WO 02/27565 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(10) International Publication Number

WO 02/27565 Al

4 April 2002 (04.04.2002) PCT
(51) International Patent Classification”: GO6F 17/50,
G06G 7/62
(21) International Application Number: PCT/US01/30401

(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

28 September 2001 (28.09.2001)
English

English

(30) Priority Data:

09/670,911

(71) Applicant:

28 September 2000 (28.09.2000) US

CADENCE DESIGN SYSTEMS, INC.

[US/US]; 2655 Seely Avenue, San Jose, CA 95134 (US).

(72) Inventors:

SOLDEN, Sherry; 4377 Miller Avenue,

Palo Alto, CA 94306 (US). HARCOURT, Edwin, A.;

4 Gemini Lane, Townsend, MA 01469 (US). LARUE,
William, W.; 15296 Sherwood Road, Leawood, KS
66224 (US). DUNLOP, Douglas, D.; 11912 Hunting
Ridge Court, Potomac, MD 20854 (US). HOOVER,
Christopher; 741 Pollard Road #4, Los Gatos, CA 95032
(US). CHAO, Qizhang; 2796 Louis Road, Palo Alto,
CA 94303 (US). AGRAWAL, Poonam; 1063 Morse
Avenue #20-106, Sunnyvale, CA 94089 (US). BEVERLY,
Aaron; 1063 Upper Ellen Road, Los Gatos, CA 95030
(US). CHIODO, Massimilano, L.; 10 Hillcrest Road,
Berkeley, CA 94705 (US). BHATNAGAR, Nheeti, K.;
4301 Rennaissance Drive #127, San Jose, CA 95134 (US).
DESAI, Soumya; Manhar Mahal, 4 Bakul Bagan Row,
Flat #4C, Calcutta 700 025 (IN). CHOU, Hungming; 6822
Corte Munras, Pleasanton, CA 94566 (US). SHOLES,
Michael, D.; 1318 Edgewood Road, Redwood City, CA
94062 (US). DENNISON, Ian; 55 River Oaks Parkway,
San Jose, CA 95134 (US). CHAKRAVARTY, Sanjay;
M36, Ramkrishna Vihar 29, IP Extension, Delhi 110 092

[Continued on next page]

(54) Title: PERFORMANCE LEVEL MODELING AND SIMULATION OF ELECTRONIC SYSTEMS HAVING BOTH HARD-
WARE AND SOFTWARE

35

40

Capture Behavior —l ‘ Capture Architecture

e ———

Map The Behaviors To The Appropriate Architectural
Components

1

;

Simulate The Behavior Of The Mapped System

I

v

Export HW and SW Components Of The System

Hardware Flow Software Flow
Perform Component Link The Software
Synthesis Models

Verify The Hardware
Components

Verify The Software
Components

|
|

~.

Verify The System Utilizing A Co-Verification Tool

(57) Abstract: A method and system for evaluat-
ing performance level models of electronic systems
having both hardware and software, and allowing

15
for the implementation and testing of different archi-
tectural designs for compliance with desired opera-
tional requirements. Behavior and architecture are

20 captured (Steps 10 and 15) and mapped to architec-
tural components (Step 20). The mapped system is
simulated (Step 25), hardware and software compo-
nents are exported (Step 30), and both hardware and

25 software components are separately verfied (Steps
35-50), and the resulting system is verified using a
co-verification tool (Step 55).

30

45

50

55

WO 02/27565

Al

(74

(t2))

(IN). O’BRIEN-STRAIN, Eamonn; 107 Starlite Drive,
San Mateo, CA 94402 (US). LAVAGNO, Luciano; 1571
Scenic Avenue, Berkeley, CA 94708 (US).

Agent: CARPENTER, John, W.; Crosby, Heafey, Roach
& May, Two Embarcadero Center, Suite 2000, San Fran-
cisco, CA 94111 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, I, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,
ZW.

()

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

16

20

25

30

WO 02/27565 PCT/US01/30401

PERFORMANCE LEVEL MODELING AND
SIMULATION OF ELECTRONIC SYSTEMS HAVING BOTH HARDWARE AND SOFTWARE

BACKGROUND

FIELD OF THE INVENTION

The present invention relates generally to designing and evaluating
performance level models of electronic systems and amongst other things to a
method and system for creating and simulating models of electronic systems at the

system level.

BACKGROUND OF THE INVENTION

In the traditional electronic system design process, behavior and architecture
specification are followed by hardware and software design. The opportunity to
consider tradeoffs in function and architecture performance occurs too late in the
design flow for any changes to be made in either a timely or cost-effective manner.

The design process of the products for these systems is subject to a number
of constraints. A first constraint is that they must be implemented in silicon or
another hardware platform for power, performance and cost reasons. A second
constraint is that these products implement systems conceived by a highly
specialized system team thinking in terms of executable concurrent programming
paradigms which, today, are not well understood by hardware designers. In fact,
in most systems the partitioning of functions between hardware and software is
based upon designer's past experience and is not subject to any analysis. Then,
the partitioned specifications are translated into a specific hardware description
language (HDL) such as Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL) or Verilog for the hardware components and a
software description language such as C or assembler for the software
components. Although the hardware and software have tight interaction, both
hardware and software are designed separately. Only after the system is

assembled is the software and hardware run together. As a consequence, the

10

15

20

25

30

WO 02/27565 PCT/US01/30401
design can be far from optimal or even erroneous, making a redesign cycle
mandatory.

This gap between system design and implementation is rapidly becoming the
most problematic bottleneck in the design process of such products and systems.
At the same time the conditions of the marketplace have created a need to quickly
design products because of time to market requirements. Therefore, as the design
time grows the time allowed for design in the business cycle continuously
decreases. A major approach to shortening the design time is by attempting to
implement hardware/software co-design procedures, so that the hardware and
software of a system can be concurrently designed in order to speed up the design
process. However, efficient co-design methodologies and approaches have not
been easy to conceive or implement. One of the reasons for this is that the
methodologies for hardware design and software design have their own approaches
that are difficult to mesh.

