The present invention is directed to novel 2-aminobenzamide thereof, represented by the general Formula I:

where R₁-R₃, X, and A-D are defined herein. The present invention also relates to the discovery that compounds having Formula I are potent inhibitors of caspases and apoptotic cell death. Therefore, the inhibitors of this invention can retard or block cell death in a variety of clinical conditions in which the loss of cells, tissues or entire organs occurs.
SUBSTITUTED 2-AMINOBENZAMIDE CASPASE INHIBITORS AND THE USE THEREOF

BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] This invention is in the field of medicinal chemistry. In particular, the invention relates to substituted 2-aminobenzamides and analogs that are inhibitors of caspases. The invention also relates to the use of these 2-aminobenzamides and analogs for reducing or treating apoptotic cell death and/or reducing interleukin 1β production.

[0003] 2. Description of Background Art

[0004] Organisms eliminate unwanted cells by a process variously known as regulated cell death, programmed cell death or apoptosis. Such cell death occurs as a normal aspect of animal development as well as in tissue homeostasis and aging (Glucksman, A., *Biol. Rev. Cambridge Philos. Soc.* 26:59-86 (1951); Glucksman, A., *Archives de Biologie* 76:419-437 (1965); Ellis et al., *Dev.* 112:591-603 (1991); Vaux et al., *Cell* 76:777-779 (1994)). Apoptosis regulates cell number, facilitates morphogenesis, removes harmful or otherwise abnormal cells and eliminates cells that have already performed their function. Additionally, apoptosis occurs in response to various physiological stresses, such as hypoxia or ischemia (PCT published application WO96/20721).

[0005] There are a number of morphological changes shared by cells experiencing regulated cell death, including plasma membrane blebbing, cell shrinkage (condensation of nucleoplasm and cytoplasm), organelle relocalization and compaction, chromatin condensation and production of apoptotic bodies (membrane enclosed particles containing intracellular material) (Orrenius, S., *J. Internal Medicine* 237:529-536 (1995)).

[0006] Apoptosis is achieved through an endogenous mechanism of cellular suicide (Willie, A. H., in *Cell Death in Biology and Pathology*, Bowen and Lockshin, eds., Chapman and Hall (1981), pp. 9-34). A cell activates its intracellular suicide program as a result of either internal or external signals. The suicide program is executed through the activation of a carefully regulated genetic program (Wyllie et al., *Int. Rev. Cyt.* 68: 251 (1980); Ellis et al., *Ann. Rev. Cell Biol.* 7: 663 (1991)). Apoptotic cells and bodies are usually recognized and cleared by neighboring cells or macrophages before lysis. Because of this clearance mechanism, inflammation is not induced despite the clearance of great numbers of cells (Orrenius, S., *J.Internal Medicine* 237:529-536 (1995)).

[0007] Mammalian interleukin-1β (IL-1β) plays an important role in various pathologic processes, including chronic and acute inflammation and autoimmune diseases (Oppenheim, J. H. et al. *Immunology Today* 7, 45-56 (1986)). IL-1β is synthesized as a cell associated precursor polypeptide (pro-IL-1β) that is unable to bind IL-1 receptors and is biologically inactive (Mosley et al., *J. Biol. Chem.* 262:2941-2944 (1987)). By inhibiting conversion of precursor IL-1β to mature IL-1β, the activity of interleukin-1 can be inhibited. Interleukin-1β converting enzyme (ICE) is a protease responsible for the activation of interleukin-1β (IL-1β) (Thornberry, N. A., et al., *Nature* 356: 768 (1992); Yuan, J., et al., *Cell* 75: 641 (1993)). ICE is a substrate-specific cysteine protease that cleaves the inactive prointerleukin-1 to produce the mature IL-1. The genes that encode for ICE and CPP32 are members of the mammalian ICE/Ced-3 family of genes which presently includes at least twelve members: ICE, CPP32/Yama/Apopain, mICE2, ICE4, ICH1, TXIC/M-2, MCH2, MCH3, MCH4, FLICE/MACH/MCH5, ICE-LAP6 and ICEvap/III. The proteolytic activity of this family of cysteine proteases, whose active site (a cysteine residue) is essential for ICE-mediated apoptosis, appears critical in mediating cell death (Miura et al., *Cell* 75: 653-660 (1993)). This gene family has recently been named caspases (Alnemri, E. S. et al. *Cell*, 87, 171 (1996), and Thornberry, N. A. et al. *J. Biol. Chem.* 272, 17907-17911 (1997)) and divided into three groups according to its known functions. Table 1 summarizes these known caspases.

<table>
<thead>
<tr>
<th>Enzyme*</th>
<th>Group I: mediators of inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspase-1 (ICE)</td>
<td></td>
</tr>
<tr>
<td>Caspase-4 (ICEvap-II, TX, ICE-2)</td>
<td></td>
</tr>
<tr>
<td>Caspase-5 (ICEvap-III, TY)</td>
<td></td>
</tr>
<tr>
<td>Group II: effectors of apoptosis</td>
<td></td>
</tr>
<tr>
<td>Caspase-2 (ICE-1, mNEDD2)</td>
<td></td>
</tr>
<tr>
<td>Caspase-3 (apopain, CPP-32, YAMA)</td>
<td></td>
</tr>
<tr>
<td>Caspase-7 (Mch-3, ICE-LAP3, CMH-1)</td>
<td></td>
</tr>
<tr>
<td>Group III: activators of apoptosis</td>
<td></td>
</tr>
<tr>
<td>Caspase-6 (Mch2)</td>
<td></td>
</tr>
<tr>
<td>Caspase-8 (MACH, FLICE, Mch5)</td>
<td></td>
</tr>
<tr>
<td>Caspase-9 (ICE-LAP6, Mch6)</td>
<td></td>
</tr>
<tr>
<td>Caspase-10</td>
<td></td>
</tr>
</tbody>
</table>

[0008] IL-1 is also a cytokine involved in mediating a wide range of biological responses including inflammation, septic shock, wound healing, hematopoiesis and growth of certain leukemias (Dinarello, C. A., *Blood* 77:1627-1652 (1991); diGiovine et al., *Immunology Today* 11:13 (1990)).

[0009] Many potent caspase inhibitors have been prepared based on the peptide substrate structures of caspases. However, in contrast to their potency in vitro, no inhibitors with good efficacy (IC50<1 μM) in whole-cell models of apoptosis have been reported (Thornberry, N. A. *Chem. Biol.* 5:R97-103 (1998)). Therefore the need exists for cell death inhibitors that are efficacy in whole-cell models of apoptosis and active in animal model of apoptosis. These inhibitors thus can be employed as therapeutic agents to treat disease states in which regulated cell death and the cytokine activity of IL-1 play a role.

[0010] WO 93/05071 discloses peptide ICE inhibitors with the formula:

\[Z-O_{2-}Asp-Q_1 \]

wherein Z is an N-terminal protecting group; Q_2 is 0 to 4 amino acids such that the sequence Q_2-Asp corresponds to at least a portion of the sequence Ala-Tyr-Val-His-Asp; Q_1 comprises an electronegative leaving group.
[0012] WO 96/03982 discloses aspartic acid analogs as ICE inhibitors with the formula:

\[R-N-N-CO-CH-Rs \]

[0013] wherein R is H or alkyl; Rs is a leaving group such as halogen; R is heteroaryl-CO or an amino acid residue.

[0014] U.S. Pat. No. 5,585,357 discloses peptidic ketones as ICE inhibitors with the formula:

[0015] wherein n is 0-2; each AA is independently L-valine or L-alanine; R is selected from the group consisting of N-benzoyloxycarbonyl and other groups; R, R, R are each independently hydrogen, lower alkyl and other groups.

[0016] Mjalli et al. (Bioorg. Med. Chem. Lett., 3, 2689-2692, 1993) report the preparation of peptide phenylalkyl ketones as reversible inhibitors of ICE, such as:

[0017] Thornberry et al. (Biochemistry, 33, 3934-3940, 1994) report the irreversible inactivation of ICE by peptide acyloxymethyl ketones:

[0018] wherein Ar is COPh-2,6-(CF3), COPh-2,6-(CH2), Ph-F, and other groups.

[0019] Dolle et al. (J. Med. Chem. 37, 563-564, 1994) report the preparation of P aspartate-based peptide α-(2,6-dichlorobenzoyl)oxy)methyl ketones as potent time-dependent inhibitors of ICE, such as:

[0021] wherein X is NH(CH2), OCO(CH2), S(CH2) and other groups.

[0022] Dolle et al. (J. Med. Chem. 37, 3863-3866, 1994) report the preparation of α-(1-phenyl-3-(trifluoromethyl)-pyrazol-5-yl)oxy)methyl ketones as irreversible inhibitor of ICE, such as:

![Chemical structure 1](image1.png)

wherein XR is NH(CH)2Ph, OCO(CH3)2cyclohexyl and other groups.

[0024] Mjalli et al. (Bioorg. Med. Chem. Lett., 5, 1409-1414, 1995) report inhibition of ICE by N-acyl-aspartyl aryloxymethyl ketones, such as:

![Chemical structure 2](image2.png)

[0026] Dolle et al. (J. Med. Chem. 38, 220-222, 1995) report the preparation of aspartyl α-(diphenylphosphinyl)oxy)methyl ketones as irreversible inhibitors of ICE, such as:

![Chemical structure 3](image3.png)

[0027] Graybill et al. (Bioorg. Med. Chem. Lett., 7, 41-46, 1997) report the preparation of α-(tetronoyl)oxy- and α-(tetramoyl)oxy)methyl ketones as inhibitors of ICE, such as:

![Chemical structure 4](image4.png)

[0028] Semple et al. (Bioorg. Med. Chem. Lett., 8, 959-964, 1998) report the preparation of peptidomimetic aminoethylene ketones as inhibitors of ICE, such as:

![Chemical structure 5](image5.png)
SUMMARY OF THE INVENTION

[0029] The invention relates to compound Formulae I, II and III:

(I) \[\text{R}_1 X \text{Y} \text{N Ho} O \text{C-C hydroxyalkyl, nitro, amino, cyano, C-C acylamino, hydroxy, C-C acyloxy, C-C alkoxy, alkylthio, or carboxy; or} \]

(II) \[\text{R}_2 X \text{Y} \text{N Ho} O \]

(III) \[\text{R}_3 X \text{Y} \text{N Ho} O \]

[0030] wherein

[0031] \(\text{R}_1 \) is an optionally substituted alkyl or hydrogen;

[0032] \(\text{R}_2 \) is an N-protecting group;

[0033] \(\text{R}_3 \) is hydrogen or optionally substituted alkyl;

[0034] \(\text{A} \) is \(\text{CR}_n \) or nitrogen;

[0035] \(\text{B} \) is \(\text{CR}_n \) or nitrogen;

[0036] \(\text{C} \) is \(\text{CR}_n \) or nitrogen;

[0037] \(\text{D} \) is \(\text{CR}_n \) or nitrogen;

[0038] provided that not more than two of \(\text{A}, \text{B}, \text{C} \) or \(\text{D} \) is nitrogen; and \(\text{R}_{15} \) and \(\text{R}_{16} \) independently are hydrogen, halo, \(\text{C}_1 \text{C}_6 \) haloalkyl, \(\text{C}_1 \text{C}_6 \) cycloalkyl, \(\text{C}_1 \text{C}_6 \) alkyalkyl, \(\text{C}_1 \text{C}_6 \) alkenyl, \(\text{C}_1 \text{C}_6 \) alkynyl, \(\text{C}_1 \text{C}_6 \) arylalkynyl, \(\text{C}_1 \text{C}_6 \) cycloalkyl, \(\text{C}_1 \text{C}_6 \) hydroxyalkyl, \(\text{C}_1 \text{C}_6 \) amino, \(\text{C}_1 \text{C}_6 \) acylamino, \(\text{C}_1 \text{C}_6 \) oxy, \(\text{C}_1 \text{C}_6 \) alkoxycarbonyl, \(\text{C}_1 \text{C}_6 \) alkylamino, \(\text{C}_1 \text{C}_6 \) acylamino, \(\text{C}_1 \text{C}_6 \) acyloxy, \(\text{C}_1 \text{C}_6 \) alkylthio, or carboxy; or

