. Such other compounds can also be present in carbon, nitrogen or mineral sources in the effective medium or can be added specifically to the medium.

[00175] The culture medium can also contain a suitable phosphate source. Such phosphate sources include both inorganic and organic phosphate sources. Preferred phosphate sources include, but are not limited to, phosphate salts such as mono or dibasic sodium and potassium phosphates, ammonium phosphate and mixtures thereof. Typically, the concentration of phosphate in the culture medium is greater than about 1.0 g/L, preferably greater than about 2.0 g/L and more preferably greater than about 5.0 g/L. Beyond certain concentrations, however, the addition of phosphate to the culture medium is not advantageous for the growth of the microorganisms. Accordingly, the concentration of phosphate in the culture medium is typically less than about 20 g/L, preferably less than about 15 g/L and more preferably less than about 10 g/L.

[00176] A suitable culture medium can also include a source of magnesium, preferably in the form of a physiologically acceptable salt, such as magnesium sulfate heptahydrate, although other magnesium sources in concentrations that contribute similar amounts of magnesium can be used. Typically, the concentration of magnesium in the culture medium is greater than about 0.5 g/L, preferably greater than about 1.0 g/L, and more preferably greater than about 2.0 g/L. Beyond certain concentrations, however, the addition of magnesium to the culture medium is not advantageous for the growth of the microorganisms. Accordingly, the concentration of magnesium in the culture medium is typically less than about 10 g/L, preferably less than about 5 g/L, and more preferably less than about 3 g/L. Further, in some instances it may be desirable to allow the culture medium to become depleted of a magnesium source during culture.

[00177] In some embodiments, the culture medium can also include a biologically acceptable chelating agent, such as the dihydrate of trisodium citrate. In such instance, the concentration of a chelating agent in the culture medium is greater than about 0.2 g/L, preferably greater than about 0.5 g/L, and more preferably greater than about 1 g/L. Beyond certain concentrations, however, the addition of a chelating agent to the culture medium is not advantageous for the growth of the microorganisms. Accordingly, the concentration of a chelating agent in the culture medium is typically less than about 10 g/L, preferably less than about 5 g/L, and more preferably less than about 2 g/L.

[00178] The culture medium can also initially include a biologically acceptable acid or base to maintain the desired pH of the culture medium. Biologically acceptable acids include, but are not limited to, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and mixtures thereof. Biologically acceptable bases include, but are not limited to,

ammonium hydroxide, sodium hydroxide, potassium hydroxide and mixtures thereof. In some embodiments, the base used is ammonium hydroxide.

[00179] The culture medium can also include a biologically acceptable calcium source, including, but not limited to, calcium chloride. Typically, the concentration of the calcium source, such as calcium chloride, dihydrate, in the culture medium is within the range of from about 5 mg/L to about 2000 mg/L, preferably within the range of from about 20 mg/L to about 1000 mg/L, and more preferably in the range of from about 50 mg/L to about 500 mg/L.

[00180] The culture medium can also include sodium chloride. Typically, the concentration of sodium chloride in the culture medium is within the range of from about 0.1 g/L to about 5 g/L, preferably within the range of from about 1 g/L to about 4 g/L, and more preferably in the range of from about 2 g/L to about 4 g/L.

[00181] In some embodiments, the culture medium can also include trace metals. Such trace metals can be added to the culture medium as a stock solution that, for convenience, can be prepared separately from the rest of the culture medium. Typically, the amount of such a trace metals solution added to the culture medium is greater than about 1 ml/L, preferably greater than about 5 mL/L, and more preferably greater than about 10 mL/L. Beyond certain concentrations, however, the addition of a trace metals to the culture medium is not advantageous for the growth of the microorganisms. Accordingly, the amount of such a trace metals solution added to the culture medium is typically less than about 100 mL/L, preferably less than about 50 mL/L, and more preferably less than about 30 mL/L. It should be noted that, in addition to adding trace metals in a stock solution, the individual components can be added separately, each within ranges corresponding independently to the amounts of the components dictated by the above ranges of the trace metals solution.

[00182] The culture media can include other vitamins, such as pantothenate, biotin, calcium, pantothenate, inositol, pyridoxine-HCl, and thiamine-HCl. Such vitamins can be added to the culture medium as a stock solution that, for convenience, can be prepared separately from the rest of the culture medium. Beyond certain concentrations, however, the addition of vitamins to the culture medium is not advantageous for the growth of the microorganisms.

[00183] The fermentation methods described herein can be performed in conventional culture modes, which include, but are not limited to, batch, fed-batch, cell recycle, continuous and semi-continuous. In some embodiments, the fermentation is carried out in fed-batch

mode. In such a case, some of the components of the medium are depleted during culture, including pantothenate during the production stage of the fermentation. In some embodiments, the culture may be supplemented with relatively high concentrations of such components at the outset, for example, of the production stage, so that growth and/or isoprenoid production is supported for a period of time before additions are required. The preferred ranges of these components are maintained throughout the culture by making additions as levels are depleted by culture. Levels of components in the culture medium can be monitored by, for example, sampling the culture medium periodically and assaying for concentrations. Alternatively, once a standard culture procedure is developed, additions can be made at timed intervals corresponding to known levels at particular times throughout the culture. As will be recognized by those in the art, the rate of consumption of nutrient increases during culture as the cell density of the medium increases. Moreover, to avoid introduction of foreign microorganisms into the culture medium, addition is performed using aseptic addition methods, as are known in the art. In addition, a small amount of anti-foaming agent may be added during the culture.

[00184] The temperature of the culture medium can be any temperature suitable for growth of the genetically modified cells and/or production of isoprenoids. For example, prior to inoculation of the culture medium with an inoculum, the culture medium can be brought to and maintained at a temperature in the range of from about 20°C to about 45°C, preferably to a temperature in the range of from about 25°C to about 40°C, and more preferably in the range of from about 28°C to about 32°C.

[00185] The pH of the culture medium can be controlled by the addition of acid or base to the culture medium. In such cases when ammonia is used to control pH, it also conveniently serves as a nitrogen source in the culture medium. Preferably, the pH is maintained from about 3.0 to about 8.0, more preferably from about 3.5 to about 7.0, and most preferably from about 4.0 to about 6.5.

[00186] In some embodiments, the carbon source concentration, such as the glucose concentration, of the culture medium is monitored during culture. Glucose concentration of the culture medium can be monitored using known techniques, such as, for example, use of the glucose oxidase enzyme test or high pressure liquid chromatography, which can be used to monitor glucose concentration in the supernatant, *e.g.*, a cell-free component of the culture medium. As stated previously, the carbon source concentration should be kept below the level at which cell growth inhibition occurs. Although such concentration may vary from

organism to organism, for glucose as a carbon source, cell growth inhibition occurs at glucose concentrations greater than at about 60 g/L, and can be determined readily by trial.

Accordingly, when glucose is used as a carbon source the glucose is preferably fed to the fermentor and maintained below detection limits. Alternatively, the glucose concentration in the culture medium is maintained in the range of from about 1 g/L to about 100 g/L, more preferably in the range of from about 2 g/L to about 50 g/L, and yet more preferably in the range of from about 5 g/L to about 20 g/L. Although the carbon source concentration can be maintained within desired levels by addition of, for example, a substantially pure glucose solution, it is acceptable, and may be preferred, to maintain the carbon source concentration of the culture medium by addition of aliquots of the original culture medium. The use of aliquots of the original culture medium may be desirable because the concentrations of other nutrients in the medium (e.g. the nitrogen and phosphate sources) can be maintained simultaneously. Likewise, the trace metals concentrations can be maintained in the culture medium by addition of aliquots of the trace metals solution.

5.6.12 Recovery of Isoprenoids

[00187] Once the isoprenoid is produced by the host cell, it may be recovered or isolated for subsequent use using any suitable separation and purification methods known in the art. In some embodiments, an organic phase comprising the isoprenoid is separated from the fermentation by centrifugation. In other embodiments, an organic phase comprising the isoprenoid separates from the fermentation spontaneously. In other embodiments, an organic phase comprising the isoprenoid is separated from the fermentation by adding a demulsifier and/or a nucleating agent into the fermentation reaction. Illustrative examples of demulsifiers include flocculants and coagulants. Illustrative examples of nucleating agents include droplets of the isoprenoid itself and organic solvents such as dodecane, isopropyl myristate, and methyl oleate.

[00188] The isoprenoid produced in these cells may be present in the culture supernatant and/or associated with the host cells. In embodiments where the isoprenoid is associated with the host cell, the recovery of the isoprenoid may comprise a method of permeabilizing or lysing the cells. Alternatively or simultaneously, the isoprenoid in the culture medium can be recovered using a recovery process including, but not limited to, chromatography, extraction, solvent extraction, membrane separation, electrodialysis, reverse osmosis, distillation, chemical derivatization and crystallization.

[00189] In some embodiments, the isoprenoid is separated from other products that may be present in the organic phase. In some embodiments, separation is achieved using adsorption, distillation, gas-liquid extraction (stripping), liquid-liquid extraction (solvent extraction), ultrafiltration, and standard chromatographic techniques.

5.7 Polyketides

[00190] In some embodiments, the genetically modified host cell provided herein is capable of producing a polyketide from acetyl-CoA. Polyketides are synthesized by sequential reactions catalyzed by a collection of enzyme activities called polyketide synthases (PKSs), which are large multi-enzyme protein complexes that contain a coordinated group of active sites. Polyketide biosynthesis proceeds stepwise starting from simple 2-, 3-, 4-carbon building blocks such as acetyl-CoA, propionyl CoA, butyryl-CoA and their activated derivatives, malonyl-, methylmalonyl- and ethylmalonyl-CoA, primarily through decarboxylative condensation of malonyl-CoA-derived units via Claisen condensation reactions. The PKS genes are usually organized in one operon in bacteria and in gene clusters in eukaryotes. Three types of polyketide synthases have been characterized: Type I polyketide synthases are large, highly modular proteins subdivided into two classes: 1) iterative PKSs, which reuse domains in a cyclic fashion and 2) modular PKSs, which contain a sequence of separate modules and do not repeat domains. Type II polyketide synthases are aggregates of monofunctional proteins, and Type III polyketide synthases do not use acyl carrier protein domains.

[00191] Unlike fatty acid biosynthesis, in which each successive chain elongation step is followed by a fixed sequence of ketoreduction, dehydration and enoyl, reduction as described below, the individual chain elongation intermediates of polyketide biosynthesis undergo all, some, or no functional group modifications, resulting in a large number of chemically diverse products. Additional degrees of complexity arise from the use of different starter units and chain elongation units as well as the generation of new stereo-isomers.

[00192] The order of complete polyketide-synthesis as directed by a polyketide synthase follows (in the order N-terminus to C-terminus): starting or loading the initial carbon building blocks onto an acyl carrier protein, elongation modules which catalyze the extension of the growing macrolide chain and termination modules that catalyze the release of the synthesized macrolide. Component domains or separate enzyme functionalities active in this biosynthesis include acyl-transferases for the loading of starter, extender and intermediate acyl units; acyl carrier proteins which hold the growing macrolide as a thiol

ester; β -keto-acyl synthases which catalyze chain extension; β -keto reductases responsible for the first reduction to an alcohol functionality; dehydratases which eliminate water to give an unsaturated thioester; enoyl reductases which catalyze the final reduction to full saturation; and thioesterases which catalyze macrolide release and cyclization.

[00193] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can condense at least one of acetyl-CoA and malonyl-CoA with an acyl carrier protein, *e.g.* an acyl-transferase.

[00194] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can condense a first reactant selected from the group consisting of acetyl-CoA and malonyl-CoA with a second reactant selected from the group consisting of malonyl-CoA or methylmalonyl-CoA to form a polyketide product, *e.g.* a β -keto-acyl synthase.

[00195] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can reduce a β -keto chemical group on a polyketide compound to a β -hydroxy group, *e.g.* a β -keto reductase.

[00196] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can dehydrate an alkane chemical group in a polyketide compound to produce an α - β -unsaturated alkene, *e.g.* a dehydratase.

[00197] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can reduce an α - β -double-bond in a polyketide compound to a saturated alkane, *e.g.* an enoyl-reductase.

[00198] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can hydrolyze a polyketide compound from an acyl carrier protein, *e.g.* a thioesterase.

[00199] In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a KS catalytic region. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising an AT catalytic region. In some embodiments, the polyketide producing cell comprises more than one heterologous nucleotide sequence encoding an enzyme comprising an AT catalytic region. In some

embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a CLF catalytic region. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising an ACP activity. In some embodiments, the polyketide producing cell comprises more than one heterologous nucleotide sequence encoding an enzyme comprising an ACP activity.

[00200] In a particular embodiment, the polyketide producing cell comprises a minimal aromatic PKS system, *e.g.*, heterologous nucleotide sequences encoding an enzyme comprising a KS catalytic region, an enzyme comprising an AT catalytic region, an enzyme comprising a CLF catalytic region, and an enzyme comprising an ACP activity, respectively. In a particular embodiment, the polyketide producing cell comprises a minimal modular PKS system, *e.g.*, heterologous nucleotide sequences encoding an enzyme comprising a KS catalytic region, an enzyme comprising an AT catalytic region, and an enzyme comprising an ACP activity, respectively. In yet another particular embodiment, the polyketide producing cell comprises a modular aromatic PKS system for *de novo* polyketide synthesis, *e.g.*, heterologous nucleotide sequences encoding an enzyme comprising a KS catalytic region, one or more enzymes comprising an AT catalytic region, and one or more enzymes comprising an ACP activity, respectively.

[00201] In some embodiments, the polyketide producing cell comprising a minimal PKS system, *e.g.*, a minimal aromatic PKS system or minimal modular PKS system, further comprises additional catalytic activities which can contribute to production of the end-product polyketide. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a cyclase (CYC) catalytic region, which facilitates the cyclization of the nascent polyketide backbone. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a ketoreductase (KR) catalytic region. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising an aromatase (ARO) catalytic region. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising an enoylreductase (ER) catalytic region. In some embodiments, the polyketide producing cell comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a thioesterase (TE) catalytic region. In some embodiments, the polyketide producing cell further comprises one

or more heterologous nucleotide sequences encoding an enzyme comprising a holo ACP synthase activity, which effects pantetheinylation of the ACP.

[00202] In some embodiments, the polyketide producing cell further comprises one or more heterologous nucleotide sequences conferring a postsynthesis polyketide modifying activity. In some embodiments, the polyketide producing cell further comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a glycosylase activity, which effects postsynthesis modifications of polyketides, for example, where polyketides having antibiotic activity are desired. In some embodiments, the polyketide producing cell further comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a hydroxylase activity. In some embodiments, the polyketide producing cell further comprises one or more heterologous nucleotide sequences encoding an enzyme comprising an epoxidase activity. In some embodiments, the polyketide producing cell further comprises one or more heterologous nucleotide sequences encoding an enzyme comprising a methylase activity.

[00203] In some embodiments, the polyketide producing cell further comprises one or more heterologous nucleotide sequences encoding a biosynthetic enzyme including, but not limited to, at least one polyketide synthesis pathway enzyme, and enzymes that can modify an acetyl-CoA compound to form a polyketide product such as a macrolide, an antibiotic, an antifungal, a cytostatic compound, an anticholesterolemic compound, an antiparasitic compound, a coccidiostatic compound, an animal growth promoter or an insecticide. In some embodiments, the HACD compound is a polyene. In some embodiments, the HACD compound is a cyclic lactone. In some embodiments, the HACD compound comprises a 14, 15, or 16-membered lactone ring. In some embodiments, the HACD compound is a polyketide selected from the group consisting of a polyketide macrolide, antibiotic, antifungal, cytostatic, anticholesterolemic, antiparasitic, a coccidiostatic, animal growth promoter and insecticide.

[00204] In some embodiments, the polyketide producing cell comprises heterologous nucleotide sequences, for example sequences encoding PKS enzymes and polyketide modification enzymes, capable of producing a polyketide selected from, but not limited to, the following polyketides: avermectin (see, e.g., U.S. Pat. No. 5,252,474; U.S. Pat. No. 4,703,009; EP Pub. No. 118,367; MacNeil *et al.*, 1993, "Industrial Microorganisms: Basic and Applied Molecular Genetics"; Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, "A Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin,

and Nemadectin"; MacNeil *et al.*, 1992, *Gene* 115: 119-125; and Ikeda and Omura, 1997, *Chem. Res.* 97: 2599-2609); Candicidin (FR008) (see, e.g., Hu *et al.*, 1994, *Mol. Microbiol.* 14: 163-172); Carbomycin, Curamycin (see, e.g., Bergh *et al.*, *Biotechnol Appl Biochem.* 1992 Feb;15(1):80-9); Daunorubicin (see, e.g., *J Bacteriol.* 1994 Oct;176(20):6270-80); Epothilone (see, e.g., PCT Pub. No. 99/66028; and PCT Pub. No. 00/031247); Erythromycin (see, e.g., PCT Pub. No. 93/13663; U.S. Pat. No. 6,004,787; U.S. Pat. No. 5,824,513; Donadio *et al.*, 1991, *Science* 252:675-9; and Cortes *et al.*, Nov. 8, 1990, *Nature* 348:176-8); FK-506 (see, e.g., Motamedi *et al.*, 1998; *Eur. J Biochem.* 256: 528-534; and Motamedi *et al.*, 1997, *Eur. J Biochem.* 244: 74-80); FK-520 (see, e.g., PCT Pub. No. 00/020601; and Nielsen *et al.*, 1991, *Biochem.* 30:5789-96); Griseusin (see, e.g., Yu *et al.*, *J Bacteriol.* 1994 May;176(9):2627-34); Lovastatin (see, e.g., U.S. Pat. No. 5,744,350); Frenolycin (see, e.g., Khosla *et al.*, *Bacteriol.* 1993 Apr;175(8):2197-204; and Bibb *et al.*, *Gene* 1994 May 3;142(1):31-9); Granaticin (see, e.g., Sherman *et al.*, *EMBO J.* 1989 Sep;8(9):2717-25; and Bechtold *et al.*, *Mol Gen Genet.* 1995 Sep 20;248(5):610-20); Medermycin (see, e.g., Ichinose *et al.*, *Microbiology* 2003 Jul;149(Pt 7):1633-45); Monensin (see, e.g., Arrowsmith *et al.*, *Mol Gen Genet.* 1992 Aug;234(2):254-64); Nonactin (see, e.g., *FEMS Microbiol Lett.* 2000 Feb 1;183(1):171-5); Nanaomycin (see, e.g., Kitao *et al.*, *J Antibiot* (Tokyo). 1980 Jul;33(7):711-6); Nemadectin (see, e.g., MacNeil *et al.*, 1993, *supra*); Niddamycin (see, e.g., PCT Pub. No. 98/51695; and Kakavas *et al.*, 1997, *J. Bacteriol.* 179: 7515-7522); Oleandomycin (see e.g., Swan *et al.*, 1994, *Mol. Gen. Genet.* 242: 358-362; PCT Pub. No. 00/026349; Olano *et al.*, 1998, *Mol. Gen. Genet.* 259(3): 299-308; and PCT Pat. App. Pub. No. WO 99/05283); Oxytetracycline (see, e.g., Kim *et al.*, *Gene*. 1994 Apr 8;141(1):141-2); Picromycin (see, e.g., PCT Pub. No. 99/61599; PCT Pub. No. 00/00620; Xue *et al.*, 1998, *Chemistry & Biology* 5(11): 661-667; Xue *et al.*, October 1998, *Proc. Natl. Acad. Sci. USA* 95: 12111 12116); Platenolide (see, e.g., EP Pub. No. 791,656; and U.S. Pat. No. 5,945,320); Rapamycin (see, e.g., Schwecke *et al.*, August 1995, *Proc. Natl. Acad. Sci. USA* 92:7839-7843; and Aparicio *et al.*, 1996, *Gene* 169: 9-16); Rifamycin (see, e.g., PCT Pub. No. WO 98/07868; and August *et al.*, Feb. 13, 1998, *Chemistry & Biology*, 5(2): 69-79); Sorangium (see, e.g., U.S. Pat. No. 6,090,601); Soraphen (see, e.g., U.S. Pat. No. 5,716,849; Schupp *et al.*, 1995, *J. Bacteriology* 177: 3673-3679); Spinocyn (see, e.g., PCT Pub. No. 99/46387); Spiramycin (see, e.g., U.S. Pat. No. 5,098,837); Tetracenomycin (see, e.g., Summers *et al.*, *J Bacteriol.* 1992 Mar;174(6):1810-20; and Shen *et al.*, *J Bacteriol.* 1992 Jun;174(11):3818-21); Tetracycline (see, e.g., *J Am Chem Soc.* 2009 Dec 9;131(48):17677-89); Tylosin (see,

e.g., U.S. Pat. No. 5,876,991; U.S. Pat. No. 5,672,497; U.S. Pat. No. 5,149,638; EP Pub. No. 791,655; EP Pub. No. 238,323; Kuhstoss *et al.*, 1996, Gene 183:231-6; and Merson-Davies and Cundliffe, 1994, *Mol. Microbiol.* 13: 349-355); and 6-methylsalicylic acid (see, e.g., Richardson *et al.*, *Metab Eng.* 1999 Apr;1(2):180-7; and Shao *et al.*, *Biochem Biophys Res Commun.* 2006 Jun 23;345(1):133-9).

5.8 Fatty Acids

[00205] In some embodiments, the genetically modified host cell provided herein is capable of producing a fatty acid from acetyl-CoA. Fatty acids are synthesized by a series of decarboxylative Claisen condensation reactions from acetyl-CoA and malonyl-CoA catalyzed by fatty acid synthases. Similar to polyketide synthases, fatty acid synthases are not a single enzyme but an enzymatic system composed of 272 kDa multifunctional polypeptide in which substrates are handed from one functional domain to the next. Two principal classes of fatty acid synthases have been characterized: Type I fatty acid synthases are single, multifunctional polypeptides common to mammals and fungi (although the structural arrangement of fungal and mammalian synthases differ) and the CMN group of bacteria (corynebacteria, mycobacteria, and nocardia). Type II synthases, found in archaeabacteria and eubacteria, are a series of discrete, monofunctional enzymes that participate in the synthesis of fatty acids. The mechanisms fatty acid elongation and reduction is the same in the two classes of synthases, as the enzyme domains responsible for these catalytic events are largely homologous amongst the two classes.

[00206] Following each round of elongation of the fatty acid chain in the decarboxylative Claisen condensation reactions, the β -keto group is reduced to a fully saturated carbon chain by the sequential action of a ketoreductase, a dehydratase, and an enol reductase. The growing fatty acid chain moves between these active sites attached to an acyl carrier protein and is ultimately released by the action of a thioesterase upon reaching a carbon chain length of 16 (palmitidic acid).

[00207] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding a biosynthetic enzyme including, but not limited to, at least one fatty acid synthesis pathway enzyme, and enzymes that can modify an acetyl-CoA compound to form a fatty acid product such as a palmitate, palmitoyl CoA, palmitoleic acid, sapienic acid, oleic acid, linoleic acid, α -linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, and docosahexaenoic acid. In some embodiments, the HACD compound is a fatty acid selected from the group consisting of

palmitate, palmitoyl CoA, palmitoleic acid, sapienic acid, oleic acid, linoleic acid, α -linolenic acid, arachidonic acid, eicosapentaenoic acid, erucic acid, and docosahexaenoic acid.

[00208] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can covalently link at least one of acetyl-CoA and malonyl-CoA with an acyl carrier protein, *e.g.* an acyl-transferase.

[00209] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can condense acetyl chemical moiety and a malonyl chemical moiety, each bound to an acyl carrier protein (ACP), to form acetoacetyl-ACP, *e.g.* a β -Ketoacyl-ACP synthase.

[00210] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can reduce the double bond in acetoacetyl-ACP with NADPH to form a hydroxyl group in D-3-hydroxybutyryl hydroxylase-ACP, *e.g.* a β -Ketoacyl-ACP reductase.

[00211] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can dehydrate D-3-Hydroxybutyryl hydroxylase-ACP to create a double bond between the beta- and gamma-carbons forming crotonyl-ACP, *e.g.* a β -hydroxyacyl-ACP dehydrase.

[00212] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can reduce crotonyl ACP with NADPH to form butyryl-ACP, *e.g.* an enoyl ACP reductase.

[00213] In some embodiments, the genetically modified microorganism disclosed herein comprises a heterologous nucleotide sequence encoding an enzyme that can hydrolyze a C16 acyl compound from an acyl carrier protein to form palmitate, *e.g.* a thioesterase.

[00214] In some embodiments, the fatty acid producing cell comprises one or more heterologous nucleotide sequences encoding acetyl-CoA synthase and/or malonyl-CoA synthase, to effect increased production of one or more fatty acids as compared to a genetically unmodified parent cell.

[00215] For example, to increase acetyl-CoA production, one or more of the following genes can be expressed in the cell: *pdh*, *panK*, *aceEF* (encoding the E1p dehydrogenase component and the E2p dihydrolipoamide acyltransferase component of the pyruvate and 2-oxoglutarate dehydrogenase complexes), *fabH*, *fabD*, *fabG*, *acpP*, and *fabF*. Illustrative examples of nucleotide sequences encoding such enzymes include, but are not limited to: *pdh*

(BAB34380, AAC73227, AAC73226), *panK* (also known as *coaA*, AAC76952), *aceEF* (AAC73227, AAC73226), *fabH* (AAC74175), *fabD* (AAC74176), *fabG* (AAC74177), *acpP* (AAC74178), *fabF* (AAC74179).

[00216] In some embodiments, increased fatty acid levels can be effected in the cell by attenuating or knocking out genes encoding proteins involved in fatty acid degradation. For example, the expression levels of *fadE*, *gpsA*, *idhA*, *pflb*, *adhE*, *pta*, *poxB*, *ackA*, and/or *ackB* can be attenuated or knocked-out in an engineered host cell using techniques known in the art. Illustrative examples of nucleotide sequences encoding such proteins include, but are not limited to: *fadE* (AAC73325), *gspA* (AAC76632), *IdhA* (AAC74462), *pflb* (AAC73989), *adhE* (AAC74323), *pta* (AAC75357), *poxB* (AAC73958), *ackA* (AAC75356), and *ackB* (BAB81430). The resulting host cells will have increased acetyl-CoA production levels when grown in an appropriate environment.

[00217] In some embodiments, the fatty acid producing cell comprises a heterologous nucleotide sequence encoding an enzyme that can convert acetyl-CoA into malonyl-CoA, e.g., the multisubunit AccABCD protein. An illustrative example of a suitable nucleotide sequence encoding AccABCD includes but is not limited to accession number AAC73296, EC 6.4.1.2.

[00218] In some embodiments, the fatty acid producing cell comprises a heterologous nucleotide sequence encoding a lipase. Illustrative examples of suitable nucleotide sequences encoding a lipase include, but are not limited to accession numbers CAA89087 and CAA98876.

[00219] In some embodiments, increased fatty acid levels can be effected in the cell by inhibiting *PlsB*, which can lead to an increase in the levels of long chain acyl-ACP, which will inhibit early steps in the fatty acid biosynthesis pathway (e.g., *accABCD*, *fabH*, and *fabI*). The expression level of *PlsB* can be attenuated or knocked-out in an engineered host cell using techniques known in the art. An illustrative example of a suitable nucleotide sequence encoding *PlsB* includes but is not limited to accession number AAC77011. In particular embodiments, the *plsB* D31 IE mutation can be used to increase the amount of available acetyl-CoA in the cell.

[00220] In some embodiments, increased production of monounsaturated fatty acids can be effected in the cell by overexpressing an *sfa* gene, which would result in suppression of *fabA*. An illustrative example of a suitable nucleotide sequence encoding *sfa* includes but is not limited to accession number AAN79592.

[00221] In some embodiments, increased fatty acid levels can be effected in the cell by modulating the expression of an enzyme which controls the chain length of a fatty acid substrate, e.g., a thioesterase. In some embodiments, the fatty acid producing cell has been modified to overexpress a *tes* or *fat* gene. Illustrative examples of suitable *tes* nucleotide sequences include but are not limited to accession numbers: (*tesA*: AAC73596, from *E. coli*, capable of producing C_{18:1} fatty acids) and (*tesB*: AAC73555 from *E. coli*). Illustrative examples of suitable *fat* nucleotide sequences include but are not limited to: (*fatB*: Q41635 and AAA34215, from *Umbellularia californica*, capable of producing C_{12:0} fatty acids), (*fatB2*: Q39513 and AAC49269, from *Cuphea hookeriana*, capable of producing C_{8:0} – C_{10:0} fatty acids), (*fatB3*: AAC49269 and AAC72881, from *Cuphea hookeriana*, capable of producing C_{14:0} – C_{16:0} fatty acids), (*fatB*: Q39473 and AAC49151, from *Cinnamomum camphorum*, capable of producing C_{14:0} fatty acids), (*fatB [M141T]*: CAA85388, from *mArabidopsis thaliana*, capable of producing C_{16:1} fatty acids), (*fatA*: NP 189147 and NP 193041, from *Arabidopsis thaliana*, capable of producing C_{18:1} fatty acids), (*fatA*: CAC39106, from *Bradyrhizobium japonicum*, capable of preferentially producing C_{18:1} fatty acids), (*fatA*: AAC72883, from *Cuphea hookeriana*, capable of producing C_{18:1} fatty acids), and (*fatA1*, AAL79361 from *Helianthus annus*).

[00222] In some embodiments, increased levels of C₁₀ fatty acids can be effected in the cell by attenuating the expression or activity of thioesterase C₁₈ using techniques known in the art. Illustrative examples of suitable nucleotide sequences encoding thioesterase C₁₈ include, but are not limited to accession numbers AAC73596 and P0ADA1. In other embodiments, increased levels of C₁₀ fatty acids can be effected in the cell by increasing the expression or activity of thioesterase C₁₀ using techniques known in the art. An illustrative example of a suitable nucleotide sequence encoding thioesterase C₁₀ includes, but is not limited to accession number Q39513.

[00223] In some embodiments, increased levels of C₁₄ fatty acids can be effected in the cell by attenuating the expression or activity of endogenous thioesterases that produce non-C₁₄ fatty acids, using techniques known in the art. In other embodiments, increased levels of C₁₄ fatty acids can be effected in the cell by increasing the expression or activity of thioesterases that use the substrate C₁₄-ACP, using techniques known in the art. An illustrative example of a suitable nucleotide sequence encoding such a thioesterase includes, but is not limited to accession number Q39473.

[00224] In some embodiments, increased levels of C₁₂ fatty acids can be effected in the cell by attenuating the expression or activity of endogenous thioesterases that produce non-C₁₂ fatty acids, using techniques known in the art. In other embodiments, increased levels of C₁₂ fatty acids can be effected in the cell by increasing the expression or activity of thioesterases that use the substrate C₁₂-ACP, using techniques known in the art. An illustrative example of a suitable nucleotide sequence encoding such a thioesterase includes, but is not limited to accession number Q41635.

5.9 PK/PTA for the Production of Other Compounds

[00225] In some embodiments, the genetically modified host cell provided herein (e.g., a host cell comprising PK/PTA and a functional disruption of a polypeptide encoding acetyl phosphatase activity, e.g., RHR2, HOR2, or homologues thereof) is engineered for the expression of biosynthetic pathways that initiate with cellular pyruvate to produce, for example, 2,3-butanediol, 2-butanol, 2-butanone, valine, leucine, lactic acid, malate, isoamyl alcohol, and isobutanol, as described in U.S. Patent Application Publication No. 20120156735. The disruption of the enzyme pyruvate decarboxylase (PDC) in recombinant host cells engineered to express a pyruvate-utilizing biosynthetic pathway has been used to increase the availability of pyruvate for product formation via the biosynthetic pathway. While PDC-KO recombinant host cells can be used to produce the products of pyruvate-utilizing biosynthetic pathways, PDC-KO recombinant host cells require exogenous carbon substrate supplementation (e.g., ethanol or acetate) for their growth. In particular, two exogenous carbon substrates are needed: one of which is converted to a desired product, the other fully or partly converted into acetyl-CoA by recombinant host cells requiring such supplementation for growth. However, expression of a heterologous phosphoketolase pathway reduces or eliminates the need for providing these exogenous carbon substrates for their growth compared to PDC-KO cells not heterologously PK/PTA. Thus, the additional functional disruption of RHR2, HOR2, or homologues thereof capable of catalyzing the hydrolysis of acetyl phosphate to acetate, is expected to further improve the ability of PK/PTA to increase the supply of acetyl-CoA available as a substrate for cellular growth in these cells.

5.10 Methods of Making Genetically Modified Cells

[00226] Also provided herein are methods for producing a host cell that is genetically engineered to comprise one or more of the modifications described above, e.g., one or more nucleic heterologous nucleic acids encoding PK, PTA, and/or biosynthetic pathway enzymes,

e.g., for an acetyl-CoA derived compound. Expression of a heterologous enzyme in a host cell can be accomplished by introducing into the host cells a nucleic acid comprising a nucleotide sequence encoding the enzyme under the control of regulatory elements that permit expression in the host cell. In some embodiments, the nucleic acid is an extrachromosomal plasmid. In other embodiments, the nucleic acid is a chromosomal integration vector that can integrate the nucleotide sequence into the chromosome of the host cell.

[00227] Nucleic acids encoding these proteins can be introduced into the host cell by any method known to one of skill in the art without limitation (see, for example, Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75:1292-3; Cregg *et al.* (1985) *Mol. Cell. Biol.* 5:3376-3385; Goeddel *et al.* eds, 1990, *Methods in Enzymology*, vol. 185, Academic Press, Inc. , CA; Krieger, 1990, *Gene Transfer and Expression -- A Laboratory Manual*, Stockton Press, NY; Sambrook *et al.* , 1989, *Molecular Cloning -- A Laboratory Manual*, Cold Spring Harbor Laboratory, NY; and Ausubel *et al.* , eds. , Current Edition, *Current Protocols in Molecular Biology*, Greene Publishing Associates and Wiley Interscience, NY). Exemplary techniques include, but are not limited to, spheroplasting, electroporation, PEG 1000 mediated transformation, and lithium acetate or lithium chloride mediated transformation.

[00228] The copy number of an enzyme in a host cell may be altered by modifying the transcription of the gene that encodes the enzyme. This can be achieved for example by modifying the copy number of the nucleotide sequence encoding the enzyme (e.g., by using a higher or lower copy number expression vector comprising the nucleotide sequence, or by introducing additional copies of the nucleotide sequence into the genome of the host cell or by deleting or disrupting the nucleotide sequence in the genome of the host cell), by changing the order of coding sequences on a polycistronic mRNA of an operon or breaking up an operon into individual genes each with its own control elements, or by increasing the strength of the promoter or operator to which the nucleotide sequence is operably linked.

Alternatively or in addition, the copy number of an enzyme in a host cell may be altered by modifying the level of translation of an mRNA that encodes the enzyme. This can be achieved for example by modifying the stability of the mRNA, modifying the sequence of the ribosome binding site, modifying the distance or sequence between the ribosome binding site and the start codon of the enzyme coding sequence, modifying the entire intercistronic region located “upstream of” or adjacent to the 5’ side of the start codon of the enzyme coding region, stabilizing the 3’-end of the mRNA transcript using hairpins and specialized

sequences, modifying the codon usage of enzyme, altering expression of rare codon tRNAs used in the biosynthesis of the enzyme, and/or increasing the stability of the enzyme, as, for example, via mutation of its coding sequence.

[00229] The activity of an enzyme in a host cell can be altered in a number of ways, including, but not limited to, expressing a modified form of the enzyme that exhibits increased or decreased solubility in the host cell, expressing an altered form of the enzyme that lacks a domain through which the activity of the enzyme is inhibited, expressing a modified form of the enzyme that has a higher or lower K_{cat} or a lower or higher K_m for the substrate, or expressing an altered form of the enzyme that is more or less affected by feed-back or feed-forward regulation by another molecule in the pathway.

[00230] In some embodiments, a nucleic acid used to genetically modify a host cell comprises one or more selectable markers useful for the selection of transformed host cells and for placing selective pressure on the host cell to maintain the foreign DNA.

[00231] In some embodiments, the selectable marker is an antibiotic resistance marker. Illustrative examples of antibiotic resistance markers include, but are not limited to, the *BLA*, *NAT1*, *PAT*, *AUR1-C*, *PDR4*, *SMR1*, *CAT*, mouse dhfr, *HPH*, *DSDA*, *KAN^R*, and *SH BLE* gene products. The *BLA* gene product from *E. coli* confers resistance to beta-lactam antibiotics (e.g., narrow-spectrum cephalosporins, cephemycins, and carbapenems (ertapenem), cefamandole, and cefoperazone) and to all the anti-gram-negative-bacterium penicillins except temocillin; the *NAT1* gene product from *S. noursei* confers resistance to nourseothricin; the *PAT* gene product from *S. viridochromogenes* Tu94 confers resistance to bialophos; the *AUR1-C* gene product from *Saccharomyces cerevisiae* confers resistance to Auerobasidin A (AbA); the *PDR4* gene product confers resistance to cerulenin; the *SMR1* gene product confers resistance to sulfometuron methyl; the *CAT* gene product from Tn9 transposon confers resistance to chloramphenicol; the mouse dhfr gene product confers resistance to methotrexate; the *HPH* gene product of *Klebsiella pneumonia* confers resistance to Hygromycin B; the *DSDA* gene product of *E. coli* allows cells to grow on plates with D-serine as the sole nitrogen source; the *KAN^R* gene of the Tn903 transposon confers resistance to G418; and the *SH BLE* gene product from *Streptoalloteichus hindustanus* confers resistance to Zeocin (bleomycin). In some embodiments, the antibiotic resistance marker is deleted after the genetically modified host cell disclosed herein is isolated.

[00232] In some embodiments, the selectable marker rescues an auxotrophy (e.g., a nutritional auxotrophy) in the genetically modified microorganism. In such embodiments, a

parent microorganism comprises a functional disruption in one or more gene products that function in an amino acid or nucleotide biosynthetic pathway and that when non-functional renders a parent cell incapable of growing in media without supplementation with one or more nutrients. Such gene products include, but are not limited to, the *HIS3*, *LEU2*, *LYS1*, *LYS2*, *MET15*, *TRP1*, *ADE2*, and *URA3* gene products in yeast. The auxotrophic phenotype can then be rescued by transforming the parent cell with an expression vector or chromosomal integration construct encoding a functional copy of the disrupted gene product, and the genetically modified host cell generated can be selected for based on the loss of the auxotrophic phenotype of the parent cell. Utilization of the *URA3*, *TRP1*, and *LYS2* genes as selectable markers has a marked advantage because both positive and negative selections are possible. Positive selection is carried out by auxotrophic complementation of the *URA3*, *TRP1*, and *LYS2* mutations, whereas negative selection is based on specific inhibitors, *i.e.*, 5-fluoro-orotic acid (FOA), 5-fluoroanthranilic acid, and amino adipic acid (aAA), respectively, that prevent growth of the prototrophic strains but allows growth of the *URA3*, *TRP1*, and *LYS2* mutants, respectively. In other embodiments, the selectable marker rescues other non-lethal deficiencies or phenotypes that can be identified by a known selection method.

[00233] Described herein are specific genes and proteins useful in the methods, compositions and organisms of the disclosure; however it will be recognized that absolute identity to such genes is not necessary. For example, changes in a particular gene or polynucleotide comprising a sequence encoding a polypeptide or enzyme can be performed and screened for activity. Typically such changes comprise conservative mutations and silent mutations. Such modified or mutated polynucleotides and polypeptides can be screened for expression of a functional enzyme using methods known in the art.

[00234] Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or functionally equivalent polypeptides can also be used to clone and express the polynucleotides encoding such enzymes.

[00235] As will be understood by those of skill in the art, it can be advantageous to modify a coding sequence to enhance its expression in a particular host. The genetic code is redundant with 64 possible codons, but most organisms typically use a subset of these codons. The codons that are utilized most often in a species are called optimal codons, and those not utilized very often are classified as rare or low-usage codons. Codons can be substituted to reflect the preferred codon usage of the host, in a process sometimes called “codon optimization” or “controlling for species codon bias.”

[00236] Optimized coding sequences containing codons preferred by a particular prokaryotic or eukaryotic host (Murray *et al.*, 1989, *Nucl Acids Res.* 17: 477-508) can be prepared, for example, to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced from a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, typical stop codons for *S. cerevisiae* and mammals are UAA and UGA, respectively. The typical stop codon for monocotyledonous plants is UGA, whereas insects and *E. coli* commonly use UAA as the stop codon (Dalphin *et al.*, 1996, *Nucl Acids Res.* 24: 216-8).

[00237] Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA molecules differing in their nucleotide sequences can be used to encode a given enzyme of the disclosure. The native DNA sequence encoding the biosynthetic enzymes described above are referenced herein merely to illustrate an embodiment of the disclosure, and the disclosure includes DNA molecules of any sequence that encode the amino acid sequences of the polypeptides and proteins of the enzymes utilized in the methods of the disclosure. In similar fashion, a polypeptide can typically tolerate one or more amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The disclosure includes such polypeptides with different amino acid sequences than the specific proteins described herein so long as the modified or variant polypeptides have the enzymatic anabolic or catabolic activity of the reference polypeptide. Furthermore, the amino acid sequences encoded by the DNA sequences shown herein merely illustrate embodiments of the disclosure.

[00238] In addition, homologs of enzymes useful for the compositions and methods provided herein are encompassed by the disclosure. In some embodiments, two proteins (or a region of the proteins) are substantially homologous when the amino acid sequences have at least about 30%, 40%, 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity. To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (*e.g.*, gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In one embodiment, the length of a reference sequence aligned for comparison purposes is at least 30%, typically at least 40%, more typically at least 50%, even more typically at least 60%, and even more typically at least

70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[00239] When “homologous” is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions. A “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein. In cases where two or more amino acid sequences differ from each other by conservative substitutions, the percent sequence identity or degree of homology may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art (See, e.g., Pearson W. R., 1994, *Methods in Mol Biol* 25: 365-89).

[00240] The following six groups each contain amino acids that are conservative substitutions for one another: 1) Serine (S), Threonine (T); 2) Aspartic Acid (D), Glutamic Acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Alanine (A), Valine (V), and 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W).

[00241] Sequence homology for polypeptides, which is also referred to as percent sequence identity, is typically measured using sequence analysis software. A typical algorithm used comparing a molecule sequence to a database containing a large number of sequences from different organisms is the computer program BLAST. When searching a database containing sequences from a large number of different organisms, it is typical to compare amino acid sequences.

[00242] Furthermore, any of the genes encoding the foregoing enzymes (or any others mentioned herein (or any of the regulatory elements that control or modulate expression

thereof)) may be optimized by genetic/protein engineering techniques, such as directed evolution or rational mutagenesis, which are known to those of ordinary skill in the art. Such action allows those of ordinary skill in the art to optimize the enzymes for expression and activity in yeast.

[00243] In addition, genes encoding these enzymes can be identified from other fungal and bacterial species and can be expressed for the modulation of this pathway. A variety of organisms could serve as sources for these enzymes, including, but not limited to, *Saccharomyces spp.*, including *S. cerevisiae* and *S. uvarum*, *Kluyveromyces spp.*, including *K. thermotolerans*, *K. lactis*, and *K. marxianus*, *Pichia spp.*, *Hansenula spp.*, including *H. polymorpha*, *Candida spp.*, *Trichosporon spp.*, *Yamadazyma spp.*, including *Y. spp. stipitis*, *Torulaspora pretoriensis*, *Issatchenka orientalis*, *Schizosaccharomyces spp.*, including *S. pombe*, *Cryptococcus spp.*, *Aspergillus spp.*, *Neurospora spp.*, or *Ustilago spp.* Sources of genes from anaerobic fungi include, but are not limited to, *Piromyces spp.*, *Orpinomyces spp.*, or *Neocallimastix spp.* Sources of prokaryotic enzymes that are useful include, but are not limited to, *Escherichia. coli*, *Zymomonas mobilis*, *Staphylococcus aureus*, *Bacillus spp.*, *Clostridium spp.*, *Corynebacterium spp.*, *Pseudomonas spp.*, *Lactococcus spp.*, *Enterobacter spp.*, and *Salmonella spp.*

[00244] Techniques known to those skilled in the art may be suitable to identify additional homologous genes and homologous enzymes. Generally, analogous genes and/or analogous enzymes can be identified by functional analysis and will have functional similarities. Techniques known to those skilled in the art may be suitable to identify analogous genes and analogous enzymes. For example, to identify homologous or analogous PK, PTA, RHR2 or HOR2 genes, proteins, or enzymes, techniques may include, but are not limited to, cloning a gene by PCR using primers based on a published sequence of a gene/enzyme of interest, or by degenerate PCR using degenerate primers designed to amplify a conserved region among a gene of interest. Further, one skilled in the art can use techniques to identify homologous or analogous genes, proteins, or enzymes with functional homology or similarity. Techniques include examining a cell or cell culture for the catalytic activity of an enzyme through *in vitro* enzyme assays for said activity (e.g. as described herein or in Kiritani, K., *Branched-Chain Amino Acids Methods Enzymology*, 1970), then isolating the enzyme with said activity through purification, determining the protein sequence of the enzyme through techniques such as Edman degradation, design of PCR primers to the likely nucleic acid sequence, amplification of said DNA sequence through PCR, and cloning

of said nucleic acid sequence. To identify homologous or similar genes and/or homologous or similar enzymes, analogous genes and/or analogous enzymes or proteins, techniques also include comparison of data concerning a candidate gene or enzyme with databases such as BRENDA, KEGG, or MetaCYC. The candidate gene or enzyme may be identified within the above mentioned databases in accordance with the teachings herein.

6. EXAMPLES

6.1 Example 1: Acetate Production in Host Cells Expressing PK and PTA

[00245] This example describes the production of acetate in yeast strains heterologously expressing phosphoketolase and phosphotransacetylase.

6.1.1 Materials and Methods

6.1.1.1 Strain Engineering

6.1.1.1.1 Y967 and Y968

[00246] Y967 and Y968 are wildtype prototrophic *Saccharomyces cerevisiae* CEN.PK2, Y967 is MatA, and Y968 is Matalpha. The starting strain for Y12869, Y12746, and all of their derivatives, was *Saccharomyces cerevisiae* strain Y003 (CEN.PK2, Mat alpha, ura3-52, trp1-289, leu2-3,122, his3¹). All DNA-mediated transformation into *S. cerevisiae* was conducted using the standard lithium acetate procedure as described by Gietz RW and Woods RA, *Guide to Yeast Genetics and Molecular and Cell Biology. Part B*. San Diego, CA: Academic Press Inc. pp. 87–96 (2002), and in all cases integration of the constructs were confirmed by PCR amplification of genomic DNA.

6.1.1.1.2 Y12869

[00247] Y12869 was generated through three successive integrations into Y003. First, the gene *ACS2* was deleted by introducing an integration construct (i2235; SEQ ID NO:27) consisting of the native *S. cerevisiae* *LEU2* gene, flanked by sequences consisting of upstream and downstream nucleotide sequences of the *ACS2* locus. Upon introduction of a *S. cerevisiae* host cell, this construct can integrate by homologous recombination into the *ACS2* locus of the genome, functionally disrupting *ACS2* by replacing the *ACS2* coding sequence with its integrating sequence. Transformants were plated onto CSM –leu plates containing 2% EtOH as the sole carbon source, and were confirmed by PCR amplification. The resulting strain was Y4940.

[00248] Next, ALD6 was deleted and *Dickeya zeae* *eutE* was introduced in Y4940 with the integration construct (i74804; SEQ ID NO:28) pictured below.

ALD6US	pTDH3	O ₂ eutE	tTEF2	TRP1	TDH3	TDH3	O ₂ eutE	CHQ16	ALD6DS
--------	-------	---------------------	-------	------	------	------	---------------------	-------	--------

[00249] This integration construct comprises a selectable marker (TRP1), as well as two copies a yeast-codon-optimized sequence encoding the gene *eutE* from *Dickeya zeae* (NCBI Reference Sequence: YP_003003316.1) under control of the *TDH3* promoter (840 basepairs upstream of the native *S. cerevisiae* *TDH3* coding region), and the *TEF2* terminator (508 basepairs downstream of the native *S. cerevisiae* *TEF2* coding region). These components are flanked by upstream and downstream nucleotide sequences of the *ALD6* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *ALD6* by replacing the *ALD6* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. The construct was transformed into Y4940, and transformants were selected on CSM-TRP plates with 2% glucose and confirmed by PCR amplification. The resulting strain was y12602.

[00250] Next, ACS1 was deleted in Y12602 by introducing an integration construct (i76220; SEQ ID NO:29) consisting of the upstream and downstream nucleotide sequences of *ACS1*, flanking the native *S. cerevisiae* *HIS3* gene under its own promoter and terminator. Transformants were plated onto CSM –his plates containing 2% glucose as the sole carbon source, and were confirmed by PCR amplification. The resulting strain was Y12747.

[00251] Next, Y12747 was transformed with a PCR product amplified from the native *URA3* sequence. This sequence restores the *ura3-52* mutation. *See* Rose and Winston, *Mol Gen Genet* 193:557-560 (1984). Transformants were plated onto CSM-ura plates containing 2% glucose as the sole carbon source, and were confirmed by PCR amplification. The resulting strain was Y12869.

6.1.1.1.3 Y12745

[00252] Y12745 was generated through three successive integrations into Y4940. First, Y4940 was transformed with the integration construct (i73830; SEQ ID NO:30) pictured below.

SUD9US	pTDH3	lm.PK	tTDH3	URA3	tPKX1	tPKX1	CHQ16	TDH3	SUD9DS
--------	-------	-------	-------	------	-------	-------	-------	------	--------

[00253] This integration construct comprises a selectable marker (URA3); a yeast codon-optimized version of phosphoketolase from *Leuconostoc mesenteroides* (NCBI Reference Sequence YP_819405.1) under the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and *TDH3* terminator (259 bp downstream of the *TDH3* coding sequence);

a yeast codon-optimized version of *Clostridium kluyveri* phosphotransacetylase (NCBI Reference Sequence: YP_001394780.1) under control of the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and the *PGK1* terminator (259 bp downstream of the *PGK1* coding sequence); flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of the *S. cerevisiae* *BUD9* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *BUD9* by replacing the *BUD9* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose. The resulting strain was transformed with the construct (i74810; SEQ ID NO:31) shown below.

ALD6SUS	pTDH3	Lm.PK	tTDH3	TRP1	ENOL3	Xgal	ENOL4	ALD6DS
---------	-------	-------	-------	------	-------	------	-------	--------

[00254] This construct comprising a selectable marker (*TRP1*); two copies of phosphoketolase from *Leuconostoc mesenteroides* under the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and *TDH3* terminator (259 bp downstream of the *TDH3* coding sequence); flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of the *ALD6* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *ALD6* by replacing the *ALD6* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose and confirmed by PCR amplification.

[00255] Next, ACS1 was deleted in by introducing an integration construct (i76220; SEQ ID NO:29) consisting of the upstream and downstream nucleotide sequences of *ACS1*, flanking the native *S. cerevisiae* *HIS3* gene under its own promoter and terminator. Transformants were plated onto CSM –his plates containing 2% glucose as the sole carbon source, and were confirmed by PCR amplification.

6.1.1.1.4 Y12746

[00256] Y12746 was generated through three successive integrations into Y4940. First, Y4940 was transformed with the integration construct (i73830; SEQ ID NO:30) pictured below.

BUD6SUS	pTDH3	Lm.PK	tTDH3	URA3	PGK1	ACS1	CLP1A	PTD63	BUD6DS
---------	-------	-------	-------	------	------	------	-------	-------	--------

[00257] This integration construct comprises a selectable marker (URA3); a yeast codon-optimized version of phosphoketolase from *Leuconostoc mesenteroides* (NCBI Reference Sequence YP_819405.1) under the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and *TDH3* terminator (259 bp downstream of the *TDH3* coding sequence); a yeast codon-optimized version of *Clostridium kluyveri* phosphotransacetylase (NCBI Reference Sequence: YP_001394780.1) under control of the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and the *PGK1* terminator (259 bp downstream of the *PGK1* coding sequence); flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of the *S. cerevisiae* *BUD9* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *BUD9* by replacing the *BUD9* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose.

[00258] The resulting strain was transformed with the construct (i74810; SEQ ID NO:31) shown below.

ALD6US	pTDH3	Lm.PK	tTDH3	TRP1	ENGL3	XbaI	ENGL4	ALD6DS
--------	-------	-------	-------	------	-------	------	-------	--------

[00259] This construct comprising a selectable marker (*TRP1*); two copies of phosphoketolase from *Leuconostoc mesenteroides* under the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and *TDH3* terminator (259 bp downstream of the *TDH3* coding sequence); flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of the *ALD6* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *ALD6* by replacing the *ALD6* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose and confirmed by PCR amplification.

