发明名称
非周期性电容加载的移相器

摘要
一种非周期性电容加载的移相器，在传统的周期性电容加载的移相器的基础上，将加载电容以非周期性方式加载在微波传输线上：电容量不相同的加载电容均匀地排列在微波传输线的中心信号线上；电容量相同的加载电容不均匀地排列在微波传输线的中心信号线上或电容量不相同的加载电容不均匀地排列在微波传输线的中心信号线上。所述的加载电容为BST压控电容或MEMS压控电容。

该移相器有以下优点：该移相器中的任何一个加载电容的电容量均为优化值，使该移相器能与接在其输入端和输出端上的微波电路较好地阻抗匹配；使微波信号经该移相器传输时反射小，插入损耗低，可控相移量大。
1. 一种非周期性电容加载的移相器，由基片（20）和微波传输线（40）组成，基片（20）的构成材料是诸如蓝宝石、高阻硅、多孔硅、红宝石或高频陶瓷之类的低损耗介质，微波传输线（40）构筑在基片（20）上，微波传输线（40）是共面波导传输线，即 CPW 传输线、共面带状线或微带线，微波传输线（40）包括中心信号线（7）、加载电容（2）、第一接地线（3）、第二接地线（5）、输入端（1）和输出端（4），中心信号线（7）位于第一接地线（3）和第二接地线（5）之间，中心信号线（7）的两端分别是输入端（1）和输出端（4），加载电容（2）为压控电容，加载电容（2）排列在中心信号线（7）与第一接地线（3）、第二接地线（5）之间，其特征在于，n 个电容器不相同的加载电容（2）均匀地排列在中心信号线（7）与第一接地线（3）、第二接地线（5）之间，加载电容（2）与中心信号线（7）之间由导线（6）连接，n 个加载电容（2）中的任何一个相对于其在中心信号线（7）上的加载位置而言，其电容量为优化值；所述的移相器工作时，由任何一个电容量为优化值和位于中心信号线（7）上各自相应的加载位置的加载电容（2）引起的反射最小，n 为 8～100。

2. 根据权利要求 1 所述的非周期性电容加载的移相器，其特征在于，加载电容（2）是 BST 压控电容，即钛酸锶钡压控电容，在 n 个加载电容（2）与第一接地线（3）、第二接地线（5）之间的基片（20）上沉积有 BST 薄膜。

3. 根据权利要求 1 所述的非周期性电容加载的移相器，其特征在于，加载电容（2）是 MEMS 压控电容，即微机电系统压控电容。

4. 一种非周期性电容加载的移相器，由基片（20）和微波传输线（40）组成，基片（20）的构成材料是诸如蓝宝石、高阻硅、多孔硅、红宝石或高频陶瓷之类的低损耗介质，微波传输线（40）构筑在基片（20）上，微波传输线（40）是共面波导传输线，即 CPW 传输线、共面带状线或微带线，微波传输线（40）包括中心信号线（7）、加载
电容 (2)、第一接地线 (3)、第二接地线 (5)、输入端 (1) 和输出端 (4)，中心信号线 (7) 位于第一接地线 (3) 和第二接地线 (5) 之间，中心信号线 (7) 的两端分别是输入端 (1) 和输出端 (4)，加载电容 (2) 为压控电容，加载电容 (2) 排列在中心信号线 (7) 与第一接地线 (3)、第二接地线 (5) 之间，其特征在于，n 个电容量相同的加载电容 (2) 不均匀地排列在中心信号线 (7) 与第一接地线 (3)、第二接地线 (5) 之间，n 个加载电容 (2) 中的任何一个相对于其在中心信号线 (7) 上的加载位置而言，其电容量为优化值：所述的移相器工作时，由任何一个电容量为优化值和位于中心信号线 (7) 上各自相应的加载位置的加载电容 (2) 引起的反射最小，n 为 8～100。

5. 根据权利要求 4 所述的非周期性电容加载的移相器，其特征在于，加载电容 (2) 是 BST 压控电容，即钛酸钡钡压控电容，在 n 个加载电容 (2) 与第一接地线 (3)、第二接地线 (5) 之间的基片 (20) 上沉积有 BST 薄膜。

