（54）发明名称
液相色谱高压串联凸轮泵

（57）摘要
本发明公开了一种液相色谱高压串联凸轮泵，包括：电机、泵主体、主泉头和副泉头、清洗块、凸轮轴、主圆柱凸轮和副圆柱凸轮、往复送液机构；主泉头和副泉头与柱塞之间设有密封圈，柱塞后座外侧设有压紧弹簧，主圆柱凸轮和副圆柱凸轮均为N相位圆柱凸轮，即主圆柱凸轮和副圆柱凸轮的外圆周上分别均匀设有N组凸轮曲线，N为大于或等于2的整数，每组凸轮曲线包括上升曲线和下降曲线，主圆柱凸轮的一条上升曲线对应的角大小和副圆柱凸轮的一条上升曲线对应的角大小之和为360°/N度。使用中在保持供液量、电机转速以及柱塞运动速度不变的情况下，增加了柱塞的往返运动频率，具有减小液相色谱高压串联凸轮泵工作时的压力脉动的功能。
1. 一种液相色谱高压串联凸轮泵，包括：电机、泵主体、与所述泵主体固定连接的主泵头和副泵头、两块清洗块、凸轮轴、固定连接在所述凸轮轴上的主圆柱凸轮和副圆柱凸轮、两套结构相同的往复送液机构，所述主圆柱凸轮通过一套所述往复送液机构与所述主泵头相连接，所述副圆柱凸轮通过另一套所述往复送液机构与所述副泵头相连接；每套所述往复送液机构包括柱塞推杆、柱塞后座与所述柱塞后座固定连接的柱塞，所述柱塞推杆的一端设有滚轮；所述主泵头和副泵头分别具有泵室及其与所述泵室连通的进液孔和排液孔；所述主泵头的进液孔处设有进液单向阀，所述主泵头的排液孔与所述副泵头的进液孔之间通过供液单向阀和高压输液管相连接，所述主泵头与所述柱塞后座之间设有密封圈，所述副泵头与所述柱塞之间设有密封圈，所述柱塞后座外套设有压缩弹簧，所述压缩弹簧的后端顶着所述柱塞后座的轴肩；其特征在于，

所述主圆柱凸轮和副圆柱凸轮均为N相位圆柱凸轮，即所述主圆柱凸轮和副圆柱凸轮的外圆周上分别均匀设有N组凸轮曲线，N为大于或等于2的整数，每组凸轮曲线包括上升曲线和下降曲线，下降曲线为阿基米德螺旋线，所述主圆柱凸轮的上升曲线的始端对应所述副圆柱凸轮的上升曲线的末端，所述主圆柱凸轮的上升曲线的始端对应所述副圆柱凸轮的上升曲线的始端，所述主圆柱凸轮的一条上升曲线对应的角度大小和所述副圆柱凸轮的一条上升曲线对应的角度之和为360/N度。

2. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，所述凸轮曲线的组数N为2～18的整数。

3. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，所述凸轮曲线还包括过渡曲线。

4. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，所述主圆柱凸轮和副圆柱凸轮的上升曲线分别于所述主圆柱凸轮和副圆柱凸轮的匀速转动转换成所述柱塞的匀速直线运动的阿基米德螺旋线。

5. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，所述主圆柱凸轮和副圆柱凸轮的上升曲线分别于所述主圆柱凸轮和副圆柱凸轮的匀速转动转换成所述柱塞的匀速直线运动的曲线。

6. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，所述主泵头与所述副泵头为分块结构或连体结构。

7. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，一块所述清洗块夹设于所述主泵头和泵主体之间，另一块所述清洗块夹设于所述副泵头和泵主体之间，所述清洗块上设有进液口和出液口。

8. 根据权利要求1所述的液相色谱高压串联凸轮泵，其特征在于，一块所述清洗块嵌设于所述主泵头内，另一块清洗块嵌设于所述副泵头内，所述主泵头与所述内的清洗块上分别设有进液口和出液口，所述副泵头与所述内的清洗块上分别设有进液口和出液口。

