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SYSTEM FOR EXTRACTING RESPIRATORY RATES FROM A PULSE OXIMETER

BACKGROUND
Respiratory rate is one of the important vital signs,
and much effort has been centered on extracting it from pulse
oximeter and electrocardiocgram recordings. The research has been
driven largely by the desire to reduce the number of sensors that

need to be connected to a patient to obtain wvital signs.

Recent promising approaches based on time-frequency spectral
technigues have been used to extract respiratory rates directly
from a pulse oximeter. With recognition that respiration
modulates heart rate and that they are both time-varying, time-
frequency analyses were used to extract the former signal.
Specifically, the continuous wavelet transform (CWT) and variable
frequency complex demodulation (VFCDM) methods were utilized to
extract either freguency modulation or amplitude modulaticn seen
in the frequency range associated to the heart rate. Both CWT and
VFCDM methods have been shown to provide accurate respiratory
rate extraction in the low- and moderate-breathing rates (12-36
breaths/min). However, these time-freguency methods' capability

became less reliablie with increased respiratory rates.

In a recent work, it has been shown that the high resolution
time-freguency analysis of the pulse oximeter signal followed by
taking the power spectrum of the extracted freguency modulation
signal around the heart rate frequency resulted in the best
accuracy among all compared methods, including the time-invariant
autoregressive (AR) method. While the AR method was not as
accurate as the time-frequency methods, it has many attractive
features because it is more computationally efficient and works

reasonably well even with short data records. It has been
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conjectured that one of the key reasons the AR method did not
perform as well as other methods was due to an ilnefficient model
order search criterion, namely, its reliance on the Akaike
information criterion (AIC). Further, an arbitrary decision
regarding the proper choice of the poles and the phase related to
the estimated AR coefficients had to be made in order to extract
the correct respiratory rate, which can also compromise its

accuracy.

There is a need for a more accurate AR method for extracting

respiratory rates directly from a pulse oximeter.

Even with a more accurate AR method for extracting respiratory
rates directly from a pulse oximeter, as the Signal-to-Noise
Ratio (SNR) decreases, the accuracy c¢f the method will be
affected. There is a need for an AR based method for extracting
respiratory rates directly from a pulse oximeter that produce

accurate results at low SNR.

BRIEF SUMMARY
Embcdiments of more accurate AR method for extracting respiratory
rates directly from & pulse oximeter and of accurate methoeds of
extracting respiratory rates directly from a pulse oximeter under
low signal-to-noise ratio (SNR) conditions are disclosed herein
below.
In one embodiment, an autoregressive kAR) model method, using a
projection onto linearly independent non-orthogonal bases, by
means, in one instance, of the optimal parameter search {0OPS)
techﬁique, provides accurate respiratory rate extraction

especially for high-breathing rates ({(36-48 breaths/min). The AR
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method includes obtaining parameters for an autoregressive (AR)
representation using a proijection onto linearly independent non-
orthogonal bases and factorizing the estimated AR parameters into
miltiple pole terms. The pole with the highest magnitude is

chosen to represent a respiratory rate.

In another embodiment, a sequential Monte Carlo method, referred
to as particle filtering (PF), where a distribution of
respiratory rate is the distribution approximated by Monte Carlo
sampling, measurements are magnitudes and phase of poles for a
frequency transfer function of the AR representation, the
magnitudes and phase of the poles obtained by using a projection
onto linearly independent non-orthogonal bases as disclosed
above. The PF method has gained much recognition in recent years
and has mainly been used for tracking moving targets. Recently,
much effort has centered on developing efficient PF algorithms

for real-time implementatiocn.

These feachings formulate a general framework for respiratory
extraction based on the PF algorithm combined with OPS. In one
instance, five different likelihood functicns are used for
estimating the probability density function. These five different
likelihood functions were examined to determine which among the
five provided the best results for varying levels of SNR and
breathing rates. The efficacy of the PF-0OPS embodiment this
examined by comparing it to the OPS-based AR medel

without PF, using pulse oximeter recordings from 33 healthy human
subjects breathing at 12, 18, 24, 30, 36, 42, 48, 60, 72, and %0

breaths/ min.

Frmbodiments of systems and computer program product that

implement the method of these teachings are also disclesed.
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For a better understanding of the present teachings, together
with other and further needs thereof, reference is made to the
accompanying drawings and detailed description and its scope will

be pointed out in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic flowchart representation of one embodiment

of the method of these teachings;

FIG. 2 is a schematic block diagram representation of one

embodiment of the system of these teachings;

FIG. 3 is a schematic graphical representation of a test signal

using one embodiment of the method of these teachings:

FIG. 4 is representation of PF algorithm for respiratory rate

extraction;
FIGS. 5A-5B show ilustrations of resampling processes;

FIGS. 6A-B show results of one-hundred simulations were performed

in order to estimate the respiratory rate;

FIGS. 7A-C show Mean, standard deviation, and computation time of
the average of 100 realizations according to the number of

particles used from 1 to 200;:

FIGS. 8A-C show RMSEs in the respiratory range of LF (0.2-0.3
Hz), HF {(0.4-0.6), and UHF {0.7-0.8) for the supine position;
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FIGS. SA-C are RMSEs in the respiratory range of LF (0.2-0.3
Hz), HF (0.4-0.6), and UHF (0.7-0.8) for the upright position;

and

FIGS. 10A-B are RMSEs in the respiratory range of EHF (1.0-1.5

Hz) for the upright position.

DETAILED DESCRIPTION
The following detailed description is of the best currently
contemplated modes of carrying cut these teachings. The
description is not to be taken in a limiting sense, but is made
merely for the purpose of illustrating the general principles of
these teachings, since the scope of these teachings is best
defined by the appended claims. Although the teachings have been
described with respect to various embodiments, it should be
realized these teachings are also capable of a wide variety of
further and other embodiments within the spirit and scope of the

appended claims.

n

As used herein, the singular forms "a,""an," and "the" include
the plural reference unless the context clearly dictates

otherwise.

Except where otherwise indicated, all numbers expressing
guantities of ingredients, reaction conditions, and so forth
used in the specification and claims are to be understood as

being modified in all instances by the term "about.”

To assist in the understanding of the present teachings the

following definitions are presented.
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A "likelihood function,™ as used herein, is the probability of

obtaining observed outcomes for given parameter values.

"Recursive Bayesian estimation," as used herein, is a approach,
using probabilities, for estimating a probability density

function recursively over time.

A "Monte Carlo"™ method, as used herein, is a method that uses

repeated random sampling to compute results. Monte Carlo sampling
can be described as approximating a probability distribution by a
discrete distribution where the distribution is known at a finite

number of samples of the independent variable.

"Particles," as used herein, identifies the finite number of
samples of the independent variable at which the discrete

distribution is known.

"Weights," as used herein in regards to "particles," refers to
the value of the discrete distribution at each of the

"particles."”

"Seguential Monte Carlo”™ methods, as used herein, are methods
that estimate the probability distribution(s) by propagating
"particles" according to a system model (s). "Sequential Mocnte
Carlio" method and also referred to as bootstrap filtering, the
condensation algorithm, particle filtering, interacting particle
approximations and survival of the fittest methods. Hereinafter,
"Sequential Monte Carlo" methods are referred to as Monte Carlo
Particle Filtering methods or simply as Monte Carlo Particle
Filtering. It should be noted that the use of the term Monte
Carle Particle Filtering is not meant to be limiting and that the

variants and differently named "Sequential Monte Carlo” methods

6
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are all within the scope of these teachings. "Sequential Monte
Carlo" method / Monte Carloc Particle Filtering methods are
described in M. S. Amlampalam, S. Maskell, N. Gordon, and T.
Clapp, "A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking," IEEE Trans. Sigmal Process., vol.
50, no. 2, pp. 174-188, Feb. 2002, U.S. Patent Publication No.
20100274102, corresponding to the US Patent Application Serial
Number 12/640,278, filed on December 17, 2002, U.S. Patent No.
7,391,906 to Blake, issued June 24, 2008, and U.S. patent No.
6,882,959 to Rui et al., issued on April 19, 2005, all of which
are Incorporated by reference herein in their entirety for all

purposes.

