发明名称
在无线电网络中计数广播内容接收方的方法和装置

摘要
该基站广播 (608) 标识至少一种广播内容流并且对于每个流的一个 REGISTER (R) 或 DO NOTREGISTER (DNR) 的指示符。移动台周期性地重复检查 (722) 此消息的内容。当该指示符对于广播内容是 R 时，其用户已经选择接收该流的移动台向基站发送对于那个流的注册消息 (714)。当已注册移动台的数目达到 (612) 指定数目时，基站将指示符改变成 DNR (614)。当对于广播内容流指示符为 DNR 时，移动台避免 (712/716) 发送任何对于那个广播内容流的注册消息。基站通过将指示符重新设置成 R 来建立重新计数 (618)。
1. 一种用于在无线通信网络中计数从基站接收广播内容的无线移动台的总数的方法，所述方法包括的操作有：

所述基站无线广播重放广播参数消息，所述消息包括至少一个广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有下列值中的一个：REGISTER, DO NOT REGISTER;

移动台按照预定方案重复检查所述广播参数消息的内容；

对情况作出响应包括，所述检查揭示与特定广播内容流有关的所述指示符被设置成 REGISTER，其用户已选择接收所述特定广播内容流的移动台开始注册过程，所述注册过程包括向所述基站发送与所述特定广播内容流有关的指定格式的无线注册消息；

对情况作出响应包括，所述检查显示与特定广播内容流有关的所述指示符被设置成 DO NOT REGISTER，所有移动台避免向所述基站发送与所述特定广播内容流有关的注册消息；

对已经为特定广播内容流注册的移动台总数达到指定数目情况作出响应，所述基站将所述广播参数消息配置成包括与所述特定广播内容流有关的 DO NOT REGISTER 指示符，以代替 REGISTER 指示符。

2. 如权利要求 1 所述的方法，所述操作进一步包括：

在已经为特定广播内容流注册的移动台总数达到所述指定数目后一段指定时间之后，通过将所述与所述特定广播内容流有关的指示符配置成 REGISTER 代替 DO NOT REGISTER，所述基站开始重新计数。

3. 如权利要求 1 所述的方法，所述操作进一步包括：

对所述基站检测到特定广播内容流中指定类型发生一种或多种改变作出响应，将与所述特定广播内容流有关的所述指示符配置成 REGISTER，所述指定类型包括数据速率、服务质量、比特差错率。

4. 如权利要求 1 所述的方法，其中

所述广播参数消息包括多个广播内容流以及与所有广播内容流有
关的单个指示符，所述单个指示符的值为下列值中的一个：REGISTER，DO NOT REGISTER；
其中相对于任意广播内容流执行所述开始和避免操作。

5. 如权利要求1所述的方法，所述操作进一步包括：
对已经为特定广播内容流注册的移动台总数没有超过预定数目的情况作出响应，利用专用点对点信道来向所述已注册的移动台传送所述特定广播内容流；
对已经为特定广播内容流注册的移动台总数超过了所述预定数目的情况作出响应，利用共享前向链路信道来向所述已注册的移动台传送所述特定广播内容流。

6. 如权利要求1所述的方法，其中所述注册过程进一步包括所述移动台将它们的注册消息的传输延迟，其中每个延迟包括以下的一种：
固定延迟；
随机延迟；
源自所述移动台内部的信息的可变延迟；
源自所述移动台得到并与注册无关的信息的可变延迟；
源自所述特定广播内容流的注册等待因素的实际时间延迟，所述注册等待因素是从所述广播参数消息得到的。

7. 如权利要求1所述的方法，其中：
所述广播参数消息进一步包括一个或多个注册等待因素；
其中所述操作进一步包括：
从所述广播参数消息获得所述注册等待因素；
利用所述获得的注册等待因素来推导出实际时间延迟；
利用所述实际时间延迟作为倒计数计时器来触发对检查所述广播参数消息内容的操作的重复。

8. 如权利要求1所述的方法，其中：
所述发送指定格式的无线注册消息的操作进一步包括，对于每个
移动台，至少发送以下安全项：用户标识码、消息认证码、和序列码，所述序列码指示所述注册消息相对所述移动台发送的其它消息的相对序列。

9. 如权利要求 8 所述的方法，其中所述操作进一步包括所述基站进行移动台注册消息的安全审查，所述审查包括拒绝每个满足以下的任意一条或多条的注册消息：
 所述用户标识码不能验证所述正在发送的移动台的标识；
 所述消息认证码显示所述注册消息的内容已经受过干扰；
 所述序列码不能显示相对于相同移动台的其它消息的序列差异。

10. 如权利要求 1 所述的方法，其中：
 所述操作进一步包括建立移动台对期望广播内容流的预约；
 所述移动台执行对于那些移动台预约的广播内容流的开始和避免操作。

11. 如权利要求 1 所述的方法，其中：
 所述广播参数消息标识至少一种计划在将来指定时间开始的广播内容流；
 所述操作进一步包括，在所述指定时间，所述基站确定已经为特定广播内容流注册的移动台的总数是否超过了预定数目，并且
 如果超过了所述预定数目，利用共享前向链路信道来同时向已注册的移动台传送所述广播内容流；
 如果没有超过所述预定数目，则利用专用点对点信道来分别向已注册的移动台传送所述广播内容流。

12. 如权利要求 1 所述的方法，所述操作进一步包括：
 补充已经为特定广播内容流注册的移动台的总数为还包括任何经由专用点对点信道从所述基站接收所述特定广播内容流的移动台。

13. 如权利要求 1 所述的方法，所述操作进一步包括：
对特定广播内容流的初始注册后，所述移动台开始经由共享前向链路广播信道接收所述特定广播内容流。

14. 一种跟踪从基站接收广播内容的移动台总数的方法，包括的操作有：

所述基站广播重复广播参数消息，所述消息标识至少一种广播内容流和与每个流相关的 REGISTER（R）或 DO NOT REGISTER（DNR）指示符；

移动台接收并检查所述重复广播参数消息的内容；

当所述指示符对于特定广播内容流是 R 时，其用户已经选择接收所述特定广播内容流的移动台向所述基站发送与那个流有关的无线注册消息；

当对于特定流的已注册移动台的总数达到指定数目时，所述基站再配置所述重复广播参数消息成显示与所述特定流有关的 DNR 指示符；

当对于特定流的所述指示符为 DNR 时，移动台避免发送与那个流有关的无线注册消息。

15. 一种操作无线移动台来参与计算在无线通信网络中从基站接收广播内容的移动台的总数的方案的方法，所述方法包括的操作有：

接收来自基站的重复广播参数消息的传输，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中的一个：REGISTER，DO NOT REGISTER；

按照预定方案重复检查所述广播参数消息的内容；

对情况作出响应包括，所述检查显示与所述移动台的用户已经选择要接收的特定广播内容流有关的所述指示符被设置成 REGISTER，开始注册过程，所述注册过程包括向所述基站发送与所述特定广播内容流有关的指定格式的无线注册消息；

对情况作出响应包括，所述检查显示与特定广播内容流有关的所述指示符被设置成 DO NOT REGISTER，避免向所述基站发送任何与所述特定广播内容流有关的无线注册消息。
16. 如权利要求 15 所述的方法，所述操作进一步包括：
对特定广播内容流的初始注册后，所述移动台开始经由共享前向链路广播信道接收所述特定广播内容流。

17. 如权利要求 15 所述的方法，其中所述注册过程进一步包括所述移动台将注册消息的传输延迟，其中所述延迟包括以下的其中一种：
固定延迟；
随机延迟；
源自所述移动台内部的信息的可变延迟；
源自从所述移动台得到并与注册无关的信息的可变延迟；
源自所述特定广播内容流的注册等待因素的实际时间延迟，所述注册等待因素是从所述广播参数消息得到的。

18. 如权利要求 15 所述的方法，其中：
所述广播参数消息进一步包括一个或多个注册等待因素；
所述操作进一步包括：
从所述广播参数消息获得所述注册等待因素；
利用所述获得的注册等待因素来推导出实际时间延迟；
利用所述实际时间延迟作为倒数计时器来触发对检查所述广播参数消息内容的操作的重复。

19. 如权利要求 15 所述的方法，其中：
发送指定格式的无线注册消息的所述操作进一步包括，对于每个移动台，至少发送以下安全项：用户标识码，消息认证码，和序列码，所述序列码指示所述注册消息相对所述移动台发送的其它消息的相对序列。

