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(57) Abstract: In one example, a device for coding video data includes a video 
coder configured to determine a context for coding a transform coefficient of a 
video block based on a region of the video block in which the transform coefficient 
occurs, and entropy code the transform coefficient using the determined context. 
The region may comprise one of a first region comprising one or more upper-left 
4x4 sub-blocks of transform coefficients of the video block and a second region 
comprising transform coefficients of the video block outside the first region.
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DETERMINING CONTEXTS FOR CODING TRANSFORM COEFFICIENT 
DATA IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application Serial No. 

61/586,668, filed January 13, 2012, U.S. Provisional Application Serial No. 61/588,595, 

filed January 19, 2012, and U.S. Provisional Application Serial No. 61/597,097, filed 

February 9, 2012, each of which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD 

[0002] This disclosure relates to video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet 

computers, e-book readers, digital cameras, digital recording devices, digital media 

players, video gaming devices, video game consoles, cellular or satellite radio 

telephones, so-called “smart phones,” video teleconferencing devices, video streaming 

devices, and the like. Digital video devices implement video compression techniques, 

such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, 

ITU-T H.264/MPEG-4, Part f 0, Advanced Video Coding (AVC), the High Efficiency 

Video Coding (HEVC) standard presently under development, and extensions of such 

standards. The video devices may transmit, receive, encode, decode, and/or store digital 

video information more efficiently by implementing such video compression 

techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice (i.e., a video frame or a portion 

of a video frame) may be partitioned into video blocks, which may also be referred to as 

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I) 

slice of a picture are encoded using spatial prediction with respect to reference samples 

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice 

of a picture may use spatial prediction with respect to reference samples in neighboring 

blocks in the same picture or temporal prediction with respect to reference samples in
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other reference pictures. Pictures may be referred to as frames, and reference pictures 

may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be 

coded. Residual data represents pixel differences between the original block to be 

coded and the predictive block. An inter-coded block is encoded according to a motion 

vector that points to a block of reference samples forming the predictive block, and the 

residual data indicating the difference between the coded block and the predictive block. 

An intra-coded block is encoded according to an intra-coding mode and the residual 

data. For further compression, the residual data may be transformed from the pixel 

domain to a transform domain, resulting in residual transform coefficients, which then 

may be quantized. The quantized transform coefficients, initially arranged in a two­

dimensional array, may be scanned in order to produce a one-dimensional vector of 

transform coefficients, and entropy coding may be applied to achieve even more 

compression.

SUMMARY

[0006] In general, this disclosure describes techniques related to determining contexts 

for entropy coding, e.g., using context-adaptive binary arithmetic coding (CABAC), of 

video data. CABAC coding generally involves determining a context when coding 

binarized representations of various syntax elements. Examples of syntax elements 

include data for transform coefficients, such as data indicating whether the transform 

coefficients are significant, signs of the transform coefficients that are significant, and 

level values for the transform coefficients that are significant. Transform coefficients 

generally correspond to coefficients of a transform block, such as a transform unit (TU). 

This disclosure describes techniques for determining contexts for coding transform 

coefficients based on regions of a transform block in which the transform coefficients 

occur.

[0007] In one example, a method of coding video data includes determining a context 

for coding a transform coefficient of a video block based on a region of the video block 

in which the transform coefficient occurs, and entropy coding the transform coefficient 

using the determined context.

[0008] In another example, a device for coding video data includes a video coder 

configured to determine a context for coding a transform coefficient of a video block
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based on a region of the video block in which the transform coefficient occurs, and 

entropy code the transform coefficient using the determined context.

[0009] In another example, a device for coding video data includes means for 

determining a context for coding a transform coefficient of a video block based on a 

region of the video block in which the transform coefficient occurs, and means for 

entropy coding the transform coefficient using the determined context.

[0010] In another example, a computer-readable storage medium has stored thereon 

instructions that, when executed, cause a processor to determine a context for coding a 

transform coefficient of a video block based on a region of the video block in which the 

transform coefficient occurs, and entropy code the transform coefficient using the 

determined context.

[0011] In another example, a method of decoding video data includes determining 

whether a transform coefficient of a video block is a DC transform coefficient, when the 

transform coefficient is determined to be the DC transform coefficient of the video 

block, determining a context for decoding the transform coefficient based on the 

transform coefficient being the DC transform coefficient without regard for a size of the 

video block, and entropy decoding the transform coefficient using the determined 

context.

[0012] In another example, a device for decoding video data includes a video decoder 

configured to determine whether a transform coefficient of a video block is a DC 

transform coefficient, when the transform coefficient is determined to be the DC 

transform coefficient of the video block, determine a context for decoding the transform 

coefficient based on the transform coefficient being the DC transform coefficient 

without regard for a size of the video block, and entropy decode the transform 

coefficient using the determined context.

[0013] In another example, a device for decoding video data includes means for 

determining whether a transform coefficient of a video block is a DC transform 

coefficient, means for determining, when the transform coefficient is determined to be 

the DC transform coefficient of the video block, a context for decoding the transform 

coefficient based on the transform coefficient being the DC transform coefficient 

without regard for a size of the video block, and means for entropy decoding the 

transform coefficient using the determined context.
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[0014] In another example, a computer-readable storage medium has stored thereon 

instructions that, when executed, cause a processor to determine whether a transform 

coefficient of a video block is a DC transform coefficient, when the transform 

coefficient is determined to be the DC transform coefficient of the video block, 

determine a context for decoding the transform coefficient based on the transform 

coefficient being the DC transform coefficient without regard for a size of the video 

block, and entropy decode the transform coefficient using the determined context.

[0015] In another example, a method of encoding video data includes determining 

whether a transform coefficient of a video block is a DC transform coefficient, when the 

transform coefficient is determined to be the DC transform coefficient of the video 

block, determining a context for encoding the transform coefficient based on the 

transform coefficient being the DC transform coefficient without regard for a size of the 

video block, and entropy encoding the transform coefficient using the determined 

context.

[0016] In another example, a device for encoding video data includes a video encoder 

configured to determine whether a transform coefficient of a video block is a DC 

transform coefficient, when the transform coefficient is determined to be the DC 

transform coefficient of the video block, determine a context for encoding the transform 

coefficient based on the transform coefficient being the DC transform coefficient 

without regard for a size of the video block, and entropy encode the transform 

coefficient using the determined context.

[0017] In another example, a device for encoding video data includes means for 

determining whether a transform coefficient of a video block is a DC transform 

coefficient, means for determining, when the transform coefficient is determined to be 

the DC transform coefficient of the video block, a context for encoding the transform 

coefficient based on the transform coefficient being the DC transform coefficient 

without regard for a size of the video block, and means for entropy encoding the 

transform coefficient using the determined context.
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[0018] In another example, a computer-readable storage medium has stored thereon 

instructions that, when executed, cause a processor to determine whether a transform 

coefficient of a video block is a DC transform coefficient, when the transform 

coefficient is determined to be the DC transform coefficient of the video block, 

determine a context for encoding the transform coefficient based on the transform 

coefficient being the DC transform coefficient without regard for a size of the video 

block, and entropy encode the transform coefficient using the determined context.

[0019] In another example, a method of decoding video data includes determining 

values for coded sub-block flags of one or more neighboring sub-blocks to a current 

sub-block, determining a context for decoding a transform coefficient of the current sub­

block based on the values for the coded sub-block flags, and entropy decoding the 

transform coefficient using the determined context.

[0020] In another example, a device for decoding video data includes a video decoder 

configured to determine values for coded sub-block flags of one or more neighboring 

sub-blocks to a current sub-block, determine a context for decoding a transform 

coefficient of the current sub-block based on the values for the coded sub-block flags, 

and entropy decode the transform coefficient using the determined context.

[0021] In another example, a device for decoding video data includes means for 

determining values for coded sub-block flags of one or more neighboring sub-blocks to 

a current sub-block, means for determining a context for decoding a transform 

coefficient of the current sub-block based on the values for the coded sub-block flags, 

and means for entropy decoding the transform coefficient using the determined context. 

[0022] In another example, a computer-readable storage medium has stored thereon 

instructions that, when executed, cause a processor to determine values for coded sub­

block flags of one or more neighboring sub-blocks to a current sub-block, determine a 

context for decoding a transform coefficient of the current sub-block based on the 

values for the coded sub-block flags, and entropy decode the transform coefficient using 

the determined context.

[0023] In another example, a method of encoding video data includes determining 

values for coded sub-block flags of one or more neighboring sub-blocks to a current 

sub-block, determining a context for encoding a transform coefficient of the current sub­

block based on the values for the coded sub-block flags, and entropy encoding the 

transform coefficient using the determined context.
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[0024] In another example, a device for encoding video data includes a video encoder 

configured to determine values for coded sub-block flags of one or more neighboring 

sub-blocks to a current sub-block, determine a context for encoding a transform 

coefficient of the current sub-block based on the values for the coded sub-block flags, 

and entropy encode the transform coefficient using the determined context.

[0025] In another example, a device for encoding video data includes means for 

determining values for coded sub-block flags of one or more neighboring sub-blocks to 

a current sub-block, means for determining a context for encoding a transform 

coefficient of the current sub-block based on the values for the coded sub-block flags, 

and means for entropy encoding the transform coefficient using the determined context. 

[0026] In another example, a computer-readable storage medium has stored thereon 

instructions that, when executed, cause a processor to determine values for coded sub­

block flags of one or more neighboring sub-blocks to a current sub-block, determine a 

context for encoding a transform coefficient of the current sub-block based on the 

values for the coded sub-block flags, and entropy encode the transform coefficient using 

the determined context.

[0027] The details of one or more examples are set forth in the accompanying drawings 

and the description below. Other features, objects, and advantages will be apparent 

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0028] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system that may utilize the inter-prediction techniques described in this disclosure. 

[0029] FIG. 2 is a block diagram illustrating an example video encoder that may 

implement the inter-prediction techniques described in this disclosure.

[0030] FIG. 3 is a block diagram illustrating an example video decoder that may 

implement the inter-prediction techniques described in this disclosure.

[0031] FIG. 4 is a conceptual diagram that illustrates a relation between transform 

coefficients in a video block and a significance map associated with the video block. 

[0032] FIGS. 5A-5D are conceptual diagrams that illustrate examples of blocks of 

video data scanned using a zig-zag scanning order, a horizontal scanning order, a 

vertical scanning order, and a diagonal scanning order.
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[0033] FIG. 6 is a conceptual diagram that illustrates an example video block divided 

into sub-blocks for transform coefficient coding.

[0034] FIG. 7 is a conceptual diagram that illustrates an example five-point support 

used to define a context model for a significance map of coefficients in a video block 

scanned using a reverse diagonal scanning order.

[0035] FIGS. 8A and 8B are conceptual diagrams that illustrate context dependency 

within the five-point support.

[0036] FIGS. 9A and 9B are conceptual diagrams that illustrate example divisions of a 

video block into two or more regions.

[0037] FIG. 10 is a conceptual diagram that illustrates example assignment of 

neighborhood- or position-based contexts for each region of a video block.

[0038] FIG. 11 is a conceptual diagram that illustrates example assignment of context 

offsets for each region of a video block.

[0039] FIG. 12 is a conceptual diagram that illustrates an example embedded division 

of a video block into two or more regions based on TU sizes that correlate to existing 

context models.

[0040] FIGS. 13A and 13B are conceptual diagrams that illustrate example divisions of 

a video block into two or more regions.

[0041] FIGS. 14A and 14B are conceptual diagrams that illustrate example assignment 

of context offsets for each region of a video block.

[0042] FIG. 15 is a flowchart illustrating an example method for encoding a current 

block.

[0043] FIG. 16 is a flowchart illustrating an example method for decoding a current 

block of video data.

DETAILED DESCRIPTION

[0044] In general, this disclosure describes techniques related to determining contexts 

for entropy coding, e.g., using context-adaptive binary arithmetic coding (CABAC), of 

video data. CABAC coding generally involves determining a context when coding 

binarized representations of various syntax elements. Syntax elements include, for 

example, data for transform coefficients, such as data indicating whether the transform 

coefficients are significant, signs of the transform coefficients that are significant, and 

level values for the transform coefficients that are significant. Transform coefficients 

generally correspond to coefficients of a transform block, such as a transform unit (TU).