In one embodiment, shown in Figure 1, the method of these
teachings includes obtaining parameters for an autoregressive
(AR) representation of a photoplethysmography (PPG) signal
obtained from the patient, the parameters being obtained using
projection onto linearly independent non-orthogonal bases (15,
Fig. 1), obtaining poles for a frequency transfer function of
the AR representation (25, Fig. 1) and selecting a pole with a
highest magnitude in a frequency region of interest, the
respiratory rate being determined by the pole with a highest

magnitude (35, Fig. 1).

In one instance, in the above disclosed embodiment of the method
of these teachings, the freguency region of interest is between
about 0.15 Hz and about 0.9 Hz. In another instance, the
frequency region of interest is between about (0.15 Hz and about

1.5 Hz.

The above disclosed embodiment of the method of these teachings

can also include filtering the PPG signal before obtaining

7
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parameters for the AR representation and downsampling the

filtered PPG signal.

In another embodiment of the method of these teachings, the
method includes obtaining, from an autoregressive (AR)
representation of a photoplethysmography (PPG) signal obtained
from the patient, the respiratory rate of the patient using an
iterative Particle Filtering Monte Carlo method, where a
distribution of respiratory rate is the distribution approximated
by Monte Carlo sampling, measurements are magnitudes and phase of
poles for a frequency transfer function of the AR representation,
rthe magnitudes and phase of the pcoles obtained are shown in

steps 15 and 25 of Figure 1.

In one instance, 1in the above described embodiment, the iterative
Particle Filtering Monte Carlo method includes:
selecting an initial group of particles, each particle from
said initial group being a different value for the
respiratory rate; each particle from said initial group being
assigned a weight equal to an inverse of a number of
particles said initial group;
obtaining a new group of particles by propagating the
initial group of particles;
obtaining measurements; measurements being magnitudes
and phase of poles for the frequency transfer function

of the AR representation obtained by:

obtaining parameters for the AR
representation using a projection onto
iinearly independent non-orthogonal bases;
obtaining the poles for a frequency transfer

function of the AR representation;
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obtaining a new weight for each particle from said new
group by using a predetermined likelihood function;
select a candidate respiratory rate of a patient equal
to a weighted sum of the particles in the new group of
particies; and

resampling the new group of particles, as shown in

Figure 4.

In different instances of the above described embodiment, the
likelihood function (also referred to as the likelihood) 1is the
strongest neighbor (SN} likelihood, the nearest neighbor (NN)
likelihood, the weighted nearest neighbor (WNN) likelihood, the
probability data association (PDA) likelihood, or the weighted
probability data asscociation (WPDA) likelihood.

In one instance of the above described embodiment that uses an
iterative Particle Filtering Monte Carlo methed, a fregquency

region of interest is between about 0.15 Hz and about 1.5 Hz.

In one embodiment of the system of these teachings, shown in
Figure 2, the system includes one or more processors 120 and one
or more computer usable media 130 that has computer readable code
embodied therein, the computer readable code causing the one or
more processors to execute at least a portion of the method of
these teachings. The system also receives the PPG signal obtained
from the patient 125. The one or more processcors 120, the one or
more computer usable media 130 and the data from the PPG signal

are operatively connected.

In one instance, in the embodiment cobtaining respiratory rate
from an AR model by means of projection onto linearly independent

non-orthogonal bases, the one or more computer usable media 130

9
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has computer readable code embodied therein that causes the one
or more processors 120 to obtain parameters for an
autoregressive ({AR) representation of a PPG signal obtained from
the patient, the parameters being obtained using projection onto
linearly independent non-orthogonal bases, obtain poles for a
frequency transfer function of the AR representation and select a
pole with a highest magnitude in a frequency region of interest,
a respiratory rate being determined by the pole with a highest

magnitude.

In another instance, in the embodiment cbtaining respiratory rate
using an iterative Particle Filtering Monte Carlo method, the one
or more computer usable media 130 has computer readable code
embodied therein that causes the one or more processors 120 to
obtain, from an autoregressive (AR} representation of a
photoplethysmography (PPG) signal obtained from the patient, the
respiratory rate of the patient using an iterative Particle
Filtering Monte Carlo method, where a distribution of respiratory
rate is the distribution approximated by Monte Carlo sampling,
measurements are magnitudes and phase of poles for a frequency
transfer function of the AR representation, the magnitudes and
phase of the poles cbtained by obtaining parameters for the AR
representation using a projection onto linearly independent non-
orthogonal bases and obtaining the poles for a frequency transfer

function of the AR representation.

Details of and results from several embodiments of the method of
these teachings are disclosed hereinbelow. It should be noted

that these detail embodiment are not limiting of these teachings.

A. Respiratory Rate Extraction With AR Model

Respiratory rates are formulated as an autoregressive (AR) model

10
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Za;,xn— )+ e(n) (1)

where K is the model order, a, are the unknown coefficients, and
e{n) is the prediction error. A projection onto linearly
independent non-orthogonal bases, by means, in one instance, of
the OPS, is used to obtain accurate parameter estimation among
the overdetermined model order K. The OPS can be designed to
automatically select the optimal model order for any signal,
thus, can be tuned to each signal without any human
subjectivity. With any initial model order of K, the significant
model order Kgpe is determined by the ratio of two neighboring
projection distances. Once the unknown AR parameters ay are
estimated, they are formulated as the transfer function H({z) as

follows:

H(z) = : BR
Z pr—
SRt agz (z = 21)(z — 22) ... (2 — 2K, )

(2)

where the AR coefficients are factorized into Kgs pole terms,

where Keps € K. The real and complex conjugate poles define the
power spectral peaks with the larger magnitude poles cor-
responding tce the greater magnitudes. The resonant frequency of
each spectral peak is given by the phase angle of the
corresponding pole; the phase angle © of a pole at frequency f is
defined as 27n £ At, where At is the sampling interval. Among the
poles, the region of interest (ROI) for respiratory rates is set
between fi,,, and fhign (e.g., but not Iimited to, about 0.15 and
about 1.5 Hz in one instance or about 0.15 Hz and about 0.9 Hz in
ancther instance). The number of the pole angles within the ROI
is denoted by Krei. If Koy 2 2, the pole with the highest

magnitude is chosen to be representative cf the respiratory rate.

11
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The OPS method overcomes the main limitations of the the
previously used methods, such as AIC and MDL. In addition, the
OPS can be designed to automatically select the optimal model
order for any signal, thus, can be tuned to each signal without

any human subjectivity.

Details regarding the OPS are disclosed in Lu, S., K. H. Ju and
K. H. Chon. A new algorithm for linear and nonlinear ARMA model
parameter estimation using affine geometry. IEEE Trans Biomed Eng
48(10):1116-24 2001, incorporated by reference herein is entirety
and for all purposes, thus the OPS is only briefly summarized
below. With an initizal model order selection c¢f pini, the OPS
algorithm is designed to select only the linearly-independent
vectors from the pool of candidate vectors. For Eq. (1) with the
selected model order of pnu; the candidate wvectors are the
following: x(n-1), .., x(n-P;p;). These candidate vectors can be
arranged as the matrix shown in Eg. (3), where N is the total

number of data pecints.

x{(0) x(—1) o x{1—pi)
1(1) x(@) X(Z“‘Pn)
xn—1) xm—2) -~ x(n—pu) )
AN—1) x(N=2) ~ x(N—py)

The first step toward achieving linear independence among
candidate vectors 1is to select x(n-1} as the first candidate
vector. The next candidate vwvector x(n-2}, and the first
candidate wvector x(n-1), are then used to determine linear
independence by using x(n-1) to fit x(n-2) using the least
squares method and calculating the error between x(n-2Z} and the

estimated vector. Once it has been determined that x{n-2) is a

12



WO 2012/051295 PCT/US2011/055961

linear independent candidate vector, the vectors x(n-1) and x(n-
2) are used to estimate the candidacy of the linear independence
of x(n-3). This procedure is continued until all the linearly
independent vectors are selected to form a new candidate vector
pool. With the new candidate pool of R linearly independent
vectors, least-squares analysis is performed on the following
equation:

x(n) = 610 + e(n), (4)

where

87‘1’1 = [gﬁfgi’ ”"gR}Tf and @ = [‘”Verwle'".vwf?}'

To minimize the error in Eg. {(4), the cost function in Eqg. (5} 1is
used and parameter estimates can be according to Eg. (6)
Jy(8y) = [x(n) — 6,01, (5)
8., = (087 Ox(n). (6)

The projection distance is calculated as:

‘ 1y 72 ' .
Cm — gz-;’::i Qm Won [:.T?')?-J m=1, ..k (7}
With an initial model order of pin:, the significant model order
Dopt 1s determined by the ratico of two neighboring projection

distances described as:

. —_ TEX Em—1"Cm | -
Popt = 4rg m.;{i_,...,pz.m.}( 100 = Trh); (8)

L)
where ¢, is the m™ longest projection distance and 7 is a
threshold percentage. 1t has been shown in Zou, R., H. Wang
and K. H. Chon. A robust time-varying identification
algorithm using basis functions. Ann Biomed Eng 31(7):840-53

2003, which is Incorporated by reference herein in its

13
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entirety for all purposes, that a s value of 25 works well

in most cases.