Several approaches have been attempted to create a true co-design
methodology. One known approach is a co-verification approach, where designed
hardware and software are verified together utilizing a co-verification simulator. A
problem with this approach is that all the hardware must be built and designed to

the cycle accurate level at this point, and therefore any problems that arise during

‘co-verification, if they can be addressed by redesigning the hardware, are difficult

to implement as the hardware has already been designed and implemented.
Similarly, the software for the system needs to be compiled prior to co-verification.
Another approach to co-design is by instruction set (ISS) co-simulation. This
approach concurrently simulates the instruction sets for a processor and related
components by utilizing an HDL description of the system and a model of the
instruction set. While this can lead to an effective co-simulation, this approach still

utilizes a model of the hardware that is functionally complete making it difficult to

‘replace or substantially redesign any hardware components. This approach also

requires a complicated processor model which is difficult to create and thus
provides a high barrier to exploration of various processors. This approach too
results in hardware over-design, with the related higher costs, power consumption,

and equipment sizes in systems.

10

15

20

25

30

WO 02/27565 PCT/US01/30401

Therefore, there is a need for a hardware/software co-design methodology
that allows for simulation at a level where the hardware is not yet completely
designed, to allow simple redesign of the hardware components.

Another issue in the design of digital systems is the ability to reuse
components that were used in previously designed systems. The design process for
a digital system must allow for the reuse of components, and therefore support a
reusable design methodology. The problem in reusing previously designed .
components lies in the fixed communication protocols they use, which necessitates
prbtocol conversions when different components with different protocols have to
be interfaced. In fact, it has been noted that more than half of all designs are
reused in building future systems.

Today, the selection of a protocol is done while designing the component:
functional and communication behavior are intrinsically mixed. However, a good
selection of the protocol is possible only when all components involved in the
communication are known. Therefore, a design environment for digital systems
should permit a component to be initially described in purely functional terms.
Later, when the component is (re)used in a system, the design environment must
allow to plug in the most appropriate communication behavior. This approach is in
contrast with current hardware design practices, where communication and
functional behavior are mixed.

The ability to reuse components requires component modularity. In modular
designs, the complete system functionality is split into communicating components
of manageable complexity. The advantage of this approach is that the components
can be reused and that the system is easier to adapf and maintain.

Additionally, the following requirements should be considered for a
hardware/software system design environment. (1) modularity is essential to
reduce complexity; (2) multiple description languages should be accommodated to
allow each system component to be described within the most appropriate
paradigm; (3) the design environment must be able to model the heterogeneous
conceptual specification, the resulting heterogeneous architecture and all
refinement steps in between; and (4) off-the-shelf components and the associated

design environments should be modeled.

10

15

20

25

30

WO 02/27565 PCT/US01/30401
SUMMARY OF THE INVENTION

The present invention is directed toward a method and system of generating
and evaluating performance level models of electronic systems having both
hardware and software components. The present invention provides a simplified
method for allowing system designers to specify the functional components of their
systems and then utilizing the specified components to map and evaluate the
mapped model of the system.

in one embodiment, the present invention is directed toward a method of
modeling an electronic system having both hardware and software elements. The
method comprises generating a plurality of behaviors, associating each of the
behaviors of the plurality of behaviors to an appropriate architectural component,
and generating communication patterns between the architectural components that
require communication between them in order to perform the behaviors.

In another embodiment, the present invention is directed toward a system
for creating a behavioral model of an electronic system having hardware and
software components. The system comprises a plurality of architectural
components, each corresponding to a component capable of being implemented as
part of the electronic system, and means for generating communication patterns
between the architectural components that require communication between them
in order to perform user specified behaviors.

in a further embodiment, the present invention is directed toward a
performance level model of an electronic system having hardware and software
elements. The model comprises an input function that provides input information,
a first service that represents a function to be performed by a first architectural
component of the electronic system, a second service that represents a function to
be performed byAa second architectural component of the electronic system, at
least one application programming interface that facilitates communication
between the first service and the second service, and an output function that
receives output information of the performance level model of the electronic

system.

10

15

20

25

30

WO 02/27565 PCT/US01/30401

It is an object of an aspect of the present invention to provide system level
simulation functionality to allow a designer to work at high levels of abstraction
and with larger, more complex circuits and systems.

It is a further object of an aspect of the present invention to provide a
technique to easily implement and test several different architectural designs for
compliance with the desired operational requirements of a designed system.

It is another object of an aspect of the invention to raise the level of design
validation to a system level.

It is an additional object of an aspect of the invention to provide a more
standardized design environment, thereby alleviating the need for cross-training
between different design platforms and allowing resources to be directed more
towards design and implementation.

It is yet another object of an aspect of the invention to provide an intuitive
and interactive technique for designing complex digital systems.

It is yet a further object of an aspect of the present invention to provide a
technique for allowing high level iterative refinement of a complex digital system
design.

It is therefore an advantage of the invention to provide a method of modeling
an electronic system having both hardware and software elements, the method
comprising capturing a plurality of behaviors that correspond to operations
performed by the system being modeled, capturing a plurality of hardware and
software architectural components the plurality being contained within an
architectural platform, mapping each of the captured behaviors of the plurality of
behaviors to a selected architectural component to perform the behavior,
recognizing and capturing communication patterns among the architectural
components that require communication among them in order to perform the
behaviors, and mapping each instance of communication between behaviors to an
instance of the captured pattern.

Another advantage of the invention is to provide a system for creating a
behavioral model of an electronic system having hardware and software
components, the system comprising a plurality of architectural components, each

of the architectural components corresponding to a component capable of being

5

10

15

20

25

30

WO 02/27565 PCT/US01/30401

implemented as part of the electronic system, and means for generating
communication patterns between the architectural components that require
communication between them in order to perform user specified behaviors, each
communication pattern including communication between any intervening
architectural components needed to communicate between architectural
components carrying out the behaviors.