WO 2013/106710 PCT/US2013/021234
8

This disclosure describes techniques for determining contexts for coding transform 

coefficients based on regions of a transform block in which the transform coefficients 

occur.

[0045] In general, in accordance with the techniques of this disclosure, a video coder 

may be configured to determine context for coding a transform coefficient based on a 

region in which the transform coefficient occurs and then entropy code the transform 

coefficient using the determined context. A video block may be divided into regions in 

a variety of ways. FIGS. 9A and 11 illustrate examples in which a video block is 

divided into a first region including one or more upper-left sub-blocks (e.g., 4x4 sub­

blocks) and a second region including sub-blocks outside the first region. FIG. 9B 

illustrates an example in which a video block is divided into regions along a diagonal 

direction. FIG. 10 illustrates an example in which a video block is divided into 

quartiles, and the upper-left quartile is further divided into a first sub-region including 

sub-blocks of an upper-left portion of the upper-left quartile and a second sub-region 

including sub-blocks of the upper-left quartile external to the first sub-region. FIG. 12 

illustrates an example in which a video block is divided into regions that correspond to 

video block sizes (e.g., 4x4, 8x8, 16x16, and 32x32). FIG. 13A illustrates an example 

in which a video block is divided into horizontal rectangular regions. FIG. 13B 

illustrates an example in which a video block is divided into vertical rectangular 

regions. These figures are described in greater detail below.

[0046] In various examples, a video coder may be configured to determine a context for 

coding a transform coefficient in various ways, e.g., based on a region in which the 

transform coefficient occurs. For example, a video coder may be configured to 

determine a context using position-based context information for some regions or 

neighborhood-based context information for other regions. In some examples, all 

transform coefficients within a particular region may be coded using the same context, 

determined based on the region. In other examples, contexts for transform coefficients 

within a region may be determined based on a context neighborhood. In still other 

examples, a video coder may determine an offset to be applied to a context based on the 

region in which a transform coefficient occurs. That is, each of the regions may be 

associated with a particular context offset to be applied to a context.

[0047] The techniques of this disclosure may reduce bandwidth consumption, leading to 

savings of bits when coding syntax elements for transform coefficients. Such syntax 

elements may include any or all of a significant coefficient flag (which indicates
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whether a corresponding transform coefficient is significant, that is, non-zero), a sign of 

significant coefficients, an indication of whether a significant coefficient has an absolute 

value greater than 1, an indication of whether a significant coefficient with an absolute 

value greater than 1 has an absolute value greater than 2, and/or a remaining level value 

for coefficients having absolute values greater than 2.

[0048] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system 10 that may utilize the techniques described in this disclosure. As shown in 

FIG. 1, system 10 includes a source device 12 that generates encoded video data to be 

decoded at a later time by a destination device 14. Source device 12 and destination 

device 14 may comprise any of a wide range of devices, including desktop computers, 

notebook (i.e., laptop) computers, tablet computers, set-top boxes, telephone handsets 

such as so-called “smart” phones, so-called “smart” pads, televisions, cameras, display 

devices, digital media players, video gaming consoles, video streaming device, or the 

like. In some cases, source device 12 and destination device 14 maybe equipped for 

wireless communication.

[0049] Destination device 14 may receive the encoded video data to be decoded via a 

link 16. Fink 16 may comprise any type of medium or device capable of moving the 

encoded video data from source device 12 to destination device 14. In one example, 

link 16 may comprise a communication medium to enable source device 12 to transmit 

encoded video data directly to destination device 14 in real-time. The encoded video 

data may be modulated according to a communication standard, such as a wireless 

communication protocol, and transmitted to destination device 14. The communication 

medium may comprise any wireless or wired communication medium, such as a radio 

frequency (RF) spectrum or one or more physical transmission lines. The 

communication medium may form part of a packet-based network, such as a local area 

network, a wide-area network, or a global network such as the Internet. The 

communication medium may include routers, switches, base stations, or any other 

equipment that may be useful to facilitate communication from source device 12 to 

destination device 14.

[0050] Alternatively, encoded data may be output from output interface 22 to a storage 

device 34. Similarly, encoded data may be accessed from storage device 34 by input 

interface. Storage device 34 may include any of a variety of distributed or locally 

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, 

flash memory, volatile or non-volatile memory, or any other suitable digital storage
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media for storing encoded video data. In a further example, storage device 34 may 

correspond to a file server or another intermediate storage device that may hold the 

encoded video generated by source device 12. Destination device 14 may access stored 

video data from storage device 34 via streaming or download. The file server may be 

any type of server capable of storing encoded video data and transmitting that encoded 

video data to the destination device 14. Example file servers include a web server (e.g., 

for a website), an FTP server, network attached storage (NAS) devices, or a local disk 

drive. Destination device 14 may access the encoded video data through any standard 

data connection, including an Internet connection. This may include a wireless channel 

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a 

combination of both that is suitable for accessing encoded video data stored on a file 

server. The transmission of encoded video data from storage device 34 may be a 

streaming transmission, a download transmission, or a combination of both.

[0051] The techniques of this disclosure are not necessarily limited to wireless 

applications or settings. The techniques may be applied to video coding in support of 

any of a variety of multimedia applications, such as over-the-air television broadcasts, 

cable television transmissions, satellite television transmissions, streaming video 

transmissions, e.g., via the Internet, encoding of digital video for storage on a data 

storage medium, decoding of digital video stored on a data storage medium, or other 

applications. In some examples, system 10 may be configured to support one-way or 

two-way video transmission to support applications such as video streaming, video 

playback, video broadcasting, and/or video telephony.

[0052] In the example of FIG. 1, source device 12 includes a video source 18, video 

encoder 20 and an output interface 22. In some cases, output interface 22 may include a 

modulator/demodulator (modem) and/or a transmitter. In source device 12, video 

source 18 may include a source such as a video capture device, e.g., a video camera, a 

video archive containing previously captured video, a video feed interface to receive 

video from a video content provider, and/or a computer graphics system for generating 

computer graphics data as the source video, or a combination of such sources. As one 

example, if video source 18 is a video camera, source device 12 and destination device 

14 may form so-called camera phones or video phones. However, the techniques 

described in this disclosure may be applicable to video coding in general, and may be 

applied to wireless and/or wired applications.
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[0053] The captured, pre-captured, or computer-generated video may be encoded by 

video encoder 20. The encoded video data may be transmitted directly to destination 

device 14 via output interface 22 of source device 12. The encoded video data may also 

(or alternatively) be stored onto storage device 34 for later access by destination device 

14 or other devices, for decoding and/or playback.

[0054] Destination device 14 includes an input interface 28, a video decoder 30, and a 

display device 32. In some cases, input interface 28 may include a receiver and/or a 

modem. Input interface 28 of destination device 14 receives the encoded video data 

over link 16. The encoded video data communicated over link 16, or provided on 

storage device 34, may include a variety of syntax elements generated by video encoder 

20 for use by a video decoder, such as video decoder 30, in decoding the video data. 

Such syntax elements may be included with the encoded video data transmitted on a 

communication medium, stored on a storage medium, or stored a file server.

[0055] Display device 32 may be integrated with, or external to, destination device 14. 

In some examples, destination device 14 may include an integrated display device and 

also be configured to interface with an external display device. In other examples, 

destination device 14 may be a display device. In general, display device 32 displays 

the decoded video data to a user, and may comprise any of a variety of display devices 

such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode 

(OLED) display, or another type of display device.

[0056] Video encoder 20 and video decoder 30 may operate according to a video 

compression standard, such as the High Efficiency Video Coding (HEVC) standard 

presently under development, and may conform to the HEVC Test Model (HM). 

Alternatively, video encoder 20 and video decoder 30 may operate according to other 

proprietary or industry standards, such as the ITU-T H.264 standard, alternatively 

referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such 

standards. Extensions of standards include, for example, scalable video coding (SVC), 

multiview video coding (MVC), three-dimensional (3D) such as coding depth 

information, and the like. The techniques of this disclosure, however, are not limited to 

any particular coding standard or standard extension. Other examples of video 

compression standards include MPEG-2 and ITU-T H.263.

[0057] Although not shown in FIG. 1, in some aspects, video encoder 20 and video 

decoder 30 may each be integrated with an audio encoder and decoder, and may include 

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
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of both audio and video in a common data stream or separate data streams. If 

applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223 

multiplexer protocol, or other protocols such as the user datagram protocol (UDP). 

[0058] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations 

thereof When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be 

included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.

[0059] The JCT-VC is working on development of the HEVC standard. The HEVC 

standardization efforts are based on an evolving model of a video coding device referred 

to as the HEVC Test Model (HM). The HM presumes several additional capabilities of 

video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC. 

For example, whereas H.264 provides nine intra-prediction encoding modes, the HM 

may provide as many as thirty-three intra-prediction encoding modes.

[0060] In general, the working model of the HM describes that a video frame or picture 

may be divided into a sequence of treeblocks or largest coding units (LCU) that include 

both luma and chroma samples. A treeblock has a similar purpose as a macroblock of 

the H.264 standard. A slice includes a number of consecutive treeblocks in coding 

order. A video frame or picture may be partitioned into one or more slices. Each 

treeblock may be split into coding units (CUs) according to a quadtree. For example, a 

treeblock, as a root node of the quadtree, may be split into four child nodes, and each 

child node may in turn be a parent node and be split into another four child nodes. A 

final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.e., a 

coded video block. Syntax data associated with a coded bitstream may define a 

maximum number of times a treeblock may be split, and may also define a minimum 

size of the coding nodes.

[0061] A CU includes a coding node and prediction units (PUs) and transform units 

(TUs) associated with the coding node. A size of the CU corresponds to a size of the 

coding node and must be square in shape. The size of the CU may range from 8x8
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pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each 

CU may contain one or more PUs and one or more TUs. Syntax data associated with a 

CU may describe, for example, partitioning of the CU into one or more PUs. 

Partitioning modes may differ between whether the CU is skip or direct mode encoded, 

intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be 

partitioned to be non-square in shape. Syntax data associated with a CU may also 

describe, for example, partitioning of the CU into one or more TUs according to a 

quadtree. A TU can be square or non-square in shape.

[0062] The HEVC standard allows for transformations according to TUs, which may be 

different for different CUs. The TUs are typically sized based on the size of PUs within 

a given CU defined for a partitioned LCU, although this may not always be the case. 

The TUs are typically the same size or smaller than the PUs. In some examples, 

residual samples corresponding to a CU may be subdivided into smaller units using a 

quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT 

may be referred to as transform units (TUs). Pixel difference values associated with the 

TUs may be transformed to produce transform coefficients, which may be quantized. 

[0063] In general, a PU includes data related to the prediction process. For example, 

when the PU is intra-mode encoded, the PU may include data describing an intra­

prediction mode for the PU. As another example, when the PU is inter-mode encoded, 

the PU may include data defining a motion vector for the PU. The data defining the 

motion vector for a PU may describe, for example, a horizontal component of the 

motion vector, a vertical component of the motion vector, a resolution for the motion 

vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference 

picture to which the motion vector points, and/or a reference picture list for the motion 

vector.

[0064] In general, a TU is used for the transform and quantization processes. A given 

CU having one or more PUs may also include one or more TUs. Following prediction, 

video encoder 20 may calculate residual values corresponding to the PU. The residual 

values comprise pixel difference values that may be transformed into transform 

coefficients, quantized, and scanned using the TUs to produce serialized transform 

coefficients for entropy coding. This disclosure typically uses the term “video block” to 

refer to a coding node of a CU. In some specific cases, this disclosure may also use the 

term “video block” to refer to a treeblock, i.e., LCU, or a CU, which includes a coding 

node and PUs and TUs.
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[0065] A video sequence typically includes a series of video frames or pictures. A 

group of pictures (GOP) generally comprises a series of one or more of the video 

pictures. A GOP may include syntax data in a header of the GOP, a header of one or 

more of the pictures, or elsewhere, that describes a number of pictures included in the 

GOP. Each slice of a picture may include slice syntax data that describes an encoding 

mode for the respective slice. Video encoder 20 typically operates on video blocks 

within individual video slices in order to encode the video data. A video block may 

correspond to a coding node within a CU. The video blocks may have fixed or varying 

sizes, and may differ in size according to a specified coding standard.