20. 如权利要求 15 所述的方法，其中：
所述移动台执行对于所述移动台预约的广播内容流的开始和避免操作。
21. 一种装置，其被配置成用来执行无线移动台参与到在无线通信网络中计算从基站接收广播内容有关的移动台总数的方案的操作，所述装置包括：

用于接收来自基站的重复广播参数消息的无线传输的装置，所述消息包括至少一种广播内容流的标识，和与每个广播内容流有关的指示符，所述指示符具有如下值之一：REGISTER，DO NOT REGISTER；

用于按照预定方案重复检查所述广播参数消息的内容的装置；

用于对情况作出响应的装置，其中对情况作出响应包括，所述检查显示了与所述移动台的用户已经选择要接收的特定广播内容流有关的所述指示符被设置成 REGISTER，开始注册过程，所述注册过程包括向所述基站发送与所述特定广播内容流有关的指定格式的无线注册消息；

对情况作出响应包括，所述检查显示与特定广播内容流有关的所述指示符被设置成 DO NOT REGISTER，避免向所述基站发送任何与所述特定广播内容流有关的无线注册消息。

22. 一种包括多个互连的电传导元件的电路，其被配置成执行无线移动台参与在无线通信网络中计算从基站接收广播内容的移动台的总数的方案的操作，所述电路包括：

用于接收来自基站的重复广播参数消息的无线传输的模块，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符值为以下值中的一个：REGISTER，DO NOT REGISTER；

用于按照预定方案重复检查所述广播参数消息的内容的模块；

用于对情况作出响应的模块，其中对情况作出响应包括，所述检查显示与所述移动台的用户已经选择要接收的特定广播内容流有关的所述指示符被设置成 REGISTER，开始注册过程，所述注册过程包括向所述基站发送与所述特定广播内容流有关的指定格式的无线注册消息；

对情况作出响应包括，所述检查显示与特定广播内容流有关的所述指示符被设置成 DO NOT REGISTER，避免向所述基站发送任何与
所述特定广播内容流有关的无线注册消息。

23. 一种在无线通信网络中使用的无线移动台，包括：
收发信机；
扬声器；
麦克风；
用户接口；
管理器，其被连接至所述收发信机、扬声器、麦克风、和用户接口，并被配置为执行所述无线移动台参与在无线通信网络中计算从基站接收广播内容的移动台总数的方案的操作，所述操作包括：
接收来自基站的重复广播参数消息的无线传输，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中的一个：REGISTER, DO NOT REGISTER；
按照预定方案重复检查所述广播参数消息的内容；
对情况作出响应包括，所述检查显示了与所述移动台的用户已经选择要接收的特定广播内容流有关的所述指示符被设置成REGISTER，开始注册过程，所述注册过程包括向所述基站发送与所述特定广播内容流有关的指定格式的无线注册消息；
对情况作出响应包括，所述检查显示与特定广播内容流有关的所述指示符被设置成DO NOT REGISTER，避免向所述基站发送任何与所述特定广播内容流有关的无线注册消息。

24. 一种无线移动台，包括：
用于无线电地发送和接收信号的收发信机装置；
用于根据电子输入生成音频输出的扬声器装置；
用于根据音频输入生成电子输出的麦克风装置；
用于将人的输入转换成机器可读输入以及将机器可读输出转换成人可读输出的用户接口装置；
管理器装置，其被连接至所述收发信机装置、扬声器装置、麦克风装置、和用户接口装置，用于执行所述无线移动台参与在无线通信网络中计算从基站接收广播内容的移动台总数的方案的操作，所述操
作包括：
接收来自基站的重复广播参数消息的无线传输，所述消息包
括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中的一个：REGISTER，DO NOT REGISTER；
按照预定方案重复检查所述广播参数消息的内容；
对情况作出响应包括，所述检查显示了与所述移动台的用户
已经选择要接收的特定广播内容流有关的所述指示符被设置成
REGISTER，开始注册过程，所述注册过程包括向所述基站发送与所述
特定广播内容流的指定格式有关的无线注册消息；
对情况作出响应包括，所述检查显示与特定广播内容流有关
的所述指示符被设置成 DO NOT REGISTER，避免向所述基站发送任
何与所述特定广播内容流有关的无线注册消息。

25. 一种操作无线通信网络的一个或多个部件计算从特定基站接
收广播内容的无线移动台的总数的方法，所述方法包括的操作有：
所述基站无线地广播重复广播参数消息，所述消息包括了至少一
种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符
具有以下值中的一个：REGISTER，DO NOT REGISTER；
所述基站接收移动台传送的任意无线注册消息，这种注册消息具
有指定格式且每个都与特定广播内容流有关；
对为特定广播内容流注册的移动台的数目达到指定数目之情况作
出响应，所述基站将所述广播参数消息配置成与那个特定广播内容流
有关的 DO NOT REGISTER 指示符，以代替所述 REGISTER 指示符。

26. 如权利要求 25 所述的方法，所述操作进一步包括：
在已经为特定广播内容流注册的移动台总数达到所述指定数目一
段指定时间之后，通过将与所述特定广播内容流有关的所述指示符配
置成 REGISTER 以代替 DO NOT REGISTER，所述基站建立重新计数。

27. 如权利要求 25 所述的方法，所述操作进一步包括：
对所述基站检测到特定广播内容流中指定类型发生一种或多种改
变作出响应，将与所述特定广播内容流有关的所述指示符配置成REGISTER，所述指定类型包括数据速率、服务质量、比特差错率。

28. 如权利要求25所述的方法，所述操作进一步包括：
对已经为特定广播内容流注册的移动台总数没有超过预定数目的情况作出响应，利用专用点对点信道来向已注册的移动台传送所述特定广播内容流；
对已经为特定广播内容流注册的移动台总数超过了所述预定数目的情况作出响应，利用共享前向链路信道来向所述已注册的移动台传送所述特定广播内容流。

29. 如权利要求25所述的方法，其中所述指定格式的无线注册消息至少包括以下安全项：用户标识码，消息认证码，和序列码，所述序列码指示了所述注册消息相对所述移动台发送的其它消息的相对序列，并且其中所述操作进一步包括：
通过拒收每个满足以下的任意一条或多条的注册消息来确定任意接收注册消息的有效性：
所述用户标识码不能验证所述正在发送的移动台的标识；
所述消息认证码显示所述注册消息的内容已经受过干扰；
所述序列码不能显示相对于相同移动台的其它消息的序列差异。

30. 如权利要求25所述的方法，其中：
所述广播参数消息标识至少一种计划在将来指定时间开始的广播内容流；
所述操作进一步包括，在所述指定时间，确定已经为特定广播内容流注册的移动台总数是否超过了预定数目，并且
如果超过了所述预定数目，利用共享前向链路信道来同时向已注册的移动台传送所述广播内容流；　
如果没有超过所述预定数目，则利用专用点对点信道来分别向已注册的移动台传送所述广播内容流。
31. 如权利要求25所述的方法，所述操作进一步包括：
将已经为特定广播内容流注册的移动台总数补充成，额外包括任意经由专用点对点信道从所述基站接收所述特定广播内容流的移动台。

32. 一种装置，其被配置成执行一个或多个无线通信网络的部件计算从特定基站接收广播内容的无线移动台总数的操作，所述装置包括：
用于所述基站无线地广播重复广播参数消息的装置，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中的一个：REGISTER，DO NOT REGISTER；
用于所述基站接收移动台传送的无线注册消息的装置，这种注册消息具有指定格式且每个都与特定广播内容流有关；
用于对为特定广播内容流注册的移动台的数目达到指定数目情况作出响应的装置，所述基站将所述广播参数消息配置成包括与那个广播内容流有关的DO NOT REGISTER指示符，以代替所述REGISTER指示符。

33. 一种包括多个互连的电传导元件的电路，其被配置成执行一个或多个无线通信网络的部件计算从特定基站接收广播内容的无线移动台总数的操作，所述电路包括：
用于所述基站无线地广播重复广播参数消息的模块，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中的一个：REGISTER，DO NOT REGISTER；
用于所述基站接收移动台传送的无线注册消息的模块，这种注册消息具有指定格式且每个都与特定广播内容流有关；
用于对为特定广播内容流注册的移动台的数目达到指定数目情况作出响应的模块，所述基站将所述广播参数消息配置成包括与那个广播内容流有关的DO NOT REGISTER指示符，以代替所述REGISTER指示符。
34. 一种无线通信网络的移动台，包括：
输入/输出端；
数字数据存储器；
处理器，所述处理器被连接至所述输入/输出端和所述数字数据存储器，且被配置为执行基站计算从基站接收广播内容的无线移动台的总数的操作，所述操作包括：

