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(57)【特許請求の範囲】
【請求項１】
　患者の生存性を予測することができる、人工ニューラルネットワークを発生する方法で
あって、
　電子データベースに患者の健康データを記憶するステップであって、前記患者の健康デ
ータは複数の組のデータを備え、各々の組は心拍変動性データに関する第１のパラメータ
、バイタルサインデータに関する第２のパラメータ、および患者の生存および死亡のいず
れかを指す生存性に関する第３のパラメータを有する、前記記憶するステップと、
　人工ニューラルネットワークを形成するように相互接続されたノードのネットワークを
設けるステップであって、前記ノードは複数の人工ニューロンを備え、各々の人工ニュー
ロンは関連付けられた重みを有する少なくとも１つの入力を有する、前記ネットワークを
設けるステップと、
　前記患者の健康データを用いて前記人工ニューラルネットワークをトレーニングするス
テップであって、前記複数の人工ニューロンのうち各々の人工ニューロンの前記少なくと
も１つの入力の前記関連付けられた重みが、前記患者の健康データからの異なる組のデー
タのそれぞれの第１、第２、および第３のパラメータに応答して調節される、前記トレー
ニングするステップと、
　前記トレーニングされた人工ニューラルネットワークにより、患者の次の７２時間以内
の前記生存性に関する予測を発生するステップと、
　を備え、
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　前記心拍変動性データは、少なくとも１人の患者からの心電図（ＥＣＧ）信号をフィル
タリングしてノイズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ
信号内のＱＲＳ群を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、
前記ＲＲ間隔内の情報のシーケンスを非オーバーラップセグメントに区分し、前記非オー
バーラップセグメントを処理して抽出された心拍変動性データであり、
　前記トレーニングするステップは、前記非オーバーラップセグメントを処理して抽出さ
れたすべての心拍変動性データに関する第１のパラメータに応答して、前記関連付けられ
た重みが調節されるステップである、
　人工ニューラルネットワークを発生する方法。
【請求項２】
　帯域フィルタを用いて前記ＥＣＧ信号をフィルタリングして前記ＱＲＳ群を場所特定す
る、請求項１に記載の方法。
【請求項３】
　前記帯域フィルタの周波数範囲は約５Ｈｚから約２８Ｈｚの間である、請求項２に記載
の方法。
【請求項４】
　前記ＱＲＳピークは、
　前記フィルタリングされたＥＣＧ信号中で最初に発生する最大ピークデータ値を場所特
定し、
　場所特定された最大ピーク値から上側振幅しきい値および下側振幅しきい値を定め、
　ピーク値を場所特定し、
　前記ピーク値のいずれかの側の最小値を場所特定し、かつ
　前記ピーク値が前記上側振幅しきい値を上回りつつ前記最小値が前記下側振幅しきい値
を下回る場合に、前記ピーク値の場所をＲ位置として、前記Ｒ位置の左側の最も近くで発
生する前記最小値の場所をＱ位置として、かつ前記Ｒ位置の右側の最も近くで発生する前
記最小値の場所をＳ位置として示して前記フィルタリングされたＥＣＧ信号内のＱＲＳピ
ークの場所を形成することによって、
場所特定される、請求項１から３のいずれか１項に記載の方法。
【請求項５】
　前記フィルタリングされたＥＣＧ信号内の他のＱＲＳピークの位置は、
　別のピーク値を場所特定し、
　前記別のピーク値のいずれかの側の他の最小値を場所特定し、かつ
　前記別のピーク値が前記上側振幅しきい値を上回りつつ前記他の最小値が両者とも前記
下側しきい値を下回る場合に、前記ピーク値の場所をＲ位置として、前記Ｒ位置の左側の
最も近くで発生する前記最小値の場所をＱ位置として、かつ前記Ｒ位置の右側の最も近く
で発生する前記最小値の場所をＳ位置として示して別のＱＲＳピークの場所を形成する、
というプロセスを繰返すことによって場所特定される、請求項４に記載の方法。
【請求項６】
　前記ＲＲ間隔内の情報の前記シーケンスを処理することは、
　前記ＲＲ間隔の中央値および標準偏差値を求め、
　前記標準偏差値に基づいて許容因子を算出し、
　前記許容因子分だけ前記中央値のいずれかの側に及ぶ前記ＲＲ間隔内にある情報の部分
を保持し、これにより、保持される前記情報の部分から前記心拍変動性データを得て、
　情報の前記シーケンスから前記情報の残余の部分を破棄する
ことによって前記ＲＲ間隔内の情報の前記シーケンスからアウトライアーを除去すること
をさらに備える、請求項１から５のいずれか１項に記載の方法。
【請求項７】
　前記第１のパラメータ、前記第２のパラメータ、または前記第１のパラメータと前記第
２のパラメータとの組合せを前記患者の健康データの特徴ベクトルとして分類するステッ
プと、前記特徴ベクトルで前記人工ニューラルネットワークをトレーニングするステップ
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とをさらに備える、請求項１から６のいずれか１項に記載の方法。
【請求項８】
　前記人工ニューラルネットワークは、プロセッサによって実行されると前記プロセッサ
に前記人工ニューラルネットワークの機能を行なわせる、メモリに記憶される命令として
実現される、請求項１から７のいずれか１項に記載の方法。
【請求項９】
　前記人工ニューラルネットワークはサポートベクトルマシンアーキテクチャに基づいて
おり、前記複数の人工ニューロンのうち各々の人工ニューロンの前記少なくとも１つの入
力の前記関連付けられた重みは前記サポートベクトルマシンが用いるライブラリから初期
化される、請求項８に記載の方法。
【請求項１０】
　前記サポートベクトルマシンは決定関数を備え、前記決定関数は
【数１】

によって与えられ、
　式中、ｓｇｎ（）は符号関数であり、（ｘ；ｘi）は特徴ベクトルの組であり、ｋ（ｘ
；ｘi）はｘおよびｘiによって構築される核行列であり、ｙiは１または－１であり、こ
れは特徴ベクトルｘiのラベルであり、ａiおよびｂは最適決定超平面を規定するのに用い
られるパラメータであり、そのため、パターンの２つのクラス間のマージンを特徴空間中
で最大化することができる、請求項９に記載の方法。
【請求項１１】
　前記人工ニューラルネットワークはエクストリームラーニングマシンアーキテクチャに
基づいており、前記複数の人工ニューロンのうち各々の人工ニューロンの前記少なくとも
１つの入力の前記関連付けられた重みは前記エクストリームラーニングマシンによる無作
為選択を通じて初期化される、請求項８に記載の方法。
【請求項１２】
　前記人工ニューラルネットワークは単層フィードフォワードネットワークとして実現さ
れ、これにより前記患者の前記生存性に関する予測は、関数

【数２】

から導出され、
　式中、ｘjはｊ＝１，２，…，Ｎ個の入力ベクトルについての複数の人工ニューロンの
うち１つの入力への入力ベクトルであり、ｗiはｘjの入力ベクトルを受ける前記人工ニュ
ーロンの前記入力の前記関連付けられた重みであり、ｇ（ｗi・ｘj＋ｂi）は、ｉ＝１，
２，…，Ｎ個の人工ニューロンについてｘjの入力ベクトル…を受ける前記人工ニューロ
ンの出力であり、βiはｉ番目の隠れニューロンをそれぞれの出力ニューロンに関連付け
る出力重みベクトルであり、ｂiは前記ｉ番目の隠れニューロンのバイアスである、請求
項１１に記載の方法。
【請求項１３】
　前記人工ニューラルネットワークの前記トレーニングは誤差逆伝播学習に基づいている
、請求項１から１２のいずれか１項に記載の方法。
【請求項１４】
　前記誤差逆伝播学習はレーベンバーグ－マルカートアルゴリズムを用いる、請求項１３
に記載の方法。
【請求項１５】
　前記複数の人工ニューロンのうち各々は活性化関数を有し、前記活性化関数は、ハード
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リミット、シグモイド、正弦、放射基底、および線形を備える関数の群から選択される、
請求項１から１４のいずれか１項に記載の方法。
【請求項１６】
　前記非オーバーラップセグメントの各々は実質的に長さが等しい、請求項１５に記載の
方法。
【請求項１７】
　前記非オーバーラップセグメントは固定長を有する、請求項１６に記載の方法。
【請求項１８】
　前記非オーバーラップセグメントは調節可能な長さを有する、請求項１６に記載の方法
。
【請求項１９】
　複数の組のデータのうち各々の組は患者の特性に関する第４のパラメータをさらに備え
る、請求項１から１８のいずれか１項に記載の方法。
【請求項２０】
　前記患者の特性は、年齢、性別、および病歴のうちいずれか１つ以上を備える、請求項
１９に記載の方法。
【請求項２１】
　患者の生存性を予測するためのシステムの制御方法であって、
　患者の心拍変動性データに関する第１の組のパラメータを測定するステップと、
　前記患者のバイタルサインデータに関する第２の組のパラメータを測定するステップと
、
　相互接続されたノードのネットワークを備える人工ニューラルネットワークを設けるス
テップであって、前記ノードは複数の人工ニューロンを備え、各々の人工ニューロンは、
関連付けられた重みを有する少なくとも１つの入力を有する、前記人工ニューラルネット
ワークを設けるステップと、
　前記人工ニューラルネットワークへの入力に好適に前記第１の組のパラメータおよび前
記第２の組のパラメータを処理して処理済みデータを発生するステップと、
　前記人工ニューラルネットワークへ前記処理済みデータを与えるステップと、
　前記人工ニューラルネットワークから、前記患者の次の７２時間以内の前記生存性に関
する予測を与える出力を得るステップと、
を備え、
　前記各々の人工ニューロンの関連付けられた重みは、複数の組のデータを有する電子デ
ータベースを用いて前記人工ニューラルネットワークをトレーニングすることによって調
節されるものであり、
　前記複数の組のデータは、少なくとも、心拍変動性データに関するパラメータおよびバ
イタルサインデータに関するパラメータを有し、各々の組は患者の生存および死亡のいず
れかを指す生存性に関するパラメータをさらに有するものであり、
　前記心拍変動性データは、患者からの心電図（ＥＣＧ）信号をフィルタリングしてノイ
ズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ信号内のＱＲＳ群
を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、前記ＲＲ間隔内の
情報のシーケンスを非オーバーラップセグメントに区分し、前記非オーバーラップセグメ
ントのシーケンスを処理して、非オーバーラップセグメントを処理して抽出された心拍変
動性データであり、
　前記人工ニューラルネットワークへの入力が、全ての非オーバーラップセグメントの心
拍変動データのすべてを含む、制御方法。
【請求項２２】
　前記第１の組のパラメータの前記処理済みデータおよび前記第２の組のパラメータの前
記処理済みデータは特徴ベクトルとして表わされる、請求項２１に記載の方法。
【請求項２３】
　前記処理済みデータは、正規化データとして表わされる前記第１の組のパラメータおよ
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び前記第２の組のパラメータである、請求項２１に記載の方法。
