

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200037625 B2
(10) Patent No. 778279

(54) Title
Methods and compositions for treating solid tumors

(51) ⁶ International Patent Classification(s)
A61K 009/16 A61P 035/00

(21) Application No: 200037625 (22) Application Date: 2000.03.20

(87) WIPO No: WO00/57852

(30) Priority Data

(31) Number (32) Date (33) Country
09/276866 1999.03.26 US

(43) Publication Date : 2000.10.16

(43) Publication Journal Date : 2000.12.21

(44) Accepted Journal Date : 2004.11.25

(71) Applicant(s)
Guilford Pharmaceuticals, Inc.

(72) Inventor(s)
Wenbin Dang; Robert I. Garver Jr.

(74) Agent/Attorney
Callinan Lawrie, Private Bag 7, KEW VIC 3101

(56) Related Art
WO 1998/048859
WO 1998/044020
WO 1998/044021

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : A61K 9/16, A61P 35/00		A2	(11) International Publication Number: WO 00/57852 (43) International Publication Date: 5 October 2000 (05.10.00)
<p>(21) International Application Number: PCT/US00/07304</p> <p>(22) International Filing Date: 20 March 2000 (20.03.00)</p> <p>(30) Priority Data: 09/276,866 26 March 1999 (26.03.99) US</p> <p>(71) Applicant (for all designated States except US): GUILFORD PHARMACEUTICALS, INC. [US/US]; 6611 Tributary Street, Baltimore, MD 21224 (US).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): DANG, Wenbin [CN/US]; 3304 Governor Howard Drive, Ellicott City, MD 21043 (US). GARVER, Robert, I., Jr. [US/US]; 2116 Royal Fern Lane, Hoover, AL 35244 (US).</p> <p>(74) Agent: KULIK, David, J.; Howrey Simon Arnold & White, LLP, 1299 Pennsylvania Avenue, N.W., Box 34, Washington, DC 20004-2402 (US).</p>		<p>(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published Without international search report and to be republished upon receipt of that report.</p>	
<p>(54) Title: METHODS AND COMPOSITIONS FOR TREATING SOLID TUMORS</p> <p>(57) Abstract</p> <p>A biodegradable polymer composition comprising: (a) a poly(phosphoester) biodegradable polymer and (b) at least one antineoplastic agent in an amount effective to inhibit the growth of a solid tumor, which is suitable for intratumoral administration to treat a mammal having a solid tumor.</p>			

METHODS AND COMPOSITIONS FOR TREATING SOLID TUMORS

BACKGROUND OF THE INVENTION

10 1. Field of the Invention

The present invention relates to methods for treating solid tumors, in particular those pertaining to the extended release of an antineoplastic agent from biodegradable compositions.

15 2. Description of the Related Art

Antineoplastic agents, such as paclitaxel, have been used to treat solid tumors of various types. For example, those in the art have attempted to administer 20 a variety of antineoplastic agents into the tumor itself ("intraleisonally", also called "intratumorally") in the form of an aqueous slurry. See Luck et al., U.S. Patent No. 4,978,332. However, such water-based compositions also require the presence 25 of a vasoconstrictive drug to localize the action of the agent.

An opposite approach has also been taken by formulating a water immiscible, fatty acid ester matrix for intratumoral injection, e.g., of paclitaxel. See 30 WO 95/17901 published 6 July 1995 and Brown et al., U.S. Patent No. 5,573,781. However, the controlled intratumoral release of the antineoplastic agent in a lipid carrier over a prolonged period of time, for example, at least three or four weeks, has not been 35 disclosed.

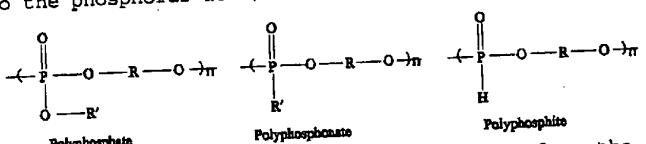
Thus, there exists a need for a method of effecting the *in vivo*, controlled release of a variety of different antineoplastic agents into a solid tumor, whether they are small hydrophobic drugs, such as 40 paclitaxel, or large and bulky bio-macromolecules, such

as therapeutically useful proteins. The effective release of the antineoplastic agent preferably occurs without requiring the presence of significant amounts of a physiologically acceptable fluid vehicle, such as 5 normal saline or a water-immiscible organic solvent.

Biocompatible polymeric materials have been used in various therapeutic drug delivery and medical implant applications. If a medical implant is intended for use as a drug delivery or other controlled-release 10 system, using a biodegradable polymeric carrier is one effective means to deliver the therapeutic agent locally and in a controlled fashion, see Langer et al., "Chemical and Physical Structures of Polymers as Carriers for Controlled Release of Bioactive Agents", 15 *J. Macro. Science, Rev. Macro. Chem. Phys.*, C23(1), 61-126 (1983). In this way, less total drug is required, and toxic side effects can be minimized.

Polymers have been used for some time as carriers 20 of therapeutic agents to effect a localized and sustained release. See Leong et al., "Polymeric Controlled Drug Delivery", *Advanced Drug Delivery Rev.*, 1:199-233 (1987); Langer, "New Methods of Drug Delivery", *Science*, 249:1527-33 (1990) and Chien et al., *Novel Drug Delivery Systems* (1982). Such delivery 25 systems offer the potential of enhanced therapeutic efficacy and reduced overall toxicity. Examples of classes of synthetic polymers that have been studied as possible solid biodegradable materials include polyesters (Pitt et al., "Biodegradable Drug Delivery 30 Systems Based on Aliphatic Polyesters: Applications to Contraceptives and Narcotic Antagonists", *Controlled Release of Bioactive Materials*, 19-44 (Richard Baker ed., 1980); poly(amino acids) and pseudo-poly(amino acids) (Pulapura et al. "Trends in the Development of 35 Bioresorbable Polymers for Medical Applications", *J. Biomaterials Appl.*, 6:1, 216-50 (1992); polyurethanes

(Bruin et al., "Biodegradable Lysine Diisocyanate-based Poly(Glycolide-co- ϵ Caprolactone)-Urethane Network in Artificial Skin", *Biomaterials*, 11:4, 291-95 (1990); polyorthoesters (Heller et al., "Release of Norethindrone from Poly(Ortho Esters)", *Polymer Engineering Sci.*, 21:11, 727-31 (1981); and polyanhydrides (Leong et al., "Polyanhydrides for Controlled Release of Bioactive Agents", *Biomaterials* 7:5, 364-71 (1986).


5 More specifically, Walter et al., *Neurosurgery*, 37:6, 1129-45 (1995) discloses the use of the polyanhydride PCPP-SA as a solid carrier for intratumoral administration. Others have used 10 poly(lactic acid) as intratumoral solid carriers, for example, as needles for injection directly into the 15 lesion. See Kaetsu et al., *J. Controlled Release*, 6:249-63 (1987); and Yamada et al., U.S. Patent No. 5,304,377.

20 However, others have encountered problems with these materials. Paclitaxel has been encapsulated in poly(epsilon-caprolactone), but only about 25% of the drug was released over 6 weeks in *in vitro* assays. Dordunoo et al., "Taxol Encapsulation in Poly(epsilon-caprolactone) Microspheres", *Cancer Chemotherapy & 25 Pharmacology*, 36:279-82 (1995). Poly(lactic-co-glycolic acid) microspheres have been used for the encapsulation of paclitaxel and exhibited a relatively constant release rate over three weeks *in vitro*, but these formulations were not evaluated *in vivo*. Wang et 30 al., "Preparation and Characterization of Poly(lactic-co-glycolic acid) Microspheres for Targeted Delivery of a Novel Anticancer Agent, Taxol", *Chemical & Pharmaceutical Bulletin*, 44:1935-40 (1996). Paclitaxel has also been encapsulated in polyanhydride discs, but 35 the resulting release rate has been described as too slow for clinical utility. Park et al., "Biodegradable

polyanhydride Devices of Cefaxolin Sodium, Bupivacaine, and Taxol for Local Drug Delivery: Preparation and Kinetics and Mechanism of *in vitro* Release", *J. of Controlled Release*, 52:179-89 (1998).

5 Controlled Release, 32:175-176 (1990).

10 Polymers having phosphate linkages, called poly(phosphates), poly(phosphonates) and poly(phosphites), are known. See Penczek et al., *Handbook of Polymer Synthesis*, Chapter 17: "Phosphorus-Containing Polymers", (Hans R. Kricheldorf ed., 1992). The respective structures of these three classes of compounds, each having a different side chain connected to the phosphorus atom, are as follows:

range of biodegradation rates are attainable.

An additional feature of poly(phosphoesters) is the availability of functional side groups. Because phosphorus can be pentavalent, drug molecules or other biologically active substances can be chemically linked to the polymer. For example, drugs with -O-carboxy groups may be coupled to the phosphorus via a phosphoester bond, which is hydrolyzable. See, Leong,

U.S. Patent Nos. 5,194,581 and 5,256,765. The P-O-C group in the backbone also lowers the glass transition temperature of the polymer and, importantly, confers solubility in common organic solvents, which is desirable for easy characterization and processing.

5 Copending U.S. Patent Application Serial No.

09/053,648 filed April 2, 1998, which corresponds to PCT/US98/0681 (published October 8, 1998 as WO 98/44021), discloses biodegradable terephthalate polyester-poly(phosphate) compositions. Copending 10 Patent Application Serial No. 09/053,649 filed April 2, 1998, which corresponds to PCT/US98/06380 (published October 8, 1998 as WO 98/44020), discloses biodegradable compositions containing polymers chain-extended by phosphoesters. Further, copending 15 Application Serial No. 09/070,204 filed April 30, 1998, which corresponds to PCT/US98/09185, discloses biodegradable compositions comprising poly(cycloaliphatic phosphoester) compounds. However, 20 none of these disclosures suggests the specific use of biodegradable poly(phosphoester) compositions for the intratumoral treatment of solid tumors.

25 Thus, there remains a need for new methods and materials for the difficult problem of successfully treating tumors with a minimum of toxicity and avoiding prolonged courses of periodic re-dosing.

SUMMARY OF THE INVENTION

It has now been discovered that biodegradable 30 polymer compositions comprising:

(a) a poly(phosphoester) biodegradable polymer
and
(b) at least one antineoplastic agent in an amount effective to inhibit the growth of a 35 solid tumor

are suitable for intratumoral administration to treat a

mammal having a solid tumor. In a preferred embodiment, the composition comprises:

- (a) a poly(phosphoester) biodegradable polymer made by the process of reacting a phosphorodihalide and a diol; and
- (b) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection.

5 Alternatively, it comprises:

- (a) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection; and
 - (b) a poly(phosphoester) biodegradable polymer made by a process comprising the steps of:
 - (1) reacting at least one heterocyclic ring compound with
- H-Y-L-Y-H,
wherein H is hydrogen;
- 20 Y is -O-, -S- or -NR⁴-, where R⁴ is H or alkyl; and
- L is a divalent, branched or straight chain aliphatic group having 1-20 carbon atoms
- 25 to form a prepolymer;
- (2) further reacting the prepolymer with a phosphorodihalide to form a poly(phosphoester).

30 The invention also comprises an article suitable for the intratumoral administration of an antineoplastic agent to a mammal having a solid tumor wherein the article comprises:

- (a) a biodegradable poly(phosphoester); and
- (b) at least one antineoplastic agent in an amount effective to inhibit the growth

of said tumor when administered by intratumoral injection.

In yet another embodiment of the invention, a method is provided for treating a thoracic tumor in a mammal by the intratumoral administration of a composition comprising:

- (a) a biodegradable polymer;
- (b) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection.

An alternative method for treating a solid tumor in a mammal is by the intratumoral administration of a composition comprising:

- (a) a poly(phosphoester) biodegradable polymer;
- (b) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection.

The compositions of the invention can be used to deliver a wide variety of antineoplastic agents, for example, both hydrophobic drugs, such as paclitaxel, to large water-soluble macromolecules, such as proteins or DNAs, over an extended period of time without necessitating significant volumes of a delivery fluid or regular re-dosing. The methods of the invention can thus be used to significantly increase the time period over which an effective dose of the antineoplastic agent is released. Further, tumor growth is slowed to an unexpected degree. Further, the tumor suffered by the subject can be therapeutically managed with a minimum of side effects and without the unpleasantness and discomfort of a periodic series of parenteral treatments continuing to maintain a significant concentration of antineoplastic agent within the tumor.

BRIEF DESCRIPTION OF THE DRAWINGS

5 Figure 1 shows the controlled delivery of hydrophobic small molecules, such as paclitaxel, from a film of poly(bis-hydroxyethyl terephthalate-co-ethyl phosphate/terephthalate chloride) (80:20) ["poly(BHET-EOP/TC, 80/20)"].

10 Figure 2A through 2C all show degradation data of poly(D,L-lactide-co-ethyl phosphate) ["poly(DAPG-EOP)"] polymers.

15 Figure 3 shows the time-dependent change in A549 tumor nodules treated with 24 mg/kg paclitaxel in poly(DAPG-EOP) intratumorally and treated with the poly(DAPG-EOP) carrier alone.

20 Figure 4 shows the time-dependent change in A549 tumor nodules treated intratumorally with three different dosages of paclitaxel in poly(DAPG-EOP) (4 mg/kg, 12.5 mg/kg or 24 mg/kg).

25 Figure 5 shows the time-dependent change in A549 tumor nodules treated paclitaxel in its conventional liquid formulation (24 mg/kg) via intraperitoneal administration, paclitaxel in its conventional liquid formulation (24 mg/kg) administered intratumorally, and paclitaxel in poly(DAPG-EOP) (24 mg/kg) administered intratumorally.

30 Figure 6 shows the time-dependent change in H1299 tumor nodules treated with 24 mg/kg paclitaxel in poly(DAPG-EOP) intratumorally, and the poly(DAPG-EOP) polymer carrier alone.

35 Figure 7 shows the time-dependent change in H1299 tumor nodules treated intratumorally with three different dosages of paclitaxel in poly(DAPG-EOP) (4 mg/kg, 12.5 mg/kg or 24 mg/kg).

Figure 8 shows the time-dependent change in H1299 tumor nodules treated paclitaxel in its conventional liquid formulation (24 mg/kg) via intraperitoneal administration, paclitaxel in its conventional liquid

formulation (24 mg/kg) administered intratumorally, and formulation (24 mg/kg) administered intratumorally, and paclitaxel in poly(DAPG-EOP) (24 mg/kg) administered paclitaxel in poly(DAPG-EOP) (24 mg/kg) administered intratumorally.

5 Figure 9 shows the weight changes in A549 tumor-bearing mice following treatment with either a vehicle control or 24 mg/kg of paclitaxel in its conventional liquid formulation or in poly(DAPG-EOP).

10 Figure 10 shows the weight changes in H1299 tumor-bearing mice following treatment with either a vehicle control or 24 mg/kg paclitaxel in its conventional liquid formulation or poly(DAPG-EOP).

15 Figure 11 shows estimated tumor volume doubling times based on data derived from that shown in Figures 4-6 for A549 tumor cells. P values shown represent the differences between the corresponding group and the 24 mg/kg group for paclitaxel in poly(DAPG-EOP).

20 Figure 12 shows the estimated tumor volume doubling times based on data derived from that shown in Figures 7-9 for H1299 tumor cells. P values shown represent the differences between the corresponding group and the 24 mg/kg group for paclitaxel in poly(DAPG-EOP).

DETAILED DESCRIPTION OF THE INVENTION

Polymeric Compositions of the Invention

25 As used herein, the expression "mammal" refers to any mammalian subject, such as mice, rats, guinea pigs, cats, dogs, human beings, cows, horses, sheep, or other livestock.

30 "Cancer" comprises tissue that grows by either increased cellular proliferation and/or decreased apoptosis.

35 The expression "a mammal having cancer" includes, but is not limited to, subjects suffering from current symptoms of this disease and subjects who are recovering from other modes of treatment for the

disease, such as surgery, chemotherapy, or other treatment.

As used herein, the term "treating" includes:

(i) inhibiting the disease, disorder or

condition, i.e., arresting its development;

and

(ii) relieving the disease, disorder or condition, i.e., causing regression of the disease, disorder and/or condition.

10 "Volume of tumor" means the three dimensional space occupied predominantly by a tumor in an animal as measured in cubic units.

15 "Intratumoral" administration means implanting a reservoir of a therapeutic agent(s) inside a tumor.

Intratumoral administrations is advantageous for tumor treatment because the outer cell layers of tumors are often composed of a high percentage of necrotic cells and/or connective and support tissue which slow and/or impede the extra-tumoral vascular or parenteral delivery of therapeutic agents to the actively growing cancer cells at the center of solid tumors.

20 "Doubling time" means the time it takes for a population of cancer cells to double in number of cells or the time it takes for a tumor to double its volume.

25 "Biodegradable" means capable of being biologically decomposed. A "biodegradable" polymer can be biologically decomposed into units which may be either removed from the biological system and/or chemically incorporated into the biological system.

30 Preferably, the inhibition of the growth of the solid tumor with the invention is measured as a delay in tumor doubling time. The use of the invention usually extends the doubling time significantly, preferably by a factor of at least two, more preferably by a factor of at least four and, most preferably, by a factor of

35 8-10.

Another way that the inhibition of the growth of the solid tumor with the invention is measured is as a reduction in the volume of the tumor. The use of the invention usually decreases the tumor volume significantly, preferably by at least about 10%, more preferably by at least about 30%, even more preferably by at least about 50% and, most preferably, by at least about 70%.

5 "Solid tumor" means a locus of tumor cells where the majority of the cells are tumor cells or tumor-associated cells.

10 Biodegradable polymers differ from non-biodegradable polymers in that they can be degraded during *in vivo* therapy. This generally involves breaking down the polymer into its monomeric subunits.