无线地广播重复广播参数消息，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中一个：REGISTER，DO NOT REGISTER；

接收移动台传送的无线注册消息，这种注册消息具有指定格式且每个都与特定广播内容流有关；

对为特定广播内容流注册的移动台的数目达到指定数目情况作出响应，将所述广播参数消息配置成包括与那个广播内容流有关的DO NOT REGISTER指示符，以代替所述REGISTER指示符。

35. 一种无线通信网络的部件，包括：
用于传导输入/输出的第一装置；
用于存储机器可读数据的第二装置；
处理器装置，其被连接至所述第一和第二装置，用于执行基站计算从所述基站接收广播内容的无线移动台的总数的操作，所述操作包括：

无线地广播重复广播参数消息，所述消息包括至少一种广播内容流的标识和与每个广播内容流有关的指示符，所述指示符具有以下值中一个：REGISTER，DO NOT REGISTER；

接收移动台传送的无线注册消息，这种注册消息具有指定格式且每个都与特定广播内容流有关；

对为特定广播内容流注册的移动台的数目达到指定数目情况作出响应，将所述广播参数消息配置成包括与那个广播内容流有关的DO NOT REGISTER指示符，以代替所述REGISTER指示符。
在无线电网络中计数广播内容接收方的方法和装置

技术领域

本发明一般涉及通过不同的多用户（“共享”）和/或单个（“专用”）前向链路广播信道向移动台提供广播内容的无线通信网络。更特别的，本发明涉及用于计算从特定基站接收特定广播内容的移动台的总数的方法和/或装置的不同实施例。

背景技术

许多已知的通信系统将信息信号从始发站传输到物理上不同的目的站。该信息信号首先被转换成适合在通信信道上有效传输的形式。信息信号的转换或调制包括以这样的方式改变对应信息信号的载波信号波的参数，使得生成的调制载波的频谱被限制在通信信道带宽以内。在目的站，原始信号信号从在通信信道上接收的已调载波信号波复现出来。通常通过使用始发站采用的调制处理的反向处理来实现这种复现。

调制也促进了多址接入，也就是，在公共通信信道上同时发送和/或接收几个信号。比起持续接入到公共通信信道，多址通信系统经常包括需要持续时间相对较短的间歇业务的多个用户单元。几种多址技术在本领域内广为人知，诸如时分多址（TDMA），频分多址（FDMA），调幅多址（AM），码分多址（CDMA）扩频。多址通信系统可以是无线的或有线的，并可以传递声音和/或数据。

在一个双向、多址无线通信系统中，通过一个或多个基站进行用户之间的通信。在一个实例中，第一无线移动台的一个用户通过利用反向链路向基站传输数据与第二无线移动台的另一个用户进行通信。该基站接收数据，并且如果必要的，将数据路由到另一个基站。最后，数据通过最终基站的前向链路被传输到第二移动台。“前向”链路指的是从基站到无线移动台的传输，而“反向”链路指的是从无线移动台到基站的传输。在一些通信系统中，前向链路和反向链路利用
不同频率。

也可以在无线移动台的一个用户和陆线站(landline station)的另一个用户之间进行通信。这种情况下，基站通过反向链路从移动台接收数据，并路由数据使之经由公共电话交换网（PSTN）到达陆线站。通信也在反方向上进行。

上述的无线电通信业务是“点到点”通信业务的实例。相反，“广播”业务将信息从中心站传送到多个移动台（“多点”）。广播系统的基础模型由一个或多个中心站服务的用户的广播网组成，其中该中心站向用户发送新闻、电影、体育、或其它“内容”。在这里，每个移动台监视公共广播前向链路信号。因为固定不变地由中心站决定内容，用户通常就不向回通信。通常使用广播卫星通信系统的实例是电视、收音机等。这样的通信系统一般是很专用的。

由于近来无线电话系统中的进步，人们对使用现代的，主要是点对点的无线电话基础设施来额外传送广播业务越来越感兴趣。在这一方面，加利福尼亚，圣地亚哥的高通公司已经作出了许多重要的进展。下面的参考文件（作为参考引用）描述了高通关于使用共享通信信道在无线电网络中传送广播内容的不同进展。

1. 于2001年8月20日提交的，名为“用于广播通信系统中信令的方法和装置”的，第09/933,978号的美国专利申请

2. 于2002年7月9日提交的，题为“用于在通信系统中初始化多播业务的方法和系统”的，第10/192,132号美国专利申请

3. 于2001年8月20日提交的，题为“在广播业务通信系统中使用外部解码器的方法和系统”，第09/933,912号的美国专利申请

4. 于2001年8月20日提交的，题为“用于在无线通信系统中开发消息传递的方法和装置”，第09/933,971号的美国专利申请

下面的参考文件（也作为参考引用）还描述了高通关于在无线电网络中使用专用（专用和共享）通信信道传送广播内容的不同进展。

1. 于2003年1月31日提交的，题为“在线电话网络中广播内容的共享信道传送期间初始化点对点呼叫的方法和装置”，第10/356,053号的美国专利申请

2. 于2002年10月22日提交的，题为“在无线电网络中用于开始
广播内容的共享或专用传输的方法和装置”的，第10/278,516号的美国专利申请

3. 于2002年10月22日提交的，题为“用于在无线电网络中在共享信道和专用信道之间切换以提供广播内容服务的方法和装置”的，第10/278,485号的美国专利申请。

尽管以上申请已满足了许多方面的需求，但无线广播系统的一个方面还没有被完全地开发出来，即用于计算从指定小区地点、基站、或其它区域接收广播内容的移动台的总数。

发明内容

广泛地说，此处公开内容涉及通过不同共享和（可选地）专用广播信道为移动台提供广播内容的无线通信网络。更具体地，本公开内容提出了某种方法和/或装置的不同实施例，该方法和/或装置用于计算从指定基站接收特定广播内容的移动台的总数。

一种用于在无线通信网络中计数从基站接收广播内容的无线移动台的总数的方法，包括的操作有：基站无线广播重复广播参数消息，该消息包括至少一个广播内容流的标识和与每个广播内容流有关的指示符，该指示符具有下列值中的一个：REGISTER，DO NOT REGISTER；移动台按照预定方案重复检查广播参数消息的内容；对情况作出响应包括，检查揭示与特定广播内容流有关的指示符被设置成REGISTER，其用户已经选择接收特定广播内容流的移动台开始注册过程，该注册过程包括向基站发送与特定广播内容流有关的指定格式的无线注册消息；对情况作出响应包括，检查显示与特定广播内容流有关的指示符被设置成DO NOT REGISTER，所有移动台避免向所述基站发送与特定广播内容流有关的注册消息；对已经为特定广播内容流注册的移动台总数达到指定数目时，情况作出响应，基站将广播参数消息配置成包括与特定广播内容流有关的DO NOT REGISTER指示符，以代替REGISTER指示符。

附图说明

图1是无线通信网络中一些硬件部件和互连的框图；
图2是示例性数字数据处理机的框图；
图3是示例性承载信号的媒体的平面图；
图4是无线移动台的硬件部件和互连的框图；
图5A是说明移动台操作状态的状态图；
图5B-5E是分别说明了在空闲，接入，业务，和业务/空闲状态期间在移动台和基站之间消息交换的框图；
图6是说明了基带记录从基带接收特定广播内容的移动台的数目的操作的流程图。
图7是说明了在无线通信网络中移动台为了广播内容的接收而接收和选择性注册的操作的流程图。

具体实施方式

在联系附图参考下面的详细描述之后，对于本领域的技术人员来说，本发明的本质、目的和优点将变得更明显。

硬件部件及互连

无线通信系统

按照广播系统的示例性模型，许多个移动台由一个或多个发送诸如新闻、电影、体育竞赛等广播内容的基带提供服务。图1说明了通信系统100的框图，该通信系统100能根据此处公开的不同实施例执行高速广播业务。

