Title: DEVICE FOR APPLYING MEDICAL FLUID TO AND CUTTING WITHIN AN AREA

Abstract: A device for applying medical fluid to an area and for cutting within the area is provided. The device includes an inlet port, a fluid flow channel, an outlet and a blade. The inlet port is configured for receiving the medical fluid into the device. The fluid flow channel is configured for the fluid to flow through the device. A first end of the fluid flow channel is connected to the inlet port. An outlet is configured for the fluid to come out of the device. The outlet is positioned at a second end of the fluid flow channel. The blade is configured for cutting within the area.
DEVICE FOR APPLYING MEDICAL FLUID TO AND CUTTING WITHIN AN AREA

10001] PRIORITY

This Application is related to and claims the benefit of U.S. Serial No. 13/274,980 filed October 17, 2011 which is herein incorporated by reference.

FIELD OF THE INVENTION

[0002] The present technology relates generally to medical devices for cutting a patient. More particularly, the present technology relates to applying medical fluid to an area and cutting within the area.

BACKGROUND

[0003] Various types of cutting devices have been used, for example, to make incisions in patients. Examples of cutting devices include, but are not limited to, razor blades and scalpels.
DRAWINGS

[0004] Figure 1A depicts a device for applying fluid and cutting a patient from an angled view, according to one embodiment.

[0005] Figure 1B depicts a top down view of the device, according to one embodiment.

[0006] Figure 2 depicts a device with a multiple channel fluid flow channel, according to one embodiment.

[0007] Figure 3 depicts a device with a handle, according to one embodiment.

[0008] Figure 4 depicts a device with a spine, according to one embodiment.

[0009] Figure 5 depicts a system for applying fluid and cutting a patient, according to one embodiment.

[0010] Figure 6 depicts a flow chart for a method of using a device, according to one embodiment.

[0011] Figure 7 depicts a flow chart for method of making a device, according to one embodiment.

[0012] The drawings referred to in this description should not be understood as being drawn to scale unless specifically noted.
DESCRIPTION OF EMBODIMENTS

[0013] Before making an incision in an area of a patient, the area is sterilized with disinfectant fluid. The doctor takes a reservoir of medical fluid, such as a syringe with disinfectant in it, and applies the fluid to the patient. The doctor then has to remove the reservoir from their hand in order to grasp a cutting device with a blade. The operation of picking up the reservoir, putting the reservoir down, then picking up the cutting device is awkward and can lead to errors. Therefore, according to one embodiment, a device is provided that can be used for both applying the fluid and cutting, as will become more evident. According to one embodiment, a device is provided that can be used to improve the health of the patient.

[0014] Although various embodiments are described in the context of the fluid being a disinfectant, embodiments are well suited to other types of fluid, such as lubricant or solvent. According to one embodiment, the fluid is intended for medical use. According to one embodiment, the fluid is sterile.

[0015] Figure 1A depicts a device 100 for applying fluid and cutting a patient from an angled view, according to one embodiment. Figure 1B depicts a top down view of the device 100, according to one embodiment. The device 100 includes an inlet port 108, a fluid flow channel (FFC) 106, an outlet 103, and a blade 101.

[0016] The device 100 includes a blade 101 for cutting the patient. Figures 1A, 1B depict a blade 101 with a straight cutting edge. However, embodiments are well suited for other blade configurations. For example, the blade 101 may be curved. The blade 101 may be made out of various types of materials, such as different types of metal.

[0017] As depicted in Figures 1A, 1B, the blade 101 is similar to a razor blade. However, embodiments are well suited for blade configurations that are similar to other types of cutting devices, such as a scalpel or an exacto knife, among other things.
[0018] As depicted in Figures 1A, 1B, the device 100 does not include a separate handle. However, embodiments are well suited to a device 100 that includes a handle.

[0019] The inlet port 108 is configured for receiving the fluid into the device 100. For example, the inlet port 108 can be configured to receive fluid from a reservoir of fluid. Examples of reservoirs include, but are not limited to, a syringe or a bottle. An outlet port of the reservoir may be inserted into the device 100's inlet port 108. The inlet port 108 may be designed to function with a particular type of reservoir. For example, the size and shape of the inlet port may be compatible with a reservoir's outlet port. In another example, the inlet port 108 may have threads that, that for example, mate with threads associated with the reservoir's outlet. However, the inlet port 108 may not have threads.