15 In principle, the ultimate hydrolytic breakdown products of the polymer used in the invention are a diol, an aliphatic alcohol and phosphate. All of these degradation products are potentially non-toxic.

20 However, the intermediate oligomeric products of the hydrolysis may have different properties. Thus, the toxicology of a biodegradable polymer intended for insertion into the body, even one synthesized from apparently innocuous monomeric structures, is typically determined after one or more toxicity analyses.

25 The expression "extended release", as used herein, includes, without limitation various forms of release, such as controlled release, timed release, sustained release, delayed release, long acting, and pulsatile delivery, immediate release that occurs with various rates. The ability to obtain extended release, controlled release, timed release, sustained release, delayed release, long acting, pulsatile delivery or immediate release is performed using well-known procedures and techniques available to the ordinarily skilled artisan. None of these specific techniques or

30 35

procedures constitute an inventive aspect of this invention.

The invention contemplates a biodegradable polymer composition, article, and method for treating a subject having a solid tumor. Any of a wide variety of solid tumors may respond to the treatment of the invention, including but not limited to laryngeal tumors, brain tumors, and other tumors of the head and neck; colon, rectal and prostate tumors; breast and thoracic solid tumors; ovarian and uterine tumors; tumors of the esophagus, stomach, pancreas and liver; bladder and gall bladder tumors; skin tumors such as melanomas; and the like. Moreover, the tumor treated in the invention can be either primary or a secondary tumor resulting from metastasis of cancer cells elsewhere in the body to the chest.

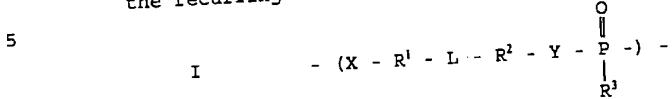
Preferably, the tumor is a laryngeal, colon, rectal, prostate, breast, thoracic, bladder or skin tumor. More preferably, the tumor is a thoracic tumor such as, but not limited to, bronchogenic tumors, such as primary and/or metastatic lung carcinomas [both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC)]; malignant pleural effusions; or cancers of the lung parenchyma, airways, chest wall and pleural spaces. Most preferably, however, the tumor is a lung solid tumor.

The term "aliphatic" refers to a linear, branched or cyclic alkane, alkene, or alkyne. Preferred linear or branched aliphatic groups in the poly(cycloaliphatic phosphoester) composition of the invention have from about 1 to 20 carbon atoms. Preferred cycloaliphatic groups may have one or more sites of unsaturation, i.e., double or triple bonds, but are not aromatic in nature.

As used herein, the term "aryl" refers to an unsaturated cyclic carbon compound with $4n+2 \pi$

5 electrons. As used herein, the term "heterocyclic" refers to a saturated or unsaturated ring compound having one or more atoms other than carbon in the ring, for example, nitrogen, oxygen or sulfur. "Heteroaryl" refers to a heterocyclic compound with $4n+2$ electrons.

10 5 As used herein, the term "non-interfering substituent" means a substituent that does react with the monomers; does not catalyze, terminate or otherwise interfere with the polymerization reaction; and does not react with the resulting polymer chain through intra- or inter-molecular reactions.


15 10 The biodegradable and injectable polymer composition of the invention comprises a biodegradable poly(phosphoester) polymer. The precise poly(phosphoester) polymer used in the invention can vary widely, depending on the hydrophilicity or hydrophobicity of the antineoplastic agent used in the composition, the physical characteristics desired, and the release profile desired. Examples of useful 20 15 poly(phosphoesters) include poly(phosphates), poly(phosphites), or poly(phosphonates); poly(phosphoesters) modified with poly(carboxylic acids); poly(phenyl neocarboxylate phosphites) and poly(pentaerythritol neocarboxylate phosphites) as 25 20 described in Friedman U.S. Patent No. 3,422,982; cyclic cycloalkylene phosphates and cyclic arylene phosphates as described in Vandenberg, U.S. Patent No. 3,655,586; 30 25 substituted ethane diphosphonates as described in Kerst, U.S. Patent No. 3,664,975; polyhydroxychloropropyl phosphate-phosphates, as 35 30 described in Cohen et al., U.S. Patent No. 3,664,974; diphosphinic acid esters as described in Herwig et al., U.S. Patent No. 3,875,263; poly(phenylphosphonates), as described by Desitter et al., U.S. Patent No. 3,927,231; poly(terephthalate phosphonates), as 35 35 described by Reader, U.S. Patent No. 3,932,566;

polyamidocarboxylic acids (also called polyamic acids),
as described by Meyer et al., U.S. Patent No.
3,981,847; dimethyl pentaerythritol diphosphites, alkyl
alkylene phosphites, 1,3,2-dioxaphosphorinanes, aryl
alkylene phosphonites, and 1,3,2-oxa-aza-phospholanes,
5 as described by Hechenbleikner, U.S. Patent No.
4,082,897; linear saturated polyesters of phosphoric
acid and halogenated diols, as described by Login et
al. in U.S. Patent Nos. 4,259,222, 4,315,847 and
10 4,315,969; polyester phosphonates based on aromatic
dicarboxylic acids and aromatic dihydroxy compounds, as
described by Schmidt et al., U.S. Patent Nos. 4,328,174
and 4,374,971; polyarylene esters containing
15 phosphorus, as described by Besecke et al., U.S. patent
Nos. 4,463,159 and 4,472,570; polyphosphates produced
from indan-5-ols and triphenylphosphate, as described
in Serini et al., U.S. Patent Nos. 4,482,693 and
4,491,656; poly(phosphoester-urethanes) as described by
20 Leong in U.S. Patent No. 5,176,907; poly(phosphoesters)
prepared from such compounds as bis-phenol A, as
described by Leong in U.S. Patent Nos. 5,194,581 and
5,256,765; and the like, the disclosures of which are
hereby incorporated by reference.

Particularly preferred poly(phosphoesters),
25 however, include those described in copending U.S.
Patent Application Serial Nos. 09/053,648 filed April
2, 1998; 09/053,649 filed April 2, 1998; and 09/070,204
filed April 30, 1998, which correspond respectively to
the following publications: PCT/US98/0681 (published
30 October 8, 1998 as WO 98/44021), PCT/US98/06380
(published October 8, 1998 as WO 98/44020) and

PCT/US98/09185, the disclosures of which are all hereby incorporated by reference.

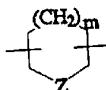
Preferably, however, the poly(phosphoester) has the recurring monomeric units shown in formula I:

10 wherein X is -O- or -NR⁴-, where R⁴ is H or alkyl, such as methyl, ethyl, 1,2-dimethylethyl, n-propyl, isopropyl, 2-methylpropyl, 2,2-dimethylpropyl or tert-butyl, n-pentyl, tert-pentyl, n-hexyl, n-heptyl and the like.

15 The group Y in formula I is -O- or -NR⁴-, where R⁴ is as defined above.

20 Each of R¹ and R² can be any divalent organic moiety, which may be either unsubstituted or substituted with one or more non-interfering substituents, so long as the moiety and its substituents do not interfere undesirably with the polymerization, copolymerization, or biodegradation reactions of the polymer. Specifically, each of R¹ and R² can be a branched or straight chain aliphatic group, preferably having about 1-20 carbon atoms. For example, R¹ and R² can be alkylene, such as methylene, ethylene, 1-methylethylene, 1,2-dimethylethylene, n-propylene, isopropylene, 2-methylpropylene, 2,2'-dimethylpropylene or tert-butylene, n-pentylene, tert-pentylene, n-hexylene, n-heptylene, n-octylene, n-nonylene, n-decylene, n-undecylene, n-dodecylene, and the like.

25 R¹ and R² can also be alkenylene, such as ethenylene, propenylene, 2-vinylpropenylene, n-ethenylene, propenylene, 2-vinylpropenylene, n-pentenylene, 4-(3-but enylene, 3-ethenylbutylene, n-pentenylene, 4-(3-propenyl)hexylene, n-octenylene, 1-(4-but enyl)-3-

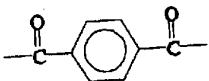

methyldecylene, dodecylene, 2-(3-propenyl)dodecylene, hexadecylene, and the like. R¹ and R² can also be alkynylene, such as ethynylene, propynylene, 3-(2-ethynyl)pentylene, n-hexynylene, octadecynylene, 2-(2-propynyl)decylene, and the like.

5 R¹ and R² can also be an aliphatic group, such as an alkylene, alkenylene or alkynylene group, substituted with a non-interfering substituent, for example, a hydroxy, halogen or nitrogen group.

10 Examples of such groups include, but are not limited to, 2-chloro-n-decylene, 1-hydroxy-3-ethenylbutylene, 2-propyl-6-nitro-10-dodecynylene and the like.

15 Further, R¹ and R² can be a cycloaliphatic group, such as cyclopentylene, 2-methylcyclopentylene, cyclohexylene, cyclohexenylene and the like. Each of R¹ and R² can also be a divalent aromatic group, such as phenylene, benzylene, naphthalene, phenanthrenylene, and the like, or a divalent aromatic group substituted with a non-interfering substituent. Further each of R¹ and R² can be a divalent heterocyclic group, such as 20 pyrrolylene, furanylene, thiophenylene, alkylene-pyrrolylene-alkylene, pyridylene, pyridinylene, pyrimidinylene and the like, or may be any of these substituted with a non-interfering substituent.

25 Preferably, R¹ and R² have from about 1-20 carbon atoms and are an alkylene group, a cycloaliphatic group, a phenylene group, or a divalent group having the formula:



30 wherein Z is oxygen, nitrogen, or sulfur, and m is 1 to 3. More preferably, each of R¹ and R² is a branched or straight chain alkylene group having from 1 to 7 carbon

atoms. Most preferably, each of R¹ and R² is a methylene, ethylene group, n-propylene, 2-methyl-propylene, or a 2,2'-dimethylpropylene group.

In one embodiment of the invention, either R¹, R² or both R¹ and R², can be an antineoplastic agent in a form capable of being released in a physiological environment. When the antineoplastic agent part of the poly(phosphoester) backbone in this way, it is released as the polymeric matrix formed by the composition of the invention degrades.

10 L in the polymer composition of the invention can be any divalent, branched or straight chain aliphatic group having 1-20 carbon atom, a cycloaliphatic group, or a group having the formula:

15

When L is a branched or straight chain alkylene group, it is preferably an alkylene group having from 1 to 7 carbon atoms, such as 2-methylmethylen or ethylene. When L is a cycloaliphatic group, it may be any divalent cycloaliphatic group so long as it does not interfere with the polymerization or biodegradation reactions of the polymer of the composition. Specific examples of useful unsubstituted and substituted cycloaliphatic L groups, include cycloalkylene groups such as cyclopentylene, 2-methylcyclopentylene, cyclohexylene, 2-chlorocyclohexylene, and the like; cycloalkenylene groups, such as cyclohexenylene; and cycloalkylene groups having fused or bridged additional ring structures on one or more sides, such as tetrailinylene, decalinylene, and norpinanylene; or the like.

R³ in the polymer composition of the invention is selected from the group consisting of H, alkyl, alkoxy, aryl, aryloxy, heterocyclic and heterocycloxy residues.

When R³ is alkyl or alkoxy, it preferably contains about 1 to about 20 carbon atoms, even more preferably about 1 to about 15 carbon atoms and, most preferably about 1-7 carbon atoms. Examples of such groups include methyl, methoxy, ethyl, ethoxy, n-propyl, isopropoxy, n-butoxy, t-butyl, -C₂H₅; alkyl substituted with a non-interfering substituent, such as halogen, alkoxy or nitro; alkyl conjugated to a biologically active substance to form a pendant drug delivery system; and the like.

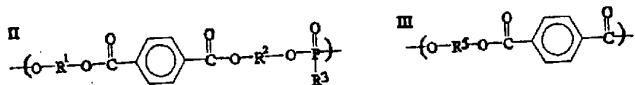
When R³ is aryl or the corresponding aryloxy group, it typically contains from about 5 to about 14 carbon atoms, preferably about 5 to 12 carbon atoms and, optionally, can contain one or more rings that are fused to each other. Examples of particularly suitable aromatic groups include phenyl, phenoxy, naphthyl, anthracenyl, phenanthrenyl and the like.

When R³ is heterocyclic or heterocycloxy, it typically contains from about 5 to 14 ring atoms, preferably from about 5 to 12 ring atoms, and one or more heteroatoms. Examples of suitable heterocyclic groups include furan, thiophene, pyrrole, isopyrrole, 3-isopyrrole, pyrazole, 2-isoimidazole, 1,2,3-triazole, 1,2,4-triazole, oxazole, thiazole, isothiazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3,4-oxatriazole, 1,2,3,5-oxatriazole, 1,2,3-dioxazole, 1,2,4-dioxazole, 1,3,2-dioxazole, 1,2,3,4-dioxazole, 1,2,5-oxatriazole, 1,3-oxathiole, 1,2,1,3,4-dioxin, pyran, 1,4-pyran, 1,2-pyrone, 1,4-pyrone, 1,2-dioxin, pyridine, N-alkyl pyridinium, pyridazine, pyrimidine, pyrazine, 1,3,5-triazine, 1,2,4-triazine, 1,2,3-triazine, 1,2,4-oxazine, 1,3,2-oxazine, 1,3,5-oxazine, 1,4-oxazine, o-isoxazine, p-isoxazine, 1,2,5-

oxathiazine, 1,2,6-oxathiazine, 1,4,2-oxadiazine,
1,3,5,2-oxadiazine, azepine, oxepin, thiepin, 1,2,4-
diazepine, indene, isoindene, benzofuran,
isobenzofuran, thionaphthene, isothionaphthene, indole,
indolenine, 2-isobenzazole, 1,4-pyrindine, pyrano[3,4-
5 indole, 2-pyrrole, isoindazole, indoxazine, benzoxazole,
anthranil, 1,2-benzopyran, 1,2-benzopyrone, 1,4-
benzopyrone, 2,1-benzopyrone, 2,3-benzopyrone,
quinoline, isoquinoline, 12-benzodiazine, 1,3-
benzodiazine, naphthpyridine, pyrido[3,4-b]-pyridine,
10 pyrido[3,2-b]-pyridine, pyrido[4,3-b]pyridine, 1,3,2-
benzoxazine, 1,4,2-benzoxazine, 2,3,1-benzoxazine,
15 3,1,4-benzoxazine, 1,2-benzoxazine, 1,4-
benzisoxazine, carbazole, xanthrene, acridine, purine,
and the like. Preferably, when R³ is heterocyclic or
heterocycloxy, it is selected from the group consisting
of furan, pyridine, N-alkylpyridine, 1,2,3- and 1,2,4-
triazoles, indene, anthracene and purine rings.

20 In a particularly preferred embodiment, R³ is an
alkyl group, an alkoxy group, a phenyl group, a phenoxy
group, or a heterocycloxy group and, even more
preferably, an alkoxy group having from 1 to 10 carbon
atoms. Most preferably, R³ is an ethoxy or hexyloxy
group.

25 Alternatively, the side chain R³ can be the
antineoplastic agent or some other biologically active
substance pendently attached to the polymer backbone,
for example by ionic or covalent bonding. In this
30 pendant system, the antineoplastic agent or other
biologically active substance is released as the bond
connecting R³ with the phosphorous atom is cleaved
under physiological conditions.

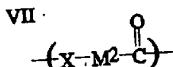
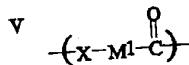

35 The number of recurring monomeric units can vary
greatly depending on the biodegradability and the
release characteristics desired in the polymer, but
typically varies between about 5 and 1,000.

Preferably, the number of recurring units is from about 5 to about 500 and, most preferably, is from about 5 to about 400.

When used in accordance with the method of the invention, the polymer composition provides extended release of the antineoplastic agent into the solid tumor of a subject having one or more of such tumors, preferably for a period greater than about one day. Even more preferably, the release profile extends over a time of at least about 15 days, still more preferably at least about 30 days, for example, from at least about four weeks to a year.

More preferably, however, the poly(phosphoester) polymer of the invention is a phosphoester co-ester.

In one embodiment, the biodegradable poly(phosphoester) of the invention has a molecular weight between about 2 and 500 KDaltons and comprises monomeric units represented by formulas II and III:



wherein each of R¹, R² and R³ is a divalent organic moiety; and

R³ is selected from the group consisting of alkoxy, aryloxy and heterocycloxy.

Even more preferably, R¹, R² and R³ are each independently an alkylene group having from 1 to 7 carbons atoms; and R³ is an alkoxy group having from 1 to 7 carbon atoms. Most preferably, R¹, R² and R³ are each independently selected from the group consisting of ethylene, n-propylene, 2-methylpropylene and 2,2-dimethyl-propylene; and R³ is ethoxy.

In another embodiment, the polymer composition of the invention comprises a biodegradable poly(phosphoester) has a molecular weight between about

2 and 500 KDaltons and comprising monomeric units
represented by formulas IV, V, VI and VII:

wherein X is -O- or -NR⁴-;

Y is -O-, -S- or -NR⁴-;

R⁴ is H or alkyl;

5 M¹ and M² are each independently (1) a branched or straight chain aliphatic group having from 1-20 carbon atoms; or (2) a branched or straight chain, oxy-, carboxy- or amino-

10 aliphatic group having from 1-20 carbon atoms;

L is a divalent, branched or straight chain aliphatic group having 1-20 carbon atom; and

15 R³ is selected from the group consisting of H, alkyl, alkoxy, aryl, aryloxy, heterocyclic or heterocycloxy.

In formulas IV-VII, the molar ratios of the various monomers to each other can vary greatly depending on the biodegradability and the release characteristics desired in the polymer but, typically, is about 1:10:1:10, respectively.