[00260] Finally, the resulting strain was transformed with the construct (i76221; SEQ ID NO:32) shown below.

ACS1US	pTDH3	Dz.eutE	tTEF2	HIS3	Zd113	310870	ENGL4	ACS1DS
--------	-------	---------	-------	------	-------	--------	-------	--------

[00261] This construct comprises a selectable marker (*HIS3*); as well as two copies a yeast-codon-optimized sequence encoding the gene *eutE* from *Dickeya Zeae* (NCBI Reference Sequence: YP_003003316.1) under control of the *TDH3* promoter (840 basepairs

upstream of the native *S. cerevisiae TDH3* coding region) and the *TEF2* terminator (508 basepairs downstream of the native *S. cerevisiae TEF2* coding region). These components are flanked by upstream and downstream nucleotide sequences of the *ACSI* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *ACSI* by replacing the *ACSI* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-HIS plates with 2% glucose and confirmed by PCR amplification. The resulting strain was Y12746.

6.1.1.1.5 Y19390

[00262] Y19390 is a direct descendant of Y12869. A ura- auxotrophic derivative of Y12869 was transformed with the integration construct MS49253 (SEQ ID NO:36) shown below:

BUD9US	pTDH3	Lm.PK	tTDH3	URA3	CHD1	PK	Lm.PK	CHD1	BUD9DS
--------	-------	-------	-------	------	------	----	-------	------	--------

[00263] This integration construct comprises a selectable marker (URA3); two copies of a yeast codon-optimized version of phosphoketolase from *Leuconostoc mesenteroides* (NCBI Reference Sequence YP_819405.1) under the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and *TDH3* terminator (259 bp downstream of the *TDH3* coding sequence); flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of the *S. cerevisiae BUD9* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *BUD9* by replacing the *BUD9* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982.

Transformants were selected on CSM-URA plates with 2% glucose.

6.1.1.1.6 Y19391

[00264] Y19391 is a direct descendant of Y12869. A ura- auxotrophic derivative of Y12869 was transformed with the integration construct MS49298 (SEQ ID NO:37) shown below:

BUD9US	pTDH3	Ck.PTA	tPGK1	URA3	tPGK1	Ck.PTA	Ck.PTA	PTDH3	BUD9DS
--------	-------	--------	-------	------	-------	--------	--------	-------	--------

[00265] This integration construct comprises a selectable marker (URA3); two copies of a yeast codon-optimized version of phosphotransacetylase from *Clostridium kluyveri* (NCBI Reference Sequence: YP_001394780.1) under control of the *TDH3* promoter (870 bp upstream of the *TDH3* coding sequence) and the *PGK1* terminator (259 bp downstream of the

PGK1 coding sequence); flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of the *S. cerevisiae* *BUD9* locus. Upon introduction into a host cell, this construct integrates by homologous recombination into the host cell genome, functionally disrupting *BUD9* by replacing the *BUD9* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose.

6.1.1.2 Culture conditions

[00266] Inoculum cultures of Y967, Y12869, Y12745, Y12746, Y19390 and Y19391 were grown from single colonies overnight in 5 ml of seed media at 30C and 200rpm (15 g/L ammonium sulfate, 8 g/L potassium phosphate, 6.1 g/L magnesium sulfate, 150 mg/L EDTA, 57.5 mg/L zinc sulfate, 4.8 mg/L cobalt chloride, 3.24 mg/L manganese chloride, 5 mg/L copper sulfate, 29.4 mg/L calcium chloride, 27.8 mg/L iron sulfate, 4.8 mg/L sodium molybdate, 0.6 mg/L biotin, 12 mg/L calcium pantothenate, 12 mg/L nicotinic acid, 30 mg/L inositol, 12 mg/L thiamin hydrochloride, 12 mg/L pyridoxine hydrochloride, 0.24 mg/L para-aminobenzoic acid) with 50 mM succinate pH 5.0, and 20 g/L sucrose. The precultures were then inoculated into a 125 ml flask carrying 25 ml of seed media with 50 mM succinate pH 5.0, and 40 g/L sucrose to an initial OD600 of 0.1, and grown at 30C and 200rpm.

6.1.1.3 Quantitation of acetate, fructose, glucose, and sucrose

[00267] Acetate and sugars (fructose, glucose, sucrose) were quantitated by transferring 1 ml of whole cell broth to a 1.5 ml eppendorf tubes, and spinning at 13,000 RPM for 1 minute using a tabletop centrifuge to clarify the supernatant. The supernatant was then diluted (1:1 v/v) in 8mM sulfuric acid, vortexed, and re-centrifuged before transferring to a 1.8ml vial. Samples were analyzed with an Agilent 1200 HPLC, with variable wavelength and refractive index detection, using a BioRad Aminex HPX-87H 300mm x 7.8mm column. The mobile phase was 4mM sulfuric acid, column temperature was 40C, and the flow rate was 0.5 ml/min.

6.1.1.4 Results

[00268] **FIG. 3B** shows that wildtype Cen.PK2, Y967, produces acetate during growth in batch defined sucrose shakeflask cultures. Y12869, comprising a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*) and heterologously expressing acetaldehyde dehydrogenase acylating (Dz.eutE), produces far less acetate than the wildtype control which uses the PDH-bypass, likely due to the deletion of ALD6, the cytosolic acetaldehyde dehydrogenase that converts acetaldehyde to acetate. In the strain Y12746, comprising a deletion of the PDH-

bypass (*acs1Δ acs2 Δ ald6Δ*) and heterologously expressing acetaldehyde dehydrogenase acylating (*Dz.eutE*) as well as phosphoketolase (*Lm.PK*) and phosphotransacetylase (*Ck.PTA*), a large increase in acetate is observed, surpassing the amount produced by wildtype Y967. The results with Y12869 indicate that the baseline level of acetate is extremely low in a strain that is *acs1Δ acs2 Δ ald6Δ* and uses ADA to carry flux to cytosolic acetyl-CoA. In all cases, the rate of sugar consumption is comparable (sugars here are defined as the sum of sucrose, glucose, and fructose in the media), illustrating that the differences in acetate levels are not due to differential consumption of feedstock (**FIG. 3A**). These results suggest that the increase in acetate in Y12746 is attributable to the presence of phosphoketolase and/or phosphotransacetylase. The catalytic activity of both phosphoketolase and phosphotransacetylase produces acetyl phosphate. Therefore, acetate accumulation may arise from spontaneous or catalyzed hydrolysis of acetyl phosphate in Y12746.

[00269] To determine the source of acetate in the strain expressing ADA, PK and PTA (Y12746), we transformed a strain which uses only ADA to provide cytosolic AcCoA (Y12869, comprising a deletion of the PDH-bypass (*acs1Δ acs2 Δ ald6Δ*) and heterologously expressing acetaldehyde dehydrogenase acylating (*Dz.eutE*)) with either (1) an integration construct encoding two overexpressed copies of PK driven by the strong promoter P_{TDH3} , resulting in Y19390, or (2) an integration construct encoding two overexpressed copies of PTA driven by the strong promoter P_{TDH3} , resulting in Y19391. As shown in **FIG. 3D**, we observed an increase in acetate accumulation in strains that expressed either PK or PTA relative to the parent strain. Sugar consumption is shown in **FIG. 3C** to illustrate that acetate levels are not due to differential sugar consumption. PK converts X5P to Acetyl phosphate and G3P, whereas PTA can interconvert Acetyl CoA + Pi to Acetyl Phosphate + CoA. These observations suggest that acetyl phosphate, whether derived from X5P by PK, or derived from AcCoA by PTA, can be hydrolyzed to acetate as shown in **FIG. 1**.

6.2 Example 2: Identification of a Major Acetyl Phosphatase in *Saccharomyces cerevisiae*

[00270] This example describes the identification of an enzyme capable of hydrolyzing acetyl phosphate in yeast.

6.2.1 Materials and Methods

6.2.1.1 Cell Culture

[00271] A single colony of a given yeast strain was cultured in 5 mL Yeast Extract Peptone media with 2% dextrose (YPD) as an overnight starter culture. The following day, 50 ml YPD was inoculated with this starter culture to an OD600 of 0.2. The flasks were incubated at 30 °C by shaking at 200 RPM for 24 hours unless otherwise specified.

6.2.1.2 Cell-Free Extract Preparation

[00272] Cell culture was divided into three 15 mL falcon tubes and harvested by centrifugation at 4000 x g for 5 minutes. The supernatant was then discarded and cells were washed by resuspending in 10 mL ice cold buffer W (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 10% glycerol) followed by centrifugation at 4000 x g for 5 minutes. Supernatant was discarded and cells were resuspended in 1 mL lysis buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 10% glycerol, 1 mM DTT, 1 EDTA free protease inhibitor tablet (Roche) per 10mL). The cells were then transferred to a 2 mL plastic screw cap microfuge tube with O ring cap (Fisher Brand 520-GRD) and cells were lysed using disruption beads (Disruption beads, 0.5Mm, Fisher) and a bead beater for 1 minute at 6 M/S. The tubes were immediately placed in an ice water bath for at least 5 minutes. The tubes were then placed back in the bead beater again for 1 minute at 6 M/S and returned to the ice bath for 5 minutes. Tubes were spun at a minimum of 16000 x g for 20 minutes to pellet cell debris. The supernatant was then transferred to a new cold tube. Protein concentration was measured using the classic Bradford assay for proteins (Bradford MM A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72, 248-254 (1976)).

6.2.1.3 Acetyl phosphatase reaction and quantitation of acetyl phosphate

[00273] Acetyl phosphatase activity assays were carried out at 30 °C in reaction buffer consisting of 100 mM Tris-HCl pH 7.5, 150 mM NaCl, and 1 mM MgCl²⁺. Acetyl phosphate was added to a starting concentration of either 5 mM or 10 mM as indicated. The reaction was initiated by the addition of cell free extract in the amounts indicated. To test for phosphatase inhibition, sodium fluoride was added to select wells at 30 mM concentration. The reactions were carried out in a sealed 96 well plate and total reaction volume of 250 µl. Acetylphosphate concentration was measured by the method developed by Lipmann and Tuttle (Lipmann F, Tuttle LC, *J. Biol. Chem.* 159, 21-28 (1945)). 50 µl reaction mixture was added to 50 µl 2M hydroxylamine pH 6.8, mixed well and incubated at room temperature for at least 10 minutes. 34 µl 15% trichloroacetic acid was then added and mixed followed by 34

μ l 4N HCl and 34 μ l 5% FeCl₃ mixing well after each addition. Plates were then centrifuged in a Beckman centrifuge J-E with swinging bucket rotor JS-5.3 for 5 minutes at 3000 rpm to pellet precipitated protein. 150 μ l supernatant was then transferred to a fresh 96-well clear flat bottom plate (Greiner Bio-One Cat.-No.: 655161). Plate was read by a Molecular Devices SpectraMax M5 plate reader at a wavelength of 505 nm.

6.2.1.4 Purification of Active Phosphatase Fraction

[00274] A single colony of a given yeast strain was cultured in 5 mL Yeast Extract Peptone media with 2% dextrose (YPD) as an overnight starter culture. The following day, two 2.8L Fermbach flasks with 500 ml YPD were inoculated with this starter culture to an OD600 of 0.2. The flasks were incubated at 30 °C by shaking at 160 RPM for 24 hours. The culture was harvested by centrifugation at 4000x g for 5 minutes. The cell pellet was washed with 500mL sterile water and centrifuged at 4000x g for 5 minutes. The cell pellet was then resuspended in 50 mL ice cold lysis buffer (100 mM Tris-HCl pH 8.0, 150 mM NaCl, 10% glycerol, 1 mM DTT, 1 EDTA free protease inhibitor tablet (Roche) per 10mL). Cell suspension was split into six 15 mL falcon tubes filled with 5 mL disruption beads (Disruption beads, 0.5Mm, Fisher). Tubes were then placed in a bead beater for 45 seconds at 6 M/S. The tubes were immediately placed in an ice water bath for at least 5 minutes. Bead beating was repeated 3 additional times with at least 5 minutes in an ice water bath in between each disruption segment. Tubes were spun for 30 minutes at 16,000 rpm (30,966 x g) in a Beckman centrifuge J-E in a JA-20 rotor chilled to 4 °C to pellet cell debris. Cell lysate was additionally clarified by the selective flocculation method described by Salt *et al.* (Selective flocculation of cellular contaminants from soluble proteins using polyethyleneimine: A study of several organisms and polymer molecular weights. *Enzyme and Microbial Technology* 17, 107-113(1995)) as follows: cell free lysate was adjusted to pH 7.4 by addition of 5mM NaOH stock solution. Then equal volume of PEI/Borax solution (0.5M NaCl 0.25% PEI, 100mM Borax) was added to the cell lysate and mixed well. Mixture was then centrifuged for 30 minutes at 2,500 x g at 4 °C. Protein was then precipitated by slowly adding ammonium sulfate with constant stirring until 80% of saturation concentration was reached. Stirring continued for 10 more minutes, and then precipitated protein was harvested by centrifugation at 15,000 rpm at 4 °C in a Beckman JA-20 rotor for 10 minutes. Supernatant was removed and protein was gently resuspended in Buffer A (20 mM Tris-Cl, pH 7, 10% glycerol). Protein was then added to a 0.5-3mL 3,500 Da molecular weight cut off dialysis cassette (Pierce #66300) and dialyzed overnight at 4 °C

in 1.5L buffer A. Dialyzed sample was centrifuged 16000 x g for 10 minutes to pellet precipitated protein. Protein concentration was measured using the classic Bradford assay for proteins (Bradford MM, A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem* 72, 248-254 (1976)). 20 mg protein was loaded onto a Source 15Q 4.6/100 PE anion exchange column on a GE ÄKTAexplorer FPLC. Protein was eluted with a 0-100% gradient of buffer B (20 mM Tris-Cl pH 7, 1M NaCl, 10% glycerol) over 30 column volumes at a flow rate of 0.5 mL/minute and 1 mL samples were collected. To assay activity of each fraction, 75 μ L each fraction was added to 8 mM ACP in a 250 μ L reaction containing 100mM Tris-Cl pH 7, 150 mM NaCl, 1 mM MgCl₂ and assayed as described above. The active fraction from this separation was again dialyzed against buffer A overnight. The entire sample was then loaded onto the same a Source 15Q 4.6/100 PE anion exchange column and eluted with a gradient of 0-45% buffer B over 30 column volumes at a flow rate of 0.5 mL/minute and 1 mL samples were collected. Samples were assayed for activity as above.

6.2.1.5 Protein Gel Electrophoresis

[00275] Protein fractions were analyzed using a Criterion gel electrophoresis system. 10 μ L of fraction was added to 10 μ L of 2X Laemmli sample buffer (BioRad Cat # 161-0737) with 5% v/v 2-mercaptoethanol and boiled for 10 minutes. Samples were then briefly centrifuged and 15 μ L was loaded on a 26 well 4–15% CriterionTM TGXTTM Precast Gel and run in 1X Tris-Glycine-SDS buffer (prepared from BioRad 10x Tris/Glycine/SDS #161-0732) for 50 minutes at 130 volts. The gel was rinsed in 200 mL deionized water three times for 5 minutes each. SimplyBlueTM SafeStain (Life Technologies Cat # LC6060) was then added to the gel to completely cover the gel and then incubated at room temperature for 1 hour with gentle rocking. The SafeStain was then discarded and the gel was washed with 200 mL deionized water for 1 hour with rocking.

6.2.1.6 Identification of Proteins in Active Phosphatase Fraction

Proteolytic digestion and separation of peptides

[00277] 100 μ g of total protein was subjected to proteolysis by trypsin for subsequent identification by LC-MS/MS. 100 μ g total protein was reduced with Tris-carboxyethylphosphine (4 mM) for 30 minutes at 37 °C, then alkylated with Iodoacetamide (15 mM) for 30 minutes at RT in the dark. 5 μ g Trypsin was added to the digest mixture and the entire digestion was allowed to go for 12 hours at 37 °C. The reaction was quenched with 0.1% formic acid and injected onto an Ascentis Peptide express column (5cmx2.1mm ID, 2.1

um particle size), and separated over a 90 minute gradient from low acetonitrile to high acetonitrile, with 0.1% formic acid as a modifier. The LC pumps were two Shimadzu LC20AD's operated by a Shimadzu CBM20A LC Controller.

[00278] Mass Spectrometry Parameters:

[00279] A QTRAP 4000 hybrid triple-quadrupole linear ion trap mass spectrometer was used to identify peptides being eluted from the column. IDA parameters were as follows: Select ions from 350 to 1300 da; ER Scan used for charge state determination; 1+ ions rejected, unknowns allowed; Rolling collision energy: yes (AB SCIEX standard for qtrap 4000); Max fill time for each MS/MS: 950 ms.

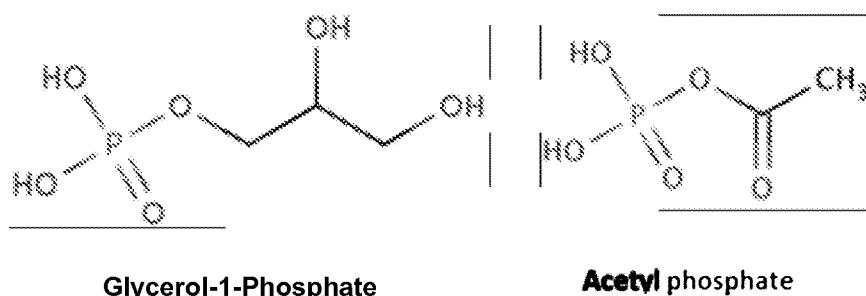
[00280] Peptide identification by Mascot

[00281] Mascot, by Matrix Science was used to identify peptides from a CENPK2 sequence database with the following parameters. Fixed modifications: Carbamidomethyl. Variable modifications: deamidation (NQ), oxidation (MW). Precursor mass tolerance: 0.5 da. Product mass tolerance: 1.0 da. Missed cleavages allowed: 1.

6.2.1.7 Strain Engineering

[00282] A version of Y968 lacking a functional *URA3* gene was transformed with either ms59858 to knock out *RHR2* or ms59971 to knock out *HOR2*. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose and confirmed by PCR amplification. The *URA3* marker in this construct is flanked by direct repeats, facilitating its recycling. To recycle the *URA3* marker, cells were grown in YPD overnight, then plated on 5'FOA. The loopout of *URA3* was confirmed by PCR amplification and inability to grow on CSM-URA plates. The ura- version of Y968.ms59858 was then transformed with ms59971 to generate a double *RHR2* and *HOR2* knockout strain Y968.ms59858.ms59971

6.2.2 Results


6.2.2.1 Hydrolysis of acetyl phosphate is enzyme-catalyzed and inhibited by heat and a broad spectrum phosphatase inhibitor

[00283] As shown in **FIG 4**, addition of cell free extract from wild type *S. cerevisiae* strain Y967 catalyzes the hydrolysis of acetyl phosphate, and the rate of hydrolysis is dependent on the amount of cell free extract added. Increasing the amount of cell free extract increases the rate of hydrolysis. When the cell free extract is boiled, the addition of increasing amounts of cell free extract no longer has an effect on the hydrolysis rate of acetyl phosphate, indicating that the responsible component has been inactivated by heat. Similarly, the addition of 30 mM sodium fluoride, a broad spectrum phosphatase inhibitor, renders the

cell free extract ineffective at hydrolyzing acetyl phosphate. These results suggest that a phosphatase is likely responsible for the catalysis of acetyl phosphate hydrolysis.

6.2.2.2 Protein fractionation isolates a single enriched active fraction [00284] Anion exchange chromatography was used to separate soluble protein in the cell free extracts. **FIG. 5A** shows that nearly all of the phosphatase activity was concentrated in one fraction, and the remaining activity in adjacent fractions. This indicates that the enzyme responsible for this activity in the cell free extract is either a single protein or proteins with similar ionic interactions which co-elute when separated by anion exchange chromatography.

[00285] The active fraction #10 from FPLC anion exchange purification was purified a second time using a more shallow gradient 0-45% buffer B. The most active fraction from this purification, # 14, shown in **FIG. 6A**, was analyzed by mass spectrometry to determine the identity of the proteins in the fraction. Of the proteins identified in the active fraction (**FIG. 6B**), Rhr2 and its homolog Hor2, which cannot be distinguished by mass spectrometry due to significant sequence similarity, were the only proteins on the list identified as phosphatases by the SGD database. Rhr2 is a glycerol-1-phosphatase that is expressed constitutively at high levels. Hor2 catalyzes the identical reaction but is expressed only at low levels under normal conditions and is induced by osmotic stress (Norbeck *et. al.*, Purification and Characterization of Two Isoenzymes of DL-Glycerol-3-phosphatase from *Saccharomyces cerevisiae*, *J. Biol. Chem.*, 271, 13875-13881 (1996)). Acetyl phosphate is not a metabolite that is native to yeast, therefore it is expected that the hydrolysis is caused by a promiscuous reaction of an enzyme that targets a similar substrate. Rhr2/Hor2 were top candidates for this reaction since their native substrate, glycerol-1-phosphate, is also a low molecular weight phosphorylated compound similar to acetyl phosphate, as shown below.

6.2.2.3 Deletion of *RHR2* and/or *HOR2* reduces phosphatase activity [00286] In order to determine whether Rhr2 and/or Hor2 were responsible for the phosphatase activity observed in *S. cerevisiae*, new strains were created lacking either *RHR2*

or *HOR2* and one strain lacking both *RHR2* and *HOR2*. These strains were cultured as described previously, and cell free extract was prepared and tested for acetyl phosphatase activity. As shown in **FIG. 7**, deletion of *RHR2* dramatically reduces phosphatase activity, while deletion of *HOR2* has no effect on the rate of hydrolysis of acetyl phosphate. Deletion of *HOR2* does however reduce hydrolysis of acetyl phosphate in a strain that already has *RHR2* deleted. This is consistent with published work that indicates that expression of Hor2 is upregulated following deletion of *RHR2* (DeLuna *et. al.*, Need-Based Up-Regulation of Protein Levels in Response to Deletion of Their Duplicate Genes, *PLOS Biol.*, 8, e10000347 (2010)). Elimination of both of these phosphatases results in near background levels of acetyl phosphate hydrolysis as shown in **FIG. 7**. These results confirm that glycerol-1-phosphatases Rhr2 and Hor2 are responsible for the majority of the acetyl phosphatase activity in *S. cerevisiae*.

6.3 Example 3:

Deletion of the acetyl phosphate phosphatase reduces acetate secretion and improves production of a compound derived from Acetyl-CoA

6.3.1 Materials and Methods

6.3.1.1 Strain construction

[00287] Versions of Y968, Y12869, and Y12746, lacking a functional *URA3* gene, were transformed with either ms63907 or ms63909, and with ms64472, to convert them to farnesene producers.

[00288] The ms63907 integration construct (i84022; SEQ ID NO:33) is shown below.

HO US	GAL4	downwards	11794	pGAL10	ERG10	URA3	11793	downwards	pGAL1	Sp.HMGGr	HO DS
-------	------	-----------	-------	--------	-------	------	-------	-----------	-------	----------	-------

This construct comprises nucleotide sequences that encode a selectable marker (*URA3*); a copy of the native yeast *GAL4* transcription factor under its own promoter; two native yeast enzymes of the mevalonate pathway (*ERG10* which encodes Acetoacetyl-CoA thiolase, and *ERG13*, which encodes HMG-CoA synthase), as well as two copies of a yeast codon-optimized version of *Silicibacter pomeroyi* HMG-CoA reductase, all under galactose-inducible promoters (promoters of the *S. cerevisiae* genes *GAL1* and *GAL10*, flanked by homologous sequences consisting of upstream and downstream nucleotide sequences of the *S. cerevisiae* *HO* endonuclease locus. Upon introduction into a host cell, the ms63907 construct integrates by homologous integration into the host cell genome, functionally disrupting *HO* by replacing the *HO* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982.

Transformants were selected on CSM-URA plates with 2% glucose and confirmed by PCR amplification. The URA3 marker in this construct is flanked by direct repeats, facilitating its recycling. To recycle the URA3 marker, cells were grown in YPD overnight, then plated on 5'FOA. The loopout of URA3 was confirmed by PCR amplification and inability to grow on CSM-URA plates. The ms63909 integration construct (i84026; SEQ ID NO:34) is identical to ms63907, with one exception: the sequences encoding *S. pomeroyi* HMG-CoA reductase are replaced by *tHMGr*, the truncated *HMGI* coding sequence which encodes the native *S. cerevisiae* HMG-CoA reductase.

[00289] The ms64472 integration construct (i85207; SEQ ID NO:35) is shown below.

GAL80 DS	ρGAL7	URA3	5'P _U	5'P _U	ρGAL10	ERG12	URA3	ρGAL1	5'P _U	5'P _U	ρGAL1	ERG12	GAL80 DS
-------------	-------	------	------------------	------------------	--------	-------	------	-------	------------------	------------------	-------	-------	-------------

This construct comprises nucleotide sequences that encode a selectable marker (*URA3*); five native yeast enzymes of the ergosterol pathway (*ERG12* which encodes mevalonate kinase, *ERG8* which encodes phosphomevalonate kinase, *ERG19* which encodes mevalonate pyrophosphate decarboxylase, *IDI1* which encodes dimethylallyl diphosphate isomerase, and *ERG20* which encodes farnesyl pyrophosphate synthetase), as well as an evolved, yeast codon-optimized version of *Artemisia annua* farnesene synthase, all under galactose-inducible promoters (Promoters of the *S. cerevisiae* genes *GAL1*, *GAL10*, and *GAL7*). These sequences are flanked by homologous sequences consisting of the upstream and downstream nucleotide sequences of *GAL80*. Upon introduction into a host cell, the ms64472 construct integrates by homologous integration into the host cell genome, functionally disrupting *GAL80* by replacing the *GAL80* coding sequence with its integrating sequence. The construct was assembled using the methods described in U.S. Patent No. 8,221,982. Transformants were selected on CSM-URA plates with 2% glucose and confirmed by PCR amplification. The URA3 marker in this construct is flanked by direct repeats, facilitating its recycling. To recycle the URA3 marker, cells were grown in YPD overnight, then plated on 5'FOA. The loopout of URA3 was confirmed by PCR amplification and inability to grow on CSM-URA plates.

[00290] Next, ura- versions of Y968.ms63907.ms64472, Y12869.ms63907.ms64472, and Y12747.ms63907.ms64472, were transformed with ms59858 to knock out the *RHR2* ORF. This integration construct consists of the upstream and downstream nucleotide sequences of *RHR2*, flanking the native *S. cerevisiae* *URA3* gene under its own promoter and terminator. Transformants were plated onto CSM –his plates containing 2% glucose as the sole carbon source, and were confirmed by PCR amplification.

6.3.1.2 Culture conditions

[00291] Single colonies were inoculated in wells of a 96-well plate in 360 μ l of seed media (described in Example 1), and grown at 34°C for three days by shaking at 1000 rpm. Then, 14.4 μ l of culture was subcultured into 360 μ l of seed media with 50 mM succinate pH 5.0 and 40 g/L galactose, and grown at 34°C for two days by shaking at 1000 rpm.

6.3.1.3 Quantitation of acetate and glycerol

[00292] Acetate and glycerol were quantitated by transferring 1 ml of whole cell broth to a 1.5 ml eppendorf tubes, and spinning at 13,000 RPM for 1 minute using a tabletop centrifuge to clarify the supernatant. The supernatant was then diluted (1:1 v/v) in 8mM sulfuric acid, vortexed, and recentrifuged before transferring to a 1.8ml vial. Samples were analyzed with an Agilent 1200 HPLC, with variable wavelength and refractive index detection, using a BioRad Aminex HPX-87H 300mm x 7.8mm column. The mobile phase was 4mM sulfuric acid, column temperature was 40C, and the flow rate was 0.5 ml/min.

6.3.1.4 Quantitation of farnesene

[00293] At the end of two days incubation at 34°C, 98 μ l of whole cell broth was mixed with 2 μ l of Nile Red solution (100 μ g/ml in DMSO) in a flat-bottom 96-well assay plate (Costar 3916), and mixed for 30 seconds on a 96-well plate shaker. The plates were then read on a Beckman M5 plate reader with excitation at 500nm and emission at 550nm.

6.3.1.5 Quantitation of optical density

[00294] In a 96-well assay plate, 8 μ l of culture was mixed with 92 μ l of diluent (20% PEG 200, 20% Ethanol, 2% Triton X-114) and incubated for 30 minutes at room temperature. The assay plate was vortexed before measuring OD₆₀₀ on a Beckman M5 plate reader.

6.3.2 Results

[00295] **FIG. 8A** shows that strain Y12746.ms63909.ms64472, comprising a deletion of the PDH-bypass (*acs1* Δ *acs2* Δ *ald6* Δ), heterologously expressing acetaldehyde dehydrogenase aceylating (Dz.eutE) as well as phosphoketolase (Lm.PK) and phosphotransacetylase (Ck.PTA) and overexpressing genes in the farnesene production pathway, secretes more acetate than a version of Y12746.ms63909.ms64472 in which the *RHR2* gene has been deleted. As shown in **FIG. 8B**, deletion of *RHR2* does not impact glycerol production, as glycerol levels of Y12746.ms63909.ms64472 *rhr2* $^{\wedge}$ are largely unchanged compared to Y12746.ms63909.ms64472. As shown in **FIG. 8C**, the substantially reduced levels of acetate in Y12746.ms63909.ms64472 *rhr2* $^{\wedge}$ are not due to reduced cell growth, as cell densities are similar for both *RHR2* $^+$ and *rhr2* $^{\wedge}$ populations. These results

demonstrate that Rhr2, which was responsible for the acetyl phosphate phosphatase activity in cell free extract, is also the primary cause behind the hydrolysis of acetyl phosphate to acetate *in vivo*.

[00296] To determine whether the reduction of acetate observed upon deletion of RHR2 occurs independent of farnesene production, acetate production was measured in versions of strain 12746 with an intact or deleted *RHR2* gene, but not expressing genes in the farnesene production pathway. **FIG. 8D** shows that strain Y12746, comprising a deletion of the PDH-bypass (*acs1Δ acs2Δ ald6Δ*), heterologously expressing acetaldehyde dehydrogenase aceylyating (Dz.eutE) as well as phosphoketolase (Lm.PK) and phosphotransacetylase (Ck.PTA), secretes more acetate than a version of Y12746 in which the *RHR2* gene has been deleted. As shown in **FIG. 8E**, the substantially reduced levels of acetate in Y12746.ms63909.ms64472 *rhr2*^Δ are not due to reduced cell growth, as cell densities are similar for both RHR2+ and *rhr2*^Δ populations. These data illustrate that the reduction in acetate occurs regardless of the presence of an overexpressed farnesene production pathway.

[00297] **FIG. 9** shows that the deletion of *rhr2* improves farnesene production in Y12746.ms63907.ms64472 by 2.1-fold, and in Y12745.ms63907.ms64472 by 1.4-fold (In each strain background, the *RHR2*+ parent is normalized to 1). Moreover, deletion of *rhr2* improves the final optical density of Y12746.ms63907.ms64472 at carbon exhaustion. Both Y12745.ms63907.64472 and Y12746.ms63907.ms64472 use phosphoketolase and phosphotransacetylase, and thus acetyl phosphate as a pathway intermediate, to produce cytosolic acetyl-CoA, which is used for synthesis of farnesene. Strains Y968.ms63907.ms64472 and Y12869.ms63907.ms64472 do not express phosphoketolase or phosphotransacetylase, and do not use acetyl phosphate as a pathway intermediate. Deletion of *rhr2* in these strain backgrounds has no effect on farnesene production or optical density in either strain background. This indicates that the benefit of knocking out *rhr2* specifically applies to strains which use acetyl phosphate as an intermediate metabolite, *e.g.*, strains comprising heterologous PK and/or PTA.

[00298] All publications, patents and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in

the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

[00299] Throughout the description and claims of this specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

[00300] The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

WHAT IS CLAIMED:

1. A genetically modified yeast host cell comprising:
 - (a) a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9);
 - (b) a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC 2.3.1.8);and
 - (c) a functional disruption of an endogenous glycerol-1-phosphatase enzyme (EC 3.1.3.21) that converts acetyl phosphate to acetate, wherein conversion from acetyl phosphate to acetate is functionally disrupted.
2. The genetically modified yeast host cell of claim 1, wherein the glycerol-1-phosphatase is selected from GPP1/RHR2, GPP2/HOR2, and homologues and variants thereof.
3. The genetically modified yeast host cell of claim 2, wherein:
 - (a) GPP1/RHR2, or a homologue or variant thereof, is functionally disrupted;
 - (b) GPP2/HOR2, or a homologue or variant thereof, is functionally disrupted; or
 - (c) both GPP1/RHR2 and GPP2/HOR2, or both a homologue or variant of GPP1/RHR2 and a homologue or variant of GPP2/HOR2, are functionally disrupted.
4. The genetically modified yeast host cell of any one of claims 1 to 3, wherein the genetically modified host cell further comprises a heterologous nucleic acid encoding an acylating acetylaldehyde dehydrogenase (ADA; EC 1.2.1.10).
5. The genetically modified yeast host cell of any one of claims 1 to 4, wherein the genetically modified host cell is capable of producing an isoprenoid.
6. The genetically modified yeast host cell of claim 5, wherein the genetically modified host cell comprises one or more heterologous nucleic acids encoding one or more enzymes of a mevalonate (MEV) pathway for making isopentenyl pyrophosphate.

7. The genetically modified yeast host cell of claim 6, wherein:
 - (a) the one or more enzymes of the MEV pathway comprise an NADH-using HMG-CoA reductase;
 - (b) the one or more enzymes of the MEV pathway comprise an enzyme that condenses two molecules of acetyl-CoA to form acetoacetyl-CoA;
 - (c) the one or more enzymes of the MEV pathway comprise an enzyme that condenses acetoacetyl-CoA with acetyl-CoA to form HMG-CoA;
 - (d) the one or more enzymes of the MEV pathway comprise an enzyme that converts HMG-CoA to mevalonate;
 - (e) the one or more enzymes of the MEV pathway comprise an enzyme that phosphorylates mevalonate to mevalonate 5-phosphate;
 - (f) the one or more enzymes of the MEV pathway comprise an enzyme that converts mevalonate 5-phosphate to mevalonate 5-pyrophosphate;
 - (g) the one or more enzymes of the MEV pathway comprise an enzyme that converts mevalonate 5-pyrophosphate to isopentenyl pyrophosphate;
 - (h) the one or more enzymes of the MEV pathway are selected from HMG-CoA synthase, mevalonate kinase, phosphomevalonate kinase and mevalonate pyrophosphate decarboxylase;
 - (i) the host cell comprises a plurality of heterologous nucleic acids encoding all of the enzymes of the MEV pathway;
 - (j) the one or more heterologous nucleic acids encoding one or more enzymes of the MEV pathway are under control of a single transcriptional regulator;
 - (k) the one or more heterologous nucleic acids encoding one or more enzymes of the MEV pathway are under control of multiple heterologous transcriptional regulators;
 - (l) the host cell further comprises a heterologous nucleic acid encoding an enzyme that can convert isopentenyl pyrophosphate (IPP) into dimethylallyl pyrophosphate (DMAPP);
 - (m) the host cell further comprises a heterologous nucleic acid encoding an enzyme that can condense IPP and/or DMAPP molecules to form a polyprenyl compound; or
 - (n) the host cell further comprises a heterologous nucleic acid encoding an enzyme that can modify IPP or a polyprenyl to form an isoprenoid compound.

8. The genetically modified yeast host cell of claim 7,
wherein the enzyme that can modify IPP or a polyprenyl to form an isoprenoid compound is selected from the group consisting of carene synthase, geraniol synthase, linalool synthase, limonene synthase, myrcene synthase, ocimene synthase, α -pinene synthase, β -pinene synthase, γ -terpinene synthase, terpinolene synthase, amorphadiene synthase, α -farnesene synthase, β -farnesene synthase, farnesol synthase, nerolidol synthase, patchouliol synthase, nootkatone synthase, and abietadiene synthase, or
wherein
 - (a) the isoprenoid is selected from the group consisting of a hemiterpene, monoterpene, diterpene, triterpene, tetraterpene, sesquiterpene, and polyterpene;
 - (b) the isoprenoid is a C5-C20 isoprenoid; or
 - (c) the isoprenoid is selected from the group consisting of abietadiene, amorphadiene, carene, α -farnesene, β -farnesene, farnesol, geraniol, geranylgeraniol, isoprene, linalool, limonene, myrcene, nerolidol, ocimene, patchoulol, β -pinene, sabinene, γ -terpinene, terpinolene, and valencene.
9. The genetically modified yeast host cell of any one of claims 1 to 8, wherein the genetically modified yeast host cell is *Saccharomyces cerevisiae*.
10. The genetically modified yeast host cell of any one of claims 1 to 9, wherein the genetically modified host cell produces an increased amount of an isoprenoid compared to a yeast cell not comprising a functional disruption of an endogenous enzyme that converts acetyl phosphate to acetate.
11. A method for producing an isoprenoid comprising:
 - (a) culturing a population of the genetically modified yeast host cells of any one of claims 4 to 9 in a medium with a carbon source under conditions suitable for making said isoprenoid compound; and
 - (b) recovering said isoprenoid compound from the medium.

12. A method for increasing the production of acetyl-CoA or an isoprenoid in a yeast host cell, the method comprising:

- (a) expressing in the yeast host cell a heterologous nucleic acid encoding a phosphoketolase (PK; EC 4.1.2.9) and a heterologous nucleic acid encoding a phosphotransacetylase (PTA; EC2.3.1.8); and
- (b) functionally disrupting an endogenous glycerol-1-phosphatase enzyme EC 3.1.3.21) that converts acetyl phosphate to acetate, wherein conversion from acetyl phosphate to acetate is functionally disrupted.

13. The method of claim 12, wherein the glycerol-1-phosphatase is selected from GPP1/RHR2, GPP2/HOR2, and homologues and variants thereof.

14. The method of claim 13, wherein:

- (a) GPP1/RHR2, or a homologue or variant thereof, is functionally disrupted;
- (b) GPP2/HOR2, or a homologue or variant thereof, is functionally disrupted; or
- (c) both GPP1/RHR2 and GPP2/HOR2, or both a homologue or variant of GPP1/RHR2 and a homologue or variant of GPP2/HOR2, are functionally disrupted.

15. The method of any one of claims 12 to 14, wherein the yeast host cell is *Saccharomyces cerevisiae*.

16. The method of any one of claims 12 to 15, wherein the yeast host cell produces an increased amount of acetyl-CoA or an acetyl-CoA derived compound compared to a yeast cell not comprising a functional disruption of an endogenous glycerol-1-phosphatase enzyme (EC 3.1.3.21) that converts acetyl phosphate to acetate.

Figure 1

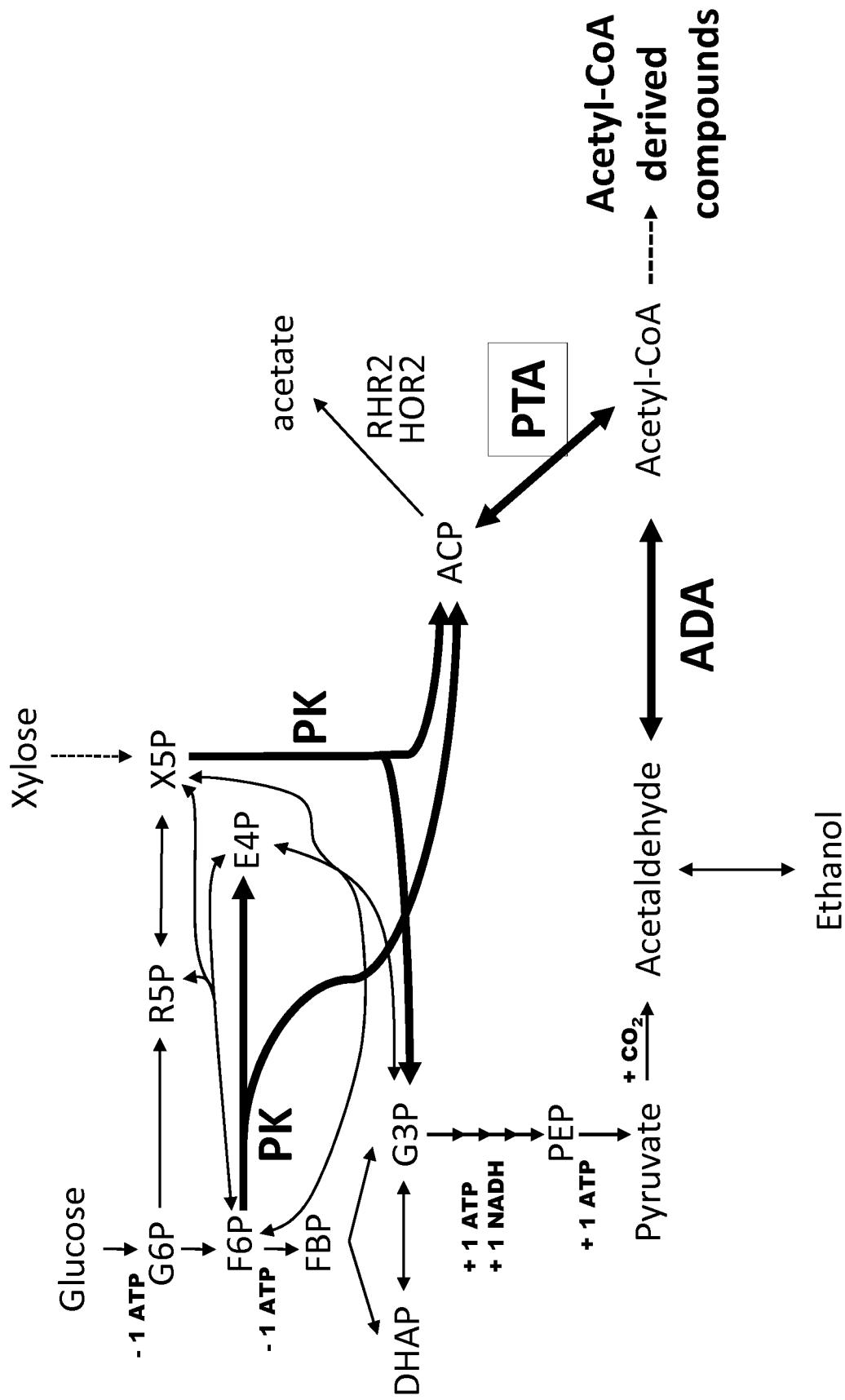


Figure 2

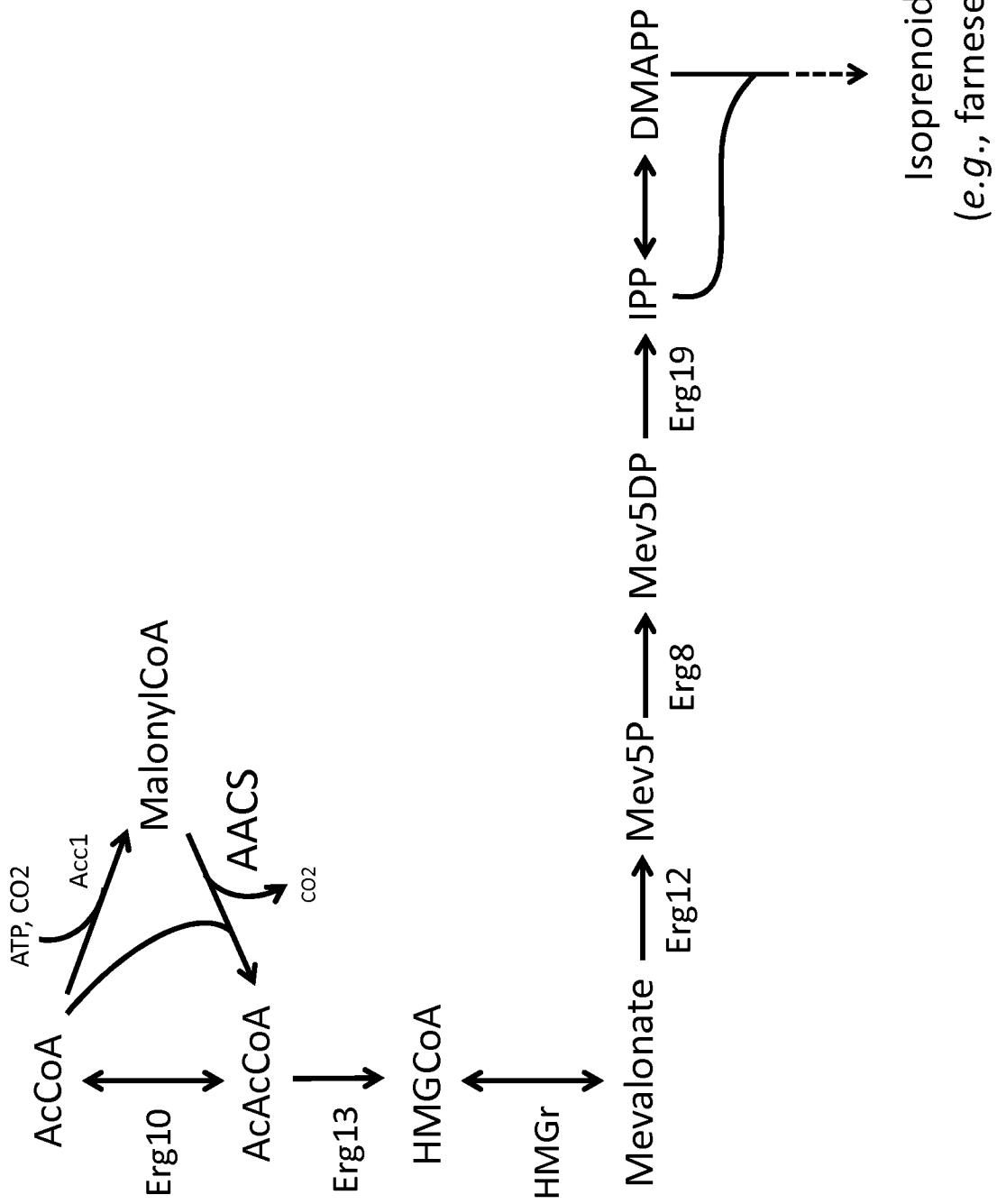


Figure 3A & 3B

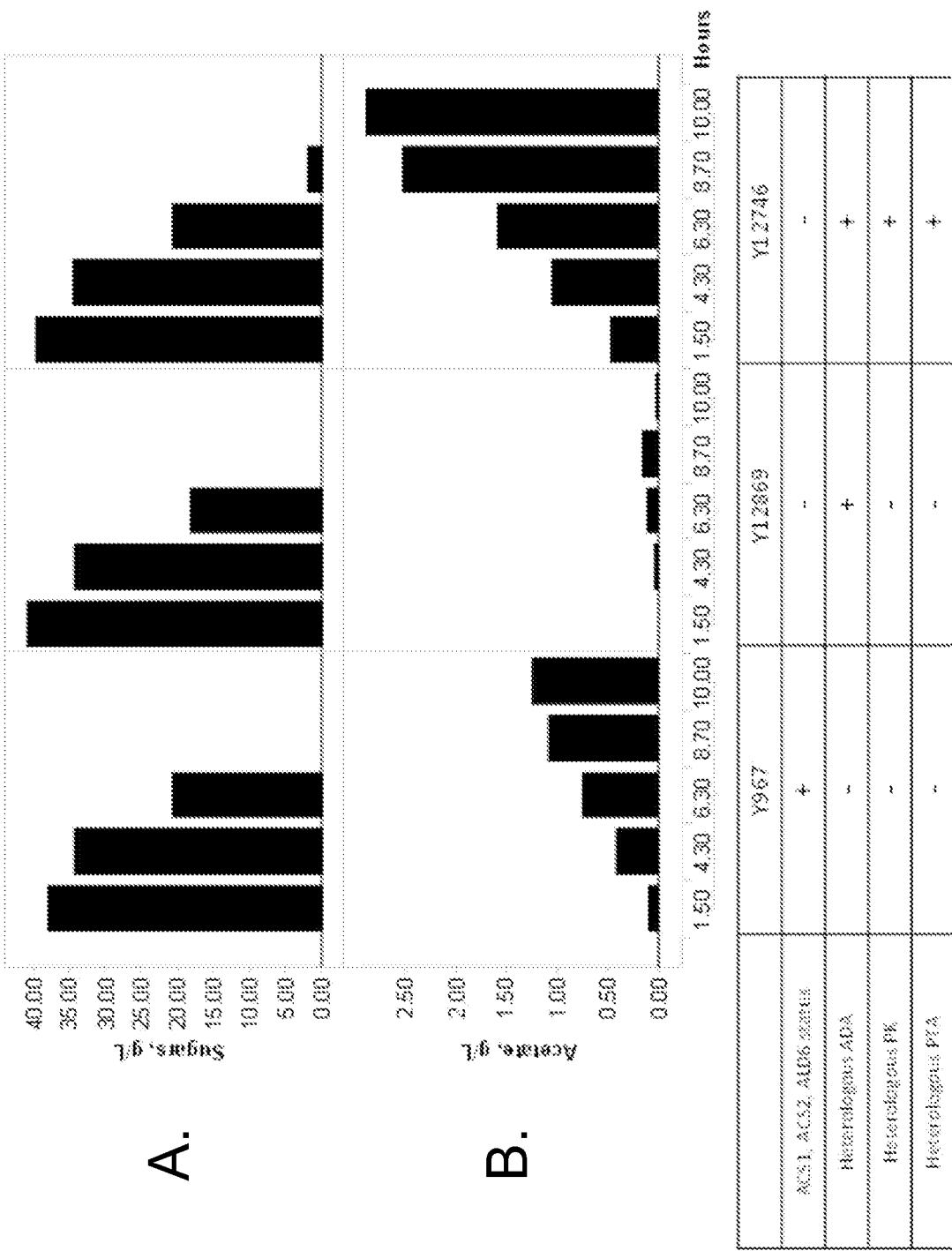
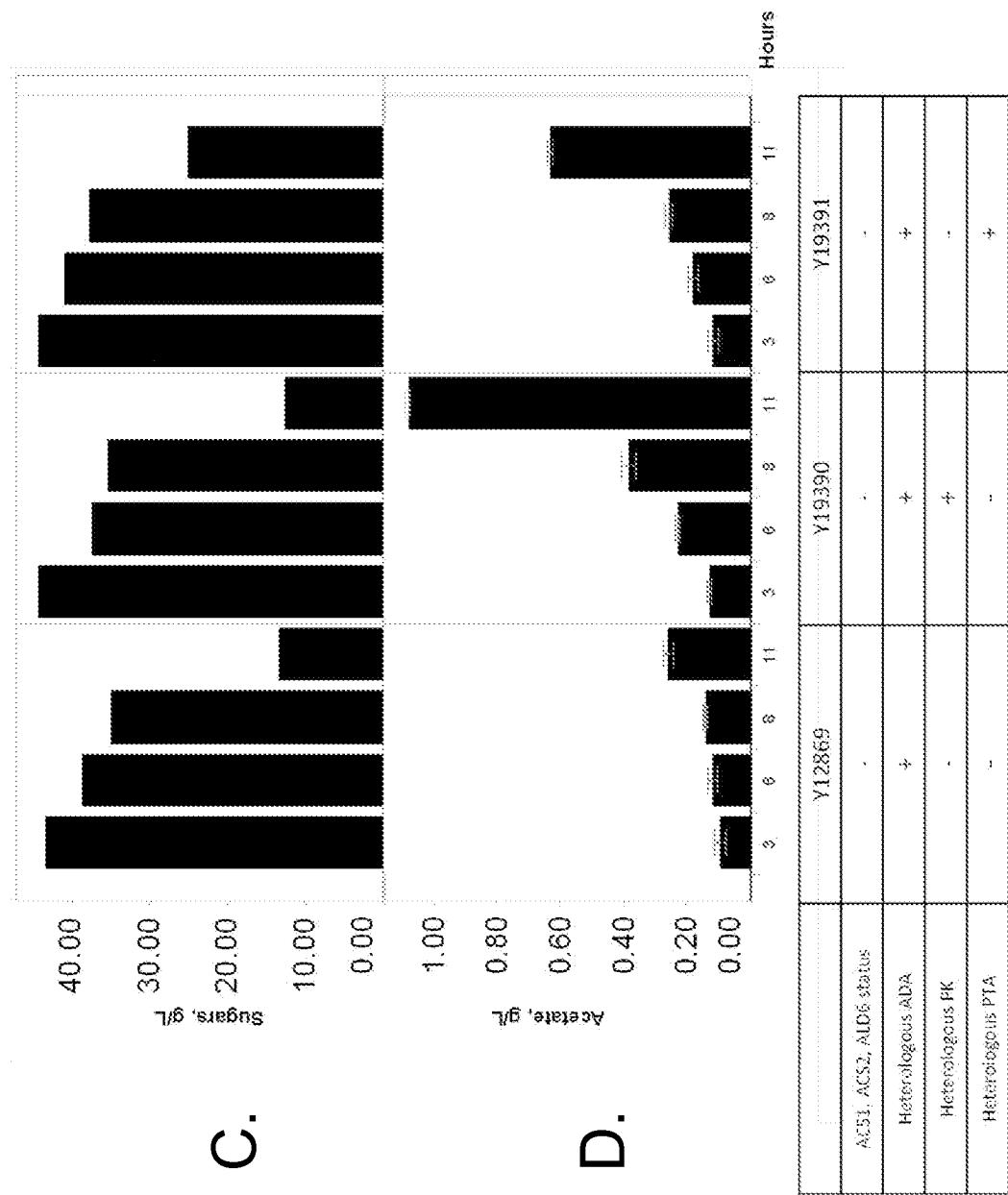