Still another advantage of the invention is to provide a performance level
model of the communications between behaviors of an electronic system having
hardware and software components, the model comprising an application
programming interface on one behavior that provides data to be transferred to one
or more destination behaviors, a first service that implements the application
interface which models the performance of the communication protocol, the
service being among a plurality of services supported by the pattern to which the
behavior communication is mapped, one or more application programming
interfaces by the first service to model the performance of the architecture
platform, the application interfaces being among a plurality of service declarations
supported by the syhnbol of the architectural component to which the first behavior
is mapped, a supported service declaration on the symbol of the architecture
component that is implemented by a service definition, the service definition being
among a plurality of service definitions specified by the performance model of the
architecture component, a second application interface that represents a function
to be performed by a second architectural component topologically connected to
the first component of the electronic system, the second service being one a
plurality of second services each corresponding to a function capable of being
performed by the second architectural component, and an input application
interface on the destination behavior that receives output information of the
performance level model of the electronic system, thereby completing the

communication from source behavior to destination behavior.

BRIEF DESCRIPTION OF THE DRAWINGS

The aforementioned advantages of the present invention as well as

additional advantages thereof will be more clearly understood hereinafter as a

6

10

15

20

25

30

WO 02/27565 PCT/US01/30401
result of a detailed description of a preferred embodiment of the invention when
taken in conjunction with the following drawings.

Fig. 1 is a flow chart of a design process according to a presently preferred
embodiment of the present invention;

Fig. 2 is a flow chart of a method of generating a behavioral and
performance model according to a presently preferred embodiment of the present
invention;

Fig. 3 is a diagram of a mapping procedure according to a presently preferred
embodiment of the present invention;

Fig. 4 is a diagram of an exemplary architectural component according to a
presently preferred embodiment of the present invention;

Fig. b is a diagram of a communication pattern according to a presently
prefefred embodiment of the present invention;

Fig. 6 is a diagram of a communication pattern with corresponding pattern
and architectural component services according to preferred embodiment of the
present invention; and

Fig. 7 is a diagram showing the interaction between services communicating
across a bus according to a presently preferred embodiment of the present
invention; and

Fig. 8 is a diagram showing the interaction between services communicating
across a bus bridge according to a presently preferred embodiment of the present
invention; and

Fig. 9 is a diagram showing the interaction between performance models of
services according to a presently preferred embodiment of the present invention.

While the invention is susceptible to various modifications and alternative
forms, specific embodiments thereof have been shown by way of example in the
drawings and will herein be described in detail. It should be understood, however,
that the detailed description is not intended to limit the invention to the particular
forms disclosed. On the contrary, the intention is to cover all modifications,
equivalents, and alternatives falling within the spirit and scope of the invention as

defined by the appended claims.

10

15

20

25

30

WO 02/27565 PCT/US01/30401
DESCRIPTION OF THE DRAWINGS

The present invention allows the user to clearly differentiate between a
behavior model, which identifies what the system does, and an architecture model,
which identifies the components that implement the system. This clear
differentiation between system function and architecture allows system designers
to simulate the performance effects of a behavior running on a number of different
architectures early in the design cycle. ‘

In designing a system having both hardware and software elements there are
several important factors that should be analyzed. Such things include the
execution delay behavior of the system processor(s), the overhead and
functionality of the scheduler of the operating system, the execution delay of any
system application specific integrated circuit (ASIC) or on-chip custom hardware,
the communication paths and timing between hardware and software components,
delays with respect to bus and memory access, and timing for instruction and data
fetching. In addition, contention problems between resources can also be obtained
from system level simulations and therefore dealt with early in the design process.

Referring to Fig. 1, a user inputs the desired system behavior , step 10. The
user then inputs the architecture components that implement the system, step 15.
The behaviors that the user has input are then mapped to the appropriate
architectural components, step 20. Once the behaviors are mapped to the
architectural components the performance of the mapped system can be simulated,
step 25. The performance simulation determines, for a particular mapped design,
whether the timing of the system meets the user's requirements. If not, the user
can map portion of the behavioral blocks to different architectural blocks, possibly
causing their implementation to move between hardware and software. The design
may be a system-on-a-chip with embedded processors, memories, and custom
hardware, or it may be composed of discrete processors, memories, and Systems
On A Chip (8OCs). When the design is at the fully refined level and its
performance meets the system requirements, the user can export it as a software
and hardware implementation, step 30. The hardware design will then be ready for
HDL simulation, floor planning, and logic synthesis, step 35. The software models

will be ready for linking to an RTOS, step 4. The hardware and software

8

10

15

20

25

30

WO 02/27565 PCT/US01/30401
components can then both be separately verified, steps 45 and 50. Additionally

the hardware and software components of the exported design will be able to be
verified together in a co-verification tool, step 55.

Referring to Fig. 2, a plurality of behaviors are generated by a user, step
100. The behaviors can be input by the user as C+ + objects, selected from a
database of behaviors, composed hierarchically in block diagram, be input into
dialog boxes, or otherwise generated. The behaviors describe the desired functions
of the system that the designer wants the system to be able to perform.

A plurality of architecture components are generated by a user, step 110.
The architecture components can be input, selected from a database of
architectures, composed hierarchically in an architecture diagram, be input into
dialog boxes or otherwise generated. As used herein, architectural components
refers to a model of an architectural element, which is a realizable component of an
actual system. Examples of architectural elements include busses, CPU's, Real
Time Operating Systems (RTOS), Schedulers, ASICs, etc. The architectural

components include a number of services that each relate to a specific function

that is performed by the architectural element. For instance, a RTOS can be

modeled by a scheduler application, a standard C Library, etc.

The behaviors are then partitioned into hardware and software by mapping
the behavior instances to the appropriate architecture component (e.g. RTOS or
ASIC), step 120. The user can now run a performance analysis of their system
which models the impact of this particular partition, step 130. The user iterates
the partitioning step until the system meets the performance requirements.

Once the partitioning is complete, the user can refine the mapped design by
choosing communication patterns for the plurality of nets in behavior design, step
140. The communication patterns include the timing, speed and protocols that are
required to carry out communication between the separate architectural
components. After the communication patterns are chosen, operation of the
behaviors can be simulated again, step 150. In this case, the performance
simulation is more accurate because it models the performance impact of the

communication as well as the computation. For example, communication between

10

15

20

25

30

WO 02/27565 PCT/US01/30401
hardware and software may be register mapped or shared memory. The user
iterates the mapping step until the system meets the performance requirements.