20 In formulas V and VII, each of M¹ and M² is preferably a branched or straight chain alkylene or alkoxylenes group, more preferably having from 1-20 carbon atoms. Even more preferably, at least one of M¹ and M² is an alkylene or alkoxylenes group having a

formula selected from the group consisting of $-(\text{CH}_2)_a-$,

$-(\text{CH}_2)_a-\text{O}-$, and

$-(\text{CH}_2)_a-\text{O}-(\text{CH}_2)_b-$, wherein each of a and b is 1-7.

When either M^1 or M^2 is a branched or straight

chain, carboxy-aliphatic group having from 1-20 carbon

5

atoms, it can also be, for example, a divalent

carboxylic acid ester such as the divalent radical

10

corresponding to methyl formate, methyl acetate, ethyl

acetate, n-propyl acetate, isopropyl acetate, n-butyl

acetate, ethyl propionate, allyl propionate, t-butyl

15

acrylate, n-butyl butyrate, vinyl chloroacetate, 2-

methoxycarbonyl cyclohexanone, 2-acetoxycyclohexanone,

and the like. When M^1 or M^2 is a branched or straight

chain, carboxy-aliphatic group, it preferably has the

formula $-\text{CHR}'-\text{CO}-\text{O}-\text{CHR}''-$, wherein R' and R'' are each

independently H, alkyl, alkoxy, aryl, aryloxy,

heterocyclic or heterocycloxy.

When either M^1 or M^2 is a branched or straight

chain, amino-aliphatic group having from 1-20 carbon

20

atoms, it can be a divalent amine such as $-\text{CH}_2\text{NH}-$,

$-(\text{CH}_2)_2\text{N}-$, $-\text{CH}_2(\text{C}_2\text{H}_5)\text{N}-$, $-\text{n-C}_4\text{H}_9-\text{NH}-$, $-\text{t-C}_4\text{H}_9-\text{NH}-$,

$-\text{CH}_2(\text{C}_2\text{H}_5)\text{N}-$, $-\text{C}_2\text{H}_5(\text{C}_2\text{H}_5)\text{N}-$, $-\text{CH}_2(\text{C}_6\text{H}_{11})\text{N}-$, and the like.

When M^1 or M^2 is a branched or straight chain, amino-

aliphatic group, it preferably has the formula $-(\text{CH}_2)_a-$

NR' where R' is H or lower alkyl, and "a" is from 1 to

25

7.

Preferably, M^1 and/or M^2 is an alkylene group

having the formula $-\text{O}-(\text{CH}_2)_a-$ where a is 1 to 7 and,

most preferably, is a divalent ethylene group. In

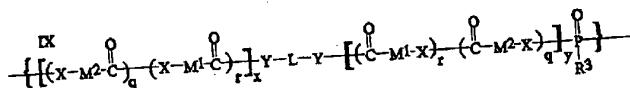
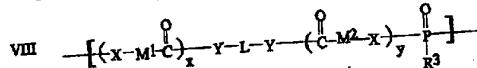
30

another particularly preferred embodiment, M^1 and M^2 are

n-pentylene and the divalent radical corresponding to

methyl acetate respectively.

Preferably, R^3 in formulas IV-VII is an alkoxy



group; X and Y are each oxygen; and M^1 , M^2 and L are

each independently a branched or straight chain

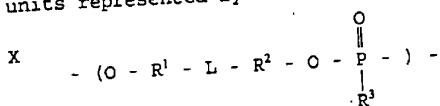
35

alkylene group having from 1 to 7 carbon atoms. Still more preferably, R¹ is an alkoxy group having from 1 to 7 carbon atoms; L is alkylene; and M¹ and M² are each independently an alkylene group having from 1 to 3 carbon atoms.

5 In preferred polymers of formula VIII and IX:

wherein X, Y and R¹ are as defined above; M¹ and M² are each independently (1) a branched or straight chain aliphatic group having from about 1-20 carbon atoms, even more preferably from about 1-7 carbon atoms; or (2) a branched or straight chain, oxy-, carboxy- or amino-aliphatic group having from about 1-20 carbon atoms, such as ethoxylene, 2-methylethoxylene, propoxylene, butoxylene, pentoxylen, dodecyloxylen, hexadecyloxylen, and the like;

10 L is a divalent, branched or straight chain aliphatic group having 1-20 carbon atoms;

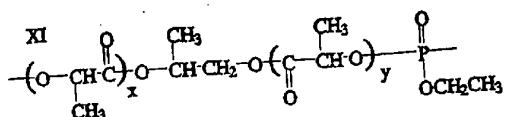

15 each of x and y is about 1 to 1,000;

20 the molar ratio of x:y can vary greatly depending on the biodegradability and the release characteristics desired in the polymer but, typically, is about 1;

25 the molar ratio q:r can also vary greatly depending on the biodegradability and the release characteristics desired in the polymer, but

typically varies between about 1:200 and 200:1, preferably between about 1:150 to about 150:1 and, most preferably, between about 1:99 and 99:1.

In yet another preferred embodiment, the polymer composition of the invention comprises a biodegradable poly(phosphoester) having a molecular weight between about 2 and 500 KDaltons and comprising monomeric units represented by formula X:


wherein each of R^1 and R^2 is independently straight or branched aliphatic, either unsubstituted or substituted with one or more non-interfering substituents; and

L is a divalent cycloaliphatic group; and
 R^3 is selected from the group consisting of H, alkyl, alkoxy, aryl, aryloxy, heterocyclic or heterocycloxy.

Preferably, each of R^1 and R^2 is a methylene group; R^3 is an alkoxy group having from 1 to 6 carbon atoms; and L is cyclohexylene.

Most preferably, the biodegradable composition is suitable for intratumoral administration to treat a mammal having a thoracic solid tumor, and the composition comprises:

- (a) paclitaxel and
- (b) a biodegradable polymer having a molecular weight between about 2 and 500 KDaltons and comprising monomeric units shown in formula XI:

wherein the delay in tumor doubling time is extended by a factor of at least two. Typically, the molar ratio of x:y in formula XI is about 1:1.

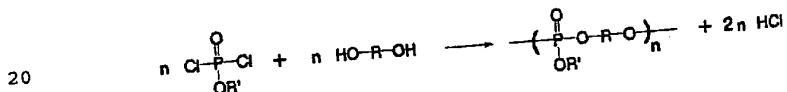
The molecular weight of the polymer used in the composition of the invention can vary widely, depending on whether a rigid solid state (higher molecular weights) is desirable, or whether a flowable or flexible state (lower molecular weights) is desired. Molecular weights are determined by standard techniques well known to the ordinary skilled artisan, such as GPC and light scattering. Generally, however, weight-average molecular weights (M_w) typically vary from about 2,000 to about 500,000 daltons, preferably from about 5,000 to about 200,000 daltons and, even more preferably, from about 5,000 to 100,000 daltons. The average molecular weight is by

One method to determine molecular weight is by combined gel permeation chromatography ("GPC") and light scattering, e.g., mixed bed columns, CH_2Cl_2 , solvent, refractive index detector, and light scattering detector. Off-line dn/dc measurements are typically used.

The biodegradable polymer used in the invention is preferably sufficiently pure to be biocompatible itself and remains biocompatible upon biodegradation. By "biocompatible", it is meant that the biodegradation products or the polymer itself are non-toxic and result in only minimal tissue irritation when injected or placed into intimate contact with vasculated tissues. The requirement for biocompatibility is more easily accomplished because the presence of an organic solvent

is not required in the polymer composition of the invention.

However, the polymer used in the invention is preferably soluble in one or more common organic solvents for ease of synthesis, purification and handling. Common organic solvents include such solvents as ethanol, chloroform, dichloromethane (dimethylene chloride), acetone, ethyl acetate, DMAC, N-methyl pyrrolidone, dimethylformamide, and dimethylsulfoxide. The polymer is preferably soluble in at least one of the above solvents. The biodegradable polymer of the invention can also comprise additional biocompatible monomeric units so long as they do not interfere with the biodegradable characteristics and the desirable flow characteristics of the invention. Such additional monomeric units may offer even greater flexibility in designing the precise release profile desired for targeted drug delivery or the precise rate of biodegradability desired for other applications. When such additional monomeric units are used, however, they should be used in small enough amounts to insure the production of a biodegradable copolymer having the desired physical characteristics, such as rigidity, viscosity, flowability, flexibility or a particular morphology.


Examples of such additional biocompatible monomers include the recurring units found in other poly(phosphoesters), poly(esters), poly(lactides), poly(glycolides), poly(caprolactones), poly(anhydrides), poly(amides), poly(urethanes), poly(esteramides), poly(orthoesters), poly(dioxanones), poly(acetals), poly(ketals), poly(carbonates), poly(imino-carbonates), poly(orthocarbonates), poly(phosphazenes), poly(hydroxybutyrates), poly(hydroxyvalerates), poly(alkylene oxalates), poly(alkylene succinates), poly(malic acids),

5 poly(amino acids), poly(vinylpyrrolidone), poly(ethylene glycol), poly(hydroxycellulose), chitin, chitosan, and copolymers, terpolymers, or combinations or mixtures of the above materials. Preferably, however, a poly(phosphoester) is the major component of the composition used with the invention.

10 When additional monomeric units are used, those which have a lower degree of crystallization and are more hydrophobic are preferred. Especially preferred recurring units with the desired physical 15 characteristics are those derived from poly(lactides), poly(caprolactones), and copolymers of these with glycolide.

15 Synthesis of Poly(Phosphoester) Polymers

The most common general reaction in preparing poly(phosphates) is a dehydrochlorination between a phosphorodihalide, such as phosphorodichloride, and a diol according to the following equation:

Most poly(phosphonates) are also obtained by condensation between appropriately substituted dichlorides and diols.

25 Poly(phosphites) have been prepared from glycols in a two-step condensation reaction. A 20% molar excess of a dimethylphosphite is used to react with the glycol, followed by the removal of the methoxyphosphonyl end groups in the oligomers by high temperature and under a vacuum.

30 An advantage of melt polycondensation is that it avoids the use of solvents and large amounts of other

additives, thus making purification more straightforward. It can also provide polymers of reasonably high molecular weight. Somewhat rigorous conditions, however, are often required and can lead to chain acidolysis (or hydrolysis if water is present).
5 Unwanted, thermally-induced side reactions, such as crosslinking reactions, can also occur if the polymer backbone is susceptible to hydrogen atom abstraction or oxidation with subsequent macroradical recombination.

10 To minimize these side reactions, the polymerization can also be carried out in solution. Solution polycondensation requires that both the prepolymer and the phosphorus component be soluble in a common solvent. Typically, a chlorinated organic solvent is used, such as chloroform, dichloromethane, or dichloroethane.
15

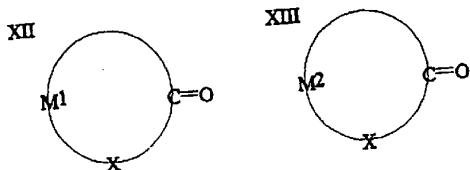
20 A solution polymerization is preferably run in the presence of equimolar amounts of the reactants and a stoichiometric amount of an acid acceptor, usually a tertiary amine such as pyridine or triethylamine. Because overall milder reaction conditions can be used, side reactions are minimized, and more sensitive functional groups can be incorporated into the polymer.
25

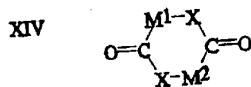
25 Interfacial polycondensation can be used when high reaction rates are desired. The mild conditions used minimize side reactions, and there is no need for stoichiometric equivalence between the diol and dichloride starting materials as in solution methods. The yield and molecular weight of the resulting polymer after interfacial polycondensation are affected by reaction time, molar ratio of the monomers, volume ratio of the immiscible solvents, the type of acid acceptor, and the type and concentration of the phase transfer catalyst.
30

35 The purpose of the polymerization reaction is to form a polymer comprising (i) divalent organic

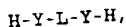
recurring units and (ii) phosphoester recurring units. The result can be a homopolymer, a relatively homogeneous copolymer, or a block copolymer. Any one of these three embodiments is well-suited for use as a controlled release medium.

5 of these in controlled release medium.

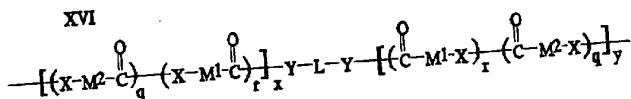
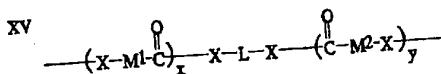

10 While the process may be in bulk, in solution, by interfacial polycondensation, or any other convenient method of polymerization, preferably, the process takes place under solution conditions. Particularly useful solvents include methylene chloride, chloroform, tetrahydrofuran, dimethyl formamide, dimethyl sulfoxide, toluene, or any of a wide variety of other inert organic solvents.

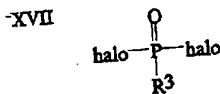

lution polymerization reaction

Particularly when solution polymerization reaction is used, an acid acceptor is advantageously present during the polymerization reaction. A particularly suitable class of acid acceptor comprises tertiary amines, such as pyridine, trimethylamine, triethylamine, substituted anilines and substituted aminopyridines. The most preferred acid acceptor is the substituted aminopyridine 4-dimethylaminopyridine ("DMAP").


In a particularly preferred embodiment of the invention, for example, the biodegradable polymer of formula VIII or IX is made by a process comprising the steps of:

25 steps of:
(a) reacting at least one heterocyclic ring compound having formula XII, XIII or XIV:


wherein M^1 , M^2 and X are as defined above,
with an initiator having the formula:

wherein Y and L are as defined as above, to
5 form a prepolymer of formula XV or XVI, shown
below:

10 wherein X , M^1 , M^2 , Y , L , R , x , y , q and r are
as defined above; and
(b) further reacting the prepolymer with a
phosphorodihalidate of formula XVII:

15 where "halo" is Br, Cl or I; and R^3 is as
defined above, to form a polymer of formula
VIII or IX.

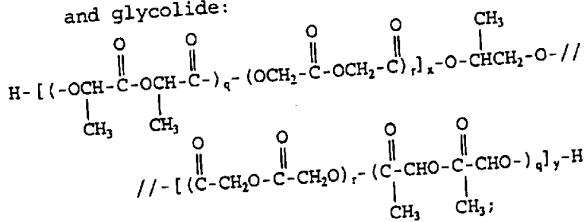
The function of the first reaction step (a) is to
use the initiator to open the ring of the heterocyclic
20 ring compound of formula XIII, XIII or XIV. Examples of
useful heterocyclic compounds of formula XIII, XIII or

XIV include lactones, lactams, amino acid anhydrides such as glycine anhydride, cycloalkylene carbonates, dioxanones, glycolids, lactides and the like.

When the compound of the invention has formula VIII, only one heterocyclic ring compound of formula XII, which contains M^1 , may be used to prepare the prepolymer in step (a). When the compound of the invention has formula IX, then a combination of a heterocyclic compound of formula XII, which contains M^1 , and a heterocyclic compound of formula XIII, which contains M^2 may be used in step (a). Alternatively, when the compound of the invention has formula IX, a single heterocyclic compound of formula XIV, which contains both M^1 and M^2 can be used in step (a).

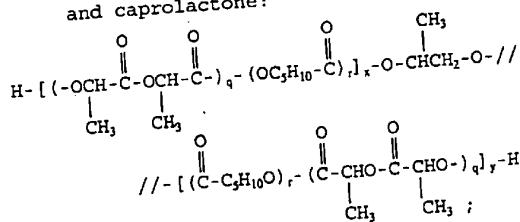
Examples of suitable initiators include a wide variety of compounds having at least two active hydrogens ($H-Y-L-Y-H$) where H is hydrogen, L is a linking group and is defined above, and Y can be $-O-$, $-S-$ or $-NR^4$, where R^4 is as defined above. The linking group L is can be a straight chain group, e.g., alkylene, but it may also be substituted with one or more additional active-hydrogen-containing groups. For example, L may be a straight chain alkylene group substituted with one or more additional alkyl groups, each bearing a activated hydrogen moiety, such as $-OH$, $-SH$, or NH_2 . In this way, various branched polymers can be prepared using the branched active hydrogen initiators to design the resulting polymer such that it has the desired properties. However, when branched polymers are reacted with acid chlorides, cross-linked polymers will result.

The reaction step (a) can take place at widely varying temperatures, the molecular weight desired, the susceptibility of the reactants to form side reactions, and the presence of a catalyst. Preferably, however,

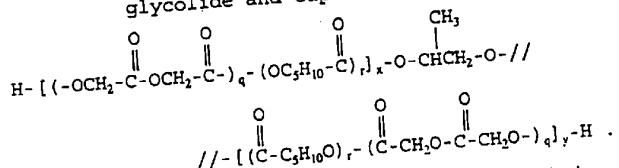

the reaction step (a) takes place at a temperature from about 110° to about +235°C for melt conditions. Somewhat lower temperatures may be possible with the use of either a cationic or anionic catalyst. (a) may be in bulk, in

use of either a cationic or anionic catalyst. While the reaction step (a) may be in bulk, in solution, by interfacial polycondensation, or any other convenient method of polymerization, preferably, the reaction step (a) takes place under melt conditions. Particularly useful prepolymers of

Examples of particularly useful prepolymers or


formula XVI include:
(i) OH -terminated copolymer derived from lactide

(i) OH-terminated
and glycolide:


(ii) OH-terminated copolymer derived from lactide and caprolactone:

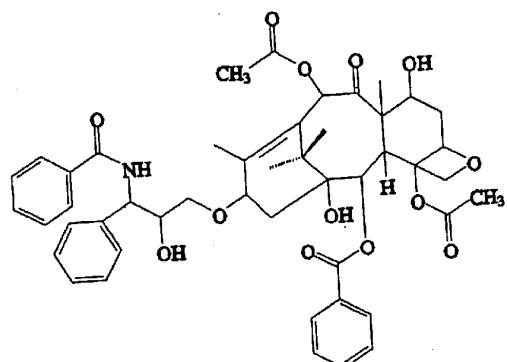
and caprolactone:

35

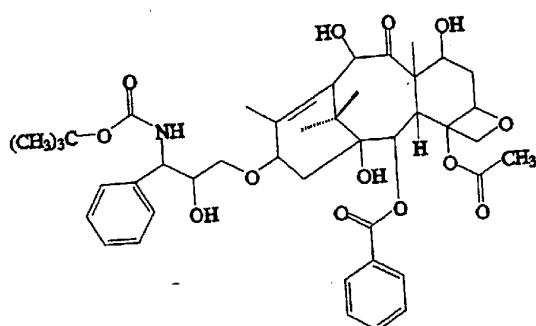
(iii) OH-terminated copolymer derived from glycolide and caprolactone:

10 The purpose of the polymerization of step (b) is to form a polymer comprising (i) the prepolymer produced as a result of step (a) and (ii) interconnecting phosphorylated units. The result can 15 be a block or random copolymer that is particularly well-suited to use as a controlled release medium. Step (b) of the invention

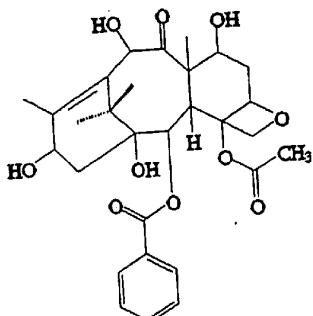
15 well-suited to use as a controlled rate polymerization process.