Figure 3C & 3D

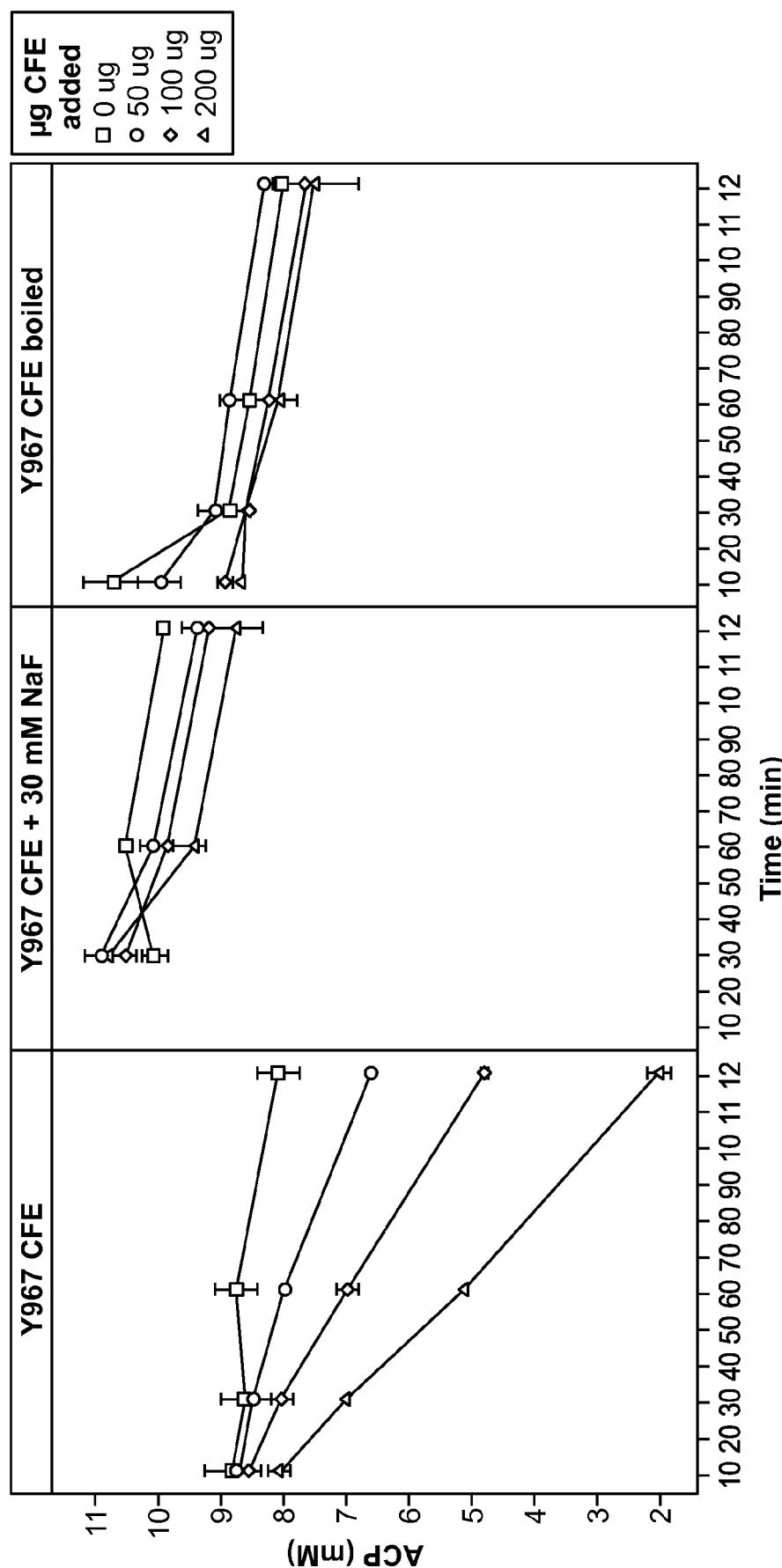
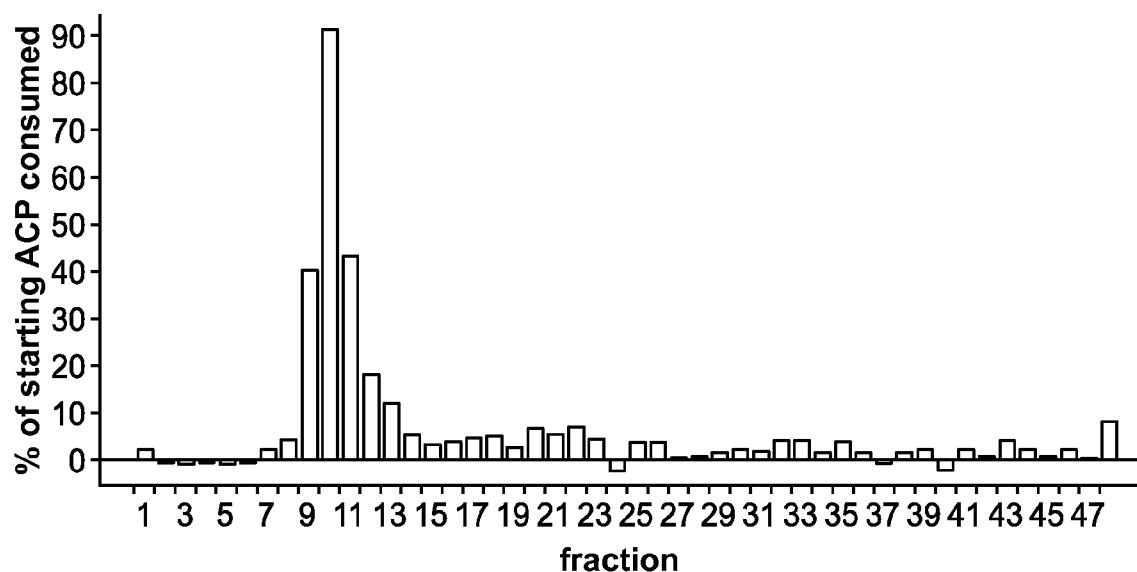
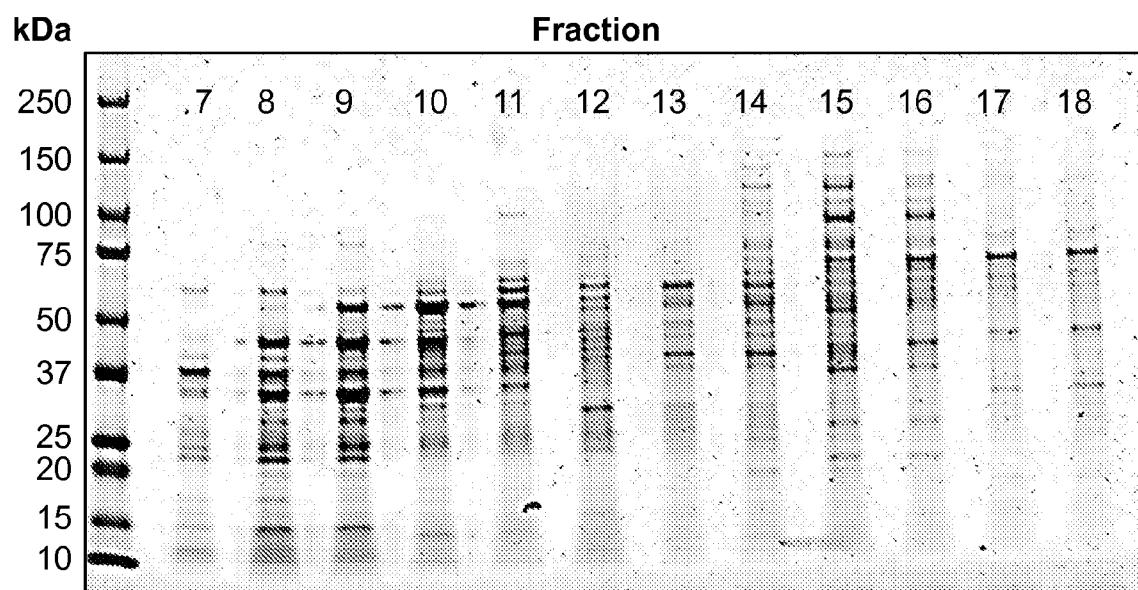




FIG. 4

A**B****FIG. 5**

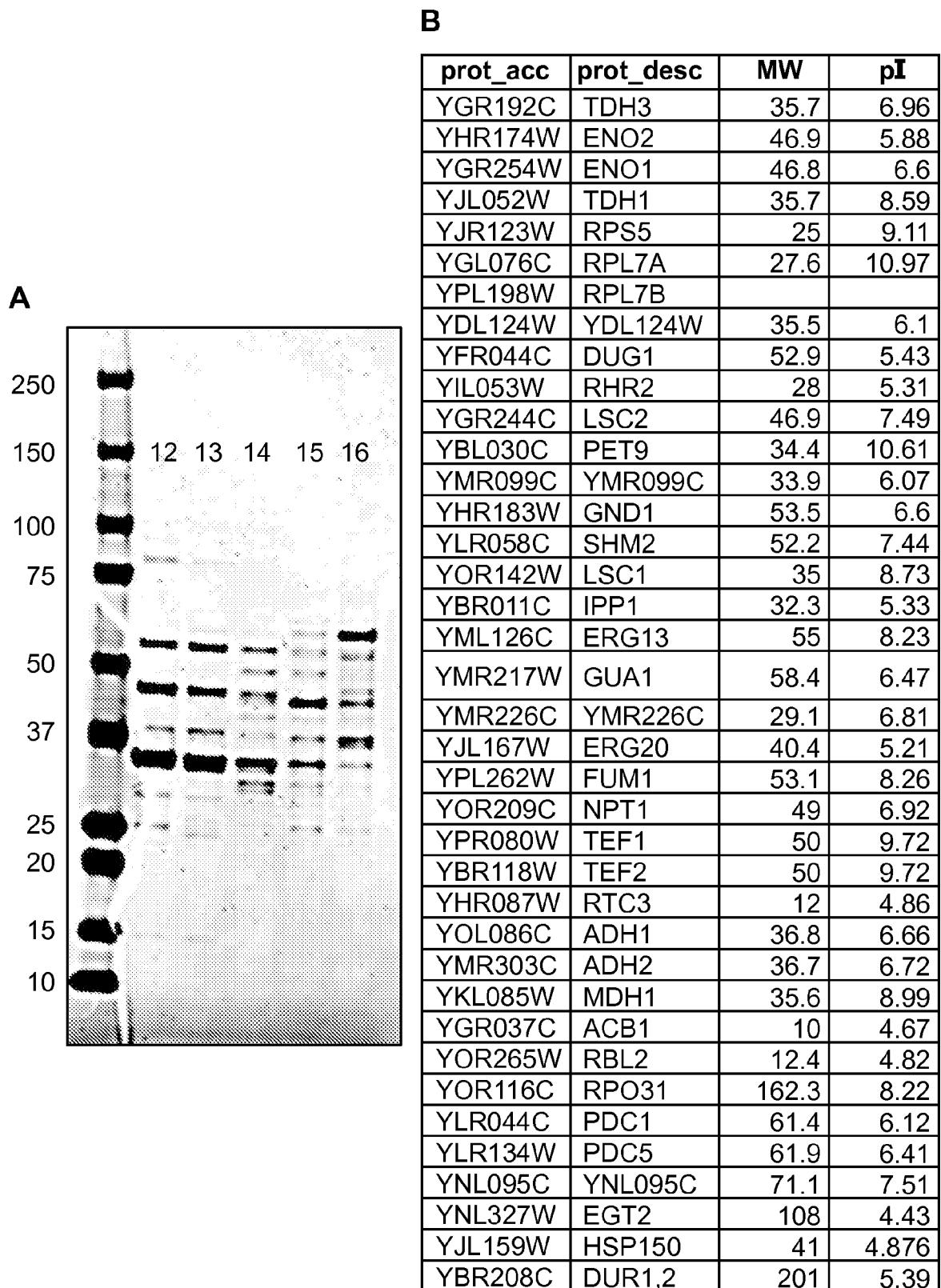


FIG. 6

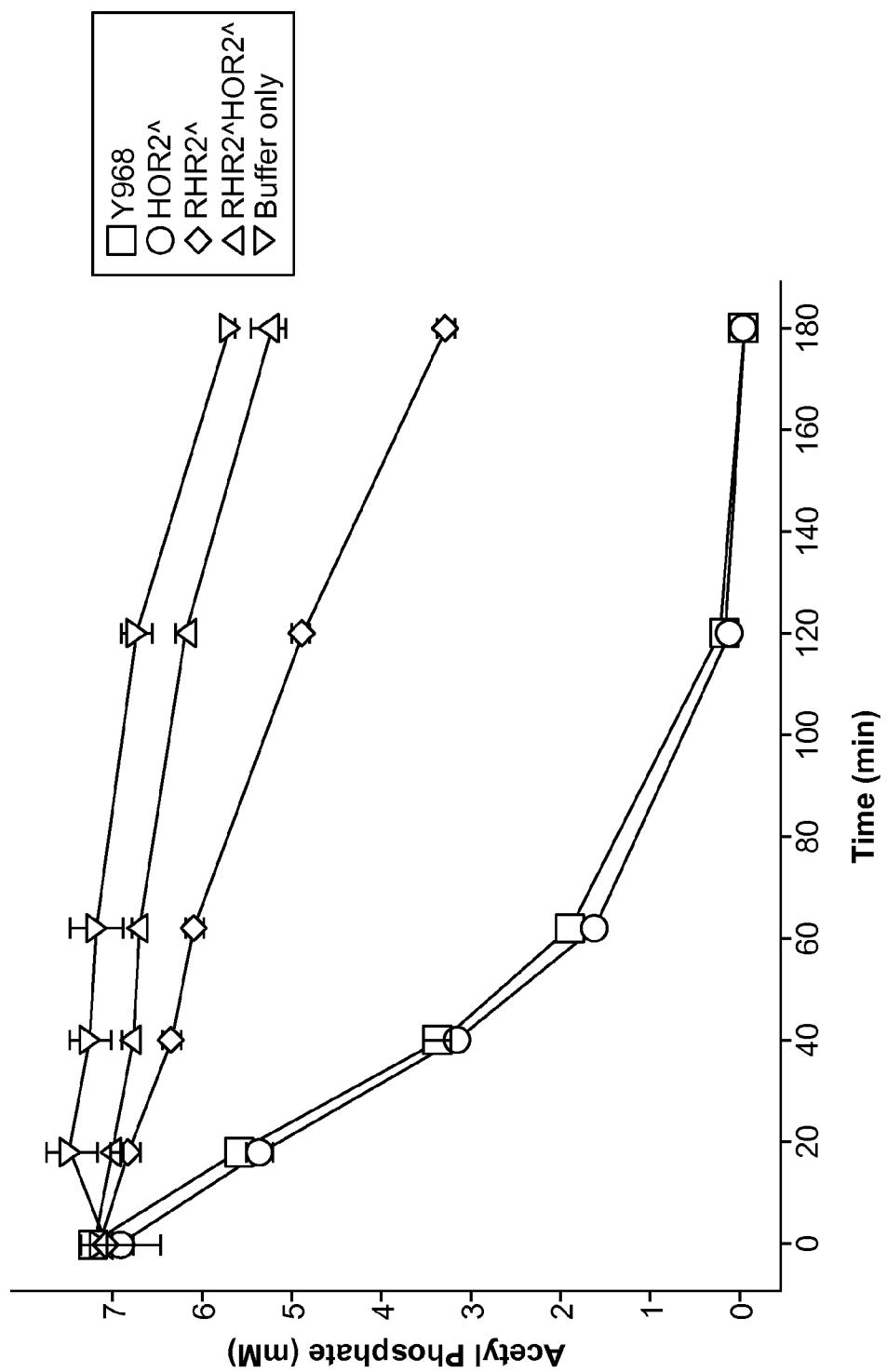


FIG. 7

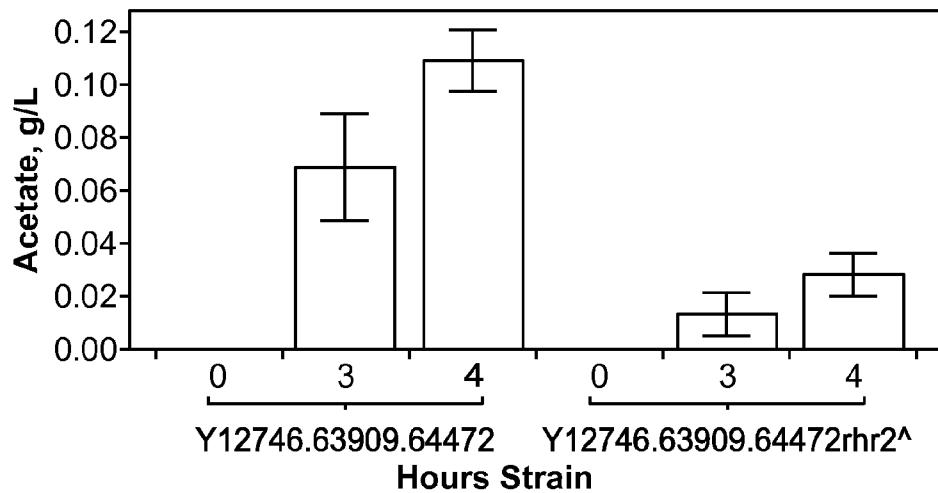


FIG. 8A

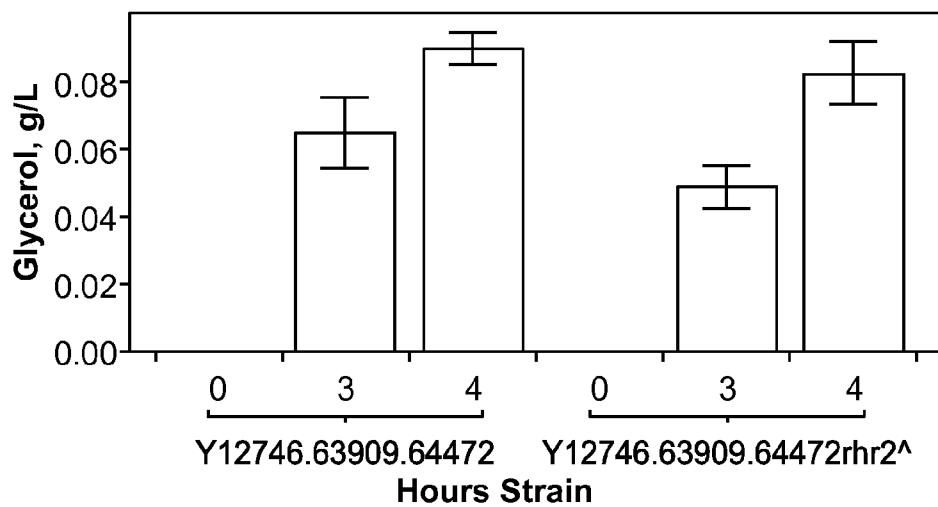


FIG. 8B

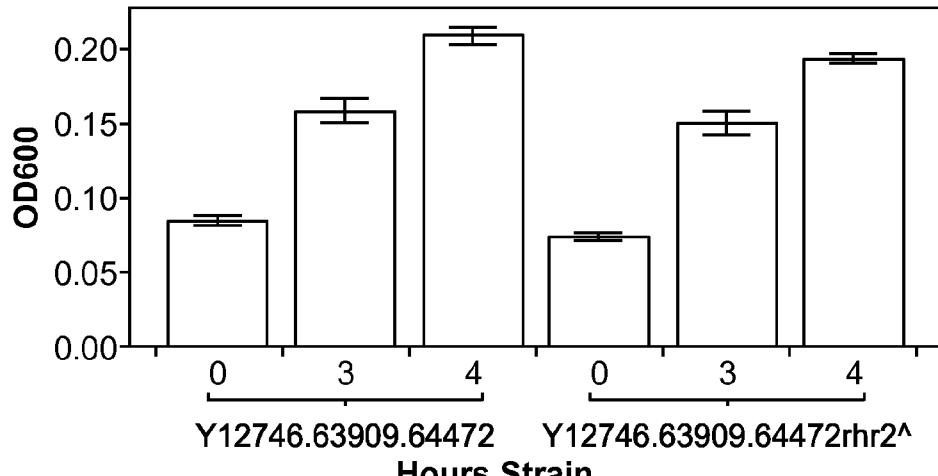


FIG. 8C

10/11

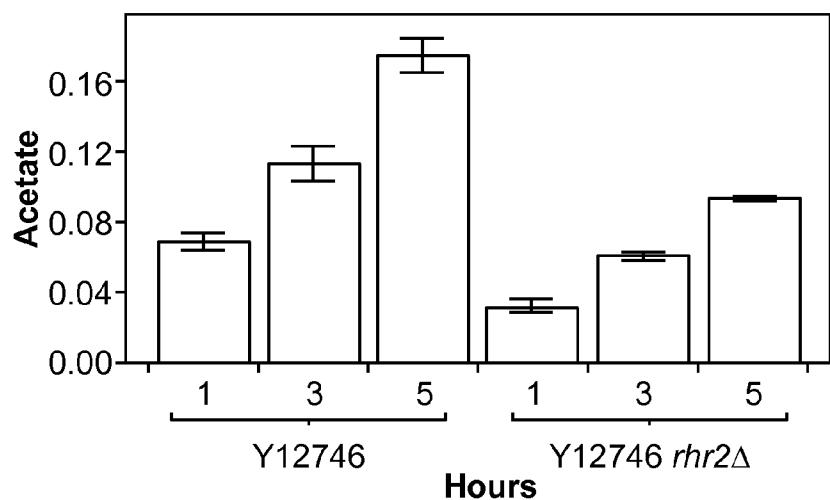


FIG. 8D

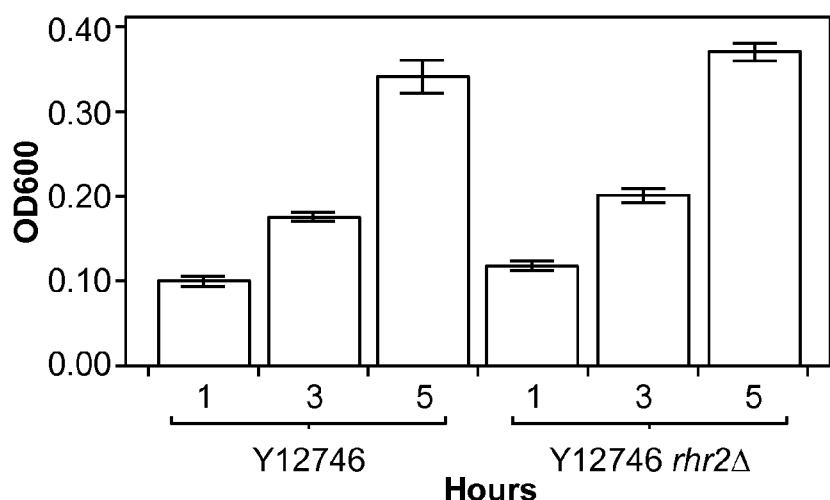
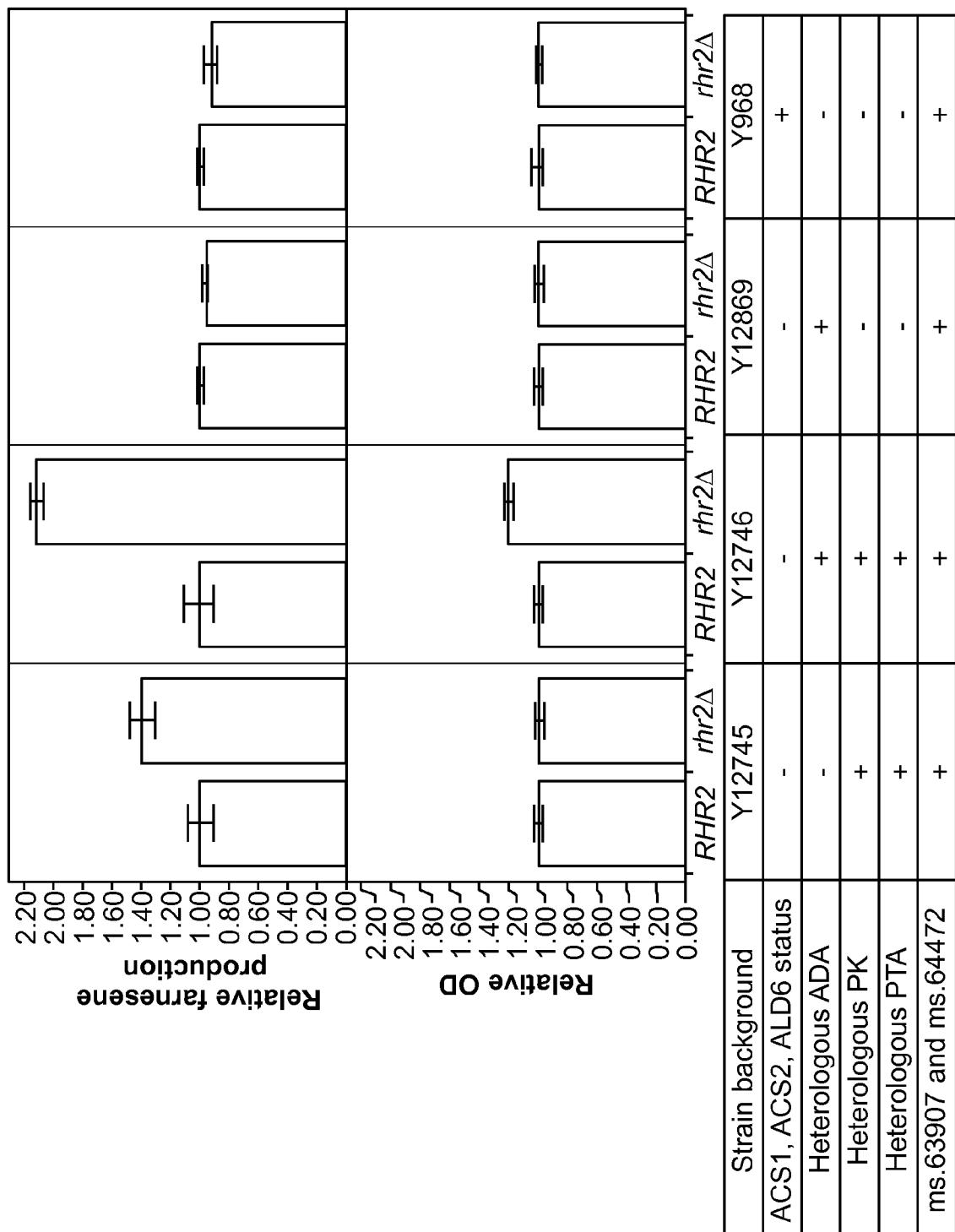



FIG. 8E

FIG. 9

2014_03_12_107345_00466_ST25
SEQUENCE LISTING

<110> HAWKINS, Kristy Michelle
MEADOWS, Adam Leon
TSONG, Annie Ening
MAHATDEJKUL-MEADOWS, Tina Tipawan
PICKENS, Lauren Barbara
TAI, Anna

<120> USE OF PHOSPHOKETOLASE AND PHOSPHOTRANSACETYLASE FOR PRODUCTION OF ACETYL-COENZYME A DERIVED COMPOUNDS

<130> 107345.00466

<150> US 61/800,356

<151> 2013-03-15

<160> 37

<170> PatentIn version 3.5

<210> 1
<211> 2749
<212> DNA
<213> Leuconostoc mesenteroides

<220>
<221> misc_feature
<222> (1)..(2749)
<223> Leuconostoc mesenteroides Phosphoketolase (PK) gene sequence

<400> 1
gttacggaag aagtctgtgtt ttacgggttt tatgattctt gcaaaaaata aggagttactt 60
aatctcatgg cagatttcga ttcaaaagag tacttggAAC ttgttgataa gtgggtggcgc 120
gcaactaact atttgcgcg tggatgtac ttttgaaga gcaaccatt gttctcagtt 180
actaatacac ctatcaaggc tgaagatgtt aaagttaagc caatcgAAC ctgggttact 240
atctcaggc agacattctt gtatgcacat gctaaccgtt tgatcaacaa gtatggttt 300
aacatgtttt acgttggtgg tcctggtcac ggtggccaag ttatggttac taacgcttac 360
tttagacggcg catatactga agattatcct gaaattactc aagatatcga aggtatgagc 420
cacttggca agcggttctc attccctggc ggtattggat cacatgac agctcaaaca 480
cctgggtcat tacacgaagg tggtaattt ggctattcat tgagccacgc ttttggtgcc 540
gttttggaca atcctgacca agttgtttc gcagttgttgg tgatgggtga agctgaaaca 600
ggtccttcaa tggcttcatg gcactcaatt aagttttga atgctaagaa tgatggtgcc 660
gttttgcctg tcttggattt gaacggattt aagatttcaa acccaactat cttctcacgt 720
atgagtgtatg aagaaatcac aaagttctt gaagggttgg gttattcacc tcgcttcatc 780
gaaaacgatg atattcatga ctacgcaaca tatcaccaac ttgcagcaaa cattttggat 840
caagctattt aagatattca agtattcaa aatgtatgcac gtgaaaatgg taagtatcaa 900
gatggtgaaa tccctgcattt gccagtaattt attgctcgct tgccaaagggtt ctgggtgg 960
ccaacgcacg atgcaagttt caatcctt gaaaactcat tccgtgcgc ccaagtgcca 1020
ttgccttgc aacaacacga tcttgcaaca ttgccttgcatt tcgaagactg gatgaactca 1080

2014_03_12_107345_00466_ST25

tacaaggctg aagaattatt caatgctgat ggttcttga aggatgaatt gaaagctatc	1140
gctcctaagg gtgacaagcg tatgtcagct aaccctatta caaatggtgg tgctgatcgt	1200
tcagacttga agttgcctaa ctggagagaa ttgcctaaccg atatcaatga tgatacacgt	1260
ggtaaggaat tcgctgatag caagcgcaat atggacatgg caacattgtc aaactacttg	1320
ggtgctgttt cacaattgaa cccaaactcgt ttccgcttct tcggccttga tgaaacaatg	1380
tcaaaccgtt tgtggggatt gttcaatgtt acaccacgtc aatggatgga agaaatcaag	1440
gaaccacaag atcaattgtt gagccctacg ggtcgatttca ttgattcaca attgtctgaa	1500
catcaagctg aagggtggct tgaaggatat actttgactg gtcgtgttgg aatcttcgca	1560
tcatacgagt cattttgcg tgtgtcgat acaatggta cgcaacactt caagtggttg	1620
cgtcacgctt cagaacaagc atggcgtaat gactatccat cattgaactt gattgcaact	1680
tcaactgctt tccaacaaga tcacaatgga tatactcacc aagatccagg tatgttgact	1740
cacttggctg aaaagaagtc taactttatt cgtgaatatt tgccagctga tggtaactca	1800
ttgttggctg ttcaagaacg tgcttctca gaacgtcata aggttaactt gttgattgct	1860
tctaagcaac cacgtcaaca atggtttaca gttgaagaag ctgaagtatt ggctaacgaa	1920
ggtttgaaga tcattgatttgg ggtttctact gcacccctta gtgatgttga tattacattc	1980
gcatctgctg gtactgaacc aacaattgaa actttggctg ctttgggtt gattaaccaa	2040
gcattccag atgttaagtt ccgttatgtt aacgttggtt aattactacg tttgcaaaag	2100
aagtcagaac ctaacatgaa tcatgtacgt gaattatcag ccgaagaatt caacaagtat	2160
ttccaagctg atacaccagt tatcttcggt ttccatgctt atgaaaactt gattgaatca	2220
ttcttcttcg aacgttaagtt cacgggtgat gtatacggtc atggatatcg tgaagatgg	2280
gacatcacaa cgacatatga tatgcgtgta tattcacact tggatcgctt ccatcaagct	2340
aaggaagctg ctgaaatctt gtctgcaaattt ggttaagatttgc atcaagctgc tgctgataca	2400
ttcatcgcta agatggatga tactttggca aagcatttcc aagttactcg taacgaaggt	2460
cgtgatatcg aagaatttcac tgactggaca tggtcaccac ttaagtaatt taaaattttt	2520
ttatcaaaac caactattat ttttaatagt tggttttttt atggctaaat tgactacata	2580
ctaaacgaaa ccatgtaaaa gtgccacata gtttactta ataagttcct tttatttttt	2640
gatttgcaat gcaaaattgt aagcgtaata tgaataataa aaaccccaa ttagtttagct	2700
aattgggggt tttgtaaatc accatatcag ccgctcatag tcttagacg	2749

<210> 2
 <211> 813
 <212> PRT
 <213> Leuconostoc mesenteroides

<220>
 <221> misc_feature
 <222> (1)..(813)
 <223> Leuconostoc mesenteroides Phosphoketolase (PK) protein sequence
 Page 2

2014_03_12_107345_00466_ST25

<400> 2

Met Ala Asp Phe Asp Ser Lys Glu Tyr Leu Glu Leu Val Asp Lys Trp
1 5 10 15

Trp Arg Ala Thr Asn Tyr Leu Ser Ala Gly Met Ile Phe Leu Lys Ser
20 25 30

Asn Pro Leu Phe Ser Val Thr Asn Thr Pro Ile Lys Ala Glu Asp Val
35 40 45

Lys Val Lys Pro Ile Gly His Trp Gly Thr Ile Ser Gly Gln Thr Phe
50 55 60

Leu Tyr Ala His Ala Asn Arg Leu Ile Asn Lys Tyr Gly Leu Asn Met
65 70 75 80

Phe Tyr Val Gly Gly Pro Gly His Gly Gly Gln Val Met Val Thr Asn
85 90 95

Ala Tyr Leu Asp Gly Ala Tyr Thr Glu Asp Tyr Pro Glu Ile Thr Gln
100 105 110

Asp Ile Glu Gly Met Ser His Leu Phe Lys Arg Phe Ser Phe Pro Gly
115 120 125

Gly Ile Gly Ser His Met Thr Ala Gln Thr Pro Gly Ser Leu His Glu
130 135 140

Gly Gly Glu Leu Gly Tyr Ser Leu Ser His Ala Phe Gly Ala Val Leu
145 150 155 160

Asp Asn Pro Asp Gln Val Ala Phe Ala Val Val Gly Asp Gly Glu Ala
165 170 175

Glu Thr Gly Pro Ser Met Ala Ser Trp His Ser Ile Lys Phe Leu Asn
180 185 190

Ala Lys Asn Asp Gly Ala Val Leu Pro Val Leu Asp Leu Asn Gly Phe
195 200 205

Lys Ile Ser Asn Pro Thr Ile Phe Ser Arg Met Ser Asp Glu Glu Ile
210 215 220

Thr Lys Phe Phe Glu Gly Leu Gly Tyr Ser Pro Arg Phe Ile Glu Asn
225 230 235 240

Asp Asp Ile His Asp Tyr Ala Thr Tyr His Gln Leu Ala Ala Asn Ile
245 250 255

Leu Asp Gln Ala Ile Glu Asp Ile Gln Ala Ile Gln Asn Asp Ala Arg
Page 3

2014_03_12_107345_00466_ST25
260 265 270

Glu Asn Gly Lys Tyr Gln Asp Gly Glu Ile Pro Ala Trp Pro Val Ile
275 280 285

Ile Ala Arg Leu Pro Lys Gly Trp Gly Gly Pro Thr His Asp Ala Ser
290 295 300

Asn Asn Pro Ile Glu Asn Ser Phe Arg Ala His Gln Val Pro Leu Pro
305 310 315 320

Leu Glu Gln His Asp Leu Ala Thr Leu Pro Glu Phe Glu Asp Trp Met
325 330 335

Asn Ser Tyr Lys Pro Glu Glu Leu Phe Asn Ala Asp Gly Ser Leu Lys
340 345 350

Asp Glu Leu Lys Ala Ile Ala Pro Lys Gly Asp Lys Arg Met Ser Ala
355 360 365

Asn Pro Ile Thr Asn Gly Gly Ala Asp Arg Ser Asp Leu Lys Leu Pro
370 375 380

Asn Trp Arg Glu Phe Ala Asn Asp Ile Asn Asp Asp Thr Arg Gly Lys
385 390 395 400

Glu Phe Ala Asp Ser Lys Arg Asn Met Asp Met Ala Thr Leu Ser Asn
405 410 415

Tyr Leu Gly Ala Val Ser Gln Leu Asn Pro Thr Arg Phe Arg Phe Phe
420 425 430

Gly Pro Asp Glu Thr Met Ser Asn Arg Leu Trp Gly Leu Phe Asn Val
435 440 445

Thr Pro Arg Gln Trp Met Glu Glu Ile Lys Glu Pro Gln Asp Gln Leu
450 455 460

Leu Ser Pro Thr Gly Arg Ile Ile Asp Ser Gln Leu Ser Glu His Gln
465 470 475 480

Ala Glu Gly Trp Leu Glu Gly Tyr Thr Leu Thr Gly Arg Val Gly Ile
485 490 495

Phe Ala Ser Tyr Glu Ser Phe Leu Arg Val Val Asp Thr Met Val Thr
500 505 510

Gln His Phe Lys Trp Leu Arg His Ala Ser Glu Gln Ala Trp Arg Asn
515 520 525

Asp Tyr Pro Ser Leu Asn Leu Ile Ala Thr Ser Thr Ala Phe Gln Gln
Page 4

2014_03_12_107345_00466_ST25
530 535 540

Asp His Asn Gly Tyr Thr His Gln Asp Pro Gly Met Leu Thr His Leu
545 550 555 560

Ala Glu Lys Lys Ser Asn Phe Ile Arg Glu Tyr Leu Pro Ala Asp Gly
565 570 575

Asn Ser Leu Leu Ala Val Gln Glu Arg Ala Phe Ser Glu Arg His Lys
580 585 590

Val Asn Leu Leu Ile Ala Ser Lys Gln Pro Arg Gln Gln Trp Phe Thr
595 600 605

Val Glu Glu Ala Glu Val Leu Ala Asn Glu Gly Leu Lys Ile Ile Asp
610 615 620

Trp Ala Ser Thr Ala Pro Ser Ser Asp Val Asp Ile Thr Phe Ala Ser
625 630 635 640

Ala Gly Thr Glu Pro Thr Ile Glu Thr Leu Ala Ala Leu Trp Leu Ile
645 650 655

Asn Gln Ala Phe Pro Asp Val Lys Phe Arg Tyr Val Asn Val Val Glu
660 665 670

Leu Leu Arg Leu Gln Lys Lys Ser Glu Pro Asn Met Asn Asp Glu Arg
675 680 685

Glu Leu Ser Ala Glu Glu Phe Asn Lys Tyr Phe Gln Ala Asp Thr Pro
690 695 700

Val Ile Phe Gly Phe His Ala Tyr Glu Asn Leu Ile Glu Ser Phe Phe
705 710 715 720

Phe Glu Arg Lys Phe Thr Gly Asp Val Tyr Val His Gly Tyr Arg Glu
725 730 735

Asp Gly Asp Ile Thr Thr Tyr Asp Met Arg Val Tyr Ser His Leu
740 745 750

Asp Arg Phe His Gln Ala Lys Glu Ala Ala Glu Ile Leu Ser Ala Asn
755 760 765

Gly Lys Ile Asp Gln Ala Ala Ala Asp Thr Phe Ile Ala Lys Met Asp
770 775 780

Asp Thr Leu Ala Lys His Phe Gln Val Thr Arg Asn Glu Gly Arg Asp
785 790 795 800

Ile Glu Glu Phe Thr Asp Trp Thr Trp Ser Pro Leu Lys

805

2014_03_12_107345_00466_ST25
810

<210> 3
<211> 1002
<212> DNA
<213> Clostridium kluyveri

<220>
<221> misc_feature
<222> (1)..(1002)
<223> Clostridium kluyveri Phosphotransacetylase (PTA) gene sequence

<400> 3
atgaaaattaa tggaaaatat tttggttta gccaaagcag ataagaaaaa aattgtttg 60
gcagaaggag aagaagaaag gaacattaga gcttccgaag aaataataag ggatggtatt 120
gcagatataa ttttagtagg aagtgaaagt gtaataaaag agaatgcagc taaatttggg 180
gttaacttag ctggagtgga aatagtagat cctgaaactt caagtaaaac tgcaggctat 240
gccaatgctt tttatgaaat tagaaagaat aaaggagttt cactggaaaa agcagataaa 300
atagtttagag atcctatata ttttgcaca atgatggta aacttggaga tgcagatgg 360
ttagtttcag gtgcaatacaca tacaacggga gatctttga gaccaggact tcaaatacg 420
aagacagttc caggtgcttc tgtggttcc agtgtatccc taatgagtgtt accagattgt 480
gaatatggag aagatggatt cttgttattt gctgattgtg ctgtaaatgt atgtcctact 540
gctgaagaat tatcttcaat tgcaataact acagcagaaaa ctgcaaaaaaa tttgtgtaaa 600
atagaaccaa gagttgccat gcttcattt tctactatgg gaagtgcgtg tcatgaattt 660
gtagataaag ttacaaaagc aacaaaactt gctaaagaag ctagacctga tttggatata 720
gatggagaac ttcaatttggta tgcttcccta gtaaaaaaaag ttgcagactt aaaagctccg 780
ggcagtaaag tggcaggaaa agccaatgtt cttatattcc ctgatatacaca agcagggaaat 840
ataggatata agtttagttca aagatttgcata aagactgagg ctataggacc tataatgtcag 900
ggatttgcaa agcctataaa tgatttatca agaggctgca gcgttgatga tataatgtt 960
gtatggctg taactgcagt tcaagcacag gcacagggtt ag 1002

<210> 4
<211> 333
<212> PRT
<213> Clostridium kluyveri

<220>
<221> misc_feature
<222> (1)..(333)
<223> Clostridium kluyveri Phosphotransacetylase (PTA) protein sequence

<400> 4

Met Lys Leu Met Glu Asn Ile Phe Gly Leu Ala Lys Ala Asp Lys Lys
1 5 10 15

Lys Ile Val Leu Ala Glu Gly Glu Glu Glu Arg Asn Ile Arg Ala Ser
Page 6

Glu Glu Ile Ile Arg Asp Gly Ile Ala Asp Ile Ile Leu Val Gly Ser
35 40 45

Glu Ser Val Ile Lys Glu Asn Ala Ala Lys Phe Gly Val Asn Leu Ala
50 55 60

Gly Val Glu Ile Val Asp Pro Glu Thr Ser Ser Lys Thr Ala Gly Tyr
65 70 75 80

Ala Asn Ala Phe Tyr Glu Ile Arg Lys Asn Lys Gly Val Thr Leu Glu
85 90 95

Lys Ala Asp Lys Ile Val Arg Asp Pro Ile Tyr Phe Ala Thr Met Met
100 105 110

Val Lys Leu Gly Asp Ala Asp Gly Leu Val Ser Gly Ala Ile His Thr
115 120 125

Thr Gly Asp Leu Leu Arg Pro Gly Leu Gln Ile Val Lys Thr Val Pro
130 135 140

Gly Ala Ser Val Val Ser Ser Val Phe Leu Met Ser Val Pro Asp Cys
145 150 155 160

Glu Tyr Gly Glu Asp Gly Phe Leu Leu Phe Ala Asp Cys Ala Val Asn
165 170 175

Val Cys Pro Thr Ala Glu Glu Leu Ser Ser Ile Ala Ile Thr Thr Ala
180 185 190

Glu Thr Ala Lys Asn Leu Cys Lys Ile Glu Pro Arg Val Ala Met Leu
195 200 205

Ser Phe Ser Thr Met Gly Ser Ala Ser His Glu Leu Val Asp Lys Val
210 215 220

Thr Lys Ala Thr Lys Leu Ala Lys Glu Ala Arg Pro Asp Leu Asp Ile
225 230 235 240

Asp Gly Glu Leu Gln Leu Asp Ala Ser Leu Val Lys Lys Val Ala Asp
245 250 255

Leu Lys Ala Pro Gly Ser Lys Val Ala Gly Lys Ala Asn Val Leu Ile
260 265 270

Phe Pro Asp Ile Gln Ala Gly Asn Ile Gly Tyr Lys Leu Val Gln Arg
275 280 285

Phe Ala Lys Ala Glu Ala Ile Gly Pro Ile Cys Gln Gly Phe Ala Lys
Page 7

290

2014_03_12_107345_00466_ST25
295 300

Pro Ile Asn Asp Leu Ser Arg Gly Cys Ser Val Asp Asp Ile Val Lys
305 310 315 320

Val Val Ala Val Thr Ala Val Gln Ala Gln Ala Gln Gly
325 330

<210> 5
<211> 753
<212> DNA
<213> S. cerevisiae

<220>
<221> misc_feature
<222> (1)..(753)
<223> Nucleotide sequence of GPP1/RHR2 of S. cerevisiae

<400> 5
atgccttga ccacaaaacc tttatctttg aaaatcaacg ccgctctatt cgatgttgac 60
ggtaccatca tcatctctca accagccatt gctgcttct ggagagattt cggtaaagac 120
aaggcattact tcgatgccga acacgttatt cacatctctc acgggtggag aacttacgat 180
gccattgcca agttcgctcc agactttgct gatgaagaat acgttaacaa gctagaaggt 240
gaaatcccag aaaagtacgg tgaacactcc atcgaagttc caggtgctgt caagttgtgt 300
aatgccttga acgccttgcc aaaggaaaaa tgggctgtcg ccacctctgg taccctgtac 360
atggccaaga aatggttcga catttgaag atcaagagac cagaatactt catcaccgccc 420
aatgatgtca agcaaggtaa gcctcaccca gaaccatact taaagggttag aaacggtttg 480
ggtttcccaa ttaatgaaca agacccatcc aaatctaagg ttgttgtctt tgaagacgca 540
ccagctggta ttgctgctgg taaggctgct ggctgtaaaa tcgttggtat tgctaccact 600
ttcgatttgg acttcttgaa ggaaaagggt tgtgacatca ttgtcaagaa ccacgaatct 660
atcagagtcg gtgaatacaa cgctgaaacc gatgaagtcg aattgatctt tcatgactac 720
ttatacgcta aggatgactt gttgaaatgg taa 753

<210> 6
<211> 250
<212> PRT
<213> S. cerevisiae

<220>
<221> misc_feature
<222> (1)..(250)
<223> Protein sequence of Gpp1/Rhr2 of S. cerevisiae

<400> 6

Met Pro Leu Thr Thr Lys Pro Leu Ser Leu Lys Ile Asn Ala Ala Leu
1 5 10 15

Phe Asp Val Asp Gly Thr Ile Ile Ser Gln Pro Ala Ile Ala Ala
Page 8

20

2014_03_12_107345_00466_ST25
25 30

Phe Trp Arg Asp Phe Gly Lys Asp Lys Pro Tyr Phe Asp Ala Glu His
35 40 45

Val Ile His Ile Ser His Gly Trp Arg Thr Tyr Asp Ala Ile Ala Lys
50 55 60

Phe Ala Pro Asp Phe Ala Asp Glu Glu Tyr Val Asn Lys Leu Glu Gly
65 70 75 80

Glu Ile Pro Glu Lys Tyr Gly Glu His Ser Ile Glu Val Pro Gly Ala
85 90 95

Val Lys Leu Cys Asn Ala Leu Asn Ala Leu Pro Lys Glu Lys Trp Ala
100 105 110

Val Ala Thr Ser Gly Thr Arg Asp Met Ala Lys Lys Trp Phe Asp Ile
115 120 125

Leu Lys Ile Lys Arg Pro Glu Tyr Phe Ile Thr Ala Asn Asp Val Lys
130 135 140

Gln Gly Lys Pro His Pro Glu Pro Tyr Leu Lys Gly Arg Asn Gly Leu
145 150 155 160

Gly Phe Pro Ile Asn Glu Gln Asp Pro Ser Lys Ser Lys Val Val Val
165 170 175

Phe Glu Asp Ala Pro Ala Gly Ile Ala Ala Gly Lys Ala Ala Gly Cys
180 185 190

Lys Ile Val Gly Ile Ala Thr Thr Phe Asp Leu Asp Phe Leu Lys Glu
195 200 205

Lys Gly Cys Asp Ile Ile Val Lys Asn His Glu Ser Ile Arg Val Gly
210 215 220

Glu Tyr Asn Ala Glu Thr Asp Glu Val Glu Leu Ile Phe Asp Asp Tyr
225 230 235 240

Leu Tyr Ala Lys Asp Asp Leu Leu Lys Trp
245 250

<210> 7
<211> 753
<212> DNA
<213> S. cerevisiae

<220>
<221> misc_feature
<222> (1)..(753)

2014_03_12_107345_00466_ST25

<223> Nucleotide sequence of GPP2/HOR2 of *S. cerevisiae*

<400> 7

atgggattga ctactaaacc tctatcttg aaagttaacg ccgccttggtt cgacgtcgac	60
ggtaccatta tcatctctca accagccatt gctgcattct ggagggattt cggttaaggac	120
aaaccttatt tcgatgctga acacgttatac caagtctgc atggttggag aacgtttgat	180
gccattgcta agttcgctcc agacttgcc aatgaagagt atgttaacaa attagaagct	240
gaaattccgg tcaagtacgg tgaaaaatcc attgaagtcc caggtgcagt taagctgtgc	300
aacgcttga acgctctacc aaaagagaaa tgggctgtgg caacttccgg tacccgtgat	360
atggcacaaa aatggttcga gcatctggga atcaggagac caaagtactt cattaccgct	420
aatgatgtca aacaggtaa gcctcatcca gaaccatatac tgaagggcag gaatggctta	480
ggatatccga tcaatgagca agacccttcc aatctaagg tagtagtatt tgaagacgct	540
ccagcaggta ttgccgcggg aaaagccgcc ggtttaaga tcattggat tgccactact	600
ttcgacttgg acttcctaaa ggaaaaaggc tgtgacatca ttgtcaaaaa ccacgaatcc	660
atcagagttg gcgctacaa tgccaaaca gacgaagttg aattcatttt tgacgactac	720
ttatatgcta aggacgatct gttgaaatgg taa	753

<210> 8

<211> 250

<212> PRT

<213> *S. cerevisiae*

<220>

<221> misc_feature

<222> (1)..(250)

<223> Protein sequence of Gpp2/Hor2 of *S. cerevisiae*

<400> 8

Met	Gly	Leu	Thr	Thr	Lys	Pro	Leu	Ser	Leu	Lys	Val	Asn	Ala	Ala	Leu
1					5				10					15	

Phe	Asp	Val	Asp	Gly	Thr	Ile	Ile	Ile	Ser	Gln	Pro	Ala	Ile	Ala	Ala
						20			25				30		

Phe	Trp	Arg	Asp	Phe	Gly	Lys	Asp	Lys	Pro	Tyr	Phe	Asp	Ala	Glu	His
						35		40					45		

Val	Ile	Gln	Val	Ser	His	Gly	Trp	Arg	Thr	Phe	Asp	Ala	Ile	Ala	Lys
					50				55				60		

Phe	Ala	Pro	Asp	Phe	Ala	Asn	Glu	Glu	Tyr	Val	Asn	Lys	Leu	Glu	Ala
						65		70		75			80		

Glu	Ile	Pro	Val	Lys	Tyr	Gly	Glu	Lys	Ser	Ile	Glu	Val	Pro	Gly	Ala
						85			90				95		