9. 根据权利要求1或2或3或4或5或6或7或8所述的液相色谱高压串联凸轮泵，其特征在于，它还包括T形定位套和推杆轴套，所述T形定位套由底座和筒体组成，所述T形定位套中部具有轴向通孔，所述柱塞后座呈阶梯轴状，所述泵主体的内孔与所述T形定位套的底座及推杆轴套通过过盈配合相连接，所述T形定位套的筒体与所述柱塞后座滑动配合，所述柱塞推杆的左段为桶状体，所述柱塞推杆的右段为滚轮连接部，所述桶状体的底
部中心具有一与所述柱塞后座的右端间隙配合的盲孔，所述柱状体的底部内侧面位于所述柱塞推杆的中部并与所述柱塞后座的轴肩相配合，所述压缩弹簧套设于所述T形定位套的筒体上，所述T形定位套的筒体从内部限制所述压缩弹簧的径向位置，所述压缩弹簧的两端分别顶着所述T形定位套的底座和所述柱塞后座的轴肩，所述柱塞推杆的外壁与所述推杆轴套滑动配合，所述柱塞推杆的柱状体套在所述压缩弹簧外，所述柱塞推杆的柱状体从外部限制所述压缩弹簧的径向位置。

10. 根据权利要求9所述的液相色谱高压并联凸轮泵，其特征在于，所述泵主体上设有一向主体长孔，所述推杆轴套上设有一与所述主体长孔相对的轴向轴套长孔，所述柱塞推杆上连接有定位销钉，所述定位销钉的杆部位于所述泵主体的主体长孔和所述推杆轴套的轴套长孔中。
液相色谱高压串联凸轮泵

技术领域
[0001] 本发明涉及一种液相色谱高压串联凸轮泵。

背景技术
[0002] 现有的液相色谱高压串联凸轮泵，如图1所示，包括：电机、泵主体1、与泵主体1固定连接的主泵头2和副泵头3、两块清洗块4、与电机连接的凸轮轴5、固定连接在凸轮轴5上的主圆柱凸轮6和副圆柱凸轮7、两套结构相同的往复送液机构，主圆柱凸轮6通过一套往复送液机构与泵头2相连接，副圆柱凸轮通过另一套往复送液机构与副泵头3相连接。往复送液机构包括柱塞推杆8、柱塞后座9和与柱塞后座9固定连接的柱塞10，柱塞推杆8的一端设有滚轮11；主泵头2和副泵头3分别具有泵室16及与泵室16连通的进液孔和排液孔；主泵头2的进液孔处设有进液单向阀，主泵头2的排液孔与副泵头3的进液孔之间通过供液单向阀和高压输液管相连接，主泵头2与柱塞10之间设有密封圈14，副泵头3与柱塞10之间设有密封圈14，柱塞后座9外套设有压缩弹簧15，压缩弹簧15两端分别顶着泵主体1和柱塞后座9的轴肩；主圆柱凸轮1的外圆周上设有一组凸轮曲线，该组凸轮曲线包括上升曲线和下降曲线，上升曲线和下降曲线均为阿基米德螺旋线，主圆柱凸轮6的上升曲线的始端对应副圆柱凸轮7的上升曲线的末端，主圆柱凸轮6的上升曲线的末端对应副圆柱凸轮7的上升曲线的始端；主圆柱凸轮6的上升曲线对应的角度大小与副圆柱凸轮7的上升曲线对应的角度大小之和为360度。供液时，主圆柱凸轮的上升曲线与相对应的滚轮相配合，副圆柱凸轮的下降曲线与相对应的滚轮相配合，主泵头上的进液单向阀关闭，主泵头与副泵头之间的供液单向阀开启，主圆柱凸轮的旋转运动转变成柱塞的匀速直线运动，主泵头通过供液单向阀和高压输液管供液给副泵头及系统；主泵头供液结束后，主泵头与副泵头之间的供液单向阀关闭，主泵头上的进液单向阀开启，主泵头吸液，副圆柱凸轮的上升曲线与相对应的滚轮相配合，副泵头开始向系统供液，凸轮轴转动一周，主泵头和副泵头交替供液和吸液，完成对系统所需流动相的交替供给。