[0066] As an example, the HM supports prediction in various PU sizes. Assuming that 

the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of 

2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or 

NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of 

2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU 

is not partitioned, while the other direction is partitioned into 25% and 75%. The 

portion of the CU corresponding to the 25% partition is indicated by an “n” followed by 

an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers 

to a 2Nx2N CU that is partitioned horizontally with a 2NxO.5N PU on top and a 

2Nxl.5N PU on bottom.

[0067] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to 

the pixel dimensions of a video block in terms of vertical and horizontal dimensions, 

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a 

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an 

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal 

direction, where N represents a nonnegative integer value. The pixels in a block may be 

arranged in rows and columns. Moreover, blocks need not necessarily have the same 

number of pixels in the horizontal direction as in the vertical direction. For example, 

blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0068] Following infia-predictive or inter-predictive coding using the PUs of a CU, 

video encoder 20 may calculate residual data for the TUs of the CU. The PUs may 

comprise pixel data in the spatial domain (also referred to as the pixel domain) and the 

TUs may comprise coefficients in the transform domain following application of a 

transform, e.g., a discrete cosine transform (DCT), an integer transform, a wavelet 

transform, or a conceptually similar transform to residual video data. The residual data
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may correspond to pixel differences between pixels of the unencoded picture and 

prediction values corresponding to the PUs. Video encoder 20 may form the TUs 

including the residual data for the CU, and then transform the TUs to produce transform 

coefficients for the CU.

[0069] Following any transforms to produce transform coefficients, video encoder 20 

may perform quantization of the transform coefficients. Quantization generally refers to 

a process in which transform coefficients are quantized to possibly reduce the amount of 

data used to represent the coefficients, providing further compression. The quantization 

process may reduce the bit depth associated with some or all of the coefficients. For 

example, an «-bit value may be rounded down to an m-bit value during quantization, 

where n is greater than m.

[0070] In some examples, video encoder 20 and video decoder 30 may utilize a 

predefined scan order to scan the quantized transform coefficients to produce a 

serialized vector that can be entropy encoded. In other examples, video encoder 20 and 

video decoder 30 may perform an adaptive scan. After scanning the quantized 

transform coefficients to form a one-dimensional vector, or during the scan, video 

encoder 20 may entropy encode the one-dimensional vector, e.g., according to context 

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability 

Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology. 

Video decoder 30 may entropy decode the coefficients, perform an inverse quantization 

process and an inverse transform process to reproduce residual data, and combine the 

residual data with predictive data to produce decoded video data. Video encoder 20 

may also entropy encode syntax elements associated with the encoded video data for use 

by video decoder 30 in decoding the video data.

[0071] To perform CABAC, video encoder 20 and video decoder 30 may assign a 

context within a context model to a symbol to be coded. The context may relate to, for 

example, whether neighboring values of the symbol are non-zero or not. In accordance 

with the techniques of this disclosure, video encoder 20 and/or video decoder 30 may be 

configured to determine context for entropy coding (e.g., entropy encoding or entropy 

decoding) a transform coefficient based on a region of a video block in which the 

transform coefficient occurs.

[0072] Video encoder 20 and video decoder 30 may be configured with definitions of 

various regions for video blocks (e.g., transform units). For example, video encoder 20
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and video decoder 30 may be configured with definitions of regions for various sizes of 

video blocks. In some examples, video encoder 20 may determine a method by which 

to divide a video block into regions and code data representative of how the block is to 

be divided. Each of the regions may be associated with a respective value and/or 

technique for determining context for transform coefficients occurring within the 

respective region.

[0073] For example, a particular region of a video block may be associated with a 

neighborhood-based context determination scheme, while another region of the video 

block may be associated with a position-based context determination scheme. As 

another example, a region of a video block may be associated with an offset to be 

applied to a context determined for transform coefficients located in that region. 

Different regions of the same video block may be associated with different offset values 

and/or different techniques for calculating context.

[0074] As one example, a video block may include two different regions: a first region 

including one or more sub-blocks (e.g., 4x4 transform coefficient sub-blocks) in an 

upper-left comer of the video block, and a second region including other sub-blocks of 

the video block that are not included in the first region. More specifically, video 

encoder 20 and video decoder 30 may determine an x- and y-coordinate of a sub-block 

and determine whether the sub-block is in the first region or the second region by 

comparing the sum of x and y to a threshold value. If the sum of x and y is less than the 

threshold, video encoder 20 and video decoder 30 may determine that the sub-block is 

in the first region, and otherwise, video encoder 20 and video decoder 30 may determine 

that the sub-block is in the second region. Video encoder 20 and video decoder 30 may 

determine context for coefficients of a video block based on whether the coefficients are 

in a sub-block of the first region or a sub-block of the second region.

[0075] For example, in some regions, the context may be a fixed context, in which 

video encoder 20 and video decoder 30 codes transform coefficients in such regions 

using the fixed context. That is, video encoder 20 and video decoder 30 may apply the 

same context to all transform coefficients in the region. Alternatively, each of the sub­

blocks in the region may be associated with the same method of determining context 

(e.g., the fixed context method), but different sub-blocks in the region may have 

different fixed contexts. Video encoder 20 and video decoder 30 may determine a fixed 

context for a sub-block based on the position of the sub-block in the region. As still 

another example, fixed contexts may be assigned to individual transform coefficient
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positions within the region. That is, video encoder 20 and video decoder 30 may 

determine context for coding a transform coefficient within the region based on a 

position of the transform coefficient in the video block, the sub-block, and/or the region. 

[0076] As another example, in some regions, a context model may be defined according 

to neighboring sub-blocks. For example, video encoder 20 and video decoder 30 may 

be configured with sets of contexts for each sub-block within a particular region. That 

is, each sub-block in the region may be associated with a respective set of contexts. 

Video encoder 20 and video decoder 30 may select an appropriate context from the set 

of contexts for each transform coefficient in the respective sub-block. The set of 

contexts for one sub-block may be different from the set of contexts for another sub­

block.

[0077] As yet another example, individual flags for each sub-block in a region may be 

coded representing whether there are any significant (i.e., non-zero) coefficients in the 

corresponding sub-block. These flags may be referred to as coded sub-block flags.

Such flags may be used for selecting context for coding transform coefficients in the 

sub-blocks. For example, video encoder 20 and video decoder 30 may determine 

context for coding transform coefficients in a sub-block based on the values of the flags 

of one or more neighboring sub-blocks. For example, the flags may have binary values 

of either 0 or 1, and video encoder 20 and video decoder 30 may determine the context 

for coding transform coefficients in a current sub-block based on the sum of the flag 

values for a right-neighboring sub-block and a below-neighboring sub-block (also 

referred to as a bottom-neighboring sub-block). Other formulas may also be used for 

calculating the context for a sub-block.

[0078] Video encoder 20 and video decoder 30 may be configured to implement any or 

all of the techniques of this disclosure, alone or in any combination. One example 

combination of these techniques is that video encoder 20 and video decoder 30 may be 

configured to divide a transform unit into sub-blocks (e.g., 4x4 pixel sub-blocks), and 

then determine context for coding data of a particular transform coefficient of a sub­

block based on both a position of the transform coefficient in the sub-block and based 

on coded block flags for one or more neighboring sub-blocks, e.g., a left-neighboring 

sub-block and a bottom-neighboring sub-block.

[0079] Video encoder 20 and video decoder 30 may be configured to code one or more 

syntax elements representative of transform coefficients using contexts determined in 

these various examples. Transform coefficients may include various types of syntax
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elements. For example, a transform coefficient may include a significant coefficient 

flag (significant coeff flag) indicative of whether the transform coefficient has a non­

zero value (i.e., is significant). If the transform coefficient is significant, the transform 

coefficient may include a sign value (e.g., coeff_sign_flag) indicating whether the value 

of the transform coefficient is greater than or less than 0 and a value indicative of 

whether the absolute value of the transform coefficient is greater than 1 (e.g., 

coeffabslevelgreaterlflag). If the transform coefficient has an absolute value 

greater than 1, the transform coefficient may include a value indicative of whether the 

transform coefficient has an absolute value greater than 2 (e.g.,

coeff_abs_level_greater2_flag). If the transform coefficient has an absolute value 

greater than 2, the transform coefficient may include a value indicative of the absolute 

value of the transform coefficient minus two (e.g., coeffabslevelremaining).

[0080] A CABAC coder of video encoder 20 and video decoder 30 may code any or all 

of these values using contexts determined in accordance with the techniques of this 

disclosure. In addition, or in the alternative, video encoder 20 and video decoder 30 

may code data indicative of a position of a last significant coefficient (e.g., 

last_significant_coeff_x_prefix, last_significant_coeff_x_suffix,

last_significant_coeff_y_prefix, and last_significant_coeff_y_suffix) using context 

determined in accordance with the techniques of this disclosure.

[0081] Video encoder 20 and video decoder 30 may be configured to perform any one 

or more of the techniques described in this disclosure, alone or in any combination. 

Various techniques for determining a context for coding a transform coefficient of a 

video block based on a region of the video block in which the transform coefficient 

occurs and entropy coding the transform coefficient using the determined context are 

described below. Examples of such techniques are described with respect to FIGS. 9­

14 below. In general, coding the transform coefficient using the determined context 

includes coding one or more syntax elements of the transform coefficient using the 

determined context. Determining the context generally includes determining a region in 

which the transform coefficient occurs and determining the context based on the region. 

For example, the region may be associated with a particular context or set of contexts, 

and/or associated with one or more techniques for determining the context.

[0082] FIG. 2 is a block diagram illustrating an example video encoder 20 that may 

implement the inter-prediction techniques described in this disclosure. Video encoder 

20 may perform intra- and inter-coding of video blocks within video slices.
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Intra-coding relies on spatial prediction to reduce or remove spatial redundancy in video 

within a given video frame or picture. Inter-coding relies on temporal prediction to 

reduce or remove temporal redundancy in video within adjacent frames or pictures of a 

video sequence. Intra-mode (I mode) may refer to any of several spatial based 

compression modes. Inter-modes, such as uni-directional prediction (P mode) or bi­

prediction (B mode), may refer to any of several temporal-based compression modes. 

[0083] In the example of FIG. 2, video encoder 20 includes a mode select unit 35, 

prediction processor 41, reference picture memory 64, summer 50, transform processing 

unit 52, quantization unit 54, and entropy encoding unit 56. Prediction processor 41 

includes motion estimation unit 42, motion compensation unit 44, and intra prediction 

unit 46. For video block reconstruction, video encoder 20 also includes inverse 

quantization unit 58, inverse transform unit 60, and summer 62. A deblocking filter 

(not shown in FIG. 2) may also be included to filter block boundaries to remove 

blockiness artifacts from reconstructed video. If desired, the deblocking filter would 

typically filter the output of summer 62. Additional loop filters (in loop or post loop) 

may also be used in addition to the deblocking filter.

[0084] As shown in FIG. 2, video encoder 20 receives video data, and mode select unit 

35 partitions the data into video blocks. This partitioning may also include partitioning 

into slices, tiles, or other larger units, as wells as video block partitioning, e.g., 

according to a quadtree structure of LCUs and CUs. Video encoder 20 generally 

illustrates the components that encode video blocks within a video slice to be encoded. 

The slice may be divided into multiple video blocks (and possibly into sets of video 

blocks referred to as tiles). Prediction processor 41 may select one of a plurality of 

possible coding modes, such as one of a plurality of intra coding modes or one of a 

plurality of inter coding modes, for the current video block based on error results (e.g., 

coding rate and the level of distortion). Prediction processor 41 may provide the 

resulting intra- or inter-coded block to summer 50 to generate residual block data and to 

summer 62 to reconstruct the encoded block for use as a reference picture.

