(54) **Title:** INTERDIGITAL ELECTRODE STRUCTURE AND MANUFACTURING METHOD THEREOF, AND SURFACE ACOUSTIC WAVE DEVICE HAVING STRUCTURE

(54) **发明名称:** 叉指电极结构及其制造方法和具有该结构的声表面波器件

(57) **Abstract:** Disclosed is an interdigital electrode structure. The interdigital electrode structure is arranged on a substrate, wherein the tail ends of interdigital electrodes in the interdigital electrode structure are subjected to ion implantation to form doped portions. Further disclosed is a surface acoustic wave device, which comprises the interdigital electrode structure. The surface acoustic wave device is a filter or a resonator. In addition, further disclosed is a method for manufacturing the interdigital electrode structure. The method comprises: preparing a substrate with a piezoelectric layer; manufacturing interdigital electrodes on the substrate; and performing ion implantation on the interdigital electrodes to form doped portions at the tail ends of the interdigital electrodes. By performing ion implantation on the tail ends of the interdigital electrodes to form the doped portions, the gradient change of an electric field at the tail end of each electrode is alleviated without performing apodized weighting, adjusting the thickness of the interdigital electrodes, etc., and parasitic oscillation is suppressed. Therefore, the performance of the surface acoustic wave device is improved.

根据细则4.17的声明：
— 关于发明人身份（细则4.17(i)）
— 关于申请人有权申请并授予专利（细则4.17(ii)）
— 关于申请人有权要求在先申请的优先权（细则4.17(iii)）
— 发明人资格（细则4.17(iv)）

本国际公布：
— 包括国际检索报告（条约第21条(3)）。

(57) 摘要：公开了一种叉指电极结构，叉指电极结构被设置在衬底上，其中叉指电极结构中的叉指电极的末端被离子注入以形成掺杂部。还公开了一种声表面波器件，其包括上述叉指电极结构，声表面波器件为滤波器或谐振器。另外，还公开了一种用于制造叉指电极结构的方法，包括制备具有压电层的衬底；在衬底上制作叉指电极；以及对叉指电极进行离子注入以在叉指电极的末端形成掺杂部。通过在叉指电极末端进行离子注入以形成掺杂部，在不变迹加权，不调整叉指电极厚度等前提下改善了电极末端的电场梯度变化，抑制寄生振荡，最终提升声表面波器件的性能。
叉指电极结构及其制造方法和具有该结构的声表面波器件

技术领域

本申请实施例涉及通信器件领域，具体涉及一种叉指电极结构及其制造方法和具有该结构的声表面波器件。

背景技术

近年来，移动通信的高速发展及对 SAW 器件的需求量越来越大。SAW 器件是无线、纯无源器件，具有插入损耗低、带外抑制高、镜像衰减高、承载功率高、成本低以及小型化或微型化等优势。随着半导体工艺不断改进，SAW 器件的工作频率从 10MHz 延伸到 3GHz 的范围。使得 SAW 在车辆交通管理、生物医药、工业自动化、智能电网、军火危险品的清点、环境检测等领域具有广泛应用。

SAW 器件采用半导体集成电路的工艺，在压电材料的基片上，蒸镀一定厚度的金属膜，结合光刻工艺并采用设计好的掩膜图案，使接收与发射端 IDT 结构沉积在基片上。其工作原理是：发射 IDT 可以通过逆压电效应，将电信号转换成声信号，而输出 IDT 再通过压电效应将接收到的声信号变成电信号将之输出，整个工作的过程也就是声电转换的过程。然而，在叉指电极的边缘位置往往是电场梯度变化最为强烈的地方，变化强烈的地方可等效为一个独立的声波激发源，声波激发源可引发寄生振荡。

现有技术中的叉指电极结构若未作优化处理难以解决电场梯度变化引发的寄生振荡；为改善插入损耗而设计出带浮动电极的叉指电极结构；或变迹加权调节不同叉指间压电材料对声波的激励强度，依加权函数对叉指精确加权以改善器件性能（如高 Q 值、频率响应性能、通带平坦、高带外抑制、低插入损耗等）；或进一步采用更为复杂的变迹加权叉指结构，使用 Cu、Pt 和 Au 等高比重金属作为电极的某一