6. 根据权利要求 4 所述的非周期性电容加载的移相器，其特征在于，加载电容 (2) 是 MEMS 压控电容，即微机电系统压控电容。

7. 一种非周期性电容加载的移相器，由基片 (20) 和微波传输线 (40) 组成，基片 (20) 的构成材料是诸如蓝宝石、高阻硅、多孔硅、红宝石或高频陶瓷之类的低损耗介质，微波传输线 (40) 构筑在基片 (20) 上，微波传输线 (40) 是共面波导传输线，即 CPW 传输线、共面带状线或微带线，微波传输线 (40) 包括中心信号线 (7)、加载电容 (2)、第一接地线 (3)、第二接地线 (5)、输入端 (1) 和输出端 (4)，中心信号线 (7) 位于第一接地线 (3) 和第二接地线 (5) 之间，中心信号线 (7) 的两端分别是输入端 (1) 和输出端 (4)，加载电容 (2) 为压控电容，加载电容 (2) 排列在中心信号线 (7) 与第一接地线 (3)、第二接地线 (5) 之间，其特征在于，n 个电容量不相同的加载电容 (2) 不均匀地排列在中心信号线 (7) 与第一接地线 (3)、第二接地线 (5) 之间，n 个加载电容 (2) 中的任何一个相
对于其在中心信号线（7）上的加载位置而言，其电容量为优化值：所述的移相器工作时，由任何一个电容量为优化值和位于中心信号线（7）上各自相应的加载位置的加载电容（2）引起的反射最小，n为8～100。

8、根据权利要求7所述的非周期性电容加载的移相器，其特征在于，加载电容（2）是BST压控电容，即钛酸锶钡压控电容，在n个加载电容（2）与第一接地线（3）、第二接地线（5）之间的基片（20）上沉积有BST薄膜。

9、根据权利要求7所述的非周期性电容加载的移相器，其特征在于，加载电容（2）是MEMS压控电容，即微机电系统压控电容。
非周期性电容加载的移相器

技术领域

本发明涉及一种非周期性电容加载的移相器，具体而言，涉及一种适用于相控阵天线阵列的非周期性电容加载的传输型移相器。

背景技术

移相器是相控阵雷达、卫星通信、移动通信等设备中大量应用的核心组件，它的工作频带、插入损耗直接影响这些设备的抗干扰能力和灵敏度，以及设备的体积、重量和成本，因此研究宽频带、低插入损耗的移相器在军事和民用的通信、雷达等领域具有重要的意义。

MEMS 移相器和 BST 移相器具有体积小、重量轻、控制时间短、插入损耗较低、可载功率较大等优点，具有很大的发展和应用前景。MEMS 是微机电系统的英文缩写。BST 即钛酸钡钡，是一种具有高介电常数的铁磁材料，其介电常数可随加在材料上的偏压大小变化。背景技术中有一种传输式移相器，由一段电磁波在其上传输的相速度或传输时延可变的传输线段构成。在传输线实现电磁波相速度或传输时延变化的最常用的方法是在传输线上整体或周期性加载电容量可随控制偏压改变的电容，即加载电控电容。在 MEMS 移相器中，这种电容改变是通过施加不同的控制偏压改变 MEMS 电容电极间的间隙来实现的，而在 BST 移相器中，这种电容改变是通过施加不同的控制偏压改变 BST 薄膜的介电常数而实现的。背景技术（US 6,559,737）提出一种周期性加载电容的移相器，如图 1 所示，加载电容是 BST 电容，通过改变加载在 BST 电容上的偏压来改变 BST 电容的电容值，使移相器实现移相功能。

从射频或微波电路理论可知，周期性加载在传输线上的每一个 BST 电容引入的不均匀性，都会引入附加反射，使移相器的总体反射
增加，导致移相器因与接在其输入端和输出端上的微波电路不匹配而造成的损耗增加。从移相器与接在其上的微波电路的之间的匹配性能有待改进这点来看，对移相器的传输线段作周期性加载电容的做法并不是最佳的技术方案。