16 The polymerization step (b) of the invention
17 usually takes place at a lower temperature than the
18 temperature of step (a), but also may vary widely,
19 depending upon the type of polymerization reaction
20 used, the presence of one or more catalysts, the
21 molecular weight desired, and the susceptibility of the
22 reactants to undesirable side reaction. When melt
23 conditions are used, the temperature may vary from
24 about 0-150°C. However, when the polymerization step
25 (b) is carried out in a solution polymerization
reaction, it typically takes place at a temperature
between about -40 and 100°C.

Antineoplastic Agent


solubility, as well as those having low water-solubility, to produce a delivery system that has controlled release rates.

The term antineoplastic agent includes, without limitation, platinum-based agents, such as carboplatin and cisplatin; nitrogen mustard alkylating agents; nitrosourea alkylating agents, such as carmustine (BCNU) and other alkylating agents; antimetabolites, such as methotrexate; purine analog antimetabolites; pyrimidine analog antimetabolites, such as fluorouracil (5-FU) and gemcitabine; hormonal antineoplastics, such as goserelin, leuprolide, and tamoxifen; natural antineoplastics, such as taxanes (e.g., docetaxel and paclitaxel), aldesleukin, interleukin-2, etoposide (VP-16), interferon alfa, and tretinoin (ATRA); antibiotic natural antineoplastics, such as bleomycin, dactinomycin, daunorubicin, doxorubicin, and mitomycin; and vinca alkaloid natural antineoplastics, such as vinblastine and vincristine.


Preferably, the antineoplastic agent is selected from the group consisting of the taxanes and other antitubullins including, but not limited to, paclitaxel, docetaxel and other synthetic taxanes. The taxanes are complex esters consisting of a 15-member taxane ring system linked to a four-member oxetan ring. In paclitaxel and docetaxel, for example, the taxane ring is linked to an ester side chain attached at the C-13 position of the ring, which is thought to be important for antitumor activity. The structures of paclitaxel and docetaxel differ in substitutions at the C-10 taxane ring position and on the ester side chain attached at C-13. Most preferably, the antineoplastic agent is paclitaxel, the structure of which is shown below with docetaxel and the precursor taxane 10-deacetyl-baccatin III.

Paclitaxel

Docetaxel

10-Deacetyl-baccatin III

The compound 10-deacetyl-baccatin III can be used to make a wide variety of related compounds that also exhibit antineoplastic effects.

5 Further, the following additional drugs may also be used in combination with the antineoplastic agent, even if not considered antineoplastic agents themselves: dactinomycin; daunorubicin HCl; docetaxel; doxorubicin HCl; epoetin alfa; etoposide (VP-16); 10 ganciclovir sodium; gentamicin sulfate; interferon alfa; leuprolide acetate; meperidine HCl; methadone alfa; ranitidine HCl; vinblastin sulfate; and zidovudine HCl; (AZT). For example, fluorouracil has recently been 15 formulated in conjunction with epinephrine and bovine collagen to form a particularly effective combination.

15 Still further, the following listing of amino acids, peptides, polypeptides, proteins, polysaccharides, and other large molecules may also be used: interleukins 1 through 18, including mutants and 20 analogues; interferons or cytokines, such as interferons α , β , and γ ; hormones, such as luteinizing hormone releasing hormone (LHRH) and analogues and,

gonadotropin releasing hormone (GnRH); growth factors, such as transforming growth factor- β (TGF- β), fibroblast growth factor (FGF), nerve growth factor (NGF), growth hormone releasing factor (GHRF), 5 epidermal growth factor (EGF), fibroblast growth factor homologous factor (FGFHF), hepatocyte growth factor (HGF), and insulin growth factor (IGF); tumor necrosis factor- α & β (TNF- α & β); invasion inhibiting factor-2 (IIF-2); bone morphogenetic proteins 1-7 (BMP 1-7); somatostatin; thymosin- α -1; γ -globulin; superoxide dismutase (SOD); complement factors; anti-angiogenesis factors; antigenic materials; and pro-drugs.

In a particularly preferred embodiment, the composition of the invention may comprise other biologically active substances, preferably a therapeutic drug or pro-drug, for example, other chemotherapeutic agents, antibiotics, anti-virals, anti-fungals, anti-inflammatories, vasoconstrictors and anticoagulants, antigens useful for cancer vaccine applications or corresponding pro-drugs.

Various forms of the antineoplastic agents and/or other biologically active agents may be used. These include, without limitation, such forms as uncharged molecules, molecular complexes, salts, ethers, esters, amides, and the like, which are biologically activated when implanted, injected or otherwise inserted into the tumor.

Polymer Compositions

The antineoplastic agents are used in amounts that are therapeutically effective, which varies widely depending largely on the particular antineoplastic agent being used. The amount of antineoplastic agent incorporated into the composition also depends upon the desired release profile, the concentration of the agent required for a biological effect, and the length of

time that the antineoplastic agent should be released for treatment.

There is no critical upper limit on the amount of antineoplastic agent incorporated except for that of an acceptable solution or dispersion viscosity to maintain the physical characteristics desired for the composition. The lower limit of the antineoplastic agent incorporated into the delivery system is dependent upon the activity of the drug and the length of time needed for treatment. Thus, the amount of the antineoplastic agent should not be so small that it fails to produce the desired physiological effect, nor so large that the antineoplastic agent is released in an uncontrollable manner.

Typically, within these limits, amounts of the antineoplastic agents from about 1% up to about 65%, and preferably from about 1% to about 30% by weight, can be incorporated into the present delivery systems. However, lesser amounts may be used to achieve efficacious levels of treatment for antineoplastic agent that are particularly potent.

In addition, the biodegradable polymer composition of the invention may also comprise blends of the polymer of the invention with other biocompatible polymers or copolymers, so long as the additional polymers or copolymers do not interfere undesirably with the biodegradable or mechanical characteristics of the composition. Preferably, biodegradable polymers of the present invention comprise more than about 50% of the blend. Blends of the polymer of the invention with such other polymers may offer even greater flexibility in designing the precise release profile desired for targeted drug delivery or the precise rate of biodegradability desired. Examples of such additional biocompatible polymers include other poly(phosphoesters), poly(esters), poly(lactides),

5 poly(glycolides), poly(caprolactones),
poly(anhydrides), poly(amides), poly(urethanes),
poly(esteramides), poly(orthoesters), poly(dioxanones),
poly(acetals), poly(ketals), poly(carbonates),
poly(imino-carbonates), poly(orthocarbonates),
poly(phosphazenes), poly(hydroxybutyrates),
poly(hydroxyvalerates), poly(alkylene oxalates),
poly(alkylene succinates), poly(malic acids),
poly(amino acids), poly(vinylpyrrolidone),
10 poly(ethylene glycol), poly(hydroxycellulose), chitin,
chitosan, and copolymers, terpolymers, or combinations
or mixtures of the above materials.

15 Pharmaceutically acceptable polymeric carriers may
also comprise a wide range of additional materials.
Without limitation, such materials may include well-
known diluents, binders and adhesives, lubricants,
disintegrants, colorants, bulking agents, flavorings,
sweeteners, and miscellaneous materials such as buffers
and adsorbents, in order to prepare a particular
20 medicated composition. The addition of such materials
is limited to those additional materials which will not
interfere with the biocompatibility, biodegradability
and physical state desired of the polymer compositions
of the invention.

25 For delivery of an antineoplastic agent or some
other biologically active substance, the agent or
substance is added to the polymer composition. The
agent or substance is either dissolved to form a
homogeneous solution of reasonably constant
30 concentration in the polymer composition, or dispersed
to form a suspension or dispersion within the polymer
composition at a desired level of "loading" (grams of
biologically active substance per grams of total
composition including the biologically active
substance, usually expressed as a percentage).

5 While it is possible that the biodegradable polymer or the biologically active agent may be dissolved in a small quantity of a solvent that is non-toxic to more efficiently produce an amorphous, monolithic distribution or a fine dispersion of the 10 biologically active agent in the flexible or flowable composition, it is an advantage of the invention that, in a preferred embodiment, no solvent is needed to form the desired composition.

10 The polymer composition of the invention may be a rigid solid article, a flexible solid article or material, or a flowable material. By "flowable" is meant the ability to assume, over time, the shape of the space containing it at body temperature. This 15 includes, for example, liquid compositions that are capable of being sprayed into a site; injected with a manually operated syringe fitted with, for example, a 23-gauge needle; or delivered through a catheter.

20 Also included by the term "flowable", however, are highly viscous, "gel-like" materials at room temperature that may be delivered to the desired site by pouring, squeezing from a tube, or being injected with any one of the commercially available power 25 injection devices that provide injection pressures greater than would be exerted by manual means alone for highly viscous, but still flowable, materials. Such flowable polymer compositions have the advantage of providing controllable and effective release of the antineoplastic agent over time, even in formulations containing large bio-macromolecules.

30 When the polymer used is itself flowable, the polymer composition of the invention, even when viscous, need not include a biocompatible solvent to be 35 flowable, although trace or residual amounts of biocompatible solvents may still be present. The degree of viscosity of the polymer can be adjusted by

the molecular weight of the polymer, as well as by mixing any *cis*- and *trans*-isomers of the diol in the backbone of the polymer.

5 The polymer composition of the invention can be administered by a variety of routes. For example, if flowable, it can be injected directly into the solid tumor being treated with a needle, such as a Turner Biopsy Needle or a Chiba Biopsy Needle. When treating a solid tumor in the lung, for example, the composition 10 may be administered within the thorax using bronchoscope or other device capable of cannulating the bronchial tree (e.g., from Cook Catheter Company). Masses accessible via the bronchial tree may be 15 directly injected by using one of the widely available transbronchial aspiration needles (e.g., from Milrose or Boston Scientific). The composition can also be administered within the pleural space by inserting a thoracentesis catheter or needle between the ribs into 20 the pleural space using standard thoracentesis techniques.

25 The polymer composition of the invention can also be used to produce coatings for solid devices implantable within the tumor, such as needles, rods, microparticles or stents.

25

Implants and Delivery Systems

30 In its simplest form, a biodegradable polymer delivery system consists of a solution or dispersion of an antineoplastic agent in a polymer matrix having an unstable (biodegradable) bond incorporated into the polymer backbone. In a particularly preferred embodiment, a solid article comprising the composition of the invention is inserted into the solid tumor being treated by implantation, injection, or otherwise being 35 placed within the tumor of the subject being treated.

35

for example, during or after the surgical removal of a portion of visibly cancerous tissue.

The antineoplastic agent of the composition and the polymer may form a homogeneous matrix, for example in the form of microspheres, or the antineoplastic agent may be encapsulated in some other way within the polymer. For example, the antineoplastic agent may be first encapsulated in a microsphere and then combined with the polymer in such a way that at least a portion of the microsphere structure is maintained.

10 Alternatively, the antineoplastic agent may be sufficiently immiscible in the polymer of the invention that it is dispersed as small droplets, rather than being dissolved, in the polymer.

15 As a structural medical device, the polymer compositions of the inventions provide a wide variety of physical forms having specific chemical, physical and mechanical properties suitable for insertion into the tumor being treated, in addition to being a composition that degrades in vivo into non-toxic residues. Specifically, the composition itself may be 20 fabricated to take the shape of a needle or pin that can be manually inserted into the tumor mass.

25 Biodegradable drug delivery articles can be prepared in several ways. The polymer can be melt processed using conventional extrusion or injection molding techniques, or these products can be prepared by dissolving in an appropriate solvent, followed by formation of the device, and subsequent removal of the solvent by evaporation or extraction, e.g., by spray 30 drying. By these methods, the polymers may be formed into articles of almost any size or shape desired, for example, implantable or injectable needles, rods, microspheres, or other microparticles. Typical medical articles also include coatings to be placed on other 35 implant devices.

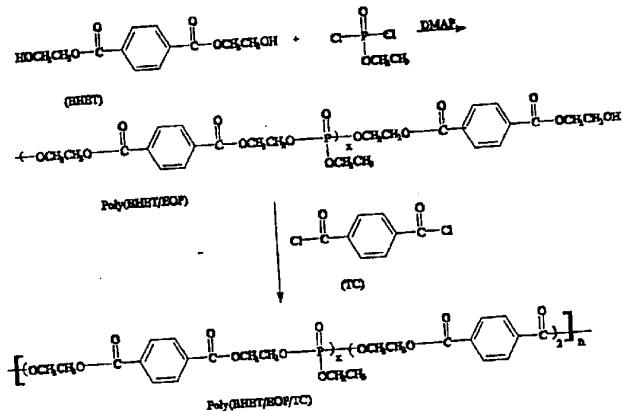
Once inserted, the polymer composition of the invention should remain in at least partial contact with tumorous cells and the biological fluids found within tumors, such as blood and various hormones and enzymes associated with angiogenesis, and the like.

5 The implanted or injected composition will release the antineoplastic agent contained within its matrix within the tumor at a controlled rate until the substance is depleted, following the general rules for diffusion or dissolution from a rigid, flexible or flowable biodegradable polymeric matrix.

10 The method of the invention can be used to treat a solid tumor in a mammal by the intratumoral administration of a composition comprising:

15 (a) a biodegradable polymer; and
(b) at least one antineoplastic agent in an amount effective to inhibit the growth of the tumor when administered by intratumoral injection.

20 While the method of the invention is available to treat a wide variety of solid tumors, as described above, it is particularly applicable to thoracic cancers, such as, but not limited to, bronchogenic tumors, such as primary and/or metastatic lung carcinomas (both NSCLC and SCLC); malignant pleural effusions; or non-thoracic cancers metastasizing to any site within the thorax.


25 The biodegradable polymer used in a composition to treat a thoracic tumor can comprise any biodegradable polymer, rather than being limited to poly(phosphoester) polymers. Without limitation, exemplary biodegradable polymers suitable for practicing the invention are polyanhydrides, polyesters, poly(phosphoesters), polyorthoesters, polyphosphazenes, polyesteramides, polydioxanones, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates,

poly(malic acids), poly(amino acids) and copolymers, terpolymers and combinations and mixtures of the above, and the like. Preferably, however, the biodegradable polymer comprises a poly(phosphoester).

5 The following examples are illustrative of preferred embodiments of the invention and are not to be construed as limiting the invention thereto. All polymer molecular weights are weight-average molecular weights unless otherwise indicated. All percentages are based on the percent by weight of the final 10 delivery system or formulation being prepared, unless otherwise indicated, and all totals equal 100% by weight.

EXAMPLES

15 Example 1: Synthesis of Copolymer Poly(BHET-EOP/TC, 80/20)

20 Under an argon stream, 10 g of 1,4-bis(hydroxyethyl) terephthalate (BHET), 9.61 g of 4-dimethylaminopyridine (DMAP), and 70 mL of methylene chloride were placed in a 250 mL flask equipped with a funnel. The solution in the flask was cooled down to

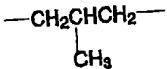
-40°C with stirring, and a solution of 5.13 g of ethyl phosphorodichloridate (EOP) (distilled before use) in 20 mL of methylene chloride was added dropwise through the funnel. After addition was complete, the mixture was stirred at room temperature for four hours to form the homopolymer BHET-EOP.

A solution of 1.60 g of terephthaloyl chloride (TC) (obtained from Aldrich Chemical Company and recrystallized with hexane before use) in 20 mL of methylene chloride was then added drop by drop. The temperature was brought up to about 45-50°C gradually, and the reaction mixture was kept refluxing overnight to complete the copolymerization of the homopolymer poly(BHET-EOP) with the additional monomer TC to form the copolymer poly(BHET-EOP/TC).

the copolymer poly(BHET-EOP/TC).
 The solvent was then evaporated, and the residue was redissolved in about 100-200 mL of chloroform. The chloroform solution was washed with a saturated NaCl solution three times, dried over anhydrous Na_2SO_4 , and quenched into ether. The resulting precipitate was redissolved in chloroform and quenched again into ether. The resulting tough, off-white solid precipitate was filtered off and dried under vacuum. Yield 82%.

The structure of poly(BHET-EOP/TC, 80/20) was ascertained by $^1\text{H-NMR}$, $^{31}\text{P-NMR}$ and FT-IR spectra. The structure was also confirmed by elemental analysis, which correlated closely with theoretical ratios. Exemplary structures may be found in published PCT application WO 98/44021.