Val	Lys	Leu	Cys	Asn	Ala	Leu	Asn	Ala	Leu	Pro	Lys	Glu	Lys	Trp	Ala

2014_03_12_107345_00466_ST25
100 105 110

Val Ala Thr Ser Gly Thr Arg Asp Met Ala Gln Lys Trp Phe Glu His
115 120 125

Leu Gly Ile Arg Arg Pro Lys Tyr Phe Ile Thr Ala Asn Asp Val Lys
130 135 140

Gln Gly Lys Pro His Pro Glu Pro Tyr Leu Lys Gly Arg Asn Gly Leu
145 150 155 160

Gly Tyr Pro Ile Asn Glu Gln Asp Pro Ser Lys Ser Lys Val Val Val
165 170 175

Phe Glu Asp Ala Pro Ala Gly Ile Ala Ala Gly Lys Ala Ala Gly Cys
180 185 190

Lys Ile Ile Gly Ile Ala Thr Thr Phe Asp Leu Asp Phe Leu Lys Glu
195 200 205

Lys Gly Cys Asp Ile Ile Val Lys Asn His Glu Ser Ile Arg Val Gly
210 215 220

Gly Tyr Asn Ala Glu Thr Asp Glu Val Glu Phe Ile Phe Asp Asp Tyr
225 230 235 240

Leu Tyr Ala Lys Asp Asp Leu Leu Lys Trp
245 250

<210> 9
<211> 1380
<212> DNA
<213> Dickeya zaeae

<220>
<221> misc_feature
<222> (1)..(1380)
<223> Dickeya zaeae eutE gene sequence

<400> 9
atggagcatt cagttatcga accgacagtg cccatgccgc tgccagccat gtttgacgct 60
ccatctggaa tctttctag cctggacgt gcagtccagg cggcaaccct ggcacaacaa
cagttgtcgt ctgtggagtt acgccagcaa gttattaaag caatttaggt tgcaggcgaa
cgctatgcac aggttctggc ggaatggcg gtggctgaaa caggtatggg tcgggttagtg 180
gataaaataca ttaaaaatgt ttcacaggct cgccatacac cccgcattga atgtctgagc
gcggaagttc tgacaggcga caatggcctg acactgattt aaaaatgcccc ttggggagtg 240
gtggcttccg tgacgccaag caccaacccca gccgcacag tcatcaataa tgcaatttcc
atgattgcgg cagggattc agtcgtttt gcaccgcacc catccgccaa aatgtgtcc 300
ttacgcacaa tatcgcttct taacaaagca attgtggcga caggtgggcc agaaaatctg 360
420
480
540

2014_03_12_107345_00466_ST25

ctggtatccg	tcgcaaatcc	caacatcgaa	acagctcaac	gcctgttccg	ttatccaggt	600
attggattac	tcgtcgtaac	aggtgtgag	gcggtgtgg	aagcggcgcg	caaacacact	660
gataaacgtt	taattgccgc	aggcgccgga	aaccccccag	tagtcgttga	cgaaacagcg	720
gatataccga	aagccgctcg	cgcaatagta	aaggcgctt	cgtttgacaa	aatattatt	780
tgtgccgacg	agaaagtatt	aatcgtggtt	gatcgctag	ccgacgcctt	attagccgaa	840
atgcaacgca	acaatgctgt	tttactgacg	cctgaacaga	cagaacgact	tctgcccgt	900
ttgctgagcg	atatacatgt	gcaggggaag	ggacgcgtga	accgcgatta	tgtggggagg	960
gatgccgcta	aactagccgc	ggccattgggt	ttagaagtgt	cagaacacac	aagattatta	1020
cttgctgaaa	cagatgctga	tcatcccttt	gcagtaaccg	aattaatgtat	gcccgtattt	1080
cctgttatcc	gtgtaaaaaa	cgttgatgac	gccattgccc	tcgctgtaaa	acttgagagt	1140
ggttgtcgtc	acactgcagc	aatgcattcg	acaaacattt	ggaacctgaa	tcggatggca	1200
aatgctataa	atacatcaat	tttggtaaaa	aatggtccgt	gtatcgctgg	gctgggcctg	1260
ggtggcgagg	gctggacgtc	gatgactata	tctacaccca	caggggaagg	agttacctca	1320
gcacgcaccc	tcgtacgttt	acgttagatgt	gtattggttt	acatgttcag	aatcgctaa	1380

<210> 10
<211> 459
<212> PRT
<213> Dickeya zae

<220>
<221> misc_feature
<222> (1)..(459)
<223> Dickeya zae eutE protein sequence

<400> 10

Met Glu His Ser Val Ile Glu Pro Thr Val Pro Met Pro Leu Pro Ala
1 5 10 15

Met Phe Asp Ala Pro Ser Gly Ile Phe Ser Ser Leu Asp Asp Ala Val
20 25 30

Gln Ala Ala Thr Leu Ala Gln Gln Gln Leu Ser Ser Val Glu Leu Arg
35 40 45

Gln Gln Val Ile Lys Ala Ile Arg Val Ala Gly Glu Arg Tyr Ala Gln
50 55 60

Val Leu Ala Glu Met Ala Val Ala Glu Thr Gly Met Gly Arg Val Val
65 70 75 80

Asp Lys Tyr Ile Lys Asn Val Ser Gln Ala Arg His Thr Pro Gly Ile
85 90 95

Glu Cys Leu Ser Ala Glu Val Leu Thr Gly Asp Asn Gly Leu Thr Leu
Page 12

2014_03_12_107345_00466_ST25
100 105 110

Ile Glu Asn Ala Pro Trp Gly Val Val Ala Ser Val Thr Pro Ser Thr
115 120 125

Asn Pro Ala Ala Thr Val Ile Asn Asn Ala Ile Ser Met Ile Ala Ala
130 135 140

Gly Asn Ser Val Val Phe Ala Pro His Pro Ser Ala Lys Asn Val Ser
145 150 155 160

Leu Arg Thr Ile Ser Leu Leu Asn Lys Ala Ile Val Ala Thr Gly Gly
165 170 175

Pro Glu Asn Leu Leu Val Ser Val Ala Asn Pro Asn Ile Glu Thr Ala
180 185 190

Gln Arg Leu Phe Arg Tyr Pro Gly Ile Gly Leu Leu Val Val Thr Gly
195 200 205

Gly Glu Ala Val Val Glu Ala Ala Arg Lys His Thr Asp Lys Arg Leu
210 215 220

Ile Ala Ala Gly Ala Gly Asn Pro Pro Val Val Val Asp Glu Thr Ala
225 230 235 240

Asp Ile Pro Lys Ala Ala Arg Ala Ile Val Lys Gly Ala Ser Phe Asp
245 250 255

Asn Asn Ile Ile Cys Ala Asp Glu Lys Val Leu Ile Val Val Asp Arg
260 265 270

Val Ala Asp Ala Leu Leu Ala Glu Met Gln Arg Asn Asn Ala Val Leu
275 280 285

Leu Thr Pro Glu Gln Thr Glu Arg Leu Leu Pro Ala Leu Leu Ser Asp
290 295 300

Ile Asp Glu Gln Gly Lys Gly Arg Val Asn Arg Asp Tyr Val Gly Arg
305 310 315 320

Asp Ala Ala Lys Leu Ala Ala Ala Ile Gly Leu Glu Val Ser Glu His
325 330 335

Thr Arg Leu Leu Leu Ala Glu Thr Asp Ala Asp His Pro Phe Ala Val
340 345 350

Thr Glu Leu Met Met Pro Val Leu Pro Val Ile Arg Val Lys Asn Val
355 360 365

Asp Asp Ala Ile Ala Leu Ala Val Lys Leu Glu Ser Gly Cys Arg His
Page 13

370

2014_03_12_107345_00466_ST25
375 380

Thr Ala Ala Met His Ser Thr Asn Ile Arg Asn Leu Asn Arg Met Ala
385 390 395 400

Asn Ala Ile Asn Thr Ser Ile Phe Val Lys Asn Gly Pro Cys Ile Ala
405 410 415

Gly Leu Gly Leu Gly Gly Glu Gly Trp Thr Ser Met Thr Ile Ser Thr
420 425 430

Pro Thr Gly Glu Gly Val Thr Ser Ala Arg Thr Phe Val Arg Leu Arg
435 440 445

Arg Cys Val Leu Val Asp Met Phe Arg Ile Ala
450 455

<210> 11
<211> 1798
<212> DNA
<213> *Saccharomyces cerevisiae*

```
<220>
<221> misc_feature
<222> (1)..(1798)
<223> Saccharomyces cerevisiae ALD4 nucleotide sequence

<400> 11
gcacccaggg acacacagca gcgaagtatt ttcagaatgt tcagtagatc tacgctctgc 60
ttaaagacgt ctgcattcctc cattggaga cttcaattga gatatttctc acaccttccc 120
atgacagtgc ctatcaagct gcccaatggg ttgaaatatg agcaaccaac ggggttggc 180
atcaacaaca agtttggcc ttctaaacag aacaagacct tcgaagtcat taacccttcc 240
acggaagaag aaatatgtca tatttatgaa ggttagagagg acgtgtgga agaggccgtg 300
caggccgccc accgtgcctt ctctaatggg tcttggaaacg gtatcgaccc tattgacagg 360
ggtaaggctt tgtacaggtt agccgaatta attgaacagg acaaggatgt cattgcttcc 420
atcgagactt tggataacgg taaagctatc tcttcctcga gaggagatgt tgatttagtc 480
atcaactatt tgaatcttc tgctggcttt gctgataaaa ttgatggtag aatgattgat 540
actggtagaa cccattttc ttacactaag agacagccctt tgggtgtttg tgggcagatt 600
attccttggaa atttccact gttgatgtgg gccttggaa ttcgcctgc tttggtcacc 660
ggtaacaccg tcgtgttgaa gactgccgaa tccacccat tgcgtgtttt gtatgtgtct 720
aaatacatcc cacaggcggg tattccacct ggtgtgatca acattgtatc cgggtttgg 780
aagattgtgg gtgaggccat tacaaaccat caaaaaatca aaaaggttgc cttcacaggg 840
tccacggcta cgggttagaca catttaccag tccgcagccg caggcttgaa aaaagtgact 900
ttggagctgg gtggtaaattc accaaacatt gtcttcgcgg acgcccgggttca 960
gtgcaaaaca ttatccttgg tatctactac aattctggtg aggtctgttg tgcgggttca 1020
```

2014_03_12_107345_00466_ST25

agggtgtatg ttgaagaatc tatttacgac aaattcattg aagagttcaa agccgcttct	1080
gaatccatca aggtggcgaa cccattcgat gaatctactt tccaagggtgc acaaacctct	1140
caaatgcaac taaacaaaat cttgaaatac gttgacattt gtaagaatga aggtgctact	1200
ttgattaccg gtggtaaaag attaggtac aagggttact tcattaagcc aactgtcttt	1260
ggtgacgtta aggaagacat gagaattgtc aaagaggaaa tctttggccc tgggtgcact	1320
gtaaccaaatt tcaaattctgc cgacgaagtc attaacatgg cgaacgattc tgaatacggg	1380
ttggctgctg gtattcacac ctctaattt aataccgcct taaaagtggc tgatagagtt	1440
aatgcggta cggcttgat aaacacttat aacgattcc accacgcagt tccttcggt	1500
gggttcaatg catctggttt gggcagggaa atgtctgtt atgcattaca aaactacttg	1560
caagttaaag cggccgtgc caaattggac gagtaaggc atcaataagc ctgggtgtcca	1620
atcgatgctt acatacataa aattaaatat tctgtctctg ttatatttcc acatgtcatc	1680
atttcaaata tatgtacttt aaagaaaata aaataaaaaaa taaaattttt ttctccgat	1740
aatcaatttt cttaaattaaat taattgcgtt acgaaacgcg atcgccgacg ccgccgat	1798

<210> 12
<211> 519
<212> PRT
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<222> (1)..(519)
<223> *Saccharomyces cerevisiae* ALD4 protein sequence

<400> 12

Met Phe Ser Arg Ser Thr Leu Cys Leu Lys Thr Ser Ala Ser Ser Ile
1 5 10 15

Gly Arg Leu Gln Leu Arg Tyr Phe Ser His Leu Pro Met Thr Val Pro
20 25 30

Ile Lys Leu Pro Asn Gly Leu Glu Tyr Glu Gln Pro Thr Gly Leu Phe
35 40 45

Ile Asn Asn Lys Phe Val Pro Ser Lys Gln Asn Lys Thr Phe Glu Val
50 55 60

Ile Asn Pro Ser Thr Glu Glu Glu Ile Cys His Ile Tyr Glu Gly Arg
65 70 75 80

Glu Asp Asp Val Glu Glu Ala Val Gln Ala Ala Asp Arg Ala Phe Ser
85 90 95

Asn Gly Ser Trp Asn Gly Ile Asp Pro Ile Asp Arg Gly Lys Ala Leu
100 105 110

2014_03_12_107345_00466_ST25

Tyr Arg Leu Ala Glu Leu Ile Glu Gln Asp Lys Asp Val Ile Ala Ser
115 120 125

Ile Glu Thr Leu Asp Asn Gly Lys Ala Ile Ser Ser Ser Arg Gly Asp
130 135 140

Val Asp Leu Val Ile Asn Tyr Leu Lys Ser Ser Ala Gly Phe Ala Asp
145 150 155 160

Lys Ile Asp Gly Arg Met Ile Asp Thr Gly Arg Thr His Phe Ser Tyr
165 170 175

Thr Lys Arg Gln Pro Leu Gly Val Cys Gly Gln Ile Ile Pro Trp Asn
180 185 190

Phe Pro Leu Leu Met Trp Ala Trp Lys Ile Ala Pro Ala Leu Val Thr
195 200 205

Gly Asn Thr Val Val Leu Lys Thr Ala Glu Ser Thr Pro Leu Ser Ala
210 215 220

Leu Tyr Val Ser Lys Tyr Ile Pro Gln Ala Gly Ile Pro Pro Gly Val
225 230 235 240

Ile Asn Ile Val Ser Gly Phe Gly Lys Ile Val Gly Glu Ala Ile Thr
245 250 255

Asn His Pro Lys Ile Lys Lys Val Ala Phe Thr Gly Ser Thr Ala Thr
260 265 270

Gly Arg His Ile Tyr Gln Ser Ala Ala Ala Gly Leu Lys Lys Val Thr
275 280 285

Leu Glu Leu Gly Gly Lys Ser Pro Asn Ile Val Phe Ala Asp Ala Glu
290 295 300

Leu Lys Lys Ala Val Gln Asn Ile Ile Leu Gly Ile Tyr Tyr Asn Ser
305 310 315 320

Gly Glu Val Cys Cys Ala Gly Ser Arg Val Tyr Val Glu Glu Ser Ile
325 330 335

Tyr Asp Lys Phe Ile Glu Glu Phe Lys Ala Ala Ser Glu Ser Ile Lys
340 345 350

Val Gly Asp Pro Phe Asp Glu Ser Thr Phe Gln Gly Ala Gln Thr Ser
355 360 365

Gln Met Gln Leu Asn Lys Ile Leu Lys Tyr Val Asp Ile Gly Lys Asn
370 375 380

2014_03_12_107345_00466_ST25

Glu Gly Ala Thr Leu Ile Thr Gly Gly Glu Arg Leu Gly Ser Lys Gly
385 390 395 400

Tyr Phe Ile Lys Pro Thr Val Phe Gly Asp Val Lys Glu Asp Met Arg
405 410 415

Ile Val Lys Glu Glu Ile Phe Gly Pro Val Val Thr Val Thr Lys Phe
420 425 430

Lys Ser Ala Asp Glu Val Ile Asn Met Ala Asn Asp Ser Glu Tyr Gly
435 440 445

Leu Ala Ala Gly Ile His Thr Ser Asn Ile Asn Thr Ala Leu Lys Val
450 455 460

Ala Asp Arg Val Asn Ala Gly Thr Val Trp Ile Asn Thr Tyr Asn Asp
465 470 475 480

Phe His His Ala Val Pro Phe Gly Gly Phe Asn Ala Ser Gly Leu Gly
485 490 495

Arg Glu Met Ser Val Asp Ala Leu Gln Asn Tyr Leu Gln Val Lys Ala
500 505 510

Val Arg Ala Lys Leu Asp Glu
515

<210> 13
<211> 2744
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<222> (1)..(2744)
<223> *Saccharomyces cerevisiae* cytosolic aldehyde dehydrogenase 6
(ALD6) nucleotide sequence

<400> 13
catatggcgt atccaagccg aaaccctttg cctcatcccc acggaataag gcagccgaca 60
aaagaaaaac gaccgaaaag gaaccagaaa gaaaaaagag ggtgggcgcg ccgcggacgt 120
gtaaaaagat atgcatccag cttctatatac gctttaactt taccgttttgc ggcatcgaa 180
acgtatgtaa cattgatctc ctctggaa cggtgagtgc aacagatgcg atatagcacc 240
gaccatgtgg gcaaattcgt aataaattcg gggtgagggg gattcaagac aagcaacctt 300
gttagtcagc tcaaacagcg atttaacggt tgagtaaacac atcaaaacac cgttcgaggt 360
caaggctggc gtgtttaaca agttcttgat atcatatata aatgtaaataa gaagtttggt 420
aatattcaat tcgaagtgtt cagtccttta cttctttgt tttatagaag aaaaaacatc 480
aagaaacatc tttAACATAC acaaACACAT actatcAGAA tacaatGACT aagctacACT 540

2014_03_12_107345_00466_ST25	
ttgacactgc	tgaaccagtc aagatcacac ttccaaatgg tttgacatac gagcaaccaa 600
ccggcttatt	cattaacaac aagtttatga aagctcaaga cggttaagacc tatcccgtcg 660
aagatccttc	cactgaaaac accgtttgtg aggtctcttc tgccaccact gaagatgtt 720
aatatgctat	cgaatgtgcc gaccgtgctt tccacgacac tgaatgggct acccaagacc 780
caagagaaag	aggccgtcta ctaagtaagt tggctgacga attggaaagc caaattgact 840
tggttcttc	cattgaagct ttggacaatg gtaaaacttt ggcctttaag gcccgtgggg 900
atgttaccat	tgcaatcaac tgtctaagag atgctgctgc ctatgccgac aaagtcaacg 960
gtagaacaat	caacaccggt gacggctaca tgaacttcac caccttagag ccaatcggtg 1020
tctgtggta	aattattcca tggaaactttc caataatgat gttggcttgg aagatcgccc 1080
cagcattggc	catgggtaac gtctgtatct tgaacccgc tgctgtcaca cctttaatg 1140
ccctatactt	tgcttctta tgtaagaagg ttggattcc agctggtgtc gtcaacatcg 1200
ttccaggtcc	tggtagaact gttggtgctg ctttgaccaa cgacccaaga atcagaaagc 1260
tggctttac	cggttctaca gaagtccgt aaggtttgc tgtcgactct tctgaatcta 1320
acttgaagaa	aatcactttg gaacttaggtg gtaagtcgc ccatttggtc tttgacgatg 1380
ctaacattaa	gaagacttta ccaaattctag taaacggtat tttcaagaac gctggtaaaa 1440
tttggcctc	tggttctaga attacgttc aagaaggat ttagacgaa ctattggctg 1500
ctttcaaggc	ttacttggaa accgaaatca aagttggtaa tccatttgac aaggctaact 1560
tccaagggtc	tatcaactaac cgtaacaat tcgacacaat tatgaactac atcgatatcg 1620
gtaagaaaga	aggcgccaag atcttaactg gtggcggaaa agttggtgac aagggttact 1680
tcatcagacc	aaccgttttc tacgatgtt atgaagacat gagaattgtt aaggaagaaa 1740
tttttggacc	agttgtcact gtcgaaagt tcaagacttt agaagaaggt gtcgaaatgg 1800
ctaacagctc	tgaattcggt ctaggttctg gtatcgaaac agaatctttg agcacagggt 1860
tgaaggtggc	caagatgtt aaggccgtt ccgtctggat caacacatac aacgattttg 1920
actccagagt	tccattcggt ggtgttaagc aatctgtt cgttagagaa atgggtgaag 1980
aagtctacca	tgcatacact gaagtaaaag ctgtcagaat taagttgtaa tgtaccaacc 2040
tgcatttctt	tccgtcatat acacaaaata ctttcatata aacttacttg gtcttacgtc 2100
ataaataaat	atgtatacat ataaattaaa aaatttggtt ttatatttt aaaaaagaaa 2160
tcgtttactt	catttctccc ttttaagcga tacaatccat gaaaaaagag aaaaagagag 2220
aacaggctt	tgcccttctt aaaacatccc acacaaaatc atattgaatt gaattttaca 2280
tcttaagcta	gtgtacaaca actgctatat ccaaagaaaa ctaacgtgga ccgcttttag 2340
agttgagaaa	aaggttgaa aaaaatagca atacaagac ttgtttcata tataaaatac 2400
agggagcaca	ttgagctaatacataa cactgcaac caattccat caaaaggtac 2460
acatgagagc	attccccga gtactgcccatt ttcgccatca gagatcatat aataacatcc 2520
ttcttcgaac	agtaaggctt tttggttcat cactttcttc ttttggatttc tctaggcaaa 2580

2014_03_12_107345_00466_ST25
 tgccttaaggt ggaccctgac aataccgctg caatgctact acagaaaaac ttgatccaaa 2640
 gaaacaacat gctctatggg tatggatcag ggacaatacg atgtactttg ctagactcaa 2700
 ctggacgagc caaatcacca ttagtagaga taaaacgtga ggat 2744

<210> 14
 <211> 500
 <212> PRT
 <213> *Saccharomyces cerevisiae*

<220>
 <221> misc_feature
 <222> (1)..(500)
 <223> *Saccharomyces cerevisiae* cytosolic aldehyde dehydrogenase 6 (ALD6) protein sequence

<400> 14

Met Thr Lys Leu His Phe Asp Thr Ala Glu Pro Val Lys Ile Thr Leu
 1 5 10 15

Pro Asn Gly Leu Thr Tyr Glu Gln Pro Thr Gly Leu Phe Ile Asn Asn
 20 25 30

Lys Phe Met Lys Ala Gln Asp Gly Lys Thr Tyr Pro Val Glu Asp Pro
 35 40 45

Ser Thr Glu Asn Thr Val Cys Glu Val Ser Ser Ala Thr Thr Glu Asp
 50 55 60

Val Glu Tyr Ala Ile Glu Cys Ala Asp Arg Ala Phe His Asp Thr Glu
 65 70 75 80

Trp Ala Thr Gln Asp Pro Arg Glu Arg Gly Arg Leu Leu Ser Lys Leu
 85 90 95

Ala Asp Glu Leu Glu Ser Gln Ile Asp Leu Val Ser Ser Ile Glu Ala
 100 105 110

Leu Asp Asn Gly Lys Thr Leu Ala Leu Ala Arg Gly Asp Val Thr Ile
 115 120 125

Ala Ile Asn Cys Leu Arg Asp Ala Ala Ala Tyr Ala Asp Lys Val Asn
 130 135 140

Gly Arg Thr Ile Asn Thr Gly Asp Gly Tyr Met Asn Phe Thr Thr Leu
 145 150 155 160

Glu Pro Ile Gly Val Cys Gly Gln Ile Ile Pro Trp Asn Phe Pro Ile
 165 170 175

Met Met Leu Ala Trp Lys Ile Ala Pro Ala Leu Ala Met Gly Asn Val
 180 185 190

2014_03_12_107345_00466_ST25

Cys Ile Leu Lys Pro Ala Ala Val Thr Pro Leu Asn Ala Leu Tyr Phe
195 200 205

Ala Ser Leu Cys Lys Lys Val Gly Ile Pro Ala Gly Val Val Asn Ile
210 215 220

Val Pro Gly Pro Gly Arg Thr Val Gly Ala Ala Leu Thr Asn Asp Pro
225 230 235 240

Arg Ile Arg Lys Leu Ala Phe Thr Gly Ser Thr Glu Val Gly Lys Ser
245 250 255

Val Ala Val Asp Ser Ser Glu Ser Asn Leu Lys Lys Ile Thr Leu Glu
260 265 270

Leu Gly Gly Lys Ser Ala His Leu Val Phe Asp Asp Ala Asn Ile Lys
275 280 285

Lys Thr Leu Pro Asn Leu Val Asn Gly Ile Phe Lys Asn Ala Gly Gln
290 295 300

Ile Cys Ser Ser Gly Ser Arg Ile Tyr Val Gln Glu Gly Ile Tyr Asp
305 310 315 320

Glu Leu Leu Ala Ala Phe Lys Ala Tyr Leu Glu Thr Glu Ile Lys Val
325 330 335

Gly Asn Pro Phe Asp Lys Ala Asn Phe Gln Gly Ala Ile Thr Asn Arg
340 345 350

Gln Gln Phe Asp Thr Ile Met Asn Tyr Ile Asp Ile Gly Lys Lys Glu
355 360 365

Gly Ala Lys Ile Leu Thr Gly Gly Glu Lys Val Gly Asp Lys Gly Tyr
370 375 380

Phe Ile Arg Pro Thr Val Phe Tyr Asp Val Asn Glu Asp Met Arg Ile
385 390 395 400

Val Lys Glu Glu Ile Phe Gly Pro Val Val Thr Val Ala Lys Phe Lys
405 410 415

Thr Leu Glu Glu Gly Val Glu Met Ala Asn Ser Ser Glu Phe Gly Leu
420 425 430

Gly Ser Gly Ile Glu Thr Glu Ser Leu Ser Thr Gly Leu Lys Val Ala
435 440 445

Lys Met Leu Lys Ala Gly Thr Val Trp Ile Asn Thr Tyr Asn Asp Phe
450 455 460

2014_03_12_107345_00466_ST25

Asp Ser Arg Val Pro Phe Gly Gly Val Lys Gln Ser Gly Tyr Gly Arg
465 470 475 480

Glu Met Gly Glu Glu Val Tyr His Ala Tyr Thr Glu Val Lys Ala Val
485 490 495

Arg Ile Lys Leu
500

<210> 15
<211> 2728
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<222> (1)..(2728)
<223> *Saccharomyces cerevisiae* ACS1 nucleotide sequence

<400> 15
acctcccgcg acctccaaaa tcgaactacc ttcacaatgt cggccctctgc cgtacaatca 60
tcaaaaactag aagaacagtc aagtgaaatt gacaagttga aagcaaaaat gtcccagtct 120
gcctccactg cgcagcagaa gaaggaacat gagtatgaac atttgaccc ggtcaagatc 180
gtgccacaac ggcccatttc agatagactg cagcccgaa ttgctaccca ctattctcca 240
cacttggacg ggttgcagga ctatcagcgc ttgcacaagg agtctattga agaccctgct 300
aagttcttcg gttctaaagc taccaattt ttaaactggc ctaagccatt cgataaggtg 360
ttcatccag actctaaaac gggtaggccc tccttccaga acaatgcatt gttcctcaac 420
ggccaattaa acgcctgtta caactgtgtt gacagacatg ccttgaagac ccctaacaag 480
aaagccatta ttttgcagg tgacgagcct ggccaaggct attccattac ctacaaggaa 540
ctacttgaag aagtttgcata agtggcacaat gtgctgactt actctatggg cgttcgcaag 600
ggcgatactg ttgcgtgtt catgcctatg gtcccagaag caatcataac cttgttggcc 660
atttccgtt tcggcgccat tcactccgtt gtcttgcgg ggttttcttc caactccttg 720
agagatcgta tcaacgttgg ggactctaaa gttgtcatca ctacagatga atccaacaga 780
ggtggtttaag tcattgagac taaaagaatt gttgtgacg cgctaaagaga gaccccgagg 840
gtgagacacg tcttggttt tagaaagacc aacaatccat ctgttgcttt ccatgcccc 900
agagatttag attgggcaac agaaaagaag aaatacaaga cctactatcc atgcacaccc 960
gttgattctg aggatccatt attcttgcgtt tatacgtctg gttctactgg tgcccccaag 1020
ggtgttcaac attctaccgc agtttacttg ctgggagctt tggatgaccat ggcctacact 1080
tttgacactc accaagaaga cgttttcttc acagctggag acattggctg gattacaggc 1140
cacacttatg tggtttatgg tcccttacta tatgggttgcgtt ccactttgggt ctttgaagg 1200
actcctgcgt acccaaatta ctcccggtt tggatattttt tggatgaaca caaagtcacc 1260
caattttatg ttggcccaac tgcttgcgtt ttgttggaaa gagctgggtga ttcctacatc 1320

2014_03_12_107345_00466_ST25

gaaaatcatt	ccttaaaatc	tttgcgttgc	ttgggttcgg	tcggtaacc	aattgctgct	1380
gaagttggg	agtggtactc	tgaaaaaata	ggtaaaaatg	aaatccccat	tgtagacacc	1440
tactggcaa	cagaatctgg	ttcgcatctg	gtcacccgc	tggctggtgg	tgtcacacca	1500
atgaaaccgg	gttctgcctc	attcccttc	ttcggtattg	atgcagttgt	tcttgaccct	1560
aacactggtg	aagaacttaa	taccagccac	gcagagggtg	tccttgccgt	caaagctgca	1620
tggccatcat	ttgcaagaac	tatttgaaa	aatcatgata	ggtatctaga	cacttattt	1680
aacccttacc	ctggctacta	tttcaactgg	gatggtgctg	caaaggataa	ggatggttat	1740
atctggattt	tgggtcggt	agacgatgtg	gtgaacgtct	ctggtcaccg	tctgtctacc	1800
gctgaaattg	aggctgctat	tatcgaagat	ccaattgtgg	ccgagtgtgc	tgttgcgga	1860
ttcaacgatg	acttgactgg	tcaagcagtt	gctgcattt	tggtgttcaa	aaacaaatct	1920
aattggtcca	ccgcaacaga	tgtgaatta	caagatatca	agaagcattt	ggtctttact	1980
gttagaaaag	acatcgggccc	atttgcgc	ccaaaattga	tcatttttagt	ggatgacttg	2040
cccaagacaa	gatctggcaa	aattatgaga	cgtattttaa	gaaaaatcct	agcaggagaa	2100
agtgaccaac	taggcgacgt	ttctacattt	tcaaaccctg	gcattgttag	acatctaatt	2160
gattcggtca	agttgtatg	atgatttctt	tccttttat	attgacgact	tttttttttt	2220
cgtgtgtttt	tgttctctta	taaccgagct	gcttacttat	tattatttca	ccttctcttt	2280
ttatttatac	ttataattat	ttattctta	catactgtta	caagaaactc	ttttctacat	2340
taattgcata	aagtgtcaat	cagcacatcc	tctatatcgc	tatcaacaac	aaatttgaca	2400
aacctgccta	tatcttcagg	aacaactgcc	gcatcgctac	caccactact	tgtgaagtcc	2460
ctggagttta	atatgcactg	aaatttacct	agccgtttta	cacaagacca	taatccatcc	2520
atgctatcgc	agtatatgat	tttgcgttgc	ttttcgtct	tgcgaaaggc	atcctcaatg	2580
gcttgcgttca	ttgatccatc	agtgtggctc	gtaggtacca	gcaaaaccac	ttcatcagcg	2640
gcgtactcct	cccactttat	ggcagtcct	tgtatcgact	tgctcattat	aatacattt	2700
ctctatcccc	gcgtgcttgg	ccggccgt				2728

<210> 16
<211> 713
<212> PRT
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<222> (1)..(713)
<223> *Saccharomyces cerevisiae* ACS1 protein sequence

<400> 16

Met Ser Pro Ser Ala Val Gln Ser Ser Lys Leu Glu Glu Gln Ser Ser
1 5 10 15

Glu Ile Asp Lys Leu Lys Ala Lys Met Ser Gln Ser Ala Ser Thr Ala
Page 22

Gln Gln Lys Lys Glu His Glu Tyr Glu His Leu Thr Ser Val Lys Ile
35 40 45

Val Pro Gln Arg Pro Ile Ser Asp Arg Leu Gln Pro Ala Ile Ala Thr
50 55 60

His Tyr Ser Pro His Leu Asp Gly Leu Gln Asp Tyr Gln Arg Leu His
65 70 75 80

Lys Glu Ser Ile Glu Asp Pro Ala Lys Phe Phe Gly Ser Lys Ala Thr
85 90 95

Gln Phe Leu Asn Trp Ser Lys Pro Phe Asp Lys Val Phe Ile Pro Asp
100 105 110

Ser Lys Thr Gly Arg Pro Ser Phe Gln Asn Asn Ala Trp Phe Leu Asn
115 120 125

Gly Gln Leu Asn Ala Cys Tyr Asn Cys Val Asp Arg His Ala Leu Lys
130 135 140

Thr Pro Asn Lys Lys Ala Ile Ile Phe Glu Gly Asp Glu Pro Gly Gln
145 150 155 160

Gly Tyr Ser Ile Thr Tyr Lys Glu Leu Leu Glu Glu Val Cys Gln Val
165 170 175

Ala Gln Val Leu Thr Tyr Ser Met Gly Val Arg Lys Gly Asp Thr Val
180 185 190

Ala Val Tyr Met Pro Met Val Pro Glu Ala Ile Ile Thr Leu Leu Ala
195 200 205

Ile Ser Arg Ile Gly Ala Ile His Ser Val Val Phe Ala Gly Phe Ser
210 215 220

Ser Asn Ser Leu Arg Asp Arg Ile Asn Asp Gly Asp Ser Lys Val Val
225 230 235 240

Ile Thr Thr Asp Glu Ser Asn Arg Gly Gly Lys Val Ile Glu Thr Lys
245 250 255

Arg Ile Val Asp Asp Ala Leu Arg Glu Thr Pro Gly Val Arg His Val
260 265 270

Leu Val Tyr Arg Lys Thr Asn Asn Pro Ser Val Ala Phe His Ala Pro
275 280 285

Arg Asp Leu Asp Trp Ala Thr Glu Lys Lys Tyr Lys Thr Tyr Tyr
Page 23

2014_03_12_107345_00466_ST25
290 295 300

Pro Cys Thr Pro Val Asp Ser Glu Asp Pro Leu Phe Leu Leu Tyr Thr
305 310 315 320

Ser Gly Ser Thr Gly Ala Pro Lys Gly Val Gln His Ser Thr Ala Gly
325 330 335

Tyr Leu Leu Gly Ala Leu Leu Thr Met Arg Tyr Thr Phe Asp Thr His
340 345 350

Gln Glu Asp Val Phe Phe Thr Ala Gly Asp Ile Gly Trp Ile Thr Gly
355 360 365

His Thr Tyr Val Val Tyr Gly Pro Leu Leu Tyr Gly Cys Ala Thr Leu
370 375 380

Val Phe Glu Gly Thr Pro Ala Tyr Pro Asn Tyr Ser Arg Tyr Trp Asp
385 390 395 400

Ile Ile Asp Glu His Lys Val Thr Gln Phe Tyr Val Ala Pro Thr Ala
405 410 415

Leu Arg Leu Leu Lys Arg Ala Gly Asp Ser Tyr Ile Glu Asn His Ser
420 425 430

Leu Lys Ser Leu Arg Cys Leu Gly Ser Val Gly Glu Pro Ile Ala Ala
435 440 445

Glu Val Trp Glu Trp Tyr Ser Glu Lys Ile Gly Lys Asn Glu Ile Pro
450 455 460

Ile Val Asp Thr Tyr Trp Gln Thr Glu Ser Gly Ser His Leu Val Thr
465 470 475 480

Pro Leu Ala Gly Gly Val Thr Pro Met Lys Pro Gly Ser Ala Ser Phe
485 490 495

Pro Phe Phe Gly Ile Asp Ala Val Val Leu Asp Pro Asn Thr Gly Glu
500 505 510

Glu Leu Asn Thr Ser His Ala Glu Gly Val Leu Ala Val Lys Ala Ala
515 520 525

Trp Pro Ser Phe Ala Arg Thr Ile Trp Lys Asn His Asp Arg Tyr Leu
530 535 540

Asp Thr Tyr Leu Asn Pro Tyr Pro Gly Tyr Tyr Phe Thr Gly Asp Gly
545 550 555 560

Ala Ala Lys Asp Lys Asp Gly Tyr Ile Trp Ile Leu Gly Arg Val Asp
Page 24

2014_03_12_107345_00466_ST25
565 570 575

Asp Val Val Asn Val Ser Gly His Arg Leu Ser Thr Ala Glu Ile Glu
580 585 590

Ala Ala Ile Ile Glu Asp Pro Ile Val Ala Glu Cys Ala Val Val Gly
595 600 605

Phe Asn Asp Asp Leu Thr Gly Gln Ala Val Ala Ala Phe Val Val Leu
610 615 620

Lys Asn Lys Ser Asn Trp Ser Thr Ala Thr Asp Asp Glu Leu Gln Asp
625 630 635 640

Ile Lys Lys His Leu Val Phe Thr Val Arg Lys Asp Ile Gly Pro Phe
645 650 655

Ala Ala Pro Lys Leu Ile Ile Leu Val Asp Asp Leu Pro Lys Thr Arg
660 665 670

Ser Gly Lys Ile Met Arg Arg Ile Leu Arg Lys Ile Leu Ala Gly Glu
675 680 685

Ser Asp Gln Leu Gly Asp Val Ser Thr Leu Ser Asn Pro Gly Ile Val
690 695 700

Arg His Leu Ile Asp Ser Val Lys Leu
705 710

<210> 17
<211> 2287
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<222> (1)..(2287)
<223> *Saccharomyces cerevisiae* ACS2 nucleotide sequence

<400> 17	
acctcccgcg acctccaaaa tcgaactacc ttcacaatga caatcaagga acataaagta	60
gtttatgaag ctcacaacgt aaaggctctt aaggctcctc aacattttta caacagccaa	120
cccgcaagg gttacgttac tgatatgcaa cattatcaag aaatgttatca acaatctatc	180
aatgagccag aaaaattctt tgataagatg gctaaggaat acttgcattt ggtatgttcca	240
tacaccaaag ttcaatctgg ttcatgttac aatggtgatg ttgcattttt tttgaacggt	300
aaattgtatg catcatacaa ttgtgttgac agacatgcct ttgctaatcc cgacaagcca	360
gctttgtatct atgaagctga tgacgaatcc gacaacaaaa tcatcacatt tggtgatcca	420
ctcagaaaag tttcccaaat cgctgggttc ttaaaaagct ggggcgttaa gaaagggtac	480
acagtggctt tctatgttgc aatgattcca gaagcggtca ttgctatgtt ggctgtggct	540

2014_03_12_107345_00466_ST25

cgtattggtg	ctattcactc	tgttgtctt	gctgggtct	ccgctggttc	gttgaagat	600
cgtgtcggt	acgctaattc	taaagtggtc	atcaacttgt	atgaaggtaa	aagaggtgg	660
aagaccatca	acactaaaaa	aattgttgac	gaagggttga	acggagtcga	tttggttcc	720
cgtatctgg	ttttccaaag	aactggtact	gaaggatttc	caatgaaggc	cggtagagat	780
tactggtggc	atgaggaggc	cgctaagcag	agaacttacc	tacccctgt	ttcatgtgac	840
gctgaagatc	ctctattttt	attatacact	tccggttcca	ctgggtctcc	aaagggtgtc	900
gttcacacta	caggtggta	tttatttagt	gccgcattaa	caactagata	cgttttgat	960
attcacccag	aagatgttct	cttcactgcc	ggtgacgtcg	gctggatcac	gggtcacacc	1020
tatgctctat	atggtccatt	aaccctgggt	accgcctcaa	taattttca	atccactcct	1080
gcctacccag	attatggtag	atattggaga	attatccaac	gtcacaaggc	tacccatttc	1140
tatgtggctc	caactgctt	aagattaatc	aaacgtgtag	gtgaagccga	aattgcca	1200
tatgacactt	cctcattacg	tgtcttgggt	tccgtcggt	aaccaatctc	tccagactta	1260
tgggaatgg	atcatgaaaa	agtggtaac	aaaaactgtg	tcatttgtga	cactatgtgg	1320
caaacagagt	ctgggtctca	tttaattgct	ccttggcag	gtgctgtccc	aacaaaacct	1380
ggttctgcta	ccgtgccatt	cttggtatt	aacgctgt	tcattgaccc	tgttacaggt	1440
gtggaattag	aaggtaatga	tgtcgaaggt	gtccttgcg	ttaaatcacc	atggccatca	1500
atggctagat	ctgtttggaa	ccaccacgac	cgttacatgg	atacttactt	gaaaccttat	1560
cctggtcact	atttcacagg	tgtggtgct	ggttagagatc	atgatggta	ctactggatc	1620
agggtagag	ttgacgacgt	tgtaaatgtt	tccggtcata	gattatccac	atcagaaatt	1680
gaagcatcta	tctcaaata	cgaaaacgtc	tcggaagctg	ctgttgtcg	tattccagat	1740
gaattgaccg	gtcaaaccgt	cgttgcata	gtttccctaa	aagatggta	tctacaaaac	1800
aacgctactg	aaggtgatgc	agaacacatc	acaccagata	attacgtag	agaattgatc	1860
ttacaagtt	gggtgagat	tggcccttc	gcctcaccaa	aaaccattat	tctagttaga	1920
gatctacca	gaacaaggc	agggaaagatt	atgagaagag	ttctaagaaa	ggttgttct	1980
aacgaagccg	aacagctagg	tgacctaact	actttggcca	acccagaagt	tgtacctgcc	2040
atcatttctg	ctgttagagaa	ccaattttc	tctaaaaaa	agaaataact	taaatgagaa	2100
aaatttcgta	atgagataaa	atttcgctcc	ttttctgttt	tctattttct	atttcccaa	2160
cttttgctct	attcagttat	aaattactat	ttatccatca	gttaaaaaac	aagatcttt	2220
actggtcagc	taggaaagcg	aaaatacaa	gactttatgc	actatccccg	cgtgcttggc	2280
cgcccg						2287

<210> 18
 <211> 683
 <212> PRT
 <213> *Saccharomyces cerevisiae*

2014_03_12_107345_00466_ST25

<220>
<221> misc_feature
<222> (1)..(683)
<223> *Saccharomyces cerevisiae* ACS2 protein sequence

<400> 18

Met Thr Ile Lys Glu His Lys Val Val Tyr Glu Ala His Asn Val Lys
1 5 10 15

Ala Leu Lys Ala Pro Gln His Phe Tyr Asn Ser Gln Pro Gly Lys Gly
20 25 30

Tyr Val Thr Asp Met Gln His Tyr Gln Glu Met Tyr Gln Gln Ser Ile
35 40 45

Asn Glu Pro Glu Lys Phe Phe Asp Lys Met Ala Lys Glu Tyr Leu His
50 55 60

Trp Asp Ala Pro Tyr Thr Lys Val Gln Ser Gly Ser Leu Asn Asn Gly
65 70 75 80

Asp Val Ala Trp Phe Leu Asn Gly Lys Leu Asn Ala Ser Tyr Asn Cys
85 90 95

Val Asp Arg His Ala Phe Ala Asn Pro Asp Lys Pro Ala Leu Ile Tyr
100 105 110

Glu Ala Asp Asp Glu Ser Asp Asn Lys Ile Ile Thr Phe Gly Glu Leu
115 120 125

Leu Arg Lys Val Ser Gln Ile Ala Gly Val Leu Lys Ser Trp Gly Val
130 135 140

Lys Lys Gly Asp Thr Val Ala Ile Tyr Leu Pro Met Ile Pro Glu Ala
145 150 155 160

Val Ile Ala Met Leu Ala Val Ala Arg Ile Gly Ala Ile His Ser Val
165 170 175

Val Phe Ala Gly Phe Ser Ala Gly Ser Leu Lys Asp Arg Val Val Asp
180 185 190

Ala Asn Ser Lys Val Val Ile Thr Cys Asp Glu Gly Lys Arg Gly Gly
195 200 205

Lys Thr Ile Asn Thr Lys Ile Val Asp Glu Gly Leu Asn Gly Val
210 215 220

Asp Leu Val Ser Arg Ile Leu Val Phe Gln Arg Thr Gly Thr Glu Gly
225 230 235 240

Ile Pro Met Lys Ala Gly Arg Asp Tyr Trp Trp His Glu Glu Ala Ala
Page 27

2014_03_12_107345_00466_ST25

245

250

255

Lys Gln Arg Thr Tyr Leu Pro Pro Val Ser Cys Asp Ala Glu Asp Pro
260 265 270

Leu Phe Leu Leu Tyr Thr Ser Gly Ser Thr Gly Ser Pro Lys Gly Val
275 280 285

Val His Thr Thr Gly Gly Tyr Leu Leu Gly Ala Ala Leu Thr Thr Arg
290 295 300

Tyr Val Phe Asp Ile His Pro Glu Asp Val Leu Phe Thr Ala Gly Asp
305 310 315 320

Val Gly Trp Ile Thr Gly His Thr Tyr Ala Leu Tyr Gly Pro Leu Thr
325 330 335

Leu Gly Thr Ala Ser Ile Ile Phe Glu Ser Thr Pro Ala Tyr Pro Asp
340 345 350

Tyr Gly Arg Tyr Trp Arg Ile Ile Gln Arg His Lys Ala Thr His Phe
355 360 365

Tyr Val Ala Pro Thr Ala Leu Arg Leu Ile Lys Arg Val Gly Glu Ala
370 375 380

Glu Ile Ala Lys Tyr Asp Thr Ser Ser Leu Arg Val Leu Gly Ser Val
385 390 395 400

Gly Glu Pro Ile Ser Pro Asp Leu Trp Glu Trp Tyr His Glu Lys Val
405 410 415

Gly Asn Lys Asn Cys Val Ile Cys Asp Thr Met Trp Gln Thr Glu Ser
420 425 430

Gly Ser His Leu Ile Ala Pro Leu Ala Gly Ala Val Pro Thr Lys Pro
435 440 445

Gly Ser Ala Thr Val Pro Phe Phe Gly Ile Asn Ala Cys Ile Ile Asp
450 455 460

Pro Val Thr Gly Val Glu Leu Glu Gly Asn Asp Val Glu Gly Val Leu
465 470 475 480

Ala Val Lys Ser Pro Trp Pro Ser Met Ala Arg Ser Val Trp Asn His
485 490 495

His Asp Arg Tyr Met Asp Thr Tyr Leu Lys Pro Tyr Pro Gly His Tyr
500 505 510

Phe Thr Gly Asp Gly Ala Gly Arg Asp His Asp Gly Tyr Tyr Trp Ile
Page 28

2014_03_12_107345_00466_ST25
515 520 525

Arg Gly Arg Val Asp Asp Val Val Asn Val Ser Gly His Arg Leu Ser
530 535 540

Thr Ser Glu Ile Glu Ala Ser Ile Ser Asn His Glu Asn Val Ser Glu
545 550 555 560

Ala Ala Val Val Gly Ile Pro Asp Glu Leu Thr Gly Gln Thr Val Val
565 570 575

Ala Tyr Val Ser Leu Lys Asp Gly Tyr Leu Gln Asn Asn Ala Thr Glu
580 585 590

Gly Asp Ala Glu His Ile Thr Pro Asp Asn Leu Arg Arg Glu Leu Ile
595 600 605

Leu Gln Val Arg Gly Glu Ile Gly Pro Phe Ala Ser Pro Lys Thr Ile
610 615 620

Ile Leu Val Arg Asp Leu Pro Arg Thr Arg Ser Gly Lys Ile Met Arg
625 630 635 640

Arg Val Leu Arg Lys Val Ala Ser Asn Glu Ala Glu Gln Leu Gly Asp
645 650 655

Leu Thr Thr Leu Ala Asn Pro Glu Val Val Pro Ala Ile Ile Ser Ala
660 665 670

Val Glu Asn Gln Phe Phe Ser Gln Lys Lys Lys
675 680

<210> 19
<211> 2137
<212> DNA
<213> Streptomyces sp.

<220>
<221> misc_feature
<222> (1)..(2137)
<223> Streptomyces sp. CL190 nphT7 gene sequence

<400> 19
cctgcaggcc gtcgaggcg cctggaagga ctacgccccg caggacggcc ggtcgctgga 60
ggagttcgcg gcgttcgtct accaccagcc gttcacgaag atggcctaca aggccgaccg 120
ccacacctg aacttcaacg gctacgacac cgacaaggac gccatcgagg ggcgcctcg 180
ccagacgacg gcgtacaaca acgtcatcg caacagctac acccgctcg tgtacctgg 240
cctggccgccc ctgctcgacc agggcgacga cctgacgggc cggtccatcg gcttcctgag 300
ctacggctcg ggcagcgtcg ccgagttctt ctcggccacc gtcgtcgccg ggtaccgcga 360
gcgtctgcgc accgaggcga accaggaggc gatcgccccg cgcaagagcg tcgactacgc 420

2014_03_12_107345_00466_ST25

cacctaccgc	gagctgcacg	agtacacgct	cccgtccgac	ggcggcgacc	acgccacccc	480
ggtgcagacc	accggccct	tccggctggc	cgggatcaac	gaccacaagg	gcatctacga	540
ggcgcgctag	cgacacccct	cgccaacggg	gtgcgcact	gttcggcgca	ccccgtgccc	600
ggcttcgca	cagctattca	cgaccatttg	aggggcgggc	agccgcatga	ccgacgtccg	660
attccgcatt	atcggtacgg	gtgcctacgt	accggaacgg	atcgtctcca	acgatgaagt	720
cggcgcgccc	gccggggtgg	acgacgactg	gatcaccgc	aagaccggta	tccggcagcg	780
tcgctggcc	gccgacgacc	agggcacctc	ggacctggcc	acggccgcgg	ggcgggcagc	840
gctgaaagcg	gcgggcatca	cgcccagca	gctgaccgtg	atcgcggtcg	ccacctccac	900
gccggaccgg	ccgcagccgc	ccacggcgcc	ctatgtccag	caccacctcg	gtgcgaccgg	960
cactgcggcg	ttcgacgtca	acgcggtctg	ctccggcacc	gtgttcgcgc	tgtcctcggt	1020
ggcgggcacc	ctcgtgtacc	ggggcggtta	cgcgctggtc	atcggcgccgg	acctgtactc	1080
gcbcacccctc	aacccggccg	accgaagac	ggtcgtctg	ttcggggacg	gcccggcgc	1140
aatgtcctc	gggcccacct	cgaccggcac	gggccccatc	gtccggcgcc	tcgcccgtca	1200
cacccgcgc	ggcctcaccg	acctgatccg	tgtgcccgc	ggcggcagcc	gccagccgct	1260
ggacacggat	ggcctcgacg	cggactgca	gtacttcgc	atggacgggc	gtgaggtgcg	1320
ccgcttcgtc	acggagcacc	tgccgcagct	gatcaagggc	ttcctgcacg	aggccggggt	1380
cgacgcccgc	gacatcagcc	acttcgtgcc	gcatcaggcc	aacggtgtca	tgctcgacga	1440
ggtcttcggc	gagctgcatc	tgccgcgggc	gaccatgcac	cggacggtcg	agacctacgg	1500
caacacggga	gccccctcca	tcccgatcac	catggacgcg	gccgtgcgcg	ccggttccct	1560
ccggccgggc	gagctggtcc	tgctggccgg	gttcggcgcc	ggcatggccg	cgagcttcgc	1620
cctgatcgag	tggtagtcgc	ccgtaccacc	acagcggtcc	ggcgccacct	gttccctgcg	1680
ccggccggcc	ctcggggcct	ttaggcccc	caccgcccc	gccgacggat	tcagtcgcgg	1740
cagtaccta	gatgtccgct	gcgacggcgt	cccggagagc	ccggcgaga	tcgcgggccc	1800
ccttcgtc	gtccccggcc	cctcccgca	gcaccacccg	cggcggacgg	ccgcccgtcc	1860
ccgcgatacg	ccggcgagg	tcgcaggcga	gcacgcccga	cccgagaag	ccccccagca	1920
ccagcgaccg	gccgactccg	tgcgccgcca	gggcaggctg	cgcgcgtcg	acgtcggtga	1980
gcagcaccag	gagctcctgc	ggccggcggt	agaggtcgcc	cagccggtcg	tagcaggtcg	2040
ccggcgcc	cgccggcggg	atcagacaga	tcgtccccgc	ccgctcgtgc	ctcgccgccc	2100
gcagcgtgac	cagcggaaatg	tcccgcccag	ctccggaa			2137

<210> 20
 <211> 325
 <212> PRT
 <213> Streptomyces sp.