部分，达到改变声波传递模式的作用来减少不必要的谐振；又或者采
用带 piston 结构的叉指电极结构，电极末端的 piston 同样可抑制 saw 的寄生振荡，材料一般为金属或者 PI，凸出的 piston 会相对影响电极厚度，对器件的中心频率及带宽具有一定影响，以此来减少谐振振，提高谐振器性能；还有部分使用高质量密度（如 Au 和 Ag 等）的材料制作叉指电极，也有一些在常用的 Al 电极表面形成 Al 氧化物，从而增加叉指电极的质量（相对于常用的 Al 或 AlCu 合金），提升 Saw 器件设计自由度，提升工艺兼容性（削弱制程中叉指电极宽度变化而造成频率的明显变化），提升反射层的反射比（抑制声表面波能量泄露或转化为纵波，也可在设计上减少反射层数量而减少器件尺寸），以达到提高谐振器性能的目的。

现有技术中带 piston 结构的叉指电极结构插入损耗低，通带内波形平坦，频率响应较好。但是制作 Piston 结构对光刻工艺和蒸镀工艺要求很高，需要 0.18 μm 的光刻工艺。

发明内容

针对现有技术中的以上问题，本申请提出了一种叉指电极结构及其制造方法和具有该结构的声表面波器件。

根据本发明的一方面，提出了一种叉指电极结构，该叉指电极结构被设置在衬底上，其中叉指电极结构中的叉指电极的末端被离子注入以形成掺杂部。在叉指电极末端的离子注入形成掺杂部可以改善电极末端的电场梯度变化，抑制声波激发源引发的寄生振荡，可用于制作高性能的声表面波器件。

在一些实施例中，叉指电极包括电极本体以及覆盖在电极本体上的保护层，其中位于末端的电极本体和/或保护层被离子注入。在保护层上进行掺杂，可以达到和电极上掺杂相同的效果，还可以根据不同的产品要求对电极本体或者保护层进行离子注入，以达到更加细致的优化效果。

在一些实施例中，保护层为钝化层和/或温度补偿层。在钝化层和/或温度补偿层上进行掺杂，可以具有和电极上掺杂相同的效果，也可以避免对电极性能的影响。
在一些实施例中，离子注入中的离子为金属离子，选择金属离子的注入，可以避免电极的导电性受到严重削弱。

在一些实施例中，金属离子的质量大于电极本体的金属离子。选择质量更小的金属离子进行离子注入可以增加叉指电极的质量，提高声表面波器件的设计自由度和工艺兼容性，削弱了制程中叉指电极宽度变化造成的频率变化以达到提高声表面波器件性能的目的。

在一些实施例中，叉指电极结构包括多层叉指电极，并且多层叉指电极中的至少一层被离子注入形成掺杂层。凭借对多层叉指电极结构的不同金属层的掺杂，可以获得更加细致的优化效果。

在一些实施例中，叉指电极的边缘被离子注入以形成掺杂部。叉指电极边缘的电场梯度变化最为强烈，在该部位形成掺杂层可以有效地改善寄生振荡，同时也可弥补制程过程中因刻蚀或蒸镀等工艺引发的电极边缘缺陷所带来的 Q 值损耗。

根据本发明的第二方面，提出了一种声表面波器件，其包括上述的叉指电极结构，声表面波器件为滤波器或谐振器。包含上述掺杂的叉指电极结构的滤波器或谐振器可以抑制寄生振荡，使其具有高 Q 值、通带平坦和高带外抑制的性能。

根据本发明的第三方面，提出了一种用于制造叉指电极结构的方法，包括以下步骤：

1. S1，制备具有压电层的衬底；
2. S2，在衬底上制作叉指电极；以及
3. S3，对叉指电极进行离子注入以在叉指电极的末端形成掺杂部。对叉指电极进行离子注入以在其末端形成掺杂部可以改善寄生振荡，能够有效提升声表面波器件的性能。

在一些实施例中，步骤 S3 具体包括以下子步骤：

1. S31，在衬底及叉指电极上制作掩模，并且露出需要被离子注入的区域；
2. S32，对叉指电极进行离子注入；
3. S33，去除掩模；以及
4. S34，制作覆盖叉指电极的保护层。
在一些实施例中，步骤 S3 具体包括以下子步骤：
S31'，在衬底及又指电极上制作保护层；
S32'，在保护层上制作掩膜，并且露出需要被离子注入的区域；
S33'，对保护层进行离子注入；以及
S34'，去除掩膜。