[0085] Intra prediction unit 46 within prediction processor 41 may perform intra­

predictive coding of the current video block relative to one or more neighboring blocks 

in the same frame or slice as the current block to be coded to provide spatial 

compression. Motion estimation unit 42 and motion compensation unit 44 within 

prediction processor 41 perform inter-predictive coding of the current video block
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relative to one or more predictive blocks in one or more reference pictures to provide 

temporal compression.

[0086] Motion estimation unit 42 may be configured to determine the inter-prediction 

mode for a video slice according to a predetermined pattern for a video sequence. The 

predetermined pattern may designate video slices in the sequence as P slices, B slices or 

GPB slices. Motion estimation unit 42 and motion compensation unit 44 may be highly 

integrated, but are illustrated separately for conceptual purposes. Motion estimation, 

performed by motion estimation unit 42, is the process of generating motion vectors, 

which estimate motion for video blocks. A motion vector, for example, may indicate 

the displacement of a PU of a video block within a current video frame or picture 

relative to a predictive block within a reference picture.

[0087] A predictive block is a block that is found to closely match the PU of the video 

block to be coded in terms of pixel difference, which may be determined by sum of 

absolute difference (SAD), sum of square difference (SSD), or other difference metrics. 

In some examples, video encoder 20 may calculate values for sub-integer pixel positions 

of reference pictures stored in reference picture memory 64. For example, video 

encoder 20 may interpolate values of one-quarter pixel positions, one-eighth pixel 

positions, or other fractional pixel positions of the reference picture. Therefore, motion 

estimation unit 42 may perform a motion search relative to the full pixel positions and 

fractional pixel positions and output a motion vector with fractional pixel precision. 

[0088] Motion estimation unit 42 calculates a motion vector for a PU of a video block 

in an inter-coded slice by comparing the position of the PU to the position of a 

predictive block of a reference picture. The reference picture may be selected from a 

first reference picture list (List 0) or a second reference picture list (List 1), each of 

which identify one or more reference pictures stored in reference picture memory 64. 

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit 

56 and motion compensation unit 44.

[0089] Motion compensation, performed by motion compensation unit 44, may involve 

fetching or generating the predictive block based on the motion vector determined by 

motion estimation, possibly performing interpolations to sub-pixel precision. Upon 

receiving the motion vector for the PU of the current video block, motion compensation 

unit 44 may locate the predictive block to which the motion vector points in one of the 

reference picture lists. Motion compensation unit 44 may also generate syntax elements
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associated with the video blocks and the video slice for use by video decoder 30 in 

decoding the video blocks of the video slice.

[0090] Intra prediction unit 46 may intra-predict a current block, as an alternative to the 

inter-prediction performed by motion estimation unit 42 and motion compensation unit 

44, as described above. In particular, intra prediction unit 46 may determine an intra­

prediction mode to use to encode a current block. In some examples, intra prediction 

unit 46 may encode a current block using various intra-prediction modes, e.g., during 

separate encoding passes, and intra prediction unit 46 (or mode select unit 35, in some 

examples) may select an appropriate intra-prediction mode to use from the tested 

modes. For example, intra prediction unit 46 may calculate rate-distortion values using 

a rate-distortion analysis for the various tested intra-prediction modes, and select the 

intra-prediction mode having the best rate-distortion characteristics among the tested 

modes. Rate-distortion analysis generally determines an amount of distortion (or error) 

between an encoded block and an original, unencoded block that was encoded to 

produce the encoded block, as well as a bit rate (that is, a number of bits) used to 

produce the encoded block. Intra prediction unit 46 may calculate ratios from the 

distortions and rates for the various encoded blocks to determine which intra-prediction 

mode exhibits the best rate-distortion value for the block.

[0091] In any case, after selecting an intra-prediction mode for a block, intra prediction 

unit 46 may provide information indicative of the selected intra-prediction mode for the 

block to entropy encoding unit 56. Entropy encoding unit 56 may encode the 

information indicating the selected intra-prediction mode in accordance with the 

techniques of this disclosure. Video encoder 20 may include in the transmitted 

bitstream configuration data, which may include a plurality of intra-prediction mode 

index tables and a plurality of modified intra-prediction mode index tables (also referred 

to as codeword mapping tables), definitions of encoding contexts for various blocks, 

and indications of a most probable intra-prediction mode, an intra-prediction mode 

index table, and a modified intra-prediction mode index table to use for each of the 

contexts.

[0092] After prediction processor 41 generates the predictive block for the current video 

block via either inter-prediction or intra-prediction, video encoder 20 forms a residual 

video block by subtracting the predictive block from the current video block. Summer 

50 represents the unit that performs this calculation. The residual video data in the 

residual block may be included in one or more TUs and applied to transform processing
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unit 52. Transform processing unit 52 generally converts the residual video data from a 

pixel domain to a transform domain, such as a frequency domain. Transform processing 

unit 52 may transform the residual video data into residual transform coefficients using 

a transform, such as a discrete cosine transform (DCT) or a conceptually similar 

transform. Alternatively, transform processing unit 52 may apply a 2-dimensional (2­

D) transform (in both the horizontal and vertical direction) to the residual data in the 

TUs.

[0093] Transform processing unit 52 may send the resulting transform coefficients to 

quantization unit 54. Quantization unit 54 quantizes the transform coefficients to 

further reduce the bit rate. The quantization process may reduce the bit depth associated 

with some or all of the coefficients. The degree of quantization may be modified by 

adjusting a quantization parameter.

[0094] Following quantization, entropy encoding unit 56 entropy encodes the quantized 

transform coefficients. For example, entropy encoding unit 56 may perform context 

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability 

interval partitioning entropy (PIPE) coding or another entropy encoding methodology or 

technique. Such entropy encoding generally includes scanning the quantized transform 

coefficients (generally referred to herein simply as “transform coefficients” for brevity) 

one or more times, and entropy coding syntax elements for the transform coefficients 

during each scan, such as syntax elements indicating whether corresponding transform 

coefficients are significant, have an absolute value greater than 1 or 2, the absolute 

value (or a portion thereof, e.g., a portion greater than 2) and sign of significant 

coefficients.

[0095] In accordance with the techniques of this disclosure, entropy encoding unit 56 

may determine a context for coding (that is, entropy encoding) a transform coefficient 

of a video block (e.g., a transform unit) based on a region of the video block in which 

the transform coefficient occurs. For example, during the scan, entropy encoding unit 

56 may determine a position of the transform coefficient in the video block, and 

determine in which region the position occurs. In addition, entropy encoding unit 56 

may include configuration data defining regions for a video block.

[0096] For example, entropy encoding unit 56 may be configured with a threshold 

value. In this example, entropy encoding unit 56 may determine whether x- and y- 

coordinates defining the position of the transform coefficient have a sum (that is, x+y)
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that is greater than the threshold value. A first region, in this example, corresponds to 

transform coefficients for which the sum of the x- and y-coordinate values is less than 

the threshold value, and a second region corresponds to transform coefficients for which 

the sum of the x- and y-coordinate values is greater than or equal to the threshold value. 

Alternatively, multiple threshold values may be used to define multiple regions. An 

example of regions defined in this manner is shown in FIG. 9B, which is described in 

greater detail below.

[0097] As another example, entropy encoding unit 56 may be configured to determine 

the position of a sub-block, including the transform coefficient, in the video block. A 

sub-block may correspond to a 4x4 transform coefficient sub-block. That is, a video 

block may include a plurality of non-overlapping sub-blocks, each having the same size, 

e.g., 4x4 transform coefficients. To determine a region for a sub-block, entropy 

encoding unit 56 may compare the sum of an x- and y-coordinate of the sub-block (e.g., 

a particular transform coefficient of the sub-block, such as an upper-left transform 

coefficient of the sub-block) to the threshold value. Whether the sum of the x- and y- 

coordinates is less than the threshold value or not may be indicative of whether the 

transform coefficients of the sub-block are included in a first region or a second region. 

[0098] For example, let Cij represent the position of a sub-block having an upper-left 

transform coefficient at position (i, j), where x=i and y=j. Further, let T define the 

threshold value. Entropy encoding unit 56 may determine a region in which transform 

coefficients of the sub-block occur using the following pseudocode:

(i+j<T) ? region 1 : region2.

[0099] In this example, when i+j is less than T (that is, the sum of the x- and y- 

coordinates of the sub-block is less than the threshold value), entropy encoding unit 56 

determines that all transform coefficients of the sub-block occur in region 1, whereas 

when i+j is greater than or equal to T (that is, the sum of the x- and y-coordinates of the 

sub-block is greater than or equal to the threshold value), entropy encoding unit 56 

determines that all transform coefficients of the sub-block occur in region 2. These and 

other examples of regions are described in greater detail below with respect to FIGS. 9­

14.

[0100] Entropy encoding unit 56 may be configured to determine contexts based on 

regions in various ways. For example, entropy encoding unit 56 may determine context 

for coding a transform coefficient, based on the region in which the transform
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coefficient occurs, using the location of the transform coefficient in the video block or 

the position of the 4x4 sub-block in which the transform coefficient occurs.

[0101] Alternatively, a context model may be defined according to neighboring 4x4 

sub-blocks. For example, entropy encoding unit 56 may assign to each 4x4 sub-block a 

respective set of available contexts, and select one of the contexts for the current 

transform coefficient to be coded in the sub-block, e.g., based on a position of the 

transform coefficient in the sub-block. The sets of contexts may be assigned to 

respective sub-blocks, such that each sub-block may have a different set of available 

contexts. As still another example, entropy encoding unit 56 may calculate a context as 

ctx= Right4x4SubBlockFlag + Bottom4x4SubBlockFlag. In this case, 

Right4x4SubBlockFlag represents a coded sub-block flag for a right-neighboring sub­

block, while Bottom4x4SubBlockFlag represents a coded sub-block flag for a bottom­

neighboring coded sub-block flag.

[0102] In some examples, entropy encoding unit 56 may apply an offset to the 

determined context for entropy encoding a transform coefficient, and may further 

determine the offset to apply based on the region in which the transform coefficient 

occurs. That is, entropy encoding unit 56 may calculate a base context in the same 

general manner for coefficients of two or more regions, but different regions may have 

different corresponding offset values. Thus, entropy encoding unit 56 may apply the 

offset to the calculated context value based on the offset to which the region is mapped 

(that is, the offset with which the region is associated).

[0103] Entropy encoding unit 56 may determine whether a transform coefficient is a 

DC (direct current) transform coefficient (typically presented in the upper-left comer of 

the transform block), and select the context for coding the transform coefficient based 

on the region in which the transform coefficient occurs as well as whether the transform 

coefficient is the DC transform coefficient or not. For example, entropy encoding unit 

56 may determine contexts for transform coefficients using shared contexts for 

dedicated positions. That is, the shared context may comprise the same context that is 

applied to all transform coefficients occurring at a particular position, e.g., an upper-left 

comer of a sub-block. Thus, the shared context may further include an indication of a 

particular context to be applied when coding a DC transform coefficient, as opposed to 

non-DC transform coefficients occurring at the upper-left position of other sub-blocks. 

[0104] Additionally or alternatively, shared context may comprise shared contexts 

among different sizes of blocks for transform coefficients occurring at particular
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positions of the blocks. For example, entropy encoding unit 56 may be configured to 

apply the same context when coding DC transform coefficients of video blocks (e.g., 

TUs) of any size, e.g., 4x4, 8x8, 16x16, or the like. That is, entropy encoding unit 56 

may include data that maps the DC transform coefficient, for blocks of any size, to the 

same context data for coding the DC transform coefficient. In other words, entropy 

encoding unit 56 may be configured to code the DC transform coefficient using a 

context determined for the DC transform coefficient, without regard for a size of the 

current video block being coded. Typically, the DC transform coefficient is the upper- 

left coefficient of the video block.

[0105] Following the entropy encoding by entropy encoding unit 56, the encoded 

bitstream may be transmitted to video decoder 30, or archived for later transmission or 

retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode 

motion vectors, intra-mode indications, and the other syntax elements for the current 

video slice being coded.