<220>
 <221> misc_feature

2014_03_12_107345_00466_ST25

<222> (1)..(325)

<223> Streptomyces sp. CL190 acetyl-CoA:malonyl-CoA acyltransferase
protein sequence

<400> 20

Arg Phe Arg Ile Ile Gly Thr Gly Ala Tyr Val Pro Glu Arg Ile Val
1 5 10 15

Ser Asn Asp Glu Val Gly Ala Pro Ala Gly Val Asp Asp Asp Trp Ile
20 25 30

Thr Arg Lys Thr Gly Ile Arg Gln Arg Arg Trp Ala Ala Asp Asp Gln
35 40 45

Ala Thr Ser Asp Leu Ala Thr Ala Ala Gly Arg Ala Ala Leu Lys Ala
50 55 60

Ala Gly Ile Thr Pro Glu Gln Leu Thr Val Ile Ala Val Ala Thr Ser
65 70 75 80

Thr Pro Asp Arg Pro Gln Pro Pro Thr Ala Ala Tyr Val Gln His His
85 90 95

Leu Gly Ala Thr Gly Thr Ala Ala Phe Asp Val Asn Ala Val Cys Ser
100 105 110

Gly Thr Val Phe Ala Leu Ser Ser Val Ala Gly Thr Leu Val Tyr Arg
115 120 125

Gly Gly Tyr Ala Leu Val Ile Gly Ala Asp Leu Tyr Ser Arg Ile Leu
130 135 140

Asn Pro Ala Asp Arg Lys Thr Val Val Leu Phe Gly Asp Gly Ala Gly
145 150 155 160

Ala Met Val Leu Gly Pro Thr Ser Thr Gly Thr Gly Pro Ile Val Arg
165 170 175

Arg Val Ala Leu His Thr Phe Gly Gly Leu Thr Asp Leu Ile Arg Val
180 185 190

Pro Ala Gly Gly Ser Arg Gln Pro Leu Asp Thr Asp Gly Leu Asp Ala
195 200 205

Gly Leu Gln Tyr Phe Ala Met Asp Gly Arg Glu Val Arg Arg Phe Val
210 215 220

Thr Glu His Leu Pro Gln Leu Ile Lys Gly Phe Leu His Glu Ala Gly
225 230 235 240

Val Asp Ala Ala Asp Ile Ser His Phe Val Pro His Gln Ala Asn Gly
245 250 255

Val Met Leu Asp Glu Val Phe Gly Glu Leu His Leu Pro Arg Ala Thr
 260 265 270

Met His Arg Thr Val Glu Thr Tyr Gly Asn Thr Gly Ala Ala Ser Ile
 275 280 285

Pro Ile Thr Met Asp Ala Ala Val Arg Ala Gly Ser Phe Arg Pro Gly
 290 295 300

Glu Leu Val Leu Leu Ala Gly Phe Gly Gly Met Ala Ala Ser Phe
 305 310 315 320

Ala Leu Ile Glu Trp
 325

<210> 21
 <211> 1287
 <212> DNA
 <213> Pseudomonas mevalonii

<220>
 <221> misc_feature
 <222> (1)..(1287)
 <223> Pseudomonas mevalonii HMG-CoA reductase (mvaA) gene sequence

<400> 21	60
atgagcctcg attccgcct gcccgtttc cgtaacctgt cccctgcccgc ggcctggac	120
cacatcggcc agttgctcgg cctgagccac gacgatgtca gcctgctggc caacgccggt	180
gccctgcccga tggacatcgc caacggcatg atcgaaaacg tcatcggcac cttcgagctg	240
ccctatgcccgt tggccagcaa cttccagatc aatggccgtg atgtgctggc gccgctggcgt	300
gtggaagagc cctcgatcgt cgccgctgct tcgtacatgg ccaagctggc ccgtgccaac	360
ggcggcttca ccacctccag cagcgccccg ctgatgcatg cccaggtaca gatcgtcggc	420
atacaggacc cgctcaatgc acgcctgagc ctgctgcgcc gcaaagacga aatcattgaa	480
ctggccaacc gcaaggacca gttgctcaac agcctcgccg gccgctgccc cgacatcgaa	540
gtgcacaccc tcgcccatac cccgcgtggc ccgatgctgg tggcgcacct gatcgtcgt	600
gtacgcgtatg ccatgggggc caacaccgtc aataccatgg ccgaggccgt tgcgcgcgt	660
atggaagcca tcaccggggg ccaggtacgc ctgcgcattc tgtccaacct ggccgacctg	720
cgcctggcca gggcccaggt gcggattact ccgcagcaac tggaaacggc cgaattcagt	780
ggcgaggcag tgatcgaagg catcctcgac gcctacgcct tcgctgcggc cgacccttac	840
cgcgcggcca cccacaacaa gggcatcatg aatggcatcg acccactgat cgtcgccact	900
ggcaacgact ggcgtgcagt ggaagccggc gcccattgcgt atgcctgccc cagtggcac	960
tacggctcgc tgaccacctg ggaaaaggac aacaacggcc atttggtcgg caccctggaa	
atgcccgtatgc ccgtaggcct ggtcggcggc gccaccaaaa cccatccgct ggcgcaactg	1020

2014_03_12_107345_00466_ST25
 tcgctgcgca tcctcgccgt gaaaacagcc caggcgtcg ctgagattgc cgtggccgta 1080
 ggcctggcgc aaaacctcg ggccatgcgc gccctggcca ccgaaggcat ccagcgcggc 1140
 cacatggccc tgcatgcgcg caatattgcc gtggtgccgg gcgcggagg cgatgaggtg 1200
 gactgggttgc cccggcagtt ggtgaaatac cacgacgtgc gcgcggaccg cgccgtagca 1260
 ctgctgaaac aaaagcgcgg ccaatga 1287

<210> 22
 <211> 428
 <212> PRT
 <213> Pseudomonas mevalonii

<220>
 <221> misc_feature
 <222> (1)..(428)
 <223> Pseudomonas mevalonii hydroxymethylglutaryl -CoA reductase
 protein sequence

<400> 22

Met Ser Leu Asp Ser Arg Leu Pro Ala Phe Arg Asn Leu Ser Pro Ala
 1 5 10 15

Ala Arg Leu Asp His Ile Gly Gln Leu Leu Gly Leu Ser His Asp Asp
 20 25 30

Val Ser Leu Leu Ala Asn Ala Gly Ala Leu Pro Met Asp Ile Ala Asn
 35 40 45

Gly Met Ile Glu Asn Val Ile Gly Thr Phe Glu Leu Pro Tyr Ala Val
 50 55 60

Ala Ser Asn Phe Gln Ile Asn Gly Arg Asp Val Leu Val Pro Leu Val
 65 70 75 80

Val Glu Glu Pro Ser Ile Val Ala Ala Ser Tyr Met Ala Lys Leu
 85 90 95

Ala Arg Ala Asn Gly Gly Phe Thr Thr Ser Ser Ser Ala Pro Leu Met
 100 105 110

His Ala Gln Val Gln Ile Val Gly Ile Gln Asp Pro Leu Asn Ala Arg
 115 120 125

Leu Ser Leu Leu Arg Arg Lys Asp Glu Ile Ile Glu Leu Ala Asn Arg
 130 135 140

Lys Asp Gln Leu Leu Asn Ser Leu Gly Gly Gly Cys Arg Asp Ile Glu
 145 150 155 160

Val His Thr Phe Ala Asp Thr Pro Arg Gly Pro Met Leu Val Ala His
 165 170 175

2014_03_12_107345_00466_ST25

Leu Ile Val Asp Val Arg Asp Ala Met Gly Ala Asn Thr Val Asn Thr
180 185 190

Met Ala Glu Ala Val Ala Pro Leu Met Glu Ala Ile Thr Gly Gly Gln
195 200 205

Val Arg Leu Arg Ile Leu Ser Asn Leu Ala Asp Leu Arg Leu Ala Arg
210 215 220

Ala Gln Val Arg Ile Thr Pro Gln Gln Leu Glu Thr Ala Glu Phe Ser
225 230 235 240

Gly Glu Ala Val Ile Glu Gly Ile Leu Asp Ala Tyr Ala Phe Ala Ala
245 250 255

Val Asp Pro Tyr Arg Ala Ala Thr His Asn Lys Gly Ile Met Asn Gly
260 265 270

Ile Asp Pro Leu Ile Val Ala Thr Gly Asn Asp Trp Arg Ala Val Glu
275 280 285

Ala Gly Ala His Ala Tyr Ala Cys Arg Ser Gly His Tyr Gly Ser Leu
290 295 300

Thr Thr Trp Glu Lys Asp Asn Asn Gly His Leu Val Gly Thr Leu Glu
305 310 315 320

Met Pro Met Pro Val Gly Leu Val Gly Gly Ala Thr Lys Thr His Pro
325 330 335

Leu Ala Gln Leu Ser Leu Arg Ile Leu Gly Val Lys Thr Ala Gln Ala
340 345 350

Leu Ala Glu Ile Ala Val Ala Val Gly Leu Ala Gln Asn Leu Gly Ala
355 360 365

Met Arg Ala Leu Ala Thr Glu Gly Ile Gln Arg Gly His Met Ala Leu
370 375 380

His Ala Arg Asn Ile Ala Val Val Ala Gly Ala Arg Gly Asp Glu Val
385 390 395 400

Asp Trp Val Ala Arg Gln Leu Val Glu Tyr His Asp Val Arg Ala Asp
405 410 415

Arg Ala Val Ala Leu Leu Lys Gln Lys Arg Gly Gln
420 425

<210> 23
<211> 1302
<212> DNA

2014_03_12_107345_00466_ST25

<213> *silicibacter pomeroyi*

<220>
<221> misc_feature
<222> (1)..(1302)
<223> *silicibacter pomeroyi* hydroxymethylglutaryl-CoA reductase gene sequence

<400> 23	
atgacaggca agacgggtca catcgatgg tttgaactcgc gcattgaaaa gatgcgagat	60
ctcgaccccg cacaacggct ggtgcgcgtt gccgaggcgg cgggcctcga gcccggcg	120
atcagcgcgc tggcggtaa cggcgccctg cccctctcgc tggccaacgg gatgatcgag	180
aacgtcatcg gcaaattcga actgcccgtg ggcgtggcca cgaatttcac tgtgaacggc	240
cgcgactatc tggatcccgat ggcggtcgaa gagccctcgg tgggtggcggc cgcgtcctat	300
atggcgcgta tcgcgcgca gaatggcggta ttcaccgcgc atggcaccgc gcccggat	360
cgcgcccaga tccaggtgg tgggtgggt gatcccggagg gcgcggca ggcgtcctc	420
gcccacaagg cgcgttcat ggaggcggcg gacgctgtcg atccggtgct tgtcggctg	480
ggtggcggct gcccgcgatcg cggatccac gtgttccggg atacgcgggt gggcgcgat	540
gtcgtcctgc acctgatcgat cgatgtgcgc gacgcgtatgg gggcaatac ggtcaacacg	600
atggccgaac ggctggcccc cggatcccgat cggattccgg gtggcaccgt ggcgtcgc	660
atcctgtcga acctcgccga cctgcgattt gtcggccgc ggggtggact ggccccggaa	720
acactgacaa cgcaggcgtt tgacggcgcc gacgtggcgc gggcatggt cgaggcctgc	780
gcccgcgtt tcgtcgaccc ctatcgccgc ggcgcgcata acaaggggat catgaacggc	840
atcgacccgg tcgtcgatcg caccggcaat gactggcgcg cgatcgaggc ggggtggccat	900
gcctatgcgc cccgcacggg tcattatacc tcgtcgaccc gctgggaact ggcgaatgac	960
gggcggctt tgggcacat cgaactgccc ctggcgctt gccttgcgg cggcgcgacc	1020
aagacgcacc cgaccgcacg ggcggcgctg gcccgtatgc aggttagagac tgcaaccgaa	1080
ctggcccgagg tcaccgcgc cgtgggtctg ggcgcagaaca tggccgcatt cgcgcgcgt	1140
gcccgcgtt tcgtcgatcg cggatcccgat acccttcgtt cgcgcacat cgcgtatcg	1200
gcccgcgtt caggcgcgcga tatcgaccgc gtcaccggg tcattgtcga agcgggcgac	1260
gtcagcgtgg cccgtcaaa acaggtgctg gaaaacacct ga	1302

<210> 24
<211> 433
<212> PRT
<213> *silicibacter pomeroyi*

<220>
<221> misc_feature
<222> (1)..(433)
<223> *silicibacter pomeroyi* hydroxymethylglutaryl-CoA reductase protein sequence

<400> 24

2014_03_12_107345_00466_ST25

Met Thr Gly Lys Thr Gly His Ile Asp Gly Leu Asn Ser Arg Ile Glu
1 5 10 15

Lys Met Arg Asp Leu Asp Pro Ala Gln Arg Leu Val Arg Val Ala Glu
20 25 30

Ala Ala Gly Leu Glu Pro Glu Ala Ile Ser Ala Leu Ala Gly Asn Gly
35 40 45

Ala Leu Pro Leu Ser Leu Ala Asn Gly Met Ile Glu Asn Val Ile Gly
50 55 60

Lys Phe Glu Leu Pro Leu Gly Val Ala Thr Asn Phe Thr Val Asn Gly
65 70 75 80

Arg Asp Tyr Leu Ile Pro Met Ala Val Glu Glu Pro Ser Val Val Ala
85 90 95

Ala Ala Ser Tyr Met Ala Arg Ile Ala Arg Glu Asn Gly Gly Phe Thr
100 105 110

Ala His Gly Thr Ala Pro Leu Met Arg Ala Gln Ile Gln Val Val Gly
115 120 125

Leu Gly Asp Pro Glu Gly Ala Arg Gln Arg Leu Leu Ala His Lys Ala
130 135 140

Ala Phe Met Glu Ala Ala Asp Ala Val Asp Pro Val Leu Val Gly Leu
145 150 155 160

Gly Gly Gly Cys Arg Asp Ile Glu Val His Val Phe Arg Asp Thr Pro
165 170 175

Val Gly Ala Met Val Val Leu His Leu Ile Val Asp Val Arg Asp Ala
180 185 190

Met Gly Ala Asn Thr Val Asn Thr Met Ala Glu Arg Leu Ala Pro Glu
195 200 205

Val Glu Arg Ile Ala Gly Gly Thr Val Arg Leu Arg Ile Leu Ser Asn
210 215 220

Leu Ala Asp Leu Arg Leu Val Arg Ala Arg Val Glu Leu Ala Pro Glu
225 230 235 240

Thr Leu Thr Thr Gln Gly Tyr Asp Gly Ala Asp Val Ala Arg Gly Met
245 250 255

Val Glu Ala Cys Ala Leu Ala Ile Val Asp Pro Tyr Arg Ala Ala Thr
260 265 270

2014_03_12_107345_00466_ST25

His Asn Lys Gly Ile Met Asn Gly Ile Asp Pro Val Val Val Ala Thr
275 280 285

Gly Asn Asp Trp Arg Ala Ile Glu Ala Gly Ala His Ala Tyr Ala Ala
290 295 300

Arg Thr Gly His Tyr Thr Ser Leu Thr Arg Trp Glu Leu Ala Asn Asp
305 310 315 320

Gly Arg Leu Val Gly Thr Ile Glu Leu Pro Leu Ala Leu Gly Leu Val
325 330 335

Gly Gly Ala Thr Lys Thr His Pro Thr Ala Arg Ala Ala Leu Ala Leu
340 345 350

Met Gln Val Glu Thr Ala Thr Glu Leu Ala Gln Val Thr Ala Ala Val
355 360 365

Gly Leu Ala Gln Asn Met Ala Ala Ile Arg Ala Leu Ala Thr Glu Gly
370 375 380

Ile Gln Arg Gly His Met Thr Leu His Ala Arg Asn Ile Ala Ile Met
385 390 395 400

Ala Gly Ala Thr Gly Ala Asp Ile Asp Arg Val Thr Arg Val Ile Val
405 410 415

Glu Ala Gly Asp Val Ser Val Ala Arg Ala Lys Gln Val Leu Glu Asn
420 425 430

Thr

<210> 25
<211> 1290

<212> DNA

<213> Delftia acidovorans

<220>
<221> misc_feature

<222> (1)..(1290)

<223> Delftia acidovorans hydroxymethylglutaryl-CoA reductase
nucleotide sequence

<400> 25
atgggtgccg attcgcgact gccaatttc cgcgcctca caccggccca gcgcggat 60
ttcctggccg atgcctgcgg cctgtccgat gccgagcgcg ccctgctcgc tgccccggc 120
gccctgcccc tggcgctggc cgacggcatg atcgagaacg tgttcggcag cttcgagctg 180
ccgctggcgc tggccggcaa cttccgcgtc aacggccgcg acgtgctggc gcccatggc 240
gtggaggagc cctcggtggc ggccgccc tcgtacatgg ccaagctggc gcgcgaggac 300

2014_03_12_107345_00466_ST25

gggggcttc	agacctaag	cacgctgccg	ctgatgcgcg	cccaggtcca	ggtgctggc	360
gtgaccgatc	cacacggcgc	gcccctggcc	gtgctgcagg	cgcgtgcgca	gatcatcgag	420
cgcgccaaca	gccgcgacaa	ggtgctgatc	ggcctggcg	gcccgtgcaa	ggacatcgag	480
gtccatgtct	tccccgacac	gccgcgcggc	cccatgctgg	tggtccacct	gatcgtggac	540
gtgcgcgacg	ccatggcgc	caacaccgtc	aacaccatgg	ccgaatcggt	ggcgcccctg	600
gtcgagaaga	tcacggcgg	cagcgtgcgg	ctgcgcatcc	tgtccaacct	ggccgacctg	660
cggctggccc	gcccgcgt	gcccgtcacf	ccgcagaccc	tggccacgca	ggatcgcagc	720
ggcgaggaga	tcatcgaagg	cgtgctggac	gcctatacct	tcgcggccat	cgaccctac	780
cgcgcggcca	cgcacaacaa	ggaaatcatg	aacggcatcg	accccgcat	cgtggccacg	840
ggcaacgact	ggcgcgcggt	cgaggccggc	gcccattgcct	atgcgcgcgg	cagcggcagc	900
tacacctcgc	tgacgcgctg	ggaaaaggat	gccggcggcg	ccctggtcgg	cagcatcgag	960
ctgcccattgc	cggtgggcct	tgtcggcggc	gccaccaaga	cccatccgc	ggcacgcctg	1020
gcgctgaaga	tcatggaccc	gcagtccgccc	cagcagctgg	gcgagatcgc	cgccgcgcgt	1080
ggcctggcgc	agaacctggg	cgcctgcgc	gccctggcca	ccgaaggcat	tcagcgcggc	1140
cacatggccc	tgcacgcccc	caacatcgcc	ctggtgccg	gcgccacggg	cgacgaggtc	1200
gatgccgtgg	cgcgcagct	ggccgcgcag	cacgacgtgc	gcaccgaccg	cgcgcgtggaa	1260
gtgctggccg	cgcgcgcgc	cagggcctga				1290

<210> 26
 <211> 429
 <212> PRT
 <213> Delftia acidovorans

<220>
 <221> misc_feature
 <222> (1)..(429)
 <223> Delftia acidovorans hydroxymethylglutaryl-CoA reductase protein sequence

<400> 26

Met Val Ala Asp Ser Arg Leu Pro Asn Phe Arg Ala Leu Thr Pro Ala
 1 5 10 15

Gln Arg Arg Asp Phe Leu Ala Asp Ala Cys Gly Leu Ser Asp Ala Glu
 20 25 30

Arg Ala Leu Leu Ala Ala Pro Gly Ala Leu Pro Leu Ala Leu Ala Asp
 35 40 45

Gly Met Ile Glu Asn Val Phe Gly Ser Phe Glu Leu Pro Leu Gly Val
 50 55 60

Ala Gly Asn Phe Arg Val Asn Gly Arg Asp Val Leu Val Pro Met Ala
 65 70 75 80

2014_03_12_107345_00466_ST25

Val Glu Glu Pro Ser Val Val Ala Ala Ala Ser Tyr Met Ala Lys Leu
85 90 95

Ala Arg Glu Asp Gly Gly Phe Gln Thr Ser Ser Thr Leu Pro Leu Met
100 105 110

Arg Ala Gln Val Gln Val Leu Gly Val Thr Asp Pro His Gly Ala Arg
115 120 125

Leu Ala Val Leu Gln Ala Arg Ala Gln Ile Ile Glu Arg Ala Asn Ser
130 135 140

Arg Asp Lys Val Leu Ile Gly Leu Gly Gly Cys Lys Asp Ile Glu
145 150 155 160

Val His Val Phe Pro Asp Thr Pro Arg Gly Pro Met Leu Val Val His
165 170 175

Leu Ile Val Asp Val Arg Asp Ala Met Gly Ala Asn Thr Val Asn Thr
180 185 190

Met Ala Glu Ser Val Ala Pro Leu Val Glu Lys Ile Thr Gly Gly Ser
195 200 205

Val Arg Leu Arg Ile Leu Ser Asn Leu Ala Asp Leu Arg Leu Ala Arg
210 215 220

Ala Arg Val Arg Leu Thr Pro Gln Thr Leu Ala Thr Gln Asp Arg Ser
225 230 235 240

Gly Glu Glu Ile Ile Glu Gly Val Leu Asp Ala Tyr Thr Phe Ala Ala
245 250 255

Ile Asp Pro Tyr Arg Ala Ala Thr His Asn Lys Gly Ile Met Asn Gly
260 265 270

Ile Asp Pro Val Ile Val Ala Thr Gly Asn Asp Trp Arg Ala Val Glu
275 280 285

Ala Gly Ala His Ala Tyr Ala Ser Arg Ser Gly Ser Tyr Thr Ser Leu
290 295 300

Thr Arg Trp Glu Lys Asp Ala Gly Gly Ala Leu Val Gly Ser Ile Glu
305 310 315 320

Leu Pro Met Pro Val Gly Leu Val Gly Gly Ala Thr Lys Thr His Pro
325 330 335

Leu Ala Arg Leu Ala Leu Lys Ile Met Asp Leu Gln Ser Ala Gln Gln
340 345 350

2014_03_12_107345_00466_ST25

Leu Gly Glu Ile Ala Ala Ala Val Gly Leu Ala Gln Asn Leu Gly Ala
355 360 365

Leu Arg Ala Leu Ala Thr Glu Gly Ile Gln Arg Gly His Met Ala Leu
370 375 380

His Ala Arg Asn Ile Ala Leu Val Ala Gly Ala Thr Gly Asp Glu Val
385 390 395 400

Asp Ala Val Ala Arg Gln Leu Ala Ala Glu His Asp Val Arg Thr Asp
405 410 415

Arg Ala Leu Glu Val Leu Ala Ala Leu Arg Ala Arg Ala
420 425

<210> 27

<211> 3059

<212> DNA

<213> Artificial Sequence

<220>

<223> synthetic: i2235 integration construct

<400> 27
gacggcacgg ccacgcgtt aaaccgcctc gatattcct gtgagaagtt taaatccact 60
aaggtttttc attgttgctg cagatgtgtt tttccattca tcctgaaata tgcactgcta 120
ttccgcattc cattcccta gtctttta gttcttccg ttgcaccttc atcgaaaaat 180
gacaaaacgc gtaggaaca acaaccaatt gcaaacaagg agtgaaccaa aaccatcaag 240
gcccggaaat acaagtgtgt actaatacag taagtaggta aaatacgcaa tgaccaaaga 300
tgccgtgaat ctagatgctt acaccgtgag cttcatgcct ttctataccg agtatcaagg 360
accaaccgaa gagtttaagg attacaatt cgaagatact atttactttc gtggcaagga 420
actgaagagg gaaaagtctg cgacgccttc cagtagcgat aacacaacta gtaataccct 480
cagtaatggc gccatcctct cggaaacac aataactggc aagatagttt cagtgaataa 540
ttacgaaaga gagggcactg atcgcaacga attggcgcga ttgcaagaat tgcattccct 600
catcgatgtc ataaatcagt aaatataagc tcacacgcgg ccagggggag cccgttgagc 660
cattagttatc aatttgctta cctgtattcc tttactatcc tccttttct cttcttgat 720
aaatgtatgt agattgcgtt tatagtttcg tctaccctat gaacatattc cattttgtaa 780
tttcgtgtcg tttctattat gaatttcatt tataaagttt atgtacaaat atcataaaaa 840
aagagaatct ttttaagcaa ggattttctt aacttctcg ggcacagcat caccgacttc 900
ggtgttactg ttggaaaccac ctaaatcacc agttctgata cctgcattcca aaacctttt 960
aactgcattt tcaatggcct taccttcttc aggcaagttc aatgacaatt tcaacatcat 1020
tgcagcagac aagatagttgg cgatagggtc aaccttattc tttggcaaat ctggagcaga 1080
accgtggcat gggtcgatc aaccaatgc ggtgttcttgc tctggcaag aggcaagga 1140

2014_03_12_107345_00466_ST25

cgcagatggc aacaaaccca aggaacctgg gataacggag gtttcatcg	1200
accaaacatg ttgctggta ttataatacc atttaggtgg gttgggttct taactaggat	1260
catggcggca gaatcaatca attgatgtt aaccttcaat gttagggatt cgttcttgc	1320
ggtttcctcc acagttttc tccataatct tgaagaggcc aaaacattag ctttatccaa	1380
ggaccaaata ggcaatggtg gctcatgtt tagggccatg aaagcggcca ttcttgc	1440
tctttgcact tctggaacgg tgtattgtt actatccaa gcgacaccat caccatcg	1500
ttccttcctc ttaccaaagt aaatacctcc cactaattct ctgacaacaa cgaagtc	1560
accttagca aattgtggct tgattggaga taagtctaaa agagagtcgg atgcaaagtt	1620
acatggtctt aagttggcgt acaattgaag ttcttacgg attttagta aaccttgc	1680
aggtctaaca ctaccggta cccattnagg accaccaca gcacctaaca aaacggcatc	1740
aaccttctt gaggcttcca gcgcctcatc tggaaagtggg acacctgttag catcgatagc	1800
agcaccacca attaaatgtat ttgcataatc gaacttgaca ttggaacgaa catcagaat	1860
agcttaaga accttaatgg ctgcgtgt gatttcttgc ccaacgtggt cacctggcaa	1920
aacgacgatc ttcttagggg cagacatagg ggcagacatt agaatggat atcctgaaa	1980
tatatatata tattgctgaa atgtaaaagg taagaaaagt tagaaagtaa gacgattgct	2040
aaccacatat tggaaaaaac aataggctt taaataatat tgtcaacttc aagtattgt	2100
atgcaagcat ttagtcatga acgttctct attctatatg aaaagccgt tccggctct	2160
caccttcct tttctccca attttcagt tgaaaaaggt atatgcgtca ggcacctct	2220
gaaattaaca aaaaatttcc agtcatcgaa ttgttctg tgcgatagcg cccctgtgt	2280
ttctcgat tttgagggaaa aaaataatgg ttgctaagag attcgaactc ttgcataat	2340
cgtatcgat gtattccac agttaactgc ggtcaagata ttcttgcatt caggcgctc	2400
gctcgccaa cgccggcgga cctctttaat gagaaaaatt tcgatagatg ataaaattt	2460
gctcctttc tgtttctat ttcttatttt cccactttt gctctattca gttataatt	2520
actatattatc catcgat taaaacaaatgttactgg tcagcttagga aagcgaaaat	2580
acaaagactt tatgcactt gtgatata tgcataatata tatccatttt tacgcactt	2640
tcatatatct tagttatcta aatacaatct agttattcgt acacaatcgc ccctgttata	2700
cctatagtgg gaataaaagta atgcactgtg acggggttct tcgcccggga tagggtaaaa	2760
ggatattgcc gtttcaagaa acttcggggta taatcgatata agataccgag aaagctatt	2820
ttcggtgtgc acgttaggatg tatattgaac aagcatgacc agaatctgat gcattacgag	2880
aaggttacgg gatgatatac gaccccgaa gtccatgtt caaaatgtgc cgactttccg	2940
cggcgctatt tggcacaaat ttccaggagaa acatcactgt cggtgttata gaattccatc	3000
tatattgttt tccccgttagg catacgatcgaa gcgggtttt aaccccgacg cctggcg	3059

<210> 28
<211> 8106
<212> DNA

2014_03_12_107345_00466_ST25

<213> Artificial Sequence

<220>

<223> Synthetic: i74804 integration construct

<400> 28

gacggcacgg	ccacgcgtt	aaaccgccc	ctcgccat	ccccacggg	ataaggcagc	60
cgacaaaaga	aaaacgaccg	aaaaggaacc	agaaagaaaa	aagagggtgg	gcgccgcg	120
gacgtgtaaa	aagatatgca	tccagcttct	atatcgctt	aactttaccg	ttttgggcat	180
cggAACGTA	TGTAACATTG	ATCTCCTT	GGGAACGGT	AGTGCAACGA	ATGCGATATA	240
gcaccgacca	tgtggcaaa	ttcgtataaa	attcggggtg	agggggattc	aagacaagca	300
accttggtag	tcagctaaa	cagcgattt	acggttgagt	aacacatcaa	aacaccgttc	360
gaggtcaagc	CTGGCGTGT	TTAACAGTT	TTGATATCAT	ATATAAATGT	AATAAGAAGT	420
ttggtaatat	TCAATTGAA	GTGTTAGTC	TTTTACTTCT	CTTGTTTAT	AGAAGAAAAA	480
acatcaagaa	ACATCTTAA	CATAACAAA	CACATACTAT	CAGAACACAC	GCTCGTCAA	540
cggccggcga	CCTTCAGAC	GCGACTGCCT	CATCAGTAAG	ACCCGTTGAA	AAGAACATTAC	600
ctgaaaaaaaaa	CGAATATATA	CTAGCGTTGA	ATGTTAGCGT	CAACAACAAG	AAGTTAATG	660
acgcggaggc	CAAGGCAAAA	AGATTCTTG	ATTACGTAAG	GGAGTTAGAA	TCATTTGAA	720
taaaaaacac	GCTTTTCAG	TTCGAGTTA	TCATTATCAA	TACTGCCATT	TCAAAGAATA	780
cgtaaataat	TAATAGTAGT	GATTTCTA	ACTTTATTAA	GTCAAAAAAT	TAGCCTTTA	840
attctgctgt	AACCCGTACA	TGCCAAAAT	AGGGGGCGGG	TTACACAGAA	TATATAACAT	900
cgtagggtgc	TGGGTGAACA	GTTTATTCT	GGCATCCACT	AAATATAATG	GAGCCCGCTT	960
tttaagctgg	CATCCAGAAA	AAAAAAGAAT	CCCAGCACCA	AAATATTGTT	TTCTTCACCA	1020
accatcagtt	CATAGGTCCA	TTCTCTTAGC	GCAACTACAG	AGAACAGGGG	CACAAACAGG	1080
caaaaaacgg	GCACAAACCTC	AATGGAGTGA	TGCAACCTGC	CTGGAGTAA	TGATGACACA	1140
aggcaattga	CCCACGCATG	TATCTATCTC	ATTTTCTTAC	ACCTTCTATT	ACCTTCTGCT	1200
ctctctgatt	TGGAAAAGC	TGAAAAAAA	GGTTGAAACC	AGTTCCCTGA	AATTATTCCC	1260
ctacttgact	AATAAGTATA	TAAGACGGT	AGGTATTGAT	TGTAATTCTG	TAATCTATT	1320
tcttaaactt	CTTAAATTCT	ACTTTATAG	TTAGTCTTT	TTTAGTTT	AAAACACCAA	1380
gaacttagtt	TCGACCTCCC	GCGACCTCCA	AAATCGAACT	ACCTTCACAA	TGGAACATT	1440
tgtaatcgaa	CCAACTGTGC	CCATGCCGCT	ACCAGCCATG	TTGACGCTC	CATCTGGTAT	1500
tttagctct	TTGGACGACG	CTGTGCAAGC	AGCCACCTTA	GCCCAACAAAC	AACTAAGTTC	1560
agttgagttg	CGTAGCAAG	TAATCAAAGC	CATAAGAGTG	GCCGGAGAAA	GGTATGCACA	1620
agttttggct	GAAATGGCAG	TTGCTGAAAC	TGGTATGGGT	AGGGTGGTGG	ATAAGTACAT	1680
taagaatgtc	TCTCAAGCTC	GTCATACGCC	TGGTATAGAA	TGTTTATCGG	CCGAGGTTCT	1740
tacgggtgat	AATGGCCTAA	CATTGATTGA	AAATGCCCT	TGGGGAGTCG	TAGCTTCAGT	1800
cacCCAAGC	ACAAATCCAG	CAGCTACGGT	AATTAATAAT	GCAATCTCAA	TGATTGCAGC	1860

2014_03_12_107345_00466_ST25	
ggggattca	gtcgtgttcg
caccacatcc	ttctgccaaa
aacgtctcac	taaggactat
ttctttactc	aacaaggcca
ttgtcgctac	cgcgccca
gaaaatttac	tagtttgtt
ggaaaccct	aacatcgaaa
ctgcacagag	attattcaga
tatccggta	ttggattgtt
agttgtaca	ggtggtaag
ccgtcggtga	agccgctagg
aagcatacag	ataaaagtt
aattgcagcc	ggcgctggta
atcctcctgt	tgttgtggac
gaaactgctg	acatacctaa
agccgcaaga	gcaattgtca
agggtgcttc	tttcgacaac
aacataattt	gtgctgatga
aaaagtttg	attgtggtag
acagagttgc	agatgcacta
ttggcagaaa	tgcaaagaaa
taacgccgtc	ttacttacac
ccgaacagac	cgaaagacta
ctacccgctc	ttttgtccga
tattgacgaa	cagggcaaag
gacgtgtgaa	tagagattat
gttggaaagag	atgcggctaa
attagcagcg	gctattggtc
tggaagttag	cgaacatact
cgtctactcc	tggcagagac
agacgctgat	catccattcg
ccgtgacgga	gctgatgatg
ccagtgttac	cagtaataag
agtcaagaat	gtagatgatg
caatcgatt	ggcagttaaag
ctagagtcag	gctgcagaca
cacagctgcg	atgcactcta
ctaataataag	aaacttaaat
agaatggcta	atgccatcaa
tacctctatc	tttgtaaaaa
atggtccatg	tattgcaggt
ttgggtttag	gcggtaagg
ttggacttca	atgactatta
gcactccgac	cggtgaaggt
gttacaagcg	ctcgatccct
tgtcagatta	agaagggtgt
tcttagtcga	catgtttcgg
attgcttaag	cggccgag
taataattat	tgcttccata
taatattttt	atatacctct
tattttatg	tattgttaa
ttaagtattt	ttatctatct
gcttatcatt	ttctttcat
ataggggggg	ttgggttttt
cttgcccatc	agattgatgt
cctccaactc	ggcactattt
tacaaagggt	ttttttgtaa
gagaaggaga	agacagatac
taaaccatac	gttactcgaa
acaaaaaaaaaa	aaaaaatgga
aaaagctgct	atcaacaaaa
gacggcctca	tcaaaccctaa
agaaaccatg	tcagcgtatg
tatatacctt	gtatattacg
tttccttaaa	tcttctttct
actaacgttt	tcattattct
atactctatg	accaataaaaa
acagactgta	ctttcaaaat
ttacccagta	ggccagcaaa
taaagaaaat	tataccagat
tacttctgaa	acacattaat
cccaacaaca	agtatgccat
taatccgtcg	ctacccatc
cccgctgct	tggccggccg
tacactgagt	aatggtagtt
ataagaaaga	gaccgagtt
gggacagtt	gaggcggtgg
agatattcct	tatggcatgt
ctggcgatga	taaaactttt
caaacggcag	ccccgatcta
aaagagctga	cagggaaatg
gtcagaaaaa	gaaacgtca
cccgccgtc	tggacgcgcc
gctcacccgc	acggcagaga
ccaatcagta	aaaatcaacg
gttaacgaca	ttactatata
tataatata	gaagcattta
atagaacagc	atcgtaatat
atgtgtactt	tgcagttatg
acgcccagatg	gcagtagtgg
aagatattct	ttattgaaaa
atagcttgc	accttacgta
caatcttgc	ccggagctt
tcttttttttgc	ccgattaaga
attcggtcg	aaaaagaaaa
ggagagggcc	aagagggagg
gcattggta	ctattgagca
cgtgagttata	cgtgatgttt
cacacaaagg	cagcttggag
tatgtctgtt	attaatttca
cagtagttc	ttgtccattt
gtgaaagttt	gcggcttgca
	3900

2014_03_12_107345_00466_ST25

gagcacagag gccgcagaat gtgcgttaga ttccgtatgt gacttgctgg gtattatatg	3960
tgtgcccata agaaagagaa caattgaccc ggttattgca aggaaaattt caagtcttgt	4020
aaaagcatat aaaaatagtt caggcactcc gaaatacttg gttggcgtgt ttcgtaatca	4080
acctaaggag gatgttttgg ctctggtcaa tgattacggc attgatatcg tccaaactgca	4140
tggagatgag tcgtggcaag aataccaaga gttccctcggt ttgccagttt ttaaaaagact	4200
cgtatccaa aaagactgca acatactact cagtcagct tcacagaaac ctcattcggt	4260
tattcccttg tttgattcag aagcaggtgg gacaggtgaa cttttggatt ggaactcgat	4320
ttctgactgg gttggaaggc aagagagccc cgaaagctta cattttatgt tagctggtgg	4380
actgacgcca gaaaatgttg gtgatgcgt tagattaaat ggcgttattt gtgttgatgt	4440
aagcggaggt gtggagacaa atgggttaaa agactctaac aaaaatagcaa atttcgtcaa	4500
aaatgctaag aaataggttta ttactgagta gtattttattt aagtattgtt tgtgcacttg	4560
cctgcaggcc ttttggaaaag caagcataaa agatctaaac ataaaatctg taaaataaca	4620
agatgtaaag ataatgctaa atcatttggc tttttgattt attgtacagg aaaaatataca	4680
tcgcaggggg ttgactttta ccatttcacc gcaatggaat caaacttggattt gaagagaatg	4740
ttcacaggcg catacgctac aatgacacgg ccggccaagc acgcggggat gggtagcga	4800
cggattaatg gcatacttgt ttttggattt aatgttttc agaagtaatc tggtaattt	4860
ttcttttattt gctggctac tggtaattt ttgaaagtac agtctgtttt tattggcat	4920
agagtataga ataatgaaaa cgttagtata aagaagattt aaggaaacgt aaattacaag	4980
gtatatacat acgctgacat ggtttttta ggtttgatga ggcgtcttt ttttggatgc	5040
agcttttcc attttttttt ttttttttc gagtaacgta tggtaattt tctgtttct	5100
ccttcctta caaaaaaacc ctttggaaaa tagtgccgag ttggaggaca tcaatctgat	5160
gggcaagaaa acaccaaccc cccctataatg aaaagaaaat gataaggcaga tagataaaaa	5220
tacttaatta actaatacat aaaaataaga ggtatataaa aatattatat ggaagcaata	5280
attattactc gggccgcctt aagcaatccg aaacatgtcg actaagacac accttcttaa	5340
tctgacaaag gtacgaggcgc ttgtacacc ttcaccggc ggagtgtttaa tagtcattga	5400
agtccaaacct tcaccgccta aacccaaacc tgcaatacat ggaccatttt ttacaaagat	5460
agaggattt atggcattt ccattctatt taagtttctt atatttagtag agtgcacgc	5520
agctgtgtgt ctgcagcctg actctagctt aactgccaat gcgattgcattt catctacatt	5580
cttgactctt attactggta acactggcat catcagctcc gtcacggcga atggatgtac	5640
agcgtctgtc tctgccagga gtagacgagt atgttcgcta acttccagac caatagccgc	5700
tgctaatttta gccgcataatc ttccaacata atctctattt acacgtcctt tgccctgttc	5760
gtcaatatcg gacaaaagag cggtagtag tctttcggtc tggcgggtttaaagtaagac	5820
ggcgttattt ctttgcattt ctgccaatag tgcatactgca actctgtctt ccacaatcaa	5880
aacttttca tcagcacaaa ttatgttggt gtcgaaagaa gcacccttga caattgctct	5940

2014_03_12_107345_00466_ST25

tgccgttta	ggtatgtcag	cagtttcgtc	cacaacaaca	ggaggattac	cagcgcggc	6000
tgcaattaac	cttttatctg	tatgcttcct	agcggcttca	acgacggctt	caccacctgt	6060
cacaactaac	aatccaatac	ccgatatact	gaataatctc	tgtgcagttt	cgatgttagg	6120
gtttgccaca	ctaactagta	aattttctgg	gccgcccgt	gcgacaatgg	ccttggtag	6180
taaagaaata	gtccttagtg	agacgtttt	ggcagaagga	tgtggtgcga	acacgactga	6240
attccccgct	gcaatcattt	agattgcatt	attaaattacc	gtagctgctg	gatttgcgt	6300
tggcgtgact	gaagctacga	ctccccagg	ggcattttca	atcaatgtta	ggccattatc	6360
acccgtaaga	acctcgcccg	ataaacattt	tataccaggc	gtatgacgag	ctttagagac	6420
attcttaatg	tacttatcca	ccaccctacc	cataccagtt	ttagcaactg	ccatttcagc	6480
caaaacttgt	gcataccctt	ctccggccac	tcttatggct	ttgattactt	gctgacgcaa	6540
ctcaactgaa	cttagttgtt	gttggctaa	ggtggctgct	tgcacagcgt	cgtccaaaga	6600
gctaaaaata	ccagatggag	cgtcaaacat	ggctggtagc	ggcatggca	cagttggttc	6660
gattacagaa	tgttccattt	tgaaggtgt	tgcattttgg	aggtcgccgg	aggtcgaaac	6720
taagttctt	gtgtttaaa	actaaaaaaa	agactaacta	taaaagtata	atthaagaag	6780
ttaagaaat	agatttacag	aattacaatc	aatacctacc	gtctttatata	acttattatg	6840
caagtagggg	aataatttca	ggaaactgtt	ttcaaccctt	ttttcagct	ttttccaaat	6900
cagagagagc	agaaggtaat	agaaggtgt	agaaatgag	atagatacat	gcgtgggtca	6960
attgccttgt	gtcatcattt	actccaggca	ggttgcatca	ctccattgag	gttgtgccc	7020
tttttgccct	gtttgtgccc	ctgttctctg	tagttgcgt	aagagaatgg	acctatgaac	7080
tgatggttgg	tgaagaaaac	aatatttgg	tgctggatt	ctttttttt	ctggatgcca	7140
gctaaaaag	cgggctccat	tatatttagt	ggatgccagg	aataaactgt	tcacccagac	7200
acctacgatg	ttatataattc	tgtgtAACCC	ccccctatt	ttgggcatgt	acgggttaca	7260
gcagaattaa	aaggctaatt	tttgactaa	ataaagttag	gaaaatcact	actattaatt	7320
attacgtat	tcttgaaat	ggcagtattt	ataatgataa	actcgaactg	aaaaagcgtg	7380
tttttattt	aaaatgattt	taactccctt	acgtaatcaa	ggaatctttt	tgccttggcc	7440
tccgcgtcat	taaacttctt	gttggacgt	ctaacattca	acgctagttat	atattcgtt	7500
ttttcaggta	agttctttt	aacgggtctt	actgatgagg	cagtcgcgtc	tgaaaggtcc	7560
gccggcgtt	gacgagcgt	taccaacctg	catttcttc	cgtcatatac	acaaaatact	7620
ttcatataaa	cttacttggt	cttacgtcat	aaataaataat	gtatacatat	aaattaaaaa	7680
atttggtttt	atatttttac	aaaaagaatc	gtttacttca	tttctccctt	ttaagcgata	7740
caatccatga	aaaaagagaa	aaagagagaa	caggctgt	ccttctttaa	aacatcccac	7800
acaaaatcat	attgaatgt	attttacatc	ttaagctgt	gtacaacaac	tgctatatcc	7860
aaagaaaact	aacgtggacc	gcttttagag	ttgagaaaaa	ggtttgaaaa	aatagcaat	7920
acaaagactt	gtttcatata	taaaatacag	ggagcacatt	gagctaatat	aacataaaca	7980

2014_03_12_107345_00466_ST25

ctgcgaacca	attccaatca	aaaggtacac	atgagagcat	tcccccgagt	actgccattt	8040
cgcacatcaga	gatcatataa	taacatcctt	cttcgaacgg	cgtttaaac	gcgtggccgt	8100
gccgtc						8106
<210> 29						
<211> 2404						
<212> DNA						
<213> Artificial Sequence						
<220>						
<223> Synthetic: i76220 integration construct						
<400> 29						
gacggcacgg	ccacgcgtt	aaaccgcccgc	acgtgtatgt	acggctgtgt	aaatatgata	60
atcatctcg	acgaacggcg	tagtactctc	catcccctaa	aaatgttcac	gtgtgactgc	120
tccatttcgc	cggatgtcga	gatgacccccc	ccccctcaaa	aggcactcac	ctgctgacat	180
gccgtggcaa	atgattgggg	tcatcctttt	tttctgttat	ctctaagatc	caaagaaaag	240
taaaaaaaaaa	aggttggggt	acgaattgcc	gccgagccctc	cgatgccatt	attcaatggg	300
tattgcagtt	gggttatagt	tcctcggtgg	caaatagttc	tcccttcatt	ttgttatataa	360
actgggcggc	tattctaagc	atatttctcc	cttaggttat	ctggtagtac	gttatatatctt	420
gttcttatat	tttctatcta	taagcaaaac	caaacatatc	aaaactacta	gaaagacatt	480
gccccactgt	gttcgctcgt	ccaacgcccgg	cggaccttcc	tcgacgtggg	ccttttctt	540
gccatatgga	tccgctgcac	ggtcctgttc	cctagcatgt	acgtgagcgt	atttcctttt	600
aaaccacgac	gctttgtctt	cattcaacgt	ttcccattgt	ttttttctac	tattgctttg	660
ctgtggaaa	aacttattcga	aagatgacga	ctttttctta	attctcgttt	taagagcttg	720
gtgagcgcta	ggagtcactg	ccaggtatcg	tttgaacacg	gcattagtca	ggaaagtcat	780
aacacagtcc	tttcccgc当地	ttttctttt	ctattactct	tggcctcctc	tagtacactc	840
tatatttttt	tatgcctcgg	taatgatttt	cattttttt	tttccaccta	gcggatgact	900
ctttttttt	cttagcgatt	ggcattatca	cataatgaat	tatacattat	ataaaagtaat	960
gtgatttctt	cgaagaatat	actaaaaat	gagcaggcaa	gataaacgaa	ggcaaagatg	1020
acagagcaga	aagccctagt	aaagcgtatt	acaaatgaaa	ccaagattca	gattgcgatc	1080
tctttaaagg	gtggtcccct	agcgatagag	cactcgatct	tcccagaaaa	agagggcagaa	1140
gcagtagcag	aacaggccac	acaatcgcaa	gtgattaacg	tccacacagg	tatagggttt	1200
ctggaccata	tgatacatgc	tctggccaag	cattccggct	ggtcgcta	cggtgagtgc	1260
attggtgact	tacacataga	cgaccatcac	accactgaag	actgcgggat	tgctctcggt	1320
caagcttta	aagaggccct	agggccgtg	cgtggagtaa	aaaggtttgg	atcaggattt	1380
gcgccttgg	atgaggcact	ttccagagcg	gtggtagatc	tttgcacag	gccgtacgca	1440
gttgcgaac	ttggtttgc当地	aaggagaaa	gtaggagatc	tctcttgc当地	gatgatcccg	1500
cattttcttgc当地	aaagcttgc当地	agaggctagc	agaattaccc	tccacgttga	ttgtctcgca	1560

2014_03_12_107345_00466_ST25

ggcaagaatg	atcatcaccg	tagtgagagt	gcgttcaagg	ctcttgcgg	tgccataaga	1620
gaagccacct	cgcctaattgg	taccaacgat	gttccctcca	ccaaagggtgt	tcttatgttag	1680
tgacaccgat	tattnaaagc	tgcagcatac	gatataata	catgtgtata	tatgtataacc	1740
tatgaatgtc	agtaagtatg	tatacgaaca	gtatgatact	gaagatgaca	aggtaatgca	1800
tcattctata	cgtgtcatttc	tgaacgaggc	gchgcttcct	ttttctttt	tgcttttct	1860
tttttttct	cttgaactcg	aggccgccc	gcgttggacg	agcgtgatga	tttcttcct	1920
ttttatattg	acgacttttt	tttttcgtg	tgttttggtt	ctcttataac	cgagctgctt	1980
acttattatt	atttcacctt	ctcttttat	ttatacttat	aattatttat	tctttacata	2040
ctgttacaag	aaactctttt	ctacattaat	tgcataaaagt	gtcaatcagc	acatcctcta	2100
tatcgctatc	aacaacaaat	ttgacaaacc	tgcctatatc	ttcaggaaca	actgcccac	2160
cgctaccacc	actacttgcg	aagtccctgg	agtttaatat	gcactgaaat	ttacctagcc	2220
gttttacaca	agaccataat	ccatccatgc	tatcgagta	tatgattttg	tgttcggtt	2280
tcgtcttgcg	aaaggcatcc	tcaatggctt	gtttcattga	tccatcagtg	tggctcgtag	2340
gtaccagcaa	aaccacttca	tcagcggcgt	actcctggcg	gtttaaacgc	gtggccgtgc	2400
cgtc						2404

<210> 30
<211> 8536
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic: i73830 integration construct

<400> 30	gacggcacgg	ccacgcgtt	aaaccgccac	ccagccaagg	tagtctaaaa	gctaatttct	60
	ctaaaaaggga	gaaagtttgtt	gatttttat	ctcgattat	tatataatgca	agaatagtta	120
	aggtagtt	ataaaagtttt	atcttaattt	ccacatacgt	acattgacac	gtagaaggac	180
	tccattat	ttttcattct	agcatactat	tattcctgt	aacgtcccag	agtattccat	240
	ttaattgtcc	tccatttctt	aacggtgacg	aaggatcacc	atacaacaac	tactaaagat	300
	tatagtacac	tctcacctt	caactattt	tctgacattt	gccttacttt	tatctccagc	360
	ttccctcga	ttttat	caatttgatt	tctaaagctt	tttgcttagg	cataccaaac	420
	catccactca	tttaacacct	tat	ttcgaagaca	gcatccaact	ttatacgttc	480
	actacctttt	tttttacaac	aatttcattt	ttcacatctat	gaacgctcgt	ccaacgcccgg	540
	cggaccttcc	agacgcgact	gcctcatcag	taagaccgt	tgaaaagaac	ttacctgaaa	600
	aaaacgaata	tatactagcg	ttgaatgtta	gcgtcaacaa	caagaagttt	aatgacgcgg	660
	aggccaaggc	aaaaagattt	tttgattacg	taagggagtt	agaatcattt	tgaataaaaa	720
	acacgcgtttt	tcagttcgag	tttatcatta	tcaatactgc	catttcaaag	aatacgtaaa	780
	taattaatag	tagtgatttt	cctaacttta	tttagtcaaa	aaatttagcct	tttaattctg	840

2014_03_12_107345_00466_ST25

ctgtaacccg tacatgccca aaataggggg cgggttacac agaatatata acatcgtagg	900
tgtctgggtg aacagtttat tcctggcatc cactaaatat aatggagccc gcttttaag	960
ctggcatcca gaaaaaaaaa gaatcccagc accaaaatat tgtttcttc accaaccatc	1020
agttcatagg tccattctct tagcgcaact acagagaaca ggggcacaaa caggcaaaaa	1080
acgggcacaa cctcaatgga gtgatgcaac ctgcctggag taaatgatga cacaaggcaa	1140
ttgacccacg catgtatcta tctcattttc ttacaccttc tattaccttc tgctctct	1200
gatttggaaa aagctgaaaa aaaaggttga aaccagttcc ctgaaattat tcccctactt	1260
gactaataag tatataaaga cgtaggtat tgattgtaat tctgtaaatc tatttcttaa	1320
acttcttaaa ttctactttt atagttagtc ttttttttag ttttaaaaca ccaagaactt	1380
agtttcgacc tcccgcgacc tccaaaatcg aactaccttc acaatggctg atttcgattc	1440
taaagaatac ttggagttag ttgacaagtg gtggcgtgcc accaactact tgtccgctgg	1500
tatgattttc ttgaagtcca acccattatt ctctgttact aataccccaa tcaaggccga	1560
agatgtcaaa gttaaaccaa ttggtcactg gggtaactt tccggtaaaa ctttcttata	1620
cggccacgct aaccgttga ttaacaagta cggctcaac atgtttacg ttgggtgtcc	1680
aggtcacggt ggtcaagtca tggtaactaa cgcctactta gacggtgcc acaccgaaga	1740
ttacccagaa attactcaag acatcgagg tatgtctcat ttgtcaagc gtttctctt	1800
ccctgggtt attggttccc atatgaccgc tcaaactcca gtttccttgc acgaaggtgg	1860
tgaattgggt tactcttgt cccatgctt cggtgctgtt ttggacaacc cagaccaagt	1920
tgctttgct gtcgttggtg atggtaagc tgaaactggt ccatctatgg cctcttggca	1980
ttccattaag ttcttaaatg ccaagaacga tggtgccgtt ttgccagttt tggatttaaa	2040
cggttcaag atttccaatc caaccatttt ttctagaatg tctgatgaag aaattactaa	2100
gttcttcgaa ggttgggtt attccctag attcatgaa aatgatgaca ttcacgacta	2160
cggccacctac caccaattgg ccgcttaacat cttagatcaa gccatcgaag acattcaagc	2220
tattcaaat gacgccagag agaatggtaa atatcaagat ggtgaaattc cagcttggcc	2280
tgttattatc gctagattgc caaagggttg ggggtgtcca acccacgatg cttctaataa	2340
tccaattgaa aactcttca gagtcacca agttccatta ccattggaac aacacgattt	2400
ggccaccttgc cagaattcg aagattggat gaactcttac aagccagaag aattattcaa	2460
cgctgatggt tccttgaagg atgagttgaa agctattgcc ccaaagggtg ataagagaat	2520
gtctgctaac ccaatcacca acgggtgtgc tgacagatcc gacttgaat tgccaaattt	2580
gagagaattc gctaacgaca tcaacgacga taccagaggt aaggaattcg ctgactctaa	2640
gagaaacatg gatatggcta ctttatccaa ctattttagt gccgtttctc aattgaaccc	2700
aaccagattc agattcttcg gtccagatga aaccatgtcc aacagattgt ggggtttgtt	2760
taatgttacc ccacgtcaat ggttggaa aatcaaggaa ccacaagatc aattgttgc	2820
tccaactggc cgtatcatcg attcccaatt gtctgaacac caagctgaag gttgggtggaa	2880