If, after simulation, the parameters returned are not within desired
operational parameters, the designer can quite easily change any aspect of the
mapped model. That is, architectural component types can be changed,
architectural components can be added or removed, the connections between the
various architectural components can be altered, and the mapping of behavior to
architecture can be changed which in turn would alter the communication patterns.

Additionally, the designer can serially implement all the behaviors they desire
in order to make sure they can be implemented within the performance constraints
specified in the mapped design. . This approach allows for an iterative design
process, at a high level, which reduces the component level design work and
greatly speeds up the design process.

Referring to Fig. 3, a source behavior 200 controls a destination behavior
210, which needs the instructions or information generated by the source behavior
200. In the mapped example of Fig. 3, the source behavior 200 is implemented by
the RTOS 220 while the destination behavior 210 is to be implemented by the
ASIC 230, such an example can be a compression initiation procedure, which is
initiated by an RTOS 220 and performed by ASIC 230. The mapping of the source
behavior 200 and the destination behavior 210 is determined by the function
performed and is determine by the user.

Referring to Fig. 4, an architectural component, in this case a RTOS,
comprises a plurality of services, e.g. C library 252, scheduler 254, and Mutex
256, etc. Each service corresponds to a different function that is performed by the
architectural component. In this way each architectural component is broken into
multiple functions, increasing modularity and promoting reusability of services
between architecture components. For example, there are only a handful of
scheduling algorithms which are used by all the RTOSes. A service for round robin
scheduling could be defined once and used in many RTOS components. The
services and their function can be detérmined based upon the architectural
component specifications provided by the vendor that provides the architectural

component that is being modeled.

10

10

15

20

25

30

WO 02/27565 PCT/US01/30401

It is presently preferred that each service is defined by a service declaration
and one or more service definitions. A service declaration declares in a C+ +
header file one or more C+ + functions. The service definition provides the body
of the C+ + function declared by the header file. The advantage of this approach
is that C+ + is a standard, object-oriented language which supports separation of
function declaration and definition.

The service declarations for each architecture component are selected from
a library or other database that is either provided by the manufacturer of the
component represented by the architectural component or an industry-driven
standard library or created by the system user. This approach promotes industry
standards for modeling architecture components that can be mixed and matched;
which in turn promotes exploration of architecture designs by the system designer.

The service definitions 260 for each architectural component are selected
from a library or other database that is either provided by the manufacturer of the
component represented by the architectural component or can be created by the
system user. The advantage of this approach is that components from different
vendors can work together as long as they implement services with matching APIs.
In addition, if the definition is provided by the IP vendor, the system designer
doesn't have to understand all the complicated details because they are
encapsulated within the service. Another advantage of this approach is that many
service definitions can be written to model different levels of performance accuracy
while retaining the same interface. The system designer can easily and gradually
move to higher levels of accuracy in their performance analysis and the design
becomes more refined.

To follow the RTOS example, it may support the StandardCLibrary service.
The service declares the function prototype for "memcpy" and "memset". The
implementation of the service would define the functionality and performance
impact of these two functions. '

The function prototypes for memcpy and memset are as follows:

virtual vecAddress* memcpy(vccAddress* s1, const vccAddress* s2, size tn,
vcclnstance*) = O;

virtual vecAddress* memset{vccAddress* s, int ¢, size_t n, vccinstance®) = O;

11

10

15

20

25

30

WO 02/27565 PCT/US01/30401

For still additional guidance, the presently preferred C+ + code for memcpy
and memset is as follows: '

/**%************
Name: memcpy
Description: Copies n bytes from memory address s2 to s1. This

implementation assumes that addresses lies on memory

word boundaries. No actual data is designed to be

stored or read. Memory transactions are generated for

performance reasons only.
Return: Always returns s1.
***/
vecAddress* CPP. MODEL_IMPLEMENTATION::memcpy(vecAddress* to, const

vecAddress* from,

size_tn, veclnstance™® inst)

{
if (n ==0)
return to;
Init();

unsigned reqTrans = n / bytesPerWord_;
reqTrans = ((reqTrans==0) ? 1 : reqTrans);
unsigned remTrans = reqTrans;
theBegin:
if (remTrans == 0) goto theEnd;
{
memAccess.reference(*from, bytesPerWord_, rwRead,inst,true);
memAccess.reference(*to, bytesPerWord_, rwWrite, inst,true);
}
remTrans--;
goto theBegin;
theEnd:
return to;

12

10

15

20

25

30

WO 02/27565 PCT/US01/30401

/***

Name: memset

Description: Sets the first n bytes of memory at address s to the value
of ¢ (converted to an unsigned char). Memory transactions
are generated for performance reasons only.

Return: Always returns s;

***/

vecAddress™ CPP_MODEL_IMPLEMENTATION::memset(vccAddress* s, int ¢, size t

veelnstance™® inst)

{
if(n==0)
return s;
Init();

vecAddress*® to = s;

unsigned remTrans = n;
theBegin:

if (remTrans == 0) goto theEnd;

{

memA ccess.reference(*to, bytesPerWord_, rwWrite,inst,true);

}

remTrans--;
goto theBegin;
theEnd:

return s;

}

Referring to Fig. b, an example of a communication pattern is depicted
between two behavioral blocks 300 and 310 that is mapped to the appropriate
architectural components, in this case RTOS 320. A communication arc between
the two behavioral blocks 300 and 310 is mapped to the appropriate pattern, in
this case Semaphore pattern 330. The Semaphore pattern 330 implements a

communication protocol composed of a pair of pattern services 340 ("sender")

13

10

15

20

25

30

WO 02/27565 PCT/US01/30401

and 350 ("receiver"), one for each end of the communication pattern 330. The
"sender" service models the locking of the mutex, writing the data, unlocking the
mutex and sending a trigger to the destination behavior. The "receiver” models
locking the mutex, reading the data and unlocking the mutex.