[0020] In another embodiment, the inlet port 108 may be a universal port that is designed to function with a wide variety of reservoirs. The size and shape of the inlet port 108 may be designed to be large enough to accommodate a wide variety of reservoirs. The device 100's inlet port 108 may have material that expands when a reservoir's outlet port is inserted into the device 100's inlet port 108 and contracts, for example, when the reservoir's outlet port is extracted from the device 100's inlet port 108.

[0021] As depicted in Figures 1A and 1B, the inlet port 108 is oriented in the center of the non-cutting edge 107 that is opposite the cutting edge 102. However, embodiments are well suited for other orientations of the inlet port 108. For example, the inlet port 108 may be positioned on any non-cutting edge 107, 104, 105 of the device 100. More specifically, the inlet port 108 may be positioned on a side 104, 105 of the device 100, a side 104, 105 of a blade 101, on a handle of the device, on a spine of the device, among other things. Further, the inlet port 108 may be oriented at any position along an edge 104, 105, 107, a handle or a spine. For example, the inlet port 108 may be located in the center of an edge 104, 105, 107, off of the center of the edge 104, 105, 107, on a tip of a device, or a handle, among other things.
[0022] The fluid flow channel 106 includes a first end 121 that is connected to the inlet port 108. The device 100 also includes a fluid flow channel 106 configured for the fluid to flow through the device 100. According to one embodiment, the fluid flow channel 106 is a narrow channel. As depicted in Figures 1A and 1B, the device 100 includes a single FFC 106. However, embodiments are well suited for a plurality of FFCs, for example, to more evenly distribute the fluid, as will become more evident.

[0023] As depicted in Figure 1A, the FFC 106 is straight and is located down the center of the blade 101. However, embodiments are well suited for other orientations and configurations of the FFC 106. For example, the FFC 106 may be non-straight, the FFC 106 may be bent, the FFC 106 may be located off of the center of the device 100 or the blade 101, the FFC 106 may be located on the blade 101 or off of the blade 101, the FFC 106 may be located in a handle or a spine of a device.

[0024] An outlet 103 is at the other end 122 of the FFC 106 where the fluid exits the FFC 106. As depicted in Figures 1A, 1B the outlet 103 is located in the center of the cutting edge 102.

[0025] Embodiments are well suited to other orientations for the outlet 103. For example, the outlet 103 may be located on a cutting edge 102 or a non-cutting edge 104, 105, 107. Non-cutting edges can include edges along a handle, a spine, or the non-cutting side of a blade, among others. Further, the outlet 103 may be oriented at any position along a cutting edge 102 or non-cutting edge 104, 105, 107, handle or spine. For example, the outlet 103 may be located in the center of an edge, off of the center of the edge, on a tip of the device, the blade, or spine, at any position along a handle, blade or a spine, among other things.

[0026] An outlet 103 may be the same width as the FFC 106, wider than the FFC 106, or narrower than the FFC 106.

[0027] Figure 2 depicts a device 200 with a multiple channel fluid flow channel, according to one embodiment. As depicted in Figure 2, the device includes a FFC
206 with multiple channels 206a-206d. The FFC 206 initially includes a single channel 206a, which is connected to the inlet port 108, and the single channel 206a then branches into multiple channels 206b-206d. Multiple outlets 103 can oriented evenly or unevenly along an edge 102.

[0028] According to other embodiments, the FFC may include several channels that connect with the inlet port 108. Embodiments are well suited for other orientations and locations of a multiple channel FFC.

[0029] Figure 3 depicts a device 300 with a handle 309, according to one embodiment. For example, the device 300 includes a handle 309, a FFC 302, an inlet port 301, an outlet 305 and a blade 307. The blade 307 is attached to one end of the handle 309. The inlet port 301 is connected to the other end of the handle 309. The outlet 305 is oriented on the side of the device 300 and at one end of the handle 309. The fluid flow channel 302 runs through the handle 309 and is bent. One edge 308 of the blade 307 is curved.

[0030] As depicted in Figure 3, the inlet port 301 is oriented approximately toward the center of one end of the handle 309. Similarly, the FFC 302 is oriented approximately in the center of the handle 309. However, embodiments are well suited to other orientations of the inlet port 301 and the FFC 302.

[0031] Although Figure 3 depicts the handle 309 attached to one end of the blade 307, embodiments are well suited for the handle 309 to be located at other locations and in other orientations. For example, a handle could be oriented along a non-cutting edge such as the non-cutting edges 104, 105, 107 of device 100 depicted in Figures 1A, 1B.