[0039] one of \(\text{R}_{15} \) and \(\text{R}_{16} \), 0.039 one of \(\text{R}_{15} \) and \(\text{R}_{16} \), or \(\text{R}_{15} \) and \(\text{R}_{16} \), or \(\text{R}_{15} \) and \(\text{R}_{16} \), or \(\text{R}_{15} \) and \(\text{R}_{16} \) are taken together with the carbon atoms to which they are attached to form a carbocycle or heterocycle;

[0040] \(\text{E} \) is \(\text{CR}_{14} \), nitrogen, oxygen or sulfur;

[0041] \(\text{F} \) is \(\text{CR}_{15} \), nitrogen, oxygen or sulfur;

[0042] \(\text{G} \) is \(\text{C}_{16} \), nitrogen, oxygen or sulfur;

[0043] provided that only one of \(\text{E}, \text{F}, \text{G} \) is nitrogen, oxygen or sulfur, where \(\text{R}_{1}, \text{R}_{2} \) and \(\text{R}_{15} \) are independently hydrogen, halo, \(\text{C}_1 \text{C}_6 \) haloalkyl, \(\text{C}_1 \text{C}_6 \) cycloalkyl, \(\text{C}_1 \text{C}_6 \) alkyalkyl, \(\text{C}_1 \text{C}_6 \) alkenyl, \(\text{C}_1 \text{C}_6 \) alkynyl, \(\text{C}_1 \text{C}_6 \) arylalkynyl, \(\text{C}_1 \text{C}_6 \) cycloalkyl, \(\text{C}_1 \text{C}_6 \) hydroxyalkyl, \(\text{C}_1 \text{C}_6 \) amino, \(\text{C}_1 \text{C}_6 \) acylamino, \(\text{C}_1 \text{C}_6 \) oxy, \(\text{C}_1 \text{C}_6 \) alkoxycarbonyl, \(\text{C}_1 \text{C}_6 \) alkylamino, \(\text{C}_1 \text{C}_6 \) acylamino, \(\text{C}_1 \text{C}_6 \) acyloxy, \(\text{C}_1 \text{C}_6 \) alkylthio, or carboxy; or

[0044] one of \(\text{R}_{14} \) and \(\text{R}_{15} \), or \(\text{R}_{15} \) and \(\text{R}_{16} \), are taken together with the carbon atoms to which they are attached to form a carbocycle or heterocycle;

[0045] \(\text{Q} \) represents an optionally substituted saturated or partially saturated carbocycle or heterocycle;

[0046] \(\text{X} \) is a peptide of 1-4 amino acids or a bond; and

[0047] \(\text{Y} \) is a peptide of 1-4 amino acids or a bond.

[0048] The invention relates to the discovery that the compounds represented by Formulae I, II and III are inhibitors of caspases. The invention also relates to the use of the compounds of the invention for reducing, preventing or treating maladies in which apoptotic cell death is either a causative factor or a result. Examples of uses for the present invention include protecting the nervous system following focal ischemia and global ischemia; treating neurodegenerative disorders such as Alzheimer’s disease, Huntington’s Disease, prion diseases, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, ataxia, telangiectasia, and spinobulbar atrophy; treating heart disease including myocardial infarction, congestive heart failure and cardiomyopathy; treating retinal disorders; treating autoimmune disorders including lupus erythematosus, rheumatoid arthritis, type I diabetes, Sjögren’s syndrome and glomerulonephritis; treating polycystic kidney disease and anemia/crythropoiesis; treating immune system disorders, including AIDS and SCIDS; treating or ameliorating sepsis or multi-organ failure in an animal; reducing or preventing cell, tissue and organ damage during transplantation; reducing or preventing cell line death in industrial biotechnology; reducing or preventing allopreg (hair loss); reducing the premature death of skin cells; treating or ameliorating apoptotic cell death in acute pancreatitis; treating or preventing the inflammatory response in psoriasis or inflammatory bowel disease; and treating or ameliorating organ apoptosis after burn injury.

[0049] The present invention provides pharmaceutical compositions comprising a compound of Formulae I, II and III in an effective amount to reduce apoptotic cell death in an animal.

[0050] The present invention also provides preservation or storage solutions for mammalian organs or tissue, or growth media for mammalian or yeast cells, wherein an effective amount of a compound of Formula I, II and III is included in said solutions or media in order to reduce apoptotic cell death in said organs, tissues or cells.

[0051] The invention also relates to the use of caspase inhibitors for treating, ameliorating, and preventing non-cancer cell death during chemotherapy and radiation therapy and for treating and ameliorating the side effects of chemotherapy and radiation therapy of cancer.

[0052] In particular, the invention relates to a method of treating, ameliorating or preventing oral mucositis, gastrointestinal mucositis, bladder mucositis, proctitis, bone marrow cell death, skin cell death and hair loss resulting from chemotherapy or radiation therapy of cancer in an animal, comprising administering to the animal in need thereof an effective amount of a caspase inhibitor.
The inhibitors of caspases and apoptotic cell death of the present invention are compounds having the general Formulæ I, II and III:

or pharmaceutically acceptable salts or prodrugs thereof, wherein:

- **R₄** is an optionally substituted alkyl or hydrogen;
- **R₅** is a N-protecting group including t-butyloxycarbonyl, acetyl, and benzoxycarbonyl;
- **R₆** is hydrogen or optionally substituted alkyl;
- **R₇** is CR₆ or nitrogen;
- **R₈** is CR₅ or nitrogen;
- **D** is CR₈ or nitrogen; provided that not more than two of A, B, C or D is nitrogen; and **R₄**, **R₅**, **R₆**, **R₇**, **R₈** are independently hydrogen, halo, C₃₋C₆ haloalkyl, C₆₋C₁₀ aryl, C₆₋C₁₀ alkyl, C₆₋C₁₀ alkenyl, C₆₋C₁₀ alkynyl, C₆₋C₁₀ aryl(C₆₋C₁₀)alkyl, C₆₋C₁₀ aryl(C₆₋C₁₀)alkenyl, C₆₋C₁₀ aryl(C₆₋C₁₀)alkynyl, C₆₋C₁₀ hydroxyalkyl, C₆₋C₁₀ hydroxyalkyl, halo, haloalkyl, cyano, C₆₋C₁₀ acylamino, hydroxy, C₆₋C₁₀ acyloxy, C₆₋C₁₀ alkoxo, alkylthio, or carboxy; or
- one of **R₄** and **R₅**, **R₄** and **R₆**, **R₇** and **R₈**, or **R₅** and **R₇** taken together are -OCH-O-, OCFO-, -(CH₆)₂-, -(CH₆)₃-, -OCHCH-O-, -CHN(R₁)CH-, -CHCHN(R₁)CH-,

[0003] DETAILED DESCRIPTION OF THE INVENTION

- **[0053]** The inhibitors of caspases and apoptotic cell death of the present invention are compounds having the general Formulæ I, II and III:

- **[0054]** or pharmaceutically acceptable salts or prodrugs thereof, wherein:

- **[0056]** **R₄** is a N-protecting group including t-butyloxycarbonyl, acetyl, and benzoxycarbonyl;

- **[0057]** **R₅** is hydrogen or optionally substituted alkyl;

- **[0058]** **A** is CR₆ or nitrogen;

- **[0059]** **B** is CR₃ or nitrogen;

- **[0060]** **C** is CR₅ or nitrogen;

- **[0061]** **D** is CR₆ or nitrogen; provided that not more than two of **A**, **B**, **C** or **D** is nitrogen; and **R₄**, **R₅**, **R₆**, **R₇**, **R₈** are independently hydrogen, halo, C₃₋C₆ haloalkyl, C₆₋C₁₀ aryl, C₆₋C₁₀ alkyl, C₆₋C₁₀ alkenyl, C₆₋C₁₀ alkynyl, C₆₋C₁₀ aryl(C₆₋C₁₀)alkyl, C₆₋C₁₀ aryl(C₆₋C₁₀)alkenyl, C₆₋C₁₀ aryl(C₆₋C₁₀)alkynyl, C₆₋C₁₀ hydroxyalkyl, C₆₋C₁₀ hydroxyalkyl, halo, haloalkyl, cyano, C₆₋C₁₀ acylamino, hydroxy, C₆₋C₁₀ acyloxy, C₆₋C₁₀ alkoxo, alkylthio, or carboxy; or

- **[0062]** one of **R₄** and **R₅**, **R₄** and **R₆**, **R₅** and **R₇**, or **R₆** and **R₇** taken together with the carbon atoms to which they are attached to form a carbocycle or heterocycle;

- **[0063]** **E** is C₆₋C₁₀ nitrogen, oxygen or sulfur;

- **[0064]** **F** is C₆₋C₁₀ nitrogen, oxygen or sulfur;

- **[0066]** one of **R₄**, **R₅**, **R₆**, **R₇**, and **R₈** are taken together with the carbon atoms to which they are attached to form a carbocycle or heterocycle;

- **[0067]** **Q** represents an optionally substituted saturated or partially saturated carbocycle or heterocycle;

- **[0068]** **X** is a peptide of 1-4 amino acids or a bond; And

- **[0069]** **Y** is a peptide of 1-4 amino acids or a bond. Where **X** or **Y** is one amino acid, it may be any one of the common 20 amino acids e.g., Ala, Val, Leu, Ile, Pro, Phe, Trp, Met, Gly, Ser, Thr, Cys, Tyr, Asp, Asn, Gln, Lys, Arg, His. Where **X** is a peptide, it may be Asp-Glu, Asp-Ala, Asp-Phe, Val-Glu, Leu-Glu, Thr-Glu, Ile-Glu, Tyr-Glu, Trp-Glu. Where **Y** is a peptide, it may be Glu-His, Glu-Ile, Glu-Thr, Glu-Val, Glu-Phe, Thr-His, Val-His, Ala-His and Glu-Pro.

- **[0070]** With respect to **R₇**, preferred alkyl groups are C₁₋₆ alkyl groups, e.g. methyl, ethyl, propyl, isopropyl, isobutyl, pentyl and hexyl groups; and substituted C₁₋₆ alkyl groups, e.g. CH₃OCH₃ and CH₃OCOCH₃ (AM).

- **[0071]** The invention relates to the discovery that the compounds represented by Formulæ I, II and III are inhibitors of caspases. These inhibitors slow or block cell death in a variety of clinical conditions and industrial applications in which the loss of cells, tissues or entire organs occurs. Therefore, the invention is also related to methods of treating, preventing or reducing conditions in which apoptosis plays a role. These conditions are more fully described below.

- **[0072]** The methods comprise administering to an animal in need of such treatment an inhibitor of the present invention, or a pharmaceutically acceptable salt or prodrug thereof, in an amount effective to inhibit apoptotic cell death.

- **[0073]** Preferred embodiments of the compounds of Formulæ I, II and III that may be employed as inhibitors of caspases are represented by Formula IV:

- **[0074]** or pharmaceutically acceptable salts or prodrugs thereof wherein **R₁**, **R₂**, **R₃**, **R₄**, and **X** are as defined previously with respect to Formula I.

- **[0075]** Examples of bridges formed by **R₃**, and **R₄**, **R₅**, **R₆**, **R₇**, **R₈**, and **R₉** taken together are -OCH₃O--; -OCH₃--; -(CH₂)₂--; -(CH₂)₃--; -OCH₃CH₂O--; -CH₃N(R₃)CH₂--; -CH₃CH₂N(R₃)CH₂--;
CH₂NR₁₃CH₂CH₂— and —CH=CH—CH=CH—; where R₁₃ is hydrogen, alkyl or cycloalkyl.