为了简化说明，但不带任何有意限制，图1的子部件、互联、和整体排列利用了示例性的CDMA-2000的结构。然而，本公开内容的原理也同样地适用于WCDMA、GSN、GPRS、EDGE和其它结构。对于普通技术人员来说，将本公开内容改造成适合其它无线网络结构（具有此公开内容的优点）将会很明显而不必要说明那些结构特定的部件和协议。

广播内容源于一个或多个内容服务器（CS）102。该内容服务器102包括一个或多个数字数据处理机，诸如个人计算机、计算机工作站、主计算机、计算机网络、微处理器、或其它经由互联协议（IP）连接104或其它（未示出）非IP网络或直接连接将分组格式（或其它格式）的广播内容传送到广播分组数据服务节点（BPDSN）106的计算设备。根据实现的方式，节点106可以利用与无电话技术中众所周知的类型的分组数据交换节点（PDSN）相同或不同的硬件。依照每个分组的目的地，节点106将分组传送到适当的分组控制功能（PCF）模块108。每个模块108控制与高速广播业务传送相关的基站110的不同功能。其它功能之中，模块108将广播分组转发到基站110。每个模块108可以利用
与无线电技术中众所周知的类型的基站控制器（BSC）相同或不同的硬件。

基站110将广播内容和传统的无线电呼号发送给移动台（MS）114。基站110可以使用诸如当今市场上使用的传统基站所用的硬件来实现。

示例性数字数据处理机

诸如基站、移动台、部件102，106，108，110，114，或一个或多个它们的子部件这样的数字处理实体可以被实现为不同的形式。一个实例是数字数据处理装置，如图2数字数据处理装置200的硬件部件和互连示范的那样。

装置200包括了连接到存储器204的处理器202，诸如微处理器，个人计算机，工作站，控制器，微控制器，状态机，或其它处理机。在本实例中，存储器204包括快速存取存储器206，以及非易失性存储器208。快速存取存储器206可以包括随机存取存储器（“RAM”），并且可被用于存储处理器202运行的程序指令。非易失性存储器208可以包括，例如，电池备份的RAM，EEPROM，快速PROM，一个或多个诸如“硬驱动”、磁带驱动的磁性数据存储磁盘，或任意其它合适的存储设备。装置200也包括输入/输出端210，诸如电线，总线，电缆，电磁链路，接口，信道，或其它用于处理器202与装置200外部的其它硬件交换数据的装置。

尽管上面具体说明实例，普通的技术人员（了解本公开内容的优点）将会认识到上面所讨论的装置可以在不同构造的装置中实现，而不会背离本发明的范围。如一个特定的实例，部件206，208中的一个可以被省略；此外，存储器204，206和/或208可以在该处理器202上被提供，或者甚至在装置200的外部被提供。

逻辑电路

与上述的数字数据处理装置相反，本发明的一个不同实施例使用逻辑电路代替计算机执行指令来实现诸如上面提到的不同的处理实体。根据本申请在速度，费用，加工成本等等领域的特定需求，
这种逻辑可以通过构造具有成千个微小集成的晶体管的专用集成电路（ASIC）来被实现。这样的 ASIC 可以利用 CMOS、TTL、VLSI、或另一种合适的构造来实现。其它的可选方案包括数字信号处理芯片（DSP）、分立电路（诸如电阻、电容、二极管、电导、和晶体管）、现场可编程门阵列（FPGA）、可编程逻辑阵列（PLA）、可编程逻辑设备（PLD）等等。

无线电电话

图4通过说明无线电电话400进一步示出了示例性移动台114的构造。电话400包括扬声器408、用户接口410、麦克风414、收发器404、天线406、和管理器402，以及其它任何根据应用变化的传统电路。管理器402，可包括例如联系图2（以上）讨论的电路，用于管理部件404、408、410、414、420的运行，以及这些部件之间的信号传递。上述部件可以由，例如，市场上可见的无线电电话的子部件来实现。

对于本公开内容特殊的是附加部件，即调度程序部件420。如以下更详细地解释，该移动台利用该调度程序部件来触发评价事件，即为该移动台判断目前是否需要重新注册。评价事件的细节将在下面联系图7更详细地被讨论。该调度程序部件可以利用周期性的、非周期性的，事件驱动的，或其它适当的调度来提供其触发。该调度程序部件420可以包括计时器、时钟、计数器、中断处理程序、软件或固件程序或线程或子例程等等。此外，在基站提供多个广播内容流的情况下，该调度程序部件可以在不同时间为不同的流可选地起动。除了内部存储的或源自于内部的起动时间，该调度程序部件可以利用从诸如BSPM这样的外部源获得、下载、收集、或以别的方式导出的起动时间。在起动时间源自于外部源的情况下，只要来自外部源的信息包含了一些便于有效推导出起启动时间的数据时，该信息可能或者可能不涉及注册或评价事件。

尽管无线电电话400被图示说明，但移动台114可以是移动的或者是固定的。而且，移动台可以包括任意通过无线电信道或通过有线信道（例如使用光纤或同轴电缆）通信的数据设备。除了无线电和有线电话之外（或者替代无线电和有线电话），移动台可以配置成被实现为其它不同
的设备，这些设备包括了但不限于PC卡、微型闪存、外置或内置调制解调器等等。

操作

已经描述了不同的结构性特征，现在将说明本公开内容的一些操作方面的问题。

信号承载媒体

无论在哪里使用一种或多种机器执行的程序序列来实现本公开内容的任意功能，这种序列可以被包含到不同形式的信号承载媒体中。在图2的上下文中，例如这样的信号承载媒体可以包括可被处理器202直接或间接地存取的存储器204或另一种信号承载媒体，诸如磁性数据存储软盘300（图3）。无论是被存储在存储器206、软盘300，或其它某处中，指令可以被存储在不同的机器可读数据存储媒体中。一些实例包括直接存取存储器（例如，传统的“硬盘驱动器”，廉价磁盘冗余阵列（“RAID”），或另一种直接存取存储设备（“DASD”）），诸如磁带或光带这样的顺序存取存储器，电子非易失性存储器（例如，ROM，EPROM，快速PROM，或EEPROM），电池后备RAM，光学存储器（例如，CD-ROM，WORM，DVD，数字光带），或其它适当的数字承载媒体，包括了模拟或数字传输媒体及模拟和通信链路以及无线通信系统。在本发明的另一个说明性实施例中，机器可读指令可包括利用诸如汇编语言C等等这样的语言编译得到的软件目标代码。

逻辑电路

与上述的信号承载媒体对比，一些或全部本公开内容的功能可以使用逻辑电路来实现，以替代使用处理器执行指令来实现。因而，这样的逻辑电路被配置成执行操作以实现本发明的方法。该逻辑电路可以使用一些如以上讨论那样的不同类型电路来实现。

移动台－呼叫模型

每个移动台114按照图5A的状态图560工作。在空闲（IDLE）状态
562. 移动台监视共享寻呼信道和共享开销信道，以下将对此进行更详细的描述。在每个基站向范围内所有移动台广播这些信道的意义上，这些信道是被共享的。简明地说，共享寻呼信道向移动台通知来话呼叫，而共享开销信道提供不同系统的相关信息。在空闲状态562，移动台可经由一个或多个共享广播信道从基站额外地接收多播广播内容。在空闲状态562中，移动台的发射机被关掉。

一种情况下，当移动台发送注册（REGISTRATION）消息，向邻近基站通知该移动台的存在、身份、特征等等时，要进行从空闲562到接入状态（ACCESS）564的转换563。在这种情况下，在发送注册消息之后，从接入状态564转换回空闲状态562（561）。

另一种情形下，在或由移动台或由另一方建立点对点呼叫期间，进行从空闲状态562到接入状态564的转换563。如一个实例，如果另一方开始该呼叫，则移动台通过公共寻呼信道接收寻呼消息。在移动台通过公共“接入”信道应答了该寻呼之后，该移动台接收进行点对点呼叫的业务信道的分配。移动台通过在接入信道上发送适当的消息来开始一个去话呼叫，并且然后以相同的方式接收信道分配。

当来话呼叫或去话呼叫完成，且移动台与基站开始通过业务信道进行通信时，进行从接入状态564到业务状态（TRAFFIC）566的转换565。在业务状态566，移动台利用专用业务信道来与另一方进行点对点通信。最新开始的点对点呼叫可以传送语音、数据，或者甚至是以下讨论的广播信息。如果点对点呼叫携带了广播内容，则它将取代任意先前移动台在空闲状态562接收的共享广播。