In one instance, the AR model respiratory rate extraction
approach disclosed hereinabove includes pre-filtering of the PPG
waveforms in order to minimize the cardiac effects. In one
instance, the PPG waveforms are detrended, filtered and
downsampled to 2 Hz so that the angular resolution can be

increased between 0 and 1 H=z.

In previous studies, the OPS showed better performance than both
CWT and VFCDM-based time-frequency spectral technigues for high
respiratory rates (higher than 0.6 Hz) but not at lower breathing
rates (0.2-0.6 Hz). The main advantage of the OPS was found to be
that the computational speed was approximately five times faster
than VFCDM and 30 times faster than CWT. In addition, the OPS,
.because it is an AR-model-based method, can perform reliable
respiratory rate estimation using only half of the data required

by either the CWT or VFCDM methods.

The accuracy of the autoregressive (AR) model method disclesed
herein above should be aided by the OPS as it has been shown to
be more accurate than the well-known model order criteria such as
Akaike information criterion, minimum description length, and the
fast orthogonal search criterion. Hcowever, as the 5NR decreases,
the probability increases that incorrect poles are associated
with the highest magnitude, which ultimately affects the accuracy

cf the method.

14
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TABLE 1
FALSE DETECTION OF 0.6070 WITH -10 dB SNR: ANGLES AND MAGNITUDES
OF CANDIDATE POLES AT TIME 60 5 IN Fig. 1(b)

Angle 0.6070 | 0.6066 | 0.4022 | 0.3997 | 0.2403
Magnitude | 0.9887 | 0.1929 | 0.8003 | 0.9852 | 0.9433

The aim of the study was to improve the accuracy of an AR model
approach compared to the time-frequency methods for lower
breathing rates and to extend capability to extract respiratory
rates as high as 90 breaths/min. To illustrate the limitation of
the OPS-model-based respiratory rate extraction, a simple
simulation example is provided to show how and when the method
succumbs to noise perturbation. The test signal involves two
frequencies chosen so that they represent the frequency responses
of the heart rate and the normal respiratory rate, as éhown

shortly:

y(n) — Aj, cos (27’(_]0};(?1)% + (,?5h>

(1

+ ¢y | + N 9
7 sz) &)

-+ Ay cos (27rfb(n)

where f;, {(n) and f, {(n) are the heart rate and respiratory rate,
respectively. @h and @b are phases associated to the heart rate
and respiratory rates, respectively, and f; is the sampling rate.
For the simulation example, A, and A, were set to 10 and 1,
respectively. The f, (n) and fy (n) were set to 2.0 and 0.4 Hz,
respectively, and @h and @b were randomly generated between 0

and 20 with uniform distribution. In addition, the signal was
corrupted with two different levels of Gaussian white noise (GWN)
Ne so that the SNR are -5 and -1C dB. 60 000

samples were generated for both SNR with a sampling rate of 100

15
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Hz, which resulted in 10 min of data. The respiratory rate
estimation was performed on 60-s segment wavefofms of the test
signal, and the waveform segment was shifted by 10-s for the
entire 10-min duration. Thus, each 60-s segment waveform had a
50-s overlap, and 55 segments were obtained for the entire
signal. To increase the angular resolution of the low frequency
(LF) information and because only respiratory rates up to 1.5 Hz
are of interest, each windowed waveform was down sampled to 3 Hz.
Using the OPS technique, an AR model order of 20 was selected,
and the calculated AR parameters were formulated as the transfer
function of (2). Fig. 3 shows a Test signal corrupted with
additive Gaussian white noise (AGWN)for SNR (a) -5 dB and (b) -
10 dB. Fig. 3 shows the estimation result based on the SNR of -5
and -10 dB for each of the 55 segments. Note that there is a lag
in the results in Fig. 1 since the data analysis 1s based on 60 s
segments. It is shown that as the SNR decreases, the probability
that incorrect poles are associated with the highest magnitude
increases. More. specifically, the resultant pcle angles and
magnitudes at time 60 s for an SNR of -10 dB are given in Table
I. The pole angle of 0.3997 Hz, which is clecsest to the true rate
of 0.4 Hz, has the magnitude of 0.9852. On the other hand, the
pole angle of 0.6070 Hz has the magnitude of 0.92887, and
consequently, is chosen as the respiratory rate since it has the
largest magnitude among all chosen poles. Thus, with this choice,
there is an error of 0.2 Hz deviation from the true respiratory

rate.

B. Development of a Framework for respiratory Rates in the

Presence of Noise

A method for respiratory extraction based on PF combined with the

OPS technigue is presented below. A true PPG waveform from time n

16
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- Ngeg LO time n is denoted by Sn-nseginns (€.0., Ngeq represents a
waveform segment). Based on the waveform of Sinseginn, the
respiratory state at time n is denoted as R(n). By using the OPS
technique and the breathing rates' ROI, Ky, palrs of pole angles
and their magnitudes are obtained. The pairs of pcle angles and

magnitudes are represented by the measurement vector P(n).

P(n) - fops (Snfnseg:na Ql (n)) (10)

where fops (*) is a function of the OPS and the ROI, and Qi(n) is
a noise term, which is not necessarily Gaussian. The measurement
vector obtained by the OPS technique is represented by a 2Kici-
dimensional parameter vector with the first K. parameters
representing Ky,i-pole angles, and the last Ky parameters

representing K.,;-pole magnitudes.

T T i ] T

P(n) = [pff ps Dk ’p?\’l.oip?lpz o PE PR (11)

where p® and p" represent kth pole angle and magnitude, re-

spectively.

The respiratory state is considered as a Markov process, which

can be modeled by the state transition relation as

R(n) =T (R(TL - nsanl): QZ (n)) (12)

where T(*) is a known, not necessarily linear function of the
previous state at time sample n - ngyp and @y (n) is a noise term,

which is not necessarily Gaussian.

P= (1 : n) = [P{1l) ... P(nn — Ngan) P(n)] denctes the
concatenation of all measurements up to time n. The aim is to

recursively estimate the conditional probability density p(R(n)|
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P(l:n)), from which the respiratory rate can be obtained as the
mean of the density function. In practice, the posterior
probability density is not available. However, considering

the posterior probability density at time n -ns.. as available,
the posterior probability density at time n can be found through

the Chapman-Kolmogorov equation and Bayes' rule
p(R(n) [P(1:n — ngm) )

_ / p(B(n) |R(n — 1) )p(R( — neam ) |P(1L : 7t — ngas))

X dR(n — Ngam ) - (13)
P(R(m)|P(1 1) x p(P ()| R(n)p(RMIP(L : 1 = ncam))
(14)
where p(R(n) | P(l : n =nsax)) is the posterior probability
density, p(R(n) | R{n -nsam)) is the state transition density,
p{R(n) | P{1 : n)) is the prediction probability density, and
o(P{n) | R(n)) is the likelihood. '

In general, no closed-form scolution exists for (13) and (14)
except in the special case, where fgs(*) and T{(+¢) in (10) and

{(12) are linear functions, and the noises Q@ {(n) and Q; (n) are
Gaussian. In this case, the Kalman filter is the optimal solu-
tion. However, the pole angles obtained from the OPS method as
well as Burg's method were found to have a non-Gaussian
distribution. Hence, a PF approach is used, which is suitable for
non-Gaussian problems, and approximate (13) and (14) via Monte
Carlo simulations involving a set of particles. It has been shown
that as the number of particles becomes large, their particle
weights tend to approach the true distribution of the signal.
Details concerning thé generic PF algorithm are described in

Arulampalam et al. With the framework cutlined mentioned earlier,
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the algorithm for respiratory rate extraction using PF is

described in Fig. 4.