[0003] 该液相色谱高压串联凸轮泵在低压状态下，主圆柱凸轮和副圆柱凸轮的旋转运动转变成相应柱塞输液时的匀速直线运动，来推动两个柱塞交替工作，则能得到平滑的输出液流。而在高压和超高压的条件下，温度不变，压强会随被压缩液体体积的减小而增加。在高压、超高压的作用下，液体被压缩了的，随着柱塞匀速的推进，泵室内可被压缩的液体体积越来越小，压强会随之变的越来越大。在主泵头和副泵头交替供液的过程中，必然会产生像正弦波一样有规律的脉动。为了减少脉冲，现有技术是通过降低每次冲程的排液量同时提高电机和凸轮轴的转速，从而提高柱塞的往返运动的频率及运动速度来实现的，但是柱塞的运动频率和运动速度的提高会加快密封圈等相关部件的磨损，影响泵的寿命。

[0004] 另外，该液相色谱高压串联凸轮泵在工作过程中，柱塞会产生径向的偏移。原因如下：1、主圆柱凸轮和副圆柱凸轮在用自身的旋转运动推动柱塞偏杆做轴向直线运动的同时，在压力角的作用下，必然会产生一个径向的分力。主圆柱凸轮与柱塞偏杆之间的相对配合运动，是线接触开式空间高运动副。主圆柱凸轮和副圆柱凸轮与柱塞偏杆之间存在柱
面摩擦力，因此，主圆柱凸轮和副圆柱凸轮必然地会将径向的分力传递给柱塞推杆，使其产生径向运动。为减少主圆柱凸轮和副圆柱凸轮给柱塞推杆带来的这一影响，传统设计一般在泵主体上采用圆柱套筒（直线滑动轴承或直线滚动轴承）的方式对柱塞推杆加以控制。这虽然将原先线接触开式空间高运动副转换成了面接触的闭式空间低运动副，但受结构精度过限的限制，主圆柱凸轮和副圆柱凸轮还是无法将一部分圆柱套筒运动副控制不住的均向力传递给柱塞推杆。再由柱塞推杆传递给柱塞后座和柱塞，使柱塞产生平面上位移和圆周上的偏摆。2、弹簧也是柱塞发生不合理的运动轨迹的一个重要因素。弹簧的原始力来自两个方面：首先，为确保柱塞在完成输液功能后按设计要求吸液后回到原点，需克服柱塞与密封圈之间的摩擦力和其他阻力，这就需要在弹簧安装阶段将其做在一定长度的预压缩，保证弹簧有一定的势能永远存在，这个力是人力或机械力，是弹簧的原始力之一；其次，主圆柱凸轮和副圆柱凸轮在推动柱塞作直线运动的同时也将弹簧又压缩了一个同样的长度，使弹簧的势能进一步增加。螺旋圆柱形压缩弹簧在运动中有两个基本动作，一个是沿轴线长度上的变化，一个是沿轴线周方向的微量偏转。但螺旋圆柱形压缩弹簧是一个稳定性特别需要控制的零件，当轴向载荷达到一定值时或当两并紧磨平面的平行度、圆并紧磨平面与轴线的垂直度的偏差达到一定值时，都会使弹簧产生侧向弯曲而失去稳定性。一旦弹簧产生侧向弯曲，两平面的轴向弹性势能就会部分的转变成径向力来释放，使受力对象产生以弹簧受力点为支点的偏移。弹簧，作为机械工业的一个标准件，其精度标准是相当低的。很多国家都没有精度标准。弹簧的很多重要技术指标的加工，还多是靠手工控制。如并紧磨平两端面的平行度、两并紧磨平面与轴线的垂直度等，还多是靠手工控制。一致性很差，技术要求得不到保证。综上所述，柱塞的运动轨迹受柱塞后座特性影响，柱塞后座与柱塞推杆之间加上一个平面轴承以行增加自由度的设计，虽然这类的设计可以实现柱塞后座在被推离中心点后可以顺利回到原点（所谓柱塞快速回位系统），而不管柱塞偏离原点或是回到原点，径向力的去向和来源都是密封圈，都是密封圈在承受着柱塞带给它的额外的径向力，都在减少密封圈的正常使用寿命。

【0005】很显然，一台压力波动大，柱塞运动轨迹得不到很好控制的泵，是不可能给检测系统带来稳定的流量和高的检测精度的。

发明内容

【0006】本发明的目的是提供一种液相色谱高压串联凸轮泵，使用中在保持供流量，电机转速、柱塞直径、以及柱塞运动速度不变的情况下，可以增加柱塞的往返运动频率，进而实现减小液相色谱高压串联凸轮泵工作时的压力脉动的功能。