当点对点呼叫被任意一方终止或者当该连接被其它原因断开时，进行从业务状态566返回到空闲状态562的转换567。转换567包括释放用于传送点对点呼叫的业务信道。如果该点对点呼叫包含了广播内容，那么转换567可能会可选地导致恢复到在空闲状态562中经由共享信道传送广播内容。

如以下将讨论的那样，经过适当配置的移动台（在适当的无线网络结构中）可以驻留在关于一个或多个点对点呼叫的业务状态566中，而分离地或独立地驻留在关于经由共享前向链路信道的一个或多个共享广播内容流的接收的空闲状态562中。
信道

图5B-5E描述了一些主要的通信信道，这些通信信道用于在上述的空闲状态，接入状态，和业务状态期间中继移动台和基站之间的信息。本公开内容的广播信道可以被用于中继数据、音频、视频，或其它任何希望的内容。

为了简化说明，且不带任何意有限制，以CDMA-2000为背景作出以下讨论。然而，这些原则同样适用于WCDMA，GSN，GPRS，EDGE，和其它结构。对于本领域的普通技术人员来说，将本公开内容改造成适用于其它无线网络结构将会很明显（具有本公开内容的优点），而不必要说明那些结构的特定部件和协议。并且，尽管不同的特定信道被指定为实例，此公开内容还是可以使用其它信道（已知的或者将来可用的）而不会脱离本发明。

“通信信道/链路”指的是依照上下文的物理信道或逻辑信道。“物理信道”指的是按调制特征和编码方面描述的信号传播通过的通信路径。“逻辑信道”指的是在基站或移动台的协议层内的通信路径。“反向信道/链路”指的是移动台向基站发送信号通过的通信信道/链路。“前向信道/链路”指的是基站向移动台发送信号通过的通信信道/链路。

空闲状态

图5B说明了空闲状态562。基站504发射移动台502以及该基站正在服务的其他所有移动台接收的开销信道505。该开销信道505包含周期性重复的诸如关于临近基站的信息，接入信息（例如，推荐的功率水平，最大消息大小等等）这样的系统信息，和系统参数（诸如产品修订等级，支持的特征等等）。在CDMA-2000系统中，开销信道505可以包括前向广播控制信道（F_BCCH）。

作为一个实例，开销信道505的内容可包括广播系统参数消息（BSPM），该消息指定了每个不同的广播信道和/或在共享和/或专用信道上“可得”的节目（program）。节目“可得”的BSPM指示可能表示该节目正被广播，该节目计划在将来某个特定时间内广播，该节
目对于需要的移动台可得但现在已经没有被广播，或是另一种根据网络期望实现的意思。"节目"是指特定表演、事件、时间段、或广播内容的其他单元，诸如CNN新闻、或ESPN、或天气信息等等。BSPM指示在每个基站的共享信道（和频率或其他信道标识）上有哪个节目，在专用信道上可以获得哪个节目如果该节目可得的话（带有在专用信道上在建立服务时要确定的特定频率）。BSPM也可以列出一定的其他信息，如以下和/或在此处引用的不同高通专利参考文件中将详细描述的那样。

基站504也发射被所有该基站正在服务的移动台接收的共享寻呼信道506。所有基站504服务的移动台监视该寻呼信道506，这样它们就可以在关于它们的点对点呼叫或其他信息一到来时就被提引发。在CDMA-2000中，寻呼信道506的实例为前向控制信道（F-CCCH）。

共享广播信道508潜在地包括了许多共享广播子信道（平行信道），这些信道由基站504为该基站范围内的移动台使用而发射。广泛而言，该通信系统100利用"前向广播补充信道"（F_BSC）使高速广播业务成为可能，其中F_BSC具有高数据速率且适合大量的移动台接收。该前向广播补充信道包括，例如承载广播业务的单个前向链路物理信道。一个或多个高速广播业务信道是在单个前向广播共享信道内时分复用的。这样，信道508可以同时承载多个不同的广播内容流。

共享广播信道508可以自由地由所有移动台使用，或者限于对已完成一定注册（订阅）步骤的移动台使用。由于信道508被普遍广播到所有范围内的移动台，所以由该移动台最终根据用户是否已经注册来控制用户是否能够访问该广播。作为一个实例，每个共享广播信道可以利用预定的代码来加密，而这个预定代码仅仅被提供给已注册的移动台。

注册到广播业务的机制将在以下被全部引入的参考文件中讨论；于2002年8月20日提交的，题为 "在无线通信系统中用于广播业务选择的带外传输的方法和装置" 的，第09/934,021号美国专利申请。

接入状态

图5C说明了接入状态564。移动台502继续接收开销信道505，寻呼
信道506，和共享广播信道508。共享接入信道522被所有基站504服务的移动台所使用。为了开始点对点呼叫，接入信道522能够被双向使用。对于来话呼叫，当另一个移动台正在启动到移动台502的点对点呼叫时，该移动台502使用接入信道522来应答寻呼。对于去话呼叫，移动台502使用接入信道522来请求启动点对点呼叫。在CDMA-2000协议中，接入信道522的实例为反向接入信道（R-ACH）。在接入状态564期间，移动台502可继续监视共享广播信道508。

在点对点呼叫启动以外，移动台502可以使用接入信道522来偶尔发射注册消息。这起到通知无线网络移动台502的位置，还有其他任意相关信息的作用。如果在接入状态564中出现注册或其他类似消息，移动台502返回到空闲状态562而不会进入业务状态566。

业务状态

图5D说明了业务状态566。在这种状态中，业务信道552，554共同传送移动台502和基站504之间的双向点对点数据呼叫。信道552，554是移动台502使用的专用信道。前向业务信道552，为“逻辑”信道，包括诸如业务内容信道552a和业务信令信道552b这样的平行物理信道。业务内容信道552a承载诸如从基站504到移动台502传送的语音信息或数据这样的内容。业务信令信道552b承载信令信息，诸如内务处理，元数据，系统信息，和其他描述了信道552a和/或其内容的信息。在一个可选实施例中，信道552a，552b可以是不相关的，而不是如所述那样的平行信道。反向业务信道554也包括平行的业务内容和信令信道554a，554b，用于进行与信道552相反的方向上的通信。

在业务状态，移动台不使用接入信道522，开销信道505，或寻呼信道506，因为这些信息都改为在专用信令信道552b，554b上传送。

在业务状态556，移动台502可继续接收广播内容。然而，由于某种已知硬件，广播内容与点对点呼叫552/554的同时传送有必要在专用的，点对点信道556上被传送，而不是在共享信道508上被传送。这主要是因为移动台正确操作所需的信令和控制程序与在与业务信道相对的空闲状态中所需的非常不同，并且硬件受限的移动台在指定时刻只能处于这两种状态的其中一种。因而，当业务信道552，554在使用中时，
此时在业务信道556上必然会出现任意广播内容的互换，在556a上会出现内容而在556b上会出现信令。

通常，任意适合点对点呼叫的前向链路信道可以被用作专用广播信道556。如下将提出几种更多的特定选择。使用CDMA-2000作为实例，一种选择是前向基础信道（F_FCH）或前向专用控制信道（F_DCCH），其提供速率为14.4 Kb/s。另一种选择是前向补充信道（F_SCH），其提供速率为1Mb/s。更快的选择是前向分组数据信道（F_PDCH），其提供更快的业务高达2.4Mb/s。

与移动台502只能与单个基站通信的空闲状态562与接入状态564不同，业务状态中的移动台502为了实现软切换（在CDMA空中接口的情况下）以获得信号冗余，或者为了实现其他目标，可同时与多个基站交换业务和广播内容以及信令信息。因而，本领域的技术人员（了解本公开内容的优点）将会认识到本公开内容中提及“基站”（单数形式）是为了简明扼要且易于讨论。业务状态中利用的CDMA空中接口的多个移动台可以同时与多个基站通信。

此外，为移动台502在业务信道552，554上同时传送多个双向电话对话的技术是已知的。这些技术包括，例如时间复用不同的数据流以便指定信道能够承载一个以上数据流。利用类似的技术，本公开内容期望移动台502能在专用信道556上接收多个，同时出现的广播节目。