Particle Generaticn

The first step to particle generation is to represent a prior
probability density function p(R{n)|P{l1 : n -ngmm)) by a set of
particles. Given the particles corresponding to the posterior
probability density function of p(R(n nsam) | P (1 : n -nsam))

obtained at time n - nNgu, new particles are generated at time n

as (15)
R'(n) = F (R (n — ngam)) + Q2(n) (Y)
where R'(n) are the ith generated particles, i = {1, 2, ... , I}

" for the number of particles I, and Qz{(n) is a Gaussian noise with
N (0, cﬂﬁm_ In additicn, R{n) is considered as a stationary

process denoted as

F (R(n - nsam)) = R(’I’L — nsam)- (16)

R(n—nan) represents resampled particles obtained at

Note that
time n -Ngan, and the resampling process will be explained in the

proceeding section.
Weight Evaluation With Proposed Likelihood Functions

After the new particles corresponding to the prior probability
density function p(R(n) | P(l : n -nsam)) are generated, each
particle weight should be evaluated based on the measurement
vector P(n). The weighted particles represent the posterior
probakility density function of p{(R{n) | P{l1 : n} ). For the par-

ticle weight evaluation, several likelihood functions are
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considered. The likelihood functions should be chosen to reflect
the fact that the respiratory rate is chosen as the pole angle
with the highest pole magnitude. They should also reflect the
fact that the pole angle with the highest pole magnitude is
occasionally an incorrect respiratory rate especially with a low
SNR, as shown in our simulation example. In this study, five
different likelihood functions are considered: the strongest
neighbor (SN} likelihood, the nearest neighbor (NN) likelihood,
the weighted nearest neighbor {(WNN) likelihood, the probability
data association (PDA) likelihood, and the weighted probability
data association (WPDA) likelihocod.

SN Likelihood: The SN likelihood used herein is based on SN
filtering (see X. R. Li, "Tracking in clutter with stirongest
neighbor measurements-Part 1: Theoretical analysis," IEEE Trans.
Autom. Control, vol. 43, no. 11, pp. 1560-1578, Nov. 1998,
incorporated by reference herein in its entirety and for all
purposes). In SN filtering, the measurement with the highest
intensity among the validated measurements is used and the others
are discarded. Using the same concept, each particle weight is

evaluated by the pole angle with the highest pole magnitude as

(R () _P?ﬂaX)Q)

)
2C’rga,u

w'(n) = Lo (#hux | B () = exp | —
(17)
where Lgy (*) is the SN likelihood operator for a particle weight
evaluation, i = {1, 2, ... I}, and p“max 1S the pole angle with

the highest pole magnitude amcng the Kiy: pole angles.

NN and WNN Likelihood: The idea of the NN likelihood developed in
these teachings is based on NN filtering (see A. Jadbabaie, J.

Lin, and S. A. Morse, "Coordination of groups of mobile
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autonomous agents using nearest neighbor rules," IEEE Trans.
Autom. Control, wvol. 48, no. 6, pp. 988-1001, Jun. 2003,
incorporated by reference herein in its entirety and for all
purposes). In NN filtering, the measurement closest to the
predicted one is used, and the others are discarded. With the
same concept, each particle weight is evaluated by its own
nearest pole angle as |
2
(B () - 220y

w'(n) = Lyy (Phniiy |Ri (n)) = exp | — 202

gan

(18-1)
where Lyy {*) is the NN likelihood operator for a particle weight
evaluation, i = {1, 2, ... I}, and p®umy 15 the pole angle

closest to each particle of R'{(n).

The WNN likelihood extends the NN likelihood concept by weighting

each pole angle's magnitude as

-wi(n) —_ LWNI‘-I (pﬁn{z'} |;Rz (R))

2
’ 9 _ (p:z.n £ _.p:nnx)
(R() Py ) P ( T )

j—g eXp - 90_2 ~ R n
“Ygan Ko (P” i *Pmax)
S, exp | Dy Tl

(18-2)
where Lygy(*) 1is the WNN likelihood operator for a particle weight
evaluation, i = {1, 2,...1}, and p'w() is the pole magnitude

corresponding to the pole angle pinu).

PDA and WPDA Likelihocod: The idea of the PDA likelihood developed
in these teachings is based on PDA filtering (see C. Rasmussen
and G. D. Hager, "Probabilistic data association methods for

tracking complex visual objects,"” IEEE Trans. Pattern Anal. Mach.
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Intell., vol. 23, no. 6, pp. 560-576, Jun. 2001, incorporated by
reference herein in its entirety and for all purposes). The PDA
uses all of the data with different weights. For example, each
particle weight is evaluated by all pole angles instead of using
only one pole angle, defined as

; 2

whE (n) = Lppa (P(n) |Ré (n)) = exp (_Et_(;’lz___ﬂ)_)
Tzau
(19-D

where Lepp (*) 1s the PDA likelihood operator for particle weight
evaluation, 1 = {1, 2.... I}, k = {1, 2.... Kpei}. Based on this
configuration I x K, particle weights are evaluated. Note that
each particle has multiple weights from which multiple posterior
probability density functions can be obtained. Accordingly, we

denote these particles by R¥'* (n), where i = {1, 2, ... I} and k
= {1, 2, ... Kroi }.

Similar to WNN likelihood, the WPDA likelihood function extends
the PDA likelihood concept by weilghting each pole angle's

magnitude as the following:

w>* (n) = Lwppa (P(n) |R (n)} = exp (_ (RZ(;?F; rt) )

gau

exp (__(pzrz - pgxa,x)ﬁ/ggfu)

X < (19-2)

Aol 2
m=1 XP (_ ('p]?:l - p%; ax) //20’3{;}

where I@mm {*) is the WPDA likelihood operator for a particle

weight evaluation, i = {1, 2, ...I} and k = {1, 2, ... Kies!}.

Weight Normalization and Resampling: For respiratory rate

calculation, the particle weights are normalized as
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W n) = ZIL(T?—(—) for SN, NN, and WNN - (20-1)
i=1 wrin
and
—ik %U“k(n)
o4 (n) = = — for PDA and WPDA.
Dokt (§:f=130%k(”))
. (20-2)

After particle weight normalization, the mean of the particles’
posterior probability density is calculated for the respiratory
rate extraction. Once the mean of the particles' posterior proba-
bility density has been calculated, the particles are resampled
to generate new particles at the next time instant, n + nsam. The
basic idea of resampling is to eliminate particles that have
small weights and to concentrate on particles with large weights.
In addition, the resampling process reduces the degeneracy prob-
lem, where after a few iterations, all but one particle will have
negligible weight. As noted in the previcus secticn, the

resampled particles are denoted by'??eo. Once the particles have
been normalized, the resampled particles are generated using the
scheme depicted in Fig. 5. FIGS. 5A-5B are Ilustrations of
resampling processes. The sizes of the circles in Figs. 5 (a),
5(b) represent the value of each particle weight. In Fig. 5(a)l,
the I to I resampling process i1s illustrated for the SN-, NN-,
and WNN likelihoods In Fig. 5(b), the I x Ky to I resampling

process is illustrated for the PDA- and WPDA likelihoods.
E. PPG Data Collection on Human Subjects

1) Simulation Procedures: To evaluate the proposed PF algorithms
for respiratory rate estimation, simulations using the test
signal were performed with additive GWN ({(AGWN) so that the SNR

was -20 dB. The respiratory rate estimation performance was
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compared among six methods: SN-PF, NN-PF, WNN-PF, PDA-PF, WPDA-
PF, and OPS only. 100 particles were used for all realizations
including comparison to both experimental and simulated data. For
an initial set of particles, the pole angle with the highest
magnitude in the beginning of the time sample was chosen. For

quantitative comparison of all methods, a root mean square error

(RMSE) E(n) between A(n) and R(n) was computed, where fi{n) and R(n)
represent an estimated and a true respiratory rate of the wave-

form segment at time n, respectively. For every realization, 55

R(n) were estimated (i.e., n = {60, 70, ... , 600}). In addition,
a deviation percentage was used. The deviation percentage denotes
how many of the estimated respiratory rates deviate more than