2014_03_12_107345_00466_ST25	
aggttacact ttgactggta gagttggtat cttgcctt tacgaatctt tcttgagagt	2940
tgttgatacc atggtcactc aacattcaa gtggttgcgt cacgcttccg aacaagcttgc	3000
gagaaatgac tatccatcct taaatttgat cgctacctct accgcttcc aacaagatca	3060
taacggttat actcaccaag accctggtat gttaactcat ttggccgaga agaagtctaa	3120
cttcattaga gaatatttgc cagccgacgg taactcttg ttagccgttc aagagagagc	3180
tttctctgaa agacataagg ttaacttatt gatcgcttct aaacaaccaa gacaacaatg	3240
gttcactgtt gaagaagctg aagtcttagc taacgaaggt ttgaagatta tcgattggc	3300
ttctactgct ccatcttccg atgttgatat tactttgct tctgccgta ctgaaccaac	3360
cattgagact ttggccgcct tatggttgat taatcaagct ttccctgacg ttaagtttag	3420
atacgttaac gttgttgaat tgttaagatt gcaaaagaaa tctgaaccaa acatgaacga	3480
cgaaagagaa ttatctgccc aagaatttaa taagtacttc caagccgaca ctccagttat	3540
cttcggtttc cacgcttacg aaaacttgat tgaatcttc ttttcgaga gaaagttcac	3600
cggtgatgtc tatgttcacg gttatagaga agatggtgat atcactacca cctacgatat	3660
gagagtctat tcccacttgg atcgttcca tcaagccaag gaagccgccc aaatcttgc	3720
tgctaacggt aaaatcgacc aagccgctgc cgacacctt attgctaaga tggacgacac	3780
tttggccaaa cacttccaag ttactagaaa tgaaggtaga gatattgaag aattcactga	3840
ctggacttgg tctccattga agtaagtcaa tttactttaa atcttcatt taaataaatt	3900
ttcttttat agctttatga cttagttca atttatatac tattttatg acattttcga	3960
ttcattgatt gaaagctttg tgtttttct tgatgcgcta ttgcattgtt cttgtcttt	4020
tcgccacatg taatatctgt agtagatacc tgatacatgg tggatgctga gtgaaatttt	4080
agttataat ggaggcgctc ttaataattt tggggatatt ggcttatccc cgcgtgcttg	4140
gccggccgta cgaaaatcgt tattgtctt aaggtgaaat ttctactctt attaatggtg	4200
aacgttaagc ttagtgcatac atggaagctg attggcttta acttgctgt catcttcata	4260
atggtcattt gctcgtgtt ttacttaagt tatttgact cgtttgaac gtaatgcata	4320
tgatcatctt atggaataat agtgagtggt ttcagggtcc ataaagcttt tcaattcatc	4380
ttttttttt ttgttctttt ttttGattcc gttttttttt aaattttttt gattcggtaa	4440
tctccgagca gaaggaagaa cgaaggaagg agcacagact tagattggta tatatacgc	4500
tatgtggtgt tgaagaaaca tgaatttgc cagtattctt aacccaactg cacagaacaa	4560
aaacctgcag gaaacgaaga taaatcatgt cgaaagctac atataaggaa cgtgctgcta	4620
ctcatcctag tcctgttgct gccaagctat ttaatatcat gcacgaaaag caaacaact	4680
tgtgtgtttc attggatgtt cgtaccacca aggaattact ggagtttagtt gaagcattag	4740
gtccccaaat ttgtttacta aaaacacatg tggatatctt gactgatttt tccatggagg	4800
gcacagttaa gcccctaaag gcattatccg ccaagtacaa ttttttactc ttcgaagaca	4860
aaaaatttgc tgacattggt aatacagtca aattgcagta ctctgcgggt gtatacagaa	4920

2014_03_12_107345_00466_ST25

tagcagaatg ggcagacatt acgaatgcac acggtgtggt gggcccaggt attgttagcg	4980
gtttgaagca ggcggcggaa gaagtaacaa aggaacctag aggcctttg atgttagcag	5040
aattgtcatg caagggtctcc ctagctactg gagaatatac taagggtact gttgacattg	5100
cgaagagtga caaagattt gttatcggct ttattgctca aagagacatg ggtgaaagag	5160
atgaaggta cgattgggtt attatgacac ccggtgtggg ttttagatgac aaggagacg	5220
cattgggtca acagtataga accgtggatg atgtggtctc tacaggatct gacattatta	5280
ttgttggaaag aggactattt gcaaaggaa gggatgctaa ggtagagggt gaacgttaca	5340
gaaaagcagg ctgggaagca tatttgagaa gatgcggcca gcaaaactaa aaaactgtat	5400
tataagtaaa tgcgtatata ctaaactcac aaattagagc ttcaatttaa ttatatcagt	5460
tattaccacg aaaatcgta ttgtcttcaa ggtgaaattt ctactcttat taatggtaa	5520
cgttaagctg atgctatgat ggaagctgat tggcttaac ttgcttgc tcttgctaat	5580
ggtcatatgg ctcgtgttat tacttaagtt atttgtactc gtttgaacg taatgcta	5640
gatcatctta tggataataa gtgaacggcc ggccaagcac gcggggatgg gatgagctt	5700
gagcaggaag aatacactat actggatcta aagagtacaa tagatggata agaatattgg	5760
cagcgcaaaa aggcttcaag cttacacaac acggtttatt tcgaaataat atccttcg	5820
aaagcttaa cgaacgcaga atttcgagt tattaaactt aaaatacgct gaacccgaac	5880
atagaaatat cgaatggaa aaaaaaaactg cataaaggca ttaaaagagg agcgaattt	5940
tttttaataa aaatcttaat aatcattaaa agataaataa tagtcttat atacgtat	6000
aaataaaaaa tattcaaaaa ataaaataaa ctattatTTT agcgtaaagg atggggaaag	6060
agaaaaagaaa aaaattgatc tatcgatttc aattcaattc aatagatctt tatccttg	6120
cttgcgcctg aactgcggta acggcaacaa ctttgacgat gtcgtcgact gaacatccc	6180
ttgacaaatc gttgataggt ttggcaaatc cctgacatat aggaccgatg gcttcggc	6240
ttgcgaatct ttggaccaac ttgtatccga tgttcctgc ctggatgtct gggaaagatca	6300
agacatttgc cttaccagcg actttagatc cagggcttt caaatctgcg accttcttaa	6360
ccaaatgaggc gtctaactgc aattcaccgt cgatgtctaa gtcaggccta gcctccttag	6420
ccaaatTTTgt tgccTTTgt aacctgtcga ctaattcatg tgaggctgat cccatggtt	6480
agaatgacaa catggctacc cttggctcga tcttgaccaa attcttgca gtctcagcag	6540
tggtaattgc gattgaagat aactcttcag cggttaggaca aacatttaca ggcgcagtcag	6600
cgaataacaa aaaaccgtcc tctccatact cgcaagtcaagg tactgacatc aagaagactg	6660
atgagacgac agatgcaccc ggtactgttt tgacaatctg caaaccaggc cttaacaagt	6720
ctcctgttagt atgtatagca ccagatacca aaccgtcagc gtcacctaac ttgaccatca	6780
ttgttgcgaa gtagattggg tccctgacga ttttgcagc cttctccaag gtgactccct	6840
tgtttttct gatctcgtag aaagcgttgg cgtaaccggc ggtcttagaa gaagttctg	6900
ggtcgactat ctctactccg gccaaattta ctccgaattt tgccgcgtt tccttaatga	6960

2014_03_12_107345_00466_ST25

cagactctga accgaccaag attatgtcgg caataccgtc cctaataatc tcctctgaag	7020
ccctgatgtt cctctttcc tcaccctctg ccaaaacgat tttcttcttg tcggccttgg	7080
ccaatccgaa gatattctcc atcaattca ttgtgaaggt agttcgattt tggaggtcgc	7140
gggaggtcga aactaagttc ttgggtttt aaaactaaaaaaa aaaaagactaa ctataaaagt	7200
agaatttaag aagtttaaga aatagattta cagaattaca atcaataacctt accgtcttta	7260
tatacttatt agtcaagtag gggataatt tcagggact ggttcaacc tttttttca	7320
gcttttcca aatcagagag agcagaaggt aatagaaggt gtaagaaaaat gagatagata	7380
catgcgtggg tcaattgcct tgtgtcatca tttactccag gcaggttgc tcactccatt	7440
gaggttgc ccgttttttgc cctgtttgtg cccctttct ctgtagttgc gctaagagaa	7500
tggacctatg aactgatggt tggtaagaa aacaatattt tggtgctggg attctttttt	7560
tttctggatg ccagcttaaa aagcgggctc cattatattt agtggatgcc aggaataaac	7620
tgttacccca gacacctacg atgttatata ttctgtgtaa cccggcccccatttttggca	7680
tgtacgggtt acagcagaat taaaaggcta atttttgac taaataaaagt tagaaaaatc	7740
actactatta attatttacg tatttttga aatggcagta ttgataatga taaactcgaa	7800
ctgaaaaagc gtgtttttta ttcaaatga ttcttaactcc cttacgtaat caaggaatct	7860
ttttgccttgc gcctccgcgt cattaaactt cttgttgc acgctaacat tcaacgctag	7920
tatatattcg tttttttagt gtaagttctt ttcaacgggtt ctactgatg aggcaagtcgc	7980
gtctgaaagg tccgcccggcg ttggacgagc gctccatgct ggacttactc gtcgaagatt	8040
tcctgctact ctctatataa ttagacaccc atgttataga tttcagaaaaaa caatgtataa	8100
atatatggta gcctcctgaa actaccaagg gaaaaatctc aacaccaaga gctcatattc	8160
gttggatag cgataatatc tctttacctc aatcttatat gcatgttatt tgctttata	8220
attggctctt attagggaa aaaagtcggt ttgagagctt ctcgcgtatgt gaaatctcaa	8280
tttgaactgc acgccaaagc tagccattt cacgaacacc agaaagaaga aatccccaaag	8340
gatgcgtatgtatgc tctctcatat cggtgagttt gaaatgttataaactgtatca	8400
gctttacaag aaacgtaaaaa tctggcacga tggtagactg aaataactttc agttaaacaa	8460
cagattcatg ctttatacgg aaaaggataa cgttttgtta gctagtgagg cggtttaaac	8520
gcgtggccgt gcccgtc	8536

<210> 31
 <211> 9734
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic: i74810 integration construct

<400> 31	
gacggcacgg ccacgcgttt aaaccgccccg ctcgcctcat ccccacggga ataaggcagc	60
cgacaaaaaga aaaacgaccg aaaaggaacc agaaagaaaaa aagagggtgg ggcgcggcg	120

2014_03_12_107345_00466_ST25
gacgtgtaaa aagatatgca tccagcttct atatcgctt aactttaccg ttttgggcat 180
cgggAACGTA tgtAACATTG atctccTCTT gggAACGGTG agtGCAACGA atGCGATATA 240
gcaccgacca tggggcaaa ttGtaataa attcggggTG agggggattc aagacaagca 300
accttggtag tcAGCTCAA cagcgattt aCGGTTGAGT aacacatcaa aacaccGTC 360
gaggtcaAGC ctggcgtGTT taacaAGTTc ttGatATCAT atataaATGT aataAGAAGT 420
ttggtaataat tcaattcgaa gtGTTcAGTC ttttacttCT cttGTTTAT agaAGAAA 480
acatcaagaa acatCTTAA catacacAAA cacataCTAT cagaataCAC gctcgTCAA 540
cgccggcgGA ctttcAGAC gcGACTGcCT catcAGTAAG acccGTTGAA aagaACTTAC 600
ctgaaaaaaa cgaatataCTAGCgtTA atGTTAGCgt caacaACAAg aagtTTAATG 660
acgcggaggc caaggcaaaa agattcTTG attacGtaAG ggAGTTGAA tcattttGAA 720
taaaaaacac gcttttcAG ttcGAGTTA tcattatCAA tactGCCATT tcaaAGAATA 780
cgtaaataat taatAGTAGT gatTTcCTA actTTATTtA gtcaaaaaAT tagcTTTtA 840
attctGCTGT aacccgtaca tgcccaAAAT agggggcGGG ttacacAGAA tatataACAT 900
cgtaggtgtc tgggtGAACA gtttattcCT ggcATCCACT aaatataATG gagcccGTT 960
ttaagctgg catccAGAAA aaaaAGAAat cccAGCACCA aaatattGTT ttcttacca 1020
accatcAGTT catAGGTCCA ttctcttagc gcaACTACAG agAACAGGGG cacAAACAGG 1080
caaaaaacgg gcacaACCTC aatGGAGTGA tgcaACCTGc ctggAGTAA tgatGACACA 1140
aggcaattGA cccacGcatG tatctatCTC attttcttAC accttcttatt accttctGCT 1200
ctctctgatt tgaaaaaAGC tgaaaaAAAAGC gttGAAACC agttccCTGA aattattccc 1260
ctacttgact aataAGTATA taaAGACGGT aggtattGAT tgtaattCTG taaatCTATT 1320
tcttaaactt cttaaattCT acTTTATAG ttagtCTTT ttttagTTT aaaACACCAA 1380
gaacttagtt tcgacCTCCC gcgacCTCCA aaatCGAact accttCACAA tggctGATT 1440
cgattctaaa gaataACTTGg agttAGTTGA caAGTGGTGG cgtGCCACCA actactGTC 1500
cgctggatG attttcttGA agtCCAAACCC attattCTCT gttactaATA ccccaatCAA 1560
ggccGAAGAT gtcaAAAGTTA aaccaattGG tcactGGGt actattCCG gtcaAAACTT 1620
cttatacgCC cacGCTAACc gtttGATTA caAGTACGGT ctcaACATGT tttacGTTGG 1680
tggTCCAGGT cacGGTGGTC aagtcatGGT tactAACGCC tacttagACG gtGcCTACAC 1740
cgaAGATTAC ccAGAAATTa ctcaAGACAT cgaAGGTATG tctcatttGT tcaAGCgtTT 1800
ctctttccCT ggtGGTATTG gttccCATAT gaccGCTCAA actCCAGGTT ccttgcACGA 1860
aggTGGTGAa ttggGTTACT ctTGTCCCA tgctttCGGT gctGTTTGG acaACCCAGA 1920
ccaAGTTGCT ttGCTGTcG ttggTGTATGG tgaAGCTGAA actGGTCCAT ctatGGCCTC 1980
ttggcATTCC attaAGTTCT taaatGCCAA gaACGATGGT gccGTTTGC cagTTTGGA 2040
tttaaACGGT ttcaAGATTt ccaatCCAAc catttttCT AGAATGTCTG atGAAGAAAT 2100
tactaAGTTC ttGAGGTT tggGTTATTc ccctAGATTc attGAAAATG atGACATTCA 2160

2014_03_12_107345_00466_ST25

cgactacgcc	acctaccacc	aattggccgc	taacatctta	gatcaagcca	tcgaagacat	2220
tcaagctatt	caaaatgacg	ccagagagaa	tggtaaatat	caagatggtg	aaattccagc	2280
ttggcctgtt	attatcgcta	gattgccaaa	gggttggggt	ggtccaaccc	acgatgcttc	2340
taataatcca	attgaaaact	cttcagagc	tcaccaagtt	ccattaccat	tggaacaaca	2400
cgatttggcc	accttgccag	aattcgaaga	ttggatgaac	tcttacaagc	cagaagaatt	2460
attcaacgct	gatggttcct	tgaaggatga	gttgaagct	attgccccaa	agggtgataa	2520
gagaatgtct	gctaacccaa	tcaccaacgg	tggtgctgac	agatccgact	tgaaattgcc	2580
aaattggaga	gaattcgcta	acgacatcaa	cgacgatacc	agaggttaagg	aattcgctga	2640
ctctaagaga	aacatggata	tggctacttt	atccaactat	ttaggtgccg	tttctcaatt	2700
gaacccaacc	agattcagat	tcttcggtcc	agatgaaacc	atgtccaaca	gattgtgggg	2760
tttgttaat	gttacccac	gtcaatggat	ggaagaaatc	aaggaaccac	aagatcaatt	2820
gttgtctcca	actggtcgta	tcatcgattc	ccaattgtct	gaacaccaag	ctgaaggttg	2880
gttggaaaggt	tacacttta	ctggtagagt	tggtatctt	gccttctacg	aatcttctt	2940
gagagttgtt	gataccatgg	tcactcaaca	tttcaagtgg	ttgcgtcacg	cttccgaaca	3000
agcttggaga	aatgactatc	catccttaaa	tttgatcgct	acctctaccg	ctttccaaca	3060
agatcataac	ggttatactc	accaagaccc	tggtatgtt	actcatttgg	ccgagaagaa	3120
gtctaacttc	attagagaat	atttgccagc	cgacggtaac	tctttgttag	ccgttcaaga	3180
gagagctttc	tctgaaagac	ataaggttaa	cttattgatc	gcttctaaac	aaccaagaca	3240
acaatggttc	actgttgaag	aagctgaagt	cttagctaac	gaaggtttga	agattatcga	3300
ttgggcttct	actgctccat	cttccgatgt	tgatattact	tttgcttctg	ccggtaactga	3360
accaaccatt	gagactttgg	ccgccttatg	gttgattaat	caagcttcc	ctgacgttaa	3420
gtttagatac	gttaacgttg	ttgaattgtt	aagattgcaa	aagaaatctg	aaccaaacat	3480
gaacgacgaa	agagaattat	ctgccgaaga	attnaataag	tacttccaag	ccgacactcc	3540
agttatcttc	ggttccacg	cttacgaaaa	cttgattgaa	tctttctttt	tcgagagaaa	3600
gttcaccgg	gatgtctatg	ttcacggta	tagagaagat	ggtgatatac	ctaccaccta	3660
cgatatgaga	gtctattccc	actggatcg	tttccatcaa	gccaaaggaag	ccgccgaaat	3720
cttgcgtct	aacggtaaaa	tcgaccaagc	cgctgccgac	acctttattt	ctaagatgga	3780
cgacactttg	gccaaacact	tccaaagttac	tagaaatgaa	ggttagagata	ttgaagaatt	3840
cactgactgg	acttggtctc	cattgaagta	agtgaattt	ctttaaatct	tgcatttaaa	3900
taaattttct	ttttatagct	ttatgactt	gtttcaattt	atatactatt	ttaatgacat	3960
tttcgattca	ttgattgaaa	gctttgtgtt	ttttcttgat	gcgttattgc	attgttctt	4020
tcttttcgc	cacatgtaat	atctgttagt	gatacctgat	acattgtgga	tgctgagtga	4080
aattttagtt	aataatggag	gcgcctttaa	taatttggg	gatattggct	tatccccg	4140
tgcttggccg	gccgtacact	gagtaatggt	agttataaga	aagagaccga	gttagggaca	4200

2014_03_12_107345_00466_ST25

gttagaggcg	gtggagatat	tccttatggc	atgtctggcg	atgataaaaac	tttcaaacg	4260
gcagccccga	tctaaaagag	ctgacaggga	aatggtcaga	aaaagaaaacg	tgcacccgcc	4320
cgtctggacg	cggcgtcac	ccgcacggca	gagaccaatc	agtaaaaatc	aacggtaac	4380
gacattacta	tataataat	ataggaagca	tttaatagaa	cagcatcgta	atatatgtgt	4440
actttgcagt	tatgacgcca	gatggcagta	gtggaagata	ttctttattt	aaaaatagct	4500
tgtcaccta	cgtacaatct	tgtccggag	cttttctttt	tttgccgatt	aagaattcgg	4560
tcgaaaaaaag	aaaaggagag	ggccaagagg	gagggcattt	gtgactattt	agcacgtgag	4620
tatacgtgat	taagcacaca	aaggcagtt	ggagtatgtc	tgttattttat	ttcacaggtt	4680
gttctggtcc	attggtgaaa	gttgcggct	tgcagagcac	agaggccgca	aatgtgctc	4740
tagattccga	tgctgactt	ctgggttattt	tatgtgtgcc	caatagaaag	agaacaattt	4800
acccggttat	tgcaaggaaa	atttcaagtc	ttgtaaaagc	atataaaaat	agttcaggca	4860
ctccgaaata	cttgggttggc	gtgtttcgta	atcaacctaa	ggaggatgtt	ttggctctgg	4920
tcaatgatta	cggcattt	atcgccaac	tgcattggaga	tgagtcgtgg	caagaatacc	4980
aagagttcct	cgggttgc	gttatttttt	gactcgattt	tccaaaagac	tgcaacatac	5040
tactcagtgc	agttcacag	aaaccttattt	cgtttattcc	cttgggtt	tcagaaggcag	5100
gtgggacagg	tgaactttt	gatttggact	cgatttctga	ctgggttgg	aggcaagaga	5160
cccccgaaag	cttacatttt	atgttagctg	gtggactgac	gccagaaaaat	gttggtgat	5220
cgcttagatt	aatggcg	tttgggtt	atgttgcgg	aggtgtggag	acaaatgggt	5280
taaaagactc	taacaaaata	gcaaaatttgc	tcaaaaatgc	taagaaatag	gttattactg	5340
agtagtattt	atttaaat	tgtttgtca	cttgccctgca	ggccctttt	aaagcaagca	5400
taaaagatct	aaacataaaa	tctgtttt	aaatgc	aaagataatg	ctaaatcatt	5460
tggctttt	attgattt	ta	cagaaaata	tacatcg	gggggtt	5520
caccgcaatg	aatcact	tttgc	ggact	tttaccattt	ctacaatgac	5580
acggccggcc	aagcacgc	ggataagcca	atatccccaa	aattattaag	agcgccctcca	5640
ttattaacta	aaatccact	cagcatccac	aatgtatc	gtatctacta	cagatattac	5700
atgtggcgaa	aaagacaaga	acaatgc	agcgcat	aaaaaaacac	aaagctttca	5760
atcaatgaat	cgaaaatgtc	ataaaaat	tatataatt	gaaactaagt	cataaagcta	5820
taaaaagaaa	atttattt	atgc	aaat	tcacttactt	caatggagac	5880
caagtccagt	cagtgaattt	ttcaatatct	ctacccat	ttcttagt	tttggaaatgt	5940
ttggccaaag	tgtcgccat	cttagcaata	aaagg	tttgcggctt	gtcgat	6000
ccgttagcag	acaagat	tttcc	ttggctt	ggaaacgatc	caagtggaa	6060
tagactctca	tatcgat	tttgc	tttgc	tttgc	gtgaacat	6120
acatcaccgg	tgaactttt	ctcgaaa	aaagatt	tttgc	gttgcgtgg	6180
aaaccgaaga	taactgg	tttgc	tttgc	tttgc	ggcagataat	6240

2014_03_12_107345_00466_ST25
tctcttcgt cggtcatgtt tgggttagat ttctttgca atcttaacaa ttcaacaacg 6300
ttaacgtatc taaacttaac gtcaggaaa gcttgattaa tcaaccataa ggcggccaaa 6360
gtctcaatgg ttggttcagt accggcagaa gcaaaagtaa tatcaacatc ggaagatgga 6420
gcagtagaag cccaatcgat aatctcaaa cttcgttag ctaagacttc agcttctca 6480
acagtgaacc attgttgtct tgggttta gaagcgatca ataagttaac cttatgtctt 6540
tcagagaaag ctctctttg aacggctaac aaagagttac cgtcggtgg caaatattct 6600
ctaataatgt tagacttctt ctcggccaaa tgagttaca taccagggtc ttggtgagta 6660
taaccgttat gatcttgtt gaaagcggtt gaggtacgta tcaaatattaa ggatggatag 6720
tcatttctcc aagcttgttc ggaagcgtga cgcaaccact tggaaatgtt agtgaccatg 6780
gtatcaacaa ctctcaagaa agattcgtaa gaggcaaaaga taccacttctt accagtcaaa 6840
gtgttaacctt ccaaccaacc ttcagcttgg tggtttagaca attggaaatc gatgatacga 6900
ccagttggag acaacaattt atcttgttgc tccttgattt cttccatcca ttgacgtggg 6960
gtaacattaa acaaaccctt caatctgtt gacatggttt catctggacc gaagaatctg 7020
aatctggttt ggttcaattt agaaacggca cctaaatagt tggataaagt agccatatcc 7080
atgtttctct tagagtcgcg gaattcctt cctctggat cgtcggtt gtcgttagcg 7140
aattctctcc aatttggcaa tttcaagtcg gatctgttag caccaccgtt ggtgattttttt 7200
tttagcagaca ttcttttacc accctttggg gcaatagtt tcaactcatc cttcaaggaa 7260
ccatcagcgt tgaataattt ttctggctt gtaagttca tccaaatcttca gaattctggc 7320
aaggtggcca aatcggtttt ttccaaatggg aatggaaatc ggtgagctct gaaagagttt 7380
tcaattggat tattagaagc atcggtttt ggaccacccc aaccctttgg caatctgtcg 7440
ataataacag gccaagctgg aatttccatca tcttgatatt taccattctc tctggcgta 7500
ttttgaatag ctgttttttgc ttcatggct tgatctaaga tggttagcggc caattgggtt 7560
taggtggcgt agtcgttgcgat gtcatcattt tcaatgttgc tagggaaata acccaaacct 7620
tcgaagaact tagtaatttc ttcatcagac attctagaaa aaatgggttgg attggaaatc 7680
ttgaaaccgt ttaaaatccaa aactggcaaa acggcaccat cggttcttggc atttaagaac 7740
ttaatggat gccaagaggc catagatggc ccagtttgcgat cttcaccatc accaacgaca 7800
gcaaaagcaa ctgggtctgg gttgtccaaa acagcaccga aagcatgggaa caaagagttaa 7860
cccaatttac cacccgttgcgat caagggacccggat ggagtttgcgat cttcaccatc accaacgaca 7920
ccaccaggaa aagagaaacg cttgaacaaa tgagacatac cttcgatgtc ttgagtaatt 7980
tctgggttgcgat cttcggtgtt ggcaccgttgcgat aagttagggcgt tagtaaccat gacttgcgat 8040
ccgtgacccgttgcgat gaccaccaac gtaaaacatg ttgagacccgttgcgat acttggtaatt 8100
gctggcgttgcgat ataagaaatgttgcgat gttgtccaaa acagcaccga aagcatgggaa caaagagttaa 8160
ttgacatctt cggccttgcgat tgggttgcgat gtaacagaga ataatgggttgcgat gacttcaag 8220
aaaatcatac cagcggacaa gtagtgggttgcgat gacggccacc acttgcgat gacttcaag 8280

2014_03_12_107345_00466_ST25

tattcttag aatcgaaatc agcattgtg aaggtatgc gatTTggag gtcgcggag	8340
gtcgaaacta agttcttgggt gttttaaaac taaaaaaaaag actaactata aaagtagaat	8400
ttaagaagtt taagaaatag atttacagaa ttacaatcaa tacctaccgt ctttatatac	8460
ttattagtca agtagggaa taatttcagg gaactggtt caacctttt tttcagctt	8520
ttccaaatca gagagagcag aagtaatag aaggtgtaaag aaaatgagat agatacatgc	8580
gtgggtcaat tgccctgtgt catcattac tccaggcagg ttgcattact ccattgaggt	8640
tgtgcccgtt tttgcctgt ttgtccccct gttctctgtt gttgcgtttaa gagaatggac	8700
ctatgaactg atggttggtg aagaaaacaa tattttggtg ctggattct tttttttct	8760
ggatgccagc taaaaaagcg ggctccatta tathtagtgg atgccaggaa taaactgttc	8820
acccagacac ctacgatgtt atatattctg tgtaacccgc cccctatTTT gggcatgtac	8880
gggttacagc agaattaaaa ggctaatttt ttgactaaat aaagtttagga aaatcactac	8940
tattaattat ttacgtattc tttgaaatgg cagtattgtt aatgataaac tcgaactgaa	9000
aaagcgtgtt ttttattcaa aatgattcta actcccttac gtaatcaagg aatcttttgc	9060
ccttggcctc cgctcatta aacttcttgc tggtgacgct aacattcaac gctagtatat	9120
attcgTTTT ttcaaggtaag ttctttcaa cgggtttac tgatgaggca gtcgcgtctg	9180
aaaggTCCgc cggcgttggc cgagcgtgtt ccaaccttgc ttctttccg tcataatacac	9240
aaaatacttt catataaact tacttggtct tacgtcataa ataaatatgt atacatataa	9300
attaaaaat ttggTTTat attttacaa aaagaatcgt ttacttcatt tctccTTTT	9360
aagcgataca atccatgaaa aaagagaaaa agagagaaca ggcttgcctt ttctttaaaa	9420
catcccacac aaaatcatat tgaattgaat ttacatctt aagctgtgt acaacaactg	9480
ctatatccaa agaaaactaa cgtggaccgc tttagagtt gagaaaaagg ttgaaaaaaa	9540
atagcaatac aaagacttgtt ttcatatata aaatacaggg agcacatttga gctaataaa	9600
cataaacact gcgaaccaat tccaatcaaa aggtacacat gagagcattt ccccgagtac	9660
tgccatttcg ccatcagaga tcatataata acatcTTCT tcgaacggcg gtttaaacgc	9720
gtggccgtgc cgtc	9734

<210> 32
<211> 7980
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic: i76221 integration construct

<400> 32 gacggcacgg ccacgcgtt aaaccgccc acgtgtatgt acggctgtgt aaatatgata	60
atcatctcg acgaacggcg tagtactctc catcccctaa aaatgttcac gtgtgactgc	120
tccatttcgc cggatgtcga gatgaccccc cccctcaaa aggcactcac ctgctgacat	180
gccgtggcaa atgattgggg tcatcTTTT ttctgttat ctctaagatc caaagaaaaag	240

2014_03_12_107345_00466_ST25
taaaaaaaaaa agttggggt acgaattgcc gccgagcctc cgatgccatt attcaatggg 300
tattgcagtt ggggtatagt tcctcggtgg caaatagttc tcccttcatt ttgtatataa 360
actggccggc tattctaagc atatttctcc cttaggttat ctggtagtac gttatatctt 420
gttcttatat ttcttatcta taagcaaaac caaacatatc aaaactacta gaaagacatt 480
gccccactgt gttcgctcg ccaacgccgg cgaccccttc agacgcgact gcctcatcg 540
taagaccgt taaaaagaac ttacctgaaa aaaacgaata tatactagcg ttgaatgta 600
gcgtcaacaa caagaagttt aatgacgcgg aggccaaggc aaaaagattc cttgattacg 660
taagggagtt agaatcattt tgaataaaaaa acacgcttt tcagttcgag tttatcatta 720
tcaatactgc catttcaaag aatacgtaaa taattaatag tagtgatttt cctaacttta 780
tttagtcaaa aaatttagcct ttttaattctg ctgtAACCCG tacatgccca aaataggggg 840
cggttacac agaatatata acatcgtagg tgtctgggtg aacagtttat tcctggcatc 900
cactaaatat aatggagccc gcttttaag ctggcatcca gaaaaaaaaa gaatcccagc 960
acccaaatat tttttcttc accaaccatc agttcatagg tccattctct tagcgcaact 1020
acagagaaca gggcacaaa caggcaaaaa acgggcacaa cctcaatgga gtgatgcaac 1080
ctgcctggag taaatgatga cacaaggcaa ttgacccacg catgtatcta tctcattttc 1140
ttacaccttc tattaccttc tgctctctct gatttggaaa aagctgaaaa aaaaggttga 1200
aaccagttcc ctgaaattat tcccctactt gactaataag tatataaaga cggtaggtat 1260
tgattgtaat tctgtaaatc tatttcttaa acttcttaa ttctactttt atagttagtc 1320
tttttttag tttaaaaca ccaagaactt agtttcgacc tcccgcgacc tccaaaatcg 1380
aactaccttc acaatggAAC attctgtaat cgaaccaact gtgcccattgc cgctaccagc 1440
catgttgcac gctccatctg gtatttttag ctcttggac gacgctgtgc aagcagccac 1500
cttagcccaa caacaactaa gttcagttga gttcgctcag caagtaatca aagccataag 1560
agtggccgga gaaaggtatg cacaagttt ggctgaaatg gcagttgtgc aaactggat 1620
ggtaggggtg gtggataagt acattaagaa tgtctctcaa gctcgtcata cgcctggat 1680
agaatgtta tcggccgagg ttcttacggg tgataatggc ctaacattga ttgaaaatgc 1740
cccttggga gtcgtagctt cagtcacgccc aagcacaaat ccagcagcta cggttaattaa 1800
taatgcaatc tcaatgattt cagcgggaa ttcagtcgtt ttgcacccac atccttctgc 1860
aaaaacgtc tcactaagga ctatttctt actcaacaag gccattgtcg ctaccggcgg 1920
cccagaaaaat ttacttagtta gtgtggcaaa ccctaacatc gaaactgcac agagattatt 1980
cagatatccg ggtattggat tgtaggtgt gacaggtggt gaagccgtcg ttgaagccgc 2040
taggaagcat acagataaaaaa ggttaattgc agccggcgtt ggtatcctc ctgttgttgc 2100
ggacgaaact gctgacatac ctaaagccgc aagagcaatt gtcaagggtg cttcttcga 2160
caacaacata atttgcgtt atgaaaaagt tttgattgtg gtagacagag ttgcagatgc 2220
actattggca gaaatgcacaa gaaataacgc cgtcttactt acacccgaac agaccgaaag 2280

2014_03_12_107345_00466_ST25	
actactaccc	2340
gctctttgt ccgatattga cgaacaggc aaaggacgtg tgaatagaga	
ttatgttga agagatgcgg ctaaattagc agcggctatt ggtctggaag ttagcgaaca	2400
tactcgtcta ctcctggcag agacagacgc tgatcatcca ttgcgcgtga cggagctgat	2460
gatgccagtg ttaccagtaa taagagtcaa gaatgtagat gatgcaatcg cattggcagt	2520
taagctagag tcaggctgca gacacacagc tgcgatgcac tctactaata taagaaactt	2580
aaatagaatg gctaattgcca tcaatacctc tatctttgt aaaaatggtc catgtattgc	2640
aggtttgggt ttaggcggtg aaggttggac ttcaatgact attagcactc cgaccggtg	2700
aggtgttaca agcgctcgta cctttgtcag attaagaagg tgtgtcttag tcgacatgtt	2760
tcggattgct taagcggccg cgagtaataa ttattgcttc catataatat ttttatatac	2820
ctcttatttt tatgtatttag ttaattaagt attttatct atctgcttat catttcttt	2880
tcatataggg ggggttggtg ttttcttgcc catcagattg atgtcctcca actcggcact	2940
attttacaaa gggtttttt gtaagagaag gagaagacag atactaaacc atacgttact	3000
cggaaacaaaa aaaaaaaaaa tggaaaaagc tgctatcaac aaaagacggc ctcatcaaac	3060
ctaaagaaac catgtcagcg tatgtatata ccttgttaatt tacgtttcct taaatcttct	3120
ttctactaac gttttcatta ttctatactc tatgaccaat aaaaacagac tgtactttca	3180
aaatttaccc agtaggccag caaataaaga aaattatacc agattacttc tgaaacacat	3240
taatcccaac aacaagtatg ccattaatcc gtcgctaccc catccccgcg tgcttggccg	3300
gccgttctc gacgtgggccc ttttcttgc catatggatc cgctgcacgg tcctgttccc	3360
tagcatgtac gtgagcgtat ttccctttaa accacgacgc tttgtcttca ttcaacgttt	3420
cccatgttt ttttctacta ttgctttgct gtggaaaaaa cttatcgaaa gatgacgact	3480
ttttcttaat tctcgttta agagcttggt gagcgctagg agtcaactgcc aggtatcg	3540
tgaacacggc attagtcagg gaagtcataa cacagtccct tcccgcaatt ttcttttct	3600
attactcttgc ccttcctcta gtacactcta tattttttta tgccctcggt atgattttca	3660
ttttttttt tccaccttagc ggttgactct tttttttct tagcgattgg cattatcaca	3720
taatgaatta tacattatataa aaagtaatgt gatttctcg aagaatatac taaaaaatga	3780
gcaggcaaga taaacgaagg caaagatgac agagcagaaa gccctagtaa agcgtattac	3840
aaatgaaacc aagattcaga ttgcgatctc tttaaagggt ggtcccctag cgatagagca	3900
ctcgatctc ccagaaaaag aggcaagaagc agtagcagaa caggccacac aatcgcaagt	3960
gattaacgtc cacacaggta tagggttct ggaccatatg atacatgctc tggccaagca	4020
ttccggctgg tcgctaatcg ttgagtgcattt ggttgactta cacatagacg accatcacac	4080
cactgaagac tgccggatttgc ctctcggtca agctttaaa gaggccctag gggccgtgcg	4140
tggagtaaaa aggtttggat caggatttgc gcctttggat gaggcacttt ccagagcggt	4200
ggtagatctt tcgaacaggc cgtacgcagt tgtcgaactt ggtttgcaaa gggagaaagt	4260
aggagatctc tcttgcgaga tgatccgcata ttgtttgcata agctttgcag aggctagcag	4320

2014_03_12_107345_00466_ST25	
aattaccctc	4380
cacgttgatt	
gtctgcgagg	
caagaatgat	
catcaccgta	
gtgagagtgc	
gttcaaggct	4440
cttgcggttt	
ccataagaga	
agccaccccg	
cccaatggta	
ccaaacgatgt	
tccctccacc	4500
aaagggtttc	
ttatgttagt	
acaccgatta	
tttaaagctg	
cagcatacga	
tatataataca	4560
tgtgtatata	
tgtataccta	
tgaatgtcag	
taagtatgt	
tacgaacagt	
atgatactga	4620
agatgacaag	
gtaatgcac	
attctatacg	
tgtcattctg	
aacgaggcgc	
gctttcctt	4680
tttctttt	
cttttctt	
tttttctt	
tgaactcgac	
ggccggccaa	
gcacgcgggg	4740
atggggtagc	
gacggattaa	
tggcatactt	
gttggggga	
ttaatgtgtt	
tcagaagtaa	4800
tctggtataa	
ttttctttat	
ttgctggcct	
actggtaaa	
ttttgaaagt	
acagtctgtt	4860
tttattggtc	
atagagtata	
gaataatgaa	
aacgttagta	
gaaagaagat	
ttaaggaaac	4920
gtaaattaca	
aggtatatac	
atacgctgac	
atggttctt	
taggtttgat	
gaggccgtct	4980
tttggtata	
gcagctttt	
ccatttttt	
ttttttgtt	
tcgagtaacg	
tatggtttag	5040
tatctgtctt	
ctccttctct	
tacaaaaaaa	
cccttgtaa	
aatagtgccg	
agttggagga	5100
catcaatctg	
atggcaaga	
aaacaccaac	
ccccctata	
tgaaaagaaa	
atgataagca	5160
gatagataaa	
aatacttaat	
taactaatac	
ataaaaataa	
gaggtatata	
aaaatattat	5220
atggaagcaa	
taattattac	
tcgcggccgc	
ttaagcaatc	
cgaaacatgt	
cgactaagac	5280
acaccttctt	
aatctgacaa	
aggtacgagc	
gcttgtaca	
ccttcaccgg	
tcggagtgt	5340
aatagtcatt	
gaagtccaa	
cttcaccg	
taaacc	
cctgcaatac	
atggaccatt	5400
ttttacaaag	
atagaggtat	
tgtatggcatt	
agccattcta	
tttaagttc	
ttatattat	5460
agagtgcac	
gcagctgtgt	
gtctgcagcc	
tgactctagc	
ttaactgcca	
atgcgattgc	5520
atcatctaca	
ttcttgactc	
ttattactgg	
taacactggc	
atcatcagct	
ccgtcacggc	5580
gaatggatga	
tcagcgtctg	
tctctgcccag	
gagtagacga	
gtatgttcgc	
taacttccag	5640
accaatagcc	
gctgctaatt	
tagccgcatc	
tcttccaaca	
taatctctat	
tcacacgtcc	5700
tttgcctgt	
tcgtcaat	
cggacaaaag	
agcgggttagt	
agtcttcgg	
tctgttcgg	5760
tgtaaagtaag	
acggcgttat	
ttctttgcat	
ttctgc	
aatgtcatcg	
caactctgtc	5820
taccacaatc	
aaaactttt	
catcagcaca	
aattatgtt	
ttgtcgaaag	
aagcacccctt	5880
gacaattgct	
cttgcggctt	
taggtatgtc	
agcagttcg	
tccacaacaa	
caggaggatt	5940
accagcgccg	
gctgcaatta	
acctttatc	
tgtatgcttc	
ctagcggctt	
caacgacggc	6000
ttcaccac	
gtcacaacta	
acaatcca	
acccggat	
ctgaataatc	
tctgtgcagt	6060
ttcgatgtt	
gggttgcca	
cactaactag	
taaattttct	
gggcccgg	
tagcgacaat	6120
ggccttgg	
agtaaagaaa	
tagtcctt	
tgagacgtt	
ttggcagaag	
gatgtggtgc	6180
gaacacgact	
gaattccccg	
ctgcaatcat	
tgagattgca	
ttattaatta	
ccgtagctgc	6240
tggatttgg	
cttggcgtga	
ctgaagctac	
gactccccaa	
ggggcatttt	
caatcaatgt	6300
taggccatta	
tcacccgtaa	
gaacctcg	
cgataaacat	
tctataccag	
gcgtatgacg	6360
agcttgagag	
acattcttaa	
tgtacttatac	
caccacccta	
cccataccag	

2014_03_12_107345_00466_ST25

tttcagcaac	tgccatttca	gccaaaactt	gtgcataacct	ttctccggcc	actcttatgg	6420
ctttgattac	ttgctgacgc	aactcaactg	aacttagttg	ttgttggct	aaggtggctg	6480
cttgcacagc	gtcgtccaaa	gagctaaaaa	taccagatgg	agcgtcaaac	atggctggta	6540
gcggcatggg	cacagtttgt	tcgattacag	aatgttccat	tgtgaaggta	gttcgatttt	6600
ggagggtcg	ggaggtcgaa	actaagttct	ttgtgtttta	aaactaaaaa	aaagactaac	6660
tataaaagta	gaatttaaga	agtttaagaa	atagatttac	agaattacaa	tcaataccta	6720
ccgtctttat	atacttatta	gtcaagttagg	ggaataattt	cagggaaactg	gtttcaacct	6780
tttttttag	ctttttccaa	atcagagaga	gcagaaggta	atagaaggta	taagaaaatg	6840
agatagatac	atgcgtgggt	caattgcctt	gtgtcatcat	ttactccagg	caggttgcatt	6900
cactccattt	aggttgtgcc	cgtttttgc	ctgtttgtgc	ccctgttctc	tgttagttgcg	6960
ctaagagaat	ggacctatga	actgatggtt	ggtgaagaaa	acaatatttt	ggtgctggga	7020
ttcttttttt	ttctggatgc	cagctaaaaa	agcgggctcc	attatattta	gtggatgcca	7080
ggaataaaact	gttcacccag	acacctacga	tgttatatat	tctgtgtaac	ccgcccccta	7140
ttttggcat	gtacgggta	cagcagaatt	aaaaggctaa	ttttttgact	aaataaagtt	7200
aggaaaatca	ctactattaa	ttatttacgt	attcttgcatt	atggcagtat	tgataatgat	7260
aaactcgaac	tgaaaaagcg	tgtttttat	tcaaaatgat	tctaactccc	ttacgtaatc	7320
aaggaatctt	ttgccttgg	cctccgcgtc	attaaacttc	ttgttgttga	cgctaacatt	7380
caacgcgt	atataattcgt	tttttcagg	taagttctt	tcaacggggtc	ttactgatga	7440
ggcagtcg	tctgaaaggt	ccgcccgcgt	tggacgagcg	tgtatgattt	tttccttttt	7500
atattgacga	cttttttttt	ttcgtgtgtt	tttgcgtct	tataaccgag	ctgcttactt	7560
attattattt	caccttctct	ttttatttat	acttataatt	atttatttctt	tacatactgt	7620
tacaagaaac	tctttctac	attaattgca	taaagtgtca	atcagcacat	cctctatatc	7680
gctatcaaca	acaaatttga	caaacctgcc	tatatcttca	ggaacaactg	ccgcatcgct	7740
accaccacta	cttgcgaagt	ccctggagtt	taatatgcac	tgaaatttac	ctagccgttt	7800
tacacaagac	cataatccat	ccatgctatc	gcagttatgt	attttgcgtt	cgttttcgt	7860
cttgcgaaag	gcatcctcaa	tggcttgc	cattgatcca	tcagtgtggc	tcgttaggtac	7920
cagcaaaacc	acttcatcag	cggcgactc	ctggcggtt	aaacgcgtgg	ccgtgccgtc	7980

<210> 33
 <211> 13266
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic: i84022 integration construct

<400> 33	gacggcacgg	ccacgcgttt	aaaccgccaa	gtgtatgtaac	taaatacacg	attaccatgg	60
	aaattaacgt	actttttttgcgtgtatt	gaaatattat	gacatattac	agaaagggtt		120

2014_03_12_107345_00466_ST25	
cgcaagtccct	180
gtttctatgc	
ctttcttta	
gtaattcacg	
aaataaaacct	
atggtttacg	
aaatgatcca	240
cgaaaatcat	
gttattattt	
acatcaacat	
atcgcgaaaa	
ttcatgtcat	
gtccacatta	300
acatcattgc	
agagcaacaa	
ttcatttca	
tagagaaatt	
tgctactatc	
acccactagt	360
actaccattg	
gtacctacta	
ctttgaattt	
tactaccgct	
gggcgttatt	
aggtgtgaaa	420
ccacgaaaag	
ttcaccataa	
cttcgaataa	
agtcgcggaa	
aaaagtaaac	
agctattgct	480
actcaaatga	
ggtttgcaga	
agcttgtga	
agcatgatga	
agcgttctaa	
acgcactatt	540
catcattaaa	
tatttaaagc	
tcataaaatt	
gtattcaatt	
cctattctaa	
atggcttta	600
tttctattac	
aactattagc	
tctaaatcca	
tatcctcata	
agcagcaatc	
aattctatct	660
atactttaaa	
cgctcgtcca	
acgccggcgg	
acctgatgtg	
tattactagt	
gtcgacgaca	720
gcattcgccc	
agtattttt	
ttattctaca	
aaccttctat	
aatttcaaag	
tatttacata	780
attctgtatc	
agttaatca	
ccataatatc	
gttttctttt	
tttagtgcaa	
ttaattttc	840
ctattgttac	
ttcgggcctt	
tttctgtttt	
atgagctatt	
ttttccgtca	
tccttccgga	900
tccagattt	
cagttcatc	
tccagattgt	
gtctacgtaa	
tgcacgccc	
catttaaga	960
gaggacctcc	
cgcgacctcc	
aaaatcgaac	
taccttcaca	
atgaaacttc	
ttagtagtat	1020
tgagcaggcg	
tgtgacatct	
gtagattgaa	
gaaattgaaa	
tgttagtaagg	
agaagccaa	1080
atgtgcgaaa	
tgccttaaaa	
ataattggga	
atgcagatat	
agtccgaaga	
cgaagcgcag	1140
tccccttacc	
cgcgcgcacc	
ttacggaggt	
cgagagtcgc	
tttagcaact	
tttccttctt	
atctcccc	
gagaggattt	
ggatatgatc	
cttaagatgg	1200
acagtcttca	
agacattaag	
gcgccttctta	
cggggctttt	
cgtgcaggac	
aacgtcaaca	1260
aggacgcggt	
gacggaccgc	
cttgccagtg	
tcgaaaccga	
catgcccctt	
acgcttcgccc	1320
aacaccgcat	
ttccgccacg	
agtagtagtg	
aggaatcctc	
caataagggg	
cagcgccaaac	1380
ttaccgtgag	
tatcgatagt	
gcggcccacc	
acgacaatag	
tacgatcccc	
tttgacttca	1440
tgccgcgcga	
cgccttgac	
gggttcgact	
ggagtgagga	
agacgatatg	
agtgacggc	1500
ttccgtttct	
taagaccgat	
ccgaataaca	
acggtttttt	
cgtgtatggg	
agtttgcttt	1560
gcatcttgag	
aagtatcggt	
ttcaagcccc	
agaactatac	
caatagtaat	
gtcaatcgct	1620
tgcccacgat	
gatcaccgac	
cgtatacc	
ttgcccagtc	
cagtacgacg	
agtagacttt	1680
tgcagtccta	
tttgaacaac	
ttccatccgt	
attgtcccat	
tgtccatagt	
cccaccctta	1740
tgtatgttta	
caacaatcaa	
atcgagattt	
ccagtaaaga	
ccagtggcag	
attttgttca	1800
attgtattct	
tgcgatcggtt	
gcgtggtgca	
ttgaagggtga	
gagtaccgac	
attgacgtct	1860
tctattacca	
gaacgccaag	
agtacacctt	
cctccaaagt	
gtttgaaagt	
gggagtttta	1920
tccttgcac	
ggcgcttcac	
ttgcttagta	
gatacacgca	
atggcgccaa	
aagacgaaca	1980
cctcctacaa	
cttccattcc	
ttcagtattt	
gcatggcgat	
tagtcttggt	
cttaaccgccc	2040
atttgcccag	
tagttttcc	
gactcctcca	
tccttgagca	
gcmcagaaga	
atctggtgaa	2100
gtgtgtatag	
ttggaaattt	
cagcttagtc	
ttttgtacgg	
gagaagtatt	
caatttgagtc	2160

2014_03_12_107345_00466_ST25
aaaacacgat tagtttccc agtagtgtgg atgacgtcca aagaacgacg acggggccga 2220
cgatttacca cggttattatc gagacggcgc gcttgcttca ggtctttacg aagatttacg 2280
agcttgataa gacggtgacc gcggagaagt ccccccatttgcgcgaagaag tgtcttatga 2340
tctgcaacga aatcgaagaa gtcagtcgc aagcgccgaa attccttcag atggacatca 2400
gtacgacggc ctttacgaac cttcttaaag agcatccctg gcttagttc acgcgcttg 2460
agcttaaatg gaagcaactt agtttgatta tctacgtgct tcgcacttc tttaccaact 2520
tcacgcaaaa gaaaagtcag cttgagcaag accagaacga ccaccagtcc tacgaggta 2580
agagatgttag tattatgctt tccgacgcgg cgcaagcac cgtcatgagt gtgtcctcct 2640
acatggataa ccacaacgtg acgcccgtact tcgcgtggaa ctgcagttac tatctttta 2700
acgcggtgct tgtgccgatt aaaacccttt tgtagtaatag taagagtaac gccgaaaaca 2760
atgaaacggc gcagcttctt cagcagatca ataccgtcct tatgcttctt aagaagcttgc 2820
cgaccttcaa gattcaaacc tgcgagaagt atatccaggt gcttgaggaa gtgtgcgc 2880
ccttccttct tagtcaatgc gcgattccgc ttccccacat ttccctacaat aactccaacg 2940
ggtccgcgat caagaacatc gtggggagtg cgaccattgc gcagtatccc accttgcccg 3000
aagagaacgt gaataacatt tccgtcaagt acgtcagtcc cggttgtg ggtcccagtc 3060
ccgtcccgct taagagtggg gcgtcctttt ccgaccttgc gaaacttctt agtaatagac 3120
cgccgagtag aaatagtccg gtcacgattc cgcgctccac gcccagtac agaagtgtga 3180
cccccttcct tggtcagcaa cagcaacttc agagtcttgc cccgcttacg cccagtgc 3240
ttttcggggg tgcaacttc aaccagtccg gtaacatgc cgactccagt cttagttta 3300
cctttaccaa ttccctccaaat gggcccaatt tgattacgac ccagacgaac agtcaggcct 3360
tgagtcaagcc gatcgcgagt agtaatgtcc acgacaattt tatgaacaac gagattaccg 3420
cctccaagat cgacgacggg aacaacagta agccgcttag tccccgggtgg accgatcaga 3480
ccgcctacaa tgccctcggg attaccacgg gtatgttcaa cacgaccacg atggacgacg 3540
tgtacaatta ccttttgac gacgaggaca cgccgcccggaa tccgaagaag gaatgagcca 3600
attggtgtcggg caattgataa taacgaaaat gtcttttaat gatctggta taatgaggaa 3660
ttttccgaac gttttactt tatatatata tatacatgtt acatataattc tatacgctat 3720
atcgagaaaaa cgcgatggtg gggtgacttt caactcggcg tatccccggcg tgcttggccg 3780
gccgtagtttta tgacaattac aacaacagaa ttctttctat atatgcacga acttgtaata 3840
tggaaagaaat tatgacgtac aaactataaa gtaaatattt tacgtaacac atggtgctgt 3900
tgtgcttctt ttcaagaga ataccaatgtt cgtatgacta agtttatgtt tttccaaaa 3960
cctgtttagc cctggcgaca gatacgtctc cggcttcaac gatgaccctg gtgaccctgt 4020
caatgtcggc tccgggtggca ccggccatgtt ttgcgttgc cttgcgtgt aaggtcatgt 4080
gtcccccttg gattccctcg gttgccaagg ccctaattgc ggccatattc tgagccaaac 4140
caacggcgcc agtaacctgg gccaacttcg tagcggtttc gacctgcatt aaggccaaac 4200