[0106] Inverse quantization unit 58 and inverse transform unit 60 apply inverse 

quantization and inverse transformation, respectively, to reconstruct the residual block 

in the pixel domain for later use as a reference block of a reference picture. Motion 

compensation unit 44 may calculate a reference block by adding the residual block to a 

predictive block of one of the reference pictures within one of the reference picture lists 

Motion compensation unit 44 may also apply one or more interpolation filters to the 

reconstructed residual block to calculate sub-integer pixel values for use in motion 

estimation. Summer 62 adds the reconstructed residual block to the motion 

compensated prediction block produced by motion compensation unit 44 to produce a 

reference block for storage in reference picture memory 64. The reference block may 

be used by motion estimation unit 42 and motion compensation unit 44 as a reference 

block to inter-predict a block in a subsequent video frame or picture.

[0107] In this manner, video encoder 20 represents an example of a video coder 

configured to determine a context for coding a transform coefficient of a video block 

based on a region of the video block in which the transform coefficient occurs, and 

entropy code the transform coefficient using the determined context. The region may 

comprise one of a first region comprising one or more upper-left 4x4 sub-blocks of 

transform coefficients of the video block and a second region comprising transform 

coefficients of the video block outside the first region.



WO 2013/106710 PCT/US2013/021234
26

[0108] FIG. 3 is a block diagram illustrating an example video decoder 30 that may 

implement the inter-prediction techniques described in this disclosure. In the example 

of FIG. 3, video decoder 30 includes an entropy decoding unit 80, prediction processor 

81, inverse quantization unit 86, inverse transformation unit 88, summer 90, and 

reference picture memory 92. Prediction processor 81 includes motion compensation 

unit 82 and intra prediction unit 84. Video decoder 30 may, in some examples, perform 

a decoding pass generally reciprocal to the encoding pass described with respect to 

video encoder 20 from FIG. 2.

[0109] During the decoding process, video decoder 30 receives an encoded video 

bitstream that represents video blocks of an encoded video slice and associated syntax 

elements from video encoder 20. Entropy decoding unit 80 of video decoder 30 entropy 

decodes the bitstream to generate quantized coefficients, motion vectors, and other 

syntax elements. Entropy decoding unit 80 forwards the motion vectors, intra-mode 

indications, and other prediction-related syntax elements to prediction processor 81. 

Entropy decoding unit 80 forwards quantized coefficients, in the form of a block (e.g., a 

TU) to inverse quantization unit 86. Video decoder 30 may receive the syntax elements 

at the video slice level and/or the video block level.

[0110] In particular, in accordance with the techniques of this disclosure, entropy 

decoding unit 80 may determine context for entropy decoding transform coefficients 

based on a region of a block in which the transform coefficients occur. Specifically, 

entropy decoding unit 80 may determine the context based on a region of the block in 

which the transform coefficient will occur once the transform coefficient is positioned 

within the block. Entropy decoding unit 80 may be configured to determine the regions 

as explained with respect to FIGS. 9-14 below, or other such regions. For example, as 

shown in FIG. 9A, entropy decoding unit 80 may be configured to determine whether a 

transform coefficient will occur in a first region including one or more sub-blocks in an 

upper-left comer of the block, or a second region including sub-blocks outside the first 

region, and determine the context based on whether the transform coefficient will occur 

in the first region or the second region.

[0111] Likewise, entropy decoding unit 80 may determine the context based on the 

region, in that entropy decoding unit 80 may be configured with one or more various 

techniques for calculating or determining the context associated with coefficients in 

each region. That is, each region may be associated with one or more techniques for 

calculating or determining context. For example, a region may be associated with a
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context that is shared among one or more transform coefficients. As another example, a 

region may be associated with contexts that are shared among sub-blocks of the region. 

As still another example, a region may be associated with an offset value to be applied 

to a context value calculated for a transform coefficient in the region. Entropy decoding 

unit 80 may be configured to determine the context for decoding a transform coefficient 

using these or other techniques as described herein, based on the region in which the 

transform coefficient occurs. Entropy decoding unit 80 may then entropy decode the 

transform coefficient using the determined context.

[0112] Additionally or alternatively, shared context may comprise shared contexts 

among different sizes of blocks for transform coefficients occurring at particular 

positions of the blocks. For example, entropy decoding unit 80 may be configured to 

apply the same context when coding DC transform coefficients of video blocks (e.g., 

TUs) of any size, e.g., 4x4, 8x8, 16x16, or the like. That is, entropy decoding unit 80 

may include data that maps the DC transform coefficient, for blocks of any size, to the 

same context data for coding the DC transform coefficient. In other words, entropy 

decoding unit 80 may be configured to code the DC transform coefficient using a 

context determined for the DC transform coefficient, without regard for a size of the 

current video block being coded. Typically, the DC transform coefficient is the upper- 

left coefficient of the video block.

[0113] When the video slice is coded as an infia-coded (I) slice, intra prediction unit 84 

of prediction processor 81 may generate prediction data for a video block of the current 

video slice based on a signaled intra prediction mode and data from previously decoded 

blocks of the current frame or picture. When the video frame is coded as an inter-coded 

(i.e., Β, P or GPB) slice, motion compensation unit 82 of prediction processor 81 

produces predictive blocks for a video block of the current video slice based on the 

motion vectors and other syntax elements received from entropy decoding unit 80. The 

predictive blocks may be produced from one of the reference pictures within one of the 

reference picture lists. Video decoder 30 may construct the reference frame lists, Fist 0 

and Fist 1, using default construction techniques based on reference pictures stored in 

reference picture memory 92.

[0114] Motion compensation unit 82 determines prediction information for a video 

block of the current video slice by parsing the motion vectors and other syntax elements, 

and uses the prediction information to produce the predictive blocks for the current 

video block being decoded. For example, motion compensation unit 82 uses some of
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the received syntax elements to determine a prediction mode (e.g., intra- or inter­

prediction) used to code the video blocks of the video slice, an inter-prediction slice 

type (e.g., B slice, P slice, or GPB slice), construction information for one or more of 

the reference picture lists for the slice, motion vectors for each inter-encoded video 

block of the slice, inter-prediction status for each inter-coded video block of the slice, 

and other information to decode the video blocks in the current video slice.

[0115] Motion compensation unit 82 may also perform interpolation based on 

interpolation filters. Motion compensation unit 82 may use interpolation filters as used 

by video encoder 20 during encoding of the video blocks to calculate interpolated values 

for sub-integer pixels of reference blocks. In this case, motion compensation unit 82 

may determine the interpolation filters used by video encoder 20 from the received 

syntax elements and use the interpolation filters to produce predictive blocks.

[0116] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized 

transform coefficients provided in the bitstream and decoded by entropy decoding unit 

80. The inverse quantization process may include use of a quantization parameter 

calculated by video encoder 20 for each video block in the video slice to determine a 

degree of quantization and, likewise, a degree of inverse quantization that should be 

applied. Inverse transform unit 88 applies an inverse transform, e.g., an inverse DCT, 

an inverse integer transform, or a conceptually similar inverse transform process, to the 

transform coefficients in order to produce residual blocks in the pixel domain.

[0117] In some cases, inverse transform unit 88 may apply a two-dimensional (2-D) 

inverse transform (in both the horizontal and vertical direction) to the coefficients. 

According to the techniques of this disclosure, inverse transform unit 88 may instead 

apply a horizontal one-dimensional (1-D) inverse transform, a vertical 1-D inverse 

transform, or no transform to the residual data in each of the TUs. The type of 

transform applied to the residual data at video encoder 20 may be signaled to video 

decoder 30 to apply an appropriate type of inverse transform to the transform 

coefficients.

[0118] After motion compensation unit 82 generates the predictive block for the current 

video block based on the motion vectors and other syntax elements, video decoder 30 

forms a decoded video block by summing the residual blocks from inverse transform 

unit 88 with the corresponding predictive blocks generated by motion compensation 

unit 82. Summer 90 represents the component or components that perform this 

summation operation. If desired, a deblocking filter may also be applied to filter the
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decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the 

coding loop or after the coding loop) may also be used to smooth pixel transitions, or 

otherwise improve the video quality. The decoded video blocks in a given frame or 

picture are then stored in reference picture memory 92, which stores reference pictures 

used for subsequent motion compensation. Reference picture memory 92 also stores 

decoded video for later presentation on a display device, such as display device 32 of 

FIG. 1.

[0119] In this manner, video decoder 30 represents an example of a video coder 

configured to determine a context for coding a transform coefficient of a video block 

based on a region of the video block in which the transform coefficient occurs, and 

entropy code the transform coefficient using the determined context. The region may 

comprise one of a first region comprising one or more upper-left 4x4 sub-blocks of 

transform coefficients of the video block and a second region comprising transform 

coefficients of the video block outside the first region.

[0120] FIG. 4 is a conceptual diagram that illustrates a relation between transform 

coefficients in a video block and a significance map associated with the video block. As 

illustrated in FIG. 4, the significance map includes a “1” to indicate each instance of a 

significant coefficient value, i.e., a value greater than zero, in the video block. The 

significance map may be signaled in a bitstream that is decodable by a video decoder, 

such as video decoder 30, to determine the location of the significant, i.e., greater than 

zero, coefficients in the video block to be decoded. More specifically, a position of a 

last non-zero coefficient within the video block may be signaled in the bitstream. The 

positional of the last non-zero coefficient in the video block depends on the scanning 

order used for the video block. Additional syntax elements may be signaled to indicate 

the other significant coefficients relative to the last non-zero coefficient according to a 

known or knowable scanning order.

[0121] FIGS. 5A-5D are conceptual diagrams that illustrate examples of blocks of 

video data scanned using a zig-zag scanning order, a horizontal scanning order, a 

vertical scanning order, and a diagonal scanning order. As shown in FIGS. 5A-5D, an 

8x8 block of video data, e.g., a TU of a CU, may include sixty-four transform 

coefficients in corresponding block positions, denoted with circles. In this example, 

blocks 100, 102, 104 and 106 each have a size of 8x8 and, therefore, include sixty-four 

transform coefficients generated using prediction techniques previously described.
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[0122] According to the techniques described in this disclosure, the sixty-four transform 

coefficients in each of blocks 100, 102, 104 and 106 may have been transformed, or 

may be inverse transformed, using one of a 2-D transform, a horizontal 1-D transform, 

and a vertical 1-D transform, or the transform coefficients may not be transformed at all. 

Whether transformed or not, the coefficients in each of video blocks 100, 102, 104 and 

106 are scanned in preparation for entropy coding using one of the zig-zag scanning 

order, the horizontal scanning order, the vertical scanning order, and the diagonal 

scanning order.

[0123] As shown in FIG. 5 A, the scanning order associated with block 100 is the zig­

zag scanning order. The zig-zag scanning order causes a video coder, such as video 

encoder 20 or video decoder 30, to scan the quantized transform coefficients of block 

100 in a diagonal manner as indicated by the arrows in FIG. 5A. Similarly in FIG. 5D, 

the diagonal scanning order causes a video coder to scan the quantized transform 

coefficients of block 106 in a diagonal manner as indicated by the arrows in FIG. 5D.

As shown in FIGS. 5B and 5C, the scanning orders associated with blocks 102 and 104 

are the horizontal scanning order and the vertical scanning order, respectively. The 

horizontal scanning order causes a video coder to scan quantized transform coefficients 

of block 102 in a horizontal line-by-line, or “raster” manner, while the vertical scanning 

order causes a video coder to scan the quantized transform coefficients of block 104 in a 

vertical line-by-line, or “rotated raster” manner, also as indicated by the arrows in FIGS. 

5B and 5C.

[0124] In other examples, as described above, a block may have a size that is smaller or 

larger than the size of blocks 100, 102, 104 and 106, and may include more or fewer 

quantized transform coefficients and corresponding block positions. In these examples, 

a scanning order associated with a particular block may causes a video coder to scan the 

quantized transform coefficients of the block in a substantially similar manner as shown 

in the examples of 8x8 blocks of FIGS. 5A-5D, e.g., a 4x4 block or a 16x16 block, may 

be scanned following any of the scanning orders previously described.