上述两种工艺可在电极或保护层上进行离子注入，根据器件的要求进行不同工艺的离子注入，可以获得更加细致的优化效果。

在一些实施例中，步骤 S3 还包括以下步骤：
S35，对保护层上制作另一掩膜并且露出需要被离子注入的区域；
S36，对保护层进行离子注入；
S37，去除另一掩膜。

利用此方法可以实现对保护层上掺杂以及电极上部分或全部掺杂的工艺，具体根据需要的器件性能进行注人工艺的选择，以达到更好的匹配效果。

在一些实施例中，需要被离子注入的区域包括又指电极和/或保护层的末端区域。对又指电极的末端区域进行离子注入可以改善电极末端声波激发源引发的寄生振荡，以提高器件的性能。

在一些实施例中，需要被离子注入的区域还包括又指电极和/或保护层的边缘区域。对电极边缘进行离子注入，同样可以达到抑制寄生振荡的效果，同时也能弥补电极边缘缺陷所带来的 Q 值损耗。

在一些实施例中，在步骤 S2 和 S3 之间还包括以下步骤：

利用氨气离子对又指电极的末端进行轰击以实现表面清洗。通过轰击可以清除致密氧化膜，避免离子注入向基体表面扩散而导致离子注入失败。

在一些实施例中，轰击的时间被控制在 3 分钟以内。轰击时间的设置可以避免过长的轰击时间导致电极表面粗糙。

根据本发明的第四方面，提出了一种利用上述的方法制作而成的声表面波器件，器件包括滤波器或谐振器。利用以上方法制作的声表面波器件可以抑制寄生振荡，提高 Q 值、频率响应性能提高，具有通带平坦、高带外抑制、低插入损耗、器件设计自由度高和工艺兼容性。
强的优点。

本发明是基于提升声表面波器件（例如滤波器或谐振器）的叉指电极的掺杂方法和结构，通过在电极的不同区域或不同层的不同区域进行掺杂，达到更加细致的优化效果，并通过精确的控制区域和浓度，来实现精准的效果。在电极保护层上进行掺杂亦可达到和电极上掺杂的相同效果，还可避免对电极的影响。采用离子注入的方式，无需改变叉指电极的厚度，即可获得改善电极末端的电场梯度变化，抑制寄生振荡，提升声表面波器件性能的效果。

附图说明

包括附图以提供对实施例的进一步理解并且附图被并入本说明书并且构成本说明书的一部分。附图图示了实施例并且与描述一起用于解释本发明的原理。将容易认识到其它实施例和实施例的很多预期优点，因为通过引用以下详细描述，它们被更好地理解。附图的元件不一定是相互按照比例的。同样的附图标记指代对应的类似部件。

图1示出了根据本发明的一个实施例的叉指电极的俯视图；图2示出了根据本发明的一个具体的实施例的叉指电极的剖面图；图3示出了根据本发明的另一个具体的实施例的叉指电极的俯视图；图4a-g示出了根据本发明的一个实施例的叉指电极结构的制作工艺流程图；图5a-h示出了根据本发明的另一个实施例的叉指电极结构的制作工艺流程图。

具体实施方式

下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是，此处所描述的具体实施例仅仅用于解释相关发明，而非对该发明的限定。另外还需要说明的是，为了便于描述，附图中仅示出了与有关发明相关的部分。
需要说明的是，在不冲突的情况下，本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。

图1示出了根据本发明的一个实施例的叉指电极的俯视图，图2示出了根据本发明的一个具体的实施例的叉指电极的剖面图，其中图2为根据图1中的虚线方向的剖面图。如图1和图2所示，叉指电极102设置于衬底101上，叉指电极102的表面形成有保护层103，其中，叉指电极102的末端被离子注入形成掺杂部104。利用离子注入的方式无需改变叉指电极102的厚度，抑制了叉指电极102的边缘位置因电场梯度变化而引的寄生振荡，可用于制作高性能的SAW器件，使其具有高Q值、通带平坦和高带外抑制的性能。