为了提高移相器的插入损耗、反射和匹配性能的指标，需要对周期性加载电容的移相器进行改进。

发明内容

本发明要解决的技术问题是提出一种非周期性电容加载的移相器。该移相器有以下优点：为接在其输入端和输出端上的微波电路提供较好的阻抗匹配，反射小，插入损耗低，可控相移量大。

本发明通过采用以下技术方案使上述技术问题得到解决。在传统的周期性电容加载的移相器的基础上，将加载电容以非周期性方式加载在传输线上：电容量不相同的加载电容均匀地排列在传输线的中心信号线与接地线之间；电容量相同的加载电容不均匀地排列在传输线的中心信号线与接地线之间或电容量不相同的加载电容不均匀地排列在传输线的中心信号线与接地线之间，得到一种非周期性电容加载的移相器。所述的加载电容为 BST 压控电容或 MEMS 压控电容。

现详细说明本发明的技术方案。

一种非周期性电容加载的移相器，由基片 20 和微波传输线 40 组成，基片 20 的构成材料是诸如蓝宝石、高阻硅、多孔硅、红宝石或高频陶瓷之类的低损耗介质，微波传输线 40 构筑在基片 20 上，微波传输线 40 是共面波导传输线，即 CPW 传输线、共面带状线或微带线，微波传输线 40 包括中心信号线 7、加载电容 2、第一接地线 3、第二接地线 5、输入端 1 和输出端 4，中心信号线 7 位于第一接地线 3、第二接地线 5 之间，中心信号线 7 的两端分别是输入端 1 和输出端 4，加载电容 2 为压控电容，加载电容 2 排列在中心信号线 7 与第一接地线 3、第二接地线 5 之间，其特征在于，n 个电容量不相同的加载电容 2 均匀地排列在中心信号线 7 与第一接地线 3、第二接地线 5 之间，
加载电容 2 与中心信号线 7 之间由导线 6 连接，n 个加载电容 2 中的任何一个相对于其在中心信号线 7 上的加载位置而言，其电容量为优化值：所述的移相器工作时，由任何一个电容量为优化值和位于中心信号线 7 上各自相应的加载位置的加载电容 2 引起的反射最小，n 为 8～100。

本发明的技术方案的进一步特征在于，n 个电容量相同的加载电容 2 不均匀地排列在中心信号线 7 与第一接地线 3、第二接地线 5 之间，n 为 8～100。

本发明的技术方案的进一步特征在于，n 个电容量不相同的加载电容 2 不均匀地排列在中心信号线 7 与第一接地线 3、第二接地线 5 之间，n 为 8～100。

本发明的技术方案的进一步特征在于，加载电容 2 是 BST 压控电容，即钛酸锶钡压控电容，在 n 个加载电容 2 与第一接地线 3、第二接地线 5 之间的基片 20 上沉积有 BST 薄膜。

本发明的技术方案的进一步特征在于，加载电容 2 是 MEMS 压控电容，即微机电系统压控电容。

与背景技术相比，本发明的移相器有以下优点：

1. 本发明的移相器为接在其输入端和输出端上的微波电路提供较好的阻抗匹配。

2. 微波信号经本发明的移相器传输时反射小，插入损耗低，可控相移量大。

附图说明

图 1 是周期性电容加载的移相器的结构示意图，其中加载电容 2 是 BST 压控电容，电容量相同的加载电容 2 均匀地排列在中心信号线 7 上。

图 2 是非周期性电容加载的移相器之一的结构示意图，其中加载电容 2 是 BST 压控电容，电容量不相同的加载电容 2 均匀地排列在中心信号线 7 上。
图 3 是非周期性电容加载的移相器之二的结构示意图，其中加载电容 2 是 BST 压控电容，电容量相同的加载电容 2 不均匀地排列在中心信号线 7 上。

图 4 是非周期性电容加载的移相器之三的结构示意图，其中加载电容 2 是 MEMS 压控电容，电容量相同的加载电容 2 不均匀地排列在中心信号线 7 上，左边为移相器的侧视图，右边为移相器的正视图。