The molecular weight of poly(BHET-EOP/TC, 80/20) was first measured by gel permeation chromatography (GPC) with polystyrene as the calibration standard. The resulting graph established a weight average molecular weight (M_w) of about 6100 and a number average molecular weight (M_n) of about 2200. Vapor


pressure osmometry ("VPO") for this copolymer gave an Mn value of about 7900.

Example 2: Other Diol Variations

5 Diol terephthalates that are structurally related to that of BHET were synthesized by reacting TC with either n-propylenediol or 2-methylpropylenediol, the structures of which are shown below, to form the corresponding diol terephthalate.

10

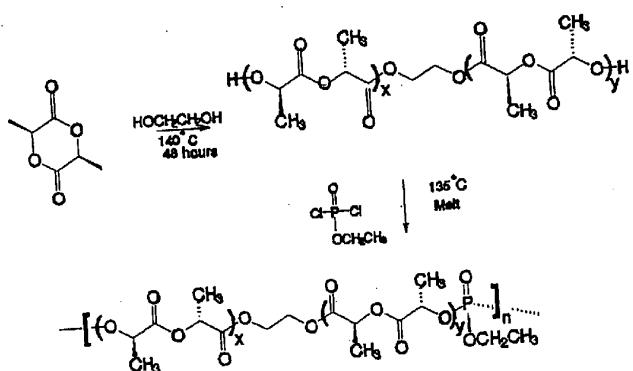
These diol terephthalates were then reacted with EOP to form the corresponding homopolymers. The homopolymers so formed were then used to produce the copolymers of the invention in a second reaction with TC.

15

Example 3: In vitro Release of Paclitaxel from Poly(BHET-EOP/TC) Copolymer

20 The polymer poly(bis-hydroxyethyl terephthalate-co-ethyl phosphate/terephthalate chloride (80:20) ["poly(BHET-EOP/TC, 80/20)"] was prepared as described above in Example 1. Both the polymer and paclitaxel were dissolved in CH₂Cl₂. The solution was cast into a cold Teflon[®] mold, then dried under a vacuum at room 25 temperature for 48 hours. The film was then removed from the mold. Figure 1 shows paclitaxel release from the film of poly(BHET-EOP/TC, 80/20) in phosphate buffer saline at 37°C.

30


Example 4: Preparation of Poly(BHDPT-EOP/TC, 50/50) Microspheres Containing Lidocaine

5 An aqueous solution of 0.5% w/v polyvinyl alcohol (PVA) was prepared in a 600 mL beaker by combining 1.35 g of PVA with 270 mL of deionized water. The solution was stirred for one hour and filtered. A 10 copolymer/drug solution was prepared by combining 900 mg of poly(BHDPT-EOP/TC, 50/50) copolymer and 100 mg of lidocaine in 9 mL of methylene chloride and vortex-mixing.

10 While the PVA solution was being stirred at 800 rpm with an overhead mixer, the polymer/drug mixture was added dropwise. The combination was stirred for one and a half hours. The microspheres thus formed were then filtered, washed with deionized water, and lyophilized overnight. The experiment yielded 625 mg of microspheres loaded with 3.7% w/w lidocaine.

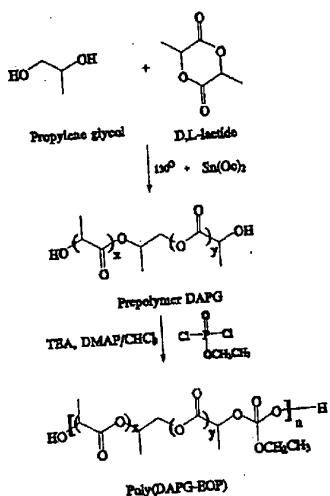
15 Lidocaine-containing microspheres were also prepared from poly(BHDPT-HOP/TC, 50/50) by the same process. This experiment yielded 676 mg of 20 microspheres loaded with 5.3% w/w lidocaine.

Example 5: Synthesis of Poly(L-lactide-co-ethyl-phosphate) [Poly(LAEG-EOP)]

P(LAEG-EOP)

5 20 g (0.139 mole of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide) (obtained from Aldrich Chemical Company, recrystallized with ethyl acetate, sublimed, and recrystallized with ethyl acetate again) and 0.432 g (6.94 mmole) of ethylene glycol (99.8%, anhydrous, from Aldrich) were placed in a 250 mL round-bottomed flask flushed with dried argon. The flask was closed under vacuum and placed in an oven heated to 140°C. The flask was kept at this temperature for about 48 hours with occasional shaking.

10 The flask was then filled with dried argon and placed in oil bath heated to 135°C. Under an argon stream, 1.13 g of ethyl phosphorodichloridate was added with stirring. After one hour of stirring, a low vacuum (about 20 mm Hg) was applied to the system, and it was allowed to stand overnight. One hour before work-up, a high vacuum was applied. After cooling, the polymer was dissolved in 200 mL of chloroform and quenched into one liter of ether twice to an off-white


15 20

precipitate, which was dried under vacuum.
It was confirmed by NMR spectroscopy that the polymer obtained was the desired product, poly(L-lactide-co-ethyl-phosphate) [poly(LAEG-EOP)].

5 Example 6: Preparation of Poly(LAEG-EOP)
 Microspheres Containing Lidocaine
 Using Polyvinyl Alcohol as
 the Non-Solvent Phase

10 A solution of 0.5% w/v polyvinyl alcohol (PVA) in deionized water solution was prepared in a 600 mL beaker by combining 1.05 g of PVA with 210 mL of deionized water. The solution was stirred for one hour and filtered. A polymer/drug solution was prepared by combining 630 mg of polymer and 70 mg of lidocaine in 7 mL of methylene chloride and mixing by vortex. The PVA solution was mixed at 500 rpm with an overhead mixer, and the polymer/drug solution was added dropwise. After 30 minutes of mixing, 200 mL of cold deionized water was added to the stirring PVA solution. The resulting mixture was stirred for a total of 3.5 hours. The microspheres formed were filtered off, washed with deionized water, and lyophilized overnight. Microspheres loaded with 4.2% w/w lidocaine were thus obtained.

20 Example 7: Synthesis of Poly(DAPG-EOP)
 The d,l racemic mixture of poly(L-lactide-co-propyl-phosphate) ["poly(DAPG-EOP)"] was prepared as follows:

The product was obtained as a white solid soluble in organic solvents. Depending on reaction conditions, different intrinsic viscosities and different molecular weights were obtained, as shown below in summary form:

	Base(s)	Reaction Time/Temp	Eq EOPCl ₂	Mw	IV
5	2.5 eq TEA; 0.5 eq DMAP	15mins/ room temp.	1.05	--	0.42
	2.5 eq TEA; 0.5 eq DMAP	18hrs/ reflux	1.05	--	0.27
10	2.5 eq TEA; 0.5 eq DMAP	about 2.5 days/ reflux	1.05	--	0.39
	2.5 eq TEA; 0.1 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	--	0.06
15					
20					

Base(s)	Reaction Time/Temp	Eq EOPCl ₂	Mw	IV
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	91,100	0.47
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	95,900 (Mn 44,200; Mw/Mn 2.2)	0.42
1.1 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	--	0.08
1.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	--	0.23
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 17 h/room temp.	1.00	28,400	0.25
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.00	26,800 (Mn 12,900; Mw/Mn 2.1)	0.23
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	14,700	0.16
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.01	32,200 (Mn 13,000; Mw/Mn 2.5)	0.32
3.0 eq DMAP	1 h/4°C; 2 h/room temp.	1.00	--	0.20
2.5 eq TEA; 0.5 eq DMAP	1 h/4°C; 2 h/room temp.	1.00	--	0.22

30 Example 8: Preparation of Poly(DAEG-EOP)
 Microspheres With Lidocaine
 Using Silicon Oil as the
Non-solvent Phase

35 Two percent sorbitan-trioleate, which is

commercially available from Aldrich under the tradename Span-85, in silicone oil was prepared in a 400 mL beaker by combining 3 mL of Span-85 with 150 mL of silicone oil and mixing with an overhead stirrer set at 500 rpm.

5 A d,l racemic mixture of poly(L-lactide-co-ethyl-phosphate) poly(DAEG-EOP) polymer/drug solution was prepared by dissolving 400 mg of the polymer prepared by the method described above in Example 5, and 100 mg of lidocaine in 4.5 mL of methylene chloride. The 10 resulting polymer/drug solution was added dropwise to the silicone oil/span mixture with stirring. The mixture was stirred for an hour and 15 minutes. The microspheres thus formed were filtered off and washed with petroleum ether to remove the silicone oil/span mixture, and lyophilized overnight.

15 450 mg of microspheres loaded with 7.6% w/w lidocaine were thus obtained. Approximately 10 mg of microspheres were placed in phosphate buffer saline (0.1M, pH 7.4) at 37°C on a shaker and sampled regularly. The results were plotted as % lidocaine released vs. time in days.

20 Similar data for poly(DAPG-EOP) microspheres containing paclitaxel was obtained, as shown in Figures 2A, 2B and 2C.

25

Example 9: Biocompatibility of Poly(DAPG-EOP) Microspheres in Mouse Peritoneal Cavity

30

The biocompatibility of biodegradable poly(phosphoester) microspheres of the invention was tested as follows:

35

Three 30 mg/mL samples of lyophilized poly(L-lactide-co-ethyl-phosphate) microspheres were prepared by the method described above in Example 10, the first having diameters greater than 75 microns, the second having diameters within the range of 75-125 microns, and the third having diameters within the range of 125-

250 microns. Each sample was injected intra-
5 peritoneally into a group of 18 female CD-1 mice having
a starting body weight of 25 g. Animals in each group
were weighed, sacrificed, and necropsied at 2, 7 and 14
days, and at 1, 2 and 3 months. Any lesions detected
during the necropsy were graded on a scale of 0 to 4,
with 0 indicating no response to treatment and 4
indicating a severe response to treatment.

10 Inflammatory lesions were observed to be
restricted to an association with the microspheres on
peritoneal surfaces or within fat tissue, and were
compatible with foreign body isolation and
encapsulation. Focal to multifocal supportive
15 peritoneal steatitis with mesothelial hyperplasia was
observed at 2-7 days, but gradually resolved by
macrophage infiltration, the formation of inflammatory
giant cells, and fibrous encapsulation of the
microspheres at later sacrifices. Occasional adherence
20 of microspheres to the liver and diaphragm, with
associated inflammatory reaction, was also seen.
Lesions related to microspheres were not seen within
abdominal or thoracic organs. Microspheres, which were
detected throughout the duration of the study, appeared
25 transparent at early sacrifices but, at later times,
developed crystalline material internally. No effects
on body growth were observed. The peritoneal reaction
was observed to be limited to areas directly adjacent
to the microspheres with no apparent deleterious
30 effects on major thoracic or abdominal organs.


Similar intraperitoneal injection of DAPG-EOP into
male and female S-D rats gave the following results:

Dose Level	Test Material	Initial No. in Test		Cumulative Mortality ^a	
(mg/kg)		M	F	M	F
0	10% Dextran 40 in 0.9% Saline	25	25	0	0
30	DAPG-EOP	25	25	1	0
100	DAPG-EOP	25	25	0	0
300	DAPG-EOP	25	25	0	0

300 DAPG-EOP 25 25 0
 *Represents animals found dead or sacrificed
 in moribund condition during study period.
 M = Male; F = Female

M = Male; F = Female

15 Example 10: Synthesis of Poly(trans-CHDM-HOP)

Under an argon stream, 10 g of trans-1,4-cyclohexane dimethanol (CHDM), 1.794 g of 4-dimethylaminopyridine (DMAP), 15.25 ml (14.03 g) of N-methyl morpholine (NMM), and 50 ml of methylene chloride, were transferred into a 250 ml flask equipped with a funnel. The solution in the flask was cooled down to -15°C with stirring, and a solution of 15.19 g

of hexyl phosphorodichloridate (HOP) in 30 ml of methylene chloride was added through the funnel. The temperature of the reaction mixture was raised to the boiling point gradually and maintained at reflux temperature overnight.

5 The reaction mixture was filtered, and the filtrate was evaporated to dryness. The residue was re-dissolved in 100 ml of chloroform. This solution was washed with 0.1 M solution of a mixture of HCl and 10 NaCl, dried over anhydrous Na_2SO_4 , and quenched into 500 ml of ether. The resulting flowable precipitate was 15 collected and dried under vacuum to form a clear pale yellow gelatinous polymer with the flow characteristics of a viscous syrup. The yield for this polymer was 70- 80%. The structure of poly(trans-CHDM-HOP) was ascertained by ^{31}P -NMR and ^1H -NMR spectra and by FT-IR spectra. The molecular weights ($M_w=8584$; $M_n=3076$) were determined by gel permeation chromatography (GPC) using polystyrene as a calibration standard.

20 Example 11: Incorporating Paclitaxel into Poly(CHDM-HOP) or Poly(CHDM-EOP)
25 100 mg of each of the polymers poly(CHDM-HOP) and poly(CHDM-EOP) was dissolved in ethanol at a concentration of about 50%. After the polymer was completely dissolved, 5 mg of paclitaxel powder (a chemotherapeutic drug) was added to the solution and stirred until the powder was completely dissolved. 30 This solution was then poured into ice water to precipitate the polymer composition. The resulting suspension was centrifuged, decanted, and lyophilized overnight, to obtain a viscous gelatinous product.

Example 12: In Vitro Release of Paclitaxel from Poly(CHDM-HOP) and Poly(CHDM-EOP)

The following two polymers were prepared:
5 Poly(CHDM-EOP) and
Poly(CHDM-HOP)

Paclitaxel was blended with each polymer at a 10% loading level at room temperature to form a homogeneous paste. In a 1.7 mL plastic micro centrifuge tube, 5 mg of both of the paclitaxel polymer formulations to be tested was incubated with 1 mL of a buffer mixture of 80% PBS and 20% PEG 400 at 37°C. Four samples of each formulation to be tested were prepared. At specific time points, approximately every day, the PBS:PEG buffer was poured off for paclitaxel analysis by HPLC, and fresh buffer was added to the microcentrifuge tube. The release study was terminated at day 26, at which point the remaining paclitaxel in the polymer was extracted with a solvent to do a mass balance on paclitaxel.

20 When release studies for the release of paclitaxel from both polymers were performed, the total paclitaxel recovery was 65% for the poly(CHDM-HOP) formulation and 75% for the poly(CHDM-EOP) formulation.

Example 13: Preparation of p(DAPG-EOP) Microspheres Containing Paclitaxel by Solvent Dilution Method

25 30 35 A solvent dilution (evaporation) method was used in the preparation of p(DAPG-EOP) microspheres containing paclitaxel. Approximately 10 grams of paclitaxel and 90 grams of polymer were weighed and dissolved in 250 ml of ethyl acetate. To prepare the non-solvent phase, ethyl acetate (90 ml) was added to 1 liter of 0.5% PVA and homogenized for 1 minute. The drug-polymer solution and the PVA-ethyl acetate solution were transferred through an in-line

homogenizer into a flask. The solutions were stirred with an overhead stirrer. Approximately 900 ml of water was then added to the flask. The solution was then stirred for 30 minutes. The microsphere suspension was transferred to a filtering/drying unit containing 150 μm and 25 μm sieves. The microspheres were rinsed with one liter of de-ionized water and dried overnight. The dried microspheres on the 25 μm sieve were collected into a container.

10 Example 14: Preparation of p(DAPG-EOP) Microspheres Containing Paclitaxel by Solvent Evaporation Method

15 Paclitaxel (10.08 g) and polymer (90.1 g) were weighed and dissolved in enough ethyl acetate to achieve a total volume of 250 ml. Ethyl acetate (90 ml) was added to one liter of 0.5% PVA and homogenized for 1 minute. The drug-polymer solution and the PVA-ethyl acetate solution were transferred through an inline homogenizer to a 12-liter, 3-necked flask. The solutions were stirred with an overhead stirrer. Vacuum and air were used to evaporate the ethyl acetate. The vacuum and air were turned off after 40 minutes due to excessive foaming. Stirring was continued for an additional 20 minutes. The microsphere suspension was transferred to a filtering/drying unit containing 250 μm and 25 μm sieves and rinsed with one liter of de-ionized water. The material left on the 25 μm sieve was washed with de-ionized water into two one-liter centrifuge bottles and allowed to settle. After settling, the supernatant was discarded and the microspheres were frozen at -40°C for 1 hour and then lyophilized for 72 hours.

Example 15: Preparation of p(DAPG-EOP) Microspheres Containing Paclitaxel by Spray Drying Method

5 p(DAPG-EOP) is dissolved in methylene chloride at 5-20% (w/v) concentration. Paclitaxel is added to the polymer solution to achieve a final paclitaxel loading of 10% (w/w). After the drug is completely dissolved, the solution is spray dried using a Büchi spray drier. The resulting microspheres are collected.

10 Example 16: Preparation of p(DAPG-EOP) Microspheres Containing Lidocaine by Spray Drying Process

15 p(DAPG-EOP) was dissolved in methylene chloride at 5-20% (w/v) concentration. Lidocaine was added to the polymer solution to achieve a final lidocaine loading of 10% (w/w). After the drug was completely dissolved, the solution was spray dried using a Büchi spray drier. Product was collected.

20 Example 17: In Vitro Release of Paclitaxel from Poly(DAPG-EOP)

25 The in vitro release of paclitaxel from the microspheres was carried out in phosphate buffered saline (pH 7.4) at 37°C. To maintain a sink condition, an octanol layer was placed on top of the PBS to continuously extract the released paclitaxel from the aqueous phase. The released paclitaxel was quantified using an HPLC method, and the in vitro mass loss of the polymer was obtained by a gravimetric method.