[0125] Although the direction of scans in FIGS. 5A-5D generally is shown as 

proceeding from low-frequency coefficients to high-frequency coefficients, in other 

examples, video encoder 20 and video decoder 30 may be configured to perform an 

inverse scan order, in which the scan may proceed from the high-frequency coefficients 

to the low-frequency coefficients. That is, video encoder 20 and video decoder 30 may 

scan the coefficients in the reverse order of that shown in FIGS. 5A-5D.
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[0126] FIG. 6 is a conceptual diagram that illustrates an example video block 110 

divided into sub-blocks for transform coefficient coding. In the current HM, a sub­

block concept is used for transform coefficient coding. A video coder may sub-divide 

any transform unit (TU) that is larger than a determined sub-block size into sub-blocks. 

For example, video block 110 is divided into four 4x4 sub-blocks.

[0127] In the illustrated example of FIG. 6, the video coder divides video block 110 into 

4x4 sub-blocks. In other examples, the video coder may divide video blocks into sub­

blocks of other sizes, e.g., 8x8, 16x16, and the like. If the video coder uses the same 

sub-block size for all TUs of a frame or slice, gains may be achieved in a hardware 

implementation due to the uniformity achieved with the sub-block sizes. For example, 

all processing may be split in such sub-blocks, regardless of the TU size. A uniform 

sub-block size is not necessary, however, to carry out the techniques of this disclosure. 

[0128] For coefficient coding, a video coder may scan each 4x4 sub-block of video 

block 110 using a diagonal scanning order, as shown on FIG. 6. In some examples, the 

video coder may use a unified scan for scanning transform coefficients of each sub­

block. In this case, the same scan order is used for significance information, i.e., a 

significance map, coefficient levels, sign, and the like. In a first example, as shown in 

FIG. 6, the video coder may scan the transform coefficients using a diagonal scan. In 

another example, the video coder may scan the transform coefficients in an order that is 

opposite of that shown in FIG. 6, e.g., a reverse diagonal scan that begins in the lower 

right comer and proceeds to the upper left comer. In other examples, the video coder 

may scan the transform coefficients using a zig-zag, horizontal, or vertical scan. Other 

scanning directions/orientations are also possible.

[0129] For ease of explanation, this disclosure describes sub-blocks of a video block as 

being 4x4 sub-blocks. The techniques of this disclosure, however, may also be applied 

with respect to sub-blocks of different sizes, e.g., 8x8, 16x16, and the like. For every 

4x4 block a significant_coeffgroup Jiag is coded, and if there is at least one nonzero 

coefficient in the sub-block this flag is set to one, otherwise it is equal to zero. If 

significant_coeffgroup Jiag is nonzero for a given sub-block, the 4x4 sub-block is 

scanned in the backward diagonal order and significant_coeffJiag is coded for every 

coefficient of the sub-block to indicate the significance of the coefficient. The group of 

these flags may be referred to as a significance map for the video block. In some 

example, instead of explicitly signaling the significance map, the

significant_coeffgroup Jiag may be implicitly derived using neighboring 4x4 sub-block
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flags, or when the 4x4 sub-block contains the last coefficient or a DC coefficient. 

Absolute values of the coefficients are also coded, i.e., coefficient levels.

[0130] Although the direction of the scan in FIG. 6 is generally shown as proceeding 

from low-frequency coefficients to high-frequency coefficients, in other examples, 

video encoder 20 and video decoder 30 may be configured to perform an inverse scan 

order, in which the scan may proceed from the high-frequency coefficients to the low- 

frequency coefficients. That is, video encoder 20 and video decoder 30 may scan the 

coefficients in the reverse order of that shown in FIG 6.

[0131] FIG. 7 is a conceptual diagram that illustrates an example five-point support 

neighborhood used to define a context model for selection of contexts for a significance 

map of coefficients in a video block 112 scanned using a reverse diagonal scanning 

order. As noted above, for context-adaptive coding, transform coefficients may be 

coded based on a context model that describes probabilities of the transform coefficient 

having a value of 0 or a value of 1. With respect to significance map coding, the 

context model describes the probabilities of whether a particular transform coefficient is 

significant, i.e., non-zero.

[0132] For the significance map coding, a five-point support S may be used to define a 

context model to code the significance map of the transform coefficients of video block

112. The five-point support may be referred to as a “context support neighborhood,” or 

simply a “support neighborhood.” That is, a video coder may look to the support to 

determine the probability of the significance of a current position being one or zero.

The context support neighborhood defines the neighboring coefficients (e.g., which may 

include significance information) that may be used as contexts for coding a current 

coefficient. According to some examples of this disclosure, the context support 

neighborhood may be different for different coefficient positions within a block or sub­

block.

[0133] In the example shown in FIG. 7, the five-point support S is represented by a dot 

surrounded by a square, relative to a current or “target” position represented by a dot 

surrounded by a circle. Context model Ctx (equation (1) below) may be defined as a 

sum of the significant flags in every point of the support, where a significance flag may 

be set to “1” if the corresponding transform coefficient is nonzero, and set to “0” 

otherwise.
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Ctx = ^coefp\=V)
P<eS

Accordingly, the significance flag count can be less or equal to the support cardinality. 

The value of ctx is not necessarily the raw context value, but may be applied to a base 

context value, in the form of an offset, to derive the context to be used to code data for a 

particular coefficient.

[0134] However, the support S shown in FIG. 7 may not be suitable when calculating 

context for more than one transform coefficient (e.g., significance information 

associated with the transform coefficient) in parallel (referred to as “parallel 

significance context calculation” or simply “parallel context calculation”). For 

example, using the support S shown in FIG. 7 may impede the ability of the video coder 

to calculate contexts for significance information in parallel, because all data in the 

support S must be available (e.g., already coded) for enabling parallel calculation of 

contexts. In some instances, as described below with respect to FIG. 8A, a coder may 

be forced to wait for a support element in support S to finish coding before determining 

the context for another support element in support S. This delay reduces the ability of 

the video coder to efficiently process significance information.

[0135] FIGS. 8A and 8B are conceptual diagrams that illustrate context dependency 

within the five-point support. For example, to calculate a significance context for the 

circled position, it may be necessary to parse the significance flag of the position within 

the support S depicted by a diamond (shown in FIG. 8A). Such parsing may introduce a 

delay if there is a requirement to calculate significance contexts of two coefficients in 

parallel, because the diamond is positioned immediately before the circled element in 

scanning order. That is, the context of the circled position cannot be calculated at the 

same time as the position marked by a diamond, because the circled position depends on 

the position marked by the diamond, and therefore, the position marked by a diamond 

must be coded prior to determining the context for the circled position.

[0136] To resolve this dependency, certain elements may be removed from support S, 

making the support with a so called “hole” (non-filled dot surrounded by a triangle, 

shown in FIG. 8B). For example, the significance flag in the hole is skipped and not 

taken into account for the context calculation (i.e., assumed to be zero). Accordingly, 

there is no need to parse the significance flag in the hole position. The 5-point support 

shape depends on the position to allow for better parallel processing.
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[0137] FIGS. 9A and 9B are conceptual diagrams that illustrate example divisions of a 

video block into two or more regions. In the current HM, neighborhood context 

modeling is used for TU sizes greater than 8x8 (that is, 16x16, 32x32 and the non­

square transform sizes 16x4, 4x16, 32x8 and 8x32) with the 5-point support. However, 

context modeling with the 5-point support may increase the complexity of the context 

calculations in the larger block sizes. Region R1 of FIG. 9A represents an example of a 

region including one or more upper-left 4x4 sub-blocks of transform coefficients of a 

video block, while region R2 of FIG. 9A represents an example of a region including 

transform coefficients of the video block outside region R1. FIG. 9A also represents an 

example in which a plurality of regions comprise respective sets of one or more sub­

blocks.

[0138] In accordance with the techniques described in this disclosure, a video coder, 

such as video encoder 20 or video decoder 30, may divide a video block into regions R 

(e.g., as shown in FIGS. 9A and 9B) and use different context assignment procedures 

for each of the different regions. For example, some regions may use fixed or position- 

based context and some regions may use neighborhood-based context. As illustrated in 

FIG. 9A, the regions may be based on 4x4 sub-blocks such that entire sub-blocks are 

included in one region or another. Also, the division into the regions may be flexible in 

some examples. As illustrated in FIG. 9B, the video block may be divided into regions 

in the diagonal direction such that portions of sub-blocks may be included in two 

different regions. In other examples, the division might be dependent on the coefficient 

positions or the position of the 4x4 sub-block containing this coefficient.

[0139] In some examples, context may be defined according to the coefficient position 

in the video block, or according to the position of the 4x4 sub-block that contains this 

coefficient. Alternatively, the context model might be defined according to the 

neighbor 4x4 sub-blocks. For example, every coefficient within same 4x4 sub-block 

can use one or several contexts, coefficients of the next 4x4 sub-block can use also one 

or several contexts. However, contexts of one 4x4 sub-block might be different from 

previous 4x4 sub-block based contexts. Alternatively, contexts might be calculated as 

Ctx = Right4x4SubBlockFlag + Bottom4x4SubBlockFlag, or similar formulas 

depending on the neighborhood. Again, the Right4x4SubBlockFlag may represent a 

coded sub-block flag for a right-neighboring sub-block (e.g., indicating whether the 

right-neighboring, 4x4 sub-block includes at least one non-zero coefficient), and the 

Bottom4x4SubBlockFlag may represent a coded sub-block flag for a right-neighboring
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sub-block (e.g., indicating whether the bottom-neighboring, 4x4 sub-block includes at 

least one non-zero coefficient).

[0140] FIG. 10 is a conceptual diagram that illustrates example assignment of 

neighborhood- or position-based contexts for each region of a video block. As 

illustrated in FIG. 10, hybrid type of contexts might be used as well, for example, for 

some regions contexts could be neighborhood based and for some regions of the same 

video block it can be fixed or position based. A potential advantage of the position- 

based approach is that it is not necessary to calculate context in a coefficient-wise 

manner. Instead, a video coder may calculate context once for all coefficients in a 

region, such that all coefficients in the region have the same context. FIG. 10 represents 

an example in which a plurality of regions comprises a respective set of one or more 

sub-blocks.

[0141] For a coefficient with coordinates (x, y), regions can be defined according to the 

coefficient position. For example, if the condition (x + y>= threshold) is true, then the 

video coder may determine that the corresponding coefficient occurs within region R2; 

otherwise, if the condition is not true, the video coder determines that the corresponding 

coefficient occurs within region R1. Similarly, coordinates can be assigned to regions 

based on 4x4 sub-blocks. For the sub-block with (X, Y) coordinates, regions can be 

defined according to the 4x4 sub-block position. For example, if the condition ( X + Y 

>= Threshold ) is true, than the video coder may determine that the corresponding 

coefficient occurs within region R2; otherwise, the video coder may determine that the 

corresponding coefficient occurs within region R1. The threshold may be fixed to some 

predefined value, such as an integer number equal to 4, 5, 6, 7 or 8, or may dependent 

on the video block, e.g., TU, size.

[0142] In this manner, FIG. 10 represents an example in which a video coder may be 

configured to determine context for coding a transform coefficient, based on a region in 

which the transform coefficient occurs, using one of position-based context information 

and neighborhood-based context information based on the region. In particular, if a 

transform coefficient is in a first region, the video coder may use a first context 

determination approach to determine the context for coding the transform coefficient. If 

a transform coefficient is in a second region, the video coder may use a second context 

determination approach to determine the context for coding the transform coefficient, 

where the second context determination approach is different from the first context 

determination approach and the first region is different from the second region. In an
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example, the first and second regions do not overlap. Again, examples of the first and 

second context determination approaches include the use of position-based context 

information and neighborhood-based context information.

[0143] FIG. 11 is a conceptual diagram that illustrates example assignment of context 

offsets for each region of a video block. The context model may be separate for the 

different regions, but still use the same method for context calculation. In other words, 

a video coder may be configured with one method for calculating context for coding a 

transform coefficient, but may include different context models, determined based on a 

region in which the transform coefficient occurs.