在具体的实施例中，掺杂部104的形成具体是通过高能量的离子注入来获得稳态或亚稳态合金层，注入的原子进入位错附近或固溶体产生固溶强化。其具有以下明显的特点：第一，溶质原子是通过高能量撞进金属晶格内，是一种非热平衡过程，不受热力学平衡条件的限制，原则上任何元素都可以注入任何基体金属材料中；第二，离子注入可以在室温高真空下进行，不会引起零件的受热变形，极少发生氧化，能保持尺寸的精度；第三，注入到合金层中的原子分布可用理论计算得到，注入元素的种类、能量和剂量都可以选择，表面合金不受扩散和浓度的热力学限制；第四，注入层与基体材料之间没有清晰的界面，与基体结合牢固，不存在剥落或破裂问题；第五，离子注可通过控制电参数来精确控制注入离子的浓度分布。

在具体的实施例中，离子注入的离子为金属离子，金属离子的质量大于叉指电极102本体的金属离子，利用金属离子进行离子注入可以避免叉指电极102的导电性能受到严重削弱。利用质量更大的金属离子可以增加叉指电极102的质量，可以提升SAW器件的设计自由度，提升工艺兼容性，提升反射层的反射比，进而达到提高谐振器性能的目的。

在具体的实施例中，保护层103可以为钝化层、温度补偿层或者调频层，具体的材质可以为SiO₂、BSG、Si₃N₄或AlN。离子注入时亦
可以在保护层 103 上进行掺杂，可以获得和叉指电极 102 上掺杂相同的效果，也避免了对叉指电极 102 的影响。另外，应当认识到，在不同金属层构成的多层叉指电极中，可以根据需要在不同金属层的不同区域进行掺杂，以达到更加细致的优化效果。具体的掺杂区域可以根据产品的需要进行相应部位的离子注入。

在另一个具体的实施例中，图 3 示出的根据本发明的另一个具体的实施例的叉指电极的俯视图，如图 3 所示，还可以在叉指电极 102 边缘进行离子注入，以此来弥补因制程过程中刻蚀或镀金等工艺所引发的叉指电极 102 边缘缺陷的问题，且同样能够获得本发明中抑制寄生振荡的效果。

将上述叉指电极结构应用于声表面波器件中，例如谐振器或滤波器，可以实现抑制寄生振荡的效果，获得高 Q 值、通带平坦和高带外抑制的声表面波器件。

图 4a-g 显出了根据本发明的一个实施例的声表面波谐振器的制作工艺流程图。首先如图 4a 和 4b 所示，在衬底 401 上制作叉指电极 402，其中，衬底 401 具有一定的压电特性，可以选择 LiTaO₃ 或 LiNbO₃ 等具有一定压电特性的材料；叉指电极 402 可以为 Ti、Al、AlCu 以及 Au 等单层或复合金属层。如图 4c，在不需要离子注入的区域制作掩膜 405，保护该区域不被离子注入，其中，掩膜 405 的材料可选用光刻胶，便于在离子注入后进行去除。

继续参考图 4d 和 4e 所示，在叉指电极 402 末端进行离子注入以形成掺杂部 404，具体的，注入的离子选择为金属离子，可以避免电极导电性受到严重削弱。还可以选择质量更大的金属离子进行离子注入，可以增加叉指电极 402 的质量，提升 SAW 器件的设计自由度，提升工艺兼容性，提升反射层的反射比，进而达到提高谐振器性能的目的。掺杂部 404 的形成不会改变叉指电极 402 的厚度，且能够改善电极末端的声波激发源所引发的寄生振荡，进而提高谐振器的性能。

如图 4f 和 4g 所示，将掩膜 405 去除，并在叉指电极 402 表面形成保护层 403。其中，保护层 403 具体可以为钝化层、温度补偿层或者调频层，具体的材质可以为 SiO₂、BSG、Si₃N₄ 或 AlN。
图 5a-h 示出了根据本发明的另一个实施例的声表面波谐振器的制作工艺流程图。首先如图 5a 和 5b 所示，与上述图 4 中的工艺类似，在衬底 501 上制作叉指电极 502，衬底 501 可以选择 LiTaO₃ 或 LiNbO₃ 等具有一定压电特性的材料；叉指电极 502 可以为 Ti、Al、AlCu 和 Au 等单层或复合金属层。如图 5c，区别于图 4c 的工艺，先在叉指电极 502 上形成保护层 503，保护层 503 具体可以为氮化层、温度补偿层或者调频层，具体的材料可以为 SiO₂、BSG、Si₃N₄ 或 AlN。如图 5d，在保护层 503 的表面不需要离子注入的区域制作掩膜 505，以保护该区域不被离子注入，其中，掩膜 505 的材料同样可选用光刻胶，方便于在离子注入后进行去除。