【請求項２４】
　多数決を用いて前記患者の次の７２時間以内の前記生存性に関する予測を判断し、前記
多数決は、関数
【数３】

で表わされ、
　式中、Ｄm,jは最終決定を行なうための中間変数であり、Ｄm,jは、ｍ番目の分類子が決
定集団中のクラスｊを選べば１の値を割当てられ、そうでない場合は０を割当てられる、
請求項２１～２３のいずれか１項に記載の方法。
【請求項２５】
　前記人工ニューラルネットワークの前記結果は２クラスラベルとしてコードされ、これ
により方法はさらに、
　前記２クラスラベルの結果の各々にラベルベースのアルゴリズムを適用して前記人工ニ
ューラルネットワークからの出力を決定し、これにより前記患者の次の７２時間以内の前
記生存性に関する予測を与えるステップを備える、請求項２１～２４のいずれか１項に記
載の方法。
【請求項２６】
　前記心拍変動性データは、時間領域データ、周波数領域データ、および幾何学的領域デ
ータを備える、請求項１から２５のいずれか１項に記載の方法。
【請求項２７】
　前記時間領域データは、ＲＲ間隔の平均（平均ＲＲ）、ＲＲ間隔の標準偏差（ＳＴＤ）
、瞬間心拍の平均（平均ＨＲ）、瞬間心拍の標準偏差（ＳＴＤ＿ＨＲ）、隣接するＲＲ間
隔の間の差の二乗平均（ＲＭＳＳＤ）、５０ｍｓ超異なる連続ＲＲ間隔の数（ＮＮ５０）
、および５０ｍｓ超異なる連続ＲＲ間隔の百分率（ｐＮＮ５０）というパラメータのうち
いずれか１つ以上に関する情報を備える、請求項２６に記載の方法。
【請求項２８】
　前記周波数領域データは、非常に低い周波数範囲（≦０．０４Ｈｚ）中のパワー（ＶＬ
Ｆ）、低い周波数範囲（０．０４から０．１５Ｈｚ）中のパワー（ＬＦ）、高い周波数範
囲（０．１５から０．４Ｈｚ）中のパワー（ＨＦ）、セグメント中のＮＮ間隔の分散から
推測され、かつｍｓ2で測定される合計パワー（ＴＰ）、ＨＦパワーに対するＬＦパワー
の比（ＬＦ／ＨＦ）、正規化された単位でのＬＦパワー：LF/(TP-VLF)×100 (LFnorm)、
および正規化された単位でのＨＦパワー：HF/(TP-VLF)×100 (HFnorm)というパラメータ
のうちいずれか１つ以上に関する情報を備える、請求項２６または２７に記載の方法。
【請求項２９】
　前記幾何学的領域データは、間隔のヒストグラムの高さで除算されるすべてのＲＲ間隔
の合計数（ＨＲＶ指数）、および最小二乗法を用いてＲＲヒストグラムにフィッティング
される三角形の底辺の幅（ＴＩＮＮ）というデータのうちいずれか１つに関する情報を備
える、請求項２６から２８のいずれか１項に記載の方法。
【請求項３０】
　前記バイタルサインデータは、収縮期血圧、拡張期血圧、脈拍、パルスオキシメトリ、
呼吸数、グラスゴーコーマスケール（ＧＣＳ）、疼痛スコア、体温、および年齢のうちい
ずれか１つ以上を備える、請求項１から２９のいずれか１項に記載の方法。
【請求項３１】
　前記人工ニューラルネットワークをトレーニングするのに用いられる前記患者の健康デ
ータは、瞬間心拍の標準偏差（ＳＴＤ＿ＨＲ）、正規化された単位での低い周波数範囲（
０．０４から０．１５Ｈｚ）中のパワー（ＬＦｎｏｒｍ）、年齢、脈拍、パルスオキシメ
トリ、収縮期血圧、および拡張期血圧である、請求項１から３０のいずれか１項に記載の
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方法。
【請求項３２】
　測定された前記第１の組のパラメータは、瞬間心拍の標準偏差（ＳＴＤ＿ＨＲ）および
正規化された単位での低い周波数範囲（０．０４から０．１５Ｈｚ）中のパワー（ＬＦｎ
ｏｒｍ）であり、測定された前記第２の組のパラメータは、年齢、脈拍、パルスオキシメ
トリ、収縮期血圧、および拡張期血圧である、請求項２１から２５のいずれか１項に記載
の方法。
【請求項３３】
　前記患者の次の７２時間以内の前記生存性に関する予測は前記患者の死亡または生存の
いずれかである、請求項１から３２のいずれか１項に記載の方法。
【請求項３４】
　患者生存性予測システムであって、
　メモリモジュールとプロセッサとディスプレイとを備え、
　前記メモリモジュールは、患者の心拍変動性データに関する第１の組のパラメータを受
ける第１の入力と、前記患者のバイタルサインデータに関する第２の組のパラメータを受
ける第２の入力と、相互接続されたノードのネットワークを備える人工ニューラルネット
ワークを実現する命令を記憶するものであり、
　前記ノードは複数の人工ニューロンを備え、関連付けられた重みを有する少なくとも１
つの入力を有し、前記プロセッサは、前記メモリモジュールに記憶された前記命令を実行
するプロセッサにより前記人工ニューラルネットワークの機能を行ない、前記第１の組の
パラメータおよび前記第２の組のパラメータに基づいて前記患者の次の７２時間以内の前
記生存性を予測し、それをディスプレイに出力するものであり前記各々の人工ニューロン
の関連付けられた重みは、複数の組のデータを有する電子データベースを用いて前記人工
ニューラルネットワークをトレーニングすることによって調節されるものであり、
　前記複数の組のデータは、少なくとも、心拍変動性データに関するパラメータおよびバ
イタルサインデータに関するパラメータを有し、各々の組は患者の生存および死亡のいず
れかを指す生存性に関するパラメータをさらに有するものであり、
　前記心拍変動性データは、患者からの心電図（ＥＣＧ）信号をフィルタリングしてノイ
ズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ信号内のＱＲＳ群
を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、前記ＲＲ間隔内の
情報のシーケンスを非オーバーラップセグメントに区分し、前記非オーバーラップセグメ
ントのシーケンスを処理して、非オーバーラップセグメントを処理して抽出された心拍変
動性データであり、
　前記人工ニューラルネットワークの機能を行なうことは、全ての非オーバーラップセグ
メントの心拍変動データのすべてを用いて前記人工ニューラルネットワークをトレーニン
グすることを含む、システム。
【請求項３５】
　前記第１の入力からの前記第１の組のパラメータおよび前記第２の入力からの前記第２
の組のパラメータを受けるポートをさらに備える、請求項３４に記載の患者生存性予測シ
ステム。
【請求項３６】
　前記第１の入力からの前記第１の組のパラメータを受ける第１のポートと、
　前記第２の入力からの前記第２の組のパラメータを受ける第２のポートとをさらに備え
る、請求項３４に記載の患者生存性予測システム。
【請求項３７】
　患者の生存性を予測するためのシステムの制御方法であって、
　患者の心拍変動性データに関する第１の組のパラメータを測定するステップと、
　前記患者のバイタルサインデータに関する第２の組のパラメータを測定するステップと
、
　患者の特性に関する第３の組のパラメータを得るステップと、
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　必要な場合に、電子データベースで実現されるスコアリングモデルに対し、正規化され
たデータ値の組として、前記第１の組のパラメータ、前記第２の組のパラメータ、および
前記第３の組のパラメータを与えるステップと、
を備え、
　前記スコアリングモデルは、パラメータの値に対するスコアの割り当てと、前記第１の
組のパラメータ、前記第２の組のパラメータ、および前記第３の組のパラメータの各々の
パラメータに対するカテゴリの関連付けを行うものであって、
　各々のカテゴリは複数の予め規定された値の範囲を有し、前記複数の値の範囲の各々は
予め規定されたスコアを有し、さらに
　前記第１の組のパラメータ、前記第２の組のパラメータ、および前記第３の組のパラメ
ータのそれぞれのパラメータに関連付けられた前記カテゴリの前記複数の値の範囲の、正
規化されたデータ値の前記組を包含するそれぞれの予め規定された値の範囲に正規化され
たデータの組を割当てることにより、前記第１の組のパラメータ、前記第２の組のパラメ
ータ、および前記第３の組のパラメータの各パラメータにスコアを定めるステップと、前
記第１の組のパラメータ、前記第２の組のパラメータ、および前記第３の組のパラメータ
の各パラメータの前記スコアの和である合計スコアを得るステップとを備え、
　前記合計スコアは前記患者の次の７２時間以内の前記生存性に関する指標を与え、前記
合計スコアが高くなるほど、次の７２時間以内の急性心肺事象のリスクが高いことを示す
ものであり、
　前記心拍変動性データは、患者からの心電図（ＥＣＧ）信号をフィルタリングしてノイ
ズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ信号内のＱＲＳ群
を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、前記ＲＲ間隔内の
情報のシーケンスを非オーバーラップセグメントに区分し、前記非オーバーラップセグメ
ントのシーケンスを処理して、非オーバーラップセグメントを処理して抽出された心拍変
動性データであり、
　前記スコアリングモデルへの入力が、全ての非オーバーラップセグメントの心拍変動デ
ータのすべてを含む、方法。
【請求項３８】
　前記スコアリングモデルは複数のリスクカテゴリをさらに備え、各々のカテゴリは予め
規定された範囲の値を有し、前記方法は、前記合計スコアを包含する前記予め規定された
値の範囲を有する前記カテゴリに前記合計スコアを割当てて、前記複数のリスクカテゴリ
のうちどれに前記合計スコアが属するかを判断するステップをさらに備える、請求項３７
に記載の方法。
【請求項３９】
　患者の生存性を予測するために少なくとも１台のコンピュータによって実行されるプロ
グラムであって、
　前記プログラムは、電子データベースの患者の健康データにアクセスするステップであ
って、前記患者の健康データは複数の組のデータを備え、各々の組は心拍変動性データに
関する第１のパラメータ、バイタルサインデータに関する第２のパラメータ、および患者
の生存および死亡のいずれかを指す生存性に関する第３のパラメータを有する、前記アク
セスするステップと、
　人工ニューラルネットワークを形成するように相互接続されたノードのネットワークを
設けるステップであって、前記ノードは複数の人工ニューロンを備え、各々の人工ニュー
ロンは関連付けられた重みを有する少なくとも１つの入力を有する、前記ネットワークを
設けるステップと、
　前記患者の健康データを用いて前記人工ニューラルネットワークをトレーニングするス
テップであって、前記複数の人工ニューロンのうち各々の人工ニューロンの前記少なくと
も１つの入力の前記関連付けられた重みが、前記患者の健康データからの異なる組のデー
タのそれぞれの第１、第２、および第３のパラメータに応答して調節される、前記トレー
ニングするステップと、
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　前記トレーニングされた人工ニューラルネットワークにより、患者の次の７２時間以内
の前記生存性に関する予測を発生するステップと、
　を実行するものであり、
　前記心拍変動性データは、少なくとも１人の患者からの心電図（ＥＣＧ）信号をフィル
タリングしてノイズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ
信号内のＱＲＳ群を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、