[0032] Figure 4 depicts a device 400 with a spine 411, according to one embodiment. For example, the device 400 includes a handle 409, a spine 411, a FFC 402, an inlet port 401, an outlet 405 and a blade 407. The blade 407 is oriented toward one end of the handle 409, according to one embodiment. The inlet port 401 is oriented toward the other end of the handle 409. The device 400 includes a spine 411 that runs along the top 410 of the handle 409 and the non-
cutting edge 404 of the blade 407. The FFC 402 runs through the spine 411, according to one embodiment. The spine 411 may be part of the handle 409 or may be separate from the handle 409. The inlet port 401, according to one embodiment, is aligned with the FFC 402 that runs through the spine 411.

[0033] As depicted in Figures 1A, 2, 3, and 4 examples of cutting edges include cutting edges 102, 308, 408, among other things, and examples of non-cutting edges include edges 104, 105, 107, 303, 304, 306, 403, 404, among other things.

[0034] Figure 5 depicts a system 500 for applying fluid to an area 532 and for cutting within the area 532, according to one embodiment. System 500 depicts a reservoir 510, such as a syringe and a device 520. The reservoir 510 is connected with the device 520. For example, an outlet port 511 associated with the reservoir 510 is inserted into the device 520's inlet port 523. Fluid can be delivered from the reservoir 510, through the device 520, out the device's outlet 522 and to an area 532 of the patient 530. An incision 531 is depicted within the area 532 of the patient 530 using the device 520's blade 521. The incision 531 in the patient 530 may be any depth or length depending on the type of procedure being performed on the patient 530.

[0035] Figure 6 depicts a flow chart 600 of a method for using a device, according to one embodiment. Figure 6 is described in the context of Figure 5.

[0036] At 610, the method begins.

[0037] At 620, an inlet port 523 of the device 520 is connected to a reservoir 510 of fluid. As depicted in Figure 5, the outlet port 511 of a reservoir 510, such as a syringe, is inserted into the device 520's inlet port 523.

[0038] The device 520 has a fluid flow channel 524 for the fluid to flow through the device 520, an outlet 522 for the fluid to exit the device 520 for application to an area 532, for example, of a patient 530, and a blade 521 for cutting within the area 532.
[0039] At 630, the fluid is made to flow from the reservoir 510 into the inlet port 523 through the fluid flow channel 524 and exit the outlet port 522. The device 520's inlet port 523 receives the fluid from the reservoir 510. For example, a doctor or clinician pushes the syringe's plunger 512 causing the fluid to flow out of the syringe 510's outlet port 511 and into the device 520's inlet port 523. The fluid proceeds to flow through the device 520's FFC 524 and out the device 520's outlet 522 onto the area 532 of the patient 530. Although embodiments have been described in the context of a person pushing a plunger 512 to deliver medical fluid, embodiments are well suited to other actions for causing the fluid to be delivered. For example, a bottle containing medical fluid could be squeezed.

[0040] At 640, the area 532 is cut with the blade 521. For example, the blade 521 is used to make the incision 531 within the area 532 of the patient 530.

[0041] At 650, the method ends.

[0042] The doctor or clinician can use an edge of the device 520 to distribute the fluid evenly in an area 532 on the patient, for example, before the blade 521 is used to make the incision 531 in that area 532.

[0043] Figure 7 depicts a flowchart 700 of a method for making a device, according to one embodiment. Figure 7 is described in the context of Figures 1-4.

[0044J At 710, the method begins.

[0045] At 720, a blade 101, 307, 407, which is configured for cutting the patient, is associated with the device 100, 200, 300, 400. According to one embodiment, the blade 101, 307, 407 can be made of various types of materials, such as various types of steel. The blade 101, 307, 407 may be straight, such as a razor blade, curved like a scalpel, or angled like an exacto knife. The blade 101, 307, 407 may be made of a single piece or multiple pieces of material. For example, the blades 307, 407 depicted in Figures 3 and 4 are made of a single piece of material. The blades 101 depicted in Figures 1A, 1B, 2 may be made of a single piece of material where the single piece of material is configured with the FFC running
through the single piece of material or may be made, for example, of two pieces that are attached to the FFC.