30 The results are shown in Figure 2A.

Example 18: Comparative Studies of Sustained Release of Paclitaxel on A549 Tumors in an In Vivo Model

5 A murine tumor nodule model, a widely used and accepted model for investigating the efficacy of therapies for solid tumors, was used to establish the utility of sustained release for solid tumors. Athymic 10 nude Balb/c mice were engrafted with human non-small cell lung cancer cell lines (A549 and H1299, both of which were obtained from the American Type Culture Collection).

15 The cells were grown to confluence in DMEM/F12 medium (Mediatech, Herndon, VA) supplemented with 10% fetal bovine serum ("growth medium") under antibiotic-free conditions at 37° in a 5% CO₂ atmosphere. After growing under standard these tissue culture conditions, the cells were enzymatically detached, enumerated, and the concentration was adjusted as required.

20 The cells were mixed 1:1 with Matrigel™ as an enhancer for engraftment, and 2 x 10⁶ cells were injected subcutaneously on the flanks. Tumors were allowed to grow until achieving a volume of approximately 200-400 mm³, as determined by the

25 formula:
Tumor volume = (length) X (width) X (height)
The dimensions of the tumor on each test animal were measured directly with calipers.

30 Various formulations of paclitaxel were administered to the test animals bearing tumors, either systemically or intratumorally. Each animal was weighed at the time of treatment so that dosages could be adjusted to achieve the mg/kg amounts reported.

35 Systemic administration was achieved by injecting the test composition into the intraperitoneal cavity of the test animal. For intraperitoneal ("IP") injections,

the animals received a total injection volume of approximately 1 mL.

Intratumoral administration ("IT"), on the other hand, was accomplished by the following procedure:

- 5 (1) injecting a single volume of about 100 μ l (0.1 mL) the test composition into the center of the tumor nodule with a 21-25 gauge needle over a time period of about 10-20 seconds;
- 10 (2) infusing the volume over about 10-15 seconds, and then leaving the needle in place for an additional time of about 10-20 seconds; and
- 15 (3) withdrawing the needle.

Following the treatments, all mice were tagged, and the tumors were measured three times weekly with calipers. Test animals were also weighed once weekly.

15 The various formulations tested were as follows:

- 20 (1) paclitaxel ("PTX") dissolved in 1:1 in 12.5% cremophor/12.5% ethanol and then diluted to the proper concentration with 0.9% NaCl (so that the injection volume was comparable for all groups), making a 115 mM solution of NaCl, ("conventional" formulation of paclitaxel); and
- 25 (2) poly(DAPG-EOP) microspheres containing 0.1 mg paclitaxel/1 mg poly (DAPG-EOP) suspended in 10% dextran 40 diluent ("PTX/Poly").

25 The results are graphically depicted in Figures 3-5 as the mean of two experiments \pm S.E.M. Figure 3 compares the results of the following treatments:

30 IP Liq Vehicle = Intraperitoneal administration of conventional cremophor/ethanol vehicle with no paclitaxel (control);

IT Liq Vehicle = Intratumoral administration of cremophor/ethanol vehicle with no paclitaxel (control);

IT Poly Vehicle = Intratumoral administration of poly(DAPG-EOP) microspheres with no paclitaxel (control); and
IT PTX 24/Poly = Intratumoral administration of 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

5 Figure 4 compares the results of the following treatments:

10 IT PTX 4/Poly = 4 mg/kg paclitaxel in poly(DAPG-EOP) microspheres injected intratumorally;

IT PTX 12.5/Poly = 12.5 mg/kg paclitaxel in poly(DAPG-EOP) microspheres injected into tumor; and

15 IT PTX 24/Poly = 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres injected into tumor.

Figure 5 compares the results of the following treatments:

20 IP PTX 24 = Intraperitoneal injection of 24 mg/kg paclitaxel in conventional liquid formulation;

IT PTX 24 = Intratumoral injection of 24 mg/kg paclitaxel in conventional liquid formulation; and

25 IT PTX 24/Poly = Intratumoral injection of 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

30 Example 19: Comparative Studies of Sustained Release of Paclitaxel on H1299 Tumors in an In Vivo Model

35 Time-dependent changes in H1299 tumor nodule growth and/or sizes following different treatments were determined. The results are graphically depicted in Figures 6-8 as the mean of two experiments \pm S.E.M.

Figure 6 compares the results of the following treatments:

5 IP Liq Vehicle = Intraperitoneal administration of conventional cremophor/ethanol vehicle with no paclitaxel (control);

IT Liq Vehicle = Intratumoral administration of cremophor/ethanol vehicle with no paclitaxel (control);

10 IT Poly Vehicle = Intratumoral administration of poly(DAPG-EOP) microspheres with no paclitaxel (control); and

IT PTX 24/Poly = Intratumoral administration of 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

15 Figure 7 compares the results of the following treatments, all administered intratumorally:

IT PTX 4/Poly = 4 mg/kg paclitaxel in poly(DAPG-EOP) microspheres;

IT PTX 12.5/Poly = 12.5 mg/kg paclitaxel in poly(DAPG-EOP) microspheres; and

20 IT PTX 24/Poly = 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

Figure 8 compares the results of the following treatments:

25 IP PTX 24 = Intraperitoneal injection of 24 mg/kg paclitaxel in conventional liquid vehicle;

IT PTX 24 = Intratumoral injection of 24 mg/kg paclitaxel in conventional liquid vehicle;

and

30 IT PTX 24/Poly = Intratumoral injection of 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

35 Example 20: Weight Changes in Mice Following Treatment
Animals treated with the procedures described

above in Examples 18 and 19 were weighed at Day 0, Day 7, Day 14, Day 21 and Day 28 after the following treatments:

5 IP Liq Vehicle = Intraperitoneal administration of conventional cremophor/ethanol vehicle with no paclitaxel (control);

10

IP PTX 24 = Intraperitoneal injection of 24 mg/kg paclitaxel in conventional cremophor/ethanol vehicle;

15

IT Liq Vehicle = Intratumoral administration of cremophor/ethanol vehicle with no paclitaxel (control);

20

IT PTX 24 = Intratumoral injection of 24 mg/kg paclitaxel in conventional liquid vehicle;

25

IT Poly Vehicle = Intratumoral administration of poly(DAPG-EOP) microspheres with no paclitaxel (control); and

IT PTX 24/Poly = Intratumoral injection of 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

25 The results of a single experiment are presented graphically in Figure 9 for the A549 cell line. The mean of two experiments \pm S.E.M. for the H1299 cell line is shown in Figure 10. Animal weights increased in all of the groups over time without significant differences between groups, and none of the treatment groups were associated with any overt toxicity.

30

Example 21: Tumor Doubling Time

35

Estimated tumor volume doubling times were derived from the data shown in Figures 3-8 described above. The P values shown represent the differences between the group referenced and the group receiving an intratumoral injection of 24 mg/kg paclitaxel in

poly(DAPG-EOP) microspheres. The treatments referenced are the following:

5 IP Liq Vehicle = Intraperitoneal administration of conventional cremophor/ethanol vehicle without paclitaxel (control);

IP PTX 24 = Intraperitoneal injection of 24 mg/kg paclitaxel in conventional cremophor/ethanol vehicle;

10 IT Liq Vehicle = Intratumoral injection of conventional cremophor/ethanol vehicle without paclitaxel (control);

IT PTX 4 = Intratumoral injection of 4 mg/kg paclitaxel in cremophor/ethanol vehicle;

15 IT PTX 12 = Intratumoral injection of 12 mg/kg paclitaxel in cremophor/ethanol vehicle;

IT PTX 24 = Intratumoral injection of 24 mg/kg paclitaxel in cremophor/ethanol vehicle;

IT Poly Vehicle = Intratumoral administration of poly(DAPG-EOP) microspheres with no paclitaxel (control);

20 IT PTX 4/Poly = Intratumoral injection of 4 mg/kg paclitaxel in poly(DAPG-EOP) microspheres;

IT PTX 12/Poly = Intratumoral injection of 12 mg/kg paclitaxel in poly(DAPG-EOP) microspheres;

25 IT PTX 24/Poly = Intraperitoneal injection of 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres.

30 The tumor volume doubling time was determined from the tumor measurements in all treatment groups. The results are presented graphically in Figure 11 for treating A549 cell line tumors and in Figure 12 for treating H1299 cell line tumors.

35 In the A549 cells, the doubling time of the paclitaxel in poly(DAPG-EOP) 24 mg/kg group was estimated at 60 ± 9.4 days, compared to 11.5 ± 2.3 days

and 10.2 ± 4.7 days for the conventionally formulated paclitaxel at 24 mg/kg given by the intraperitoneal and intratumoral routes respectively. The H1299 cell doubling time in the paclitaxel/poly(DAPG-EOP) 24 mg/kg group was estimated to be 35 ± 8 days, compared to 12 ± 1.9 and 11.2 ± 1.9 days for conventionally formulated paclitaxel (24 mg/kg) given via the intraperitoneal and intratumoral routes respectively.

In summary, tumor volume doubling times of about 60 days for A549 nodules and about 35 days for H1299 nodules for 24 mg/kg paclitaxel in poly(DAPG-EOP) microspheres, as compared with 10 and 11 days respectively in the nodules treated with the same dosage level of conventional paclitaxel by intratumoral administration.

Example 22: Efficacy Against Other Solid Tumors

Cell lines representing the following types of carcinoma are obtained from the American Type Culture Collection, amplified in culture and engrafted into immunosuppressed mice, as described above:

Cell Line	Carcinoma type
SCC-15	Head and neck
FaDu	Head and neck
HEp2	Laryngeal
WiDr	Colon
HT-29	Colon
SW 837	Rectum
SW 1463	Rectum
PC-3	Prostate
DU145	Prostate
SK-Br-3	Breast
MCF7	Breast
5637	Bladder

Cell Line	Carcinoma type
T24	Bladder
SK-MEL1	Melanoma
SK-MEL2	Melanoma

5 A series of doses of the sustained release formulation
 of paclitaxel in poly(DAPG-EOP) microspheres at
 different dosage levels, including some higher than 24
 mg/kg, are administered as specified above. Tumor
 10 volumes are followed over time. When compared with
 test animals receiving paclitaxel in the conventional
 cremophor/ethanol solution, the murine tumor nodule
 model demonstrates significant improvements in
 controlling multiple types of solid tumor growth,
 reducing the rate of growth and, in some cases, even
 15 reducing actual tumor size.

Example 23: Administration to Intrathoracic Masses

20 Extended release paclitaxel in poly(DAPG-EOP)
 microspheres is administered to lung cancer tumor
 masses, including a primary bronchogenic carcinoma and
 a carcinoma that has metastasized to the thorax. The
 paclitaxel-poly(DAPG-EOP) formulation is administered
 in single or multiple doses to the lung cancer tumor
 masses with a Turner Biopsy needle. A fluoroscope or
 25 CT (computerized tomography) is used for guidance.
 Dosages of 2-96 mg/kg can be used. Dosages can be
 based on body mass or on tumor volume. A comparison to
 intratumoral administration of the same dosage of
 paclitaxel in a conventional cremophor/ethanol solvent
 30 illustrate the unexpected benefits of the biodegradable
 poly(phosphoester) compositions and methods of the
 invention.

The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications are intended to be included within the scope of the following claims.

5 Where the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification, they are to be interpreted as specifying the presence of the stated features, integers, steps or components referred to, but not to preclude the presence or addition of one or more other feature, integer, step, component or group thereof.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318<br

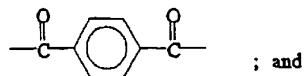
The claims defining the invention are as follows:

1. A method for treating a thoracic tumor in a mammal by the intratumoral administration of a composition comprising:
 - (a) a poly(phosphoester) polymer; and
 - 5 (b) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection.
2. A method for treating a solid tumor in a mammal by the intratumoral administration of a composition comprising:
 - (a) a poly(phosphoester) biodegradable polymer;
 - 10 (b) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection.
3. The method of claim 2 wherein the inhibition of the growth of said solid tumor is measured by a reduction in the volume of said tumor, and the amount of said antineoplastic agent is sufficient to reduce the volume of the tumor by at least 10%.
- 15 4. The method of claim 2 wherein the inhibition of the growth of said solid tumor is measured as a delay in tumor doubling time, and the tumor doubling time is extended by a factor of at least two.
5. The method of claim 2 wherein a single dose of said polymer composition provides extended release of said antineoplastic agent over a time of at least one day.
- 20 6. The method of claim 2 wherein a single dose of said polymer composition provides extended release of said antineoplastic agent over a time of at least 15 days.
7. The method of claim 2 wherein a single dose of said polymer composition provides extended release of said antineoplastic agent over a time of at least 30 days.
8. The method of claim 2 wherein said solid tumor is a non-small cell lung solid tumor.
- 25 9. The method of claim 2, wherein said antineoplastic agent comprises a taxane.
10. The method of claim 9, wherein said antineoplastic agent is paclitaxel.
11. The method of claim 2, wherein said composition further comprises a biologically active substance.
- 30 12. The method of claim 3, wherein said volume of the tumor is reduced by at least about 30%.
13. The method of claim 2, wherein said antineoplastic agent comprises an antitubullin.
14. The method of claim 13, wherein said antineoplastic agent comprises a taxane.
15. The method of claim 3, wherein said volume of the tumor is reduced by at least

about 50%.

16. The method of claim 15, wherein said antineoplastic agent comprises a taxane.
 17. The method of claim 3, wherein said volume of the tumor is reduced by at least about 70%.
 - 5 18. The method of claim 17, wherein said antineoplastic agent comprises a taxane.
 19. The method of claim 18, wherein said antineoplastic agent comprises paclitaxel.
 20. The method of claim 2, wherein said polymer is one of the following: poly(phosphates), poly(phosphites), poly(phosphonates), poly(phosphoesters) modified with poly(carboxylic acids), poly(phenyl neocarboxylate phosphites), cyclic cycloalkylene 10 phosphates, cyclic arylene phosphates, polyhydroxychloropropyl phosphate-phoshates, diphosphinic acid esters, poly(phenylphosphonates), poly(terphthalate phosphanates), poly(amidocarboxylic acids), linear saturated polyesters of phosphoric acid, polyester phosphonates, polyarylene esters containing phosphorus, or poly(phosphoester-urethanes).
 - 15 21. The method of claim 2, wherein said polymer is one of the following: poly(phosphates), poly(phosphites), or poly(phosphonates).
 22. The method of claim 21, wherein said polymer further comprises additional biocompatible monomeric units.
 23. The method of claim 2, wherein said polymer is a phosphoester co-ester.
 24. The method of claim 2, wherein said polymer comprises the monomeric units shown in formula I:

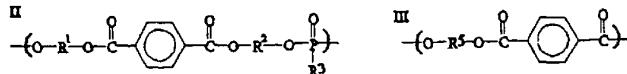
wherein


X is -O- or -NR⁴;

Y is -O- or -NR⁴;

R⁴ is H or alkyl;

each of R^1 and R^2 is a divalent organic moiety;


L is a divalent, branched or straight chain aliphatic group having 1-20 carbon atoms, a cycloaliphatic group, or a group having the formula:

R³ is selected from the group consisting of H, alkyl, alkoxy, aryl, aryloxy, heterocyclic or heterocycloxy.

25. The method of claim 24, wherein Y is -O-, and X is -O-.

5 26. The method of claim 2, wherein said polymer comprises the monomeric units shown in formulas II and III:

wherein each of R¹, R² and R⁵ is a divalent organic moiety; and

R³ is selected from the group consisting of H, alkyl, alkoxy, aryloxy and heterocycloxy.

10 27. The method of claim 26, wherein R¹, R² and R⁵ are each independently an alkylene group having from 1 to 7 carbon atoms; and R³ is an alkoxy group having from 1 to 7 carbon atoms.

28. The method of claim 27, wherein R¹, R² and R⁵ are each independently selected from the group consisting of ethylene, n-propylene, 2-methylpropylene and 2,2-dimethylpropylene.

15 29. The method of claim 27, wherein R³ is ethoxy.

30. The method of claim 26, wherein said polymer has a molecular weight between about 2 and about 500 KDaltons.

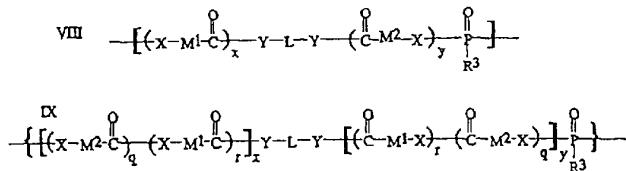
31. The method of claim 2, wherein said polymer comprises monomeric units represented by formulas IV, V, VI and VII:

25

VI

VII

wherein


X is -O- or -NR⁴;

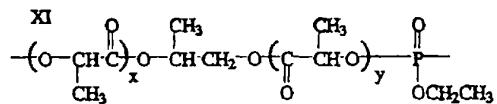
Y is -O-, -S- or -NR⁴;

R⁴ is H or alkyl;

- 5 M¹ and M² are each independently (1) a branched or straight chain aliphatic group having from 1-20 carbon atoms; or (2) a branched or straight chain, oxy-, carboxy- or amino-aliphatic group having from 1-20 carbon atoms; L is a divalent, branched or straight chain aliphatic group having 1-20 carbon atoms; and R³ is selected from the group consisting of H, alkyl, alkoxy, aryl, aryloxy, heterocyclic or 10 heterocycloxy.

32. The method of claim 31, wherein said polymer has the formula VIII or IX:

wherein M¹ and M² are each independently (1) a branched or straight chain aliphatic group having from about 1-20 carbon atoms; or (2) a branched or straight chain, oxy-, carboxy- or amino-aliphatic group having from about 1-20 carbon atoms; L is a divalent, branched or straight chain aliphatic group having 1-20 carbon atoms; the molar ratio of x:y is about one; and the molar ratio q:r varies between about 1:99 and 99:1.