It is presently preferred that the pattern services 340 and 350 are not
directly mapped to architectural components. Instead the mapping of each pattern
service 340 and 350 is implied by the mapping of the behavior block to an
architectural block. That is, since the pattern services 340 and 350 implements or
refines part of the behavior, it uses resources or services of the architectural
component that implements that behavioral block 310 or 320. Pattern services use
services of the architectural component of the system. In this example, the mutex
locking and unlocking is supported by a service on the RTOS.

The implementation of the pattern services effect a certain sequence of
events that propagate data from one behavior to another through architectural
participants. One behavior "Posts" data to its output port and the second behavior
uses the "Enabled" and "Value" functions on the input port to access this newly
sent data. Patterns are a combination of "sender" and "receiver" patterns which
implement the two sides of the communication. The "sender" service implements
the "post" function and the "receiver" service implements the "Enabled” and
"Value" functions. The pattern services are, presently preferred to be, separate
services from the pattern itself so that they can be reused in other patterns. Each
of the pattern services do not fully implement the protocol but instead make calls
to services supported by the architecture. Each communication protocol is a stack
of layers. The top layer, specifies the behavior required to implement the protocol
functionality in terms of existing resources. The lower layers emulate the timing
behavior of such resources (e.g. library of generic software functions, a CPU, or a
bus). |

Referring to Fig. 6, a first behavioral block 400 and a second behavioral
block 410 are utilized to implement some user defined behavior. The first
behavioral block 400 is mapped to an RTOS architectural component 450 while the
second behavioral block 410 is mapped to an ASIC architectural component 460.

The communication pattern 420 between the first behavioral block 400 and the

14

10

15

20

25

30

WO 02/27565 PCT/US01/30401

second behavioral block 410 is then determined to be a registered mapped
communication pattern and therefore the sender pattern service 430 and the
receiver pattern service 440 are both register mapped pattern services. CPU
architectural component 470 and bus architectural component 480 are also called
in order to facilitate communication between the RTOS architectural component
450 and the ASIC architectural component 460, since the RTOS architectural
component 450 is a software component that controls the CPU architectural
component 470.

To start the communication pattern, a post function 490 is called from
within the behavior component 400. The post function provides the input to the
sender pattern service 500 of the communication pattern 420. The register
mapped sender models the transfer of the data from the software to a register on
the ASIC (to which the behavior component 410 is mapped). In this example,
behavior component 410 is mapped to ASIC 460. The sender service implements
the data transfer using the "memcpy" function provided by the RTOS "Standard C
Library" service. Each service declares that it uses a set of service declarations
and the service definitions of each service must be found on connected
architecture components. The pattern sender service can use services provided by
the architecture component to which the source behavior (400) is mapped. In this
case, the Standard C Library is found on the RTOS 450. The RTOS provides the
implementation of the standard C library service, which in this example uses a
memory access interface to write data to the register on the ASIC. The memory
access service definition is found on the CPU 470 because the RTOS can use
services provided by the processor to which it is assigned. The CPU memory
access service b40 uses the bus adapter model 550 which is found on the port of
the CPU. The bus adapter model 550 uses the uses the bus arbiter service on the
BUS architecture component 480, and once granted bus ownership it uses the
slave adapter service 560 on the port of the ASIC architectural component 460,
which is the service that models the bus communication of the ASIC. The slave
adapter service 560 uses the slave service on the ASIC 460 to store the data in

the local register. From the other side of the pattern, the register mapped receiver

15

10

15

20

25

30

WO 02/27565 PCT/US01/30401
580 implements the value and enable functions 590, using the slave service to
retrieve the data written, thus completing the pattern protocol.

The advantage of this approach is that the communication patterns are
based on the architecture topology with each of the components supplying
modular, reusable services. This approach provides a process for architectural
exploration at the system level.

Searching for pattern services on connected architecture components works
well when there is a single communication between components. A bus inherently
violates this principle because it is a medium for multiple pairs of communications.
Referring to Fig. 7, behavior 600 is mapped to an RTOS 620 and behavior 610 is
mapped to ASIC 660. The communication pattern uses services on the RTOS,
CPU, bus and the ASIC 660. A generic bus adapter 635 on the CPU needs to
differentiate that this message should be sent to the slave adapter 665 on ASIC2,
while other messages might be sent to other slave devices (ASICs) on the bus.
The distinction can not rely on the search for a matching service definition,
because each slave device will support the same slave bus adapter. It is presently
preferred that a symbolic address be sent along with each bus transaction so that it
can be directed to the correct slave adapter service. In this approach, the symbolic
address consists of the architecture instance name and an offset. Each slave
registers its slave adapter service by instance name with the bus registry. When a
pattern sends a message it must provide an address of the message which can be
quickly looked up in the registry to find the appropriate slave adapter. The pattern
sender and receiver services must declare the message sequence required to

complete the pattern protocol as path specifications, e.g.:
Path : <pathName> <sourceArchinst> <destArchinst> <offsetparam> <dataType>.

Sometimes the source and destination of each message is the architecture
components to which the behaviors are mapped. For example, in the register
mapped pattern, the sender sends data from the RTOS to ASIC2 and these are the
architecture components to which beh1 and beh2 are mapped. In other scenarios,
a third architecture component may participate in the message sequence. For
example in a shared memory register mapped pattern, the data is first written to a

RAM component. It is presently preferred, that the sourceArchinst and

16

10

15

20

25

30

WO 02/27565 PCT/US01/30401
destArchlnst can reference the keywords vecArchOfSrcBehav or
vecArchOfDestBehav or can reference a parameter of the pattern service which
can then be further exported to the pattern instance and specified by the end-user
during the mapping process. In the latter scenario, the end-user selects the
memory participant from the set of memories in the architecture diagram for each
usage of a shared memory pattern. The dataType specifies whether the message
sends the data on the net or just a trigger. This information is used to determine
the performance impact on the bus because it accurately accounts for the size of
the data being transferred. The advantage of this approach is that patterns can be
reused across different architectures.