前記ＲＲ間隔内の情報のシーケンスを非オーバーラップセグメントに区分し、前記非オー
バーラップセグメントを処理して抽出された心拍変動性データであり、
　前記トレーニングするステップは、前記非オーバーラップセグメントを処理して抽出さ
れたすべての心拍変動性データに関する第１のパラメータを用いてトレーニングすること
を含むプログラム。
【請求項４０】
　患者の生存性を予測するために少なくとも１台のコンピュータによって実行されるプロ
グラムであって、
　患者の心拍変動性データに関する第１の組のパラメータを測定するステップと、
　前記患者のバイタルサインデータに関する第２の組のパラメータを測定するステップと
、
　相互接続されたノードのネットワークを備える人工ニューラルネットワークを設けるス
テップであって、前記ノードは複数の人工ニューロンを備え、各々の人工ニューロンは、
関連付けられた重みを有する少なくとも１つの入力を有する、
前記人工ニューラルネットワークを設けるステップと、
　前記人工ニューラルネットワークへの入力に好適に前記第１の組のパラメータおよび前
記第２の組のパラメータを処理して処理済みデータを発生するステップと、
　前記人工ニューラルネットワークへ前記処理済みデータを与えるステップと、
　前記人工ニューラルネットワークから、前記患者の次の７２時間以内の前記生存性に関
する予測を与える出力を得るステップと、
を実行するものであり、
　前記各々の人工ニューロンの関連付けられた重みは、複数の組のデータを有する電子デ
ータベースを用いて前記人工ニューラルネットワークをトレーニングすることによって調
節されるものであり、
　前記複数の組のデータは、少なくとも、心拍変動性データに関するパラメータおよびバ
イタルサインデータに関するパラメータを有し、各々の組は患者の生存および死亡のいず
れかを指す生存性に関するパラメータをさらに有するものであり、
　前記心拍変動性データは、患者からの心電図（ＥＣＧ）信号をフィルタリングしてノイ
ズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ信号内のＱＲＳ群
を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、前記ＲＲ間隔内の
情報のシーケンスを非オーバーラップセグメントに区分し、前記非オーバーラップセグメ
ントのシーケンスを処理して、非オーバーラップセグメントを処理して抽出された心拍変
動性データであり、
　前記人工ニューラルネットワークへの入力が、全ての非オーバーラップセグメントの心
拍変動データのすべてを含む、プログラム。
【請求項４１】
　患者の生存性を予測するために少なくとも１台のコンピュータによって実行されるプロ
グラムであって、
　前記プログラムは、前記コンピュータに、患者の心拍変動性データに関する第１の組の
パラメータを受ける第１の入力と、前記患者のバイタルサインデータに関する第２の組の
パラメータの入力を受ける第２の入力とを受け付けるステップと、相互接続されたノード
のネットワークを備える人工ニューラルネットワークを実現するステップを実行させ、
　前記ノードは複数の人工ニューロンを備え、関連付けられた重みを有する少なくとも１
つの入力を有し、前記プログラムは、前記コンピュータに、前記人工ニューラルネットワ
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ークの機能を行わせるものであって、前記第１の組のパラメータおよび前記第２の組のパ
ラメータに基づいて前記患者の次の７２時間以内の前記生存性を予測し、それをディスプ
レイに出力するものであり、
　前記各々の人工ニューロンの関連付けられた重みは、複数の組のデータを有する電子デ
ータベースを用いて前記人工ニューラルネットワークをトレーニングすることによって調
節されるものであり、
　前記複数の組のデータは、少なくとも、心拍変動性データに関するパラメータおよびバ
イタルサインデータに関するパラメータを有し、各々の組は患者の生存および死亡のいず
れかを指す生存性に関するパラメータをさらに有するものであり、
　前記心拍変動性データは、患者からの心電図（ＥＣＧ）信号をフィルタリングしてノイ
ズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ信号内のＱＲＳ群
を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、前記ＲＲ間隔内の
情報のシーケンスを非オーバーラップセグメントに区分し、前記非オーバーラップセグメ
ントのシーケンスを処理して、非オーバーラップセグメントを処理して抽出された心拍変
動性データであり、
　前記人工ニューラルネットワークが、全ての非オーバーラップセグメントの心拍変動デ
ータのすべてを用いてトレーニングされる、プログラム。
【請求項４２】
　患者の生存性を予測するために少なくとも１台のコンピュータによって実行されるプロ
グラムであって、
　前記プログラムは、前記コンピュータに、患者の心拍変動性データに関する第１の組の
パラメータを測定するステップと、前記患者のバイタルサインデータに関する第２の組の
パラメータを測定するステップと、患者の特性に関する第３の組のパラメータを得るステ
ップと、必要な場合に、電子データベースで実現されるスコアリングモデルに対し、正規
化されたデータ値の組として、前記第１の組のパラメータ、前記第２の組のパラメータ、
および前記第３の組のパラメータを与えるステップと、
を実行させ、
　前記スコアリングモデルは、パラメータの値に対するスコアの割り当てと、前記第１の
組のパラメータ、前記第２の組のパラメータ、および前記第３の組のパラメータの各々の
パラメータに対するカテゴリの関連付けを行うものであって、各々のカテゴリは複数の予
め規定された値の範囲を有し、前記複数の値の範囲の各々は予め規定されたスコアを有し
、さらに
　前記第１の組のパラメータ、前記第２の組のパラメータ、および前記第３の組のパラメ
ータのそれぞれのパラメータに関連付けられた前記カテゴリの前記複数の値の範囲の、正
規化されたデータ値の前記組を包含するそれぞれの予め規定された値の範囲に正規化され
たデータの組を割当てることにより、前記第１の組のパラメータ、前記第２の組のパラメ
ータ、および前記第３の組のパラメータの各パラメータにスコアを定めるステップと、前
記第１の組のパラメータ、前記第２の組のパラメータ、および前記第３の組のパラメータ
の各パラメータの前記スコアの和である合計スコアを得るステップとを備え、
　前記合計スコアは前記患者の次の７２時間以内の前記生存性に関する指標を与え、前記
合計スコアが高くなるほど、次の７２時間以内の急性心肺事象のリスクが高いことを示す
ものであり、
　前記心拍変動性データは、患者からの心電図（ＥＣＧ）信号をフィルタリングしてノイ
ズおよびアーティファクトを除去し、フィルタリングされた前記ＥＣＧ信号内のＱＲＳ群
を場所特定し、前記ＱＲＳ群の連続ＱＲＳピーク間のＲＲ間隔を求め、前記ＲＲ間隔内の
情報のシーケンスを非オーバーラップセグメントに区分し、前記非オーバーラップセグメ
ントのシーケンスを処理して、非オーバーラップセグメントを処理して抽出された心拍変
動性データであり、
　前記スコアリングモデルへの入力が、全ての非オーバーラップセグメントの心拍変動デ
ータのすべてを含むプログラム。
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【発明の詳細な説明】
【技術分野】
【０００１】
　発明の分野
　発明は、急性心肺（ＡＣＰ）事象および患者の生存性を予測する方法に関する。発明は
、患者の急性心肺事象および生存性を予測するためのシステムにも関する。
【背景技術】
【０００２】
　発明の背景
　トリアージは、いかなる救急医療対応でも重要な部分である。これは、大量の患者を迅
速に選別して重篤さを判定しかつ治療の適切な優先順位を割当てる臨床プロセスである。
トリアージは現実である。というのも、医療資源は瞬時にすべての患者に対応するには決
して十分でないからである。このように、より緊急にそのような資源を必要とするであろ
うより重篤な患者を素早く識別できることが重要である。したがって、自動患者結果（心
停止および死亡率）分析のためのデバイスは、特に需要が資源を圧倒する災害または大量
死傷者が出る状況でトリアージを行なうのに役立ち得る。
【発明の概要】
【発明が解決しようとする課題】
【０００３】
　現在のトリアージシステムは、臨床判断、伝統的なバイタルサイン、および他の生理パ
ラメータに基づいている。それらは主観的となる傾向があり、臨床医にとってはあまり便
利かつ効率的ではない。さらに、心拍、呼吸数、血圧、体温、およびパルスオキシメトリ
を含む臨床「バイタルサイン」は、短期的または長期的臨床結果とよく相関するとは示さ
れていない。
【課題を解決するための手段】
【０００４】
　発明の概要
　発明の実施形態に従うと、患者のＡＣＰ事象および生存性を予測することができる、人
工ニューラルネットワークを発生する方法が提供され、方法は、電子データベースに患者
の健康データを記憶するステップを含み、患者の健康データは複数の組のデータを備え、
各々の組は心拍変動性データに関する第１のパラメータおよびバイタルサインデータに関
する第２のパラメータのうち少なくとも１つを有し、各々の組は患者の生存性に関する第
３のパラメータを有し、さらに方法は、人工ニュートラルネットワークを形成するように
相互接続されたノードのネットワークを設けるステップを含み、ノードは複数の人工ニュ
ーロンを備え、各々の人工ニューロンは関連付けられた重みを有する少なくとも１つの入
力を有し、さらに方法は、複数の人工ニューロンのうち各々の人工ニューロンの少なくと
も１つの入力の関連付けられた重みが患者の健康データからの異なる組のデータのそれぞ
れの第１、第２、および第３のパラメータに応答して調節されるように患者の健康データ
を用いて人工ニューラルネットワークをトレーニングして、これにより人工ニューラルネ
ットワークが患者のＡＣＰ事象および生存性に関する予測を発生するようにトレーニング
されるステップを含む。
【０００５】
　発明の実施形態に従うと、患者のＡＣＰ事象および生存性を予測する方法が提供され、
方法は、患者の心拍変動性データに関する第１の組のパラメータを測定するステップと、
患者のバイタルサインデータに関する第２の組のパラメータを測定するステップと、相互
接続されたノードのネットワークを備える人工ニューラルネットワークを設けるステップ
とを含み、ノードは複数の人工ニューロンを備え、各々の人工ニューロンは、複数の組の
データを有する電子データベースを用いて人工ニューラルネットワークをトレーニングす
ることによって調節される関連付けられた重みを有する少なくとも１つの入力を有し、各
々の組は、少なくとも、心拍変動性データに関するパラメータおよびバイタルサインデー
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タに関するパラメータを有し、各々の組は患者の生存性に関するパラメータをさらに有し
、さらに方法は、第１の組のパラメータおよび第２の組のパラメータを処理して人工ニュ
ーラルネットワークへの入力に好適な処理済みデータを発生するステップと、処理済みデ
ータを人工ニューラルネットワークへの入力として与えるステップと、人工ニューラルネ
ットワークからの出力を得るステップとを含み、出力は患者のＡＣＰ事象および生存性に