[0046] At 730, a fluid flow channel 106, 206, 302, 402 is associated with the device 100, 200, 300, 400. The fluid flow channel 106, 206, 302, 402 is configured for the fluid to flow through the device 100, 200, 300, 400. Referring to Figures 1A, 1B, 2 the blade 101 may be configured to include the FFC 106, 206 or the blade 101 may be attached to another piece that includes the FFC 106, 206. Referring to Figures 3 and 4, a handle 309, 409 or a spine 411 may include the FFC 302, 402. The blade 307, 407 can then be attached to the handle 309, 409. In another embodiment, any two or more of the blade, handle, spine and FFC may be made out of a single piece of material instead of attaching the various pieces, such as the blade and the handle, to each other.

[0047] At 740, an inlet port 108, 301, 401 is associated with the device 100, 200, 300, 400. The inlet port 108, 301, 401 may be made out of separate piece of material that is attached to the device 100, 200, 300, 400. According to another embodiment, the inlet port 108, 301, 401 may be made out of the same piece of material as the rest of the device or may be made out of a separate piece of material as the rest of the device. In another example, the inlet port 301, 401 may be made out of the same piece of material as the handle 309, 409. The handle 309, 409 may or may not be made out of the same piece of material as the rest of the device. If the handle 309, 409 and the rest of the device are separate pieces of material, then they can be attached.

[0048] The inlet port 108, 301, 401 and the fluid flow channel 106, 206 may be made out of the same piece of material as the blade 101. The inlet port 108, 301, 401 and the fluid flow channel 106, 206, 302, 402 can be made out of a different piece of material than the blade 101, 307, 407 where the blade 101, 307, 407 is then attached directly or indirectly to the inlet port fluid flow channel combination.

[0049] The device 100, 200, 300, 400 is configured for fluid to flow from the inlet port 108, 301, 401 through the fluid flow channel 106, 206, 302, 402 and to exit an
outlet 103, 305, 405 of the device 100, 200, 300, 400 for application to an area 532, for example, of a patient or an item.

[0050] At 750, the method ends.

[0051] Although various embodiments have been described in the context of making an incision in a patient, various embodiments can be used for cutting something other than a patient. For example, a device could be used to lubricate an area of an item, such as a piece of tubing, another medical device, among other things, and then cut inside of the area. In this case, a portion of the item would be an example of an area that fluid is applied to and that the blade is used to cut within.

[0052] Various embodiments have been described in various combinations and illustrations. However, any two or more embodiments or features may be combined. Further, any embodiment or feature may be used separately from any other embodiment or feature. Phrases, such as "an embodiment," "one embodiment," among others, used herein, are not necessarily referring to the same embodiment. Features, structures, or characteristics of any embodiment may be combined in any suitable manner with one or more other features, structures, or characteristics.

[0053] All elements, parts and steps described herein are preferably included. It is to be understood that any of these elements, parts and steps may be replaced by other elements, parts and steps or deleted altogether as will be obvious to those skilled in the art.

[0054] Broadly, the description herein pertains to the following. A device for applying medical fluid to an area and for cutting within the area is provided. The device includes an inlet port, a fluid flow channel, an outlet and a blade. The inlet port is configured for receiving the medical fluid into the device. The fluid flow channel is configured for the fluid to flow through the device. A first end of the fluid flow channel is connected to the inlet port. An outlet is configured for the fluid to
come out of the device. The outlet is positioned at a second end of the fluid flow channel. The blade is configured for cutting within the area.
The following concepts have been disclosed in this writing.

Concept 1. A device for applying medical fluid to an area and for cutting within the area, the device comprising:

- an inlet port configured for receiving the medical fluid into the device;
- a fluid flow channel configured for the fluid to flow through the device, a first end of the fluid flow channel connected to the inlet port;
- an outlet configured for the fluid to come out of the device, the outlet being positioned at a second end of the fluid flow channel; and
- a blade configured for cutting in the area that the medical fluid has been applied to.

Concept 2. The device of Concept 1, wherein the inlet port mates with an outlet port of a fluid reservoir.

Concept 3. The device of Concept 1 or 2, wherein the inlet port has threads that mate with threads of the outlet port.

Concept 4. The device of any one of the preceding concepts, wherein the inlet port is a universal inlet port that is compatible with various types of fluid reservoir outlet ports.

Concept 5. The device of any one of the preceding concepts, wherein the inlet port is located at any position along a non-cutting edge.

Concept 6. The device of Concept 1, 2, 3, or 4 wherein the inlet port is located on a handle included in the device.

Concept 7. The device of any one of the preceding concepts, wherein the fluid flow channel is selected from a group consisting of a straight fluid flow channel, a bent fluid flow channel, and a fluid flow channel with multiple channels.