继续参考图 5e 和 5f 所示，在保护层 503 表面进行离子注入以形成掺杂部 504，同样的，为避免电极导电性受到严重削弱，注入的离子选择为金属离子。还可以选择质量更大的金属离子进行离子注入，可以增加叉指电极 502 的质量，提升 SAW 器件的设计自由度，提升工艺兼容性，提升反射层的反射比，进而达到提高谐振器性能的目的。掺杂部 504 的形成不会改变叉指电极 502 的厚度，且能够改善电极末端的电场梯度变化所引发的寄生振荡，进而提高谐振器的性能。

在具体的实施例中，进行离子注入形成掺杂部 504 后去除掩膜 505。可以将保护层 503 和叉指电极 502 全部进行离子注入，例如图 5f 所示；或者单独对保护层 503 进行离子注入，例如图 5g 所示；又或者对保护层 503 的全部以及叉指电极 502 的局部进行离子注入，例如图 5h 所示。可以根据不同的需要进行离子注入区域的选择，达到更加细致的优化效果。离子注入区域的控制可以根据调节功率、温度和离子注入的量进行控制，注入离子的浓度分布可通过控制电参量来精确控制，以满足上述工艺中的离子注入区域的精准控制。

在具体的实施例中，上述两个工艺中，均可以通过调节功率、温度和离子注入的量来控制叉指电极的末端改性。例如，叉指电极为铝（或其他高化学活泼性金属），金属表面极易氧化生成致密氧化膜，致密氧化膜会阻止注入离子向铝基体表面扩散，导致注入失败。因此，在离子注入前可增加一道表面清洗工艺，如采用 PVD 工艺，利用一定
功率下的 Ar+对叉指电极 402 末端轰击一段时间以清除致密氧化膜，过长的清洗时间会导致电极表面粗糙，优选的，清洗时间一般控制在 3min 内。

利用上述工艺制作的声表面波器件可以为滤波器或谐振器，通过在电极的不同区域掺杂，达到现有技术中复杂变迹加权叉指结构或 piston 结构的等效效果，且本发明中可以更加精确地控制掺杂的区域和浓度，实现精准的效果，甚至也可以根据产品设计的需要在叉指电极上掺杂注入的区域形成 piston 模式之后，在叉指电极的保护层上还可以再次进行掺杂，以达到更好的匹配效果。

以上描述了本申请的具体实施方式，但本申请的保护范围并不局限于此，任何熟悉本技术领域技术人员在本申请揭露的技术范围内，可以轻易想到变化或替换，都应涵盖在本申请的保护范围之内。因此，本申请的保护范围应以所述权利要求的保护范围为准。

在本申请的描述中，需要理解的是，术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系，仅是为了便于描述本申请和简化描述，而不是指示或暗示所指的装置或元件必须具有特定的方位，或以特定的方位构造和操作，因此不能理解为对本申请的限制。措词“包括”并不排除在权利要求未列出的元件或步骤的存在。元件前面的措词“一”或“一个”并不排除多个这样的元件的存在。在相互不同从属权利要求中记载某些措施的简单事实不表明这些措施的组合不能被用于改进。在权利要求中的任何参考符号不应当被解释为限制范围。
权利要求书

1、一种叉指电极结构，所述叉指电极结构被设置在衬底上，其中，所述叉指电极结构中的叉指电极的末端被离子注入以形成掺杂部。

2、根据权利要求1所述的叉指电极结构，其中，所述叉指电极包括电极本体以及覆盖在所述电极本体上的保护层，其中位于末端的所述电极本体和/或所述保护层被离子注入。

3、根据权利要求2所述的叉指电极结构，其中，所述保护层为钝化层和/或温度补偿层。

4、根据权利要求2所述的叉指电极结构，其中，所述离子注入中的离子为金属离子。

5、根据权利要求4所述的叉指电极结构，其中，所述金属离子的质量大于所述电极本体的金属离子。

6、根据权利要求1所述的叉指电极结构，其中，所述叉指电极结构包括多层叉指电极，并且所述多层叉指电极中的至少一层被离子注入形成所述掺杂部。

7、根据权利要求1-6中任一项所述的叉指电极结构，其中，所述叉指电极的边缘被离子注入以形成掺杂部。

8、一种声表面波器件，其包括权利要求1-7中任一项所述的叉指电极结构，其中，所述声表面波器件为滤波器或谐振器。

9、一种用于制造叉指电极结构的方法，其中，包括以下步骤：
 S1，制备具有压电层的衬底；
 S2，在所述衬底上制作叉指电极；以及
 S3，对所述叉指电极进行离子注入以在所述叉指电极的末端形成掺杂部。