Thaey from a true rate. The deviation was counted as

R(n) — R(n)| > Thdey. (1)

In the simulation result, Thge, was set to 0.2, 0.3, and 0.4 Hz.
In addition, the initial model order for the OPS was sebt to 30.
The breathing rate of interest was set to fiow = 0.15 Hz and fnign
= 0.9 Hz. An important issue in PF design is the choice ¢f the
variance of the particle sampling density (particle
digtribution}. Thus, the values of o%a” cfgw and oﬂ,play
important roles in determining estimation accuracy. The value of
chm represents the variance of generated particles as described
in Wang et al., and the chosen value predefines the range of the
predicted resgpiratory rate. A selected value of o%m1should not
deviate too much from the selected chosen pole magnitude via the

2, represent the variances of

QPS. The wvalues of O%mland o]
likelihoed functions as described in Zou et al., Lee et al. and
Zou et al. Specifically, a choice of 0'2gau determines the spread

of pole angles each particle weight is evaluated, and likewise
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for the choice of ¢?, for the likelihood functions of WNN-PF and
WPDA-PF. For NN-PF and PDA-PF, G% = (infinity) in (18-2) and
{19-2), which results in (18-1) and (19-1), respectively. For
other likelihood functions, the PF parameters were set to o%a1=

0.01, ¢%gan = 0.0001, and o°, = 0.0025.

2} PPG Data Coliection on Human Subjects: For the PPG

waveform acquisition, an MPS506 pulse oximeter (Nellcor Oximax,
Boulder, C0O) reusable sensor (Durasensor D5-100

A) was used, which incorporates a conditioning circuit and has an
analcg output of 4.864 kHz. The PPG waveforms were collected on
15 healthy subjects with metronome respiratory rates ranging from
healthy subjects instructed to breathe at the rates of 0.7 and
0.8 Hz. Finally, ten additional healthy subjects were recruited
and they were instructed to breathe at the rates of 1.0, 1.2, and
1.5 Hz. We categorized the respiratory rates of 0.2 and 0.3 Hz as
the LF, the rates of 0.4-0.6 Hz as the high frequency (BF), the
rates of 0.7 and 0.8 Hz as the ultra-BF (UHF), and the rates of
1.0-1.5 Hz as the extremely BF (EHF). Among the 15 healthy
subjects, seven females and eight males of age 21.0 + 1.2 years
were involved, in the eight healthy subjects {(for UHF
experiment}, one female and seven males of age 28.4 + 3.6 years
participated, and in the ten healthy subjects (for EHF
experiment), three females and seven males of age 26.7 £ 4.6
years participated. None cof the subjects had cardiorespiratcry or

related pathologies.

The PPG data were collected in the supine and upright positions
for subjects instructed to breathe in the LF, BF, and UHF ranges.
For subjects in the EHF protocol, the PPG data were collected
only in the upright position because many participants had

trouble breathing at these high rates in the supine position. The
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pulse oximeter sensor was attached to the subjects' left index or
middie finger. The subjects were instructed to breathe at a
constant rate according to a timed beeping sound so that the
subjects inhaled and exhaled when the beeping scund was heard.
Three minutes of PPG data were collected for each position for
the breathing rates consisting of LF, BF, and UHF. For EHF rates,
only 1-2 min of PPG signals were collected because most subjects
could not keep up with extremely high breathing rates. We also
simultaneously measured respiration signals using the respitrace
system, which uses inductive plethysmography to provide
calibrated voltage outputs corresponding to rib cage and
abdominal compartment volume changes. From the respitrace system,
true respiratory rates were evaluated by counting the number of
peaks in a given minute. For those subjects breathing at the EAF

rates, we also measured their ECG signals.

For all signals, consisting of PPG, respiraticn, and ECG signals,
we used the Powerlab/4sp (ADInstrument, Inc.} for data
acquisition. The PowerlLab/4sp was connected to a laptop via
universal serial bus, and the Chart v4.2.2 software was used to
sample the analog signal at 400 Hz for EHF data and 200 Hz for
LF, BF, and UHF data. All PPG data were low-pass filtered to 10
Hz. We performed the respiratory rate estimation on 60 s segments
for the LF, BF, and UHF data, while 30-s segment data were used
for the EHF data. All data segments were shifted by 10 s for the
entire PPG waveform recording. The initial model order was set to
30 for the OPS. The breathing rate of interest was set to fign =
0.15 Hz and fnign = 0.9 Hz for LF, BF, and UHF data. For the EHF
data, we set the breathing rate of interest to fiow = 0.15 Hz and
fv < fhign < fn. Furthermore, in order to investigate the effect on
the heart signal (fh), an additional ROI was set as fig, = 0.15 Hz

and fp < f < fhign. The PF parameters were set to o{wn = 0.01,
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ogau = 0.0001, and o°, = 0.0025, which are the same as in the

simulation example.
RESULTS
A. Simulation Results

Fig. 6 shows the results of respiratory rate estimation by the
OPS only (without the PF) and five different PF methods
consisting of SN-PF, NN-PF, WNN-PF, PDA-PF, and WPDAPF with the
test signal as described above. It summarizes the breathing
frequency of 0.4 Hz based on 100 realizations for each methcd,
which resulted in the estimation of 5500 respiratory rates. In
the results shown in Figs. 6{(a)-6(b), the number of particles
used was 100. Fig. 6(a) shows the deviation percentages defined
in ¥X. Xiao, Y. Li, and R. Mukkamala, "A model order selection
criterion with applications to cardio-respiratory-renal systems,”
IEEEF Trans. Biomed. Eng., vol. 52, no. 3, pp. 445-453, Mar. 2005,
which is incorporated by reference herein in its entirety for all
purposes. Deviation percentage are reported as a function of
three different Thgey values: 0.2, 0.3, and C.4. Regardlesé of the
chosen threshold value, both PDA-PF and WPDA-PF showed the
smallest deviation percentage, while the OPS had the largest.
Fig. 6(b) shows the mean of RMSE and its mean plus two standard
deviations. All PF methods showed smaller RMSE values than OPS
only. The asterisks indicate the significant difference (p <
0.01) between OPS only and each of the five different likelihood
functions. Among the PF methods, there was no significaht
difference. Fig. 7(a)-{c) summarizes the mean and standard de-
viation of the RMSEs and the computation time as the number of
particles varied from 1 to 200. Fig. 7(a)shows the Mean of RMSEs.
Fig. 7{b} shows the Standard deviation of RMSEs. Fig. 7(c) shows
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the Computational time (programs running on MATLAB R2007b). These
results suggest that approximately only 25 particles are needed
to obtain reasonably accurate results for all proposed PF
methods. There was a significant increase in the computatiocn time
with both PDA-PF and WPDA-PF when the number of particles was
higher than 75.

B. Experimental Data Results

1) Result of LF, HF, and UHF Respiratory Rate: Figs. 8 and 9 show
the RMSEs for each method for LF (0.2-0.3 Hz), HF{0.4-0.6 Hz),
and UHF (0.770.8 Hz) during the supine and upright positions,
respectively. The circles (red) above and below each method
represent the 95th and the 5th percentiles of all estimation
results for every subject, respectively. Whiskers (blue) above
aﬁd below represent the 90th and the 10th percentiles,
respectively. The bars above, middle, and below represent the
75th, the 50th, and the 25th percentiles, respectively. In addi-
tion, the asterisks indicate the mean value. Tables H and III
summarize the measures of accuracy by tabulating the mean and
variance of RMSE across all subjects for both supine and upright
positions. For the statistical analysis, t-test (p < 0.01) was

used among the six methods.