[0076] R₁₀ is hydrogen, C₁₋₆ alkyl, C₁₋₆ alkoxy, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₆₋₁₀ aryl, C₆₋₁₀ cycloalkyl, C₆₋₁₀ aryl(C₆₋₁₀ alkyloxy, substituted benzyloxy, or NR₂, R₁₂, wherein R₁₁ and R₁₂ independently are hydrogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ aryl, C₁₋₆ cycloalkyl, C₆₋₁₀ aryl(C₁₋₆ alkyloxy, or R₁₁ and R₁₂ are combined to form a heterocyclic ring system including pyrroldione, piperidine, piperazine, or morpholine.

[0077] Preferred R₁₁ is H, Me, Et, t-Bu or AM. Preferred R₁₂ is fluoroalkyl, acyloxyalkyl, aryloxyalkyl and aminomethyl. Preferred R₁₀ is benzyloxy and substituted benzyloxy. Preferred X is a peptide of 1-2 amino acids or a bond.

[0078] Exemplary preferred inhibitors of caspases having Formulae I-V include, without limitation:

[0079] 2-(Z-amino)benzoyl-Asp-fmk,

[0080] 2-(Z-amino)-3-methylbenzoyl-Asp-fmk,

[0081] 2-(Z-amino)-3,5-dimethylbenzoyl-Asp-fmk,

[0082] 2-(Z-amino)-4-chlorobenzyol-Asp-fmk,

[0083] 2-(Z-amino)-5-chlorobenzyol-Asp-fmk,

[0084] 2-(Z-amino)-5-fluorobenzyol-Asp-fmk,

[0085] 2-(Z-amino)-6-fluorobenzyol-Asp-fmk,

[0086] cis-2-(Z-amino)-cyclohexanecarboxyloxy-Asp-fmk,

[0087] 2-(Z-amino)-5-methylbenzyol-Asp-fmk,

[0088] 2-(Z-amino)-6-methylbenzyol-Asp-fmk,

[0089] 2-(Z-amino)-6-chlorobenzyol-Asp-fmk,

[0090] 2-(Z-amino)-3-methoxybenzyol-Asp-fmk,

[0091] 3-(Z-amino)thiophene-2-carboxyloxy-Asp-fmk,

[0092] 3-(methoxycarboxylamino)thiophene-2-carboxyloxy-Asp-fmk,

[0093] cis-2-(Z-amino)cyclopentanecarboxyloxy-Asp-fmk,

[0094] trans-2-(Z-amino)cyclopentanecarboxyloxy-Asp-fmk,

[0095] 2-(Z-amino)benzoyl-Asp-DCB-methylketone,

[0096] methoxybenzoyl-Val-(2-aminoanilino)-Asp-fmk,

[0097] Z-Glu-(2-aminoanilino)-Asp-fmk, and

[0099] where Z is benzyloxybenzoyl, fmk is fluoromethylketone and DCB is 2,6-dichlorobenzoylxyloxoy.

[0100] Useful aryl groups are C₆₋₁₄ aryl, especially C₆₋₆ aryl. Typical C₆₋₁₄ aryl groups include phenyl, naphthyl, phenanthryl, anthraceny, indenyl, azulenyl, bizhenyl, biphenylbenzyl and fluorenyl groups.

[0101] Useful cycloalkyl groups are C₅₋₈ cycloalkyl. Typical cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.

[0102] Useful saturated or partially saturated carbocyclic groups are cycloalkyl groups as defined above, as well as cycloalkenyl groups, such as cyclopentenyl, cycloheptenyl and cyclooctenyl.

[0103] Useful halo or halogen groups include fluorine, chlorine, bromine and iodine.

[0104] Useful alkyl groups include straight-chained and branched C₁₋₁₂ alkyl groups, more preferably C₁₋₆ alkyl groups. Typical C₁₋₁₂ alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, 3-pentyl, hexyl and octyl groups. Also contemplated is a trimethylene group substituted on two adjoining positions on the benzene ring of the compounds of the invention.

[0105] Useful arylalkyl groups include any of the above-mentioned C₁₋₁₀ alkyl groups substituted by any of the above-mentioned C₆₋₁₄ aryl groups. Useful values include benzyl, phenethyl and naphthylmethyl.

[0106] Useful haloalkyl groups include C₁₋₁₀ alkyl groups substituted by one or more fluoride, chlorine, bromine or iodine atoms, e.g. fluoromethyl, difluoromethyl, trifluoromethyl, pentfluoroethyl, 1,1,1-trifluoroethyl, chloromethyl, chlorofluoromethyl and trichloromethyl groups.

[0107] Useful alkoxy groups include oxygen substituted by one of the C₁₋₁₀ alkyl groups mentioned above.

[0108] Useful alkylthio groups include sulphur substituted by one of the C₁₋₁₀ alkyl groups mentioned above. Also included are the sulfoxides and sulfones of such alkylthio groups.

[0109] Useful acylamino groups are any C₁₋₆ acyl (alkanoyl) attached to an amino nitrogen, e.g. acetylamido, propionamido, butanoylamido, pentanoylamido, hexanoylamido as well as aryl-substituted C₂₋₁₀ substituted acyl groups.

[0110] Useful acyloxy groups are any C₁₋₆ acyl (alkanoyl) attached to an oxygen (—O—) group, e.g. formyloxy, acetoxy, propionyloxy, butanoyloxy, pentanoyloxy, hexanoyloxy and the like.

[0111] Useful arylacyloxy groups include any of the aryl groups mentioned above substituted on any of the acyloxy groups mentioned above, e.g. 2,6-dichlorobenzoxoxy, 2,6-difluorobenzoxoxy and 2,6-di(trifluoromethyl)benzoxoxy groups.

[0112] Useful amino groups include —NH₂, —NR₁₂, and —NR₁₂, wherein R₁₁ and R₁₂ are C₁₋₁₀ alkyl or cycloalkyl groups as defined above.

[0113] Useful saturated or partially saturated heterocyclic groups include tetrahydrofuran, pyran, pyridinyl, piperidinyl, pyrrolizinyl, pyrrolidinyl, imidazolidinyl, imidazolinyl, indolyl, indolizinyl, quinolinyl, morpholinyl, isochromanyl, chromanyl, pyrazolidinyl pyrazolinyl, tetronyl and tetranyo groups.

[0114] Useful heterocyclic groups include any one of the following: thiienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thiathienyl, furyl, pyran, isobenzofuranyl, chromenyl, xanthenyl, phenoaxanthinyl, 2H-pyryryl, pyryryl, imida zolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indoliziny, indolizinyl, indolyl, indolyl, indazolyl, purinyl, 4H-pyrolizinyl, isquinolynyl, quinolynyl, phthalizinyl, naphthimidinyl, quinoalzinyl, cinolinyl, pteridinyl, carba zolyl, β-carbolinyl, phenanthridinyl, acridinyl, perimidy, phenanthrolinyl, phenaizinyl, isothiazolinyl, phenothiazynyl, isoxazolyl, furazanoyl, oxazinoyl, 1,4-dihydroquinazoline-2,3-dione, 7-aminoisocoumarin, pyrido[1,2-a]pyrimidin-4-one, 1,2-benzoisoxazol-3-yl,
benzimidazolyl, 2-oxindolyl and 2-oxobenzimidazolyl. Where the heteroaryl group contains a nitrogen atom in a ring, such nitrogen atom may be in the form of an N-oxide, e.g. a pyridyl N-oxide, pyrazyl N-oxide, pyrimidinyl N-oxide and the like.

[0115] Optional substituents include one or more alkyl; halo; haloalkyl; cycloalkyl; aryl optionally substituted with one or more lower alkyl, halo, haloaryl or heteroaryl groups; aryloxyl optionally substituted with one or more lower alkyl, haloalkyl or heteroaryl groups; alkanoyl; heteroaryloxy optionally substituted with one or more lower alkyl, haloalkyl and aryl groups; heterocycloalkoxy optionally substituted with one or more lower alkyl, haloalkyl and aryl groups; alkoxy; alkylthio; arylthio; amino; acyloxy; aryloxyl optionally substituted with one or more lower alkyl, halo alkyl and aryl groups; Diphenylphosphinoxy optionally substituted with one or more lower alkyl, halo alkyl and aryl groups; heterocycloalkoxy optionally substituted with one or more lower alkyl, halo alkyl and aryl groups; partially unsaturated heterocycloalkoxy optionally substituted with one or more lower alkyl, halo alkyl and aryl groups; or partially unsaturated heterocycloalkoxy optionally substituted with one or more lower alkyl, halo alkyl and aryl groups. Particular examples of such optional substituents that may be present at R₁ include, without limitation, 3-pyrazolyl optionally substituted at the 2, 4 and 5-positions with lower alkyl; 3,5-(1-phenoxy-3-trifluoromethyl)pyrazolyl; 3,5-di(trifluoromethyl)pyrazolyl; 2,6-dimethylbenzoxazolyl, pentfluorophenoxyl; 2,6-dichlorobenoxazolyl; 2-(3-(2-imidazolyl)-naphthyl)oxyl; diphenylphosphinyl; tetranoyl; and tetramoyloxy.

[0116] Certain of the compounds of the present invention may exist as stereoisomers including optical isomers. The invention includes all stereoisomers and both the racemic mixtures of such stereoisomers as well as the individual enantiomers that may be separated according to methods that are well known to those of ordinary skill in the art.

[0117] Examples of pharmaceutically acceptable addition salts include inorganic and organic acid addition salts such as hydrochloride, hydrobromide, phosphate, sulphate, citrate, lactate, tartrate, maleate, fumarate, mandelate and oxalate; and inorganic and organic base addition salts with bases such as sodium hydroxy and Tris(hydroxymethyl)aminomethane (TRIS, tromethane).

[0118] Examples of prodrugs include compounds of Formula I-IV wherein R₁ is an alkyl group or substituted alkyl group such as CH₃OCH₃ and CH₂OOCCH₃ (AM ester).

[0119] The invention is also directed to a method for treating disorders responsive to the inhibition of caspases in animals suffering thereof. Preferable preferred embodiments of compounds for use in the method of this invention are represented by previously defined Formulae I-IV.

[0120] The compounds of this invention may be prepared using methods known to those skilled in the art. Specifically, compounds with Formulae I-IV can be prepared as illustrated by exemplary reactions in Scheme 1. The intermediate 1 was prepared according to Revesz et al. (Tetrahedron Lett. 35, 9693-9696, 1994). Coupling of 1 with a N-protected 2-aminobenzoic acid, which is either commercially available or which can be prepared from a commercially available 2-aminobenzoic acid, such as 2-Z-aminobenzoic acid, gave amide 2. Oxidation of 2 by Dess-Martin reagent according to Revesz et al. (Tetrahedron Lett. 35, 9693-9696, 1994) gave 3. Acid catalyzed cleavage of the ester gave the free acid 4.

[0121] An important aspect of the present invention is the discovery that compounds having Formulae I-IV are inhibitors of caspases. Therefore, these inhibitors are expected to slow or block cell death in a variety of clinical conditions in which the loss of cells, tissues or entire organs occurs.

[0122] The cell death inhibitors of the present invention can be used to reduce or prevent cell death in the nervous system (brain, spinal cord, and peripheral nervous system) under various conditions of ischemia and excitotoxicity,
including, but not limited to, focal ischemia due to stroke and global ischemia due to cardiac arrest, as well as spinal cord injury (Emery et al. J. Neurosurgery, 89: 911-920 (1998)). One particular usage is to treat the effects of oxygen deprivation which can occur during the birth of infants in high-risk labors or drowning. The cell death inhibitors can also be used to reduce or prevent cell death in the nervous system due to traumatic injury (such as head trauma), viral infection or radiation-induced nerve cell death (for example, as a side-effect of cancer radiotherapy). The cell death inhibitors can also be used to reduce or prevent cell death in a range of neurodegenerative disorders, including but not limited to Alzheimer’s disease (Mattson et al. Brain Res. 807: 167-176 (1998)), Huntington’s Disease, Parkinson’s Disease, multiple sclerosis, amyotrophic lateral sclerosis, and spinobulbar atrophy. The in vivo neuroprotective properties of cell death inhibitors of the invention can be tested in a rat transient focal brain ischemia model (Xue et al., Stroke 21: 166 (1990)). The cell death inhibitors may also be used to treat or ameliorate cell death in acute bacterial meningitis.