10、根据权利要求9所述的方法，其中，步骤S3具体包括以下子
步骤：

S31，在所述衬底及所述叉指电极上制作掩膜，并且露出需要被离子注入的区域；

S32，对所述叉指电极进行离子注入；

S33，去除掩膜；以及

S34，制作覆盖所述叉指电极的保护层。

11、根据权利要求 9 所述的方法，其中，步骤 S3 具体包括以下子步骤：

S31’，在所述衬底及所述叉指电极上制作保护层；

S32’，在所述保护层上制作掩膜，并且露出需要被离子注入的区域；

S33’，对所述保护层进行离子注入；以及

S34’，去除掩膜。

12、根据权利要求 10 所述的方法，其中，所述步骤 S3 还包括以下步骤：

S35，在所述保护层上制作另一掩膜, 并且露出需要被离子注入的区域；

S36，对所述保护层进行离子注入；

S37，去除所述另一掩膜。

13、根据权利要求 10-12 中任一项所述的方法，其中，所述需要被离子注入的区域包括所述叉指电极和/或保护层的末端区域。

14、根据权利要求 10-12 中任一项所述的方法，其中，所述需要被离子注入的区域包括所述叉指电极和/或保护层的边缘区域。

15、根据权利要求 9 所述的方法，其中，在所述步骤 S2 和 S3 之间还包括以下步骤：

利用氩气离子对所述叉指电极的末端进行轰击以实现表面清洗。
16. 根据权利要求 15 所述的方法，其中，所述轰击的时间被控制在 3 分钟以内。

17. 一种利用权利要求 9-16 中任一项所述的方法制作而成的声表面波器件，其中，所述器件包括滤波器或谐振器。
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO. PCT/CN2020/107537

A. CLASSIFICATION OF SUBJECT MATTER

H03H 9/02(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H03H9/0-11 H01L41/0-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPTXT; DWP; USTXT; VEN; WOTXT; CNABS; CNXT; CNKI; 展子, 注入, 交叉, 压电, 电极, 末端, 实施, implant, interdigital, piezoelectric, electrode, end

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 211127745 U (CETC DEQING HUAYING ELECTRONICS CO., LTD.) 28 July 2020 (2020-07-28) description, paragraphs 36-66, and figures 2-9</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>CN 107017862 A (SHI, Yixuan et al.) 04 August 2017 (2017-08-04) description paragraphs 61-153, figures 3A-4</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>WO 2019201526 A1 (REF360 EUROPE GMBH) 24 October 2019 (2019-10-24) claims 1-14, description page 12 line 10- page 16 line 4, figures 2-4</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001345667 A (KYOCERA CORPORATION) 14 December 2001 (2001-12-14) entire document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>CN 107124153 A (WISOL CO., LTD.) 01 September 2017 (2017-09-01) entire document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>CN 1269610 A (MURATA MANUFACTURING CO., LTD.) 11 October 2000 (2000-10-11) entire document</td>
<td>1-17</td>
</tr>
</tbody>
</table>

※Further documents are listed in the continuation of Box C. ❑See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search: 31 March 2021

Date of mailing of the international search report: 23 April 2021

Name and mailing address of the ISA/CN

China National Intellectual Property Administration (ISA/CN)
No. 6, Xitucheng Road, Jimenqiao, Haidian District, Beijing 100088
China