Referring to Fig 8, the behaviors are mapped to the RTOS 720 and ASIC2,
780. In this example, the message must be sent from RTOS across Bus1 740
through BusBridge1 760 across Bus2 770 and finally to ASIC2. The bus bridge
facilitates conversion of bus transactions from Bus1 to Bus2. It is presently
preferred that the bus bridge registers all slave services on Bus2 with Bus1
registry. The usage of architecture instances (which is unique across the
architecture diagram) ensures that the slave services on Bus2 will not conflict with
slave services on Bus1. As a result, the symbolic address will reference instance
name “ASIC2” and the Bus1 registry will find the bus bridge slave adapter. It is
also presently preferred that the bus bridge will have slave adapter 765 on one port
and a bus master adapter 775 on a second port. The slave adapter 765 connected
to bus1 will receive the bus request and then the bus master adapter on the
second port will resend the request across bus2 for which ASIC2 will now handie
the transfer. Since bus bridges may have more than 2 ports, it is also presently
preferred that each slave port must identify via a port attribute the master port to
which it resends the data. The advantage of this approach is that an architecture
diagram can be easily extended or reorganized around busses and bridges to
optimize the overall system performance.

A protocol registry which is a database of patterns that can be searched
using some Key is presently preferred to be utilized so that once the behavior
components are mapped all that is required by the system designer is to select

from a list of patterns. A description of some of the presently preferred patterns is

17

10

15

20

25

30

WO 02/27565 PCT/US01/30401

described herein for the purposes of example only and is not intended to be limiting

in any way.

The patterns of communication are arranged in basic groups, depending on

whether the implementation chosen for the sender/receiver is an ASIC (HW), a

separate SW task {(SW inter-task), or within the same SW task (SW intra-task), and

whether the communication only deals with transmitting the presence of the event

(Trigger) or data is also involved. For each group there is a choice of possible

patterns:

1) HW - HW: (a) Direct Connect, (b) Register Mapped, (c) Shared
Memory:

2) HW - HW Trigger: (a) Direct Connect, (b) Register Mapped

3) HW - SW: (a) Interrupt Register Mapped, (b) Interrupt Shared
Memory, (c) Polling Register Mapped, (d) Polling
Shared Memory

4) HW - SW Trigger: (a) Interrupt, (b) Polling Register Mapped, (c) Polling
Shared Memory

5) SW - HW: (a) Register Mapped, (b) Shared Memory

6) SW - HW Trigger: (a) Register Mapped

7) SW - SW Inter-task: (a) Unprotected, (b) Semaphore Protected,
(c) Uninterruptable Protected

8) SW - SW Inter-task Trigger: (a) Unprotected

9) SW - SW Intra-task: (a) Unprotected

10) SW - SW Intra-task Trigger: (a) Unprotected.

11) SW->Memory (a) SWDirectMemoryAccess (b)

SWDMAAccess
12) HW->Memory (a) HWDirectMemoryAccess (b)
HWDMAAccess
13) SW->Timer (a) SWVirtualTimer
14) HW->Timer {(a) ASICInternalTimer

The advantage of grouping the patterns is that the communication arcs can

be categorized into each of the groups based on the mappings of the behavior

components as well as the size of the data type on the arc. Once the user selects

18

10

15

20

25

30

WO 02/27565 PCT/US01/30401
a default pattern for each of the basic groups the unmapped arcs can be
automatically assigned to these defaults saving time in the mapping process. The
user can always explicitly map or change the mapping to a different choice but the
defaults should be applicable a large percentage of the time.

Referring to Fig. 9, a first behavior block 800 sends an event to a second
behavioral block 810 using a communication pattern 820. The communication
pattern 820 comprises services P1...Pn on the sender’s side and services Q1...Qn
on the receiver side. An output port 830, in the first behavior block 800, and an
input port in second behavior block 810 begin and terminate the communication
pattern 820. The control flows of the communication pattern 820 is as follows:
the delay model of first behavior block 800 calls the behavioral block 800, which
calls the function Post which is implemented by a function in P1. P1 calls some
function of P2, P2 calls some function of P3 etc. At the end of the implementation
of Post there is a call to an input change function that posts the event to the
second behavioral block 810 with the required delay. This triggers, at a later time,
the delay model of second behavioral block 810, which first calls the top receiver
pattern service Q1 to set the value and event buffers in the instance of Q1, and
then calls the appropriate service of the second behavioral block 810 which calls
an enable function which in turn calls some function of Q1. Q1 calls some
function of Q2, Q2 calls some function of Q3, etc. until Enabled() returns a result.
The process may be repeated for any additional values and operations. It should
be noted that the delay model as referred to herein is the delay of the architectural
component performing the behavior, due to scheduling or buffering or the like.

It is presently preferred, as depicted in Fig. 9, that a communication pattern
820 is bound to a port, e.g. port 830 or 840, rather than to a net. In the case of a
net with multiple fanouts, each destination port may be associated with a different
communication pattern although it is presently preferred that nets from each
architectural component use the same communication pattern for all fanouts. In a
communication net with N fanouts each using a different communication pattern,
the call to the post function in the behavioral block is going to be implemented as a
sequence of N calls to the various implementations of the post function for each of

the communication patterns.

19

10

15

20

25

WO 02/27565 PCT/US01/30401

This preferably requires an intermediate layer of code between the sender’s
behavioral block and the sender’s top pattern service. That is, the implementation
of the post function called by the behavior model should be a loop over the
fanouts, and for each of them it will call the implementation of the post function
provided by the service used by the pattern associated to the fanout. In the
simulation, a C+ + behavior block calls the implementation of the post function in
the service directly. There is a code layer in the pattern that received the post
from the models and then unravels it out to each of the patterns. This is
performed inside a specific service which will receive ‘the list of actual services,
one per fanout, that it needs to call. This dispatcher service may be dropped when
only one communication pattern is used on all fanouts of a net.

Referring again to Fig. 9, the data transmission from the post function 830
to the value function 840 in the simulation is inherently safe as it is performed
atomically by a call to input changed function. The simulation of the finer details
of the transfer only deals with the timing aspects, not the content.