Concept 8. The device of any one of the preceding concepts, wherein the
fluid flow channel is located in the blade.

Concept 9. The device of Concept 1, wherein the fluid flow channel is located, at least in part, in a handle of the device.

Concept 10. The device of any one of the preceding concepts, wherein the outlet is located at any position along any edge of the device, wherein any edge includes a cutting edge and a non-cutting edge.

Concept 11. The device of any one of concepts 1-9, wherein the outlet is located at the tip of the blade.

Concept 12. The device of any one of concepts 1-9, wherein a location of the outlet is selected from locations consisting of a center of an edge and off center of the edge.

Concept 13. A method of using a device for applying medical fluid to an area and for cutting within the area, the method comprising:

connecting an inlet port of the device to a reservoir of medical fluid, wherein the device has a fluid flow channel for the fluid to flow through the device, an outlet for the fluid to exit the device for application to the area, and a blade for cutting in the area;

causing the fluid to flow from the reservoir into the inlet port through the fluid flow channel and exit the outlet; and

cutting with the blade in the area.

Concept 14. The method as recited by Concept 13, wherein the method further comprises:

using an edge of the device to distribute the fluid in the area.

Concept 15. A method of making a device for applying medical fluid to an area patient and for cutting in the area, the method comprising:

associating a blade, which is configured for cutting within the area, with the device;
associating a fluid flow channel with the device, wherein the fluid flow channel is configured for the medical fluid to flow through the device; and
associating an inlet port with the device, wherein the device is configured for fluid to flow from the inlet port through the fluid flow channel and to exit an outlet of the device for application to the area.

Concept 16. The method as recited by Concept 15, wherein the method further comprises:
making the blade, the fluid flow channel and the inlet port out of a single piece of material.

Concept 17. The method as recited by Concepts 15 or 16, wherein the method further comprises:
associating a handle with the device.

Concept 18. The method as recited by Concept 17, wherein the fluid flow path is located, at least in part, in the handle.

Concept 19. The method as recited by Concept 17, wherein the method further comprises:
making the blade, the fluid flow channel, the inlet port and the handle out of a single piece of material.

Concept 20. The method as recited by Concept 17, wherein the method further comprises:
making a first piece that includes the fluid flow channel, the inlet port and the handle out of a first piece of material;
making the blade out of a second piece of material; and
connecting the first piece with the blade.
What is claimed is:

1. A device for applying medical fluid to an area and for cutting within the area, the device comprising:
 - an inlet port configured for receiving the medical fluid into the device;
 - a fluid flow channel configured for the fluid to flow through the device, a first end of the fluid flow channel connected to the inlet port;
 - an outlet configured for the fluid to come out of the device, the outlet being positioned at a second end of the fluid flow channel, and
 - a blade configured for cutting in the area that the medical fluid has been applied to.

2. The device of Claim 1, wherein the inlet port mates with an outlet port of a fluid reservoir.

3. The device of Claim 2, wherein the inlet port has threads that mate with threads of the outlet port.

4. The device of Claim 1, wherein the inlet is a universal inlet port that is compatible with various types of fluid reservoir outlet ports.

5. The device of Claim 1, wherein the inlet port is located at any position along a non-cutting edge.

6. The device of Claim 1, wherein the inlet port is located on a handle.

7. The device of Claim 1, wherein the fluid flow channel is selected from a group consisting of a straight fluid flow channel, a bent fluid flow channel, and a fluid flow channel with multiple channels.

8. The device of Claim 1, wherein the fluid flow channel is located in the
9. The device of Claim 1, wherein the fluid flow channel is located, at least in part, in the handle.

10. The device of Claim 1, wherein the outlet is located at any position along any edge of the device, wherein any edge includes a cutting edge and a non-cutting edge.

11. The device of Claim 1, wherein the outlet is located at the tip of the blade.

12. The device of Claim 1, wherein a location of the outlet is selected from locations consisting of a center of an edge and off center of the edge.

13. A method of using a device for applying medical fluid to an area and for cutting within the area, the method comprising:
 connecting an inlet port of the device to a reservoir of medical fluid, wherein the device has a fluid flow channel for the fluid to flow through the device, an outlet for the fluid to exit the device for application to the area, and a blade for cutting in the area;
 causing the fluid to flow from the reservoir into the inlet port through the fluid flow channel and exit the outlet; and
 cutting with the blade in the area.