【0007】为实现上述目的，本发明采用如下设计方案：

【0008】一种液相色谱高压串联凸轮泵，包括：电机、泵主体、与所述泵主体固定连接的主泵头和副泵头、两块清洗块、凸轮轴、固定连接在所述凸轮轴上的主圆柱凸轮和副圆柱凸轮、两套结构相同的往复送液机构，所述主圆柱凸轮通过一套所述往复送液机构与所述主
泵头相连接，所述副圆柱凸轮通过另一套所述往复送液机构与所述副泵头相连接；每套所述往复送液机构包括柱塞推杆、柱塞后座和与所述柱塞后座固定连接的柱塞，所述柱塞推杆的一端设有滚杆；所述主泵头和副泵头分别具有泵室及与所述泵室连通的进液孔和排液孔，所述主泵头的进液孔处设有进液单向阀，所述主泵头的排液孔与所述副泵头的进液孔之间通过单向阀和高压输液管相连接，所述主泵头与所述柱塞之间设有密封圈，所述副泵头与所述柱塞之间设有密封圈，所述柱塞后座外套设有压缩弹簧，所述压缩弹簧的后端顶着所述柱塞后座的轴肩；其特征在于，

[0009] 所述圆柱凸轮和副圆柱凸轮均为N相位圆柱凸轮，即所述圆柱凸轮和副圆柱凸轮的外圆周上分别均匀设有N组凸轮曲线，N为大于或等于2的整数，每组凸轮曲线包括上升曲线和下降曲线，下降曲线为阿基米德螺旋线，所述圆柱凸轮的上升曲线的端点对应所述副圆柱凸轮的上升曲线的端点，所述圆柱凸轮的上升曲线的端点对应所述副圆柱凸轮的上升曲线的端点，所述圆柱凸轮的一条上升曲线对应的圆弧长度大小和所述副圆柱凸轮的一条上升曲线对应的圆弧长度大小之和为360/N度。

[0010] 所述凸轮曲线的组数N为2 ～ 18的整数。

[0011] 每组所述凸轮曲线还包括过渡曲线。

[0012] 所述圆柱凸轮和副圆柱凸轮的上升曲线分别为为将所述圆柱凸轮和副圆柱凸轮的匀速转动转换成所述柱塞的匀速直线运动的阿基米德螺旋线。

[0013] 所述圆柱凸轮和副圆柱凸轮的上升曲线分别为为将所述圆柱凸轮和副圆柱凸轮的匀速转动转换成所述柱塞的匀减速直线运动的曲线。

[0014] 所述主泵头与所述副泵头为分体结构或连体结构。

[0015] 一块所述清洗块夹设于所述主泵头和泵主体之间，另一块所述清洗块夹设于所述副泵头和泵主体之间，所述清洗块上设有进液口和出液口。

[0016] 一块所述清洗块嵌设于所述主泵头内，另一块清洗块嵌设于所述副泵头内，所述主泵头与所述内清洗块上分别设有进液口和出液口，所述副泵头与其内清洗块上分别设有进液口和出液口。

[0017] 它还包括T形定位套和推杆轴套，所述T形定位套由底座和筒体组成，所述T形定位套中部具有轴向通孔，所述柱塞后座呈阶梯轴套，所述泵主体的内孔与所述T形定位套的底座及推杆轴套通过过盈配合相连接，所述T形定位套的筒体与所述柱塞后座转动配合，所述柱塞推杆的左段为储液体，所述柱塞推杆的右段为滚轮连接部，所述储液体的底部中心具有一与所述柱塞后座的右端间隙配合的盲孔，所述储液体的底部内侧面位于所述柱塞推杆的中部并与所述柱塞后座的轴肩相配合，所述压缩弹簧套设于所述T形定位套的筒体上，所述T形定位套的筒体从内部限制所述压缩弹簧的径向位置，所述压缩弹簧的两端分别顶着所述T形定位套的底座和所述柱塞后座的轴肩，所述柱塞推杆的外壁与所述推杆轴套滑动配合，所述柱塞推杆的储液体套在所述压缩弹簧外，所述柱塞推杆的储液体从外部限制所述压缩弹簧的径向位置。

[0018] 所述泵主体上设立有一轴向主体长孔，所述推杆轴套上设立一与所述主体长孔相对的轴向轴套长孔，所述柱塞推杆上连接有定位销钉，所述定位销钉的杆部位于所述泵主体的主体长孔和所述推杆轴套的轴套长孔内。