[0123] The cell death inhibitors of the invention can be used to reduce or prevent cell death in any condition which potentially results in the death of cardiac muscle (Black et al., J. Mol. Cell. Cardiol. 30: 733-742 (1998) and Maulik et al. Free Radic. Biol. Med. 24: 869-875 (1998)). This includes myocardial infarction due to myocardial ischemia and reperfusion, congestive heart failure and cardiomyopathy. One particular application is to reduce or prevent myocardial cell death as occurs in certain viral infections of the heart.

[0124] The in vivo activity of the cell death inhibitors of the invention can be tested using the “mouse liver apoptosis” model described by Rodriguez et al. (Rodriguez et al., J. Exp. Med., 184:2067-2072 (1996)). In this model, mice are treated intravenously (IV) with an anti-fas antibody which induces massive apoptosis in the liver and other organs, leading to generalized organ failure and death. This model is useful for indirectly testing the systemic bioavailability of the cell death inhibitors of the invention, as well as their in vivo anti-apoptotic properties. The cell death inhibitors of the invention therefore can be used to reduce or prevent apoptosis of liver cells (Jones et al. Hepatology 27: 1632-42 (1998)) such as in sepsis (Jaeckle et al. J. Immunol. 160: 3480-3486 (1998)) and hereditary tyrosinemia type I (HT1) (Kubo et al. Proc. Natl. Acad. Sci. USA, 95: 9552-9557 (1998). The cell death inhibitors of the invention also can be used to treat hepatitis (Suzuki, Proc. Soc. Exp. Biol. Med. 217: 450-454 (1998)); treat or ameliorate apoptotic cell death in acute pancreatitis; and treat or ameliorate organ apoptosis after burn injury.

[0125] The cell death inhibitors of the invention can be used to reduce or prevent cell death of retinal neurons (Kermar et al. J. Neurosci. 18: 4656-4662 (1998) and Miller et al. Am. J. Vet. Res. 59: 149-152 (1998)) as can occur in disorders which increase intraocular pressure (such as glaucoma) or retinal disorders associated with the aging process (such as age-related macular degeneration). The inhibitors can also be used to treat hereditary degenerative disorders of the retina, such as retinitis pigmentosa.

[0127] The cell death inhibitors of the invention can also be used to reduce or prevent cell death of buccal mucosa due to chronic alcohol ingestion (Slomiany et al. Biochem. Mol. Biol. Int. 45: 1199-1209 (1998)).

[0129] The cell death inhibitors of the invention can also be used to reduce or prevent cell death due to radiation and ultraviolet-irradiation (Sheikh et al. Oncogene, 17: 2555-2563 (1998)).

[0130] The cell death inhibitors of the invention can also be used to reduce or prevent apoptotic death of bone marrow cells in myelodysplastic syndromes (MDS) (Mundle et al., Am. J. Hematol. 60: 36-47 (1999)).

[0131] The cell death inhibitors of the invention can also be used to reduce or prevent premature death of cells of the immune system, and are particularly useful in treating immune deficiency disorders, such as acquired immune deficiency syndrome (AIDS), severe combined immune deficiency syndrome (SCID) and related diseases. The cell death inhibitors can also be used to treat radiation-induced immune suppression.

[0132] Transplantation of human organs and tissues is a common treatment for organ failure. However, during the transplantation process, the donor organ or tissue is at risk for cell death since it is deprived of its normal blood supply prior to being implanted in the host. This ischemic state can be treated with cell death inhibitors by infusion into the donor organ or tissue, or by direct addition of the cell death inhibitors to the organ/tissue storage medium. Cell death inhibitors may also be used to reduce or prevent cell death in the donor organ/tissue after it has been transplanted to protect it from the effects of reperfusion injury and/or effects of host immune cells which kill their targets by triggering apoptosis. The cytoprotective effects of cell death inhibitors can also be used to prevent the death of human or animal sperm and eggs used in in vitro fertilization procedures. These inhibitors can be used during the harvesting process and can also be included in the storage medium.

[0133] Mammalian cell lines, insect cells and yeast cells are commonly used to produce large amounts of recombinant proteins (such as antibodies, enzymes or hormones) for industrial or medicinal use. The lifespan of some of these cell lines is limited due to growth conditions, the nature of the recombinant molecule being expressed (some are toxic) and other unknown factors. The lifespans of industrial cell lines can be extended by including these cell death inhibitors in the growth medium in a concentration range of 1-100 nM.

[0134] The factors governing hair growth and loss are largely unknown. There is some evidence, however, that hair
The death of skin epithelial cells can occur after exposure to high levels of radiation, heat or chemicals. It is contemplated that the cell death inhibitors of the present invention can be used to treat, reduce or prevent this type of skin damage. In one particular application, the cell death inhibitors can be applied as a part of a topical formulation, e.g., an ointment, to treat acute over-exposure to the sun and to prevent blistering and peeling of the skin.

Goldberg et al. (Nature Genetics 13: 442-449 (1996)) reported recently that huntingtin, a protein product of Huntington’s disease (HD) gene, can be cleaved by CPP32 but not ICE. The mutation underlying HD is an expansion of a CAG trinucleotide at the 5’ end of the HD gene. The trinucleotide expansion exceeding 36 repeats is associated with the clinical presentation of HD. The CAG expansion promotes cleavage of huntingtin by CPP32, thus linking the role of CPP32 in the apoptotic cell death in HD. Compounds of the present invention with CPP32 inhibiting activity will be useful in blocking CPP32 induced apoptotic cell death, thus in preventing and treating HD and other disorders characterized by expansion of trinucleotide repeats such as myotonic dystrophy, fragile X mental retardation, spinocerebellar atrophy type I and Dentato-Rubro pallidolysian atrophy.

The invention relates to a method of treating, ameliorating or preventing oral mucositis, gastrointestinal mucositis, bladder mucositis, proctitis, bone marrow cell death, skin cell death and hair loss resulting from chemotherapy or radiation therapy of cancer in an animal, comprising administering to the animal in need thereof an effective amount of a caspase inhibitor.

When animals are treated with chemotherapeutic agents and/or radiation to kill cancer cells, an unwanted side effect is the apoptotic death of rapidly dividing non-cancerous cells. Such non-cancerous cells include cells of the gastrointestinal tract, skin, hair, and bone marrow cells. According to the present invention, caspase inhibitors are administered to such non-cancerous cells to prevent apoptosis of such cells. In a preferred embodiment, the caspase inhibitors are administered locally, e.g. to the gastrointestinal tract, mouth, skin or scalp to prevent apoptosis of the gastrointestinal, mouth, skin or hair cells but allowing for the death of the cancer cells. Thus, in one example, it is possible to treat brain cancer with chemotherapy or radiation therapy and protect the outer skin, hair cells, gastrointestinal tract and bone marrow by local administration of a caspase inhibitor. In the case of oral mucositis, the caspase inhibitor can be applied, for example, in the form of a mouth wash or mouth rinse, in a gel, or in the form of an oral slow release lozenge to prevent activation of caspases and apoptotic cell death induced by the chemotherapeutic agent or by radiation. In the case of gastrointestinal mucositis, the caspase inhibitor can be applied in a form such that it is not absorbed systemically or in a form that coats the surface of the gastrointestinal tract, or a suppository formulation for the treatment of gastrointestinal mucositis. In the case of proctitis, the caspase inhibitor may be applied as part of an enema or suppository. In the case of bladder mucositis, the caspase inhibitor may be applied through a bladder catheter. For prevention of radiation or chemotherapy-induced hair loss, the caspase inhibitor can be applied, for example, to the scalp in the form of a hair rinse, hair gel, shampoo or hair conditioner. Importantly, the caspase inhibitor can be applied prior to the administration of the chemotherapeutic agent or radiation, thus preventing the onset of the damaging effects of the chemotherapeutic agent or radiation to the normal cells.

Compositions within the scope of this invention include all compositions wherein the compounds of the present invention are contained in an amount which is effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. Typically, the compounds may be administered to mammals, e.g. humans, orally at a dose of 0.0025 to 50 mg/kg, or an equivalent amount of the pharmaceutically acceptable salt thereof, per day of the body weight of the mammal being treated for apoptosis-mediated disorders, e.g., neuronal cell death, heart disease, retinal disorders, polyneuropathy, kidney disease, immune system disorders and sepsis. Preferably, about 0.01 to about 10 mg/kg is orally administered to treat or prevent such disorders. For intramuscular injection, the dose is generally about one-half of the oral dose. For example, for treatment or prevention of neuronal cell death, a suitable intramuscular dose would be about 0.0025 to about 25 mg/kg, and most preferably, from about 0.01 to about 5 mg/kg.

The unit oral dose may comprise from about 0.01 to about 50 mg, preferably about 0.1 to about 10 mg of the compound. The unit dose may be administered one or more times daily as one or more tablets each containing from about 0.1 to about 10, conveniently about 0.25 to 50 mg of the compound or its solvates.

In a topical formulation, the compound may be present at a concentration of about 0.01 to 100 mg per gram of carrier. In a preferred embodiment, the compound is present at a concentration of about 0.07-1.0 mg/ml, more preferably, about 0.1-0.5 mg/ml, most preferably, about 0.4 mg/ml.

In addition to administering the compound as a raw chemical, the compounds of the invention may be administered as part of a pharmaceutical preparation containing suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the compounds into preparations which can be used pharmaceutically. Preferably, the preparations, particularly those preparations which can be administered orally or topically and which can be used for the preferred type of administration, such as tablets, dragees, slow release lozenges and capsules, mouth rinses and mouth washes, gels, liquid
suspensions, hair rinses, hair gels, shampoos and also prepara-
tions which can be administered rectally, such as supposi-
tories, as well as suitable solutions for administration by
injection, topically or orally, contain from about 0.01 to 99
percent, preferably from about 0.25 to 75 percent of active
compound(s), together with the excipient.

[0144] Also included within the scope of the present
invention are the non-toxic pharmaceutically acceptable
salts of the compounds of the present invention. Acid
addition salts are formed by mixing a solution of the
particular cell death inhibitors of the present invention with
a solution of a pharmaceutically acceptable non-toxic acid
such as hydrochloric acid, fumaric acid, maleic acid, suc-
cinic acid, acetic acid, citric acid, tartaric acid, carbonic acid,
phosphoric acid, oxalic acid, and the like. Basic salts are
formed by mixing a solution of the particular cell death
inhibitors of the present invention with a solution of a
pharmaceutically acceptable non-toxic base such as sodium
hydroxide, potassium hydroxide, choline hydroxide, sodium
carbonate Tris and the like.

[0145] The pharmaceutical compositions of the invention
may be administered to any animal which may experience
the beneficial effects of the compounds of the invention.
Foremost among the animals are mammals, e.g., humandes,
although the invention is not intended to be so limited.