In the supine position, as shown in Fig. 8 and Table H, the mean
of RMSE with WNN—PF was the lowest followed by NNPF, WPDA-PF,
PDA-PF, SN-PF, and OPS only for the LF respiratory rates.
Similarly, the variances of RMSE with NN-PF, WNN-PF, and PDA-PE
were the lowest followed by WPDAPF, SN-PF, and OPS only. For the
BF respiratory rates, the mean of RMSE with NN-PF was the lowest
followed by WNNPF, PDA-PF, WPDA-PF, SN-PF, and OPS only. The
variance of RMSE with PDA-PF was the lowest followed by NN-PF,
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WNN-PF, WPDA-PF, SN-PF, and OPS only. For the UHF, the mean of
RMSE with PDA-PF was the lowest followed by NNPF, WNNA-PEF, WPDA-
PF, SN-PF, and OPS only. Similarly, the variance of RMSE with
PDA-PF was the lowest followed by WPDA-PF, WNN-PF, NN-PF, SN-PF,
and OPS only. Based on the RMSE distribution, all five proposed
PF methods showed significantly lower RMSEs than OPS only in both
LF and BF respiratory rates. In the UHF respiratory rate range,
the four PF methods NN-PF, WNN-PF, PDA-PF, and WPDA-PF all shcwed
significantly lower RMSE than OPS only. Among the PF methods, in
the LF respiratory rates, NN-PF, WNN-PF, and PDA-PF showed
significantly lower RMSE than SN-PR Also, NN-PF and WNN-PEF showed
significantly lower RMSE than WPDAPF. There was no significant
difference between NN-PF and WNN-PE In the BF respliratory rates,
NN-PF, WNN-PF, PDAPF, and WPDA-PF showed significantly lower RMSE
than SNPE There was no significant difference among the four
methods. In the UHF respiratory rates, there was no significantly

difference among the PF methods.

In the upright position, as shown in Fig. 2 and Table III, the
means of RMSE with .NN-PF, WNN-PF, and WPDA-PF were tThe lowest
followed by PDA-PF, SN-FF, and OPS for the LF respiratory rates.
The variance of RMSE with PDA-PF was the lowest followed by NN-
PF, WPDA-PF, PDA-PF, SN-PF, and OPS. For the BF respiratory
rates, the means of RMSE with NN-PF, WNN-PF, and WPDA-PF were the
lowest followed by PDA-PF, SN-PF, and OPS. The wvariance of RMSE
with PDA-PF was the lowest followed by NN-PF, WNN-PF, WPDA-PF, SN
PF, and OPS. For the UHF, the mean of RMSE with WPDA-PF was the
lowest followed by WNN-PF, SN-PF, NN-PF, PDA-PF, and OPS. The
variance of RMSE with PDA-PF was the lowest followed by WNN-PF,
NN-PF, WPDA-PF, SN-PF, and OPS. Based on the RMSE distribution,
all five proposed PF methods showed significantly lower RMSE than

OPS only in all respiratory ranges of LF, BEF, and UHF. In
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addition,

among the PF methods,

were observed in the supine position.

positions,

Thus,

PCT/US2011/055961

the same significant differences

regardless of subject

NNPF and WNN-PF showed significantly lowest RMSE than

any other method for the LF respiratory rate.

respiratory rate, NN-PF, WNN-PF,

significantly lowest RMSE than any other method.

piratory rate,

PDA-PF,

For the BF
and WPDA-PF showed

For the UHF res-

all proposed methods showed significantly lowest

RMSE. As shown in Fig.

more computaticon Time than NN-PF and WNN-PF,
NN-PF and WNN-PF achieved the best result for LEF, BF,

respiratory rates.

7(cy,

PDA-PF and WPDA-PF requires much

TABLE IX
MEANS AND VARIANCES OF RMSES AND CCORRESPONDING STATISTICAL SIGNIFICANCE WITH
P-VALUES OF SIX METHODS IN RESPIRATORY RANGES LF {0.2-0.3

it is concluded that

and UHF

HZ), HF {0.4-0.¢ HZ), AND UHF {0.7-0.8 HZ) FOR SUPINE POSITION: MEANS AND
VARIANCES OF RMSES
True OPS only SN-PF NN-PF WHNN-PF PDA-PF WPDA-PF
Pasition Rate Mean of | Variance | Mean of | Variance { Mean of | Variance | Mean of | Varance | Mean of | Variance | Mean of | Varance
{Hz) RMSE | of RMSE | RMSE | of RMSE { RMSE | of RMSE {| RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE
{Hz} {Hz) (Hz) (Hz) {Hz) (Hz} (Hz) (H2) (Hz) (Hz) {Hz) (Hz)
(0_2|:_F0_3) 0.1688 0.0593 0.1167 0.0270 0.0446 0.0051 0.0380 0.0063 0.0910 0.0081 Q.0875 0.0248
Supine © 4H_Fn B) 0.1356 0.0211 0.0087 0.0118 0.0324 0.0030 0.0450 0.0038 0.0512 0.0024 0.0646 0.0078
0 ;.JTZ 8 0.2160 0.0442 Q.1668 0.0267 0.1257 0.0267 0.1278 0.0267 0.1104 0.0212 0.1386 0.0248
TABLE III
MEANS AND VARIANCES OF RMSES AND CORRESPONDING STATISTICAL SIGNIFICANCE WITH
P-VALUES OF SIX METHODS IN RESPIRATORY RANGES LF (0.2-0.3
HZ), HF (0.4-0.6 HZ), AND UHF (0.7-0.8 HZ) FOR UPRIGHT POSITION: MEANS AND
VARIANCES OF RMSES
True OFS only SN-PF NN-PF VYNN-PF PDA-PF WPDA-PF
Positicn Rate Mean of | Variance | Mean of | Variance | Mean of | variance | Mean of | Variance | Mean of | Variance | Mean of | Variance
{H2) RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE
(Hz) (Hz) (H2) (Hz) (Hz) (Hz) (Hz) (Hz} (Hz) {Hz) {Hz) (Hz}
© 2E_F0 2 0.1207 0.0371 0.0692 0.0113 0.0324 0.0040 0.0326 0.0052 0.0698 0.0037 0.0332 0.0043
Upright @ :j_FO &) 0.0654 £.0106 0.0461 0.0075 0.0232 0.0036 0.0230 0.0045 0.0305 0.0023 0.0273 0.0050
{© .:;"i'g 8) 0.0633 0.0250 0.0301 {0.0056 0.0348 0.0022 0.0214 0.0020 0.0413 0.0017 0.0103 0.0051
2) Result of EHF Respiratory Rate: Fig. 10(a) shows the
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RMSE for each method for EHF (1.0-1.5 Hz) breathing rates during
the upright position. For these EHF rates, the breathing
frequency (fp) may possibly overlap with a heart rate frequency
(f,), thus the range of interest is set from fio = 0.15 Hz to fy
< fhigh < fn. For example, when the heart rate is 1.6 Hz and the
respiratory rate is 1.2 Hz, £nign was set to 1.4 Hz. As shown in
Fig. 8(a) and Table IV (first row), the mean value of RMSE with
WNN-PF was the lowest followed by NN-PF, WPDA-PF, PDA-PF, SN-PF,
and OPS. For the wvariance of RMSE wvalues,

PDA~PF, NN-PF, and WNN-PF were the lowest followed by WPDA-PF,
SN-PF, and OPS. The five likelihood functions showed
significantly lower RMSE than OPS. Based on the RMSE
distribution, all five PF methods showed significantly lower RMSE
than OPS only. Among the PF methods, there was no significant
difference. Fig. 10(b) shows the RMSE for each method for EHF
(1L.0-1.5 Hz) when f < fi < frign {(the range of interest contains
heart rate as well as respiratory rate). In this case, it was
observed that heart rate and respiratory rate were correctly
detected approximately at only 60% and 40%, respectively, by the
OPS technique. As shown in Fig. 10(b)and Table IV (second row),
the respiratory raﬁe extraction became inaccurate due to the
heart rate detection. Consequently, there was no significant
difference among all methoeds. Thus, for the respiratory rate
extraction in the EHF range, it should be ensured that the heart
and respiratory rates do not overlap. Otherwise, in most
instances, the heart rate will be selected as the dominant pcle

instead of the respiratory frequency.
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TABLE IV
MEANS AND VARIANCES OF RMSES AND CORRESPONDING STATISTICAL SIGNIFICANCE WITH
P-VALUES OF SIX METHODS IN RESPIRATORY RANGE OF EHF
(1.0-1.5 HZ) FOR UPRIGHT POSITION: MEANS AND VARIANCES OF RMSES