[0019] 本发明提供的技术方案的有益效果是：
1. 本发明液相色谱高压串联凸轮泵，由于其中主圆柱凸轮和副圆柱凸轮均为N相位圆柱凸轮，即主圆柱凸轮和副圆柱凸轮的外圆周上分别均匀设有N组长凸轮曲线，N为大于或等于2的整数，每组凸轮曲线包括上升曲线和下降曲线，下降曲线为阿基米德螺旋线，主圆柱凸轮的上升曲线的始端对应副圆柱凸轮的上升曲线的末端，主圆柱凸轮的上升曲线的末端对应副圆柱凸轮的上升曲线的始端，主圆柱凸轮的一条上升曲线对应的圆柱大径和副圆柱凸轮的一条上升曲线对应的圆柱大径之和为360/N度。使用中，与现有技术相比，在电机转速与泵每转的排量和柱塞的直径相同的情况下，本发明液相色谱高压串联凸轮泵的每条凸轮曲线的升程相当于现有技术中两条凸轮曲线升程之和N分之一，柱塞的往复运动频率是现有技术的N倍，而柱塞的速度并不改变，泵的压力脉动与现有技术相比明显减小到N分之一。因此，本发明液相色谱高压串联凸轮泵不仅可以减小液相色谱高压串联凸轮泵工作时的压力脉动，而且可以保护密封圈等关键部件的使用寿命。同时，泵室和泵头的泵室的容量与现有技术相比可减少到N分之一。从另一个方面来看，与现有技术相比，在电机转速、柱塞直径和柱塞往复行程一定的前提下，泵的排量与现有技术相比增加了N倍。

2. 本发明液相色谱高压串联凸轮泵，根据需要凸轮曲线的组数N为2～16的整数。

3. 本发明液相色谱高压串联凸轮泵，其中主圆柱凸轮和副圆柱凸轮的上升曲线分别为将主圆柱凸轮和副圆柱凸轮的升程转速转换成柱塞的接减速直线运动的曲线。这样，柱塞在高压状态下向前运动输液时，随着泵室内可被压缩液体内体积的减小而降低柱塞直运动速度，以此减缓和消除压力增高的趋势。从而进一步减小液相色谱高压串联凸轮泵工作时的压力脉动。

4. 本发明液相色谱高压串联凸轮泵，它还包括T形定位套和推杆轴套，T形定位套由底座和筒体组成，T形定位套中部具有轴向通孔，柱塞后座呈阶梯轴状，泵主体的内孔与T形定位套的底座及推杆轴套过盈配合相连接，T形定位套的筒体与柱塞后座用滑动配合以保证柱塞精确的直线运动。柱塞推杆的左端为轴端状，柱塞推杆的右端为滚杆连接部，轴杆的底部中心有一与柱塞后座的右端间隙配合的盲孔，轴杆的底部内侧面向柱塞推杆的中部并与柱塞后座的轴肩相配合，柱塞推杆与柱塞后座的接触部位与柱塞推杆的轴向中部，从而避免柱塞推杆因故偏摆而导致柱塞随其偏摆。压缩弹簧套设于T形定位套的筒体上，T形定位套的筒体从内部限制压缩弹簧的径向位置，压缩弹簧的两端分别扭着T形定位套的底座和柱塞后座的轴肩，柱塞推杆的外壁与推杆轴套滑动配合以保证柱塞推杆的直径运动，柱塞推杆的轴杆体套在压缩弹簧外，柱塞推杆的轴杆体从外部限制压缩弹簧的径向位置，确保弹簧的输出方向始终保持在轴向方向，保证了柱塞不会因为弹簧而产生径向偏移，同时由于对柱塞后座和柱塞推杆的控制，确保柱塞不产生径向偏移，从而可以提高密封圈的使用寿命以及泵的使用寿命。