2014_03_12_107345_00466_ST25

cggccctagc	tgttagggtga	gtcttggtgg	ctcctcctac	caaaccctaag	gccaaaggca	4260
attcaatggt	accgaccaac	ctaccgtcgt	tggccaactc	ccacccctgtc	aaagaggtgt	4320
aatgtccggt	cctggcgccg	taggcgtggg	ctccagcttc	gatggccctc	cagtcgttac	4380
ctgttgcac	gacgactggg	tcaattccgt	tcataattcc	cttgcgtatgg	gttgcggccc	4440
tgtaagggtc	gactattgct	aaggcgcagg	cttcaaccat	tccccttgca	acgtcggcac	4500
catcgatcc	ctgggtggtc	aaagtctcag	gggctaactc	aaccctggct	cttaccaacc	4560
tcaagtcggc	caagttagac	aaaatcctca	acctgacggt	tccaccagcg	atcctctcta	4620
cctctggagc	taaccttca	gccatggtgt	taactgtgtt	ggcacccatg	gcgtctctga	4680
catcaacaat	caagtgcata	acgaccattg	caccaacagg	ggtgcctcta	aaaacatgga	4740
cctcaatgtc	tctgcaacca	ccacctaacc	caacccaaac	tggatctacg	gcatctgctg	4800
cttccatgaa	agcagccta	tggccaaca	acctttgcct	agtccttct	gggtctccta	4860
atccgacaac	ttggatttgg	gccctcatta	aaggtgcagt	tccgtgtcg	gtaatccac	4920
cgttctct	agctatcctt	gccatatatg	aggctgcggc	aacaacagat	ggttcctcga	4980
ctgccatagg	tattaagtag	tccctccgt	tgacggtaa	gttggtggcg	acacccatg	5040
gcaactcaa	ttttccgata	acattctcg	tcataccgtt	ggccaatgac	aaaggcaaaag	5100
caccgttacc	ggccaatgca	gaaatggctt	caggtccaa	tccgtcggt	tcggcaaccc	5160
taactaacct	ctgagcagga	tccaagtccc	tcatcttctc	gatcctttag	ttcaatccgt	5220
cgatgtgacc	tgtcttcca	gtcattgtaa	agttagttgg	ttgcgcact	tcgggtgggg	5280
taagtataga	ggtatattaa	caatttttg	ttgataacttt	tatgacattt	gaataagaag	5340
taatacaa	cggaaatgtt	gaaagtatta	gttaaagtgg	ttatgcagct	tttgcattta	5400
tatatctgtt	aatagatcaa	aaatcatcgc	ttcgctgatt	aattacccca	gaaataaggc	5460
taaaaaacta	atcgcatat	tatcctatgg	ttgttaattt	gattcgttga	tttgaaggtt	5520
tgtggggcca	ggttactgcc	aattttcct	cttcataacc	ataaaagcta	gtattgtaga	5580
atctttattt	ttcggagcag	tgccggcgca	ggcacatctg	cgtttcagga	acgcgaccgg	5640
tgaagaccag	gacgcacgga	ggagagtctt	ccgtcggagg	gctgtcgccc	gctcggcgcc	5700
ttctaatccg	tacttcaata	tagcaatgag	cagttaagcg	tattactgaa	agttccaaag	5760
agaaggttt	tttaggctaa	gataatgggg	ctctttacat	ttccacaaca	tataagtaag	5820
attagatatg	gatatgtata	tgggtgtatt	gccatgtaat	atgatttatta	aacttcttg	5880
cgtccatcca	aaaaaaaagt	aacgcacgca	cactccgac	agacaactag	cttgataatg	5940
tctcagaacg	tttacattgt	atcgactgcc	agaacccaa	ttggttcatt	ccagggttct	6000
ctatcctcca	agacagcagt	ggaattgggt	gctgttgctt	taaaaggcgc	cttggctaag	6060
gttccagaat	tggatgcac	caaggattt	gacgaaatta	ttttggtaa	cgttcttct	6120
gccaatttgg	gccaagctcc	ggccagacaa	gttgcttgg	ctgccggttt	gagtaatcat	6180
atcgttgcac	gcacagttaa	caaggtctgt	gcatccgcta	tgaaggcaat	cattttgggt	6240

2014_03_12_107345_00466_ST25

gctcaatcca	tcaaatgtgg	taatgctgat	gttgcgttag	ctgggtgttg	tgaatctatg	6300
actaacgcac	catactacat	gccagcagcc	cgtgcgggtg	ccaaatttgg	ccaaactgtt	6360
cttgtttagt	gtgtcgaaag	agatgggttg	aacgatgcgt	acgatggtct	agccatgggt	6420
gtacacgcag	aaaagtgtgc	ccgtgattgg	gatattacta	gagaacaaca	agacaatttt	6480
gccatcgaat	cctacaaaaa	atctacaaaaa	tctcaaaagg	aaggtaaattt	cgacaatgaa	6540
attgtacctg	ttaccattaa	gggatttaga	ggtaagcctg	atactcaagt	cacgaaggac	6600
gaggaacctg	ctagattaca	cgtgaaaaaa	ttgagatctg	caaggactgt	tttccaaaaaa	6660
gaaaacggta	ctgttactgc	cgctaacgct	tctccaatca	acgatggtgc	tgcagccgtc	6720
atcttggttt	ccgaaaaagt	tttgaaggaa	aagaatttga	agcctttggc	tattatcaaa	6780
ggttgggtg	aggccgctca	tcaaccagct	gattttacat	gggctccatc	tcttcagtt	6840
ccaaaggctt	tgaaacatgc	tggcatcgaa	gacatcaattt	ctgttgattt	ctttgaattc	6900
aatgaagcct	tttcggttgt	cgtttggtg	aacactaaga	tttgaagct	agaccatct	6960
aaggtaatg	tatatggtgg	tgctgttgct	ctaggtcacc	cattgggttg	ttctggtgct	7020
agagtggttg	ttacactgct	atccatctta	cagcaagaag	gaggtaagat	cggtgttgcc	7080
gccatttgta	atgggtgggg	tgggcttcc	tctattgtca	ttgaaaagat	atgattacgt	7140
tctgcgattt	tctcatgatc	ttttcataaa	aatacataaa	tatataaatg	gctttatgta	7200
taacaggcat	aatttaaagt	tttatttgcg	attcatcgtt	tttcaggtac	tcaaacgctg	7260
aggtgtgcct	tttgacttac	tttccgcct	tggcaagctg	gccgaacctg	caggccgcga	7320
gcccggatac	gaaaatcgtt	attgtcttga	aggtgaaattt	tctactctta	ttaatggtga	7380
acgttaagct	gatgctatga	tggaaagctga	ttgggtcttaa	cttgcttgct	atcttgctaa	7440
tggtcattgg	ctcgtgttat	tacttaagtt	atttgtactc	gtttgaacg	taatgctaatt	7500
gatcatctta	tggaaaataa	gtgagtggtt	tcagggtcca	taaagctttt	caattcatct	7560
tttttttttt	tgttcttttt	tttgcattccg	gtttcttga	aatttttttg	attcgtaat	7620
ctccgagcag	aaggaagaac	gaaggaagga	gcacagactt	agattggtat	atatacgcatt	7680
atgtgggttt	gaagaaacat	gaaattgccc	agtattctta	acccaactgc	acagaacaaa	7740
aacctgcagg	aaacgaagat	aaatcatgtc	gaaagctaca	tataaggaac	gtgctgctac	7800
tcatcctagt	cctgttgctg	ccaagctattt	taatatcatg	cacgaaaagc	aaacaaactt	7860
gtgtgcttca	ttggatgttc	gtaccaccaa	ggaattactg	gagttagttt	aagcattagg	7920
tccaaaaatt	tgtttactaa	aaacacatgt	ggatatcttgc	actgattttt	ccatggaggg	7980
cacagttaag	ccgctaaagg	cattatccgc	caagtacaat	tttttactct	tcgaagacag	8040
aaaatttgct	gacattggta	atacagtcaa	attgcagttac	tctgcgggtg	tatacagaat	8100
agcagaatgg	gcagacat	cgaatgcaca	cgggtgggtg	ggcccaggtt	ttgttagcgg	8160
tttgaagcag	gcggcgaaag	aagtaacaaa	ggaacctaga	ggccttttga	ttgttagcaga	8220
attgtcatgc	aagggtccc	tagctactgg	agaatatact	aagggtactg	ttgacattgc	8280

2014_03_12_107345_00466_ST25

gaagagtac	aaagatttg	ttatcggtt	tattgctaa	agagacatgg	gtgaaagaga	8340
tgaaggttac	gattggttga	ttatgacacc	cggtgtgggt	ttagatgaca	agggagacgc	8400
attgggtcaa	cagtatacaa	ccgtggatga	tgtggtctct	acaggatctg	acattattat	8460
tgttggaaaga	ggactatgg	caaaggaaag	ggatgctaag	gtagagggtg	aacgttacag	8520
aaaagcaggc	tggaaagcat	atttgagaag	atgcggccag	caaaactaaaa	aaactgtatt	8580
ataagtaaat	gcatgtatac	taaactcaca	aatttagagct	tcaatttaat	tatatcagtt	8640
attaccacga	aaatcggttat	tgtttgaag	gtgaaatttc	tactcttatt	aatggtaac	8700
gttaagctga	tgctatgatg	gaagctgatt	ggtcttaact	tgcttgcatt	cttgctaatg	8760
gtcatatggc	tcgtgttatt	acttaagtta	tttgtactcg	tttgaacgt	aatgctaatg	8820
atcatcttat	ggaataatag	tgaacggccg	gccaaacacg	cggggattga	atgagaaaaaa	8880
aaatcggttg	ggcttaactt	taaagaaaaaa	agttgagatt	agatttattt	tgttataat	8940
atagatatac	aattctttat	aaaaaaaata	tatatatata	tcattgttat	taaataaaga	9000
gttttcctag	tatatagatt	aaaaaaactac	tctattaaat	gagagctaaa	aaaagcaggc	9060
tgccaaaaaa	ataaagcatt	tatgaagggg	gttcagcaag	atgcaatcga	tggggaaaga	9120
ttatTTTTA	acatcgtaag	atcttctaaa	tttgcattcg	atgttggtca	agtagtaaac	9180
accactttgc	aatgctaa	tggaaacctt	aggtttgaag	ttcttcttca	aatggcatt	9240
ttctctcaat	tcgatggcag	tttcgtatc	ctttggagtt	tcggtgattc	tcttggctaa	9300
tttggtagta	atatctaatt	cctgataat	atgttggacg	tcaccaacaa	ttttgcaaga	9360
atatagagat	gcagctaaac	cgaaaccgta	agaaaataaa	ccaacacgct	tgccttgtaa	9420
gtcgtcagat	ccaacatagt	ttaatagaga	tgcaaaggcg	gcataaacag	atgcgggtga	9480
catgttacct	gtgttttttg	gaacaatcaa	agattggca	actctcttt	tgtggatgg	9540
cttagcaaca	ttaacaaaag	tttttcaat	gttcttacg	gtttaagatt	cgtcataatc	9600
gcgagtagct	aattcggcgt	caacttctgg	gaacaattga	ggattggctc	tgaaatcggt	9660
atatacgat	ctaccgtatg	attttgcac	caatttacag	gttggacat	ggaaaacgtt	9720
gtagtcgaaa	tatttcaaaa	cgttcaaagc	atccgaacca	gcgggatcgc	taaccaaccc	9780
tttagaaata	gccttcttgg	aataactctt	gtttaactga	tcaagagcct	tgacgtacaa	9840
agttaatgaa	aaatgaccat	cgacgtttagg	atattcgctg	gtttaatctg	gcttgtaaaa	9900
atcgtaggcg	tgttccatgt	aagaagctct	tacagagtca	aatacaattt	gagcatcagg	9960
accgatccac	atagcaacag	taccggcacc	accgggttgg	cttgcggcac	ccttattcgta	10020
gatggcaata	tcaccgcaaa	ctacaatggc	gtctctacca	tcccatgcgt	tagattcaat	10080
ccagttcaaa	gagttgaaca	acgcgttgg	accaccgtaa	caggcattaa	gcgtgtcaat	10140
accttcgacg	tcagtgtttt	caccaacaa	ttgcattcaag	acagacttga	cagacttgg	10200
cttgcataatc	agagtttcag	taccgacttc	taatctacca	attttgg	tgtcgatgtt	10260
gtaactcttg	atcaacttag	acaaaacagt	tagggacatc	gagtagat	cttctctgtc	10320

2014_03_12_107345_00466_ST25

attgacaaaa gacatgttgg tttggcccag accaattgtg tatttacctt gagaaacgcc	10380
atcaaatttc tctagctcag attgggttgc acattgagtt gggatgtaaa tttggatacc	10440
ttaataaccg acatttttag gtcgtgtttt ttgttcagcg gtctttgtt ttttagttc	10500
agtcatttgc aagtttgtat tgttaattt ttgttgctt tgccgcctaa gtcttccttt	10560
aataccacac caacaaagtt tagttgagag tttcattgtg aaggttagttc gatttggag	10620
gtcgcggag gttactttt ttttggatgg acgcaaagaa gtttaataat catattacat	10680
ggcaataccca ccatatacat atccatatct aatcttactt atatgttgc gaaatgtaaa	10740
gagccccatt atcttagcct aaaaaaacct tctcttgaa actttcagta atacgcttaa	10800
ctgctcatttgc tstatattgaa gtacggatta gaagccgccc agcgggcgac agccctccga	10860
cggaagactc tcctccgtgc gtcctggct tcaccggcgtcg cggtcctgaa acgcagatgt	10920
gcctcgccgc gcactgctcc gaacaataaa gattctacaa tactagctt tatggttatg	10980
aagaggaaaa attggcagta acctggcccc acaaacccttc aaatcaacga atcaaattaa	11040
caaccatagg ataataatgc gattagttt ttagccttat ttctggggta attaattcagc	11100
gaagcgatga tttttgatct attaacagat atataaatgc aaaagctgca taaccacttt	11160
aactaatact ttcaacacattt tcggtttgc ttacttctta ttcaaatgtc ataaaagtat	11220
caacaaaaaa ttgttaatat acctctatac ttacccacc cgaagtcgcg caaccaacta	11280
actttacaat gactggaaag acaggtcaca tcgacggatt gaactcaagg atcgagaaga	11340
tgagggactt ggatcctgct cagaggttag tttagggtgc cgaagccgca ggattggAAC	11400
ctgaagccat ttctgcatttgc gccggtaacg gtgtttgcc tttgtcatttgc gccaacggta	11460
tgatcgagaa tggttatcgaa aaatttgagt tgccattttggg tggtcgccacc aacttcaccg	11520
tcaacggaaag ggactactta atacctatgg cagtcgagga accatctgtt gttgccgcag	11580
cctcatatat ggcaaggata gctagagaga acgggtggatt caccgcacac ggaactgcac	11640
ctttaatgag ggcccaaattc caagttgtcg gattaggaga cccagaagga gctaggcaaa	11700
ggttgttggc ccataaggct gctttcatgg aagcagcaga tgccgttagat ccagttttgg	11760
ttgggtttagg tggtgggtgc agagacatttgc aggtccatgt ttttagggac acccctgttgc	11820
tgcaatgggt cgtattgcac ttgattgttgc atgtcagaga cggccatgggt gccaacacag	11880
ttaacaccat ggctgaaagg ttagtccag aggttagagag gatcgctgggt ggaaccgtca	11940
ggttgaggat ttgtctaac ttggccact tgaggttggc aagagccagg gttgagttag	12000
cccccgtgagac tttgaccacc cagggatacg atgggtccga cgttgcaagg ggaatgggttgc	12060
aagcctgcgc ctttagcaata gtcgaccctt acagggccgc aaccctataac aagggaaatta	12120
tgaacggaat tgacccagtc gtcgtcgaa caggtaacga ctggagggcc atcgaagctg	12180
gagcccacgc ctacgcccgc aggaccggac attacacccctc tttgacaagg tggtggatgg	12240
ccaacgacgg taggttggc ggtaccatttgc aattgcctt ggcccttgggt ttggtaggag	12300
gagccaccaa gactcaccctt acagcttaggg ccgctttggc cttaatgcag gtcgaaaccg	12360

2014_03_12_107345_00466_ST25

ctactgagtt ggcccagggtt actgccgccc	ttggtttggc tcagaatatg gccgcaatta	12420
gggccttggc aaccgaggg aatccaaaggg gacacatgac cttacacgc	agaacatcg	12480
caatcatggc cggtgccacc ggagccgaca ttgacagggt caccagggtc atcg	ttgtgaag	12540
ccggagacgt atctgtcgcc agggctaaac aggttttggaa aatacataa acttagtcat	12600	
acgtcattgg tattctcttg aaaaagaagc acaacagcac catgtgttac gtaaaatatt	12660	
tactttatag tttgtacgtc ataatttctt ccatattaca agttcgtgca tatataaaaa	12720	
gaattctgtt gttgtatttgc tcataactag gtccgcggc gttggacgag cgaatgtgt	12780	
tattagtttta aaaagttgtt aaaaaataaaaa gtaaaaatttta atattttggaa tgaaaaaaac	12840	
catttttaga cttttctta actagaatgc tggagtagaa atacgccatc tcaagataca	12900	
aaaagcgtta ccggcactga tttgtttcaa ccagtatata gattattatt gggtcttgat	12960	
caactttcct cagacatatac agtaacagtt atcaagctaa atatttacgc gaaagaaaaaa	13020	
caaataaaaaattt aattgtgata cttgtgatt ttatTTTattt aaggatacaa agttaagaga	13080	
aaacaaaaattt tatatacaat ataagtaata ttcatatata tgtgtatgaat gcagtcttaa	13140	
cgagaagaca tggccttggt gacaactctc ttcaaaaccaa cttcagcctt tctcaattca	13200	
tcagcagatg ggtcttcgat ttgcaaagca gccaaagcgg cggtttaaac gcgtggccgt	13260	
gccgtc	13266	

<210> 34
 <211> 13964
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic: i84026 integration construct

<400> 34	gacggcacgg ccacgcgttt aaaccgc当地 gtgatgttac taaatacacg attaccatgg	60
aaattaacgt accttttttgc tgctgtatt gaaatattat gacatattac agaaagggtt	120	
cgcaagtccct gtttctatgc ctttctctta gtaattcagc aaataaacct atggtttacg	180	
aaatgatcca cgaaaatcat gttattattt acatcaacat atcgc当地aaa ttcatgtcat	240	
gtcccacatta acatcattgc agagcaacaa ttcatTTTca tagagaaatt tgctactatc	300	
acccactagt actaccattt gtacctacta ctttgaattt tactaccgct gggcgttatt	360	
aggtgtgaaa ccacgaaaag ttcaccataa cttcgaataa agtcgc当地aa aaaagtaaac	420	
agctattgct actcaaatga ggTTTgc当地 agcttgc当地 agcatgttga agcgttctaa	480	
acgcactatt catcattaaa tattaaagc tcataaaattt gtattcaatt cctattctaa	540	
atggctttta tttctattac aactattagc tctaaatcca tattcctata agcagcaatc	600	
aattctatct atactttaaa cgctcgcca acgccc当地ggg acctgtatgt tattactatg	660	
gtcgacgaca gcattc当地ccc agtattttt ttattctaca aaccttctat aatttcaaag	720	
tatttacata attctgtatc agttaatca ccataatatac gttttcttgc当地 ttttagtgc当地	780	

2014_03_12_107345_00466_ST25	
ttaattttc	ctattgttac
ttcgggcctt	tttctgtttt
atgagctatt	tttccgtca
840	
tccttccgga	tccagattt
cagcttcatc	tccagattgt
gtctacgtaa	tgcacgccc
900	
catttaaga	gaggacctcc
cgcgacctcc	aaaatcgaac
taccttcaca	atgaaacttc
960	
ttagtagtat	tgagcaggcg
tgtgacatct	gtagattgaa
gaaattgaaa	tgtagtaagg
1020	
agaagccaa	atgtgcgaaa
tgccttaaaa	ataattggaa
atgcagatat	agtccgaaga
1080	
cgaagcgcag	tccccttacc
cgcgcgcacc	ttacggaggt
cgagagtcgc	cttgagcgcc
1140	
ttgagcaact	tttccttctt
atctccccca	gagaggattt
ggatatgatc	cttaagatgg
1200	
acagtcttca	agacattaag
gcgccttcta	cggggctttt
cgtgcaggac	aacgtcaaca
1260	
aggacgcggt	gacggaccgc
cttgcagtg	tcgaaaccga
catgcccctt	acgcttcgccc
1320	
aacaccgcac	ttccgcac
ttccgcac	agtagtagtg
aggaatcctc	caataagggg
cagcgcac	1380
ttaccgtgag	tatcgatagt
gcggcccacc	acgacaatag
tacgatcccc	cttgacttca
1440	
tgccgcgcga	cgccttgac
gggttcgact	ggagtgagga
agacgatatg	agtgacggc
1500	
ttccgttct	taagaccgat
ccgaataaca	acggttttt
cggtgatggg	agtttgctt
1560	
gcacatcgat	aagtatcggt
ttcaagcccg	agaactatac
caataagtaat	gtcaatcgct
1620	
tgcccacgat	gatcaccgac
cgctataccc	ttgccagtcg
cagtacgacg	agtagacttt
1680	
tgcaagtccta	tttgcataac
ttccatccgt	attgtcccat
tgtccatagt	cccaccctta
1740	
tgatgcttta	caacaatcaa
atcgagattt	ccagtaaaga
ccagtggcag	attttgttca
1800	
attgtattct	tgcgatcggt
gcgtggtgca	ttgaagggtga
gagtaccgac	attgacgtct
1860	
tctattacca	gaacgcac
agtccaccta	cctccaaagt
gtttgaaagt	gggagtttta
1920	
tccttgcac	ggcgcttcac
ttgcttagta	gatacacgca
atggcgccaa	aagacgaaca
1980	
cctcctacaa	cttccattcc
ttcagtatttcc	gcatggcgat
tagtcttggt	cttaaccgcg
2040	
atttgccgag	tagttttcc
gactcctcca	tccttgagca
gcmcagaaga	atctggtgga
2100	
gtgtgtatag	ttggaaatt
cagcttagtc	ttttgtacgg
gagaagtatt	caattgagtc
2160	
aaaacacgat	tagttttccc
agtagtgtgg	atgacgtcca
aagaacgcacg	acggggccga
2220	
cgatttacca	cggtattatc
gagacggcgc	gcttgcttca
ggtctttacg	aagatttacg
2280	
agcttgataa	gacggtgacc
gcccatttg	cgcgaagaag
tgtcttatga	
2340	
tctgcaacga	aatcgaagaa
gtcagtcgcc	aagcgccaa
attccttcag	atggacatca
2400	
gtacgacggc	ccttacgaac
cttcttaaag	agcatccctg
gcttagtttc	acgcgccttg
2460	
agcttaatg	gaagcaactt
agtttgatta	tctacgtgct
tcgcgacttc	tttaccaact
2520	
tcacgcacaa	gaaaagttag
cttgagcaag	accagaacga
ccaccagtcc	tacgaggtca
2580	
agagatgtag	tattatgctt
tccgacgcgg	cgcagcgcac
cgtcatgagt	gtgtccctc
2640	
acatggataa	ccacaacgtg
acgcccgtact	tcgcgtggaa
ctgcagttac	tatctttta
2700	
acgcggtgct	tgtgccgatt
aaaaccctt	ttagtaatag
taagagtaac	gccgaaaaca
2760	
atgaaacggc	gcagcttctt
cagcagatca	ataccgtcct
tatgcttctt	aagaagctt
2820	

2014_03_12_107345_00466_ST25

cgaccttcaa gattcaaacc tgcgagaagt atatccaggt gctttaggaa gtgtgcgccc	2880
ccttccttct tagtcaatgc gcgattccgc ttccccacat ttccctacaat aactccaacg	2940
ggtcccgat caagaacatc gtggggagtg cgaccattgc gcagtatccc accttgccc	3000
aagagaacgt gaataacatt tccgtcaagt acgtcagtcc cggttagtgc ggtcccagtc	3060
ccgtcccgct taagagtggg gcgtcctttt ccgaccttgc gaaacttctt agtaatagac	3120
cgccgagtag aaatagtccg gtcacgattc cgcgctccac gcccagtcac agaagtgtga	3180
cccccttcct tggtcagcaa cagcaacttc agagtcttgc cccgcttacg cccagtgc	3240
ttttcgggg tgcgaacctc aaccagtccg gtaacatgcg cgactccagt cttagttta	3300
cctttaccaa ttccctccaat gggcccaatt tgattacgac ccagacgaac agtcaggc	3360
tgagtcagcc gatcgcgagt agtaatgtcc acgacaattt tatgaacaac gagattaccg	3420
cctccaagat cgacgacggg aacaacagta agccgcttag tcccgggtgg accgatcaga	3480
ccgcctacaa tgccttcggg attaccacgg gtatgttcaa cacgaccacg atggacgacg	3540
tgtacaatta ccttttgac gacgaggaca cgccgccgaa tccgaagaag gaatgagcca	3600
attggtgccg caattgataa taacgaaaat gtctttaat gatctggta taatgaggaa	3660
ttttccgaac gttttactt tatatatata tatacatgtt acatataattt tatacgctat	3720
atcgagaaaa cgcgatggt gggtgacttt caactcggcg tatcccccg tgcggccg	3780
gccgtccgca tgactcaaga gaagcatgtg gttttgagt tttttcggtt gaattttcag	3840
gtaaagctca atagttatga caattacaac aacagaattt tttctatata tgcacgaact	3900
tgtaatatgg aagaaattt gacgtacaaa ctataaagta aatattttac gtaacacatg	3960
gtgctgttgc gcttctttt caagagaata ccaatgacgt atgactaagt ttaggattta	4020
atgcaggtga cggacccatc tttcaaaccg tttatatcag tggcgccaa attgttaggt	4080
tttgggggtt cagcagggtt cctgttgtgg gtcatatgac tttgaaccaa atggccggct	4140
gctagggcag cacataagga taattcacct gccaagacgg cacaggcaac tattctgct	4200
aattgacgtg cggtgttacc aggagcggta gcatgtggc ctcttacacc taataagtcc	4260
aacatggcac cttgtggttc tagaacagta ccaccaccg tggtagcttac ttcgatggat	4320
ggcatggata cgaaattct caaatcacccg tccacttctt tcatcaatgt tatacagtt	4380
gaactttcga cattttgtgc aggatcttgc cctaatttccca agaaaacagc tgtcactaaa	4440
ttagctgcat gtgcgttaaa tccaccaaca gacccagcca ttgcagatcc aaccaaattt	4500
ttagcaatgt tcaactcaac caatgcggaa acatcacttt ttaacacttt tctgacaaca	4560
tcaccaggaa tagtagcttgc tgcgacgaca ctcttaccac gacccgtat ccagttgtat	4620
cgagctgggtt tttgtcggtt acagtagtta ccagaaacgg agacaaccc catatcttcc	4680
cagccatact cttctaccat ttgcgtttaat gagtatttgc cacccttgc aatcatattt	4740
ataccatttgc cgtcaccatg agttgttcta aatctcatgtt agagtaaattt tcctgttgc	4800
caagtttgcgaa tatgttgcgac acgtcaccat cttgtatgttgc agttaaaatcc tttttttaatt	4860

2014_03_12_107345_00466_ST25
gcgtttgtc cctcttctga gtcttaaccat atcttacagg caccagatct tttcaaagtt 4920
ggaaacgga ctactgggc tcttgcata ccatccttag ttaaaacagt tggcacca 4980
ccgcagcat tgattgcctt acagccacgc atggcagaag ctaccaaaca accctctgt 5040
gttgcattt gatatgata agatgtacca tcgataacca agggcctat aacaccaacg 5100
ggcaaaggca tgtaacctat aacattttca caacaagcgc caaatacgcg gtcgtagtc 5160
taattttat atggtaaacg atcagatgct aatacaggag cttctgcca aattgaaaga 5220
gccttcctac gtaccgcaac cgctctcgta gtatcaccta atttttctc caaagcgtac 5280
aaaggttaact taccgtgaat aaccaaggca gcgacctctt tgttctcaa ttgtttgt 5340
tttccactac ttaataatgc ttcttaattct tctaaaggac gtatttctt atccaagctt 5400
tcaatatcgc gggaatcatc ttccctacta gatgatgaag gtcctgatga gctcgattgc 5460
gcagatgata aacttttgac ttgcgtatcca gaaatgactg ttttattggta taaaactgg 5520
gtagaagcct ttgtacagg agcagtaaaa gacttcttgg tgacttcagt cttcaccaat 5580
tggctgcag ccattgtaaa gttagttggt tgcgactt cgggtgggt aagtatagag 5640
gtatattaac aattttttgt tgatactttt atgacattt aataagaat aatacaaacc 5700
gaaaatgtt aagtatttag taaaagtggt tatgcagctt ttgcatttat atatctgtt 5760
atagatcaa aatcatcgct tcgctgatta attacccag aaataaggct aaaaaactaa 5820
tcgcattatt atcctatggt tgtaatttg attcgatgat ttgaagggtt gtggggccag 5880
gttactgcca attttcctc ttcataacca taaaagctag tattgttagaa tctttattgt 5940
tcggagcagt gcccgcgag gcacatctgc gtttcaggaa cgccaccggta aagaccagg 6000
acgcacggag gagagtcttc cgtcggaggg ctgtcgcccg ctcggcgct tctaattccgt 6060
acttcaatat agcaatgagc agttaagcgt attactgaaa gttccaaaga gaaggttttt 6120
ttaggctaa ataatggggc tctttacatt tccacaacat ataagtaaga ttagatatgg 6180
atatgtat at ggtggatttg ccatgtata tgattattaa acttcttgc gtccatccaa 6240
aaaaaaagta acgcacgcac actccgaca gacaactagc ttgataatgt ctcagaacgt 6300
ttacattgtc tcgactgcca gaacccaaat tggttcattc cagggttctc tattccaa 6360
gacagcagt gaaattgggtc ctgttgctt aaaaggcgcc ttggctaagg ttccagaatt 6420
ggatgcattcc aaggattttg acgaaattat ttttggtaac gttcttctg ccaatttggg 6480
ccaaagctccg gcccggacaag ttgcttggc tgccgggtt agtaatcata tcggtcaag 6540
cacagttaa aaggctgtg catccgctat gaaggcaatc attttgggtg ctcaatccat 6600
caaattgtt aatgctgtatg ttgtcgtagc tggtgggtgt gaatctatga ctaacgcacc 6660
atactacatg ccaggcagccc gtgcgggtgc caaatttggc caaactgttc ttgtgtatgg 6720
tgtcgaaaga gatgggttga acgatgcgtc cgatggctta gccatgggtg tacacgcaga 6780
aaagtgtgcc cgtgattttg atattactag agaacaacaa gacaattttg ccatcgtatc 6840
ctaccaaaaaa tctcaaaaaat ctcaaaaggaa aggttaaattc gacaatgaaa ttgtacctgt 6900

2014_03_12_107345_00466_ST25

taccattaag ggat tagag gtagcctga tactcaagtc acgaaggacg aggaacctgc	6960
tagattacac gttgaaaat tgagatctgc aaggactgtt ttccaaaaag aaaacggtag	7020
tgttactgcc gctaacgctt ctccaatcaa cgatggtgct gcagccgtca tcttggttc	7080
cgaaaaagtt ttgaaggaaa agaatttcaa gcctttggct attatcaaag gttgggtga	7140
ggccgctcat caaccagctg attttacatg ggctccatct ctgcagttc caaaggctt	7200
gaaacatgct ggcacatcgaag acatcaattc tgttgattac ttgaattca atgaagcctt	7260
ttcgggtgtc ggtttggta acactaagat ttgaagcta gacccatcta aggttaatgt	7320
atatgggtgt gctggtgtc taggtcaccc attgggtgt tctggtgcta gagtggtgt	7380
tacactgcta tccatcttac agcaagaagg aggttaagatc ggtgttgccg ccatttgtaa	7440
tgggtgtgt ggtgcttcct ctattgtcat tgaaaagata tgattacgtt ctgcgatttt	7500
ctcatgatct tttcataaaa atacataat atataatgg ctttatgtat aacaggcata	7560
atttaaagtt ttat tgcga ttcatcg ttcaggtaact caaacgctga ggtgtgcctt	7620
ttgacttact tttccgcctt ggcaagctgg ccgaacctgc aggccgcgag cgccgatacg	7680
aaaatcgta ttgtcttgaa ggtgaaattt ctactttat taatggtgaa cgttaagctg	7740
atgctatgat ggaagctgat tggcttaac ttgcttgta tcttgcta ggtcattggc	7800
tcgtgttatt acttaagtt tttgtactcg tttgaacgt aatgcta atgatctt	7860
ggaataatag tgagtgg tttgtccat aaagctttc aattcatctt tttttttttt	7920
gttctttttt ttgattccgg ttctttgaa attttttga ttccgtaatc tccgagcaga	7980
aggaagaacg aaggaaggag cacagactta gattggata tatacgata tgtgggttg	8040
aagaaacatg aaattgccc gtattcttaa cccaaactgca cagaacaaaa acctgcagga	8100
aacgaagata aatcatgtcg aaagctacat ataaggaacg tgctgctact catcctagtc	8160
ctgtgtgc caagctattt aatatcatgc acgaaaagca aacaaactt tttgtttttt	8220
tggatgtcg taccaccaag gaattactgg agttagttga agcatttaggt cccaaaattt	8280
gtttactaaa aacacatgtg gatatttgc ctgattttc catggaggc acagttaa	8340
cgctaaaggc attatccgc aagtacaatt ttttactctt cgaagacaga aaatttgctg	8400
acattggtaa tacagtcaaa ttgcagttact ctgcgggtgt atacagaata gcagaatggg	8460
cagacattac gaatgcacac ggtgtgggg gcccaggat ttttagcggt ttgaagcagg	8520
cggcggaga agtaacaaag gaacctagag gcctttgtat gtttagcagaa ttgtcatgca	8580
agggctccct agctactgga gaatatacta agggtaactgt tgacattgcg aagagtgaca	8640
aagattttgt ttttgcgtttt attgctcaaa gagacatggg tggaaagatgaa gaaggtag	8700
attgggtgtat tatgacaccc ggtgtgggtt tagatgacaa gggagacgc ttgggtcaac	8760
agtatagaac cgtggatgtat gtggctctta caggatctga cattattatt gttggaaagag	8820
gactattgc aaagggaaagg gatgctaagg tagagggta acgttacaga aaagcaggct	8880
gggaagcata ttttgcgtttt ttgcggccagc aaaactaaaa aactgttata taagtaatg	8940

2014_03_12_107345_00466_ST25	
catgtatact	9000
aaactcacaa	
attagagctt	
caatttaatt	
atatcagttt	
ttaccacgaa	
aatcgttatt	9060
gtcttgaagg	
tgaaatttct	
actcttattt	
atggtgaacg	
ttaagctgat	
gctatgatgg	9120
aagctgattt	
gtcttaactt	
gcttgcac	
ttgctaatgg	
tcatatggct	
cgtgttattt	9180
cttaagttat	
ttgtactcgt	
tttgaacgta	
atgctaata	
tcatcttata	
gaataata	9240
gaacggccgg	
ccaagcacgc	
ggggattgaa	
tgagaaaaaa	
aatcggttgg	
gcttaacttt	9300
aaagaaaaaa	
gttgagatta	
gatttattgt	
gttataaata	
tagatata	
attcttata	9360
aaaaaaat	
atatatata	
cattgttatt	
aaataaagag	
ttttcctagt	
atata	9420
atata	
aaaaactact	
ctattaaat	
agagctaaaa	
aaagcaggct	
gccaaaaaaa	
taaagcattt	9480
atgaaggggg	
ttcagcaaga	
tgcaatcgat	
gggggaagat	
tatttttttaa	
catcgtaaga	9540
tcttctaaat	
ttgtcatcga	
tggtggtcaa	
gtagtaaaca	
ccactttgca	
aatgctcaat	9600
ggaaccttga	
ggttgaagt	
tcttcttcaa	
atggcattt	
tctctcaatt	
cgatggcagc	9660
ttcgtatcc	
tttggagttt	
cggtgattct	
cttggctaat	
ttgttagtaa	
tatctaattt	9720
cttgataata	
tggtggacgt	
caccaacaat	
tttgcagaa	
tatagagat	
cagctaaacc	9780
ggaaccgtaa	
gaaaataa	
caacacgctt	
gccttgtaag	
tcgtcagatc	
caacatagtt	9840
taatagagat	
gcaaaggcg	
cataaacaga	
tgcgggtac	
atgttacctg	
tgtttgttgg	9900
aacaatcaa	
gattggcaa	
ctctctctt	
gtggaatggc	
ttagcaacat	
taacaaaagt	9960
ttttcaatg	
ttcttatcgg	
ttaaagattc	
gtcataatcg	
cgagtagcta	
attcggcgtc	10020
aacttctggg	
aacaattt	
gatggctct	
gaaatcgta	
tatagtaatc	
taccgtatga	10080
ttttgtgacc	
aatttacagg	
ttggAACATG	
gaaaacgtt	
tagtcgaaat	
atttcaaaac	10140
gttcaaagca	
tccgaaccag	
cgggatcgct	
aaccaaccct	
ttagaaatag	
ccttcttgg	10200
ataactctt	
taaacttgat	
caagagcctt	
gacgtaccaa	
gttaatgaaa	
aatgaccatc	10260
gacgtacagg	
tattcgctgg	
tgaaatctgg	
cttggtaaaaa	
tcgttaggcgt	
gttccatgt	10320
agaagctt	
acagagtcaa	
atacaatttgg	
agcatcagga	
ccgatccaca	
tagcaacagt	10380
accggcacca	
ccgggttggc	
ttgcggcacc	
cttacgttag	
atggcaat	
caccgcaaa	10440
tacaatggcg	
tctctaccat	
cccatgcgtt	
agattcaatc	
cagttcaaa	
agttgaacaa	10500
cgcgttggta	
ccaccgtac	
aggcattaag	
cgtgtcaata	
ctttcgacgt	
cagtgtttc	10560
accaaacaat	
tgcataaga	
cagacttgac	
agacttggac	
ttgtcaatca	
gagtttcagt	10620
accgacttct	
aatctaccaa	
ttttgttgg	
gtcgatgtt	
taactcttga	
tcaactt	10680
aga	
acatgttggt	
ttggcccaga	
ccaaattgt	
atttacctt	
agaaacgcca	
tcaaatttct	
cgtatcaga	10740
ttgggttaca	
cattgagttt	
ggatgtaaat	
ttggataac	
ttaataccga	
cattttgagg	10800
tctgggtttt	
tggtcagcgg	
tctttgttt	
tttttagttca	
gtcatttgca	
agtttgtatt	10860
gtgttaattt	
tggtgctttt	
gccccctaag	
tcttccttta	
ataccacacc	
aacaaagttt	10920
agttgagagt	
ttcattgt	
aggttagttc	
attttggagg	
tcgcggagg	10980

2014_03_12_107345_00466_ST25	
ttactttttt tttggatgga cgcaaagaag tttataataatc atattacatg gcaataccac	11040
catatacata tccatatcta atcttactta tatgttgtgg aaatgtaaag agccccatta	11100
tcttagccta aaaaaacctt ctcttggaa ctttcagtaa tacgcttaac tgctcattgc	11160
tatattgaag tacggattag aagccgcccga gcgggcgaca gccctccgac ggaagactct	11220
cctccgtcg tcctggtctt caccggtcgc gttcctgaaa cgccatgtg cctcgcgcgg	11280
cactgctccg aacaataaag attctacaat actagctttt atggttatga agagaaaaaa	11340
ttggcagtaa cctggcccca caaaccttca aatcaacgaa tcaaattaac aaccatagga	11400
taataatgcg attagttttt tagccttatt tctgggtaa ttaatcagcg aagcgatgat	11460
ttttgatcta ttaacagata tataaatgca aaagctgcat aaccacttta actaataactt	11520
tcaacatttt cggtttgtat tacttcttat tcaaatgtca taaaagtatc aacaaaaaat	11580
tgttaatata cctctatact taccccaccc gaagtcgcgc aaccaactaa ctttacaatg	11640
gctgcagacc aattgggtgaa gactgaagtc accaagaagt ctttactgc tcctgtacaa	11700
aaggcttcta caccagttt aaccaataaa acagtcattt ctggatcgaa agtcaaaagt	11760
ttatcatctg cgcaatcgag ctcatcagga ctttcatcat ctatgtgagga agatgattcc	11820
cgcgatattg aaagcttgga taagaaaata cgtcctttag aagaattaga agcattatta	11880
agtagtgaa atacaaaaca attgaagaac aaagaggtcg ctgccttggt tattcacggt	11940
aagttacctt tgtacgctt ggagaaaaaa ttaggtgata ctacgagagc ggttgcggta	12000
cgttaggaagg ctcttcaat tttggcagaa gctcctgtat tagcatctga tcgtttacca	12060
tataaaaatt atgactacga ccgcgtatTTT ggcgcTTTgtt gtggaaatgt tataggttac	12120
atgccttgc ccgttgggt tataggcccc ttggTTatcg atggtacatc ttatcatata	12180
ccaatggcaa ctacagaggg ttgtttggta gcttctgcca tgcgtggctg taaggcaatc	12240
aatgctggcg gtggtgcaac aactgtttta actaaggatg gtatgacaag aggccagta	12300
gtccgTTcc caactttgaa aagatctggt gcctgtaaga tatggTTaga ctcagaagag	12360
ggacaaaacg caattaaaaa agcttttaac tctacatcaa gatttgacag tctgcaacat	12420
attcaaactt gtctagcagg agatttactc ttcatgagat tttagacaac tactggtgac	12480
gcaatggta tgaatatgat ttctaaagggt gtcgaataact cattaaagca aatggtagaa	12540
gagtatggct gggagatgat ggaggTTgtc tccgtttctg gtaactactg taccgacaaa	12600
aaaccagctg ccatcaactg gatcgaaagggt cgtggtaaga gtgtcgctgc agaagctact	12660
attcctggtg atgttgcag aaaagtgtta aaaagtgtatg tttccgcatt ggttggatgg	12720
aacattgcta agaatttggt tggatctgca atggctgggt ctgttgggtt atttaaacgca	12780
catgcagcta atttagtgac agctgtttc ttggcattag gacaagatcc tgcacaaaat	12840
gtcgaaagtt ccaactgtat aacattgatg aaagaagtgg acggtgattt gagaatttcc	12900
gtatccatgc catccatcgaa agtaggtacc atcgggtggg gtactgttct agaaccacaa	12960
ggtgcctgt tggacttattt aggtgtaa ggcacatg ctaccgctcc tggtagccaac	13020

2014_03_12_107345_00466_ST25

gcacgtcaat tagcaagaat agttgcctgt	gccgtcttgg caggtgaatt atccttatgt	13080
gctgccctag cagccggcca tttggttcaa agtcatatga	cccacaacag gaaacctgct	13140
gaaccaacaa aacctaacaa tttggacgcc	actgatataa atcggttcaa agatgggtcc	13200
gtcacctgca ttaaatccta aacttagtca	tacgtcattt gtattctctt gaaaaagaag	13260
cacaacagca ccatgtgtta	cgtaaaatat ttactttata gttgtacgt cataattct	13320
tccatattac aagttcgtgc	atatatagaa agaattctgt tttgttaatt gtcataacta	13380
tttagcttta cctgaaaatt	caacgaaaaa aactcaaaaa ccacatgctt ctcttgagtc	13440
atgcggaggt ccgcccgggt	tggacgagcg aatgtgtata ttatgtttaaa aagttgtatg	13500
taataaaaagt aaaatttaat	atttggatg aaaaaaacca ttttagact tttcttaac	13560
tagaatgctg gagtagaaat	acgccccatctc aagataaaaa aagcggttacc ggcactgatt	13620
tttttcaacc agtatataga	ttattattgg gtcttgcata actttcctca gacatatcag	13680
taacagttat caagctaaat	atttacgcga aagaaaaaca aatattttaa ttgtgatact	13740
tgtgaatttt attttattaa	ggatacaaaag ttaagagaaa acaaaattta tatacaatata	13800
aagtaatatt catatatatg	tgtgaatgc agtcttaacg agaagacatg gccttggta	13860
caactctctt caaaccact	tcagccttcc tcaattcatc agcagatggg tcttcgattt	13920
gcaaaggcgc	caaaggcggcg gtttaaacgc gtggccgtgc cgtc	13964

<210> 35
 <211> 13963
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic: i85207 integration construct

<400> 35	gacggcacgg ccacgcgttt aaaccgccag ggcaagggtt	gcctctactt actccatcg	60			
caattcaaga tacagaacct cctccagatg	aatcccttc catagagaga	aggagcaagc	120			
aactgaccctt atattgactg ccactggacc	tgaagacatg	caacaaagtgc	180			
ggggccttct tccaatgcta atccggtcac	tgccactgct	gctacggaaa	accaacctaa	240		
aggatttttttac ttcttcacta taagaaaatc	acacgagcgc	ccggacgtatg	tctctgttta	300		
aatggcgaa gttttccgct ttgtatata	tatattacc	cctttcttct	ctccccgtca	360		
atataatagt ttaattctaa	tatataat	atcctatatt	ttcttcattt	accggcgac	420	
tctcgcccga acgacctcaa	aatgtctgct	acattcataa	taaccaaaag	ctcataactt	480	
ttttttttgttga	acctgaatat	atatacatca	catgtcactg	ctggcccttg	ccgaccagcg	540
tatataatct	cgatagtgg	tttcccggttc	tttccactcc	cgtccgctcg	tccaaacgccc	600
gcggacccccc	acatgttaggg	accgaattgt	ttacaagttc	tctgttaccac	catggagaca	660
tcaaagattt	aaaatctatg	gaaagatatg	gacggtagca	acaagaatat	agcacgagcc	720
gcgaagttca	tttcgttact	tttgatatcg	ctcacaacta	ttgcgaagcg	cttcagtgaa	780

2014_03_12_107345_00466_ST25	
aaaatcataa	ggaaaagttg taaatattat tggtagtatt cgtttggtaa agtagagggg
gtaattttc	cccttattt tggcataca ttcttaaatt gcttgcctc tcctttgga
aagctatact	tcggagcact gttgagcgaa ggctcattag atatatttc tgtcatttc
cttaacccaa	aaataagggaa aagggtccaa aaagcgtcg gacaactgtt gaccgtgatc
cgaaggactg	gctatacagt gttcacaaaa tagccaagct gaaaataatg ttagctatg
ttcagttgt	ttggctagca aagatataaa agcaggtcgg aaatatttattt gggcattattt
atgcagagca	tcaacatgtat aaaaaaacct cccgcgacct ccaaaatcga actacccatca
caatgactgc	cgacaacaat agtatgcccc atggtgcaatg atctagttac gccaaatttag
tgcaaaacca	aacacctgaa gacattttgg aagagttcc tgaatttattt ccattacaac
aaagacctaa	tacccgatct agtgagacgt caaatgacga aagcggagaa acatgttttt
ctggcatga	tgaggagcaa attaagttaa tgaatgaaaa ttgtattgtt ttggatttggg
acgataatgc	tattggtgcc ggtaccaaga aagttgtca ttatggaa aatattgaaa
agggtttact	acatcgtgca ttctccgtct ttatttcaa tgaacaaggt gaattacttt
tacaacaaag	agccactgaa aaaataactt tccctgatct ttggactaac acatgctgct
ctcatccact	atgtattgtat gacgaattag gtttgaaggg taagctagac gataagatta
aggcgctat	tactgcggcg gtgagaaaac tagatcatga attaggtatt ccagaagatg
aaactaagac	aagggttaag tttcactttt taaacagaat ccattacatg gcaccaagca
atgaaccatg	gggtgaacat gaaattgatt acatcctatt ttataagatc aacgctaaag
aaaacttgac	tgtcaacccaa aacgtcaatg aagttagaga cttcaaatgg gtttccaccaa
atgatttggaa	aactatgttt gctgacccaa gttacaagtt tacgccttgg tttaagatta
tttgcgagaa	ttacttattt aactggtggg agcaattaga tgaccttct gaagtggaaa
atgacaggca	aattcataga atgctataac aacgcgtcaa taatataggc tacataaaaa
tcataataac	tttgttatca tagaaaaatg tgatataaaa cgtttcattt cacctgaaaa
atgataaaaa	taggcgacaa aaatccttag taatatgtaa actttatttt ctttatttat
ttacagaact	ctgaatatac attgattgtt cacattttt tttctcttc tcaatttccc
ttgattatat	tcaaaagggtt attggcctct tgaatgttcc ccactgaatc cccgcgtgct
tggccggccg	tggagcgacc tcatgctata cctgagaaag caacctgacc tacagggaaag
agttactcaa	gaataagaat tttcgttta aaacctaaga gtcactttaa aatttgtata
cacttatttt	ttttataact tatttaataa taaaaatcat aaatcataag aaattcgctc
aaacgaccat	tggatggaca aagaaggact tcatgttaga tttcatgtca cttcggcgt
gagtgaaacc	atcgtaaca gagtataaaa cttcacacat tctagccaag ttgatagctg
gcattaacaa	aggaaatgga acggcggtt gtctcaaaga ttctctgttataa accttcc
aggcgcttc	gactttcta gagatgtatt cacaggcttc ttcttcagaa gcaccggatt
ccttagaata	acattcgatg gaggaggcaa catgaccttct ttcttgatgttata