関する予測を与える。
【０００６】
　発明の実施形態に従うと、患者のＡＣＰ事象および生存性予測システムが提供され、シ
ステムは、患者の心拍変動性データに関する第１の組のパラメータを受ける第１の入力と
、患者のバイタルサインデータに関する第２の組のパラメータを受ける第２の入力と、相
互接続されたノードのネットワークを備える人工ニューラルネットワークを実現するため
の命令を記憶するメモリモジュールとを含み、ノードは複数の人工ニューロンを備え、各
々の人工ニューロンは、複数の組のデータを有する電子データベースを用いて人工ニュー
ラルネットワークをトレーニングすることによって調節される関連付けられた重みを有す
る少なくとも１つの入力を有し、各々の組は、少なくとも、心拍変動性データに関するパ
ラメータおよびバイタルサインデータに関するパラメータを有し、各々の組は患者の生存
性に関するパラメータをさらに有し、さらにシステムは、人工ニューラルネットワークの
機能を行ない、かつ第１の組のパラメータおよび第２の組のパラメータに基づいて患者の
ＡＣＰ事象および生存性に関する予測を出力するように、メモリモジュールに記憶される
命令を実行するプロセッサと、患者のＡＣＰ事象および生存性に関する予測を表示するた
めのディスプレイとを含む。
【０００７】
　発明の実施形態に従うと、患者のＡＣＰ事象および生存性を予測する方法が提供され、
方法は、患者の心拍変動性データに関する第１の組のパラメータを測定するステップと、
患者のバイタルサインデータに関する第２の組のパラメータを測定するステップと、患者
の特性に関する第３の組のパラメータを得るステップと、必要な場合は、電子データベー
スで実現されるスコアリングモデルに対し、正規化されたデータ値の組として、第１の組
のパラメータ、第２の組のパラメータ、および第３の組のパラメータを与えるステップと
を含み、スコアリングモデルは第１の組のパラメータ、第２の組のパラメータ、および第
３の組のパラメータの各々のパラメータに関連付けられるそれぞれのカテゴリを有し、各
々のカテゴリは複数の予め規定された値の範囲を有し、複数の値の範囲の各々は予め規定
されたスコアを有し、さらに方法は、第１の組のパラメータ、第２の組のパラメータ、お
よび第３の組のパラメータのそれぞれのパラメータに関連付けられるカテゴリの複数の値
の範囲の、正規化されたデータ値の組を包含するそれぞれの予め規定された値の範囲に正
規化されたデータの組を割当てることによって第１の組のパラメータ、第２の組のパラメ
ータ、および第３の組のパラメータの各パラメータ毎にスコアを定めるステップと、第１
の組のパラメータ、第２の組のパラメータ、および第３の組のパラメータの各パラメータ
毎にスコアの和である合計スコアを得るステップとを含み、合計スコアは患者のＡＣＰ事
象および生存性に対する指標を与える。
【０００８】
　実施形態の局面に従うと、治療されないまま放置されると合理的な尤度で重傷または死
亡という結果を招くであろう切迫した急性心肺医療事象の検出のためのシステムは、患者
のＥＣＧを検知するための複数の電極を含み、かつＥＣＧ出力を有する心電図（ＥＣＧ）
モジュールと、ＥＣＧ以外の患者の生理パラメータを検知するためのセンサと、ＥＣＧ出
力を受けるための第１の入力と、ＥＣＧ以外の患者の生理パラメータを検知するためのセ
ンサからの信号を受けるための第２の入力と、患者の人口学的情報の少なくとも１つの要
素を記述するパラメータ情報および患者の病歴を記述するパラメータ情報を受けるように
構築されかつ配置される第３の入力と、ＥＣＧおよびＥＣＧ以外の生理信号をデジタル化
するためのデジタル化ユニットと、ＥＣＧ、ＥＣＧ以外の生理信号、患者の人口学的情報
、および病歴をそれぞれ記憶および処理するためのメモリユニットおよび処理ユニットを
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内蔵する筺体と、ユーザ通信ユニットとを含み、処理ユニットは、心拍変動性（ＨＲＶ）
の少なくとも１つの測定値を算出し、ＨＲＶのその少なくとも１つの測定値を患者の人口
学的情報および病歴の少なくとも１つのパラメータ各々と組合せて、算出の７２時間以内
のＡＣＰ事象の統計的確率を算出する。システムは、着用可能な構成で患者が持ち運ぶよ
うにさらに構築されかつ配置されてもよい。センサは、微小血管系の灌流状態を測定して
もよい。センサはパルス酸素濃度計であってもよい。システムはさらに、心臓組織を刺激
し得る、生体組織の電磁刺激器を含んでもよい。ユーザ通信ユニットはキーエントリを有
してもよい。第３の入力はキーエントリであってもよい。ユーザ通信ユニットは主筺体の
中にあってもよい。ユーザ通信ユニットは主筺体とは別個であってもよい。ユーザ通信ユ
ニットはディスプレイであってもよい。刺激はペーシングであってもよく、または刺激は
除細動であってもよい。刺激は磁気的刺激であってもよい。
【０００９】
　実施形態の局面に従うと、外傷を治療中のまたは大量死傷者発生の一部としての患者の
死亡率を予測するためのシステムは、患者のＥＣＧを検知するための複数の電極を含み、
かつＥＣＧ出力を有する心電図（ＥＣＧ）モジュールと、ＥＣＧ以外の患者の生理パラメ
ータを検知するためのセンサと、ＥＣＧ出力を受けるための第１の入力と、ＥＣＧ以外の
患者の生理パラメータを検知するためのセンサからの信号を受けるための第２の入力と、
患者の人口学的情報の少なくとも１つの要素を記述するパラメータ情報および患者の病歴
を記述するパラメータ情報を受けるように構築されかつ配置される第３の入力と、ＥＣＧ
およびＥＣＧ以外の生理信号をデジタル化するためのデジタル化ユニットと、ＥＣＧ、Ｅ
ＣＧ以外の生理信号、患者の人口学的情報、および病歴をそれぞれ記憶および処理するた
めのメモリユニットおよび処理ユニットを内蔵する筺体と、ユーザ通信ユニットとを含み
、処理ユニットは、心拍変動性（ＨＲＶ）の少なくとも１つの測定値を算出し、ＨＲＶの
その少なくとも１つの測定値を患者の人口学的情報および病歴の少なくとも１つのパラメ
ータ各々と組合せて、患者の死亡率の統計的確率を算出する。システムは、着用可能な構
成で患者が持ち運ぶように構築されかつ配置されてもよい。センサは、微小血管系の灌流
状態を測定してもよい。センサはパルス酸素濃度計であってもよい。
【００１０】
　発明の実施形態の局面に従うと、患者の心臓病を治療する方法は、患者の心拍変動性（
ＨＲＶ）を測定するステップと、患者のバイタルサインデータを測定するステップと、目
的のために構築されかつ配置された計算装置を用いて、測定されたバイタルサインデータ
と組合せたＨＲＶに基づいて１つ以上の選択された期限までの患者の生存の尤度を予測す
るステップと、１つ以上の選択された期限までの患者の生存の尤度が所望のしきい値を下
回る場合にバイタルサインデータが示すような心臓病を治療するステップとを含む。方法
はさらに、患者の人口学的情報および患者の履歴情報のうち少なくとも１つを収集するス
テップを含み、予測するステップはさらに、収集された患者の人口学的情報および患者の
履歴情報にさらに鑑みて生存の尤度を計算するステップを備える。方法はまたさらに、４
時間から２４時間の間の期限または４時間から７２時間の間の期限を選択するステップを
含んでもよい。
【００１１】
　発明の実施形態の局面に従うと、心臓が原因であることによる１つ以上の選択された期
限までの患者の生存の尤度を予測するための装置は、心拍出力を有する心拍センサと、バ
イタルサイン出力を有するバイタルサインセンサと、心拍出力およびバイタルサイン出力
を受け、かつ受けた心拍出力から心拍変動性（ＨＲＶ）を計算することと、計算されたＨ
ＲＶとバイタルサイン出力との組合せから、心臓が原因であることによる１つ以上の選択
された期限までの患者の生存の尤度を計算することとを行なう計算モジュールと、心臓が
原因であることによる１つ以上の選択された期限までの患者の生存の尤度をユーザに表示
する出力デバイスとを含む。装置はさらに、患者の人口学的情報および患者の履歴情報の
うち少なくとも１つを収集するように構築されかつ配置されるデータ入力デバイスと、収
集された患者の人口学的情報および患者の履歴情報にさらに鑑みて生存の尤度を計算する
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こととをさらに含んでもよい。装置はまたさらに、４時間から２４時間の間の期限または
４時間から７２時間の間の期限を含んでもよい。
【００１２】
　図面を参照して以下の説明で発明を図示する。
　図面では、同じ参照番号は一般的に異なる図を通じて同じ部品を参照する。図面は必ず
しも縮尺通りではなく、発明の原則を図示するにあたって、代わりに一般的に強調されて
いる。以下の説明では、以下の図面を参照して発明のさまざまな実施形態を説明する。
【図面の簡単な説明】
【００１３】
【図１】患者のＡＣＰ事象および生存性を予測することができる、人工ニューラルネット
ワークを発生するのに用いられる、本発明の１つの実施形態に従う方法を図示するフロー
チャートである。
【図２】本発明の１つの実施形態に従う人工ニューラルネットワークの概略図である。
【図３】本発明の１つの実施形態に従う人工ニューラルネットワークの概略図である。
【図４】患者のＡＣＰ事象および生存性を予測するのに用いられるシステムのブロック図
である。
【図５】信号取得ブロックによって実現される、発明の実施形態に従うフローチャートで
ある。
【図６】信号処理モジュールによって実現される、発明の実施形態に従うフローチャート
である。
【図７】鼓動検出および後処理モジュールによって実現される、発明の実施形態に従うフ
ローチャートである。
【図８】ＨＲＶパラメータ算出モジュールによって実現される、発明の実施形態に従うフ
ローチャートである。
【図９】分析ブロック中でデータがどのように流れるかのブロック図である。
【図１０】無線技術を利用する、発明の実施形態に従うシステムの使用を図示するフロー
チャートである。
【図１１】患者の生のＥＣＧデータ特性を要約する図である。
【図１２】ＥＣＧ信号がどのように前処理されてＨＲＶパラメータを算出するかを図示す
る、発明の実施形態に従うフローチャートである。
【図１３】データ抽出がどのように行なわれるかを示す図である。
【図１４】患者のＡＣＰ事象および生存性を予測する、本発明の１つの実施形態に従う方
法を図示するフローチャートである。
【図１５】発明の実施形態に従う患者のＡＣＰ事象および生存性予測システムの概略図で
ある。
【図１６】発明の実施形態に従う患者のＡＣＰ事象および生存性予測システムの概略図で
ある。
【図１７】発明の実施形態に従う患者のＡＣＰ事象および生存性予測システムの絵を示す
図である。
【図１８】発明の実施形態に従う患者のＡＣＰ事象および生存性予測システムの出力のス
ナップショットを示す図である。
【図１９】発明の実施形態に従う患者のＡＣＰ事象および生存性予測システムの出力のス
ナップショットを示す図である。
【図２０】発明の実施形態に従う患者のＡＣＰ事象および生存性予測システムの出力のス
ナップショットを示す図である。
【図２１】患者のＡＣＰ事象および生存性を予測するのに用いられる、本発明の１つの実
施形態に従う方法を図示するフローチャートである。
【図２２】検証システムが用いるフローチャートである。
【図２３】バイタルサインを用いた分類結果を示す図である。
【図２４】ＨＲＶ測定値を用いた分類結果を示す図である。