业务及同时共享广播状态

图5E说明了附加状态，该状态包括与传向移动台502的共享广播（如图5A所示）一起传送的业务状态（例如图5D）。这种通信状态在某些已知的无线电网络结构设计中使用，并且仅仅在移动台502包括了适当的电路从而能够传送信道552/554上的双向点对点呼叫且能同时接收不同信道590上的共享广播时才使用这种通信状态。移动台502必须也能够同时参与业务状态的信令和控制程序（相对于信道552/554），而在同时传导空闲状态的信令和控制程序（相对于信道590）。

如以上提到的那样，也可以利用已知技术来为移动台502同时在业务信道552，554上传送多个双向电话会话。这些技术包括，例如时间复用不同的数据流以便指定的信道能承载一个以上数据流。利用类
似技术，本公开内容预期移动台502能在专用信道552上同时接收一个以上的节目，在专用信道552/554上传导一个以上的点对点呼叫，并且能在共享信道590上同时接收一个以上的广播节目。

更多的信息

在以下参考文件中将更详细地讨论高速广播业务中使用的物理和逻辑信道，此处作为参考全部引入的文件有：（1）CDMA 2000物理层标准，称为IS_2000.2，（2）于2001年8月20日提交的，题为“用于广播通信系统中的信令的方法和装置”，第09/933,978号的美国专利申请。在以下参考文件中公开了对用于信息广播的公共和专用信道的使用，此处作为参考全部引入的文件有：于2001年3月28日提交的，题为“用于在无线网络中使用专用和公共信道的群呼的方法和装置”的第60/279,970号的美国专利申请。

BSPM

如上面提到的，每个能够广播的基站在开销信道505上重复广播典型的BSPM，以向移动台通知该基站的可用的广播内容和相关信息。

BSPM的一部分是“注册指示符”，该部分具有REGISTER(R)或DO NOT REGISTER(DNR)的值。该注册指示符可以被实现为标记符、比特、代码、消息头、或其他信号或元数据。一个实施例中，基站的BSPM包括单个注册指示符，该指示符被应用到该基站的所有广播内容。在另一个实施例中，该基站的注册指示符仅仅被应用到广播内容的选择数据项，而传导剩余部分时不考虑注册。在另一个不同的方法中，该方法在以下讨论中示出，基站的BSPM包括了用于基站的每个不同广播内容流（例如，广播信道，广播节目等等）的不同的注册指示符。与注册指示符相应的广播内容流可以由数字、字母数字的文本、或其他代码来标识。如果对于特定广播内容流的注册指示符被设置成R，则在如果移动站正在接收或正在开始接收该特定广播内容流的情况下指示移动台要注册。类似的，如果对于特定广播内容流的注册指示符被设置成DNR，则指示用户站不要注册。以下将更详细地讨论该注册指示符及其使用。
同样与每个广播内容流有关，BSPM可以可选地提供“注册等待因素”（”registration wait factor”）。该注册等待因素引导移动台在注册之前要设定多少延迟，从而避免所有移动台试图同时注册时造成的系统过载。以下将更详细地讨论该等待因素的内容及其使用。

除了注册指示符之外，BSPM可以包括更多的信息，诸如（1）标识和/或解释信道内容的信息，即，主题广播节目，（2）主题节目是否可以经由专用信道“得到”（基站是否被编程为，配置成，或另外配成是否在专用信道上提供主题节目，或者主题节目是否正在被广播），（3）主题节目是否可以经由来自基站的共享信道“得到”，（4）用来广播主题节目的共享信道的特性，其可能取决于空中接口，其实施的一些实例为沃尔什代码，调制类型，维特比编码，数据速率，差错纠正等等，（5）用来广播主题节目的共享信道（如果可应用）的标识，也就是，该主题基带使用的逻辑频率和/或物理带宽。

BSPM可以被扩展成包括多种其他信息，并且否则可被缩短成省略上面列出的必然信息。例如，基站可以省略某些信息并且改为提供要求的信息，以缩短BSPM并节省开销信道505的带宽。

网络操作

图6说明了无线通信网络为计算经由基站的多用户前向链路广播信道接收广播内容的无线移动台的总数而执行的全部操作600。为了简化描述，并不带任何有意限制，联合上述图1-5E的部分描述了过程600。

在步骤602，网络100执行不同的设置函数，诸如建立不同移动台对不同广播内容的订阅。预约可以由移动台、用户、或其他实体持有，并适合于一个或多个广播信道、广播节目、或其他特定广播单元。在一个实例中，预约安排由与移动台自身交互（经由SMS，电话语音菜单、人工使用者，或其他手段）的网络来“在线”完成。另一个实例中，预约安排经由网站、电话操作员、邮件、或另一种非网络接口被“离线”完成（对于无线网络100），在这种情况下结果、状态、和其他预约信息被适当地转发到该网络。

剩余步骤604－658由网络100中一个或多个基站110独立执行。作为一个实例，网络100中的所有基站110可以独立执行步骤604－658。另
一个不同的实例中，只有那些被适当地编程、升级、或另外配置的基站才可以执行步骤604－658，而其余的基站不参与这些步骤。为了易于参考，余下对步骤604－658的讨论在一个代表性的或“主题”基站采取行动的背景下进行。

在步骤604，主题基站获取特定广播内容流能或很快能从内容服务器102处得到。步骤604可以通过内容服务器102通知（“推出”），基站询问内容服务器（“拉回”），或另一种手段来进行。主题广播内容“流”可包括广播节目单元（如专用电视或电台节目）、广播信道单元（诸如CNN，ESPN等等），或其它广播单元。为了便于解释，不做任何有意限制，以下讨论中将单个广播节目作为广播内容流的实例。此外，不做任何有意限制，以下说明描述了这种情况，即主题基站步骤604接收或获得来自内容服务器102的特定广播内容流在将来的某个特定时刻开始的通知。该主题广播节目可从内容服务器102处得到，在内容服务器中该节目是为将来某个特定时刻的广播计划的，目前从内容服务器102接收到，或者是另一种根据网络100中期望实现的定义。

步骤604以后，步骤650－658开始并在其后管理主题广播内容流的传输。步骤606－618监视注册过程和对注册的移动用户计数。

更明确地参考步骤606－618，在步骤606，主题基站选择在计数接收主题广播节目的移动台的总数时未来使用的阈值。基本上，当移动台的数目超过该阈值时，基站停止计数。根据阈值使用的目的，也就是计算移动台注册总数的原因，来选择该阈值。在该被示出的实例中，不做任何有意限制，对移动台的计数被用于确定是否是共享信道还是在专用信道上提供主题广播节目。共享信道仅仅在移动台的数目超过该阈值时才被使用，因此节省了广播功率。专用信道在移动台数目少于或等于阈值数目时使用，因而由于功率控制专用信道而节省了（其它因素当中）广播功率。那么，在示出的实例中，按照无线接口的细节，和尤其是共享信道与专用信道的相对效率（如被实施的那样）来选择该门限。

在步骤606已经选择了阈值，然后步骤608被执行。在步骤608，主题基站首先重复发射具有与主题广播节目相联系被设置成R的注册指
示符的BSPM。如果该BSPM已经被正在广播，可能是由于先前存在的其它广播节目的可用性，在步骤608基站将BSPM改正成包括对应主题广播节目的注册指示符R。在任意一种情况，BSPM可以尽可能明确地标识广播节目。

可选的，BSPM也可以包括如上所述的“注册等待因素”。大致地，该注册等待因素引导移动台确定注册前指定多大的延迟，为了避免所有移动台试图同时注册造成的系统过载。一个实例中，该等待因素可以指定特定的最大等待，其中每个移动台基于预定算法调节该最大值以获得零到最大值之间的等待值；另一个实例中，等待因素指定实验分布、高斯分布、几何分布、正态分布、或其它已知分布的平均等待。这就扩散了移动台的注册时间从而避免了基站过载。另一个实例中，等待因素可以被省略或被设置成零以建立不等待。以下联系图7更详细地描述了等待因素的内容和使用。

在步骤610，基站接收到一个或多个注册，也就是，由移动台发送的指定格式的无线注册消息。如以下将更详细地描述，正在注册的移动台是那些正在接收或开始接收来自基站的主题广播节目的移动台。也在步骤610中，基站计算该注册的总数。在简化的实施例中，基站计算所有自移动台接收的注册消息的总数。