While the embodiments, applications and advantages of the present
inventions have been depicted and described, there are many more embodiments,
applications and advantages possible without deviating from the spirit of the
inventive concepts described and depicted herein. The invention should only be
restricted in accordance with the spirit of the claims appended hereto and is not
restricted by the preferred embodiments, specification or drawings. For example,
the patterns discussed represent the communication between behavior ports. The
behaviors may also communicate with behavior memories and timers. Patterns are
also appropriate for modeling the performance impact of these communications

based on the architecture platform.

20

10

15

20

25

30

WO 02/27565 PCT/US01/30401
WHAT IS CLAIMED IS:

1. A method of modeling an electronic system having both hardware and

software elements, comprising:
| capturing a plurality of behaviors that correspond to operations performed by

the system being modeled;

capturing a plurality of hardware and software architectural components the
plurality being contained within an architectural platform;

mapping each of the captured behaviors of the plurality of behaviors to a
selected architectural component to perform the behavior;

recognizing and capturing communication patterns among the architectural
components that require communication among them in order to perform the
behaviors; and

mapping each instance of communication between behaviors to an instance

of the captured pattern.

2. The method of Claim 1 wherein each architectural component
comprises a plurality of services each service corresponding to a particular function

of the architectural component.

3. The method of Claim 2 wherein each service comprises a declaration
and a definition corresponding to the interface and body of the service,

respectively.

4, The method of Claim 3 wherein each service definition uses other

service deciarations.

5. The method of Claim 1 wherein the step of capturing the architectural
platform comprises selecting a performance model for each of the plurality of
architectural components wherein the services of one architectural component uses

other services that are topologically connected in the platform.

21

10

15

20

25

30

WO 02/27565 PCT/US01/30401
6. The method of Claim 1 further comprising a step of partitioning each
behavior of the plurality of behaviors that are captured as either a hardware or

software behavior.

7. The method of Claim 1 wherein said capturing communication pattern
step comprises a plurality of services each service uses other service declarations
that are supported by the architecture component to which the behavior is

mapped.

8. The method of Claim 1 further comprising modifying at least one
behavior of the plurality of behaviors or associating at least one behavior with a
new appropriate architectural component while maintaining associations among the

other behaviors with previously mapped architectural components.

9. The method of Claim 1 further comprising associating at least one
behavior of the plurality of behaviors with a new architectural component and
recognizing and capturing one or more new communication patterns while

maintaining other previously captured communication patterns.

10. The method of Claim 1 further comprising changing the selection of
one or more pattern mappings while maintaining other previously captured

communication patterns.

11. The method of Claim 1 further comprising modifying at least one
architecture component of the plurality of architecture components in the platform
while maintaining associations amongst the other architecture components and
patterns of communication to and from the modified component. This modification
can be exchange of component for another component or a tweak to the parameter

settings or a different selection of performance model.

22

10

15

20

25

30

WO 02/27565 PCT/US01/30401
12. The method of Claim 1 further comprising modifying the plurality of
architecture components that are contained in an architecture while maintaining

previously captured behavior mappings and communication patterns.

13. The method of Claim 1 further comprising at least one member of a
group consisting of reuse of services in other architecture components and reuse of
architecture components in other architecture platforms or reuse of architecture

platforms in other electronic systems.

14. The method of Claim 1 further comprising reuse of patterns in other

electronic systems with variations on the architecture platform.

15. The method of Claim 1 further comprising simulating operation of the
electronic system when performing the plurality of behaviors utilizing the
architecture services of the mapped behaviors and optionally the pattern services

that were selected.

16. The method of Claim 15 wherein utilizing the architecture services can
be successively refined where additional design decisions are made causing the

performance model to become more accurate.

17. A system for creating a behavioral model of an electronic system
having hardware and software components, comprising:

a plurality of architectural components, each of the architectural componehts
corresponding to a component capable of being implemented as part of the
electronic system; and

means for generating communication patterns between the architectural
components that require communication between them in order to perform user
specified behaviors, each communication pattern including communication between
any intervening architectural components needed to communicate between

architectural components carrying out the behaviors.

23

10

15

20

25

30

WO 02/27565 PCT/US01/30401
18. The system of Claim 17 wherein each architectural component
comprises a plurality of services each service corresponding to a particular function

of the architectural component.

19. The system of Claim 17 wherein the means for generating
communication patterns between the architectural components comprises the
means for selecting the appropriate services of the plurality of services necessary

for carrying out communication between the architectural components.

20. The system of Claim 17 further comprising means for associating each

behavior of a plurality of behaviors with an appropriate architectural component.

21. The system of Claim 17 wherein the means for associating each
behavior of the plurality of behaviors comprises means for selecting an
architectural component model for the architectural component, the architectural
component model being one of a group of predefined architectural component

models.

22. The system of Claim 17 further comprising means for classifying each
behavior of a plurality of behaviors to be performed by the electronic system as

either a hardware or software behavior.

23. The system of Claim 17 further comprising means for associating at
least one modified behavior with a new appropriate architectural component while
maintaining associations of the other unmodified behaviors with previously mapped

architectural components.

24. The system of Claim 17 further comprising means for associating at

least one behavior of a plurality of behaviors with a new architectural component.

24

10

15

20

25

30

WO 02/27565 PCT/US01/30401
'25. The system of Claim 24 further comprising means for generating one
or more new communication patterns between the new architectural component
and other architectural components while maintaining other previously generated

communication patterns.

26. The system of Claim 17 further comprising a simulation application for
simulating operation of the electronic system when performing a plurality of

behaviors utilizing the communication patterns that were generated.

27. A performance level model of the communications between behaviors
of an electr}onic system having hardware and software components, the model
comprising:

an application programming interface for a first behavior that provides data
to be transferred to one or more destination behaviors;

a first service that implements the application programming interface that
models the performance of the communication protocol, the first service being
among a plurality of services supported by the pattern to which the behavior
communication is mapped;

one or more application programming interfaces used by the first service to
model performance of the architecture platform, the application interfaces being
among a plurality of service declarations supported by the symbol of the
architectural component to which the first behavior is mapped;

a supported service declaration on the symbol of the architecture component
by a service definition, the service definition being among a plurality of service
definitions specified by the performance model of the architecture component;

a second application interface that represents a function to be performed by
a second architectural component topologically connected to the first component
of the electronic system, the second service being one a plurality of second
services each corresponding to a function capable of being performed by the
second architectural component;

an input application interface on the destination behavior that receives

output information of the performance level model of the electronic system,

25

10

WO 02/27565 PCT/US01/30401

thereby completing a communication from source behavior to destination behavior.