图 5 是本发明的移相器与传统的移相器的回波损耗比较。回波损耗 \(=20 \log |\Gamma| \) (dB)，\(\Gamma \) 为反射系数。

图 6 是本发明的移相器与传统的移相器的插入损耗比较。

图 7 是本发明的移相器与传统的移相器的最大移相量比较。

具体实施方式

为更好的理解本发明，现结合附图对本发明进行进一步的说明，现提供三个非周期性加载移相器的实施例。所有实施例具有与上文“发明内容”所述的移相器完全相同的结构。

实施例 1 非周期性电容加载的移相器之一，其结构示意图见图 2。

本实施例以蓝宝石作为基片 20，微波传输线 40 构筑在基片 20 上，微波传输线 40 是共面波导传输线，即 CPW 传输线，微波传输线 40 包括中心信号线 7、加载电容 2、第一接地线 3、第二接地线 5、输入端 1 和输出端 4，中心信号线 7 位于第一接地线 3、第二接地线 5 之间，中心信号线 7 的两端分别是输入端 1 和输出端 4，n 个电容量不相同的加载电容 2 均匀地排列在微波传输线 40 的中心信号线 7 与接地线 3、5 之间，加载电容 2 与中心信号线 7 之间由导线 6 连接，n 个加载电容 2 中的任何一个相对于其在中心信号线 7 上的加载位置而言，其电容量为优化值，加载电容 2 是 BST 压控电容，即钛酸锶钡压控电容，在 n 个加载电容 2 与第一接地线 3、第二接地线 5 之间的基片 20 上沉积有 BST 薄膜，n 为 8〜100。

本实施例也可以其它诸如高阻硅、多孔硅、红宝石、高频陶瓷之
类的低损耗介质作为基片 20。

本实施例的微波传输线 40 可以是共面带状线或微带线。

实施例 2 实施例 1 的移相器的变型，其结构示意图见图 4。

本实施例以石英作为基片 20。微波传输线 40 是共面波导传输线，即 CPW 传输线。微波传输线 40 包括中心信号线 7、MEMS 桥 8、第一接地线 3、第二接地线 5、输入端 1 和输出端 4，MEMS 桥 8 构成 MEMS 压控加载电容 2。中心信号线 7 位于第一接地线 3、第二接地线 5 之间，中心信号线 7 的两端分别是输入端 1 和输出端 4，n 个电容量不相同的加载电容 2 均匀地排列在中心信号线 7 与第一接地线 3、第二接地线 5 之间，n 个加载电容 2 中的任何一个相对于其在中心信号线 7 上的加载位置而言，其电容量为优化值，加载电容 2 是 MEMS 压控电容，即微机电系统压控电容，n 为 8～100。

本实施例也可以其它诸如高阻硅、多孔硅、蓝宝石、红宝石、高频陶瓷之类的低损耗介质作为基片 20。

本实施例的微波传输线 40 可以是共面带状线或微带线。

实施例 3 非周期性电容加载的移相器之二，其结构示意图见图 3。

本实施例以蓝宝石作为基片 20。微波传输线 40 构筑在基片 20 上，微波传输线 40 是共面波导传输线，即 CPW 传输线。微波传输线 40 包括中心信号线 7、加载电容 2、第一接地线 3、第二接地线 5、输入端 1 和输出端 4，中心信号线 7 位于第一接地线 3、第二接地线 5 之间，中心信号线 7 的两端分别是输入端 1 和输出端 4，n 个电容量相同的加载电容 2 不均匀地排列在中心信号线 7 与第一接地线 3、第二接地线 5 之间，n 个加载电容 2 中的任何一个相对于其在中心信号线 7 上的加载位置而言，其电容量为优化值，加载电容 2 是 BST 压控电容，即钛酸锶钡压控电容，在 n 个加载电容 2 与第一接地线 3、第二接地线 5 之间的基片 20 上沉积有 BST 薄膜，n 为 8～100。