33. The method of claim 32, wherein X and Y are each oxygen.

- 20 34. The method of claim 32, wherein M¹, M² and L are each independently a branched or straight chain alkylene group having from 1 to 7 carbon atoms.

35. The method of claim 33, wherein R³ is an alkoxy group having from 1 to 7 carbon atoms.

- 25 36. The method of claim 32, wherein R³ is an alkoxy group having from 1 to 7 carbon atoms; L is alkylene; and M¹ and M² are each independently an alkylene group having from 1 to 3 carbon atoms.

37. The method of claim 2, wherein said polymer comprises monomeric units shown in formula XI:

wherein the molar ratio of x:y is about 1.

- 38. The method of claim 37, wherein said antineoplastic agent is paclitaxel.
- 39. The method of claim 38, wherein said solid tumor is a thoracic tumor.
- 5 40. The method of claim 2, wherein said solid tumor is a thoracic tumor.
- 41. The method of claim 2, wherein said solid tumor is a lung solid tumor.
- 42. The method of claim 38, wherein said solid tumor is a lung solid tumor.
- 43. The method of claim 2, wherein said composition further comprises a pharmaceutically acceptable polymeric carrier.
- 10 44. The method of claim 2, wherein said composition is about 1% to about 65% by weight antineoplastic agent.
- 45. The method of claim 2, wherein said composition is about 1% to about 30% by weight antineoplastic agent.
- 46. The method of claim 2, wherein said composition is administered in single or multiple doses.
- 15 47. The method of claim 45, wherein said antineoplastic agent is paclitaxel.
- 48. The method of claim 1, wherein said antineoplastic agent is selected from the group consisting of platinum-based agents, nitrogen mustard alkylating agents, nitrosourea alkylating agents, antimetabolites, purine analog antimetabolites, hormonal antineoplastics, natural antineoplastics, antibiotic natural antineoplastics, and vinca alkaloid natural antineoplastics.
- 20 49. The method of claim 48, wherein said antineoplastic agent is selected from the group consisting of taxanes and antitubullins.
- 50. The method of claim 1, wherein said antineoplastic agent is paclitaxel.
- 25 51. The method of claim 1, wherein said thoracic tumor is a lung solid tumor.
- 52. The method of claim 1, wherein the inhibition of the growth of said thoracic tumor is measured by a reduction in the volume of said tumor, and the amount of said antineoplastic agent is sufficient to reduce the volume of the tumor by at least 10%.
- 53. The method of claim 1, wherein the inhibition of the growth of said thoracic tumor is measured as a delay in tumor doubling time, and the tumor doubling time is extended by

a factor of at least two.

54. The method of claim 1, wherein a single dose of said polymer composition provides extended release of said antineoplastic agent over a time of at least one day.

55. The method of claim 1, wherein a single dose of said polymer composition provides extended release of said antineoplastic agent over a time of at least 15 days.

56. The method of claim 1, wherein a single dose of said polymer composition provides extended release of said antineoplastic agent over a time of at least 30 days.

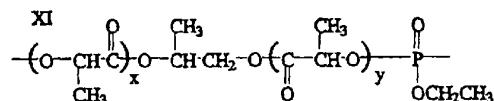
57. The method of claim 1, wherein said composition is administered in single or multiple doses.

10 58. The method of claim 1, wherein said composition further comprises a pharmaceutically acceptable polymeric carrier.

59. The method of claim 1, wherein said composition is about 1% to about 65% by weight antineoplastic agent.

60. The method of claim 1, wherein said composition is about 1% to about 30% by weight antineoplastic agent.

61. The method of claim 1, wherein said composition is flowable.


62. The method of claim 2, wherein said composition is flowable.

63. The method of claim 1, wherein said composition is in the form of microspheres.

64. The method of claim 32, wherein said composition is in the form of microspheres.

20 65. A method for treating a solid tumor in a mammal by the intratumoral administration of a composition comprising:

(a) a polymer comprises monomeric units shown in formula XI:

wherein the molar ratio of x:y is about 1; and

25 (b) at least one antineoplastic agent in an amount effective to inhibit the growth of said tumor when administered by intratumoral injection.

66. The method of claim 65, wherein said antineoplastic agent is a taxane.

67. The method of claim 66, wherein said antineoplastic agent is paclitaxel.

68. The method of claim 1 substantially as hereinbefore described in any one of the Examples.

5

DATED this 30th day of September, 2004

GUILFORD PHARMACEUTICALS, INC.

10 By their Patent Attorneys:
CALLINAN LAWRIE

30
SEP
2004
J. M.
CALLINAN

16/09/04,at12345 claims,74

1/12



FIG.1

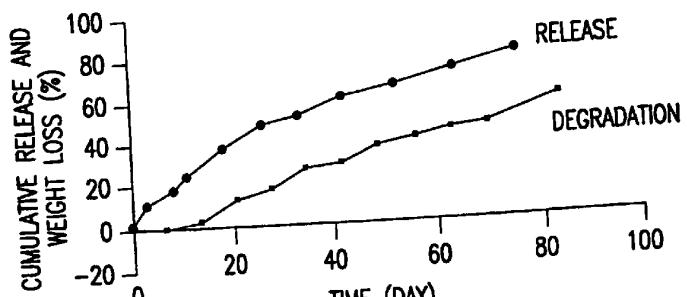


FIG.2A

SUBSTITUTE SHEET (RULE 26)

2/12

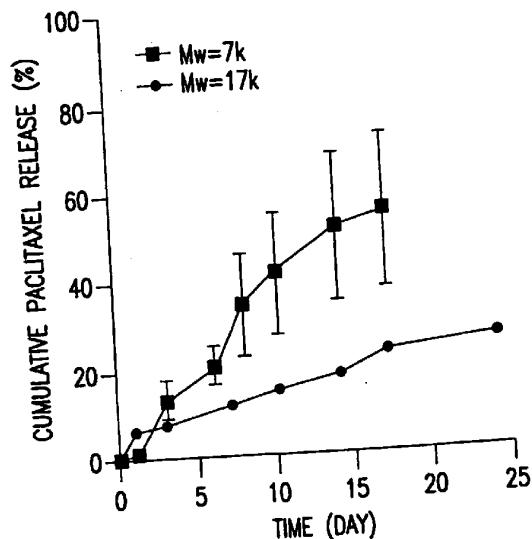


FIG.2B

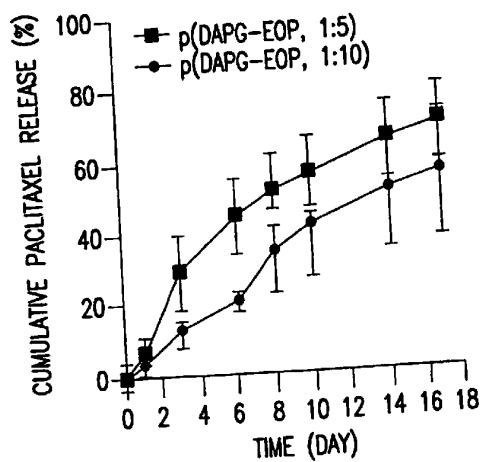


FIG.2C

SUBSTITUTE SHEET (RULE 26)

3/12

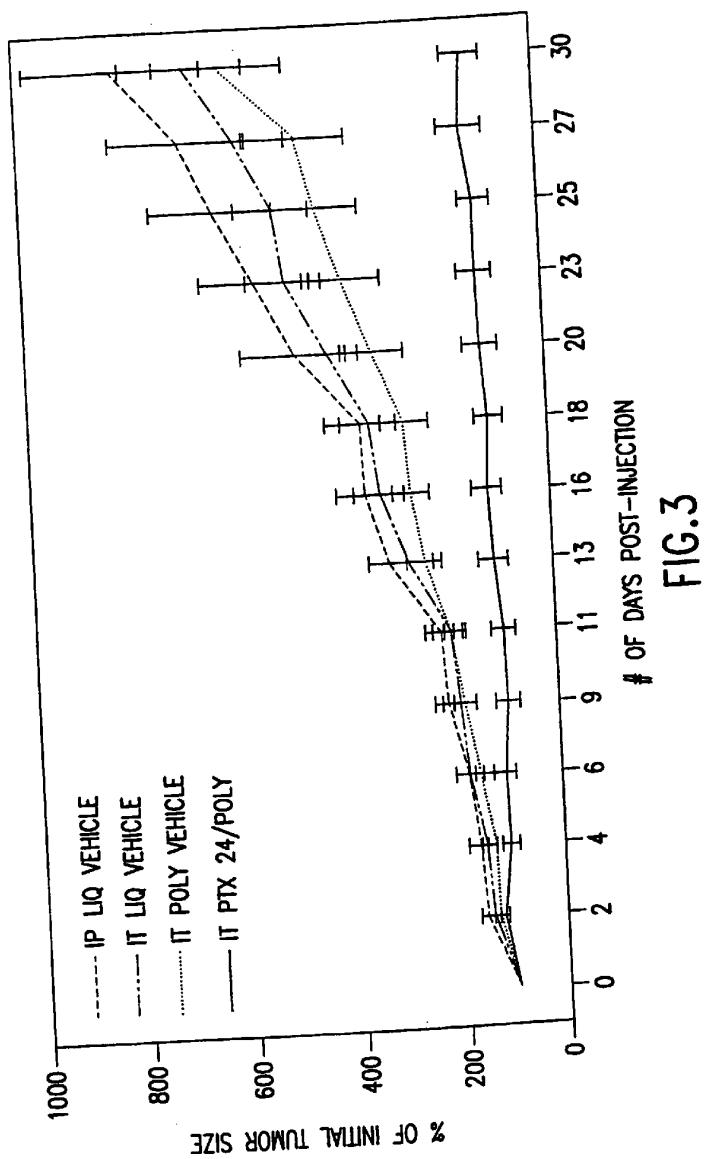


FIG.3

SUBSTITUTE SHEET (RULE 26)

4/12

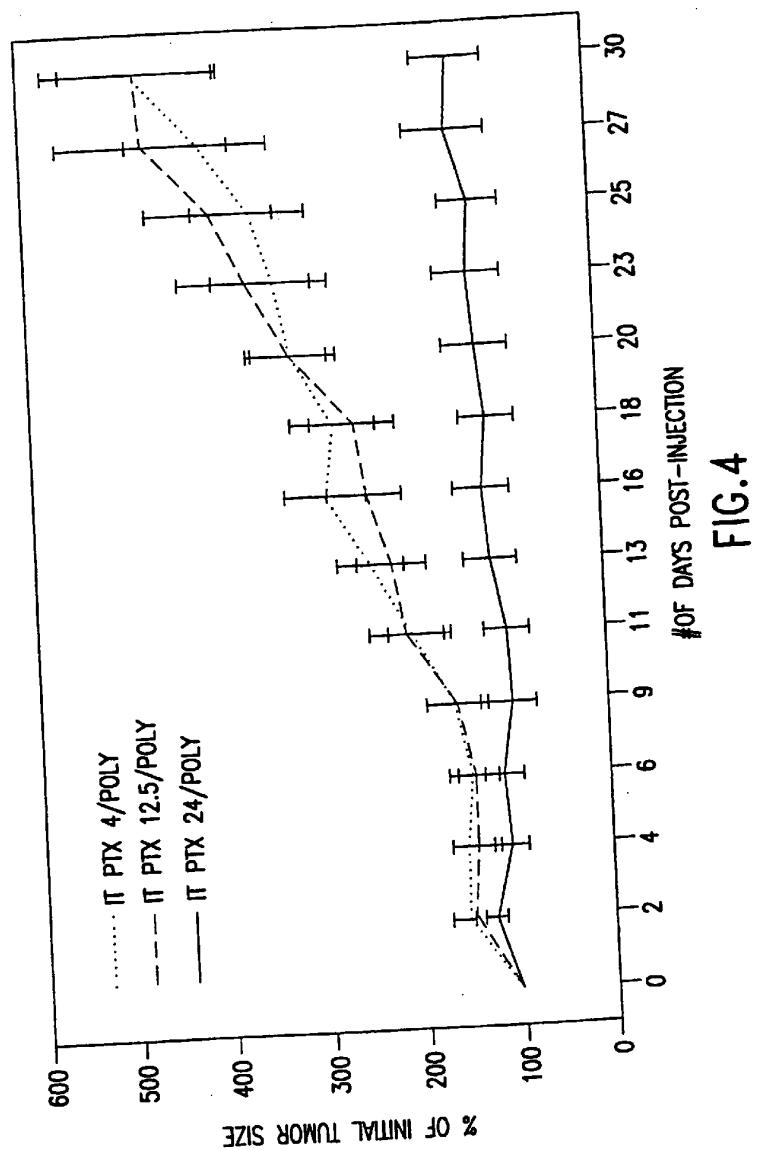


FIG. 4

SUBSTITUTE SHEET (RULE 26)

5/12

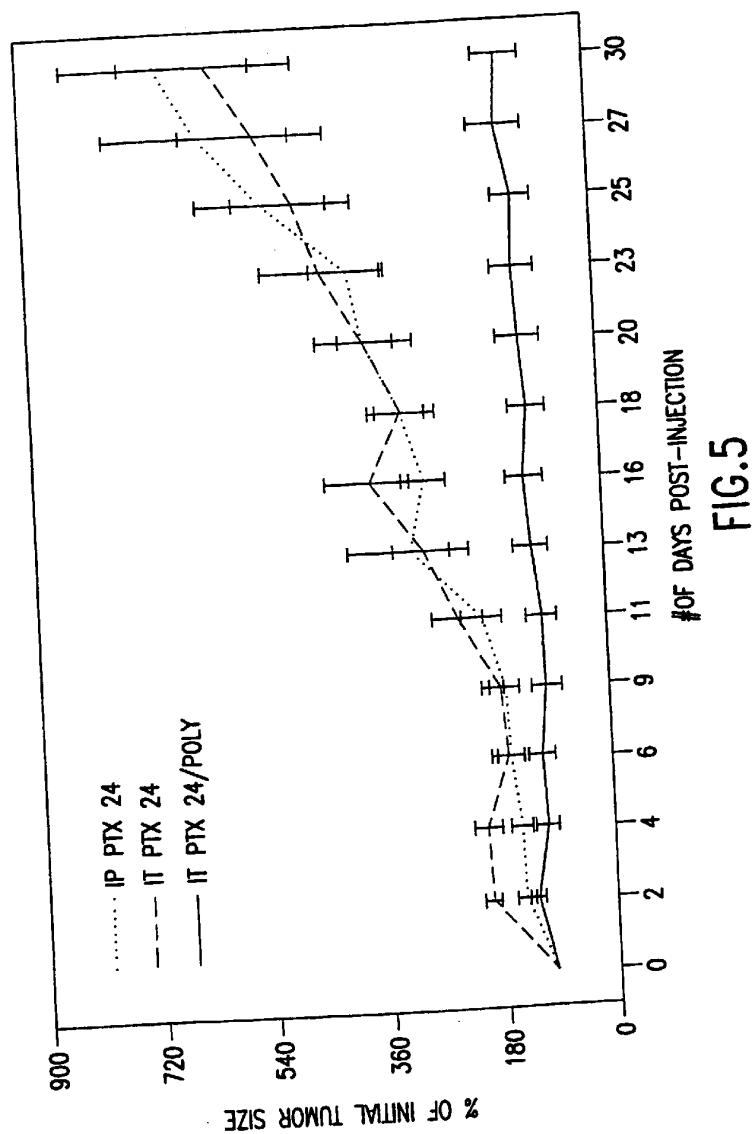


FIG.5

SUBSTITUTE SHEET (RULE 26)

6/12

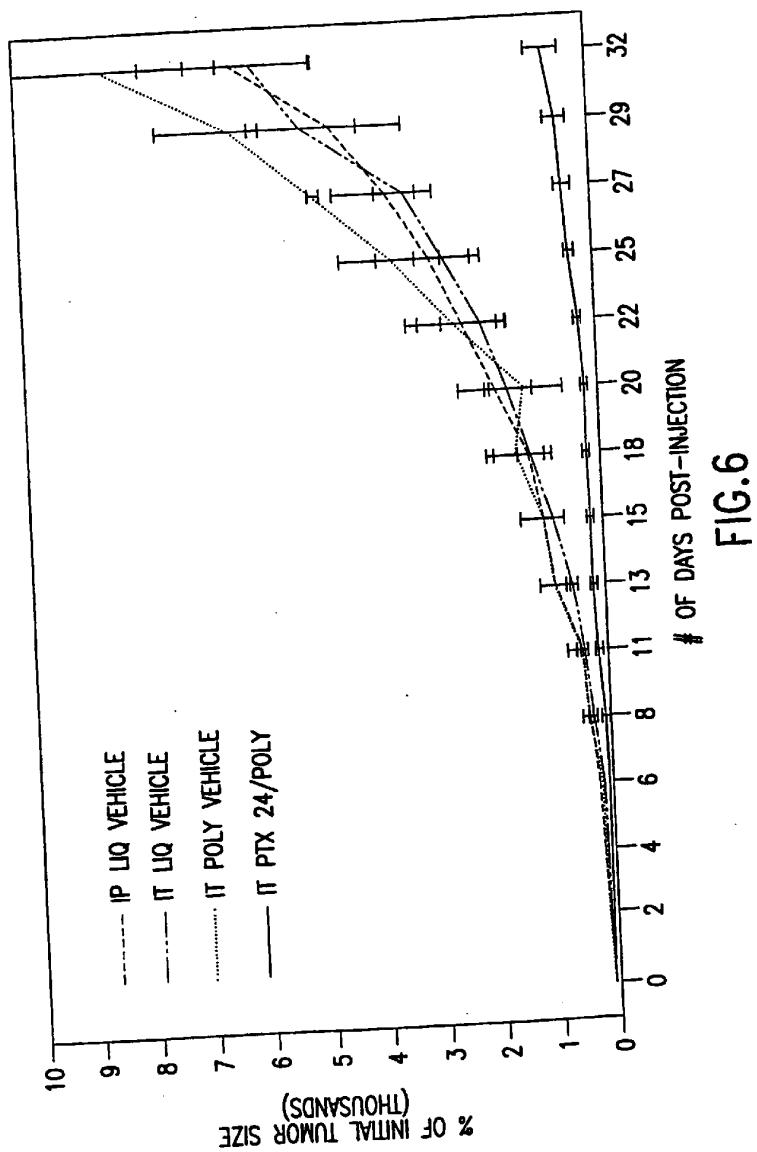


FIG. 6

SUBSTITUTE SHEET (RULE 26)