在一个更复杂的实施例中，基站仅仅计算自移动台接收的有效注册消息的总数。如以下更详细地描述（图7），这个实施例中的移动台利用指定格式的注册消息，其中该注册消息包括所有这些部分中的一些部分：（1）代码，格式，布局，信息头，或其它识别这是注册消息，而相对于另一种类型的其它信息，（2）为了区别地识别移动台的代码，以便基站能够验证移动台的代码，已经预定了广播内容（例如，诸如ESN，IMSI，TMSI，P-TMSI等等这样的已知代码），（3）识别注册寻求的期望广播内容流的代码。可选的，注册消息可以进一步包括安全参数，诸如一个或多个以下参数：（1）数字签名或其它用户标识码，用于使基站能确认移动台和/或用户的身份，（2）消息认证码，为了向基站证明该注册消息在传输后没有被修改过（例如，基于消息内容计算的代码，和完整性密钥），（3）加密同步，诸如单调增长的计数器，该计数器在移动台执行新的认证时被复位，在窃听者截取有效消息并一遍
发送该消息以干扰该系统的情况下被用于保护系统使其不受重复攻击。

因而，在此实例中，步骤610包括基站确定每个接收到的注册是否有效，并且仅仅在有效时，对其进行计数。要成为有效的，注册消息必须包括表明是注册消息的适当内容，能标识经过认可的移动台，并能适当地标识期望的广播内容流。此外，如果实施了安全规定，则基站以下面的一条或多条规定注册的有效性：（1）有效数字签名或用户标识代码，（2）基站的基于消息内容对消息认证代码的重新计算，以及确定移动台提交的消息认证代码是否正确，（3）验证相对于来自相同移动台的其它任何注册消息，该消息具有不同加密同步。

因而，在步骤610，基站计算有效注册的总数。在本实例中，基站通过执行步骤610也估计了预定的节目的受欢迎程度。基站的个别行为在指定时间启动对来自内容服务器的广播内容流的传输，并且其后管理广播传输（如以下联系步骤650－658作出的解释）。

在步骤612，基站查询（为主题广播节目）已注册移动台的数目是否超过了在步骤606制定的阈值。除了计算已注册移动台（接收共享信道上的广播内容流）的总数，步骤612的计数可以额外包括任意在专用信道上接收广播流的未注册移动台。对于这些移动台来说，由于基站根据在专用地道上建立的呼叫已经知道这些移动台正在接收主题广播内容流，所以并没有必要进行注册。

如果总数没超过门限，则从步骤612回到步骤610以记录更多的注册。当已注册移动台的数目达到门限时，步骤612前进到步骤614。在步骤614，基站为主题广播节目将BSPM的注册指示符重新配置为“DNR”。在此刻利用DNR可以显著地减小接入信道业务量和其他网络负载，因为广播的新加入者不会在注册过程中占用该基站。这也简化了后来加入者的参加过程，因为他们无需注册。

在步骤616，基站询问是否因为环境要重新计算当前接收主题广播的移动台的总数。基站可以被编程为能识别重新计数要求的任意条件。在一个实例中，重新计数可以被周期性地执行；此外，重新计数的间
隔可以根据主题广播的带宽、可用系统资源、和其他此类因素而改变。例如，对于高数据速率设计重新计算可以每隔一或两分钟执行一次，而对于低带宽内容，可以每隔十或三十分钟执行一次。在另一个实施例中，重新计数可以在每当广播内容中存在指定的改变，例如存在数据速率、服务质量、比特差错率、或其他特征的改变时被执行。

如果步骤616发现重新计数被批准，则步骤616进阶到步骤617，在步骤617基站为了重新开始收集为主题广播节目所做而的注册，基站将注册指示符设置为R。此时，已注册移动台的总数被重新设置为零。然后步骤617进阶到步骤610以收集注册。否则，如果没有重新计数被批准，则步骤616转到步骤618。在步骤618，主题基站检查主题广播节目是否已经结束。此结束的实例包括特定广播节目的自然完成，来自内容服务器的广播流的丢失，无线传输的结束，到达广播内容流的计数结束时间等。如果广播节目已经结束，则过程600在步骤620终止。否则，如果广播内容流仍在继续，则步骤618返回到步骤616，其如上述那样进行重复。

如上所述，基站可提供一个或多个广播信道。从而，BSPM可列出一个或多个共享广播内容流以及一个与每个不同流相关的注册指示符。为了简化说明，过程600已经被在一个主题广播内容流的上下文中讨论。然而，基站为每个不同的广播内容流重复步骤604－620，从而分别跟踪计算了每个流的已注册移动台的总数。

然后，步骤606－618监督注册过程和对已注册移动台进行的计数。相反，步骤650－658启动并随后管理主题广播内容流的传输。更明确地参考步骤650－658，步骤650查问是否已到达主题广播内容流的开始的指定时间。当这个时刻到来时，步骤650向前进到步骤652，在步骤652基站检查已注册接收该主题节目的移动台的总数。如示出的那样，这可以通过检测注册指示符被设置成R还是DNR而很方便地实现，因为设置指示符是直接根据是否达到阈值而进行的。如果该指示符被设置成R，则已注册移动台的数目很小，所以基站开始在专用信道上向移动台广播主题广播内容流（步骤656）。如果该指示符被设置成DNR，则已注册移动台的数目很大，所以基站开始在单个前向链路共享信道上广播主题广播内容流（步骤654）。
步骤654或656之后，基站检查内容流是否已经结束，并且如果结束，则该过程在步骤620结束。否则，如果内容流仍在继续，则步骤658返回到步骤652以重新检查已注册移动台的数目。这样，基站通过利用最适当的信道类型保持了有效性。尽管并未示出，过程600可以被修改（对本领域的普通技术人员来说很明显具有本公开内容的优点）成利用滞后作用或其他手段来防止当已注册移动台的数目波动到阈值以上或以下时在状态654，656之间的抖动。

在专用信道和共享信道上传送广播节目在不同的高通公司的美国专利申请中被详细描述，这些专利申请包括了一个或多个以上明确提到的高通公司专利申请。

移动台操作

图7说明了移动台为从基站接收广播内容执行的操作700，其中包括了与基站用于对移动台接收特定广播内容进行跟踪/计数的方案合作的步骤。为了易于说明，不做任何有意限制，联系上述的图1－5E的部分，在一个主题基站的上下文中描述了过程700。

在步骤702，主题移动台预约一个或多个广播内容流，诸如广播信道和/或广播节目。该预约机制在上面已被详细说明，并且可以由不涉及移动台的用户脱线执行，或者可替代地在线执行。如同上面的过程600，该主题广播内容流可以包括广播节目（如专用电视或电台节目），广播信道（诸如CNN，ESPN等等），或其他广播单元。为了便于解释，而不做任何有意限制，对过程700的以下讨论将单个广播节目（“主题”广播节目）作为广播内容流的实例。

在步骤704，移动台检查是否可从移动台的“服务者”或其他主要基站得到预约广播节目的内容，例如，通过读取服务基站的BSPM。进一步骤可以由移动台自动执行或根据用户要求来执行。如果被自动执行，则移动台按照周期的、非周期的、或其它有益方案来重复此步骤。也在步骤704，移动台读取BSPM来为每个预定广播节目确定适用的注册等待因素，如以下更详细地描述。

在步骤706，移动台为用户提供内容选项。即移动台向移动台用户提供音频和/或视频信息，这种信息列出了可得的广播节目。这可以在
“推出”或“拉回”的基础上被执行。“推出”技术的实例如包括移动台主动提示用户内容的可用性，其通过激活作为寻呼机的移动台，使移动台振铃，示出可见图标，或其他提示并且然后视频地或音频地向用户提供内容选项。“拉回”技术的实例如移动台等待用户请求内容可用性信息并且随后向请求的用户提供这样的信息。

在步骤708，移动台接收关于期望的广播节目的决定。例如，用户可以通过键盘输入、语音命令等等来选择期望的节目。对步骤708的决定作出响应，移动台在步骤710把预定算法应用于注册等待因素以计算合乎要求的等待因素，该因素是实际时间延迟。然后该移动台等待（步骤710）该周期的时间之后检查是否有必要注册以及如果是适当的则注册。