14. The method as recited by Claim 13, wherein the method further comprises:
 using an edge of the device to distribute the fluid in the area.

15. A method of making a device for applying medical fluid to an area patient and for cutting in the area, the method comprising:
 associating a blade, which is configured for cutting within the area, with the device;
 associating a fluid flow channel with the device, wherein the fluid flow
channel is configured for the medical fluid to flow through the device; and
associating an inlet port with the device, wherein the device is configured for
fluid to flow from the inlet port through the fluid flow channel and to exit an outlet of
the device for application to the area.

16. The method as recited by Claim 15, wherein the method further comprises:
 making the blade, the fluid flow channel and the inlet port out of a single
 piece of material.

17. The method as recited by Claim 15, wherein the method further comprises:
 associating a handle with the device.

18. The method as recited by Claim 17, wherein the fluid flow path is
 located, at least in part, in the handle.

19. The method as recited by Claim 17, wherein the method further comprises:
 making the blade, the fluid flow channel, the inlet port and the handle out of
 a single piece of material.

20. The method as recited by Claim 17, wherein the method further comprises:
 making a first piece that includes the fluid flow channel, the inlet port and
 the handle out of a first piece of material;
 making the blade out of a second piece of material; and
 connecting the first piece with the blade.
Device 100

Inlet Port 108

FFC 106

Outlet 103

FIG. 1B
THE METHOD BEGINS 610

AN INLET PORT OF THE DEVICE IS CONNECTED TO THE RESERVOIR OF FLUID 620

THE FLUID IS MADE TO FLOW FROM THE RESERVOIR INTO THE INLET PORT THROUGH THE FLUID FLOW CHANNEL AND EXIT THE OUTLET 630

THE AREA IS CUT WITH THE BLADE 640

THE METHOD ENDS 650

FIG. 6
THE METHOD BEGINS

ASSOCIATING A BLADE, WHICH IS CONFIGURED FOR CUTTING THE AREA, WITH THE DEVICE

ASSOCIATE A FLUID FLOW CHANNEL WITH THE DEVICE

ASSOCIATE AN INLET PORT WITH THE DEVICE

THE METHOD ENDS

FIG. 7
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

A61M 5/14(2006.01)i, A61M 5/32(2006.01)i, A61B 17/32(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61M 5/14; A61B 1806; A61C 3033; A61B 17/32; A61B 18/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & Keywords: inlet, outlet, fluid, blade, medical, channel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2010-0274236 Al (KJIM, Y. WILLIAM S.) 28 October 2010 See abstract ; claims 1, 6, 21, 25, 26, 28, 42, 45 ; paragraphs [0025] , [0028] , [0030] ; figures 1A, 2A, 2B.</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 6379371 Bl (NOVAK, THEODORE A. D. et al.) 30 April 2002 See abstract ; claim 1; column 4, line 35-49 ; column 5, lines 25-64 ; figures 1 , 2, 3, 5, 10.</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 7097642 Bl (SPRAGUE, ROBERT T. et al.) 29 August 2006 See abstract ; claim 1; figures 3a, 3b, 5, 7.</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>WO 2008-148139 Al (TROEDHAN, ANGELO et al.) 11 December 2008 See abstract ; claim 1; page 9, lines 11-14 ; figure 1.</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search

28 March 2013 (28.03.2013)

Date of mailing of the international search report

29 March 2013 (29.03.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City’ 302-70; Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

KIM, Tae Hoon

Telephone No. 82-42-481-8407

Form PCT/ISA/210 (second sheet) (My 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 2010-238713 A1</td>
<td>28.10.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2759685 A1</td>
<td>28.10.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-124178 A2</td>
<td>28.10.2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-124178 A3</td>
<td>31.03.2011</td>
</tr>
<tr>
<td>US 6379371 B1</td>
<td>30.04.2002</td>
<td>CA 2389551 A1</td>
<td>25.05.2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2389551 C</td>
<td>24.03.2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1311197 A2</td>
<td>21.05.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1311197 B1</td>
<td>08.06.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2367248 T3</td>
<td>31.10.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 04699667 B2</td>
<td>11.03.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4699667 B2</td>
<td>15.06.2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6443969 B1</td>
<td>03.09.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 01-35812 A2</td>
<td>25.05.2001</td>
</tr>
<tr>
<td>US 7097642 B1</td>
<td>29.08.2006</td>
<td>US 6824555 B1</td>
<td>30.11.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6960225 B1</td>
<td>01.11.2005</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)