7/12

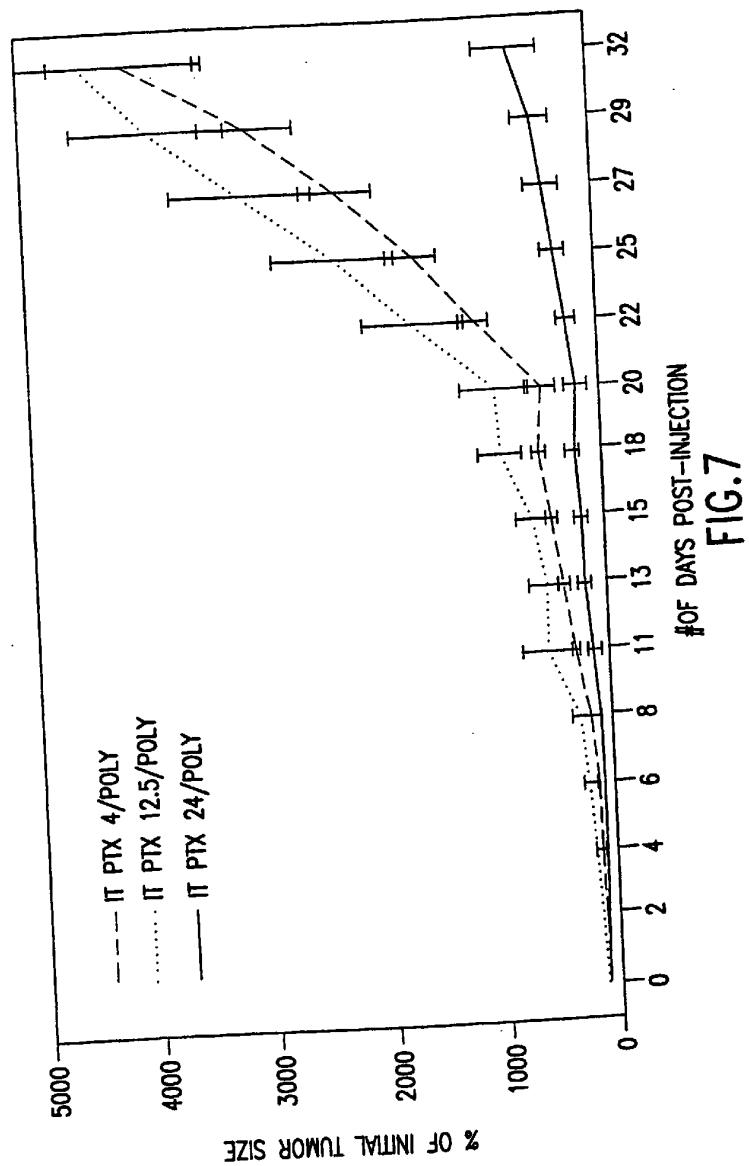


FIG.7

SUBSTITUTE SHEET (RULE 26)

8/12

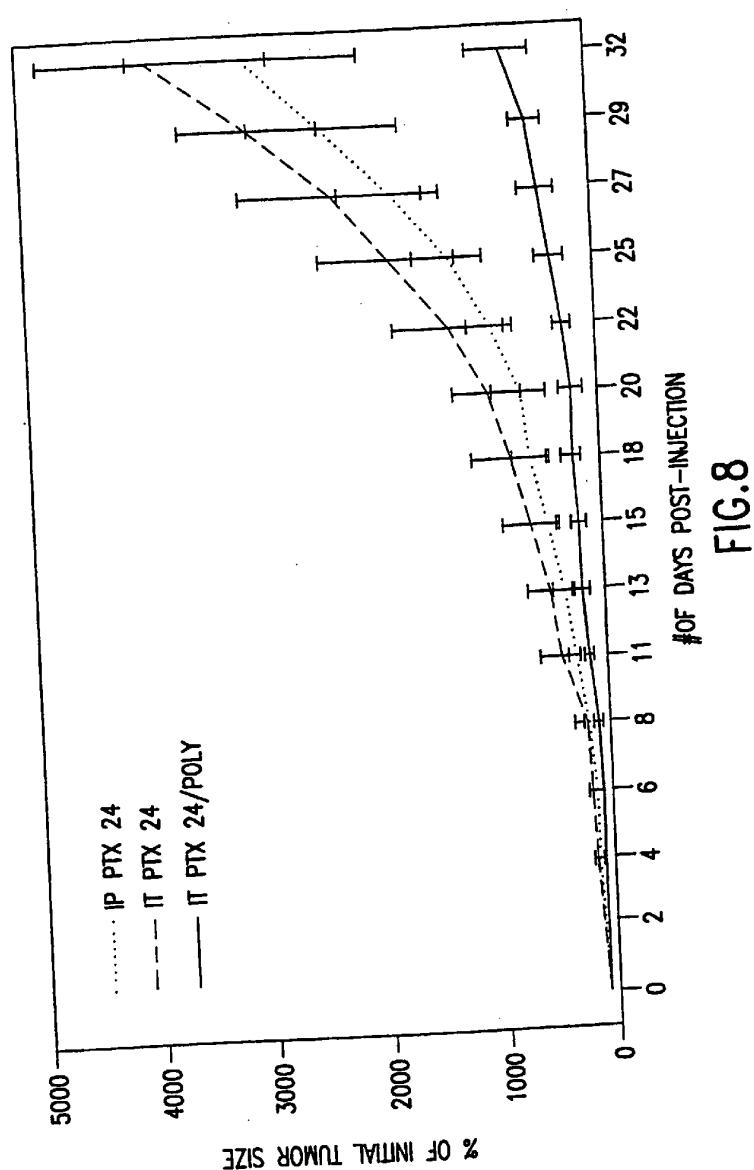


FIG. 8

SUBSTITUTE SHEET (RULE 26)

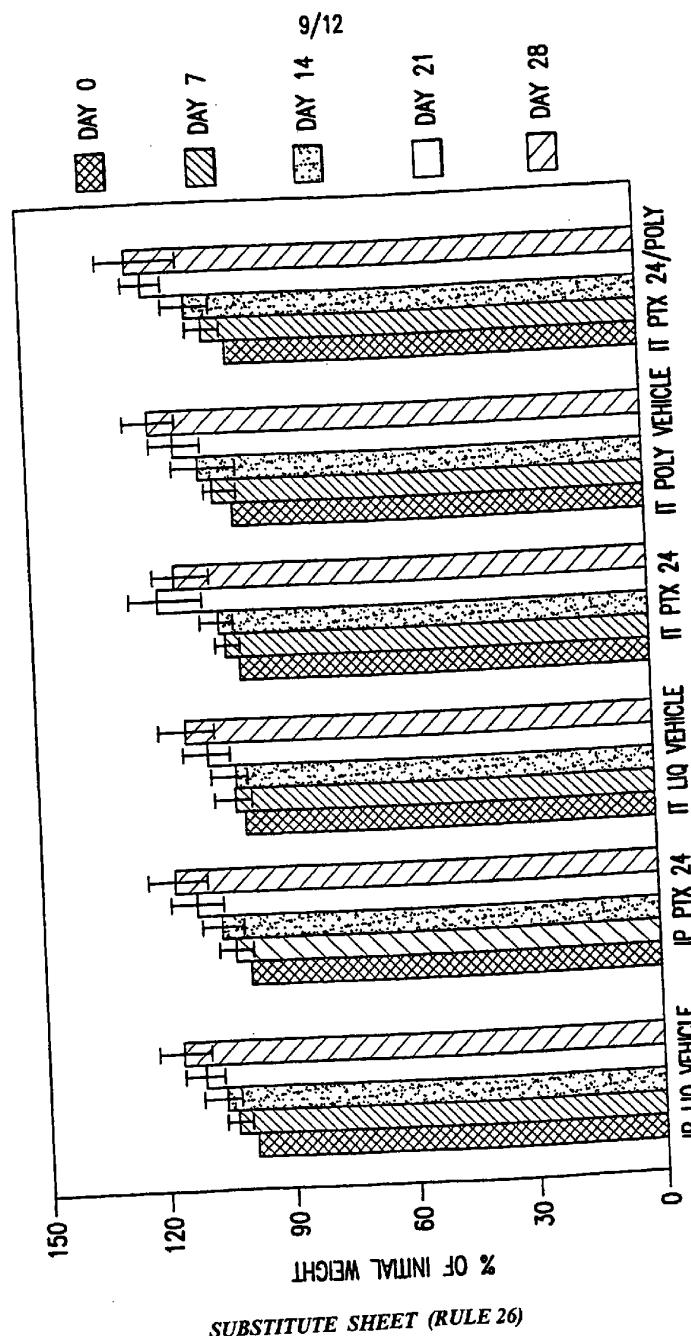


FIG. 9

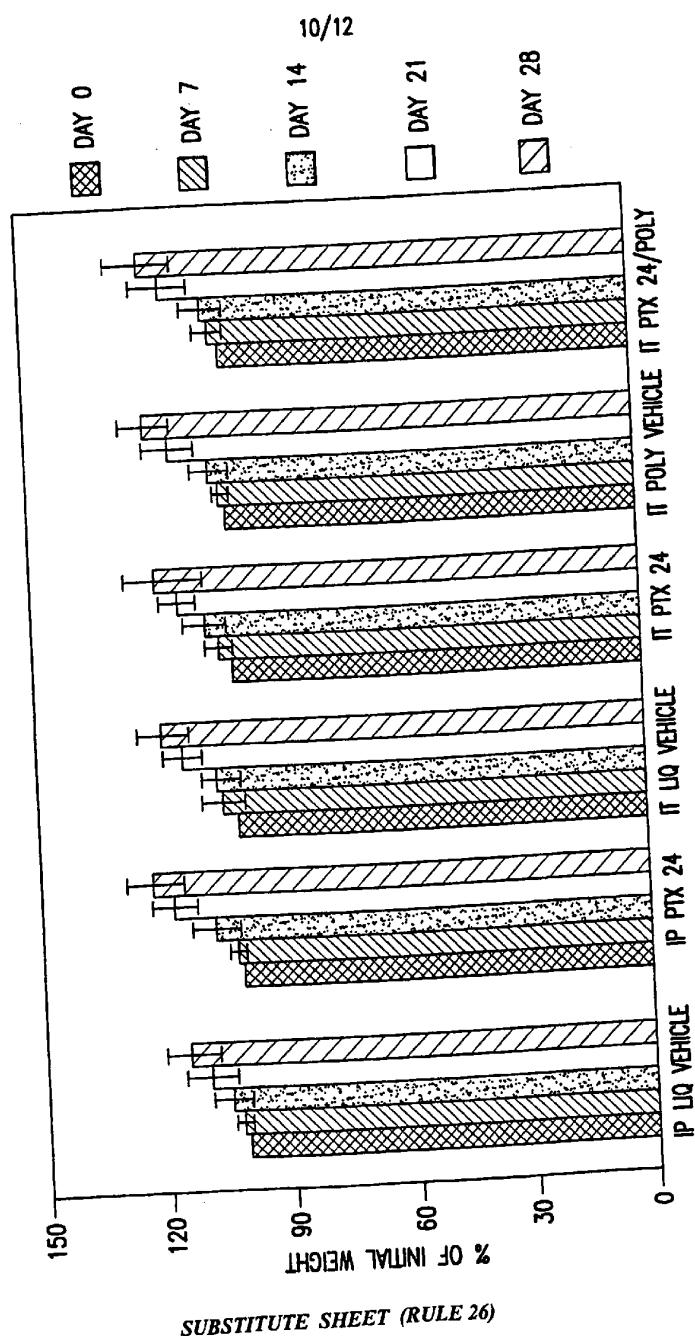
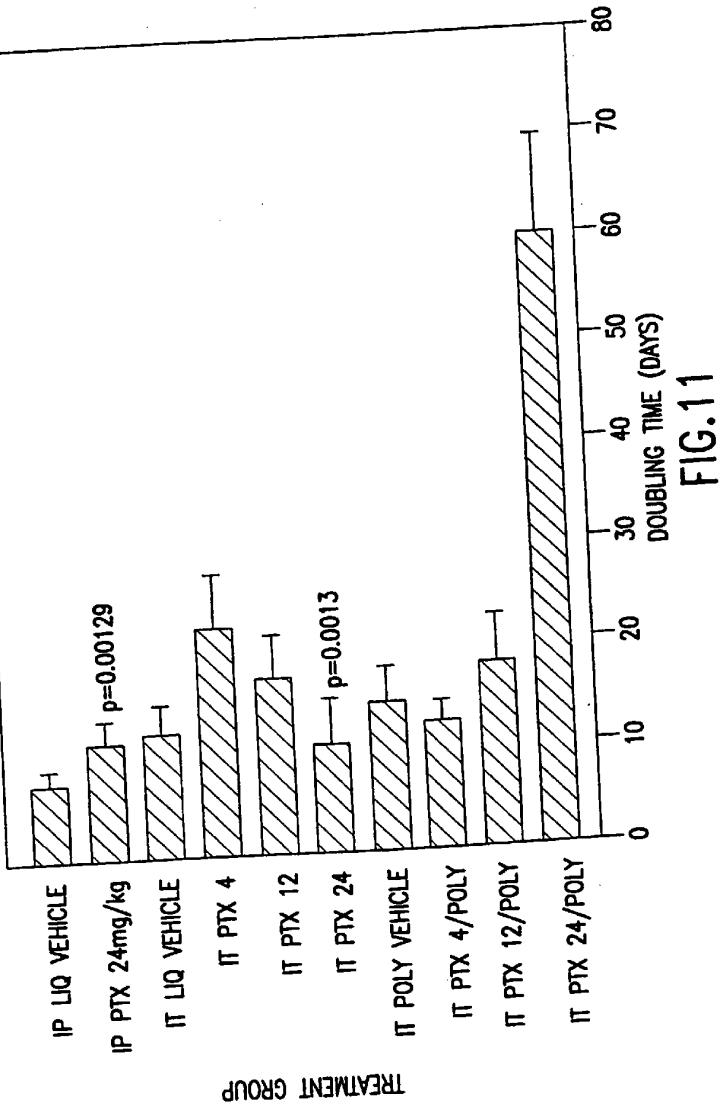



FIG. 10

11/12

SUBSTITUTE SHEET (RULE 26)

12/12

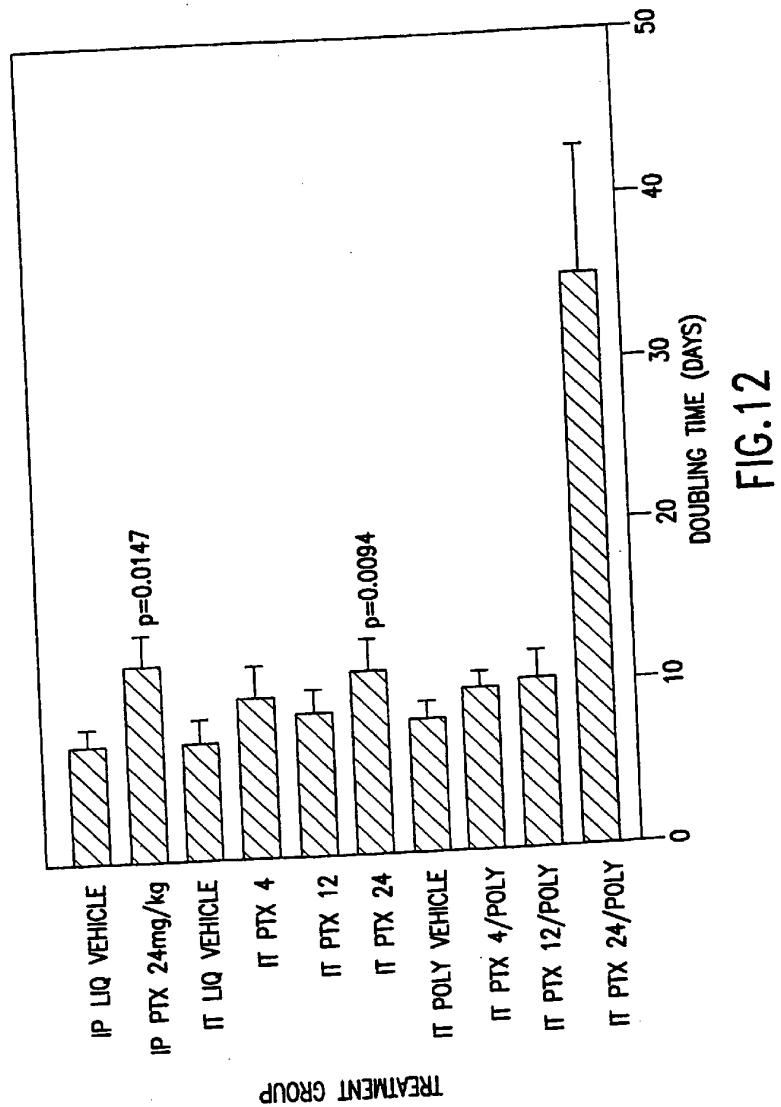


FIG.12

SUBSTITUTE SHEET (RULE 26)