[0144] For example, the context may be calculated based on neighborhood, but for 

different regions it uses an offset. The offset for each region may be fixed or dependent 

on one or more of the video block size, the coefficient position in the video block or 

sub-block, and the sub-block position in the video block. Region Rl of FIG. 11 

represents another example of a region including one or more upper-left 4x4 sub-blocks 

of transform coefficients of a video block, while region R2 of FIG. 11 represents 

another example of a region including transform coefficients of the video block outside 

region Rl. FIG. 11 also an example in which a plurality of regions comprise respective 

sets of one or more sub-blocks.

[0145] With offset, the context may be calculated according to equation (2).

Ctx = offsepregion) + Y (coef\= 0)
p&S

Alternatively, the video coder may calculate the context according to a function using 

Ctx as an input, for example, Ctx = (Ctx + 1) » 1.

[0146] One example of the region-based offsets is shown on FIG. 11, where regions Rl 

and R2 are defined based on 4x4 sub-blocks and offsets are different for regions Rl and 

R2. Offset values offset 1 and offset2 could be any integer numbers, for example, offset 1 

= 0, offset2 = 3. In other example, other divisions into regions are also possible, and 

divisions into more than two regions are also possible.

[0147] FIG. 12 is a conceptual diagram that illustrates an example embedded division 

of a video block into two or more regions based on TU sizes that correlate to existing 

context models. Since there are several sizes of TU in current HM (4x4, 8x8, 16x16 and 

32x32), division of the larger blocks can be done along smaller TU sizes using an 

embedded style of division, as illustrated in FIG. 12. For the embedded division, the
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method of context calculation may be shared and the context model itself may be 

shared.

[0148] For example, for a TU size 32x32, in region Rl, representing a 4x4 TU, the 

context calculation may use the same method for context calculation as for an actual TU 

of size 4x4. In addition, a context model may be shared between the TU of size 4x4 and 

Rl of the TU of size 32x32, or an offset may be applied to the context model for the TU 

of size 4x4. As for R2, the context calculation method may be shared between a TU of 

size 8x8 and R2 of the TU of size 32x32. R3 represents a 16x16 TU region, while R4 

represents a 32x32 TU region. A potential advantage of this method is that the same 

units may be used for the context calculations, and additional correlation between 

embedded regions and TUs can be taken into account.

[0149] Alternatively, using embedded style division, some significance map context 

models may be shared for dedicated positions among all TUs or some group of TUs.

For example, a context model, corresponding to DC coefficients, may be shared among 

all TUs with sizes from 4x4 to 32x32. As another example, a context model, related to 

high frequency coefficients, may be shared between all TUs. In these cases, region Rl, 

representing a 4x4 TU, in the TU of size 32x32 may use the same context model for DC 

coefficients and/or high frequency coefficients as TUs having any of sizes 4x4, 8x8, 

16x16, 32x32, and the like.

[0150] As a further example, instead of sharing among all TUs, a context model of the 

coefficients described above (e.g., DC and/or high frequency coefficients) maybe 

shared among only a subset or group of all the TUs. For example, the context model of 

the coefficient may be shared among only two sizes of TUs, such as 4x4 and 8x8 TUs.

In this case, region Rl, representing a 4x4 TU, in the TU of size 32x32 may use the 

same context model for DC coefficients and/or high frequency coefficients as TUs 

having size 4x4 and 8x8.

[0151] In this manner, the example of FIG. 12 represents an example in which a video 

coder, such as video encoder 20 or video decoder 30, may be configured to determine a 

region in which a transform coefficient occurs from a plurality of regions of a video 

block, wherein each of the regions corresponds to a respective one of a plurality of 

transform unit (TU) sizes, and wherein the video coder determines the context by 

selecting a context that is shared between the region and a TU having the same size as 

the region.
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[0152] FIG. 12 also represents an example in which a video coder, such as video 

encoder 20 or video decoder 30, may be configured to determining a region in which a 

transform coefficient occurs from a plurality of regions of a video block, wherein each 

of the regions corresponds to a respective one of a plurality of transform unit (TU) sizes, 

and wherein to determine the context, the video coder selects a shared context for 

dedicated positions of transform coefficients between two or more TUs of different 

sizes, wherein the region has the same size as one of the two or more TUs of different 

sizes. The shared context for the dedicated positions of transform coefficients may 

comprise a context for one of DC coefficients and high frequency coefficients shared 

between the two or more TUs of different sizes. Additionally or alternatively, the 

shared context for the dedicated positions of transform coefficients may comprise a 

shared context between a first TU having a size of 4x4 transform coefficients and a 

second TU having a size of 8x8 transform coefficients.

[0153] FIGS. 13A and 13B are conceptual diagrams that illustrate example divisions of 

a video block into two or more regions. In a similar manner as described above with 

respect to examples where regions are based on square, e.g., 4x4, sub-blocks, the 

techniques of this disclosure also describe a classification method to divide a video 

block, e.g., a TU, into two or more regions based on rectangular shaped sub-blocks. For 

example, 2x8 and 8x2 sub-blocks can be used for an 8x8 video block depending on the 

coefficients scan as shown on FIGS. 13A and 13B. In this example, a video coder 

applies a horizontal scan for the coefficients in the block shown in FIG. 13 A and a 

vertical scan to the block shown in FIG. 13B. In the examples illustrated in FIGS. 13A 

and 13B, one square block represents one single coefficient, and the size of the entire 

video block is 8x8.

[0154] According to the techniques of this disclosure, the video block may be divided 

into different rectangular regions, e.g., Rl, R2, R3, and R4. Each of the different 

rectangular regions may have a different context assignment. For example, for some 

regions, a fixed context may be used. These regions may be formed based on 

rectangular (for example 2x8 or 8x2) sub-blocks, described above and shown in FIGS. 

13A and 13B. For example, context could be defined according to the coefficient 

position in the video block, or according to the position of the rectangular sub-block that 

contains this coefficient.

[0155] Alternatively, the context model might be defined according to the neighbor 

rectangular shaped sub-blocks. For example, every coefficient within the same
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rectangular sub-block can use one or several contexts. In addition, coefficients of the 

neighboring rectangular sub-block can also use one or several contexts. However, 

contexts of one rectangular sub-block may be different from previous rectangular sub­

block based contexts. A hybrid type of contexts might be used as well, for example, for 

some regions contexts may be neighborhood based and for some regions of the same 

video block it can be fixed or position based. An advantage of the position based 

approach is that it is not necessary to calculate context coefficient-wise, it can be done 

once for a region. Also, the division might be dependent on the coefficient positions or 

the position of the rectangular sub-block containing this coefficient.

[0156] For a coefficient with (x, y) coordinates, regions can be defined according to the 

coefficient position. For example, if the condition ( x + y >= threshold ) is true, then 

this coefficient may be assigned to region R2; otherwise, it may be assigned to region 

R1. In a similar manner this can be done based on a rectangular shaped sub-block, for 

the sub-block with (X, Y) coordinates, regions can be defined according to the 

rectangular sub-block position. For example, if the condition ( X + Y >= Threshold ) is 

true than this coefficient may be assigned to region R2, otherwise it may be assigned to 

R1. The threshold may be fixed to some predefined value, like integer number (e.g., 

equal to 0 or 1) or might be dependent on TU size.

[0157] Alternatively, a context model may be different for the different regions, but still 

use the same method for context calculation. For example, context may be calculated 

based on neighborhood, but for different regions it uses an offset. An offset can be 

fixed, video block size dependent, or be dependent on one or more of: coefficient 

position in the video block and/or rectangular sub-block, position of the rectangular sub­

block containing the current coefficient in the video block, or any combination of these 

conditions.

[0158] With an offset, the context may be calculated according to equation (3).

Ctx = offset (region) + J^(co^!=0) (3)
peS

[0159] Alternatively, the context may be calculated according to a function using Ctx 

as an input, for instance, Ctx = (Ctx+l)»l.

[0160] FIGS. 14A and 14B are conceptual diagrams that illustrate example assignment 

of context offsets for each region of a video block. In these examples, regions R1 and 

R2 are defined based on rectangular sub-blocks and scan direction, and offsets are
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different for regions Rt and R2. Offset values offsetl and offset2 could be any integer 

numbers, for example offsetl = 0, offset2 = 3. Other divisions into regions are also 

possible. For example, a number of regions can be more than two. It should be noted 

that, 2x8 and 8x2 rectangular sub-blocks, depending on coefficient scanning directions, 

were used in this disclosure as an example. Similar methods can be used for other 

rectangular-shaped sub-blocks with size MxN without restriction.

[0161] In general, this disclosure describes diagonal based, square, e.g., 4x4, sub-block 

based, and rectangular, e.g., 2x8 and 8x2, sub-block based division of video blocks. In 

other examples, other types of division are possible, and division can be flexible based 

on various shapes, e.g., rectangular, square, triangular and the like, with different sizes. 

This disclosure also describes dividing video blocks into any number of regions. This 

disclosure further describes grouping coefficients into regions based on square sub­

block, rectangular sub-blocks, or based on other groupings such as diagonal divisions of 

a video block. Thresholds and offsets described above are also provided as an example, 

other values or neighbor dependencies could be exploited.

[0162] Similar techniques as described in this disclosure can be used for non-square 

transform units or other shapes of units. The described techniques may be applied to 

significance map coding, and to other syntax and bin coding of transform coefficients 

without limitation. In addition, this disclosure typically refers to the video blocks as TU 

blocks, but the techniques may be applied to any of TUs, PUs, CUs, LCUs or other 

groups of blocks.

[0163] FIG. 15 is a flowchart illustrating an example method for encoding a current 

block. The current block may comprise a current CU or a portion of the current CU. 

Although described with respect to video encoder 20 (FIGS. 1 and 2), it should be 

understood that other devices may be configured to perform a method similar to that of 

FIG. 15.

[0164] In this example, video encoder 20 initially predicts the current block (150). For 

example, video encoder 20 may calculate one or more prediction units (PUs) for the 

current block. Video encoder 20 may then calculate a residual block for the current 

block, e.g., to produce a transform unit (TU) (152). To calculate the residual block, 

video encoder 20 may calculate a difference (that is, pixel-by-pixel differences) between 

the original, uncoded block and the predicted block for the current block. Video 

encoder 20 may then transform and quantize coefficients of the residual block (154).
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Next, video encoder 20 may scan the quantized transform coefficients of the residual 

block (156).

[0165] During the scan, video encoder 20 may determine a region in which a current 

coefficient occurs, and in this manner, video encoder 20 may determine regions in 

which the various coefficients occur (158). In accordance with the techniques of this 

disclosure, video encoder 20 may determine regions in which coefficients occur based 

on, for example, positions of the coefficients or positions of sub-blocks in which the 

coefficients occur. Video encoder 20 may determine regions using any of the techniques 

described with respect to FIGS. 9-14, or other similar techniques. For example, as 

shown in FIG. 9A, video encoder 20 may be configured to determine whether a 

coefficient occurs in a first region including one or more sub-blocks, or a second region 

including sub-blocks outside the first region.

[0166] Video encoder 20 may further determine contexts for entropy encoding 

coefficients based on the regions (160). That is, video encoder 20 may determine, for 

each coefficient, a context for encoding the coefficient based on the region in which the 

coefficient occurs. For example, as discussed above, video encoder 20 may determine 

the context based on a position of the coefficient in the block, a position of a sub-block 

including the coefficient in the block, an offset to be applied to a calculated context, or 

the like based on the region in which the coefficient occurs.

[0167] Likewise, video encoder 20 may entropy encode the coefficients using the 

determined contexts (162). In particular, video encoder 20 may entropy encode one or 

more syntax elements representative of the coefficients using the context. For example, 

video encoder 20 may entropy encode one or more of significance information for the 

coefficients, level information for the significant coefficients, and/or sign information 

for the significant coefficients. Significance information may comprise

significantcoeffflag data. Level information may comprise

coeff_abs_level_greaterl_flag, coeff_abs_level_greater2_flag, and

coeffabslevelremaining. Sign information may comprise coeff sign flag. Video 

encoder 20 may then output the entropy encoded data for the coefficients (164).