28. The performance level model of Claim 27 further comprising a third
service that represents a function to be performed by a third architectural
component of the electronic system, the third service being one a plurality of
services each corresponding to a function to be performed by the third architectural
component and wherein there is at least one application programming interface
comprising a first application programming interface that is a model of the
communication behavior between the first and second architectural components
topologically connected and a second application programming interface that is a
model of the communication behavior between the second and third topologically

connected architectural components.

26

WO 02/27565

10

35

40

1/9

PCT/US01/30401

Capture Behavior

Capture Architecture

e

«

Map The Behaviors To The Appropriate Architectural

Components

v

Simulate The Behavior Of The Mapped System

Export HW and SW Components Of The System

Hardware Flow Software Flow
Perform Component Link The Software
Synthesis Models
Verify The Hardware Verify The Software
Components Components

N~

Verify The System Utilizing A Co-Verification Tool

Fig. 1

15

20

25

30

45

50

55

100

WO 02/27565 PCT/US01/30401

2/9

Capture Behavior Capture Architecture

Map The Functions To The Appropriate Architectural
Components

y

Simulate The Operation Of The Mapped System

Generate Communication Patterns Between The Mapped
Architectural Components As Necessary

Simulate The Operation Of The Mapped System

Fig. 2

110

120

130

140

150

WO 02/27565 PCT/US01/30401

3/9
O o
@ N
2a
0 5 ™
o < 0. .
s & (@]
LL
o
h
~
N

200
RTOS
220

PCT/US01/30401

WO 02/27565

4/9

o

w

AN
o <t o o O o
© 0 «© © 0 ©
(Q\] (g N N N N

260
252
260

e e e e e e et e e e = - ——— ~ ——— — ———— —— — —

PCT/US01/30401

5/9

WO 02/27565

SwSemaphoreRecv
Protocol
350

i
]
1
I}
1
1
i
i
I}
)
1
1
y

v

PCT/US01/30401

WO 02/27565

6/9

9 DId

ess
ERITVET
Q25 | . ampayyaly aae|s sng

ocs TN

085S JONI323IMH
paddey 19)sibay

o I

<

193)1q1yS404

9)depyaae|SS404d

‘w aInyoyIyoIY

@hs $5920y Alowsiy NdID

3
oYS

89IAJ9G 2IN}2aYIY

$5329y A IoWBNINGD Areiqi 9 piepueys

Q.ﬁ h 1ndo & 1soLy

20 uu<m:mwu_0u_|4

psng

bk

dDaipH paddew9)siboy = JaA18991
QPUISMS’ vo&as:&m.mom = 19puas

oL
Q95

Jopuasms
paddepsaysibay

9h

PCT/US01/30401

WO 02/27565

7/9

0€9
NdOo

A

Gg9 - 1adepysngSdDd

) 74°
sng

99 - 191depyoAe[SSID

659 - 101depyare[SS D

0S9
LOISVY

PCT/US01/30401

WO 02/27565

8/9

01572
Ndo

h

ggL - IdepysngSADd

ov.
isng

$9/ - 11depyane[SSIDd

6LL - 1adepysngs.a04d

09.
Lobpugsng

SSL - 101depyaneISSID]

062
LOISVY

044
¢sng

G6L - 191depyoAr[SSAD.]

68/ - 191depyoAe[SS.10d

081
clIsY

0cL
SO1d

WO 02/27565 PCT/US01/30401
9/9

o
v
o)

INTERNATIONAL SEARCH REPORT

—
Inter___ al application No.
PCT/US01/30401

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :Go6F 17/50; GO6G 7/62
USCL :703/18, 1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

US. : 708/18, 1

Minimum documentation searched (classification system followed by classification symbols)

searched

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

EAST, IEEE, ACM, Proquest

search terms: communication®, behavior*, architect*, simulat*

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

page 570 column 1.

2000. pages 77-81.

X LAHIRIK. et al. Fast Performance Analysis of Bus-Based System-
On-Chip Communication Architectures. IEEE Proceeding of the
1999 International Conference on Computer-Aided Design. 1999.
pages 566-573, especially page 567 column 1 paragraph 3 through

A YOO.S. et al. Performance Estimation of Multiple-Cache IP-based
Systems: Case Study of an Interdependency Problem and Application
of an Extended Shared Memory Model. ACM Proceedings of the
Eighth International Workshop on Hardware/Software Codesign.

1-3, 5-7, 15-22

1-28

Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents:

"AN document defining the general state of the art which is not

- considered to be of particular relevance

"E" earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"on document referring to an oral disclosure, use, exhibition or other
means -

"Pll

document published prior to the international filing date but later
than the priority date claimed

v later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X document of particular relevance; the claimed invention cannot be
considercd novel or cannot be considered to involve an inventive step
when the document is taken alone

"y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

ng" document member of the same patent family

Date of the actual completion of the international search

04 NOVEMBER 2001

Date of mailing of the international search report

- 07 DEC2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (708) 305-3230

SAMUEL BRODA

Authorized officer .

Telephone No. (708) 805-1026

Form PCT/ISA/210 (second sheet) (July 1998)x

INTERNATIONAL SEARCH REPORT Inter......nal application No.

PCT/US01/30401

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A LAJOLO.M. et al. A Case Study on Modeling Shared Memory 1-28
Access Effects During Performance Analysis of HW/SW Systems.

IEEE Proceedings of the Sixth International Workshop on
Hardware/Software Codesign. March 1998. pages 117-121.

A LLJ. Performance Prediction Based on Semi-Formal Software 1-28
Architectural Descripton. IEEE 1998 International Conference on
Performance, Computing, and Communications. February 1998.
pages 193-199

A US 6,026,219 A (MILLER et al) 15 February 2000. 1-28

A US 5,870,588 A (ROMPAEY et al) 09 February 1999. 1-28

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