本实施例也可以其它诸如高阻硅、多孔硅、红宝石、高频陶瓷之类的低损耗介质作为基片 20。
本实施例的微波传输线 40 可以是共面带状线或微带线。

实施例 4 实施例 3 的移相器的变型其结构示意图见图 4。

本实施例以石英作为基片 20，微波传输线 40 构筑在基片 20 上，
微波传输线 40 是共面波导传输线，即 CPW 传输线，微波传输线 40 包
括中心信号线 7、MEMS 桥 8、第一接地线 3、第二接地线 5，输入端 1
和输出端 4，MEMS 桥 8 构成 MEMS 压控加载电容 2。中心信号线 7 位
于第一接地线 3、第二接地线 5 之间，中心信号线 7 的两端分别是输
入端 1 和输出端 4，n 个电容量相同的加载电容 2 不均匀地排列在中
心信号线 7 与接地线 3、5 之间，n 个加载电容 2 中的任何一个相对
于其在中心信号线 7 上的加载位置而言，其电容量为优化值。加载电
容 2 是 MEMS 压控电容，即微机电系统压控电容，n 为 8～100。

本实施例也可以其它其它诸如高阻硅、多孔硅、蓝宝石、红宝石、
高频陶瓷之类的低损耗介质作为基片 20。

本实施例的微波传输线 40 可以是共面带状线或微带线。

实施例 5 非周期性电容加载的移相器之三。

本实施例以蓝宝石作为基片 20，微波传输线 40 构筑在基片 20
上，微波传输线 40 是共面波导传输线，即 CPW 传输线，微波传输线
40 包括中心信号线 7、加载电容 2、第一接地线 3、第二接地线 5、
输入端 1 和输出端 4，中心信号线 7 位于第一接地线 3、第二接地线
5 之间，中心信号线 7 的两端分别是输入端 1 和输出端 4，n 个电容
量不相同的加载电容 2 不均匀地排列在中心信号线 7 与接地线 3、5
之间，n 个加载电容 2 中的任何一个相对于其在中心信号线 7 上的加
载位置而言，其电容量为优化值，加载电容 2 是 BST 压控电容，即钛
酸锶钡压控电容，在 n 个加载电容 2 与第一接地线 3、第二接地线 5
之间的基片 20 上沉积有 BST 薄膜，n 为 8～100。

本实施例也可以其它其它诸如高阻硅、多孔硅、红宝石、高频陶
瓷之类的低损耗介质作为基片 20。

本实施例的微波传输线 40 可以是共面带状线或微带线。

实施例 6 实施例 5 的移相器的变型。
本实施例以石英作为基片 20，微波传输线 40 构筑在基片 20 上，
微波传输线 40 是共面波导传输线，即 CPW 传输线，微波传输线 40 包
括中心信号线 7、加载电容 2、第一接地线 3、第二接地线 5、输入端
1 和输出端 4。中心信号线 7 位于第一接地线 3、第二接地线 5 之间，
中心信号线 7 的两端分别是输入端 1 和输出端 4，n 个电容量不相同
的加载电容 2 不均匀地排列在中心信号线 7 与接地线 3、5 之间，n
个加载电容 2 中的任何一个相对于其在中心信号线 7 上的加载位置而
言，其电容量为优化值，加载电容 2 是 MEMS 压控电容，即微机电系
统压控电容，n 为 8～100。

本实施例也可以其它其它诸如高阻硅、多孔硅、蓝宝石、红宝石、
高频陶瓷之类的低损耗介质作为基片 20。

本实施例的微波传输线 40 可以是共面带状线或微带线。

工作原理。先以图 1 所示的移相器，即背景技术为例，说明之。
该移相器包括：在低损耗介质基片 20 上构筑的一段微波传输线 40，
微波传输线 40 可以是共面波导传输线，即 CPW 传输线，共面带状线
或者微带线。在微波传输线 40 上周期性加载若干加载电容 2。加载
电容 2 为压控电容，即加载电容 2 的电容量随加在加载电容 2 两端的
控制电压而改变。压控电容是 BST 压控电容。这些加载电容 2 改变了
微波传输线 40 的传输特性，如特性阻抗、传播常数和衰减常数。该
移相器工作时，微波传输线 40 的输入端 1 和输出端 4 分别接微波电
路。在相控阵天线中，微波电路分别为馈电网络和天线。该移相器的
加载电容 2 通过低通滤波器或高频扼流元件，从偏压控制电路得到控
制电压。图 1 未示出低通滤波器、高频扼流元件和偏压控制电路，因
为它们都是同技术领域的技术人员所熟悉的电路技术。当加载电容 2
在控制电压的作用下电容量发生变化时，在该移相器中传输的微波或
射频信号的相移会发生变化，从而达到移相的目的。加载电容 2 的引
入同时也改变了微波传输线 40 与接在其上的微波电路的匹配状态，
引起了附加反射。根据微波传输理论，原（未加载电容）微波传输线
的特性阻抗假定为 Z_0，加载电容 2 处的传输线段的等效特性阻抗为