OPS only SN-PF NN-PF WHNN-PF PDA-PF WPDA-PF

Mean of | Varance | Mean of | Variance | Mean of | Variance | Mean of | variance | Mean of | Variance | Mean of | Variance
RMSE | of RMSE | RMSE { of RMSE | RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE | RMSE | of RMSE
{Hz) {Hz) (Hz} {H=z) {Hz) (Hz) (Hz) (Hz) (Hz) (Hz} (Hz) (Hz}

fo<fyge<fy | 0.1688 | 0.0583 0.1167 | 0.0270 | 0.04457 | 0.0061 0.0390 | 0.0063 0.0910 | 0.0061 0.0675 | 0.0248

fo<fy<tign | 0.1358 | 0.0211 0.0997 | 0.0118 0.0394 | 0.0030 0.0450 | 0.0038 0.0512 | 0.0024 0.0646 | 0.0078

Effect of initial set of particles: The performances of PF
methods are affected by the initial set of particles chosen. In
the results for the above exemplary embodiments, the initial set
of particles was chosen based on the pcle angle with the highest
magnitude as determined by OPS. The accuracy of the PF method
will certainly benefit and converge faster to a true solution if
the initially chosen set of particles is closest to the true
respiratory rate. This is a reason why in the above presented
exemplary embodiments the OPS is combined with PF to obtain near-

optimal scolutions

Multiple dynamic model: In the above presented exemplary
emboediments, only fixing the breéthing rate for the entire
duration of the data recording was considered. In the event of
different breathing rates in a sample, the method of the above
presented exemplary embodiments would not be optimal. For
example, a subject might breathe at one rate and then either
slowly or abruptly transition to a different breathing rate. To
account for these different scenarios, a dynamic model can be
used. For example, in the case of a constant breathing rate
followed by an increase and then decrease in breathing rates, the

following three models may be considered:

32



WO 2012/051295 PCT/US2011/055961

R (n) = Fj (Ea(n - 'nsam)) + Q2 (n)7 forj = 1,2,3

22
where (22)

13 (R(n ~ Tsam )) = R(n - nsam) (23-*1)
F (R(TL — Ngam ) = R(n — Nsam ) + IR (23-2)
Fy (R(n — Nsam )) R('n: - nsam) — Dp (23-3)

where Ig 15 the increased rate and Dy is the decreased rate. Note
that 3 x I predicted particles will be generated for these
particular models. Elucidation of the above described embodiments
can be found in J. Lee, and K. H. Chon, “Respiratory Rate
Extraction Via an Autoregressive Model Using the Optimal
Parameter Search Criterion,” Ann Biomed Eng, May 25, which is al
so provided as Appendix I in U.S. Provisional Application Ser.
No. 61/392,271, J. Lee, and K. H. Chon, “An Autoregressive
Model-Based Particle Filtering Algorithms for Extraction of
Respiratory Rates as High as 90 Breaths per Minute from Pulse
Oximeter,” IEEE Trans Biomed Eng, which is also provided as
Appendix II in U.S. Provisional Bpplication Ser. No. 61/3%2,271,
and J. Lee, and K. Chon, "Time-Varying Autoregressive Model-Based
Multiple Model Particle Filtering Algorithm for Respiratory Rate
Extraction from Pulse Oximeter," IEEE Trans. BME, which is also
provided as Appendix III in U.S. Provisional Application Ser. No.
6£1/392,271, all of which are incorporated by reference herein in

their entirety for all purposes.

We presented the combined OPS-PF algorithm and examined the
robustness of five different likelihood functions for estimation
of respiratory rates directly from pulse oximeter reccrdings.
They were evaluated on 33 healthy subjects with a wide range of
breathing rates varying from 0.2-1.5 Hz. It was found that the

combined OPS-PF approaches provided better accuracy than the
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solely OPS-based AR model for all breathing rates considered. The
robustness of the combined OPS-PF approaches is evident as the
accuracy 1s intact even for breathing rates as high as 1.5 Hz.
This indicates that the method of these teachings is also
applicable for extracting breathing rates during exercise. It
shduld also be noted that the processing time was 10 ms for SN-
PF, NN-PF, and WNN-PF, and 30 ms for PDA-PF and WPDA-PR Thus the
combined OPS-PF approach can be realizable in real time for

practical applications.

For the purposes of describing and defining the present
teachings, it is noted that the term "substantially" is utilized
herein to represent the inherent degree of uncertainty that may
be attributed to any quantitative comparison, value,
measurement, or other representation. The term "substantially"”
is also utilized herein to represent the degree by which a
quantitative representation may vary from a stated reference
without resultfng in a.change in the basic function of the

subject matter at issue.

Elements and components described herein may be further divided
into additional components or joined together to form fewer

components for performing the same functions.

Fach computer program may be implemented in any programming
language, such as assembly language, machine language, a high-
level procedural programming language, or an object-oriented
programming language. The programming language may be a

compiled or interpreted programming language.

Each computer program may be implemented in a computer program

product tangibly embodied in a computer-readable storage device
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for execution by a computer processor. Method steps of the
invention may be performed by a computer processor executing a
program tangibly embodied on a computer-readable medium to
perform functions of the invention by cperating on input and

generating output.

Common forms of computer-readable media include, for example, a
floppy disk, a flexible disk, hard disk, magnetic tape, or any
other magnetic medium, a CDROM, any other optical medium, any
physical medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or cartridge, all of
which are non-transitory. As stated in the USPTO 2005 Interim
Guidelines for Examination of Patent Applications for Patent
Subject Matter Eligibility, 1300 Off. Gaz. Pat. Office 142 (Nov.
22, 2005), ”On the other hand, from a technological standpoint,
a signal encoded with functional descriptive material is similar
to a computer-readable memory encoded with functional
descriptive material, in that they both create a functional
interrelationship with a computer. In other words, a computer is
able to execute the encoded functions, regardless of whether the

format is a disk cr a signal.”

Although the teachings have been described with respect to
various embodiments, it should be realized these teachings are
also capable of & wide variety of further and other embodiments

within the spirit and scope of the appended claims.

What is claimed is:
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CLAIMS

1. A methoed for detecting respiratory rate of a patient, the
method comprising the steps of:
obtaining parameters for an autoregressive (AR)
representation of a photoplethysmography (PPG) signal
obtained from the patient, the parameters being -obtained
using a projection onto linearly independent non-orthogonal

bases;

obtaining poles for a frequency transfer function of the AR

representation;

selecting a pole with a highest magnitude in a freguency
region of interest; the respiratory rate being determined by

the pole with a highest magnitude.

2. The method of claim 1 wherein the frequency region of interest

is between about 0.15 Hz and about 0.9 Hz.

3. The method of claim 1 wherein the frequency region of interest

is between about 0.15 Hz and about 1.5 Hz.
4. The method of claim 1 further comprising the step of filtering
the PPG signal before obtaining parameters for the AR

representation.

5. The method of claim 4 further comprising the step of
downsampling the filtered PPG signal.
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6. A method for detecting respiratory rate of a patient, the

method comprising the steps of:

obtaining, from an autoregressive (AR) representation of a
photoplethysmography (PPG) signal obtained from the patient,
the respiratory rate of the patient using an iterative
Particle Filtering Monte Carlo method, where a distribution
of respiratory rate is the distribution approximated by
Monte Carlo sampling, measurements are magnitudes and phase
of poles for a frequency transfer function of the AR
representation, the magnitudes and phase of the poles
obtained by:

obtaining parameters for the AR representation using a

projection onto linearly independent non-orthogonal

bases;

obtaining poles for a frequency transfer function of

the AR representation.

7. The method of claim 6 wherein the iterative Particle Filtering

Monte Carlo method comprises:

a.

selecting an initial group of particles, each particle from
said initial group being a different value for the
respiratory rate; each particle from said initial group
being assigned a weight egual fo an inverse of a number of

particles said initial group;

. obtaining a new group of particles by propagating the

initial group of particles;

. obtaining measurements; measurements being magnitudes and

phase of poles for the frequency transfer function of the AR

representation obtained by:
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obtaining parameters for the AR representation using a
projection onto linearly independent non-orthogonal
bases;
obtaining thé poles for a frequency transfer function
of the AR representation;
d. obtaining a new weight for each particle from said new group
by using a predetermined likelihood function;
e. select a candidate respiratory rate of a patient equal to a
weighted sum of the particles in the new group of particles;
and

f. resampling the new group of particles.