[0146] The caspase inhibitors and pharmaceutical compo-
sitions thereof may be administered by any means that
achieve their intended purpose. For example, administration
may be by parenteral, subcutaneous, intravenous, intramus-
cular, intraperitoneal, transdermal, buccal, intrathecal,
intracranial, intranasal or topical routes. Alternatively, or
concurrently, administration may be by the oral route. The
dosage administered will be dependent upon the age, health,
and weight of the recipient, kind of concurrent treatment, if
any, frequency of treatment, and the nature of the effect
desired. In general, the caspase inhibitors are administered
locally to the tissues that are to be protected from apoptosis
and separately from the chemotherapeutic agent. For
example, cospatalin may be administered by i.v. injection
to treat a cancer such as brain, lung, breast, liver, kidney,
pancreatic, ovarian, prostatic cancer, and the caspase inhibi-
tor administered locally to treat, ameliorate, or prevent
apoptotic cell death in the mouth or gastrointestinal tract, such
as a mouth wash for the treatment of oral mucositis; and IV
injectable aqueous solution for the treatment of bone mar-
row cell death; and an oral formulation suitable for coating
the gastrointestinal surfaces or an emema or suppository
formulation for the treatment of gastrointestinal mucositis
including proctitis. The caspase inhibitors may also be
applied through a bladder catheter for the treatment, ame-
lioration or prevention of bladder mucositis. Alternatively or
concurrently, the caspase inhibitors may be applied topically
to the skin and/or scalp to treat, ameliorate or prevent
apoptotic cell death of hair and skin cells. In a further
embodiment, the chemotherapeutic agent or radiation may
be applied locally to treat a localized cancer such as brain,
lung, breast, liver, kidney, pancreatic, ovarian, prostatic
cancer, and the caspase inhibitor administered systemically,
e.g. by i.v. injection, to treat, ameliorate or prevent apoptotic
cell death of the gastrointestinal tract cells, mouth epithelial
cells, bone marrow cells, skin cells and hair cells. In the case
of oral mucositis in brain cancer treatment, for example, a
caspase inhibitor that does not penetrate the blood-brain
barrier can be applied, for example, systemically by i.v.
injection followed by irradiation of the brain tumor. This
would protect the oral mucosa from the harmful effects of
radiation but the caspase inhibitor would not protect the
brain tumor from the therapeutic effects of radiation.
Importantly, the caspase inhibitor can be applied prior to admin-
istration of the radiation, thus preventing the onset of the
damaging effects of the radiation to the normal mucosa cells.

[0147] The pharmaceutical preparations of the present
invention are manufactured in a manner which is itself
known, for example, by means of conventional mixing,
granulating, dragee-making, dissolving, or lyophilizing pro-
cesses. Thus, pharmaceutical preparations for oral use can
be obtained by combining the active compounds with solid
excipients, optionally grinding the resulting mixture and
processing the mixture of granules, after adding suitable
auxiliaries, if desired or necessary, to obtain tablets or dragee
cores.

[0148] Suitable excipients are, in particular, fillers such as
saccharides, for example lactose or sucrose, mannitol or
sorbitol, cellulose preparations and/or calcium phosphates,
for example tricalcium phosphate or calcium hydrogen
phosphate, as well as binders such as starch paste, using, for
example, maize starch, wheat starch, rice starch, potato
starch, gelatin, tragacanth, methyl cellulose, hydroxypropyl-
 methylcellulose, sodium carboxymethylcellulose, and/or
polyvinyl pyrrolidone. If desired, disintegrating agents may
be added such as the above-mentioned starches and also
carboxymethyl-starch, cross-linked polyvinyl pyrrolidone,
agar, or alginate acid or a salt thereof, such as sodium
alginate. Auxiliaries are, above all, flow-regulating agents
and lubricants, for example, silica, talc, stearic acid or salts
thereof, such as magnesium stearate or calcium stearate,
and/or polyethylene glycol. Dragee cores are provided with
suitable coatings which, if desired, are resistant to gastric
juices. For this purpose, concentrated saccharide solutions
may be used, which may optionally contain gum arabic, talc,
polyvinyl pyrrolidone, polyethylene glycol and/or titanium
dioxide, lacquer solutions and suitable organic solvents or
solvent mixtures. In order to produce coatings resistant to
gastric juices, solutions of suitable cellulose preparations
such as cellulosephosphate phtalate or hydroxypropyethyl-
cellulose phtalate, are used. Dye stuffs or pigments may be
added to the tablets or dragee coatings, for example, for
identification in order to characterize combinations of
active compound doses.

[0149] Other pharmaceutical preparations which can be
used orally include push-fit capsules made of gelatin, as well
as soft, sealed capsules made of gelatin and a plasticizer
such as glycerol or sorbitol. The push-fit capsules can
contain the active compounds in the form of granules which
may be mixed with fillers such as lactose, binders such as
starches, and/or lubricants such as talc or magnesium stear-
ate and, optionally, stabilizers. In soft capsules, the active
compounds are preferably dissolved or suspended in suitable
liquids, such as fatty oils, or liquid paraffin. In addition,
stabilizers may be added.

[0150] Possible pharmaceutical preparations which can be
used rectally include, for example, suppositories, which
consist of a combination of one or more of the active
compounds with a suppository base. Suitable suppository
bases are, for example, natural or synthetic triglycerides, or
paraffin hydrocarbons. In addition, it is also possible to use gelatin rectal capsules which consist of a combination of the active compounds with a base. Possible base materials include, for example, liquid triglycerides, polyethylene glycols, or paraffin hydrocarbons.

[0151] Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts and alkaline solutions. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides or polyethylene glycol-400 (the compounds are soluble in PEG-400). Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers.

[0152] In accordance with one aspect of the present invention, compounds of the invention are employed in topical and parenteral formulations and are used for the treatment of skin damage, such as that caused by exposure to high levels of radiation, including ultraviolet radiation, heat or chemicals.

[0153] One or more additional substances which have therapeutic effects on the skin may also be incorporated in the compositions. Thus, the composition may also contain one or more compounds capable of increasing cyclic-AMP levels in the skin. Suitable compounds include adenosine or a nucleic acid hydrolysate in an amount of about 0.1-1% and papaverine, in an amount of about 0.5-5%, both by weight based on the weight of the composition. Also suitable are β-adrenergic agonists such as isoproterenol, in an amount of about 0.1-2% or cyclic-AMP, in an amount of about 0.1-1%, again both by weight based on the weight of the composition. Other suitable types of additional active ingredients which may be incorporated in the compositions of this invention include any compounds known to have a beneficial effect on skin. Such compounds include retinoids such as Vitamin A, in an amount of about 0.003-0.3% by weight and chromanols such as Vitamin E or a derivative thereof in an amount of about 0.1-10% by weight, both based on the weight of the composition. Additionally, anti-inflammatory agents and keratolytic agents may be incorporated in the cosmetic composition. A typical anti-inflammatory agent is a corticosteroid such as hydrocortisone or its acetate in an amount of about 0.25-5% by weight, or a corticosteroid such as dexamethasone in an amount of about 0.025-0.5% by weight, both based on the weight of the composition. A typical keratolytic agent is coal tar in an amount of about 0.1-20% or anthralin in an amount of about 0.05-2% by weight, both based on the weight of the composition.

[0154] The topical compositions of this invention are formulated preferably as oils, creams, lotions, ointments and the like by choice of appropriate carriers. Suitable carriers include vegetable or mineral oils, white petrolatum (white soft paraffin), branched chain fats or oils, animal fats and high molecular weight alcohol (greater than C12). The preferred carriers are those in which the active ingredient is soluble. Emulsifiers, stabilizers, humectants and antioxidants may also be included as well as agents imparting color or fragrance, if desired. Additionally, transdermal penetration enhancers can be employed in these topical formulations. Examples of such enhancers can be found in U.S. Pat. Nos. 5,989,816 and 4,444,762.

[0155] Creams are preferably formulated from a mixture of mineral oil, self-emulsifying beeswax and water in which mixture the active ingredient, dissolved in a small amount of an oil such as almond oil, is admixed. A typical example of such a cream is one which includes about 40 parts water, about 20 parts beeswax, about 40 parts mineral oil and about 1 part almond oil.

[0156] Ointments may be formulated by mixing a solution of the active ingredient in a vegetable oil such as almond oil with warm soft paraffin and allowing the mixture to cool. A typical example of such an ointment is one which includes about 30% almond oil and about 70% white soft paraffin by weight.

[0157] Lotions may be conveniently prepared by dissolving the active ingredient, in a suitable high molecular weight alcohol such as propylene glycol or polyethylene glycol.

[0158] In addition, these compositions may include other medicinal agents, growth factors, wound sealants, carriers, etc., that are known or apparent to those skilled in the art. The compositions of the invention are administered to a warm-blooded animal, such as human, already suffering from a skin damage, such as a burn, in an amount sufficient to allow the healing process to proceed more quickly than if the host were not treated. Amounts effective for this use will depend on the severity of the skin damage and the general state of health of the patient being treated. Maintenance dosages over a prolonged period of time may be adjusted as necessary. For veterinary uses, higher levels may be administered as necessary.

[0159] In the case of an animal suffering from decreased hair growth, the compositions of the invention are administered in an amount sufficient to increase the rate of hair growth. Amounts effective for this use will depend on the extent of decreased hair growth, and the general state of health of the patient being treated. Maintenance dosages over a prolonged period of time may be adjusted as necessary. For veterinary uses, higher levels may be administered as necessary.

[0160] When the compounds are to be administered to plants, they may be applied to the leaves and/or stems and/or flowers of the plant, e.g. by spraying. The compounds may be spayed in particulate form or dissolved or suspended in an appropriate carrier, e.g. in water or an oil-water emulsion. The compounds may also be combined with the soil of the plant. In this embodiment, the compounds are taken up by the roots of the plant.

[0161] In a preferred embodiment, the caspase inhibitor is formulated as part of a mouthwash for the treatment, amelioration or prevention of oral mucositis. Such mouthwashes are aqueous solutions of the caspase inhibitor which may also contain alcohol, glycercin, synthetic sweeteners and surface-active, flavoring and coloring agents. They may also contain anti-infective agents such as hexetidine and cetilypyridinium chloride. The mouthwashes may also contain topical anesthetics (e.g. benzocaine, cocaine, dyclonine hydrochloride, lidocaine, proparacaine hydrocholoride or teracaine hydrocholoride), for example, for relieving pain of radiation

[0162] In another preferred embodiment, the caspase inhibitor is formulated as an oral formulation which is capable of coating the gastrointestinal surfaces for the treatment, amelioration or prevention of gastrointestinal mucositis. Examples of gastrointestinal mucositis include esophageal mucositis, gastric mucositis, and intestinal mucositis. Such formulations may comprise gastric antacids such as aluminum carbonate, aluminum hydroxide gel, bismuth subnitrate, bismuth subsalicylate, calcium carbonate, dihydroxyaluminum sodium carbonate, magaldrate, magnesium carbonate, magnesium hydroxide, magnesium oxide, sodium bicarbonate, milk of bismuth, dihydroxyaluminum amine carbonate, magnesium phosphate, magnesium trisilicate and mixtures thereof. Other additives include without limitation H₂-receptor antagonists, digoxins, anti-emetics, adsorbants, and miscellaneous agents. See Remington’s Pharmaceutical Sciences, A. R. Gennaro (ed.), Mack Publishing Company, pp. 774-778 (1990).

[0163] Chemotherapy agents such as cisplatin and radiation therapy often induce early and late onset emesis in the patient. Thus, in one embodiment an antiemetic is coadministered with the caspase inhibitor to avoid emesis and retain contact of the caspase inhibitor with the gastrointestinal tract. Examples of such antiemetics include without limitation compounds that block the dopaminergic emetic receptors such as metoclopramide and trimethobenzamide, and cannabinoids. Metoclopramide may be administered orally prior to and/or during chemotherapy/radiation therapy/caspase inhibitor therapy to prevent the early emesis response and then later by intranasal administration according to U.S. Pat. Nos. 5,760,086 and 4,536,386 to prevent delayed onset emesis. During the period after chemotherapy/radiation therapy, both the caspase inhibitor and the antiemetic may be coadministered to treat, ameliorate or prevent gastrointestinal mucositis.

[0164] In a further embodiment, the caspase inhibitor may be formulated as an IV injectable solution for the treatment, amelioration or prevention of bone marrow cell death.