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【図２５】組合せ特徴を用いた分類結果を示す図である。
【図２６】組合せ特徴を用いる異なる数の選択されたセグメントを用いることからの結果
を示す図である。
【図２７】４つの異なる予測ストラテジを示す図である。
【図２８】組合せ特徴を用いる異なる予測ストラテジからの結果を示す図である。
【図２９】バイタルサイン、ＨＲＶ測定値、および組合せ特徴を用いることからの分類結
果を示す図である。
【図３０】異なる数の隠れノードの観点でのエクストリームラーニングマシン（ＥＬＭ）
の性能を示す図である。
【図３１】異なる数の隠れノードの観点でのエクストリームラーニングマシン（ＥＬＭ）
の性能を示す図である。
【図３２】異なる数の隠れノードの観点でのエクストリームラーニングマシン（ＥＬＭ）
の性能を示す図である。
【図３３】組合せ特徴を用いる異なる予測ストラテジからの結果を示す図である。
【図３４】着用可能な医療デバイスでの発明の実施形態を示す図である。
【発明を実施するための形態】
【００１４】
　詳細な説明
　実施形態の局面に従うと、システムは、治療しないまま放置されると高い尤度で重傷ま
たは死亡という結果を招くであろう急性心肺医療事象を確実に予測することができる。そ
のような急性心肺（ＡＣＰ）事象の例は、心停止または呼吸停止、鈍的外傷障害または急
性非代償性心不全に特による血液減少性ショックを含むであろう。
【００１５】
　さまざまな外傷、ストレス、およびショック状態下での患者の罹患率および患者の死亡
率を判断しかつ予測することを求める以前のシステムは、モニタされる一連の兆候に心拍
変動性（ＨＲＶ）を含んでいた。ＨＲＶ測定は、患者の心電図信号中のＲ－Ｒ間隔の経時
的変動性を定量化する。特定の心拍のＲ波は、早期収縮段階の心周期中のポイントに対応
し、信号処理の観点から、心周期間隔測定を行なうための確実な時間基準を提供する。Ｈ
ＲＶは、交感神経系（ＳＮＳ）および副交感神経系（ＰＮＳ）からなる自律神経系に影響
される。観察されるＨＲＶは、神経系の能力の尺度を与えるＳＮＳとＰＮＳとの間の動的
相互作用およびバランスのインジケータであると考えられている。ＨＲＶは、鬱血性心不
全から睡眠無呼吸に及ぶ自律系によって影響されるさまざまな状態の診断および判定のた
めのインジケータとして働く。たとえば、減少したＨＲＶは、冠動脈性心疾患についての
年配者の上昇した死亡率の予測子であることがわかっている。減少したＨＲＶは、突然の
心停止の後に、ならびに糖尿病、尿毒症、および高血圧などの疾患がある患者においても
見られる。残念ながら、心拍変動性単独では、上昇する死亡率を予測することはできても
、任意の時間特異度を持つＡＣＰ事象の劣った予測子でしかない。
【００１６】
　ＨＲＶに関する変動性尺度は、拡張（弛緩）期の間の心筋層の回復のばらつきの尺度で
あるＴ波交互脈であり、ＥＣＧのＴ波の振幅の変動を測定する。ＥＣＧ振幅の微細な変動
を測定する必要性のために、これは患者の運動によって誘発されるアーティファクトの影
響を比較的受けやすく、したがって患者のＥＣＧの連続的なモニタには有用でない。
【００１７】
　実施形態の局面に従うと、たとえばトリアージシステムでは、治療しないまま放置され
ると高い尤度で重傷または死亡という結果を招くであろう急性心肺医療事象を確実に予測
できることに価値があるであろう。そのような急性心肺（ＡＣＰ）事象の例は、心停止ま
たは呼吸停止、鈍的外傷障害または急性非代償性心不全に特による血液減少性ショックを
含むであろう。従来の臨床的兆候、徴候、および生理学的測定は、これらの種類の事象の
警告をほとんど与えない。たとえば、植込型除細動器（ＩＣＤ）またはLifevest (Zoll M
edical)などの着用可能体外除細動器は、患者の日常の活動の間に患者の心電図（ＥＣＧ
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）信号を連続的に分析し、救命電気ショックを心臓に送出する。
【００１８】
　米国出願２００９／０２３４４１０Ａ１には、心不全代償不全の予測のためのシステム
が記載される。このおよび同様のシステムは、ＥＣＧを介した心律動異常の検出を要件と
するが、残念ながらこのことが予測予報精度の持続時間を限定してしまう。たとえば、Ｉ
ＣＤおよび着用可能除細動器上の不整脈検出器は、患者がショックを必要とする致死的不
整脈になった後でしか、ショックを与え得る事象を検出しない。広範な研究にも拘らず、
切迫しているＡＣＰ事象の確実な予測のために不整脈分析を利用することには問題があり
、予測精度および事象の時間特異度（事象がいつ起こり得るかの予測）の両者が欠けてい
た。Ｕ．Ｓ．２００９／０２３４４１０は不整脈分析と関連して心拍変動性を利用し得る
が、ここでも不整脈検出器の使用が予測精度を限定してしまう。
【００１９】
　Ｔ波交互脈などの心律動異常のより高度な分析方法も、典型的に１マイクロボルトより
も優れたＥＣＧ電圧の非常に正確な測定を要件とし、このように、着用可能なモニタおよ
び治療用デバイスなどの、ＥＣＧを相対的に絶えずモニタしているシステムで生成される
信号アーティファクトの影響を非常に受けやすい傾向がある。米国特許第４，９５７，１
１５号は、他の生理学的測定とともにＥＣＧ不整脈分析を用いて心血管事象による切迫す
る死亡の確率スコアを生成するシステムを記載する。米国特許第７，２７２，４３５号に
記載のものなどの他のシステムは、着用可能デバイス上で遭遇する見込みがあるであろう
条件とは異なる制御された条件下で患者を見るストレステスト実験室で用いられ得る。そ
のような厳密に制御された条件下なら、Ｔ波交互脈などのノイズの影響を受けやすい測定
技術が適用可能かもしれない。
【００２０】
　米国特許第６，６６５，５５９号および第５，５０１，２２９号は、ＥＣＧ不整脈分析
の連続比較に基づく心血管リスクの確率を判断するシステムを記載する。このように、発
明の実施形態の局面に従うと、体外着用可能デバイスからの連続的なモニタの間にしばし
ば遭遇するＥＣＧ信号アーティファクトの存在下でよりロバストなシステムを有すること
が有利であり、かつＡＣＰ事象が最も起こりやすいときにいくらかの信頼性を持って予測
することができるシステムを有することがさらに有利であろう。
【００２１】
　発明の実施形態の局面は、所望の範囲外の任意のバイタルサインについてユーザに警告
を発するシステムを記載する米国特許公開出願２００７／１１２，２７５Ａ１とは区別さ
れるように、他のバイタルサインデータとＨＲＶとを組合せる。さらに、発明の実施形態
の局面は、１つ以上の他のバイタルサインと組合せたＨＲＶを用いて全く異なるかつ無関
係な種類の傷害、外傷性脳損傷による罹患率および死亡率を予測することを記載する米国
特許公開出願２００７／２７６，２７５Ａ１と比較して、ＨＲＶを他のバイタルサインデ
ータと組合せることによって急性心肺（ＡＣＰ）事象の発生の尤度を予測する。
【００２２】
　実施形態の局面に従うＨＲＶデータの測定は、自律神経系と心血管系との間の相互作用
の尺度を与える。Stein他が指摘するように（たとえば、Insights from the Study of He
art Rate Variability, P. K. Stein, R. E. Kleiger, Annu. Rev. Med. 1999, 50:249-6
1を参照）、ＡＣＰ事象を予測しようとしてＨＲＶが研究者らが用いる周知の技術となっ
た一方で、ＨＲＶのみでは、何らかの合理的な精度の度合いで将来的な臨床的事象を予測
するには不十分である。
【００２３】
　発明の実施形態の局面は、また別の態様で現在市販されているＨＲＶ分析用の市販のデ
バイスとは異なっている。いくつかの市販のＨＲＶ分析デバイスは嵩張る。実施形態の局
面はより持ち運びしやすく、したがって現場での準備が整っているため、救急車などの外
での環境でおよび病院での日常的な使用に便利である。さらに、実施形態の局面は、市販
のデバイスが現在行なっているように、いくつかのＨＲＶ測定値を心血管系の特定の異常
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と単に相関させる以上のことを行なう。実施形態の局面は、持ち運び可能なパッケージで
、患者結果のリスクスコアを予測する。いくつかの市販のデバイスは持ち運び可能である
が、機能が限定されている。経験のある臨床医は出力を解釈し、いくつかの現在市販され
ているデバイスは正常な人の健康状態などの単純な情報しか与えない。いくつかの実施形
態の局面はこのように、トリアージには極めて重要な、患者結果を自動的に予測できるこ
とと持ち運び性との組合せを欠いている既存の市販のデバイスに対する改良でもある。
【００２４】
　発明の１つの実施形態では、全体図を図３４に示すデバイス１０などの、患者が着用可
能なデバイスを提供する。患者が着用したデバイスは、好適な布、ウェビングなどのウエ
スト周りを囲むベルト１４を含んでもよく、ばね入りの要素を組入れてもよく、ベルトは
、ベルトの前方部と後方部との間に接続される、同じ材料製の低プロファイルのコネクタ
またはバックル１６とショルダストラップ１８とを有する。第１および第２のセンシング
およびパルス電極アセンブリ２０はそれぞれベルト１４およびショルダストラップ１８上
に載置される。ベルト１４は、ストラップ１８を有する支持ストラップ接続部２６と、そ
れぞれの電極アセンブリ２０から電気信号を受けかつ電気パルスをそれらに送出するため
の、２８および３０で図式的に示される電気導体とを有し得る電子部品筺体２４も載置す
る。アセンブリ２０はそれぞれのセンシング電極２２およびパルス電極３２を有する。
【００２５】
　これまで記載されたようなデバイスの使用の際に、アセンブリ２０は患者の胸壁と楽に
接触して保持され、それぞれのセンシング電極２２によって心臓の律動を連続的にモニタ
しかつ検出する。これに代えて、センシング電極はパルス電極３２とは別の場所の患者の
皮膚上に置かれる伝統的な使い捨てＥＣＧ電極であってもよい。デバイス１０は、それぞ
れの電極アセンブリ２０を受ける開口３６を有し得るＴシャツなどの楽な肌着３４の上に
着用されてもよい。ベルクロ（登録商標）タイプの面ファスナー布パッチなどの装着物３
８がベルト１４とストラップ１８と肌着との間に設けられてもよい。
【００２６】
　電極アセンブリ２０の筺体は、ＥＧＧ電極用の信号調整および増幅電子部品を内蔵して
もよい。ＥＧＧ電極２２は、皮膚に刺激を与えずに長期使用を可能にする容量性の導電性
カーボン、または任意の他の設計であってもよい。それぞれの電極のプリント回路が導体
２８および３０を通してパルス発生器２４に接続されることが理解される。
【００２７】
　パルス酸素濃度計３８などの第２の生理パラメータを測定するためのセンサを用いて患
者の付加的な生理学的ステータスを測定する。パルス酸素濃度計の場合、生理パラメータ
は組織灌流のパラメータである。
【００２８】
　センサは、当業者には公知のインピーダンスプレチスモグラフィ（ＩＰ）であってもよ
い。ＩＰは、典型的には、低電流を電極に印加し、誘導電圧を測定することでセンス電極
の下にある組織の電気インピーダンスの小さなばらつきを測定することによって達成され
る。組織の容積が変化すると、血液灌流または呼吸による肺の中の空気の増加などの生理
的活動の結果として、その電気インピーダンスも変化する。このように、検知される生理
パラメータは、同じ組のインピーダンス電極を同時に介した血液の流れと呼吸との両方で
あり得る。インピーダンス測定およびＥＣＧの両者用にＥＣＧ電極２２も同時に使用でき