5. 本发明液相色谱高压串联凸轮泵，其中泵主体上设有一轴向主体长杆，推杆轴套上设有一与主体长杆相对的轴向轴套长杆，柱塞推杆上连接有定位销钉，定位销钉的杆部位于泵主体的主体长孔和推杆轴套的轴套长孔中以限制柱塞推杆的转动，保护柱塞推杆仅作直线运动。
附图说明
[0025] 图 1 是现有技术中液相色谱高压串联凸轮泵结构示意图；
[0026] 图 2 是本发明液相色谱高压串联凸轮泵结构示意图；
[0027] 图 3 是本发明液相色谱高压串联凸轮泵结构示意图；
[0028] 图 4 是本发明液相色谱高压串联凸轮泵结构示意图；
[0029] 图 5 是本发明中主泵头和副泵头连接结构实施例一示意图（分体结构）；
[0030] 图 6 是本发明中主泵头和副泵头连接结构实施例二示意图（分体结构）；
[0031] 图 7 是本发明中主泵头和副泵头连接结构实施例三示意图（连体结构）；
[0032] 图 8 是本发明中主泵头和副泵头连接结构实施例四示意图（连体结构）。
[0033] 附图标记：1-泵主体，2-主泵头，3-副泵头，4-清洗块，5-凸轮轴，6-主圆柱凸轮，
7-副圆柱凸轮，8-柱塞推杆，9-柱塞后座，10-柱塞，11-滚轮，12-主泵头的进液孔，13-主
泵头的排液孔，14-密封圈，15-压缩弹簧，16-泵室，17-进液单向阀，18-副泵头的进液孔，
19-高压液单向阀，20-高压液管，21-进液口，22-出液口，23-形定位套，24-推杆轴套，
25-底座，26-筒体，27-桶状体，28-盲孔，29-内侧面，30-主体长孔，31-轴套长孔，32-定位
销钉，33-轴承。

具体实施方式
[0034] 为使本发明的目的、技术方案和优点更加清楚，下面将结合附图对本发明实施方
式作进一步地详细描述。
[0035] 如图 2、图 3、图 4 所示，本发明液相色谱高压串联凸轮泵，包括：电机、泵主体 1、与
泵主体 1 固定连接的主泵头 2 和副泵头 3，两块清洗块 4，凸轮轴 5，固定连接在凸轮轴 5 上
的主圆柱凸轮 6 和副圆柱凸轮 7，两套结构相同的往复送液机构，凸轮轴 5 通过轴承 33 安装
在泵主体 1 上，主圆柱凸轮 6 通过一套往复送液机构与主泵头 2 相连接，副圆柱凸轮 7 通过
另一套往复送液机构与副泵头 3 相连接，每套往复送液机构包括柱塞推杆 8、柱塞后座 9 和
与柱塞后座 9 固定连接的柱塞 10，柱塞推杆 8 的一端设有滚轮 11；主泵头 2 和副泵头 3 分
别具有泵室 16 及与泵室 16 连通的进液孔和排液孔，主泵头的进液孔 12 处设有进液单向阀
17，主泵头的排液孔 13 与副泵头的进液孔 18 之间通过高压液单向阀 19 和高压液管 20 相
连接，主泵头 2 与柱塞 10 之间设有密封圈 14，副泵头 3 与柱塞 10 之间设有密封圈 14，柱塞
后座 9 外套设有压缩弹簧 15，压缩弹簧 15 的后端顶着柱塞后座 9 的轴肩；
[0036] 主圆柱凸轮 6 和副圆柱凸轮 7 均为四相位圆柱凸轮，即主圆柱凸轮 6 和副圆柱凸
轮 7 的外圆周上分别均匀设有 4 组凸轮曲线，每组凸轮曲线包括上升曲线和下降曲线，下降
曲线为阿基米德螺旋线，主圆柱凸轮 6 的上升曲线的端点对应副圆柱凸轮 7 的上升曲线的
末端，主圆柱凸轮 6 的上升曲线的末端对应副圆柱凸轮 7 的上升曲线的端点，主圆柱凸轮 6
的一条上升曲线对应的相位与副圆柱凸轮 7 的一条上升曲线对应的相位大小之和为 90
度。
[0037] 在另一实施例中，其中主圆柱凸轮 6 和副圆柱凸轮 7 均为两相位圆柱凸轮，即主圆
柱凸轮 6 和副圆柱凸轮 7 的外圆周上分别均匀设有 2 组凸轮曲线，主圆柱凸轮 6 的一条上
升曲线对应的相位与副圆柱凸轮 7 的一条上升曲线对应的相位大小之和为 180
度。
[0038] 在又一实施例中，其中主圆柱凸轮 6 和副圆柱凸轮 7 均为十八相位圆柱凸轮，即主
圆柱凸轮 6 和副圆柱凸轮 7 的外圆周上分别均匀设有 18 组凸轮曲线，主圆柱凸轮 6 的一条上升曲线对应的凸度大小和副圆柱凸轮 7 的一条上升曲线对应的凸度大小之和为 20 度。