11
则传输的电磁波在两段传输线段交界处会发生反射，反射系数 \(\Gamma \)

\[
\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0}.
\]

即反射波电场与入射波电场之比为

如果在微波传输线 40 中某点的阻抗为 \(Z_L \)，其点离该点距离为 \(d \)

处的等效阻抗 \(Z_{in} \) 为

\[
Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan(\beta d)}{Z_0 + jZ_L \tan(\beta d)}, \quad \text{(其中} \beta \text{为传输线的传播常数)}.
\]

由于该阻抗接接到特性阻抗为 \(Z_0 \) 的传输线引起的反射为

\[
\Gamma_{in} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0}.
\]

如果移相器输入端 1 的反射系数为 \(\Gamma \)，则真正传入移相器的功率为

\[
P_m \times (1 - |\Gamma|^2).
\]

可见，移相器的反射越大，因反射造成的微波功率损失越大，经移相器传输的微波功率就越小。这种移相器的反射与加载电容 2 的微波传输线 40 引入的不均匀性有关，与相邻加载电容 2 在微波传输线 40 上的间距有关。综上，对移相器的微波传输线 40 作周期性电容加载：电容量相同的加载电容均匀地排列在微波传输线 40 上，并不能保证移相器的反射最小。

本发明的关键之处是打破加载电容 2 在微波传输线 40 上按周期性加载的规律。实施例 1 是本发明的移相器之一，具有如图 2 所示的结构。在结构上，该移相器与背景技术的区别在于，该移相器采取若干（n=8～100）加载电容 2 非周期性加载在微波传输线 40 上的结构。加载电容 2 是 BST 压控电容。这种结构能产生以下有益效果：能做到对每个加载电容 2 电容量的大小和每个加载电容 2 在微波传输线 40 上的加载位置进行优化选择，使移相器在其工作频带内能实现反射尽可能小和移相量尽可能大的目标。由于所有的加载电容 2 与第一接地线 3、第二接地线 5 之间的基片 20 上沉积有 BST 薄膜，改变加在加载电容 2 上的控制偏压，可以改变 BST 薄膜的介电常数，使各加载电容 2 的电容量随之发生变化，从而使电容加载的共面波导传输线的相移常数在反射小的情况下发生变化，从而实现反射尽可能小、插入损耗可能小和移相量尽可能大的目标。

图 5～7 给出了根据本发明的非周期性电容加载的移相器之二与
传统的周期性电容加载的移相器的回波损耗、插入损耗和最大移相量
随频率变化的仿真结果。可以看到，本发明的非周期性电容加载的移
相器之二的回波损耗、插入损耗都优于传统的周期性电容加载的移相
器的回波损耗、插入损耗，前者的最大可控移相量也大于后者的最大
可控移相量。

综上，加载电容式移相器的最佳结构是本发明提出的非周期性电
容加载的移相器的结构：可以是电容量不相同的加载电容 2 均匀地排
列在微波传输线 40 上，如图 2 所示，参见实施例 1、2；也可以是电
容量相同的加载电容 2 不均匀地排列在微波传输线 40 上，如图 3 所
示，参见实施例 3、4；也可以是电容量不相同的加载电容 2 不均匀地
排列在微波传输线 40 上，参见实施例 5、6。

本发明中提出的非周期性电容加载的移相器的适用频率范围可
以从数百 MHz 的 UHF 频段，到几十 GHz 的毫米波频段。如果尺寸与制
造工艺允许，该范围还可以扩大。X 波段的移相器的尺寸大概为数毫
米，因介质基片的介电常数、所需的最大移相量、加载电容的结构形
式而异。一般来说，低频段的移相器的尺寸较大，而高频段的移相器
的尺寸较小。