如上所述，注册等待因素引导移动台确定注册前设定多长的延迟，以避免由所有移动台尝试同时注册造成的系统过载。一个实例中，等待因素包括最大等待周期，并且每个移动台通过指定减小算法来调节等待因素以形成实际时间延迟。一个实例是移动台生成零到一之间的随机数，并且用此数乘以等待因素以形成实际时间延迟。另一个实例是移动台从BSPM读取限制信息或其它广播信息并将其用于根据访问类别、ESN或其它用户的分配码确定是否允许注册。换句话说，该移动台会一直暂停直到BSPM指示对于该主题移动台或包括此移动台的类别来说准许注册。

在另一个实例中，等待因素可以在内部时钟、计数器、计时器、查询表、计算的算法、ESN、移动台ID、或其它可从移动台而无需外部输入就能得到的数据。在另一个实例中，等待因素可以从与注册无关的，并且可能无意用于完善等待因素，但仍对为不同移动台建立可变的等待因素有用的外部信息获得。一些实例包括了日历日期、基站ID、世界时间、或其它任意有用的代码、消息、数目、模式、或构造。

在任意速率上，上述的实例都保证一些移动台将等待更长时间，而其它移动台将等待较短时间，因而避免了注册过载。为了便于解释，更进一步的讨论被限制在从基站经由BSPM获得等待因素。

由于经调节的等待因素被移动台当作注册前的延迟使用，因此等待因素使基站能将移动台的注册在选定时间段内扩散开。对于预期很受
欢迎的广播内容，并且对于覆盖了数目很大的潜在用户的基点，基站可以指定更长的时间因素（诸如六十秒），其将移动台注册在从零（当广播内容最初变成可得时）到整个等待因素长度的时间内扩散。对于不太受欢迎的广播内容，基站可指定较短的等待因素，甚至是零。

在步骤710的等待之后，移动台再次检查BSPM（712）以确定对于期望广播内容流的注册指示符是被设置成R还是DNR，以避免不必要的注册。如果是R，则移动台在步骤714通过发送规定格式的无线注册消息来注册。为了其注册，移动台利用为此目的预先分配的信道，诸如具有CDMA-2000结构的反向接入信道（R-ACCH）。

尽管不同配置可以被使用，示例性注册消息包含了一些部分。第一，该消息包含代码、格式、布局、信息头，或其它表示这是注册消息，而非另一种类型的信息。第二，该消息包括能区别标识移动台的代码，因此基站能验证这个特定移动台事实上已经预定了该广播内容。例如，这种代码可以包括诸如ESN，IMSI，TMSI，P-TMSI等等这样的已知代码。第三，该注册消息包含识别请求注册的期望广播节目。可选的，该注册消息可以进一步包括安全参数，诸如以下列出的一个或多个：（1）数字签名或其它用户标识码，用于使基站能确认移动台和/或用户的身份，（2）消息认证码，为了向基站证明该注册消息在传输后没有被修改过（例如，基于消息内容计算的代码和完整性密钥），（3）加密同步，诸如单向增长的计数器，该计数器在移动台执行新的认证时被复位，加密同步被用于在窃听者截取有效消息并一遍发送该消息以干扰该系统的情况下保护系统使其不受重复攻击。

如果BSPM对于期望广播内容流显示DNR，移动台跳过步骤714。在步骤712（DNR）或步骤714（R）之后，移动台调节其收发信机和/或其它适用的电路来开始接收广播内容流。

在步骤718，在继续接收主题广播节目的同时，移动台检查调度程序部件420是否已经触发了估计事件（为了检查重新注册分析是否必须被进行）。如果调度程序部件420被实施为计时器，例如，该计时器的期满标志着到了执行重新注册分析的时间且如果合适的话进行重新注册。可选的，当被实现为倒计数计时器时，该调度程序部件可以利用可变的倒计数时间。例如，在步骤704得到的注册等待因素也可被用于
提供可变的重新注册倒计时或推导出这样的可变数目。可替代地，调度程序部件420可在重新注册应该被估计时建立硬件中断。

如果不要求重新注册，移动台继续接收所期望的广播内容流，并检查以了解该移动台是否已经改变了基站（步骤724）。如果移动台已经改变了基站，则可能需要重新注册，如下更详细地讨论。

如果调度程序部件520已经经历了估计事件（步骤718），则移动台在继续接收主题广播内容流的同时执行其重新登记分析。即，移动台检查基站的当前BSPM以了解对于期望广播内容流的注册指示符被设置成R还是DNR（步骤722）。如果是R，则移动台在步骤723通过向基站发送指定格式的无线注册消息来进行重新注册。如果BSPM对于预期广播节目显示DNR，则移动台跳过步骤723。在步骤722（DNR）或步骤723（R）之后，移动台检查以了解移动台是否已经改变了基站（步骤724）。这可以通过例如确定移动台的服务基站标识是否已经改变来执行。

如果移动台已经改变基站，则步骤724前就到步骤726。在步骤726，移动台监视新基站的BSPM以检查在基站处期望广播节目的可用性以及该节目相关的注册等待因素。如果相同的广播节目可以从新的基站处得到，则步骤726返回到步骤710，步骤710开始在新基站处的注册过程。如果期望广播节目不可得，步骤726返回到步骤704以充分地访问在基站处内容的可用性并且其后（706）向用户指定更新选项。

其它实施例

本领域的技术人员将会理解信息和信号可以使用多种不同技术和工艺的任意一种来表示。例如，在以上描述中可能通篇提及的数据、指令、命令、信息、信号、比特、符号和码片可以用电压、电流、电磁波、磁场或磁粒子、光场或光粒子，或其任意组合来表示。

那些技术人员还将理解联系此处公开的实施例所述的不同说明性逻辑功能块、模块、电路、和算法步骤可以被实现为电子硬件、计算机软件、或两者的结合。为了清楚说明这种硬件和软件的可互换性，不同的部件、功能块、模块、电路、和步骤在以上通常根据它们的功能来描述。这种功能是被实施为硬件还是软件取决于施加在整个系统
的特定应用和设计限制。技术人员可以为每个特定应用以变化的方式
实施所述功能，但这样的实施决定不应该被解释为脱离本发明的范围。

可以利用通用处理器、数字信号处理器（DSP）、专用集成电路
（ASIC）、现场可编程门阵列（FPGA）和其它可编程逻辑设备、分立
门和晶体管逻辑、分立硬件部件、或其中被设计成执行此处所述功能
的任意组合来实施或执行所述的与此处公开的实施例有关的不同说明
性逻辑功能块、模块和电路。通用处理器可以是微处理器、但在可替
代的方案中，该处理器可以是任意传统的处理器、控制器、微控制器、
或状态机。处理器也可以被实现为计算装置的组合，例如，DSP和微处
理器的组合、多个微处理器的组合与DSP核心相连的一个或多个微处
理器的组合，或任意其它这种配置。

与此处公开的实施例相关的所述的方法或算法的步骤可以被直接
嵌入到硬件中、处理器执行的软件模块中，或二者的组合中。软件模
块可以直接驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、
EEPROM存储器、寄存器、硬盘、可移动硬盘、CD-ROM、或本领域
内已知的任意其它形式的存储媒体中。一种示例性存储媒体被连接到
处理器，这种处理器能够从存储媒体读取信息并可以将信息写到该存
储媒体中。可替代的，该存储媒体可以被集成到该处理器中。该处理
器和该存储媒体可以驻留在ASIC中。

此外，对公开实施例的以上描述被提供以使任何本领域的技术人员
能制造和使用本发明。对于本领域的技术人员来说，对这些实施例的
不同修改将会很明显，且此处定义的基本原则可适用于其它实施例而
不会脱离本发明的精神和范围。因此，本发明并不想要被限制于此处
示出的实施例，而符合与此处公开的原则和新颖性特征相一致的最宽
范围。

术语“示例性”是此处被用于表示“充当选施例，举例，或图例的
作用”。此处任何被描述为“示例性”的实施例不应解释为比其它实
施方案更优选或更有益。
图1
图5A
图5B

图5C

图5D
图5E

同时利用共享、专用信道
发送业务消息
图6

开始

是否可得内容流？

选择阈值

开始BSPM，将指示符设置成R；包括等待因素

接收注册；计数

是否超过阈值？

是

将指示符设置成“DNR”

重新计数吗？

是

将指示符设置成“R”

不

内容流结束了吗？

是

结束

否

内容流结束了吗？

否

仍旧是广播时间？

是

使用共享广播信道

使用专用广播信道

不

检查已注册移动台的总数

R

652

650

602

600