Facsimile No. (86-10)62019451

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date (day/month/year)</th>
<th>Patent family member(s)</th>
<th>Publication date (day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 211127745 U</td>
<td>28 July 2020</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 107017862 A</td>
<td>04 August 2017</td>
<td>CN 107017862 B</td>
<td>19 May 2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9906206 B2</td>
<td>27 February 2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017366165 A1</td>
<td>21 December 2017</td>
</tr>
<tr>
<td>WO 2019201526 A1</td>
<td>24 October 2019</td>
<td>DE 102018109346 A1</td>
<td>24 October 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 111989862 A</td>
<td>24 November 2020</td>
</tr>
<tr>
<td>JP 2001345667 A</td>
<td>14 December 2001</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>CN 107124153 A</td>
<td>01 September 2017</td>
<td>US 10382008 B2</td>
<td>13 August 2019</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017244378 A1</td>
<td>24 August 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20170099567 A</td>
<td>01 September 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5221616 B2</td>
<td>26 June 2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102010046087 A1</td>
<td>04 August 2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011101350 A</td>
<td>19 May 2011</td>
</tr>
<tr>
<td>CN 1269610 A</td>
<td>11 October 2000</td>
<td>US 6313563 B1</td>
<td>06 November 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20000077005 A</td>
<td>26 December 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000295071 A</td>
<td>20 October 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1043835 A2</td>
<td>11 October 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 111002 A1</td>
<td>30 May 2005</td>
</tr>
</tbody>
</table>
A. 主题的分类
H03I 9/02 (2006. 01) i

按照国际专利分类（IPC）或者同时按照国家分类和IPC两种分类

B. 检索领域
检索的最低限度文献（标明分类系统和分类号）
H03H9/—；H01L41/—

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库（数据表的名称，和使用的检索词（如使用））
EPTXT; DWP; LUSTXT; VEN; WO TXT; CNABS; CNTXT; CNKI: 离子，注入，叉指，压电，电极，末端，ion, implant, interdigital, piezoelectric, electrode, end

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 211127745 U（中电科技德清华星电子有限公司）2020年7月28日（2020 - 07 - 28）</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>CN 107017862 A（石以玷等）2017年8月4日（2017 - 08 - 04）</td>
<td>1-17</td>
</tr>
<tr>
<td>X</td>
<td>WO 2019201526 A1（RF360 EUROPE GMBH）2019年10月24日（2019 - 10 - 24）</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001345667 A（KYOCERA CORP）2001年12月14日（2001 - 12 - 14）</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>CN 107124153 A（天津威盛电子有限公司）2017年9月1日（2017 - 09 - 01）</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>US 2011088655 A1（TRIQUENT SEMICONDUCTOR INC）2011年3月24日（2011 - 03 - 24）</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>CN 1269610 A（株式会社村田制作所）2000年10月11日（2000 - 10 - 11）</td>
<td>1-17</td>
</tr>
</tbody>
</table>

△其他文件在C栏的续页中列出。

□ 见同族专利文件。

国际检索实际完成的日期
2021年3月31日

国际检索报告邮寄日期
2021年4月23日

ISA/CN的名称和邮寄地址
中国国家知识产权局（ISA/CN）
中国北京市海淀区中关村西土城路6号 100088

受权官员
张雄娥

传真号：86-(10)62019451
电话号码：86-(20)-28958369

PCT/ISA/210 表（第2页）（2015年1月）
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日 (年/月/日)</th>
<th>同族专利</th>
<th>公布日 (年/月/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 211127745 U</td>
<td>2020年 7月 28日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 107017862 A</td>
<td>2017年 8月 4日</td>
<td>CN 107017862 B</td>
<td>2020年 5月 19日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 9906206 B2</td>
<td>2018年 2月 27日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017366165 A1</td>
<td>2017年 12月 21日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 111989862 A</td>
<td>2020年 11月 24日</td>
</tr>
<tr>
<td>JP 2001345867 A</td>
<td>2001年 12月 14日</td>
<td>无</td>
<td></td>
</tr>
<tr>
<td>CN 107124153 A</td>
<td>2017年 9月 1日</td>
<td>US 10382008 B2</td>
<td>2019年 8月 13日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2017244378 A1</td>
<td>2017年 8月 24日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20170099567 A</td>
<td>2017年 9月 1日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5221616 B2</td>
<td>2013年 6月 26日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102010046087 A1</td>
<td>2011年 8月 4日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011101350 A</td>
<td>2011年 5月 19日</td>
</tr>
<tr>
<td>CN 12589610 A</td>
<td>2006年 10月 11日</td>
<td>US 6313563 B1</td>
<td>2001年 11月 6日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20000077005 A</td>
<td>2000年 12月 26日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000295071 A</td>
<td>2000年 10月 20日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1043835 A2</td>
<td>2000年 10月 11日</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 111002 A1</td>
<td>2005年 5月 30日</td>
</tr>
</tbody>
</table>