ることも可能でありかつ当業者に公知である。というのも、ＩＰのために印加される電流
は典型的には３０ｋＨｚ以上であり、したがって処理前にＥＣＧ増幅器への入力信号から
フィルタリング可能であるからである。なぜなら、ＥＣＧ信号は１００Ｈｚ以下の関連の
周波数を含有するからである。１つよりも多くのセンサを設けて２つ以上の生理パラメー
タについての複数の測定値を得てもよい。
【００２９】
　少なくとも１つの患者の皮膚表面と接着するパッド、ペースト、またはゲルを用いて電
気的接触をなす電極などの受動デバイスを用いてＥＣＧ信号を検出してもよい。少なくと
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も１つの患者の皮膚表面に接触して患者のＥＣＧ信号を検出する必要が必ずしもない能動
デバイスなどの他の手段を用いてもよい。そのような能動デバイスは絶縁された生体用電
極（ＩＢＥ）であってもよい。ＩＢＥは、抵抗性電気接触なしにかつ非常に低い容量結合
で皮膚上の電位を測定してもよい。ＩＢＥは無線でまたはケーブルを介して処理ユニット
に接続されてもよい。無線ＩＢＥを達成するため、無線ノードプラットフォームをＩＢＥ
に一体化してもよい。無線ＩＢＥとともに機能し得るシステムの例は、３導線システムを
形成するように３つの無線ＩＢＥを用いる「Tmote Sky」プラットフォームである。「Tmo
te Sky」プラットフォームは、２５０Ｋｂｐｓの８０２．１５．４無線インターフェイス
を有し、ＭＳＰ４３０Ｆ１６１１マイクロコントローラによって制御される。
【００３０】
　図４を参照して、システム４００は３つの主な機能ブロック、すなわち、信号取得ブロ
ック４０２、信号処理ブロック４０４、および分析ブロック４０６を有する。信号取得ブ
ロック４０２は、患者４０１からＥＣＧ信号および他のバイタルサインを取得するための
センサおよび信号調整ハードウェア４０８を有する。センサおよび信号調整ハードウェア
４０８は、ＥＣＧ信号と、血圧、ＳｐＯ２などの組織灌流、および呼吸数などの他の生理
パラメータとを検出するセンサを含んでもよい。
【００３１】
　信号取得ブロック４０２はデータ取得（ＤＡＱ）電子部品４１０を有し、これは１つの
実施形態では、センサおよび信号調整ハードウェア４０８からの出力を処理するのに用い
られる信号調整回路を内蔵する。信号調整回路はこれらのセンサからの信号を処理するよ
うに設計される。信号調整回路は、センサが測定するさまざまな信号の絶縁および増幅な
らびにアナログ信号からデジタル信号への変換などの機能を行なう電子構成要素を備える
。ＤＡＱ電子部品４１０は、デジタル化されたＥＣＧおよび他の生理パラメータを処理ユ
ニット４３０に通信する。処理ユニットは、マイクロプロセッサなどの処理ユニットと、
ディスクドライブまたはＲＯＭもしくはフラッシュメモリなどの固体状態記憶素子などの
プログラム記憶回路と、ＤＲＡＭなどの動的データ記憶素子と、ＤＡＱ４１０およびＷｉ
Ｆｉネットワークまたはセルラーネットワークなどの外部デバイスの両者と通信するため
の、シリアルデータチャネル、Bluetooth（登録商標）、ＵＳＢなどの通信回路と、ディ
スプレイ、音声チャネルおよびスピーカ、タッチスクリーンインターフェイス、ならびに
スイッチを内蔵するユーザインターフェイス回路と、バッテリおよび電源回路という当業
者には公知の回路素子を内蔵する。入力パネルも患者４０１の年齢および性別などの付加
的な情報を受付ける。
【００３２】
　信号処理ブロック４０４は、信号処理モジュール４２６、バイタルサインモジュール４
２０、および患者情報モジュール４１８を含む。回路構成は機能を最適化するように構成
されてもよく、信号処理モジュール４２６および分析モジュール４０６の機能は、Texas 
Instruments Blackfin プロセッサファミリーなどのデジタル信号プロセッサ（ＤＳＰ）
チップによって提供され、ユーザインターフェイスおよび他の機能は、Linux（登録商標
）オペレーティングシステムを実行するDual-Core Intel Xeon プロセッサなどの汎用マ
イクロプロセッサによって提供される。「モジュール」という用語は、処理ユニット４３
０が行なう特定の機能のみを参照する。図中のモジュールの境界は実際の回路構成に対応
していてもしていなくてもよい。信号処理モジュール４２６は、ＥＣＧ前処理モジュール
４１２、鼓動検出および後処理モジュール４１４、およびＨＲＶパラメータ算出モジュー
ル４１６を含む。ＥＣＧ前処理モジュール４１２は、信号取得ブロック４０２からの生の
ＥＣＧデータを処理して、最終的にＥＣＧデータから抽出されるＨＲＶパラメータの精度
に影響を及ぼすかもしれないノイズ、動きアーティファクト、および電力線干渉などの望
まれない信号を抑制する。鼓動検出および後処理モジュール４１４は、後処理の間に、Ｅ
ＣＧ前処理モジュール４１２からのノイズ除去された信号に対して作用して心拍を検出す
るとともに非正弦鼓動を排除する。連続正弦鼓動の間の持続時間は、ＲＲＩ（鼓動から鼓
動への間隔）シーケンスにコンパイルされ、そこからＨＲＶパラメータが計算される。抽
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出は好ましくは患者の正弦律動から導出されるＥＣＧ信号からのものである。
【００３３】
　本発明の１つの実施形態では、心拍変動性データを抽出することは、ＥＣＧ信号をフィ
ルタリングしてノイズおよびアーティファクトを除去することと、フィルタリングされた
ＥＣＧ信号内のＱＲＳ群を場所特定することと、ＱＲＳ群の連続したＲ波同士の間のＲＲ
間隔を求めることと、ＲＲ間隔内の情報のシーケンスを処理して心拍変動性データを得る
こととを備える。
【００３４】
　本発明の１つの実施形態では、帯域フィルタを用いてＥＣＧ信号をフィルタリングする
とともにＱＲＳ群の場所特定を行なう。ＱＲＳ群の周波数成分よりも動作周波数範囲が広
い帯域フィルタを用いる必要がある。ＱＲＳ群の周波数成分は１０から２５Ｈｚの間にあ
る。このように、本発明の１つの実施形態では、帯域フィルタの動作周波数範囲は約５Ｈ
ｚから約２８Ｈｚの間である。
【００３５】
　本発明の１つの実施形態では、以下のようにＲ波を場所特定してもよい。フィルタリン
グされたＥＣＧ信号中で最初に発生する最大ピークデータ値を場所特定する。場所特定さ
れた最大ピーク値から上側振幅しきい値および下側振幅しきい値を定める。ピーク値およ
びピーク値のいずれかの側の最小値を場所特定する。発明のこの実施形態では、いずれか
の側がピーク値の左および右側を指す。ピーク値が上側振幅しきい値を上回りつつ最小値
が下側振幅しきい値を下回るか否かの条件が満たされていることがチェックされる。条件
が満たされていれば、ピーク値の場所はＲ位置として示される。Ｒ位置の左側の最も近く
で発生する最小値の場所がＱ位置として示され、Ｒ位置の右側の最も近くで発生する最小
値の場所がＳ位置として示される。フィルタリングされたＥＣＧ信号がそれに対してプロ
ットされるタイムスケールを参照して、Ｑ位置は、最小値が最初にＲ位置の前に発生する
場所で発生する一方で、Ｓ位置は最小値が最初にＲ位置の後に発生する場所で発生する。
フィルタリングされたＥＣＧ信号内のＱＲＳピークの場所はこのように定められる。
【００３６】
　本発明の１つの実施形態では、ＥＣＧサンプルポイントｘ（ｎ）の１Ｄアレイが設けら
れる場合、上側および下側振幅しきい値（ＴupperおよびＴlower）は、データの始めの数
秒内の最大値（ref_peak）を求めた後で設定される。しきい値は以下のように定義される
。
【００３７】
　Ｔupper = ref_peak + 0.4* ref_peak
　Ｔlower = ref_peak - 0.35* ref_peak
次に、Ｒ波は、以下の条件が満たされた場合にポイントｉで発生するといわれている。
【００３８】
　ｘ（ｉ）がＴupperとＴlowerとの間にあり；
　ｘ（ｉ＋１）－ｘ（ｉ）＜０であり；かつ
　ｘ（ｉ）－ｘ（ｉ－１）＞０である；
式中、Ｒピークは最大値を有するポイントである。
【００３９】
　フィルタリングされたＥＣＧ信号内の他のＲ波の位置は、別のピーク値の場所特定をし
、別のピーク値のいずれかの側の他の最小値を場所特定するというプロセスを繰返すこと
によって場所特定されてもよい。別のピーク値が上側振幅しきい値を上回りつつ他の最小
値が両者とも下側しきい値を下回る場合、ピーク値の場所はＲ位置として示される。Ｒ位
置の左側の最も近くで発生する最小値の場所がＱ位置として示され、Ｒ位置の右側の最も
近くで発生する最小値の場所がＳ位置として示される。このように、別のＱＲＳピークの
場所が定められる。
【００４０】
　ＲＲ間隔内の情報のシーケンスの処理は、ＲＲ間隔内の情報のシーケンスからアウトラ
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イアーを除去することをさらに備えてもよい。ＲＲ間隔の中央値および標準偏差値を求め
てもよい。標準偏差値に基づく許容因子を算出してもよい。許容因子分だけ中央値のいず
れかの側に及ぶＲＲ間隔内にある情報の部分を保持してもよい。情報の保持された部分か
ら心拍変動性データを得てもよく、情報のシーケンスからの情報の残余の部分を破棄して
もよい。
【００４１】
　発明の実施形態では、心拍変動性データは、時間領域データ、周波数領域データ、およ
び幾何学的領域データを含んでもよい。
【００４２】
　時間領域データは、ＲＲ間隔の平均（平均ＲＲ）と、ＲＲ間隔の標準偏差（ＳＴＤ）と
、瞬間心拍の平均（平均ＨＲ）と、瞬間心拍の標準偏差（ＳＴＤ＿ＨＲ）と、隣接するＲ
Ｒ間隔の間の差の二乗平均（ＲＭＳＳＤ）と、５０ｍｓ超異なる連続ＲＲ間隔の数（ＮＮ
５０）と、５０ｍｓ超異なる連続ＲＲ間隔の百分率（ｐＮＮ５０）とのパラメータのうち
いずれか１つ以上についての情報を含んでもよい。
【００４３】
　周波数領域データは、非常に低い周波数範囲（≦０．０４Ｈｚ）中のパワー（ＶＬＦ）
と、低い周波数範囲（０．０４から０．１５Ｈｚ）中のパワー（ＬＦ）と、高い周波数範
囲（０．１５から０．４Ｈｚ）中のパワー（ＨＦ）と、セグメント中のＮＮ間隔の分散か
ら推測され、かつｍｓ2で測定される合計パワー（ＴＰ）と、ＨＦパワーに対するＬＦパ
ワーの比（ＬＦ／ＨＦ）と、正規化された単位でのＬＦパワー：LF/(TP-VLF)×100 (LFno
rm)と、正規化された単位でのＨＦパワー：HF/(TP-VLF)×100 (HFnorm)とのパラメータの
うちいずれか１つ以上についての情報を含んでもよい。
【００４４】
　幾何学的領域データは、間隔のヒストグラムの高さで除算したすべてのＲＲ間隔の合計
数（ＨＲＶ指数）と、最小二乗法を用いてＲＲヒストグラムにフィッティングされた三角
形の底辺の幅（ＴＩＮＮ）とのデータのうちいずれか１つについての情報を含んでもよい
。
【００４５】
　発明の実施形態では、バイタルサインデータは、収縮期血圧、拡張期血圧、脈拍、パル
スオキシメトリ、呼吸数、グラスゴーコーマスケール（ＧＣＳ）、疼痛スコア、体温のう
ちいずれか１つ以上を含んでもよい。バイタルサイン測定値は、波形の形態の連続的な変
数のいずれかであってもよい。バイタルサイン測定値は単一の時点で取られる測定値であ
ってもよく、またはバイタルサイン測定値は、時にはいわゆるトレンドデータの形態で記
憶されることがある、典型的には等間隔でサンプリングされる一連の測定値であってもよ
い。
【００４６】