[0039] 主圆柱凸轮 6 和副圆柱凸轮 7 的上升曲线分别为将主圆柱凸轮 6 和副圆柱凸轮 7 的匀速转动转换成柱塞 10 的匀速直线运动的曲线。

[0040] 一块清洗块 4 固设于主泵头 2 内，另一块清洗块 4 固设于副泵头 3 内，主泵头 2 与其内的清洗块 4 上分别设有进液口 21 和出液口 22 用于清洗柱塞 4，副泵头 3 与其内的清洗块 4 上分别设有进液口 21 和出液口 22 用于清洗柱塞 4。

[0041] 每组凸轮曲线还包括过渡曲线。

[0042] 它还包括 T 形定位套 23 和推杆轴套 24，T 形定位套 23 由底座 25 和简体 26 组成，T 形定位套 23 中部具有轴向通孔，柱塞后座 9 呈阶梯轴状，泉主体 1 的内孔与 T 形定位套的底座 25 及推杆轴套 24 通过过盈配合相连接，T 形定位套的筒体 26 与柱塞后座 9 滑动配合，柱塞推杆 8 的左段为桶状体 27，柱塞推杆 8 的右段为滚轮连接部，桶状体 27 的底部中心具有一与柱塞后座的右端间隙配合的盲孔 28，桶状体的底部内侧面 29 位于柱塞推杆 8 的中部并与柱塞后座 9 的轴肩相配合，压缩弹簧 15 套设于 T 形定位套的筒体 26 上，T 形定位套的筒体 26 从内部限制压缩弹簧 15 的径向位置，压缩弹簧 15 的两端分别顶着 T 形定位套的底座 25 和柱塞后座 9 的轴肩，柱塞推杆 8 的外壁与推杆轴套 24 滑动配合，柱塞推杆的桶状体 27 套在压缩弹簧 15 外，柱塞推杆的桶状体从外部限制压缩弹簧 15 的径向位置。

[0043] 泉主体 1 上设有一轴向主体长孔 30，推杆轴套 24 上设有一与主体长孔 30 相对的轴向轴套长孔 31，柱塞推杆 8 上连接有定位销钉 32，定位销钉 32 的杆部位于泉主体的主体长孔 31 和推杆轴套的轴套长孔 31 中。

[0044] 作为本发明另一实施例，其中，主圆柱凸轮 6 和副圆柱凸轮 7 的上升曲线分别为将主圆柱凸轮 6 和副圆柱凸轮 7 的匀速转动转换成柱塞 10 的匀速直线运动的阿基米德螺旋线。

[0045] 作为本发明再一实施例，其中，一块清洗块 4 夹设于主泵头 2 和泉主体 1 之间，另一块清洗块 4 夹设于副泵头 3 和泉主体 1 之间，清洗块 4 上设有进液口和出液口。

[0046] 图 5 为本发明中主泵头 2 与副泵头 3 连接结构实施例一，主泵头 2 与副泵头 3 为分体结构，进液单向阀 17 连接在主泵头的进液孔 12 上，供液单向阀 19 连接在主泵头的排液孔 13 上。

[0047] 图 6 为本发明中主泵头 2 与副泵头 3 连接结构实施例二，主泵头 2 与副泵头 3 为分体结构，进液单向阀 17 连接在主泵头的进液孔 12 上，供液单向阀 19 连接在副泵头的进液孔 18 上。

[0048] 图 7 为本发明中主泵头 2 与副泵头 3 连接结构实施例三，主泵头 2 与副泵头 3 为连体结构，进液单向阀 17 连接在主泵头的进液孔 12 上，供液单向阀 19 连接在主泵头的排液孔 13 上。

[0049] 图 8 为本发明中主泵头 2 与副泵头 3 连接结构实施例四，主泵头 2 与副泵头 3 为连体结构，进液单向阀 17 连接在主泵头的进液孔 12 上，供液单向阀 19 连接在主泵头的排液孔 13 上。

[0050] 以上所述仅为本发明的较佳实施例，并不以限制本发明，凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 1