[0165] The compositions may be administered to a warm-blooded animal, such as human, already suffering from chemotherapy or radiation therapy-induced non-cancer cell death, or, more preferably, before or during therapy with chemotherapy or radiation.

[0166] The following examples are illustrative, but not limiting, of the method and compositions of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in clinical therapy and which are obvious to those skilled in the art are within the spirit and scope of the invention.

EXAMPLE 1

2-(Z-Amino)benzoyl-Asp-fmk

[0167] Step A. 2-Z-Amino benzoic acid. To a solution of 2-aminobenzoic acid (0.30 g, 2.2 mmol) in pyridine (2 mL) was added benzyl chloroformate (0.6 mL, 4.2 mmol) at 0°C. The mixture was then stirred at room temperature for 1 h, diluted with EtOAc (50 mL), washed with 2N HCl, water and brine, dried over Na₂SO₄ and concentrated in vacuo. The crude solid was washed with 4:1 hexane/EtOAc twice and dried in vacuo to yield the title compound as a white solid (270 mg, 1.0 mmol, 45%). ¹H NMR (DMSO-d₆): δ 11.49 (br s, 1H), 8.22 (d, J=7.5, 1H), 7.95 (d, J=7.5, 1H), 7.51 (t, J=7.5, 1H), 7.39-7.32 (m, 5H), 7.05 (d, J=7.5, 1H), 5.15 (s, 2H).

EXAMPLE 2

2-(Z-Amino)-6-methylbenzoyl-Asp-fmk

[0167] Step A. 2-Z-Amino benzoic acid. To a solution of 2-aminobenzoic acid (0.30 g, 2.2 mmol) in pyridine (2 mL) was added benzyl chloroformate (0.6 mL, 4.2 mmol) at 0°C. The mixture was then stirred at room temperature for 1 h, diluted with EtOAc (50 mL), washed with 2N HCl, water and brine, dried over Na₂SO₄ and concentrated in vacuo. The crude solid was washed with 4:1 hexane/EtOAc twice and dried in vacuo to yield the title compound as a white solid (270 mg, 1.0 mmol, 45%). ¹H NMR (DMSO-d₆): δ 11.49 (br s, 1H), 8.22 (d, J=7.5, 1H), 7.95 (d, J=7.5, 1H), 7.51 (t, J=7.5, 1H), 7.39-7.32 (m, 5H), 7.05 (d, J=7.5, 1H), 5.15 (s, 2H).

EXAMPLE 3

2-(Z-Amino)-5-methylbenzoyl-Asp-fmk

[0172] The title compound was prepared in four-steps as described in Example 1 from 2-aminobenzoic acid. ¹H NMR (DMSO-d₆): δ 8.85 (s, 1H), 8.68 (s, 1H), 7.49-7.01 (m, 5H), 5.12 (s, 2H), 4.82 (m, 1H), 5.26-4.95 (m, 2H), 3.00-2.64 (m, 2H), 2.26 (s, 3H).

EXAMPLE 4

2-(Z-Amino)-6-methylbenzoyl-Asp-fmk

[0171] The title compound was prepared in four-steps as described in Example 1 from 2-aminobenzoic acid. ¹H NMR (DMSO-d₆): δ 8.85 (s, 1H), 8.68 (s, 1H), 7.49-7.01 (m, 5H), 5.12 (s, 2H), 4.82 (m, 1H), 5.26-4.95 (m, 2H), 3.00-2.64 (m, 2H), 2.26 (s, 3H).
The title compound was prepared in four-steps as described in Example 1 from 2-amino-3-methylbenzoic acid. 1H NMR (DMSO-d$_6$): δ 10.48 (s, 1H), 9.10 (d, J=9, 1H), 8.60 (d, J=8, 7, 1H), 7.89 (s, 1H), 7.58 (s, 1H), 7.41-7.34 (m, 5H), 5.14 (s, 2H), 4.83 (m, 1H), 5.39-4.41 (m, 2H), 2.94-2.80 (m, 2H), 2.30 (s, 3H).

EXAMPLE 5

2-(Z-Amino)-3-methylbenzoyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from 2-amino-3-methylbenzoic acid. 1H NMR (DMSO-d$_6$): δ 9.05 (s, 1H), 8.73 (s, 1H), 7.38-7.20 (m, 8H), 5.08 (s, 2H), 4.72 (m, 1H), 5.32 (bs, 2H), 2.81-2.66 (m, 2H), 2.21 (s, 3H).

EXAMPLE 6

2-(Z-Amino)-5-fluorobenzoyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from 2-amino-5-fluorobenzonic acid. 1H NMR (DMSO-d$_6$): δ 10.40 (bs, 1H), 9.13 (bs, 1H), 8.07 (q, J=5, 1H), 7.61 (d, J=6, 6, 1H), 7.46-7.33 (m, 6H), 5.15 (s, 2H), 4.81 (bs, 1H), 2.84-2.72 (m, 2H).

EXAMPLE 7

cis-2-(Z-Amino)cyclohexanecarbonyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from cis-2-aminocyclohexanecarboxylic acid. 1H NMR (DMSO-d$_6$): δ 8.28 (bs, 1H), 7.39-7.09 (m, 5H), 4.98 (s, 2H), 4.52-4.45 (m, 1H), 3.99 (bs, 1H), 2.62-2.53 (m, 4H), 1.77-1.23 (m, 8H).

EXAMPLE 8

2-(Z-Amino)-3,5-dimethylbenzoyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from 2-amino-3,5-dimethylbenzoic acid. 1H NMR (DMSO-d$_6$): δ 8.05 (s, 1H), 7.42-7.17 (m, 8H), 5.15 (s, 2H), 5.19-5.03 (m, 2H), 4.87 (m, 1H), 2.30 (s, 3H), 2.26 (s, 3H).

EXAMPLE 9

2-(Z-Amino)-5-chlorobenzoyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from 2-amino-5-chlorobenzonic acid. 1H NMR (DMSO-d$_6$): δ 10.56 (s, 1H), 9.19 (s, 1H), 8.15 (d, J=9, 0, 1H), 7.84 (s, 1H), 7.61 (d, J=9, 0, 1H), 7.41-7.37 (m, 5H), 5.16 (s, 2H), 4.81 (m, 1H), 5.41-4.80 (m, 2H), 2.84-2.73 (m, 2H).

EXAMPLE 10

2-(Z-Amino)-6-chlorobenzoyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from 2-amino-6-chlorobenzonic acid. 1H NMR (DMSO-d$_6$): δ 9.17 (d, J=4.2, 1H), 8.95 (s, 1H), 7.74-7.24 (m, 8H), 5.50-5.21 (m, 2H), 5.15 (s, 2H), 4.85-4.78 (m, 1H), 2.98-2.65 (m, 2H).

EXAMPLE 11

2-(Z-Amino)-4-chlorobenzoyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from 2-amino-3,5-dimethylbenzoic acid. 1H NMR (DMSO-d$_6$): δ 10.84 (s, 1H), 9.19 (s, 1H), 8.24 (s, 1H), 7.81 (d, J=8.4, 1H), 7.42-7.24 (m, 6H), 5.18 (s, 2H), 5.25-5.20 (m, 2H), 4.82 (m, 1H), 2.94-2.63 (m, 2H).

EXAMPLE 12

3-(Z-Amino)thiophene-2-carboxyl-Asp-fmk

Step A. 3-(Z-Amino)thiophene-2-carboxylic acid. The mixture of 3-aminothiophene-2-carboxylic acid (0.2 g, 1.27 mmol) in 2N NaOH (10 mL) was heated at 90°C for 15 min, then cooled to 0°C. To the resulting solution was added benzyl chloroformate (1.5 mL, 10.5 mmol) and THF (10 mL). The mixture was then stirred at room temperature for 1 h, washed with 3:1 hexane:ethyl acetate (2x15 mL). The aqueous phase was acidified with 2N HCl to pH=1-2, extracted with ethyl acetate (3x15 mL), washed with water and brine, dried over Na$_2$SO$_4$ and concentrated in vacuo to yield the title compound as a white solid (70 mg).

EXAMPLE 13

3-(Methoxy carbamoylamine)thiophene-2-carboxyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 12 from methyl 3-aminothiophene-2-carboxylate and methyl chloroformate. 1H NMR (DMSO-d$_6$): δ 10.43 (s, 1H), 8.74 (s, 1H), 7.81 (d, J=5, 4, 1H), 7.73 (d, J=5, 4, 1H), 7.44-7.35 (m, 5H), 5.18 (s, 2H), 5.32-5.04 (m, 2H), 4.79 (m, 1H), 2.88-2.67 (m, 2H).

EXAMPLE 14

Cis-2-(Z-Amino)cyclopentanecarbonyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from cis-2-aminocyclopentanecarboxylic acid. 1H NMR (DMSO-d$_6$): δ 8.55 (s, 1H), 7.34-7.28 (m, 5H), 7.09 (m, 1H), 5.13-5.00 (m, 5H), 4.11 (m, 1H), 2.81 (m, 1H), 2.73-2.51 (m, 2H), 1.91-1.40 (m, 6H).

EXAMPLE 15

Trans-2-(Z-Amino)cyclohexanecarbonyl-Asp-fmk

The title compound was prepared in four-steps as described in Example 1 from trans-2-aminocyclohexanecarboxylic acid. 1H NMR (DMSO-d$_6$): δ 12.48 (s, 1H), 8.26-8.15 (m, 1H), 7.38-7.17 (m, 5H), 5.18-4.47 (m, 5H), 2.67-2.50 (m, 2H), 2.19 (m, 1H), 1.83-1.06 (m, 10H).
EXAMPLE 16

Z-Glu-(2-aminobenzoyl)-Asp-fmk

[0186] Step A. Z-Glu(OBu-t)-2-aminobenzoic acid. To a solution of Z-Glu(OBu-t)-OH (272 mg, 0.81 mmol) in THF (5 mL) was added N-methylmorpholine (110 µL, 1.1 mmol) at -45°C, followed by isobutyl chloroformate (105 µL, 0.81 mmol). The mixture was stirred at -45°C for 30 min, and a solution of anthranilic acid (127 mg, 0.93 mmol) in THF (5 mL) was added, followed by more N-methylmorpholine (200 µL, 1.82 mmol). The resulting mixture was stirred overnight and the cooling bath was allowed to slowly warm to room temperature. After diluted with EtOAc (100 mL), the mixture was washed with 2N HCl, water, saturated NaHCO₃, water, 2N HCl, water and brine, dried over Na₂SO₄, and concentrated in vacuo to yield the product as a highly hygroscopic white solid (330 mg, 0.72 mmol, 99%).

1H NMR (DMSO-d₆): δ 11.79 (s, 1H), 8.59 (d, J=4.6, 1H), 8.00 (t, J=6.0, 1H), 7.60 (t, J=8.6, 1H), 7.39-7.31 (m, 5H), 7.17 (t, J=7.8, 1H), 5.16-4.99 (m, 2H), 4.08 (m, 1H), 2.33 (m, 2H), 2.08-1.75 (m, 2H), 1.38 (s, 9H).

[0187] Step B. tert-Butyl 5-fluoro-3-[Z-Glu(OBu-t)-(2-aminobenzoylamido)]-4-hydroxypentanoate. A mixture of Z-Glu(OBu-t)-2-aminobenzoic acid (330 mg, 0.72 mmol), EDCI (129 mg, 0.67 mmol), HOBT (104 mg, 0.68 mmol), DMAP (46 mg, 0.38 mmol) and tert-butyl 3-aminofluoropyrrolidin-1-one (136 mg, 0.66 mmol) in THF (6 mL) was stirred at room temperature for 20 h. After diluted with 1:1 hexane/EtOAc (75 mL), the mixture was washed with water, 2N HCl, water, 2N NaOH and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography (3:1 then 3:2 hexane/EtOAc) to yield the title compound as a white solid (45 mg, 0.068 mmol, 10%).