　発明の実施形態では、人工ニューラルネットワークをトレーニングにするのに用いられ
る患者の健康データは、瞬間心拍の標準偏差（ＳＴＤ＿ＨＲ）、正規化された単位での低
い周波数範囲（０．０４から０．１５Ｈｚ）中のパワー（ＬＦｎｏｒｍ）、年齢、脈拍、
パルスオキシメトリ、収縮期血圧、および拡張期血圧であってもよい。
【００４７】
　発明の実施形態では、測定された第１の組のパラメータは、瞬間心拍の標準偏差（ＳＴ
Ｄ＿ＨＲ）と、正規化された単位での低い周波数範囲（０．０４から０．１５Ｈｚ）中の
パワー（ＬＦｎｏｒｍ）とであり、測定された第２の組のパラメータは、年齢、脈拍、パ
ルスオキシメトリ、収縮期血圧、および拡張期血圧である。
【００４８】
　患者の健康データは、心拍変動性データ、バイタルサインデータ、患者の生存性、およ
び患者の特性に関するパラメータを含む。患者の健康データは複数の組のデータを含んで
もよく、ここで各々の組のデータは、これらのパラメータ、すなわち、心拍変動性に関す
る第１のパラメータ、バイタルサインデータに関する第２のパラメータ、患者の特性に関
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する第３のパラメータ、または患者の生存性に関する第４のパラメータ、のうち単一のカ
テゴリから形成されてもよい。一方で、各々の組のデータは、心拍変動性に関する第１の
パラメータと、バイタルサインデータに関する第２のパラメータと、年齢、性別、または
他の人口学的特性、および糖尿病、心筋梗塞、高血圧などの患者の既往歴における具体的
な状態などの患者の特性に関する第３のパラメータとのうち少なくとも１つなどの、これ
らのパラメータのカテゴリの組合せを有してもよい。心筋梗塞の発生した日付、心筋梗塞
後の駆出率、または心室組織損傷の百分率での程度などの具体的状態の重篤さもシステム
に記録され与えられる。他の記述子は、患者がさまざまな医学的状態を治療するのに用い
る具体的な投薬法であってもよい。退院までの生存のような結果などの患者の生存性に関
する第４のパラメータを設けてもよい。第４のパラメータは、アルゴリズム展開のトレー
ニング段階の間と、予測アルゴリズムの実際の精度を記録することにより精度を向上させ
るおよびその精度を向上させるための好適な修正を行なう手段としての使用の間とにおい
てアルゴリズムのトレーニングの手段として用いられる。その組のデータは、患者の生存
性に関するパラメータを必ずしも含まなくてもよい。これに代えて、各々の組の患者の健
康データは４つのパラメータすべてを含んでもよい。このように、患者の健康データ内で
、１組のデータは、別の組のデータと比較して、同じ数のパラメータを含まなくてもよい
ことが認められるであろう。さらに、患者の健康データは、（アナログ信号などの）４つ
のパラメータの各々が元々得られた形態、すなわち得られた測定値の元の形態、から変換
されたデジタルデータとして記憶される。
【００４９】
　人口統計、既往歴、および生存性などの患者の特性のデータは、８０２．１１などの、
病院じゅうに分散された無線ネットワークを介してデバイス１０またはシステム４００に
通信されてもよい。
【００５０】
　本発明の実施形態に従うと、患者の生存性を予測することができる、人工ニューラルネ
ットワークを発生する方法が提供される。方法は、電子データベースに患者の健康データ
を記憶するステップを含む。患者の健康データは複数の組のデータを含み、各々の組は心
拍変動性データに関する第１のパラメータおよびバイタルサインデータに関する第２のパ
ラメータのうち少なくとも１つを有する。複数の組のデータの各々は、患者の生存性に関
する第３のパラメータをさらに有する。人工ニューラルネットワークを形成するように相
互接続されたノードのネットワークが設けられる。ノードは複数の人工ニューロンを含み
、各々の人工ニューロンは関連付けられた重みを有する少なくとも１つの入力を有する。
人工ニューラルネットワークは、複数の人工ニューロンのうち各々の人工ニューロンの少
なくとも１つの入力の関連付けられた重みが患者の健康データからの異なる組のデータの
それぞれの第１、第２、および第３のパラメータに応答して調節されるように患者の健康
データを用いてトレーニングされる。この結果、人工ニューラルネットワークがトレーニ
ングされて患者の生存性に関する予測を発生する。
【００５１】
　患者の健康データを記憶するのに用いられる電子データベースは、ハードディスクドラ
イブ、光ディスク、または固体状態デバイス（たとえばサムドライブ）などのメモリモジ
ュールであってもよい。アルゴリズムのトレーニング段階の間、患者の健康データを、病
院の記録からまたは患者のプールの現地調査を行なうことから得てもよい。プールは対照
群となる患者の群を含む。このように、患者の健康データは、さまざまな病気に罹ってい
る患者、健常な（すなわち疾患の徴候がない）患者、さまざまな人種および年齢の患者、
ならびに／または終末期の患者のデータを含んでもよい。
【００５２】
　バイタルサインデータは、臨床決定支援プログラムまたはデバイスを実現するのに用い
ることができる人工ニューラルネットワークをトレーニングするのに用いられる（患者の
健康に関する複数の組のデータ中の第２のパラメータと称される）パラメータのうち１つ
であってもよいことが先に言及された。
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【００５３】
　バイタルサインデータは、患者の必須の身体機能の状態を示す臨床測定値として定義さ
れる。これらの測定値は、収縮期血圧、拡張期血圧、脈拍、パルスオキシメトリ、呼吸数
、グラスゴーコーマスケール（ＧＣＳ）、疼痛スコア、および体温に関する。
【００５４】
　トレーニング段階のバイタルサインデータは、病院の記録からまたは患者のプールの現
地調査を行なうことから得てもよい。現地調査を行なう際、各々のバイタルサインを以下
のように測定してもよい。たとえば、収縮期血圧および拡張期血圧は、「CardioCommand
」からの「statMAPTM Model 7200」などの血圧測定デバイスを用いて測定されてもよい。
これに代えて、血圧計または水銀マノメータなどのデバイスを用いてもよい。脈拍、パル
スオキシメトリ、および呼吸数は、呼吸曲線を用いて測定されてもよい。グラスゴーコー
マスケール（ＧＣＳ）は、（四肢、目などの）患者の身体的運動（motor）および／また
は医療専門家からの指示に対する口頭での応答の自発性の度合いを指す。疼痛スコアは、
患者に加えられる痛みに対する（四肢または身体の部分の内転、回内、または伸長；屈曲
または引込めなどの）応答の度合いを指す。体温は体温計を用いて記録してもよい。
【００５５】
　人工ニューラルネットワークをトレーニングするのに用いてもよい別のパラメータに注
目すると、（患者の健康に関する複数の組のデータ中の第３のパラメータと称される）患
者の生存性は、結果、すなわち患者の死亡または生存のいずれかを指す。このように、患
者の生存性についてのデータは典型的に、同じ患者についての心拍変動性データとバイタ
ルサインデータとの両者のそれぞれの組と関連付けられる。
【００５６】
　人工ニューラルネットワークをトレーニングするのに用いてもよい別のパラメータは患
者の特性である。患者の特性は、患者の年齢、性別、および病歴などの情報を含む。トレ
ーニング段階の最後に、高レベルの精度を達成するのに最も関連があると分かったパラメ
ータを、次にリアルタイム検出システムへの入力として用いる。
【００５７】
　電子デバイスは、トレーニングされた人工ニューラルネットワークを実現する命令を記
憶し、これによりデバイスは、検査されている患者の健康データを分析することができる
プロセッサまたはメモリモジュールを組入れてもよい。次に電子デバイスの出力を用いて
、オペレータまたは医療専門家を補助して患者結果を予測し、これによりどのように患者
を治療すべきかについての適切な臨床的決定を行なうことができる。
【００５８】
　発明の実施形態では、人工ニューラルネットワーク（ＡＮＮ）は、生体ニューラルネッ
トワークの構造および／または機能的局面をシミュレーションする数学モデルまたは計算
モデルであってもよい。発明の実施形態では、ＡＮＮのノードは、（ＡＮＮの少なくとも
１つの実際の入力である）少なくとも１つの入力と、少なくとも１つの人工ニューロンと
、（ＡＮＮの少なくとも１つの実際の出力である）少なくとも１つの出力とを含む。少な
くとも１つの人工ニューロンは、ＡＮＮの単一の隠れ層中に存在してもよい。ＡＮＮが複
数の人工ニューロンを有する発明の他の実施形態では、複数の人工ニューロンは１つ以上
の隠れ層にわたって分散されてもよい。層が１つよりも多く存在する場合、各々の層は前
のおよび後に引続く層と相互接続されてもよい。
【００５９】
　人工ニューロンは、計算へのコネクショニズムアプローチを用いて情報を処理してもよ
い。ＡＮＮは、トレーニングまたは学習段階の間にＡＮＮを通って流れる外部または内部
情報に基づいて変化する適合的システムであってもよい。具体的に、ＡＮＮ内の（隣接す
る人工ニューロン同士の間または入力と人工ニューロンとの間などの）接続の重み（また
は強度）は変化するように適合される。
【００６０】
　発明の実施形態では、第１のパラメータ（心拍変動性データ）、第２のパラメータ（バ
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イタルサインデータ）、または第１のパラメータと第２のパラメータとの組合せは、患者
の健康データの特徴ベクトルとして分類されてもよい。人工ニューラルネットワークは特
徴ベクトルでトレーニングされてもよい。
【００６１】
　人工ニューラルネットワークは、プロセッサによって実行されるとプロセッサに人工ニ
ューラルネットワークの機能を行なわせる、メモリに記憶される命令として実現されても
よい。
【００６２】
　発明の実施形態では、人工ニューラルネットワークはサポートベクトルマシンアーキテ
クチャに基づいてもよく、複数の人工ニューロンのうち各々の人工ニューロンの少なくと
も１つの入力の関連付けられた重みはサポートベクトルマシンが用いるライブラリから初
期化される。サポートベクトルマシンは、決定関数を備える凝集された出力を有してもよ
く、決定関数は以下によって与えられる。
【００６３】

【数１】

【００６４】
式中、ｓｇｎ（）は符号関数であり、（ｘ，ｘi）は特徴ベクトルの組であり、ｋ（ｘ，
ｘi）はｘおよびｘiによって構築される核行列であり、ｙiは１または－１であり、これ
は特徴ベクトルｘiのラベルであり、ａiおよびｂはパターンの２つのクラス同士の間のマ
ージンを特徴空間中で最大化できるように最適な決定超平面を規定するように用いられる
パラメータである。
【００６５】
　発明の実施形態では、人工ニューラルネットワークはエクストリームラーニングマシン
アーキテクチャに基づいてもよく、複数の人工ニューロンのうち各々の人工ニューロンの
少なくとも１つの入力の関連付けられた重みは、エクストリームラーニングマシンによる
無作為選択を通じて初期化される。人工ニューラルネットワークは単一層フィードフォワ
ードネットワークとして実現されてもよく、これにより患者の生存性についての予測は以
下の関数から導出される。
【００６６】

【数２】

【００６７】
式中、ｘjはｊ＝１，２，…，Ｎ個の入力ベクトルについての複数の人工ニューロンのう
ち１つの入力への入力ベクトルであり、ｗiはｘjの入力ベクトルを受ける人工ニューロン