[0168] In this manner, the method of FIG. 15 represents an example of a method 

including determining a context for coding a transform coefficient of a video block 

based on a region of the video block in which the transform coefficient occurs, and 

entropy coding the transform coefficient using the determined context. Moreover, the 

region may comprise one of a first region comprising one or more upper-left 4x4 sub-
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blocks of transform coefficients of the video block and a second region comprising 

transform coefficients of the video block outside the first region.

[0169] FIG. 16 is a flowchart illustrating an example method for decoding a current 

block of video data. The current block may comprise a current CU or a portion of the 

current CU. Although described with respect to video decoder 30 (FIGS. 1 and 3), it 

should be understood that other devices may be configured to perform a method similar 

to that of FIG. 16.

[0170] Video decoder 30 may predict the current block (200), e.g., using an intra- or 

inter-prediction mode to calculate a predicted block for the current block. Video 

decoder 30 may also receive entropy encoded data for the current block, such as entropy 

encoded data for coefficients of a residual block corresponding to the current block 

(202).

[0171] In accordance with the techniques of this disclosure, video decoder 30 may 

determine regions in which the coefficients will occur (204), e.g., during an inverse scan 

and entropy decoding process. That is, video decoder 30 may determine the position of 

the next transform coefficient based on the position of a previously decoded transform 

coefficient and a next significant transform coefficient in scan order. Video decoder 30 

may further determine a region of the block in which this position occurs. Video 

decoder 30 may similarly determine regions for each of the coefficients in a similar 

manner.

[0172] Moreover, video decoder 30 may determine regions in which coefficients will 

occur based on, for example, positions of the coefficients or positions of sub-blocks in 

which the coefficients will occur. Video decoder 30 may determine regions using any of 

the techniques described with respect to FIGS. 9-14, or other similar techniques. For 

example, as shown in FIG. 9A, video decoder 30 may be configured to determine 

whether a coefficient occurs in a first region including one or more sub-blocks, or a 

second region including sub-blocks outside the first region.

[0173] Furthermore, video decoder 30 may determine contexts for decoding the 

coefficients based on the determined regions (206). That is, video decoder 30 may 

determine, for each coefficient, a context for decoding the coefficient based on the 

region in which the coefficient occurs. For example, as discussed above, video decoder 

30 may determine the context based on a position of the coefficient in the block, a 

position of a sub-block including the coefficient in the block, an offset to be applied to a 

calculated context, or the like, based on the region in which the coefficient will occur.
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[0174] Video decoder 30 may entropy decode the entropy coded data to reproduce 

coefficients of the block using the determined contexts (208). In particular, video 

decoder 30 may entropy decode one or more syntax elements representative of the 

coefficients using the context. For example, video decoder 30 may entropy decode one 

or more of significance information for the coefficients, level information for the 

significant coefficients, and/or sign information for the significant coefficients. 

Significance information may comprise significantcoeffflag data. Level information 

may comprise coeff_abs_level_greaterl_flag, coeff_abs_level_greater2_flag, and 

coeffabslevelremaining. Sign information may comprise coeff sign flag. Video 

decoder 30 may then regenerate the block (e.g., the TU) to include the decoded 

transform coefficients in their respective positions (210). That is, as discussed above, 

video decoder 30 may inverse scan the reproduced coefficients to create a block of 

quantized transform coefficients.

[0175] Video decoder 30 may then inverse quantize and inverse transform the 

coefficients to produce a residual block (212). Video decoder 30 may ultimately decode 

the current block by combining the predicted block and the residual block (214). That 

is, video decoder 30 may mathematically combine the pixel values of the predicted 

block with co-located pixel values of the residual block to decode and reproduce the 

original block.

[0176] In this manner, the method of FIG. 16 represents an example of a method 

including determining a context for coding a transform coefficient of a video block 

based on a region of the video block in which the transform coefficient occurs, and 

entropy coding the transform coefficient using the determined context. Moreover, the 

region may comprise one of a first region comprising one or more upper-left 4x4 sub­

blocks of transform coefficients of the video block and a second region comprising 

transform coefficients of the video block outside the first region.

[0177] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over, as one or more instructions or code, 

a computer-readable medium and executed by a hardware-based processing unit. 

Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer-
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readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.

[0178] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transient 

media, but are instead directed to non-transient, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, 

while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.

[0179] Instructions may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other 

equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as 

used herein may refer to any of the foregoing structure or any other structure suitable for 

implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or 

software modules configured for encoding and decoding, or incorporated in a combined 

codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.
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[0180] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware. 

[0181] Various examples have been described. These and other examples are within the 

scope of the following claims.
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WHAT IS CLAIMED IS:

1. A method of coding video data, the method comprising:

determining a context for coding a transform coefficient of a video block based 

on a region of the video block in which the transform coefficient occurs; and

entropy coding the transform coefficient using the determined context.

2. The method of claim 1, wherein the region comprises one of a first region 

comprising one or more upper-left 4x4 sub-blocks of transform coefficients of the video 

block and a second region comprising transform coefficients of the video block outside 

the first region.

3. The method of claim 1, wherein the region comprises one of a plurality of 

regions of the video block, each of the regions comprising respective sets of one or 

more sub-blocks of the video block.

4. The method of claim 1, wherein coding the transform coefficient comprises 

coding one or more of significance information associated with the transform 

coefficient, level information of the transform coefficient, and sign information 

associated with the transform coefficient.

5. The method of claim 1, wherein the video block comprises one of a transform 

unit (TU), a prediction unit (PU), a coding unit (CU), a largest coding unit (LCU), and a 

group of blocks.

6. The method of claim 1, wherein determining the context comprises determining 

the context using one of position-based context information and neighborhood-based 

context information based on the region.

7. The method of claim 1, wherein determining the context comprises determining 

an offset applied to a position-based context for the video block based on the region, 

wherein the offset for the region is one of a fixed offset and an offset that is dependent 

on one or more of a size of the video block, a position of the transform coefficient 

within the video block, and a position of a sub-block that includes the transform 

coefficient within the video block.
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8. The method of claim 1, further comprising determining the region from a 

plurality of regions of the video block, wherein each of the regions corresponds to a 

respective one of a plurality of transform unit (TU) sizes, and wherein determining the 

context comprises selecting a context that is shared between the region and a TU having 

the same size as the region.

9. The method of claim 1, further comprising determining the region from a 

plurality of regions of the video block, wherein each of the regions corresponds to a 

respective one of a plurality of transform unit (TU) sizes, and wherein determining the 

context comprises selecting a shared context for dedicated positions of transform 

coefficients between two or more TUs of different sizes, wherein the region has the 

same size as one of the two or more TUs of different sizes.

10. The method of claim 9, wherein the shared context for the dedicated positions of 

transform coefficients comprises a context for one of DC coefficients and high 

frequency coefficients shared between the two or more TUs of different sizes.

11. The method of claim 9, wherein the shared context for the dedicated positions of 

transform coefficients comprises a shared context between a first TU having a size of 

4x4 transform coefficients and a second TU having a size of 8x8 transform coefficients.

12. The method of claim 1, wherein the video block comprises a non-square video 

block.

13. The method of claim 1, wherein entropy coding the transform coefficient 

comprises entropy decoding the transform coefficient using the determined context 

according to context adaptive binary arithmetic coding (CABAC).

14. The method of claim 1, wherein entropy coding the transform coefficient 

comprises entropy encoding the transform coefficient using the determined context 

according to context adaptive binary arithmetic coding (CABAC).

15. A device for coding video data, the device comprising a video coder configured 

to determine a context for coding a transform coefficient of a video block based on a 

region of the video block in which the transform coefficient occurs, and entropy code 

the transform coefficient using the determined context.
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16. The device of claim 15, wherein the region comprises one of a first region 

comprising one or more upper-left 4x4 sub-blocks of transform coefficients of the video 

block and a second region comprising transform coefficients of the video block outside 

the first region.

17. The device of claim 15, wherein the region comprises one of a plurality of 

regions of the video block, each of the regions comprising respective sets of one or 

more sub-blocks of the video block.

18. The device of claim 15, wherein to code the transform coefficient, the video 

coder is configured to code one or more of significance information associated with the 

transform coefficient, level information of the transform coefficient, and sign 

information associated with the transform coefficient.

19. The device of claim 15, wherein the video block comprises one of a transform 

unit (TU), a prediction unit (PU), a coding unit (CU), a largest coding unit (LCU), and a 

group of blocks.

20. The device of claim 15, wherein the video coder is configured to determine the 

context using one of position-based context information and neighborhood-based 

context information based on the region.

21. The device of claim 15, wherein the video coder is further configured to 

determine an offset applied to a position-based context for the video block based on the 

region, wherein the offset for the region is one of a fixed offset and an offset that is 

dependent on one or more of a size of the video block, a position of the transform 

coefficient within the video block, and a position of a sub-block that includes the 

transform coefficient within the video block.

22. The device of claim 15, wherein the video coder comprises a video decoder 

configured to entropy decode the transform coefficient.

23. The device of claim 15, wherein the video coder comprises a video encoder 

configured to entropy encode the transform coefficient.
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24. A device for coding video data, the device comprising:

means for determining a context for coding a transform coefficient of a video 

block based on a region of the video block in which the transform coefficient occurs; 

and

means for entropy coding the transform coefficient using the determined context.

25. The device of claim 24, wherein the region comprises one of a first region 

comprising one or more upper-left 4x4 sub-blocks of transform coefficients of the video 

block and a second region comprising transform coefficients of the video block outside 

the first region.

26. The device of claim 24, wherein the region comprises one of a plurality of 

regions of the video block, each of the regions comprising respective sets of one or 

more sub-blocks of the video block.

27. The device of claim 24, wherein the means for coding the transform coefficient 

comprises means for coding one or more of significance information associated with the 

transform coefficient, level information of the transform coefficient, and sign 

information associated with the transform coefficient.

28. The device of claim 24, wherein the video block comprises one of a transform 

unit (TU), a prediction unit (PU), a coding unit (CU), a largest coding unit (LCU), and a 

group of blocks.

29. The device of claim 24, wherein the means for determining the context 

comprises means for determining the context using one of position-based context 

information and neighborhood-based context information based on the region.

30. The device of claim 24, wherein the means for determining the context 

comprises means for determining an offset applied to a position-based context for the 

video block based on the region, wherein the offset for the region is one of a fixed offset 

and an offset that is dependent on one or more of a size of the video block, a position of 

the transform coefficient within the video block, and a position of a sub-block that 

includes the transform coefficient within the video block.
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31. A computer-readable storage medium having stored thereon instructions that, 

when executed, cause a processor to:

determine a context for coding a transform coefficient of a video block based on 

a region of the video block in which the transform coefficient occurs; and

entropy code the transform coefficient using the determined context.

32. The computer-readable storage medium of claim 31, wherein the region 

comprises one of a first region comprising one or more upper-left 4x4 sub-blocks of 

transform coefficients of the video block and a second region comprising transform 

coefficients of the video block outside the first region.

33. The computer-readable storage medium of claim 31, wherein the region 

comprises one of a plurality of regions of the video block, each of the regions 

comprising respective sets of one or more sub-blocks of the video block.

34. The computer-readable storage medium of claim 31, wherein the instructions 

that cause the processor to code the transform coefficient comprise instructions that 

cause the processor to code one or more of significance information associated with the 

transform coefficient, level information of the transform coefficient, and sign 

information associated with the transform coefficient.

35. The computer-readable storage medium of claim 31, wherein the video block 

comprises one of a transform unit (TU), a prediction unit (PU), a coding unit (CU), a 

largest coding unit (LCU), and a group of blocks.

36. The computer-readable storage medium of claim 31, wherein the instructions 

that cause the processor to determine the context comprise instructions that cause the 

processor to determine the context using one of position-based context information and 

neighborhood-based context information based on the region.
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37. The computer-readable storage medium of claim 31, wherein the instructions 

that cause the processor to determine the context comprise instructions that cause the 

processor to determine an offset applied to a position-based context for the video block 

based on the region, wherein the offset for the region is one of a fixed offset and an 

offset that is dependent on one or more of a size of the video block, a position of the 

transform coefficient within the video block, and a position of a sub-block that includes 

the transform coefficient within the video block.
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