2014_03_12_107345_00466_ST25

agacaatatac atccatcaat ctaatgataa cacaagaagc ttcaacaata ggtggtagg	2880
aagaaaccca tttaaaagtg tcctcgtaa caatgtcacc tctaccaacg taagatctag	2940
cagtatcaa accgttagta ccgtaacca tggaaacaga catgtactct tccaaagtag	3000
gcatgttaacc ttcttcaac catctggctt caaccaagta gtttctgacc aattccttag	3060
ccatttcctt aacgttagtgg atttgataag ctttacccctc ctttctaaa gattcttcca	3120
tttcaacgtg caagttaacc aattcttggt agatcaactt catgtattct ggcaacatgt	3180
ccaaacaaga aatggaccac ttctcaacgg cttgagtgaa aatttccaat tcttcgtagg	3240
taccgtagtt gtcgaaggta tcatccaaaa cgaccaacca catacaagac ttcatcaaga	3300
acattctggt tctggcatgt tgtggttcat agtaaataga caaaatccag aagtaacctt	3360
cgacaactct atcacgaacg aatggcaatt tggttgcaa gtctaaatct ttccaccact	3420
tgcagatgtg agacaattct ttcttatgca tggattgcaa aacagagaaa tctaacttag	3480
ccaacttcaa caaaacctcg tcgtgagaag tttcttggc gtaaattggc atatagtgta	3540
aagcttcgtat tctggccaat cttttctca atgggtgctt caaggcttgg tggatttggg	3600
ttcttaagga agagtcacaa gatggatcct tggcaataat gtccaaatgtg accttagaga	3660
attccaaagc gttgtccaaag atgggttcat cttcgactct catgaaagca gttcgtaca	3720
aggccaagat accttgagcg tcgttacaca aagattccctt aaatttacct ttttcgtcca	3780
taaagtccctt gaaaacacca gaggagacat tgaaaccttg ttgacgcaac aaacgaaacc	3840
acaaggagat agattgtaaa ttttccttat cgaccattt ttcaccgtaa gtgacatgg	3900
tatgttgtaa agtttcttcg atttcttctt caaaatggta agcaataacctt aaacgttggaa	3960
cagcattgtat taattcgatc aacttaacat gttgcattttt ttcgttagaa cccttaatag	4020
taatcaattt cttcttaact tcctcctta actcttcgac taattgtttt ttcataacca	4080
agtcctctgg ttcatcgtaa gtcaaaaattt gatcacccca aatggaaagcg ttgaagttt	4140
cggatgtct aataacgtct ggcttggtag aatccttatac atcgacaaca attggggaaag	4200
tagatggaga ggaagaaaca gaggaaatag gcaaagtggc cattgtaaag tttagtggtt	4260
gcgcgacttc gggggggta agtatacgat tatattaaca attttttttt gatacttttta	4320
tgacatttga ataagaagta atacaacccg aaaatgttga aagtattttagt taaagtggtt	4380
atgcagcttt tgcatttata tatctgttaa tagatcaaaa atcatcgctt cgctgattaa	4440
ttacccaga aataaggcta aaaaactaat cgcatttata tcctatggtt gttaatttga	4500
ttcgttgcatt tgaaggtttgc tggggccagg ttactgccaat ttttcctct tcataaccat	4560
aaaagctagt attgtagaat ctttattgtt cggagcagtgc gggcgcgagg cacatctgcg	4620
tttcaggaac gcgaccggtg aagaccagga cgcacggagg agagtcttcc gtcggaggc	4680
tgtcgccgc tcggcggctt ctaatccgtt cttcaatata gcaatgagca gttaagcgta	4740
ttactgaaag ttccaaagag aaggttttt taggctttaaga taatggggct ctttacattt	4800
ccacaacata taagtaagat tagatatggc tatgtatatg gtggatttgc catgtatata	4860

2014_03_12_107345_00466_ST25	
gattattaaa	4920
cttctttgcg	
tccatccaaa	
aaaaaaagtaa	
cgcacgcaca	
ctcccacag	
acaactagct	4980
tgataatggc	
ttcagaaaaa	
gaaatttagga	
gagagagatt	
cttgaacgtt	
ttccctaaat	5040
tagtagagga	
attgaacgca	
tcgctttgg	
cttacggtat	
gcctaaggaa	
gcatgtgact	5100
ggtatgccc	
ctcattgaac	
tacaacactc	
caggcggtaa	
gttaaataga	
ggtttgcg	5160
ttgtggacac	
gtatgctatt	
ctctccaaca	
agaccgttga	
acaattgggg	
caagaagaat	5220
acgaaaaggt	
tgctattcta	
ggttggtgca	
ttgagttgtt	
gcaggcttac	
ttcttggtcg	5280
ccgatgatat	
gatggacaag	
tccattacca	
gaagaggcca	
accatgttgg	
tacaaggttc	5340
ctgaagtgg	
ggaaattgcc	
atcaatgacg	
cattcatgtt	
agaggctgct	
atctacaagc	5400
ttttgaaatc	
tcacttcaga	
aacgaaaaat	
actacataga	
tatcaccgaa	
ttgttccatg	5460
aagtcaccc	
ccaaaccgaa	
ttggccaat	
tgtggactt	
aatcactgca	
cctgaagaca	5520
aagtcgactt	
gagtaagttc	
tccctaaaga	
agcactcctt	
catagttact	
ttcaagactg	5580
cttactattc	
tttctacttg	
cctgtcgcat	
tggctatgta	
cgttgccggt	
atcacagatg	5640
aaaaggattt	
gaaacaagcc	
agagatgtct	
tgattccatt	
gggtgaatat	
ttccaaattc	5700
aagatgacta	
cttagactgc	
ttcggtaccc	
cagaacagat	
cggtaagatc	
ggtacagata	5760
tccaagataa	
caaatgttct	
tggtaatca	
acaaggcatt	
agaacttgct	
tccgcagaac	5820
aaagaaagac	
tttagacgaa	
aattacggta	
agaaggactc	
agtcgcagaa	
gccaaatgca	5880
aaaagatttt	
caatgacttg	
aaaatcgacc	
agttatacca	
cgaatatgaa	
gagtctgtt	5940
ccaaggattt	
gaaggccaag	
atctccaaag	
tcgacgagtc	
tcgtggcttc	
aaagccgacg	6000
tcttaactgc	
gtttttgaac	
aaggtttaca	
agagaagtaa	
atagaactaa	
cgctaattcg	6060
taaaacatta	
gatttcagat	
tagataagga	
ccatgtataa	
gaaatatata	
cttccactat	6120
aatatagttat	
aagcttacag	
atagtatctc	
tcgatctacc	
gttccacgtg	
actagtccaa	6180
gaacctgcag	
gccgcgagcg	
ccgatacgaa	
aatcgttattt	
gtcttgaagg	
tgaaattttct	6240
actcttattt	
atggtaacgc	
ttaagctgat	
gctatgtatgg	
aagctgatttgc	
gtcttaactt	6300
gcttgcac	
ttgctaatgg	
tcattggctc	
gtgttatttac	
ttaagttattt	
tgtactcggt	6360
ttgaacgtaa	
tgctaatgt	
catcttattgg	
aataatagtg	
agtggtttca	
gggtccataa	6420
agtttttcaa	
ttcatctttt	
ttttttttgt	
tctttttttt	
gattccggtt	
tctttgaaat	6480
ttttttgatt	
cggttaatctc	
cgagcagaag	
gaagaacgaa	
ggaaggagca	
cagacttaga	6540
ttggtatata	
tacgcatatg	
ttgtgttgaa	
gaaacatgaa	
attgcccagt	
attcttaacc	6600
caactgcaca	
gaacaaaaac	
ctgcaggaaa	
cgaagataaa	
tcatgtcgaa	
agctacatat	6660
aaggaacgtg	
ctgctactca	
tcctagtcct	
gttgctgcca	
agctattttaa	
tatcatgcac	6720
gaaaagcaaa	
caaacttggt	
tgcttcattt	
gatgttcgtt	
ccaccaaggaa	
attactggag	6780
ttagttgaag	
cattaggtcc	
caaaattttgt	
ttactaaaaaa	
cacatgtgga	
tatcttgcact	6840
gatttttcca	
tggagggcac	
agttaaagccg	
ctaaaggcat	
tatccgc当地	
gtacaattttt	6900
ttactcttcg	
aagacagaaa	
atttgctgac	
attggtaata	
cagtcaaatt	

2014_03_12_107345_00466_ST25	
gcag tactct gcgggttat acagaatagc agaatggca gacattacga atgcacacgg	6960
tgtggggc ccaggtattt ttagcggtt gaagcaggcg gcggaagaag taacaaagga	7020
acctagaggc ctttgatgt tagcagaatt gtcattcaag ggctccctag ctactggaga	7080
atatactaag ggtactgtt acattgcgaa gagtgacaaa gatttgtta tcggcttat	7140
tgctcaaaga gacatgggtg gaagagatga aggttacgt tggttattta tgacacccgg	7200
tgtgggtta gatgacaagg gagacgcatt gggtaacag tatagaaccg tggatgtgt	7260
ggtctctaca ggtactgaca ttattattgt tggaaagagga ctatttgcgaa agggaaaggga	7320
tgctaaggta gagggtgaac gttacagaaa agcaggctgg gaagcatatt tgagaagatg	7380
cggccagcaa aactaaaaaa ctgtattata agtaatgca tgtatactaa actcacaat	7440
tagagcttca atttaattat atcagttattt accacgaaaa tcgttattgt cttgaaggtg	7500
aaatttctac tcttattaaat ggtgaacgtt aagctgatgc tatgtatggaa gctgatttgt	7560
cttaacttgc ttgtcatctt gctaattggc atatggctcg tggattact taagttattt	7620
gtactcggtt tgaacgtaat gctaattgatc atcttattggaa ataatagtga atcggcgctc	7680
gcggcctgca ggtttccctca tccttagtatg tatacggtt acccattaaa cgaattttat	7740
catgcccgg aaaggaacaa ttcaagttac tattcgaaaga tgaatggta gatgttaagc	7800
gcggtcactt caaacttcac atttataaag atgtcacatg gaccactatt atctacctt	7860
agttattttt caagataagt ttccggatct ttttcttcc taacacccca gtcagcctga	7920
gttacatcca gccattgaac cttagaaaat ctttgcatt cagcggttt agccctaaga	7980
tcaacatctt gcttagcaat cactgcaatg gcgtcataac caccagcacc aggtatttaag	8040
caagtaagaa ctccctttaa ggtctggcaa tcattccata agctagttt tacggaggt	8100
tcgatatcggtt caccagattt ttttagttt tttctaaagg aacgtctaattt tggcaact	8160
gcattctctaa cttctgttatc ctcaggatac ttttgcacagg tacagtctt cctctcaaga	8220
gactcaaata tctgatcgct gtaatgtca tgagtctcg gtaagcgatc tagtttagat	8280
agtccatcca taaatctaga atttgcatttgc tgcaggctcg tatataattttt caagcttcc	8340
ggcatatgcg aatcatacca atttttacc ttctggacca gttttactgt ttctgaacca	8400
ttcttaatat cggccatcca taaagttaat cccgaaggtt aatggttact tttaatcggtt	8460
atattccagt cttcttcatt aaccaaatgc gccagtttac tgccgttaagt agcacttcca	8520
atatctggca aatttagagat taatgcgggtt gggaaatcttc tatatctgat agatccat	8580
gctgccggccg ctacatcaaa cccgcttcca attttaccct gagcttgaca atgagcaact	8640
tgtgataaat tatgaataac ttctctatatttttccat tattttccatg gtccgatata	8700
aaaaaggagg ccaaagctgt agttaaaact gtgactaaac ctgcccggaa gcccagccct	8760
gttttggaa cttcttcaat tctgtgcgaa tgaaaactca atcttctgtt gccacgatgt	8820
tcggtaacgc tgcctccctg agaatggtag gcatcatcag agaaaatatc aataacgaac	8880
aagtttctat tgcagtagtc gtccatgtt ggcttaaagt agctaaatac gttagcgata	8940

2014_03_12_107345_00466_ST25

actttttcaa	tgaaagggtt	cttagatccg	cctatcgaaa	caggaatgaa	gccagttta	9000
ggacttata	ggtacagcca	ctccccatct	ttaaattgtt	tactttcac	acgcacttca	9060
aacttatcag	actcttgc	aa	tgaaccgtaa	ggatgggcta	cagcatgcat	9120
aatccgacta	caa	at	atttcgga	tctaaaacta	aatatccacc	9180
gcttccctg	gggcactgaa	gg	ctcaac	tctgacatta	tcaagctagt	9240
gagtgtgcgt	gcgtttttt	at	catgttga	tgctctgcat	aataatgccc	9300
ccgacctgct	tttatatctt	tg	cttagccaa	actaactgaa	cata	9360
agcttggcta	ttt	gtgaac	actgtatagc	cagtcctcg	gatcacggc	9420
cgagcgctt	ttggaccctt	tcc	tttattt	ttgggttaag	gaaaatgaca	9480
cta	atgagcc	ttcg	ctcaac	agtgtccga	agtatagctt	9540
aatttaagaa	tgtatgaaca	aaataaagg	gaaaaattac	ccc	c	9600
aatactacca	ataatattt	caactt	ttcc	ttatgattt	ttcactgaag	9660
tagttgtag	cgat	atcaaa	agtaacgaaa	tgaacttcgc	ggctcgtgct	9720
tgctaccgtc	catatctt	tc	atgtttt	caatcttga	tgtctccatg	9780
gaacttgtaa	acaattcggt	cc	c	cttacatgt	gaacggccgg	9840
agcatgtagg	gagg	tc	atgtt	tatgaaaaag	caaaagagta	9900
tcaagtggta	actg	ctgtt	aaat	aaat	ggcatcaaaa	9960
caataccgt	gggaaacgta	aatt	agctat	tgtaaaaaa	ggaaaagaaa	10020
aatgttacat	atcg	atttga	tcttattc	ttggtagacc	agtcttgc	10080
attcg	ttt	tttgg	cctgaaccga	cttgagttaa	aatca	10140
tttgc	aa	atc	acgtc	taaagttaga	tgattcaat	10200
aagc	c	tc	taaattt	tgtccatcc	aggaacagag	10260
tatagataaa	tgca	aa	agactcat	tttcagctaa	gt	10320
gac	aa	acgtgt	gtaacgattt	tttctccgt	aaactgatta	10380
acca	ac	gttat	gatacgctt	tttgc	atgggtggc	10440
aacatgtggc	atgg	aaatcca	tcacgtc	tcatgt	aaagagtcca	10500
c	ttt	tttcaac	aatggctt	caa	tttgc	10560
tttctt	aa	atgg	cgactt	tttgc	aaatctt	10620
c	ttt	ttttaat	atcg	tttgc	tttgc	10680
ctg	ttt	atcg	actagg	tttgc	accctg	10740
cgtatccg	aa	acaacgat	acta	tttgc	gatgt	10800
tttct	ct	acaacgat	acta	tttgc	tttgc	10860
ggc	gg	accatgtggc	aaacc	tttgc	tttgc	10920
gg	gg	ggaggaagct	aaacc	tttgc	tttgc	10980

2014_03_12_107345_00466_ST25

attggcgtag	gtcgcgaga	caatttgag	ttcttcatt	gtcgatgctg	tgtggttctc	11040
catttaacca	caaagtgtcg	cgttcaaact	caggtgcagt	agccgcagag	gtcaacgttc	11100
tgagggtcatc	ttgcgataaa	gtcactgata	tggacgaatt	ggtgggcaga	ttcaacttcg	11160
tgtccctttt	cccccaatac	ttaagggttg	cgatgtgac	gggtgcggta	acggatgctg	11220
tgtaaacggt	cattgtgaag	gtagttcgat	tttggaggtc	gccccgggtt	actttttttt	11280
tggatggacg	caaagaagtt	taataatcat	attacatggc	aataccacca	tatacatatc	11340
catactaat	cttacttata	tgttgtggaa	atgtaaagag	ccccattatc	ttagcctaaa	11400
aaaaccttct	ctttggaact	ttcagtaata	cgcttaactg	ctcattgcta	tattgaagta	11460
cggattagaa	gccgcccggc	gggcgcacgc	cctccgacgg	aagactctcc	tccgtgcgtc	11520
ctggtcttca	ccggtcgcgt	tcctgaaacg	cagatgtgcc	tcgcgcgc	ctgctccgaa	11580
caataaagat	tctacaatac	tagttttat	ggttatgaag	aggaaaaatt	ggcagtaacc	11640
tggccccaca	aaccttcaaa	tcaacgaatc	aaattaacaa	ccataggata	ataatgcgat	11700
tagttttta	gccttatttc	tgggttaatt	aatcagcgaa	gcgatgattt	ttgatctatt	11760
aacagatata	taaatgc当地	agctgcataa	ccacttaac	taatactttc	aacatttcg	11820
gtttgttata	cttcttattc	aatgtcata	aaagtatcaa	caaaaaattt	ttaatataacc	11880
tctatactta	ccccacccga	agtcgc当地	ccacttaact	ttacaatg	tcattaccgtt	11940
ttaacttctg	caccggaaa	ggttattatt	tttggtaac	actctgctgt	gtacaacaag	12000
cctgccgtc	ctgctagtgt	gtctgcgtt	agaacctacc	tgtataaag	cgagtc当地	12060
gcaccagata	ctattgaatt	ggacttcccg	gacattagct	ttaatcataa	gtggccatc	12120
aatgatttca	atgccatcac	cgaggatcaa	gtaaactccc	aaaaatttgc	caaggctcaa	12180
caagccaccg	atggcttgc	ttaggaactc	gttagtctt	tggatccgtt	gttagctcaa	12240
ctatccgaat	ccttccacta	ccatgcagcg	ttttgttcc	tgtatatgtt	tgtttgccta	12300
tgccccatg	ccaagaatat	taagtttct	ttaaagtcta	ctttacccat	cggtgctgg	12360
ttgggctcaa	gccccttat	ttctgtatca	ctggccttag	ctatggccta	cttgggggg	12420
ttaataggat	ctaatgactt	ggaaaagctg	tcagaaaacg	ataagcatat	agtgaatcaa	12480
tgggccttca	taggtgaaaa	gtgtattcac	ggtaccctt	caggaataga	taacgctgt	12540
gccacttatg	gtaatgcct	gctatttga	aaagactcac	ataatggaac	aataaacaca	12600
aacaatttta	agttcttaga	tgatttccca	gccattccaa	tgatccta	ctatactaga	12660
attccaaggt	ctacaaaaga	tcttggct	cgcgttgc	tgttggtcac	cgagaaattt	12720
cctgaagttt	tgaagccat	tctagatgcc	atgggtgaat	gtgccctaca	aggcttagag	12780
atcatgacta	agttaagtaa	atgtaaaggc	accgatgacg	aggctgtaga	aactaataat	12840
gaactgtatg	aacaactatt	ggaattgata	agaataaatac	atggactgct	tgtctcaatc	12900
ggtgtttctc	atcctggatt	agaacttatt	aaaaatctga	gcgatgattt	gagaattggc	12960
tccacaaaac	ttaccgggtgc	tggtggcggc	ggttgctt	tgactttgtt	acgaagagac	13020

2014_03_12_107345_00466_ST25

attactcaag	agcaaattga	cagtttcaaa	aagaaattgc	aagatgattt	tagttacgag	13080
acatttggaaa	cagacttggg	tggactggc	tgctgttgt	taagcgcaaa	aaatttgaat	13140
aaagatctta	aatcaaattc	cctagtattc	caattatttg	aaaataaaaac	taccacaaag	13200
caacaaattg	acgatctatt	attgccagga	aacacgaatt	taccatggac	ttcataagct	13260
aatttgcgt	aggcattatt	tattagttgt	ttttaatctt	aactgtgtat	gaagttttat	13320
gtaataaaga	tagaaagaga	aacaaaaaaa	aattttcgt	agtatcaatt	cagcttcga	13380
agacagaatg	aaatttaagc	agaccatagt	atccttgata	cattgactca	ggtccgcccgg	13440
cgttggacga	gcgaagcatc	ttgccctgtg	cttggccccc	agtgcagcga	acgttataaa	13500
aacgaatact	gagtatatat	ctatgtaaaa	caaccatatc	atttcttgtt	ctgaactttg	13560
tttacctaac	tagtttaaa	tttccctttt	tcgtgcattgc	gggtgttctt	atttatttagc	13620
atactacatt	tgaaatatca	aatttcctta	gtagaaaagt	gagagaaggt	gcactgacac	13680
aaaaaaataaa	atgctacgta	taactgtcaa	aactttgcag	cagcgggcat	ccttccatca	13740
tagcttcaaa	catattagcg	ttcctgatct	tcatacccg	gctcaaaatg	atcaaacaaa	13800
ctgttattgc	caagaaataa	acgcaaggct	gccttcaaaa	actgatccat	tagatcctca	13860
tatcaagctt	cctcatagaa	cggccatta	caataagcat	gttttgctgt	tatcaccggg	13920
tgataggttt	gctcaggcgg	tttaaacgcg	tggccgtgcc	gtc		13963

<210> 36
 <211> 10209
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic: MS49253 integration construct

<400> 36
 gacggcacgg ccacgcgtt aaaccgccac ccagccaagg tagtctaaaa gctaatttct 60
 ctaaaaaggga gaaagtttgt gatttttat ctcgcattat tatatatgca agaatagtt 120
 agtgtatgtt ataaagtttt atcttaattt ccacatacgt acattgacac gtagaaggac 180
 tccattattt ttttcattct agcatactat tattccttgt aacgtcccag agtattccat 240
 ttaattgtcc tccatttctt aacggtgacg aaggatcacc atacaacaac tactaaagat 300
 tatagtacac tctcaccttg caactattt tctgacattt gccttacttt tatctccagc 360
 ttcccctcga ttttattttt caatttgatt tctaaagctt tttgctttagg cataccaaac 420
 catccactca ttaaacacct tattttttt ttcgaagaca gcatccaact ttatacgttc 480
 actacctttt ttttacaac aatttcattt ttcattctat gaacgctcgt ccaacgcccgg 540
 cggacctttc agacgcgact gcctcatcag taagaccgt tgaaaagaac ttacctgaaa 600
 aaaacgaata tatactagcg ttgaatgtt a cgtcaacaa caagaagttt aatgacgcgg 660
 aggccaaggc aaaaagattc cttgattacg taagggagtt agaatcattt tgaataaaaa 720
 acacgctttt tcagttcgag tttatcatta tcaatactgc catttcaaag aatacgtaaa 780

2014_03_12_107345_00466_ST25	
taattaatag tagtgatttt cctaacttta ttttagtcaaa aaatttagcct tttaattctg	840
ctgtaacccg tacatgccca aaataggggg cgggttacac agaatatata acatcgtagg	900
tgtctgggtg aacagtttat tcctggcatc cactaaatat aatggagccc gcttttaag	960
ctggcatcca gaaaaaaaaa gaatcccagc accaaaatat tggtttcttc accaaccatc	1020
agttcatagg tccattctct tagcgcaact acagagaaca ggggcacaaaa caggcaaaaa	1080
acgggcacaa cctcaatgga gtgatgcaac ctgcctggag taaatgatga cacaaggcaa	1140
ttgacccacg catgtatcta tctcattttc ttacaccttc tattaccttc tgctctct	1200
gatttggaaa aagctgaaaa aaaaggttga aaccagttcc ctgaaattat tcccctactt	1260
gactaataag tatataaaga cgtaggtat tgattgtat tctgtaaatc tatttcttaa	1320
acttcttaaa ttctactttt atagttagtc ttttttttag ttttaaaaca ccaagaactt	1380
agtttcgacc tcccgcgacc tccaaaatcg aactaccttc acaatgacat ctccagttat	1440
cggaactcct tggagaagaat tgaacgcccc agtatctgaa gaggcaatag aggggtgtcg	1500
caagtattgg agggctgcta attacttgc aatcggacaa atctacttga ggtcaaacc	1560
atataatgaag gaacctttca ccagggaga tggtaagcat aggttggtcg gtcactgggg	1620
aaccacacca ggattaaact ttttgattgg acacatcaac agattgattt cagatcacca	1680
acagaacaccc gtcataatca tgggtccagg acatggaggt ccagctggta ccgcccagtc	1740
ttatttggat ggtacctata ccgagtattt cccaaatatt acaaaggacg aggtaggtt	1800
acagaagttt ttcagacagt tctcttaccc aggaggaatc cttcacact acgctccaga	1860
aacaccaggt tctattcatg aggggtgtga attaggatat gccttatcac atgcttacgg	1920
agcagtcatg aacaatcctt cttgttcgt cccagccata gtaggtgatg gagaagccga	1980
gaccggtcct ttagccacag gttggcaatc taacaagttt gtaaacccta ggactgacgg	2040
aattgtcttgc cttttttgc atttgaacgg atacaagatc gctaacccaa ccatttgtc	2100
taggatatct gacgaggagt tgcattgat tttccacggt atggatacg agccttatga	2160
gttcgtcgca ggatttgaca acgaagacca tttgtcaatc cacagaaggt tcgcccagtt	2220
gtttgagacc gtctttgacg agatctgtga cattaaggca gctgctcaga cagacgacat	2280
gaccagaccc ttctatccta tgataatctt caggacaccc aagggttggta cttgcccataa	2340
gtttatagac ggaaaaaaga ctgagggatc atggagatct catcaagtac ctttggcatc	2400
tgcaagagat acagaagctc acttcgaggt tttgaaaaat tggtaggtt catataagcc	2460
tgaagaattt ttcgatgcaa atggagctgt taagccagag gtaactgctt ttatgcctac	2520
cgagaggtt agaatcggag agaatcctaa cgctaattggt ggttagaatca gagaggaatt	2580
gaatttgcct gcattggagg attacgaggt aaaagaggtt gctgaatatg gtcattggatg	2640
gggtcagttt gaaagcaacca gaagattagg tggttacacc agggacatta taaagaacaa	2700
cccaagactca ttttaggatct ttggaccaga tggaaaccgca tcaaataatgg tacaggctgc	2760
atatgacgtt actaataaagc aatgggacgc tggttactta tcagcccaag tagacgaaca	2820

2014_03_12_107345_00466_ST25						
tatggccgtt	acaggtcaag	ttacagagca	attgtctgaa	catcaaatgg	aaggattctt	2880
ggaagcttat	tttgtgaccg	gaaggcatgg	aatttggtca	tcatatgagt	cattcgta	2940
tgtcatcgac	tcaatgttaa	atcagcatgc	taagtggta	gaagccactg	taagagagat	3000
cccatggagg	aaaccaattt	cttcaatgaa	cttattggtt	tcatctcagc	tctggaggca	3060
ggatcataat	ggattttctc	atcaggaccc	aggtgtcaca	tcagtttat	tgaacaagt	3120
cttcaacaac	gatcacgtt	tcggaattt	cttcctgtc	gattctaaca	tgttgttagc	3180
tgttgccgag	aagtgttaca	agtctacaga	catgataaac	gccatcattt	ccggaaagca	3240
gccagccgcc	acctgggtga	ccttggatga	ggcaaggggct	gaattggaga	aaggagcagc	3300
cgaatggag	tgggcctcaa	cagccaagtc	aatgtatgaa	gcacagatag	tattggcttc	3360
agccgggtat	gttcctgtc	aagaatcat	ggctgctgcc	gataagttt	atgctatgg	3420
tatcaagttc	aagggtgtca	acgttagtcg	cttggtcaaa	ttgcagtcta	ccaaagaaaa	3480
tgacgaggcc	atctctgtac	ctgacttcgc	agacttattt	accgaagaca	agccagtatt	3540
attcgctac	cattcatacg	ccagagatgt	tagggattt	atctatgaca	ggcctaacc	3600
tgacaacttc	aacgtccacg	gatacgaaga	acagggttca	accactaccc	cttatgacat	3660
ggtcagagtc	aacaatattt	acaggtacga	gttggtcgct	gaagcattt	aatgtatcga	3720
tgccagacaaa	tacgcagata	aaatcgacga	attggaggcc	ttagaaagg	aagcattcca	3780
gtttgcagtt	gataacgggtt	acgaccatcc	tgactacacc	gactgggtct	attcaggagt	3840
aaataccaaac	aagcagggtt	ctgtttcagc	taccgctgca	actgctgggt	acaatgaata	3900
aagatctatt	gaattgaatt	gaaatcgata	gatcaatttt	tttctttct	ctttccccat	3960
cctttacgct	aaaataatag	tttattttat	tttttgaata	tttttttattt	atatacgat	4020
atatacgacta	ttatttatct	tttaatgatt	attaagattt	ttttaaaaaaa	aaaattcgct	4080
cctcttttaa	tgcctttatg	cagttttttt	ttcccattcg	atatttctat	gttcgggttc	4140
agcgtatttt	aagtttaata	actcgaaaat	tctgcgttcg	ttaaagcttt	cgagaaggat	4200
attatttcga	aataaaccgt	gttgcgttca	cttgcgttc	ttttgcgttgc	ccaatattct	4260
tatccatcta	ttgtactt	tagatccagt	atagtgtatt	cttcctgtc	caagctcatc	4320
ccatccccgc	gtgcttggcc	ggccgtacga	aaatcggtt	tgtcttgaag	gtgaaattt	4380
tactcttatt	aatggtaac	gttaagctga	tgctatgatg	gaagctgtt	ggtcttaact	4440
tgcttgcata	cttgcataatg	gtcattggct	cgtgttatta	cttaagttat	ttgtactcgt	4500
tttgaacgta	atgctaata	tcatctt	gaataatagt	gagtggttt	agggtccata	4560
aagctttca	attcatctt	ttttttttt	ttctttttt	tgattccgg	ttctttgaaa	4620
tttttttgcata	tcggtaatct	ccgagcagaa	ggaagaacga	aggaaggagc	acagacttag	4680
attggatata	atacgcata	gtgggttga	agaaacatga	aattgcccag	tattcttaac	4740
ccaactgcac	agaacaaaaaa	cctgcaggaa	acgaagataa	atcatgtcga	aagctacata	4800
taaggaacgt	gctgctactc	atcctagtc	tgttgcgttcc	aagctattt	atatcatgca	4860

2014_03_12_107345_00466_ST25

cgaaaagcaa acaaacttgt gtgttcatt ggatgtcgt accaccaagg aattactgga	4920
gttagttgaa gcattaggc ccaaatttgc tttactaaaa acacatgtgg atatcttgc	4980
tgattttcc atggagggca cagttaaagcc gctaaaggca ttatccgcca agtacaattt	5040
tttactcttc gaagacagaa aatttgcgtat cattggtaat acagtcaa at tgca gttactc	5100
tgcgggtgta tacagaatag cagaatgggc agacattacg aatgcacacg gtgtggtggg	5160
cccaggtatt gttagcgggt tgaagcaggc ggcggaaagaa gtaacaaagg aacctagagg	5220
cctttgatg ttagcagaat tgcgtatgcaa gggctcccta gctactggag aatatactaa	5280
gggtactgtt gacattgcga agagtacaa agattttgtt atcggcttta ttgctcaaag	5340
agacatgggt ggaagagatg aaggttacga ttgggttattt atgacacccg gtgtggg	5400
agatgacaag ggagacgcat tgggtcaaca gtatagaacc gtggatgtatg tggctctac	5460
aggatctgac attattatttgc ttggaaagagg actatttgc aagggaaagg atgctaagg	5520
agagggtgaa cgttacagaa aagcaggctg ggaagcataat ttgagaagat gcccggcagca	5580
aaactaaaaa actgtattat aagtaatgc atgtataacta aactcacaaa ttagagcttc	5640
aatttaatta tatcagttat taccacgaaa atcgatttttgc tcttgcgtt gaaatttcta	5700
ctcttattaa tggtaacgt taagctgtatg ctatgtatgg agctgttgc tcttacttg	5760
cttgcacatct tgctaatggc catatggctc gtgttatttgc ttaagttattt tgcgttgc	5820
ttgaacgtaa tgctaatgtatg catcttgcgaa aataatagtg aacggccggc caagcacg	5880
gggatggat gagcttggag caggaagaat acactatactt ggtctaaag agtacaatag	5940
atggataaga atattggcag cgcaaaaagg cttcaagctt acacaacacg gtttatttgc	6000
aaataatatc cttctcgaaa gctttaacga acgcagaatt ttcgagttat taaacttaaa	6060
atacgctgaa cccgaacata gaaatatcgatggaaaaaaa aaaactgcataaaggcatta	6120
aaagaggagc gaattttttt ttaataaaaaa tcttataat cattaaaaga taaataatag	6180
tctatataatacgtatataaa taaaaatat tcaaaaaataaataacta ttatggatgc	6240
gtaaaggatg gggaaagaga aaagaaaaaaa attgatctat cgatttcaat tcaattcaat	6300
agatctttat tcattgtcac cagcagttgc agcggtagct gaaacagcac cctgcttgc	6360
ggtatattact cctgaataga cccagtcggc gtatgtatgg tggcgtaac cgatcaat	6420
tgcaaactgg aatgcttcct ttctgaaggc ctccaatttgc tcgatttat ctgcgtat	6480
gtctgcatcg atcattctca atgcattcagc gaccaactcg tacctgtcaa tattgttgc	6540
tctgaccatg tcataagggg tagtgggtga accctgttct tcgtatccgt ggacgttgc	6600
gttgcgtatgg ttggcctgt catagatcaa tcccctaaca tctctggcgt atgaatggta	6660
ggcgaataat actggcttgtt cttcggtaaa taagtctgcg aagtcagcgt cagagatggc	6720
ctcgatctt tctttggtag actgcattt gaccaactcg actacgttgc caaccttgc	6780
cttgataccca atagcatcta acttatcgcc agcagccatg atttcttgcg caggaacatc	6840
accggctgaa gccaataacta tctgtgcattc atcatttgcgc ttggctgttgc aggcccactc	6900

2014_03_12_107345_00466_ST25

ccattcggct	gctccttct	ccaattcagc	ccttgccctca	tccaagggtca	accaggtggc	6960
ggctggctgc	tttccggcaa	tgtatggcggt	tatcatgtct	gtagacttgt	agcacttctc	7020
ggcaacagct	aacaacatgt	tagaatcgac	aggaaaagtaa	attccgataa	cgtgatcggt	7080
gttgaagcac	ttgttcaata	aaactgtatgt	gacacctggg	tcctgatgag	aaaatccatt	7140
atgatcctgc	ctccagacgt	gagatgaaac	caataagttc	attgaagaaa	ttggtttcct	7200
ccatgggatc	tctcttacag	tggcttctaa	ccacttagca	tgctgattta	acattgagtc	7260
gatgacatgt	acgaatgact	cataatgtga	ccaaattcca	tgccttccgg	tcaacaaata	7320
agcttccaag	aatccttcca	tttgatgttc	agacaattgc	tctgtaactt	gacctgtaac	7380
ggccatatgt	tcgtctactt	gggctgataa	gtaaccagcg	tcccattgct	tattagtaac	7440
gtcatatgca	gcctgtaacc	tatttgatgc	ggtttcatct	ggtccaaaga	tcctaaatga	7500
gtctgggttgc	ttctttataa	tgtccctgg	gtaaacacct	aatcttctgg	ttgcttccaa	7560
ctgaccccat	ccatgaccat	atttagcaac	ctcttttacc	tcgtaatcct	ccaatgcagg	7620
caaattcaat	tcctctctga	ttcttaccacc	attagcgta	ggattctctc	cgattcttaa	7680
ctctccggta	ggcataaaaag	cagttacctc	tggcttaaca	gctccatttg	catcgaccaa	7740
ttcttcaggc	ttatatgact	ccaaccaatt	tttcaaaacc	tcgaagtgag	cttctgtatc	7800
tcttgcagat	gccaaaggta	cttgatgaga	tctccatgat	ccctcagtc	ttttccgtc	7860
tataaaactta	gggcaagtcc	aacccttagg	tgtcctgaag	attatcatag	gatagaagg	7920
tctggtcatg	tcgtctgtct	gagcagctgc	cttaatgtca	cagatctcgt	caaagacggt	7980
ctcaaacaac	tcggcgaacc	ttctgtggat	tgacaaatgg	tcttcgttgc	caaatcctgc	8040
gacgaactca	taaggctcgt	atcccatacc	gtggaaaaac	tcatgcaact	cctcgtcaga	8100
tatcctagac	aagatggttg	ggttagcgt	cttgcatacc	ttcaaatgca	aaataggcaa	8160
gacaattccg	tcagtcctag	ggtttactaa	cttgcatacc	tgccaacctg	tggctaaagg	8220
accggctcg	gcttctccat	cacctactat	ggctggacg	aacaaagaag	gattgttcat	8280
gactgctccg	taagcatgtg	ataaggcata	tcctaattca	ccaccctcat	gaatagaacc	8340
tggtgtttct	ggagcgtagt	gtgaagggat	tcctcctgg	taagagaact	gtctgaaaaa	8400
cttctgtaaa	cctgcctcgt	cctttgtat	atttggaaa	tactcggtat	aggtaccatc	8460
caaataagac	tggcggtac	cagctggacc	tccatgtcct	ggacccatga	ttatgacggt	8520
gttgtttgg	tgtatctgca	tcaatctgtt	gatgtgtcca	atcaaaaagt	ttaatcctgg	8580
tgtggttccc	cagtgaccga	ccaacctatg	cttaacatct	tccctggta	aaggttcctt	8640
cattaatggg	tttgacctca	agtagatttg	tccgattgac	aagtaattag	cagccctcca	8700
atacttgcg	acaccctcta	ttgcctttc	agatactggg	gcgttcaact	tcttccaagg	8760
agttccgata	actggagatg	tcattgtgaa	ggtagttcga	ttttggaggt	cgcggaggt	8820
cgaaaactaag	ttcttggtgt	tttaaaaacta	aaaaaaagac	taactataaa	agtagaattt	8880
aagaagttta	agaaatagat	ttacagaatt	acaatcaata	cctaccgtct	ttatatactt	8940

2014_03_12_107345_00466_ST25

attagtcaag	taggggaata	atttcaggga	actggttca	acctttttt	ttagctttt	9000
ccaaatcaga	gagagcagaa	ggtaatagaa	ggtgtaaagaa	aatgagatag	atacatgcgt	9060
gggtcaattg	ccttgtgtca	tcatttactc	caggcagggtt	gcatcactcc	attgagggtt	9120
tgcgggtttt	ttgcctgttt	gtgcccctgt	tctctgttagt	tgcgctaaga	aatggacct	9180
atgaactgat	ggttggtaaa	gaaaacaata	ttttggtgct	gggattcttt	ttttttctgg	9240
atgccagctt	aaaaagcggg	ctccattata	tttagtggat	gccaggaata	aactgttcac	9300
ccagacacct	acgatgttat	atattctgtg	taacccgccc	cctattttgg	gcatgtacgg	9360
gttacagcag	aattaaaagg	ctaattttt	gactaaataa	agtttaggaaa	atcactacta	9420
ttaatttattt	acgtattcctt	tgaaatggca	gtattgataa	tgataaaactc	gaactgaaaa	9480
agcgtgtttt	ttattcaaaa	tgattctaac	tcccttacgt	aatcaaggaa	tcttttgcc	9540
ttggcctccg	cgtcattaaa	cttcttggat	ttgacgctaa	cattcaacgc	tagtatata	9600
tcgtttttt	caggttaagtt	ctttcaacg	ggtcttactg	atgaggcagt	cgcgtctgaa	9660
aggcccgccg	gcgttggacg	agcgctccat	gctggactta	ctcgtcgaag	atttcctgct	9720
actctctata	taattagaca	cccatgttat	agatttcaga	aaacaatgta	ataatatatg	9780
gtagcctcct	gaaactacca	aggaaaaat	ctcaacacca	agagctata	ttcggtggaa	9840
tagcgataat	atctcttac	ctcaatctta	tatgcgtt	atttgcctt	ataattggc	9900
tctattttagg	gaaaaaaagtc	ggttttagag	cttctcgca	tgtgaaatct	caatttgaac	9960
tgcacgccaa	agctagccca	ttcacgaac	accagaaaga	agaaatcccc	aaggatcgca	10020
tgacagagta	tgctctctca	tatcggttag	tatgaatgcc	aatacactga	tcagctttac	10080
aagaaacgta	aaatctggca	cgtggtaga	ctgaaatact	ttcagttaaa	caacagattc	10140
atgctttata	cggaaaagga	taacgtttt	ttagcttagt	aggcggtta	aacgcgtggc	10200
cgtggcgtc						10209

<210> 37
<211> 7257
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic: MS49298 integration construct

gacggcacgg	ccacgcgtt	aaaccgccac	ccagccaagg	tagtctaaaa	gctaatttct	60
ctaaaaggga	gaaagtttgt	gatttttat	ctcgattat	tatatatgca	agaatagtta	120
aggtatagtt	ataaagtttt	atcttaattt	ccacatacgt	acattgacac	gtagaaggac	180
tccattat	tttcattct	agcatactat	tattccttgt	aacgtcccag	agtattccat	240
ttaattgtcc	tccatttctt	aacggtgacg	aaggatcacc	atacaacaac	tactaaagat	300
tatagtacac	tctcacctt	caactattt	tctgacattt	gccttacttt	tatctccagc	360
ttcccccgtca	ttttattttt	caatttgatt	tctaaagctt	tttgctttagg	cataccaaac	420

2014_03_12_107345_00466_ST25

catccactca	tttaacacct	tatTTTTTT	ttcgaagaca	gcatccaact	ttatacgttc	480
actacctttt	tttttacaac	aatttcattc	ttcatcctat	gaacgctcgt	ccaacgcccgg	540
cggacctttc	agacgcgact	gcctcatcag	taagaccgt	tgaaaagaac	ttacctgaaa	600
aaaacgaata	tatactagcg	ttgaatgtta	gcgtcaacaa	caagaagttt	aatgacgcgg	660
aggccaaggc	aaaaagattc	cttgattacg	taaggagtt	agaatcattt	tgaataaaaaa	720
acacgctttt	tcaagttcgag	tttatcatta	tcaatactgc	catttcaaag	aatacgtaaa	780
taattaatag	tagtgatttt	cctaacttta	tttagtcaaa	aaatttagcct	tttaattctg	840
ctgtaacccg	tacatgccc	aaataggggg	cgggttacac	agaatatata	acatcgtagg	900
tgtctgggtg	aacagtttat	tcctggcatc	cactaaatat	aatggagccc	gcttttaag	960
ctggcatcca	gaaaaaaaaa	gaatcccagc	acccaaatat	tgttttcttc	accaaccatc	1020
agttcatagg	tccattctct	tagcgcaact	acagagaaca	ggggcacaaa	caggcaaaaa	1080
acgggcacaa	cctcaatgga	gtgatgcaac	ctgcctggag	taaatgatga	cacaaggcaa	1140
ttgacccacg	catgtatcta	tctcattttc	ttacaccttc	tattaccttc	tgctctct	1200
gatttggaaa	aagctgaaaaa	aaaaggttga	aaccagttcc	ctgaaattat	tcccctactt	1260
gactaataag	tatataaaga	cggtaggtat	tgattgtaat	tctgtaaatc	tatttcttaa	1320
acttctaaa	ttctactttt	atagttagtc	tttttttag	ttttaaaaca	ccaagaactt	1380
agtttcgacc	tcccgcgacc	tccaaaatcg	aactaccttc	acaatgaaat	tgatggagaa	1440
tatcttcgga	ttggccaagg	ccgacaagaa	gaaaatcgtt	ttggcagagg	gtgaggaaga	1500
gaggaacatc	agggcttcag	aggagattat	tagggacggt	attgccgaca	taatcttgg	1560
cggttcagag	tctgtcatta	aggaaaacgc	cgccaaattc	ggagtaaatt	tggccggagt	1620
agagatagtc	gaccagaaaa	cttcttctaa	gaccgcccgt	tacgccaacg	ctttctacga	1680
gatcagaaaa	aacaaggag	tcaccttgg	gaaggctgac	aaaatcgtca	gggacccaat	1740
ctacttcgca	acaatgatgg	tcaagttagg	tgacgctgac	ggtttggtat	ctggtgctat	1800
acatactaca	ggagacttgt	taaggcctgg	tttgcagatt	gtcaaaacag	taccaggtgc	1860
atctgtcgtc	tcatcagtct	tcttgatgtc	agtacctgac	tgcgagtgatg	gagaggacgg	1920
ttttttgtta	ttcgctgact	gcgctgtaaa	tgtttgtcct	accgctgaag	agttatcttc	1980
aatcgcaatt	accactgctg	agactgcaaa	gaatttgc	aagatcgagc	caaggtagc	2040
catgttgtca	ttctcaacca	tggatcagc	ctcacatgaa	ttagtcgaca	agttacaaa	2100
ggcaacaaaa	ttggctaagg	aggctaggcc	tgacttagac	atcgacggtg	aattgcagtt	2160
agacgcctca	ttggttaaga	aggtcgcaga	tttgaagcc	cctggatcta	aagtcgtgg	2220
taaggcaaat	gtcttgatct	tcccagacat	ccaggcagga	aacatcggt	acaagttgg	2280
ccaaagattc	gcaaaggccg	aagccatcg	tcctatatgt	cagggattt	ccaaacctat	2340
caacgatttgc	tcaagggat	gttcagtcg	cgacatcg	aaagttgtt	ccgttaccgc	2400
agttcaggca	caagcacaag	gataaagatc	tattgaattt	aattgaaatc	gatagatcaa	2460

2014_03_12_107345_00466_ST25

ttttttctt ttctcttcc ccatcctta cgctaaaata atagtttatt ttatTTTTG	2520
aatatTTTTT atttatatac gtatatatag actattattt atcttttaat gattattaag	2580
atTTTTatta aaaaaaaatt cgctccttta ttaatgcctt tatgcagttt ttTTTCCCA	2640
ttcgatattt ctatgttcgg gttcagcgta ttttaagttt aataactcgaa aattctgcg	2700
ttcgttaaag ctTCGAGAA ggatatttt tcgaaataaa ccgtgttgtaa agcttgaa	2760
gcCTTTGc gctgccaata ttcttatcca tctattgtac tctttagatc cagtatagt	2820
tattttcct gctccaagct catcccatcc ccgcgtgctt ggccggccgt acgaaaatcg	2880
ttattgtctt gaaggtgaaa ttctactct tattaatggtaa acgtttaag ctgtatgtat	2940
gatggaaagct gattggctt aacttgctt tcattctgtt aatggtcatt ggctcggtt	3000
attacttaag ttatttgta tcgtttgaa cgtatgcta atgatcatct tatggaaataa	3060
tagtgagtgg ttTCAGGGTC cataaagctt ttcaattcat cttttttttt tttgttctt	3120
tttttGATTc cggTTCTT gaaatttttt tgattcggtt atctccgagc agaaggaaaga	3180
acgaaggaag gggcacagac tttagattggt atatatacgc atatgtggtg ttgaagaaac	3240
atgaaattgc ccagtattct taacccaaact gcacagaaca aaaacctgca ggaaacgaag	3300
ataaatcatg tcgaaagcta catataagga acgtgctgct actcatccta gtcctgttgc	3360
tgccaagcta tttaatatca tgcacgaaaa gcaaacaac ttgtgtgctt cattggatgt	3420
tcgttaccacc aaggaattac tggagttgt tgaagcatta ggtcccaaaaa ttgtttact	3480
aaaaacacat gtggatattct tgactgattt ttccatggag ggcacagttt agccgttttt	3540
ggcattatcc gccaagtaca atttttact cttcgaagac agaaaatttg ctgacattgg	3600
taatacagtc aaattgcagt actctgcggg tgtatacaga atagcagaat gggcagacat	3660
tacgaatgca cacggtgtgg tggcccccagg tattgttagc ggtttgaagc aggcggcgga	3720
agaagtaaca aaggaaccta gaggcTTTTT gatgttagca gaattgtcat gcaaggggctc	3780
cctagctact ggagaatata ctaagggtac tggtgacatt gcaagaggtt acaaagattt	3840
tgttatcggc ttTATTGCTC aaagagacat ggggtggaa gatgtgggtt acgttgggtt	3900
gattatgaca cccgggtgg gtttagatga caagggagac gcattgggtc aacagtatag	3960
aaccgtggat gatgtggtct ctacaggatc tgacattttt attgttggaa gaggactatt	4020
tgcaaaggga agggatgcta aggttagaggg tgaacgttac agaaaagcag gctgggaagc	4080
atatttggaa agatgcggcc agcaaaacta aaaaactgtt ttataagtaa atgcatgtat	4140
actaaactca caaatttagag cttcaattta attatatcg ttattaccac gaaaatcgtt	4200
attgtcttga aggtgaaatt tctactcttta ttaatggtaa acgttaagct gatgtatgt	4260
tggaaagctga ttggctttaa cttgcttgc atcttgcattt tggtcatatg gtcgtgttta	4320
ttacttaagt tatttgtact cgTTTGAAC gtaatgcatt tgatcatctt atggaaataat	4380
agtgaacggc cggccaagca cgcggggatg ggatgagctt ggagcaggaa gaatacacta	4440
tactggatct aaagagtaca atagatggat aagaatatttgcagcgcaaa aaggcttcaa	4500

2014_03_12_107345_00466_ST25

gcttacacaa cacggtttat ttcgaaataa tatttttttc gaaagcttta acgaacgcag	4560
aattttcgag ttattaaact taaaatacgc tgaacccgaa catagaaata tcgaatggaa	4620
aaaaaaaaact gcataaaggc attaaaagag gagcgaattt ttttttaata aaaatcttaa	4680
taatcattaa aagataaata atagtctata tatacgata taaataaaaa atattcaaaa	4740
aataaaataa actattattt tagcgtaaag gatggggaaa gagaaaaagaa aaaaattgat	4800
ctatcgattt caattcaatt caatagatct ttatccttgt gcttgcgcct gaactgcgg	4860
aacggcaaca actttgacga tgcgtcgac tgaacatccc ctgcacaaat cggtgatagg	4920
tttggcaaat ccctgacata taggaccgat ggcttcggcc tttgcgaatc tttggaccaa	4980
cttgtatccg atgttcctg cctggatgtc tgggaagatc aagacatttg cttaccagc	5040
gacttttagat ccaggggctt tcaaatctgc gaccttctta accaatgagg cgtctaaactg	5100
caattcaccg tcgatgtcta agtcaggcct agcctcctta gccaatttttgc ttgccttgc	5160
aaccttgcg actaattcat gtgaggctga tcccatggtt gagaatgaca acatggctac	5220
ccttggctcg atcttgacata aattcttgc agtctcagca gtggtaatttgc cgattgaaga	5280
taactcttca gcggtaggac aaacatttac agcgcagtca gcaataaca aaaaaccgtc	5340
ctctccatac tcgcagtcg gtactgacat caagaagact gatgagacga cagatgcacc	5400
tggtaactgtt ttgacaatct gcaaccagg ccttaacaag tctcctgttag tatgtatagc	5460
accagataacc aaaccgtcag cgtcacctaa cttgaccatc attgttgcga agtagattgg	5520
gtccctgacg attttgcag cttctccaa ggtgactccc ttgttttttc tgatctcgta	5580
gaaagcgttg gcgttaaccgg cggtcttaga agaagttct gggtcgacta tctctactcc	5640
ggccaaattt actccgaatt ttgcggcggtt ttcccttaatg acagactctg aaccgaccaa	5700
gattatgtcg gcaataccgt ccctaataat ctccctgaa gccctgatgt tcctcttttc	5760
ctcacccctct gccaaaacga ttttcttctt gtcggccttgc gccaatccga agatattctc	5820
catcaatttc attgtgaagg tagttcgatt ttggaggtcg cgggaggtcg aaactaagtt	5880
cttgggtgttt taaaactaaa aaaaagacta actataaaaag tagaatttaa gaagtttaag	5940
aaatagattt acagaattac aatcaataacc taccgtcttt atataacttat tagtcaagta	6000
gggaaataat ttcaaggaaac tgggttcaac ctttttttc agtttttcc aaatcagaga	6060
gagcagaagg taatagaagg tgtaagaaaa tgagatagat acatgcgtgg gtcaattgcc	6120
ttgtgtcatc atttactcca ggcaggtgc atcactccat tgaggtgtg cccgttttt	6180
gcctgtttgt gcccctgttc tctgttagttg cgctaagaga atggacctat gaactgatgg	6240
ttgggtgaaga aaacaatatt ttgggtctgg gattcttttt ttttctggat gccagcttaa	6300
aaagcgggct ccattatatt tagtggatgc caggaataaa ctgttcaccc agacacctac	6360
gatgttatat attctgtgtta acccgcccc tattttggc atgtacgggt tacagcagaa	6420
ttaaaaggct aattttttga ctaaataaaag ttaggaaaat cactactatt aattattttac	6480
gtattctttg aaatggcagt attgataatg ataaactcga actgaaaaag cgtgtttttt	6540

2014_03_12_107345_00466_ST25

attcaaaatg attctaac tc cttacgtaa tcaaggaatc ttttgcctt ggcctccgcg	6600
tcattaaact tcttgttgtt gacgctaaca ttcaacgcta gtatataattc gttttttca	6660
ggtaagttct tttcaacggg tcttactgat gaggcagtcg cgtctgaaag gtccgccggc	6720
gttggacgag cgctccatgc tggacttact cgtcgaagat ttccctgctac tctctatata	6780
attagacacc catgttata tag atttcagaaa acaatgtaat aatataatggt agcctcctga	6840
aactaccaag gaaaaaatct caacaccaag agctcatatt cggttgaata gcgataatat	6900
ctctttacct caatcttata tgcatttat ttgctctt aattggtctc tat taggga	6960
aaaaagtcgg tttgagagct tctcgcatg tgaaatctca atttgaactg cacgccaaag	7020
ctagcccatt tcacgaacac cagaaagaag aaatccccaa ggatcgcatg acagagtatg	7080
ctctctcata tcgtttagta tgaatgcca a tacactgatc agctttacaa gaaacgtaaa	7140
atctggcacg atggtagact gaaatactt cagttaaaca acagattcat gctttatacg	7200
gaaaaggata acgtttgtt agcttagttag gcggttaaa cgctggccg tgccgtc	7257