[0188] Step C. Z-Glu(OBu-t)-(2-aminobenzoyl)-Asp(fmk)-OBU-t). The title compound was synthesized by a similar procedure as described in Step C, Example 1 in 58% yield.

[0189] Step D. Z-Glu-(2-aminobenzoyl)-Asp-fmk. The title compound was synthesized by a similar procedure as described in Step D, Example 1 in 14% yield. 1H NMR (DMSO-d₆): δ 11.46 (s, 1H), 9.18 (s, 1H), 8.57-7.20 (m, 6H), 5.36-4.84 (m, 5H), 4.04 (br s, 1H), 2.95-1.81 (m, 6H).

EXAMPLE 17

Z-Val-(2-Aminobenzoyl)-Asp-fmk

[0190] The title compound was synthesized as described in Example 16 from Z-Val. 1H NMR (DMSO-d₆): δ 11.34-11.25 (m, 1H), 9.17-7.17 (m, 11H), 5.42-4.30 (m, 5H), 3.95-3.75 (m, 1H), 2.95-2.57 (m, 2H), 1.92 (m, 1H), 0.91-0.84 (m, 6H).

EXAMPLE 18

2-(Z-Amino)benzoyl-Asp-DCB-methylketone

[0191] Step A. Z-Asp(OBu-t)-DCB-methylketone. A solution of Z-Asp(OBu-t)-bromomethylketone (500 mg, 1.24 mmol) in DMF (10 mL) was added potassium fluoride (320 mg, 5.50 mmol), and 2,6-dichlorobenzoic acid (348 mg, 1.82 mmol). The mixture was stirred at room temperature for 12 h, and then was diluted with 25 mL of ethyl acetate, washed with aqueous NH₄Cl and brine, dried over Na₂SO₄ and concentrated in vacuo. The title compound was obtained as white solid (0.78 g, 2.62 mmol, 69%). 1H NMR (CDCl₃): 7.34 (m, 8H), 5.96 (d, J=8.7, 1H), 5.21 (d, J=6.6, 2H), 5.16 (s, 2H), 4.70 (m, 1H), 2.88 (m, 2H), 1.27 (s, 9H).

[0192] Step B. Asp(OBu-t)-DCB-methylketone. A solution of Z-Asp(OBu-t)-DCB-methylketone (572 mg, 1.14 mmol) in ethanol (15 mL) was added Pd/C (50 mg) and 6N HCl (0.2 mL). The mixture was stirred at room temperature under H₂ atmosphere (1 atm) for 12 h, then it was filtered and concentrated. The title compound was obtained as pale white solid (416 mg, 1.04 mmol, 90%). 1H NMR (CDCl₃): 7.27 (m, 3H), 5.28 (m, 2H), 4.94 (m, 1H), 3.27 (m, 2H), 1.42 (s, 9H).

[0193] Step C. 2-(Z-Amino)benzoyl-Asp(OBu-t)-DCB-methylketone. A solution of 2-(Z-amino)benzocarboxylic acid (140 mg, 0.52 mmol) in THF (5 mL) was added N-methylmorpholine (65 µL, 0.59 mmol), followed by 2-methoxypropyl chloroformate (70 µL, 0.54 mmol) at -45°C. After 30 min, a solution of Asp(OBu-t)-DCB-methylketone-HCl (121 mg, 0.27 mmol) in THF (5 mL) was added to the solution. The resulting mixture was further stirred overnight and the cooling bath was allowed to slowly warm to room temperature. It was then stirred with 1:1 hexane/EtOAc (100 mL), washed with water, 2N NaOH and brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by chromatography (3:1 then 3:2 hexane/EtOAc) to yield the title compound as a white solid (365 mg, 0.05 mmol, 19%). 1H NMR (CDCl₃): 10.90 (s, 1H), 8.49 (d, J=7.5, 1H), 7.87 (dd, J=8.1, 1.8, 1H), 7.56-7.32 (m, 9H), 7.08 (t, J=6.9, 1H), 5.23 (s, 2H), 5.28 (m, 1H), 4.90 (d, J=1.8, 2H), 3.16-2.91 (m, 1H), 1.43 (m, 9H).

[0194] Step D. 2-(Z-Amino)benzoyl-Asp-DCB-methylketone. A solution of 2-(Z-amino)benzyl-Asp(OBu-t)-DCB-methylketone (35 mg) and TFA (1 mL) in methylene chloride (3 mL) was stirred at room temperature for 2 h. The mixture was diluted with EtOAc (70 mL), washed with saturated NaHPO₄, to pH~5, and further washed with water, and brine, dried over Na₂SO₄, and concentrated in vacuo to yield the title compound as a white solid (10 mg, 0.016 mmol, 33%). 1H NMR (CDCl₃): 10.94 (s, 1H), 8.49 (d, J=8.4, 1H), 7.87 (dd, J=8.1, 1.5, 1.1H), 7.53 (m, 1H), 7.45-7.33 (m, 8H), 7.07 (m, 1H), 5.22 (s, 2H), 5.10-5.07 (m, 1H), 4.90 (m, 2H), 3.11 (dd, J=8.4, 19.0, 1H), 2.95 (dd, J=1.8, 19.0, 1H).

EXAMPLE 19

Methoxycarbonyl-Val-(2-aminobenzoyl)-Asp-fmk

[0195] Step A. tert-Butyl 5-fluoro-3-(2-aminobenzoyl)amide-4-hydroxypentanoate.HCl. A mixture of tert-butyl 5-fluoro-3-(2-aminobenzoyl)amide-4-hydroxypentanoate (80 mg, 0.174 mmol), Pd/C (23 mg) and 6N HCl (0.087 mL) in ethanol (5 mL) was stirred under hydrogen atmosphere at room temperature for 2 h. The mixture was filtered and the solvent was evaporated to yield the title product. It was used in next step without further purification.

[0196] Step B. tert-Butyl 5-fluoro-3-(methoxycarbonyl)Val-(2-aminobenzoyl)amide-4-hydroxypentanoate. A solution of methoxycarbonyl-Val-OH (31 mg, 0.17 mmol) in THF (5 mL) was added N-methylmorpholine (38 µL, 0.34 mmol) at -45°C, followed by isobutyl chloroformate (45 µL, 0.34 mmol). The mixture was stirred at -45°C for 30 min and a solution of tert-butyl 5-fluoro-3-(2-aminobenzoyl)
lamido)-4-hydroxypentanoate.HCl in THF (5 mL) was added, followed by more N-methylmorpholine (50 μL, 0.45 mmol). The resulting mixture was stirred overnight and the cooling bath was allowed to slowly warm to room temperature. After dilution with ethyl acetate (50 mL), the mixture was washed with water and brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography (3:2 hexane:ethyl acetate) to yield the title compound as a white hydroscopic solid (20 mg, 0.014 mmol, 24%). ¹H NMR (CDCl₃): δ 11.36-11.24 (m, 1H), 8.54 (d, J=8.7, 1H), 7.55-7.05 (m, 4H), 5.40 (m, 1H), 4.89-3.85 (m, 6H), 3.71 (d, J=1.8, 3H), 2.84-2.61 (m, 2H), 2.29 (m, 1H), 1.46-1.44 (m, 9H), 1.05-0.98 (m, 6H).

[0197] Step C. D. Methoxy carbonyl-Val-(2-aminobenzoyl)-Asp-fmk. The title compound was synthesized with a similar procedure as described in Step C and D of Example 1. ¹H NMR (DMSO-d₆): δ 12.52 (s, 1H), 11.27 (d, J=6.0, 1H), 9.18 (m, 1H), 7.88-7.54 (m, 4H), 7.20 (t, J=7.5, 1H).

What is claimed is:

1. A compound having the Formulae I or II or III:

 ![Formula I](image)

 ![Formula II](image)

 ![Formula III](image)

 - [0200] Having now fully described this invention, it will be understood by those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any embodiment thereof. All patents, patent applications and publications cited herein are fully incorporated by reference herein in their entirety.

5.39-4.44 (m, 3H), 3.83 (m, 1H), 3.57 (d, J=2.4, 3H), 2.96-2.65 (m, 2H), 2.18 (m, 1H), 0.92 (t, J=6.3, 6H).

EXAMPLE 20

Enzyme Activity

[0198] The activity of 2-(Z-amino)benzoyl-Asp-fmk as an inhibitor of caspase-3 was measured in a fluorometric enzyme assay. Enzyme activity was measured using synthetic peptide substrates attached to a fluorogenic leaving group. Cleavage of the synthetic substrate by the enzyme results in a fluorescent signal which is read in a spectrofluorometer or in a fluorometric microtiter plate reader.

[0199] 12 concentrations of the testing compound ranged from 30 pM to 10 μM were tested in the enzyme assay. The enzyme reaction was conducted in the presence of 2 ng rCaspase 3 (purchased from BioMend, a BioMend (Biominity company, San Diego, Calif.), various concentrations of testing compound, 10 μM caspase 3 substrate Ac-DEVD-AMC (purchased from Quality Controlled Biochemicals, Inc. Hopkinton, Mass.) and caspase buffer (20 mM PIPES, 100 mM NaCl, 10 mM DTT, 1 mM EDTA, 0.1% CHAPS and 10% sucrose, pH 7.2) in a total volume of 100 μL. The enzyme reaction was carried out in a 96-well plate and incubated at 37°C for 30 minutes. The plate was then read with a fluoroscope plate reader (EG&G WALLAC 1420-002) using excitation filter at 355 nm/emission filter at 460 nm. The data was analyzed using GraphPrism software to give an IC₅₀ value of 0.2 μM.
or a pharmaceutically acceptable salt or prodrug thereof, wherein:

R₃ is an optionally substituted alkyl or hydrogen;
R₄ is an N-protecting group;
R₅ is hydrogen or optionally substituted alkyl;
Q is an optionally substituted saturated or partially saturated carboxylic or heterocycle;
X is a peptide of 1-4 amino acids or a bond;
Y is a peptide of 1-4 amino acids or a bond;
A is CR₆ or nitrogen;
B is CR₇ or nitrogen;
C is CR₈ or nitrogen;
D is CR₉ or nitrogen;

provided that not more than two of A, B, C or D is nitrogen; and R₃-R₅ independently are hydrogen, halo, C₈-C₁₀ haloalkyl, C₅-C₉ cycloalkyl, C₃-C₈ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₆-C₁₀ aryl(C₁₋C₈)alkyl, C₆-C₁₀ aryl(C₂₋C₅)alkenyl, C₆-C₁₀ aryl(C₂₋C₅)alkynyl, C₁-C₅ hydroxyalkyl, nitro, amino, cyano, C₆-C₁₀ acylamino, hydroxy, C₁-C₅ acyloxy, C₁-C₅ alkoxyl, alkylthio, or carboxy; or

one of R₃ and R₄, or R₅ and R₆, or R₇ and R₈, or R₉ and R₁₀ are taken together with the carbon atoms to which they are attached to form a carboxylic or heterocycle;

E is C₁₋C₄ nitrogen, oxygen or sulfur;
F is C₅₋C₁₀ nitrogen, oxygen or sulfur;
G is C₁₋C₄ nitrogen, oxygen or sulfur;

provided that only one of E, F, G is nitrogen, oxygen or sulfur and R₁₄-R₁₅ are independently hydrogen, halo, C₂-C₅ haloalkyl, C₅-C₁₀ aryl, C₅-C₉ cycloalkyl, C₁-C₄ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₆-C₁₀ aryl(C₁₋C₈)alkyl, C₆-C₁₀ aryl(C₂₋C₅)alkenyl, C₆-C₁₀ aryl(C₂₋C₅)alkynyl, C₁-C₅ hydroxyalkyl, nitro, amino, cyano, C₆-C₁₀ acylamino, hydroxy, C₁-C₅ acyloxy, alkylthio, or carboxy; or

one of R₁₄ and R₁₅, or R₁₅ and R₁₆ are taken together with the carbon atoms to which they are attached to form a carboxylic or heterocycle.