. The method of claim 7 wherein the. predetermined likelihocod

function is a strongest neighbor (SN) likelihocod function.

. The method of claim 7 wherein the predetermined likelihood

function is a nearest neighbor (NN} likelihood function.

The method of claim 7 wherein the predetermined likelihood
function is a weighted nearest neighber (WNN) likelihood

function.

The method of claim 7 wherein the predetermined likelihood
function is a probabilistic data assocciation (PDA) likelihood

function.

The method of claim 7 wherein the predetermined likelihood
function is a weighted probabilistic data association (WPDA)

iikelihood function.

The method of claim 6 wherein a frequency region of interest

is between about 0.15 Hz and about 1.5 Hz.
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14. A system comprising:
at least one processor; salid at least one processor
receiving a photoplethysmography (PPG) signal obtained from
the patient, and

a computer usable memory having computer readable code
embodied therein, the computer readable code causing said at
least one processor to:
obtain parameters for an autoregressive (AR)
representation of a photoplethysmography (PPG) signal
obtained from the patient, the parameters being
cbtained using projection onto linearly independent

non-corthogonal bases;

obtain poles for a freguency transfer function of the

AR representation;

select a pole with a highest magnitude in a frequency
region of interest; a respiratory rate being determined

by the pole with a highest magnitude.

15. The system of claim 14 wherein the frequency regilon of

interest is between about 0.15 Hz and about 0.9 Hz.

16. The system of claim 14 wherein the frequency region of

interest is between about 0.15 Hz and about 1.5 Hz.

17. The system of claim 14 wherein the computer readable code 1s
alsc capable of causing said at least one processor to filter
the PPG signal before obtaining parameters for the AR

representation.
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18. The system of claim 17 wherein the computer readable code is
also capable of causing said at least one processor to

downsample the filtered PPG signal.

19. A system comprising:
at least one processor; said at least one processor
receiving a photoplethysmography (PPG) signal obtained from
the patient, and

a computer usable memory having computer reédable code
embodied therein, the computer readable code causing said at
least one processor to:
obtain, from an autoregressive (AR) representaticn of a
photoplethysmography (PPG) signal obtained from the
patient, a respiratory rate cof the patient using an
“iterative Particle Filtering Monte Carlo method, where
a distribution of respiratory rate is the distribution
approximated by Monte Carloc sampling, measurements are
magnitudes and phase of poles for a freguency transfer
function of the AR representation, the magnitudes and
phase of the poles obtained by:
obtaining parameters for the AR representation
using a projection onto linearly independent non-
orthogonal bases;
obtaining the poles for a frequency transfer

function of the AR representation.

20. The system of claim 19 wherein the iterative Particle
Filtering Monte Carlo method comprises:
a. selecting an initial group of particles, each particle from
said initial group being a different value for the

respiratory rate; each particle from said initial group
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being assigned a weight equal to an inverse of a number of
particles said initial group:

b. obtaining a new group of particles by propagating the
initial group of particles;

¢. obtaining measurements; measurements being magnitudes and
phase of poles for the frequency transfer function of the AR

representation obtained by:

obtaining parameters for the AR representation using a
projection onto linearly independent non-orthogonal
bases;
obtaining the poles for a frequency transfer function
of the AR representation;
d. obtaining a new weight for each particle from said new group
by using a predetermined likelihood function;
e. select a candidate respiratory rate of a patient equal to a
weighted sum of the particles in the new group of particles;
and

f. resampling the new group of particles.

21. The system of claim 20 wherein the predetermined likelihood

function is a strongest neighbor (SN) likelihood function.

22. The system of claim 20 wherein the predetermined likelihood

function is a nearest neighbor (NN) likelihocod function.
23. The system of claim 20 wherein the predetermined likelihood

function is a weighted nearest neighbor (WNN) likelihood

function.

41



WO 2012/051295 PCT/US2011/055961

24. The system of claim 20 wherein the predetermined likelihood
function is a probabilistic data association (PDA) likelihood

function.

25. The system of claim 20 wherein the predetermined likelihood
function is a weighted probabilistic data association (WPDA)

likelihood function.

26. The system of claim 19 wherein a frequency region of

interest is between about 0.15 Hz and about 1.5 Hz.
27. A computer program product comprising:

a non-transitory computer usable medium héving computer
readable code embodied therein for detecting respiratory rate
of a patient, the computer readable code causing at least one
processor to:
obtain parameters for an autoregressive (AR)
representation of & photoplethysmography (PPG) signal
obtained from the patient, the parameters being cobtained
using a projection ontec linearly independent non-orthogonal

bases;

obtain poles for a frequency transfer function of the AR

representation;

select a pole with a highest magnitude in a freguency region
of interest; the respiratory rate being determined by the

pole with a highest magnitude.

28. The computer program product of claim 27 wherein the

computer readable code is also capable of causing said at
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least one processor to filter the PPG signal before obtaining

parameters for the AR representation.

29. The computer program product of claim 28 wherein the
computer readable code is also capable of causing said at

least one processor to downsample the filtered PPG signal.
30. A computer program product comprising:

a non-transitory computer usable medium having computer
readable code embodied therein for detecting respiratory rate
of a patient, the computer readable code causing at least one

processcr to:

obtain, from an autoregressive (AR) representation of a
photoplethysmography (PPG) signal obtained from the patient,
the respiratory rate of the patient using an iterative
Particle Filtering Monte Carlc method, where a distribution
of respiratory rate is the distribution approximated by
Monte Carlo sampling, measurements are magnitudes and phase
of poles for a frequency transfer function of the AR
representation, the magnitudes and phase of the poles
obtained by:

obtaining parameters for the AR representation using a

projection onto linearly independent non-orthogonal

hases; and

obtaining the poles for a frequency transfer function

of the AR representation.

31. The computer program product of claim 30 wherein the

iterative Particle Filtering Monte Carlo method comprises:
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a. selecting an initial group of particles, each particle from
said initial group being & different value for the
respiratory rate; each particle from said initial group
being assigned a weight equal to an inverse of a number of
particles said initial group;

b. obtaining a new group of particles by propagating the
initial group of particles;

- ¢. obtaining measurements; measurements being magnitudes and
phase of poles for the frequency transfer function of the AR

representation obtained by:

obtaining parameters for the AR representation using a
projection onto linearly independent non-orthogonal
bases;
obtaining the poles for a freguency transfer function
of the AR representation;
d. obtaining a new weight for each particle from said new group
by using a predetermined likelihood functiocn;
e. select a candidate respiratory rate of a patient equal to a
weighted sum of the particles in the new group of particles;
and

f. resampling the new group of particles.

32. The computer program product of claim 31 wherein the
predetermined likelihood function is a strongest neighbor (SN)

likelihood function.

33. The computer program product of claim 31 wherein the
predetermined likelihood function is a nearest neighbor (NN)

likeiihood function.
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34. The computer program product of claim 31 wherein the
predetermined likelihood function is a weighted nearest

neighbor (WNN) likelihood function.

35. The computer program product of claim 31 wherein the
predetermined likelihood function is a probabilistic data

association (PDA) likelihood function.
36. The computer program product of claim 31 wherein the

predetermined likelihood functicon is a weighted probabilistic

data association (WPDA) likelihocod function.
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Obtain parameters for an autoregressive (AR)
representation of a PPG signal obtained from the patient
by means of using a projection onto linearly independent

non-orthogonal bases

15

Y

Obtaining poles for a frequency transfer function of the
AR representation
25

Selecting a pole with a highest magnitude in a frequency
region of interest; the respiratory rate being determined
by the pole with a highest magnitude
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Form an initial set of particles, R'(0), i=1,...I, and give
them uniform weights w/(0) = 1/1.

1. Predict the new set of particles R'(n) by propagating
the resampled set R(n-Nsam)

2. Obtain measurement P(n) by the OPS model in the
region of interest.

3. Evaluate each particle weight w/(n) according to
likelihood functions p(P(n}IR'(n))

4. Compute the respiratory state (rate) R(n) as the
weighted sum of particles E[R(n)]=2'-; w(n)R(n)

5. Resample the particles, R(n)

FIG. 4
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