2. A compound according to claim 1, wherein R₃ is t-butylxoycarbonyl, acetyl or benzoyloxycarbonyl.

3. A compound according to claim 1, wherein R₁ is H, Me, Et or acetoxymethyl.

4. A compound according to claim 1, wherein R₂ is hydrogen, fluoromethyl, acetylomethyl, arylocyloxymethyl or aminomethyl.

5. A compound according to claim 1, wherein X is a bond.

6. A compound according to claim 1, wherein A, B, C and D are CH.

7. A compound according to claim 1, wherein A is nitrogen, and B, C and D are CH.

8. A compound according to claim 1, wherein G is sulfur, and E and F are CH.

9. A compound according to claim 1, wherein Q is cyclohexyl or cyclopentyl.

10. A compound according to claim 1, wherein said compound has the Formula IV:

or a pharmaceutically acceptable salt or prodrug thereof, wherein:

R₃ is hydrogen or optionally substituted alkyl, wherein the substituent is halo, hydroxy, alkoxy, aryloxy, alkylthio, amino, acyloxy, or arylacyloxy;
R₄-R₅ are independently are hydrogen, halo, C₅-C₁₀ aryl, C₅-C₉ cycloalkyl, C₁-C₄ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₆-C₁₀ aryl(C₁₋C₈)alkyl, C₆-C₁₀ aryl(C₂₋C₅)alkenyl, C₆-C₁₀ aryl(C₂₋C₅)alkynyl, C₁-C₅ hydroxyalkyl, nitro, amino, cyano, C₆-C₁₀ acylamino, hydroxy, C₁-C₅ acyloxy, C₁-C₅ alkoxyl, alkylthio, or carboxy; or

one of R₈ and R₉, or R₁₀ and R₁₁, or R₁₁ and R₁₂ are taken together with the carbon atoms to which they are attached to form a carboxylic or heterocycle selected from the group consisting of —OCH₂O—, —OCE₂O—, —(CH₂)₃—, —(CH₂)₄—, —OCH₂CH₂O—, —CH₂CH₂N(R₁₂)CH₂—, —CH₂N(R₁₂)CH₂CH₂—, and —CH=CH—; wherein R₁₃ is hydrogen, alkyl or cycloalkyl.

R₁₀ is hydrogen, C₁-C₅ alkoxy, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₆-C₁₀ aryl(C₁₋C₈)alkyl, benzoyloxy, substituted benzoyloxy, or NR₁₁R₁₂, wherein R₁₁ and R₁₂ are independently hydrogen, C₁-C₅ alkyl, C₁-C₅ haloalkyl, C₆-C₁₀ aryl, C₁-C₅ cycloalkyl, C₆-C₁₀ aryl(C₁₋C₈)alkyl, or R₁₁ and R₁₂ are combined to form a heterocyclic ring system selected from the group consisting of pyrrolidine, piperidine, pipaziner, and morpholine.

11. A compound according to claim 10, wherein R₂ is hydrogen, fluoromethyl, acetylomethyl, arylocyloxymethyl or aminomethyl.

12. A compound according to claim 10, wherein R₁₀ is benzoyloxy.

13. A compound according to claim 10, wherein R₃ is H, Me or acetoxymethyl.
14. A compound according to claim 10, wherein X is a peptide of 1-2 amino acids or a bond.
15. A compound according to claim 1, wherein said compound is selected from the group consisting of:
 2-(Z-amino)benzoyl-Asp-fmk,
 2-(Z-amino)-3-methylbenzoyl-Asp-fmk,
 2-(Z-amino)-3,5-dimethylbenzoyl-Asp-fmk,
 2-(Z-amino)-4-chlorobenzoyl-Asp-fmk,
 2-(Z-amino)-5-chlorobenzoyl-Asp-fmk,
 2-(Z-amino)-5-fluorobenzoyl-Asp-fmk,
 2-(Z-amino)-6-fluorobenzoyl-Asp-fmk,
 cis-2-(Z-amino)-cyclohexanecarboxyl-Asp-fmk,
 2-(Z-amino)-5-methylbenzoyl-Asp-fmk,
 2-(Z-amino)-6-methylbenzoyl-Asp-fmk,
 2-(Z-amino)-6-chlorobenzoyl-Asp-fmk,
 2-(Z-amino)-3-methoxybenzoyl-Asp-fmk,
 3-(Z-amino)thiophene-2-carboxyl-Asp-fmk,
 3-(methoxyacarbonylamino)thiophene-2-carboxyl-Asp-fmk,
 cis-2-(Z-amino)cyclopentanecarboxyl-Asp-fmk,
 trans-2-(Z-amino)cyclopentanecarboxyl-Asp-fmk,
 2-(Z-amino)benzoyl-Asp-DCC-methylcetone,
 methoxyacarbonyl-Val-(Z-amino)benzoyl)-Asp-fmk,
 Z-Glu-(2-aminobenzoyl)-Asp-fmk, and
 Z-Val-(2-aminobenzoyl)-Asp-fmk.
16. A pharmaceutical composition, comprising a compound of claim 1, and a pharmaceutically acceptable carrier.
17. A method of inhibiting cell death of a cell or tissue, comprising contacting said cell or tissue with an effective amount of a compound of claim 1.
18. A method of treating or ameliorating cell death in the central or peripheral nervous system, retinal neurons, cardiac muscle or immune system cells of an animal, comprising administering to the animal in need of such treatment or ameliorating an effective amount of a compound of claim 1.
19. The method of claim 18, wherein said cell death is in the central or peripheral nervous system, and is due to one of:
 (a) a condition of ischemia and excitotoxicity selected from the group consisting of focal ischemia due to stroke and global ischemia due to cardiac arrest;
 (b) traumatic injury;
 (c) viral infection;
 (d) radiation-induced nerve cell death;
 (e) a neurodegenerative disorder selected from the group consisting of Alzheimer’s disease, Parkinson’s Disease, a prion disease, multiple sclerosis, amyotrophic lateral sclerosis, and spinobulbar atrophy;
 (f) spinal cord injury; or
 (g) acute bacterial meningitis.
20. The method of claim 18, wherein said cell death is in the central or peripheral nervous system, and is due to expansion of trinucleotide repeats of specific genes.
21. The method of claim 18, wherein said cell death is due to Huntington’s Disease.
22. The method of claim 18, wherein said cell death is in cardiac muscle tissue, and is due to myocardial infarction, congestive heart failure, cardiomyopathy or viral infection of the heart.
23. The method of claim 18, wherein said cell death is in retinal neurons and is due to increased intraocular pressure, age-related macular degeneration or retinitis pigmentosa.
24. The method of claim 18, wherein said cell death is in the immune system, and is due to an immune deficiency disorder selected from the group consisting of acquired immune deficiency syndrome, severe combined immune deficiency syndrome and radiation-induced immune suppression.
25. The method of claim 18, wherein said cell death is due to an autoimmune disorder selected from the group consisting of lupus erythematosus, rheumatoid arthritis and type 1 diabetes.
26. The method of claim 18, wherein said cell death is due to type 1 diabetes.
27. A method of treating or preventing polycystic kidney disease, renal amyloidosis, acute renal failure, cyclosporine A induced tubular epithelial cell death, hypoxia-induced necrosis of renal proximal tubules, HIV-induced nephropathy or anemia/erythropoiesis in an animal, comprising administering to the animal in need of such treatment an effective amount of a compound of claim 1.
28. A method of protecting a mammalian organ or tissue from cell death due to deprivation of normal blood supply, comprising contacting said organ or tissue with an effective amount of a compound of claim 1.
29. The method of claim 28, wherein said organ or tissue is present in a storage medium prior to transplant into a mammal.
30. The method of claim 28, wherein said contacting comprises infusion of said compound into the organ or tissue, or bathing of said organ or tissue in a storage medium which comprises said compound.
31. A method of reducing or preventing cell death in a donor organ or tissue after it has been transplanted into a host due to the effects of reperfusion injury or due to the effects of host immune cells, comprising administering to said host in need thereof an effective amount of a compound of claim 1.
32. A method of reducing or preventing the death of mammalian sperm or eggs used in in vitro fertilization procedures, comprising contacting said sperm or egg with an effective amount of a compound of claim 1.
33. A method of extending the lifespan of a mammalian or yeast cell line, comprising contacting said cell line with a compound of claim 1.
34. The method of claim 33, wherein said contacting comprises including said compound in a cell growth medium.
35. A method of treating or ameliorating hair loss or premature graying of the hair in a mammal, comprising contacting the hair or hair follicles of the mammal in need thereof with a compound of claim 1.
36. The method of claim 35, wherein hair loss is treated, and said hair loss is due to male-pattern baldness, radiation, chemotherapy or emotional stress.

37. A method of treating or ameliorating skin damage of a mammal due to exposure to high levels of radiation, heat or chemicals, comprising applying to the skin of the mammal in need thereof a compound of claim 1.

38. The method of claim 37, wherein said compound is applied as part of an ointment.

39. The method of claim 37, wherein skin damage is due to acute over-exposure to the sun, and wherein said treating reduces blistering and peeling of the skin.

40. A method of treating or ameliorating sepsis or multi-organ failure in an animal, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

41. A method of treating or ameliorating hepatitis in an animal, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

42. A method of treating or ameliorating hereditary tyrosinemia type 1 in an animal, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

43. A method of treating or ameliorating chronic alcohol ingestion induced buccal mucosa cell death in an animal, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

44. A method of treating or ameliorating cell death in plants or flowers, comprising administering to the plants or flowers in need thereof an effective amount of a compound of claim 1.

45. A method of treating or ameliorating radiation or ultraviolet-irradiation induced cell death in an animal, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

46. A method of treating or ameliorating apoptotic death of bone marrow cells in myelodysplastic syndromes (MDS), comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

47. A method of treating or ameliorating apoptotic cell death in acute pancreatitis, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

48. A method of treating or preventing the inflammatory response in psoriasis or inflammatory bowel disease, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

49. A method of treating or ameliorating organ apoptosis after burn injury, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

50. A method of treating or ameliorating small bowel tissue injury after intestinal ischemia-reperfusion, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

51. A method of treating, ameliorating or preventing oral mucositis, gastrointestinal mucositis, bladder mucositis, proctitis, bone marrow cell death, skin cell death or hair loss resulting from chemotherapy or radiation therapy of cancer in an animal, comprising administering to the animal in need thereof an effective amount of a compound of claim 1.

52. The method of claim 51, wherein said compound is administered topically or orally.

53. The method of claim 52, wherein said compound is formulated as part of a mouthwash for the treatment, amelioration or prevention of oral mucositis.

54. The method of claim 52, wherein said compound is formulated as part of a slow release buccal lozenge.

55. The method of claim 52, wherein said compound is formulated as part of a suppository.

56. The method of claim 52, wherein said compound is formulated as part of a gel.

57. The method of claim 52, wherein said compound is administered through a bladder catheter for the treatment, amelioration or prevention of bladder mucositis.

58. The method of claim 52, wherein said compound is administered as part of an enema for the treatment, amelioration or prevention of proctitis.

59. The method of claim 52, wherein said compound is formulated as an oral formulation which is capable of coating the gastrointestinal surfaces for the treatment, amelioration or prevention of gastrointestinal mucositis.

60. The method of claim 59, wherein said gastrointestinal mucositis is esophageal mucositis, gastric mucositis, or intestinal mucositis.

61. The method of claim 51, wherein said compound is administered by i.v. injection for the treatment, amelioration or prevention of bone marrow cell death.

62. The method of claim 51, wherein said compound is administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier.

63. The method of claim 51, wherein said compound is administered after chemotherapy or radiation therapy of cancer in said animal.

64. The method of claim 51, wherein said compound is administered during chemotherapy or radiation therapy of cancer in said animal.

65. The method of claim 51, wherein said compound is administered prior to chemotherapy or radiation therapy of cancer in said animal.