の入力の関連付けられた重みであり、ｇ（ｗi・ｘj＋ｂi）は、ｉ＝１，２，…，Ｎ個の
人工ニューロンについてのｘjの入力ベクトルを受ける人工ニューロンの出力であり、βi

はｉ番目の隠れニューロンをそれぞれの出力ニューロンに関連付ける出力重みベクトルで
あり、ｂiはｉ番目の隠れニューロンについてのバイアスである。
【００６８】
　発明の実施形態では、人工ニューラルネットワークのトレーニングは誤差逆伝播学習に
基づいてもよい。
【００６９】
　発明の実施形態では、誤差逆伝播学習はレーベンバーグ－マルカートアルゴリズムを用
いてもよい。
【００７０】
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　発明の実施形態では、人工ニューラルネットワークの複数の人工ニューロンのうち各々
は活性化関数を有してもよく、活性化関数は、ハードリミット（hardlim）、シグモイド
、正弦、放射基底、および線形を備える関数の群から選択される。
【００７１】
　発明の実施形態では、ＲＲ間隔内の情報のシーケンスは非オーバーラップセグメントに
区分されてもよく、非オーバーラップセグメントを用いて人工ニューラルネットワークを
トレーニングしてもよい。フィルタリングされたＥＣＧ信号の各々のＲＲ間隔内の信号の
長さを抽出してもよい。信号の長さを非オーバーラップセグメントに区分してもよく、非
オーバーラップセグメントの少なくとも１つは人工ニューラルネットワークをトレーニン
グするように選択されてもよい。
【００７２】
　発明の実施形態では、非オーバーラップセグメントの各々は実質的に長さが等しくても
よい。発明の実施形態では、非オーバーラップセグメントは固定長を有してもよい。
【００７３】
　本発明の実施形態に従うと、患者の生存性を予測する方法が提供される。方法は、患者
の心拍変動性データに関する第１の組のパラメータを測定するステップを含む。患者のバ
イタルサインデータに関する第２の組のパラメータも測定される。相互接続されたノード
のネットワークを含む人工ニューラルネットワークが設けられ、ノードは複数の人工ニュ
ーロンを含む。各々の人工ニューロンは、複数の組のデータを有する電子データベースを
用いて人工ニューラルネットワークをトレーニングすることによって調節される関連付け
られた重みを有する少なくとも１つの入力を有する。各々の組のデータは、少なくとも、
心拍変動性データに関するパラメータとバイタルサインデータに関するパラメータとを有
し、各々の組のデータは患者の生存性に関するパラメータをさらに有する。方法は、第１
の組のパラメータおよび第２の組のパラメータを処理して人工ニューラルネットワークへ
の入力に好適な処理済みデータを発生するステップを含む。処理済みデータは人工ニュー
ラルネットワークへの入力として与えられる。次に出力が人工ニューラルネットワークか
ら得られ、出力は患者の生存性に関する予測を与える。
【００７４】
　発明の実施形態では、第１の組のパラメータの処理済みデータおよび第２の組のパラメ
ータの処理済みデータを特徴ベクトルとして表わしてもよい。
【００７５】
　発明の実施形態では、処理済みデータは、正規化されたデータとして表わされる第１の
組のパラメータおよび第２の組のパラメータであってもよい。
【００７６】
　発明の実施形態では、処理済みデータは非オーバーラップセグメントに区分されてもよ
く、これにより人工ニューラルネットワークへの入力は処理済みデータの非オーバーラッ
プセグメントのうち１つ以上の組を含んでもよい。結果は処理済みデータの非オーバーラ
ップセグメントのうち１つ以上の組の各々毎に得られてもよく、これにより結果の各々は
患者の生存性を予測すると考えられてもよい。
【００７７】
　発明の実施形態では、多数決を用いて患者の生存性に関する予測を判断してもよく、多
数決は以下の関数によって表わされる。
【００７８】
【数３】

【００７９】
式中、Ｄm,jは最終決定を行なうための中間変数であり、Ｄm,jには、ｍ番目の分類子が決
定集団中のクラスｊを選んだ場合に１の値が割当てられ、そうでない場合は０が割当てら
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れる。
【００８０】
　発明の実施形態では、人工ニューラルネットワークの結果は２クラスラベルとしてコー
ドされてもよい。患者の生存性を予測する方法は次に、２クラスラベル結果の各々にラベ
ルベースのアルゴリズムを適用して人工ニューラルネットワークからの出力を決定し、こ
れにより患者の生存性に関する予測を与えるステップをさらに含んでもよい。
【００８１】
　発明の実施形態では、患者の生存性に関する予測は患者の死亡または生存のいずれかで
ある。
【００８２】
　発明の実施形態では、患者生存性予測システムは、患者の心拍変動性データに関する第
１の組のパラメータを受ける第１の入力と、患者のバイタルサインデータに関する第２の
組のパラメータを受ける第２の入力と、人工ニューラルネットワークを実現する命令を記
憶するメモリモジュールとを含む。人工ニューラルネットワークは相互接続されたノード
のネットワークを含み、ノードは複数の人工ニューロンを含む。各々の人工ニューロンは
、複数の組のデータを有する電子データベースを用いて人工ニューラルネットワークをト
レーニングすることによって調節される関連付けられた重みを有する少なくとも１つの入
力を有する。各々の組のデータは、心拍変動性データに関するパラメータおよびバイタル
サインデータに関するパラメータのうち少なくとも１つを有する。各々の組のデータは、
患者の生存性に関するパラメータをさらに有する。患者生存性予測システムはさらに、人
工ニューラルネットワークの機能を行ない、かつ第１の組のパラメータおよび第２の組の
パラメータに基づいて患者の生存性に関する予測を出力するようにメモリモジュールに記
憶される命令を実行するプロセッサと、患者の生存性に関する予測を表示するためのディ
スプレイとを含む。
【００８３】
　発明の実施形態では、患者生存性予測システムは、第１の入力からの第１の組のパラメ
ータおよび第２の入力からの第２の組のパラメータを受けるポートをさらに含んでもよい
。
【００８４】
　発明の実施形態では、患者生存性予測システムは、第１の入力からの第１の組のパラメ
ータを受ける第１のポートと、第２の入力からの第２の組のパラメータを受ける第２のポ
ートとをさらに含んでもよい。
【００８５】
　発明の実施形態に従うと、患者の生存性を予測する方法が提供される。方法は、患者の
心拍変動性データに関する第１の組のパラメータを測定するステップと、患者のバイタル
サインデータに関する第２の組のパラメータを測定するステップと、患者の特性に関する
第３の組のパラメータを得るステップとを含む。第１の組のパラメータ、第２の組のパラ
メータ、および第３の組のパラメータは、必要な場合に、電子データベースで実現される
スコアリングモデルに対して、正規化されたデータ値の組として与えられる。スコアリン
グモデルは、第１の組のパラメータ、第２の組のパラメータ、および第３の組のパラメー
タの各々のパラメータに関連付けられるそれぞれのカテゴリを有する。各々のカテゴリは
複数の予め規定された値の範囲を有し、複数の値の範囲の各々は予め規定されたスコアを
有する。第１の組のパラメータ、第２の組のパラメータ、および第３の組のパラメータの
各パラメータ毎のスコアは、第１の組のパラメータ、第２の組のパラメータ、および第３
の組のパラメータのそれぞれのパラメータに関連付けられるカテゴリの複数の値の範囲の
、正規化されたデータ値の組を包含するそれぞれの予め規定された値の範囲に正規化され
たデータの組を割当てることによって定められる。第１の組のパラメータ、第２の組のパ
ラメータ、および第３の組のパラメータの各パラメータ毎のスコアの和である合計スコア
が得られる。合計スコアは患者の生存性の指標を与える。
【００８６】
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　発明の実施形態では、第１の組のパラメータ、第２の組のパラメータ、および第３の組
のパラメータのうち選択されたパラメータのみが電子データベースで実現されるスコアリ
ングモデルに与えられてもよいことが認められるであろう。たとえば、第３の組のパラメ
ータは、全体が、患者から得られたりまたはスコアリングモデルに与えられたりしないこ
とがある。発明の実施形態では、患者の健康データのさらなるパラメータを測定してスコ
アリングモデルに与えてもよい。
【００８７】
　スコアリングモデルは、第１の組のパラメータ、第２の組のパラメータ、および第３の
組のパラメータの各々のパラメータに関連付けられる各カテゴリ内の各々の値の範囲にス
コアを割当てることができる、電子データベースで実現可能な任意の好適なプロセスまた
はアルゴリズムであってもよい。たとえば、スコアリングモデルは、単変量解析などのロ
ジスティック回帰を用いる数学モデルに基づいてもよい。
【００８８】
　発明の実施形態では、スコアは、統計的情報または標準的医療情報に応じて定められて
もよい数値であってもよい。予め規定されたスコアの数値は、それぞれのカテゴリ中の、
予め規定されたスコアが割当てられる予め規定された値の範囲に依存してもよい。発明の
実施形態では、同じカテゴリ内で隣接する予め規定された値の範囲は各々、同じ数値の割
当てられた予め規定されたスコアを有してもよい。異なるカテゴリ内の予め規定された値
の範囲は各々、同じ数値の割当てられた予め規定されたスコアを有してもよいことも認め
られるであろう。
【００８９】
　予め規定された値の範囲の適用範囲は、それらが属するカテゴリに依存してもよく、統
計的情報または標準的医療情報に応じて定められてもよい。第１の組のパラメータのうち
のパラメータに関連付けられるカテゴリの予め規定された値の範囲の適用範囲は、第２の
組のパラメータのうちのパラメータに関連付けられるカテゴリの予め規定された値の範囲
の適用範囲とは異なってもよい。発明の実施形態では、同じカテゴリの予め規定された値
の範囲同士の間に重なりはなくてもよい。
【００９０】
　発明の実施形態では、正規化されたデータの組をそれぞれの予め規定された値の範囲に
割当てることは、スコアリングモデルのどのカテゴリに正規化されたデータが属するかを
まず判断することに係ってもよい。その後、正規化されたデータ値の数値がそれぞれの予
め規定された値の範囲の適用範囲内に入っているかまたはそれによって包含されているか
を確定することによって、予め規定された値の範囲のうちどの１つに正規化されたデータ
値が属しているのかを判断してもよい。
【００９１】
　発明の実施形態では、スコアリングモデルは複数のリスクカテゴリをさらに含んでもよ
く、各々のカテゴリは予め規定された範囲の値を有する。患者の生存性を予測する方法は
さらに、合計スコアを包含する予め規定された範囲の値を有するカテゴリに合計スコアを
割当てて、複数のリスクカテゴリのうちどれに合計スコアが属するかを判断するステップ
を含んでもよい。
【００９２】
　具体的な実施形態を参照して発明の実施形態を示しかつ説明するが、添付の請求項が規
定するように発明の範囲および精神から逸脱することなくさまざまな形態および詳細の変
更がなされてもよいことを当業者は理解すべきである。発明の範囲はこのように、添付の
請求項によって示され、したがってクレームの均等物の意味および範囲内に入るすべての
変更が包含されることが意図される。
【００９３】
　関連の図面で用いる共通の番号は同様のまたは同一の目的のために働く構成要素を参照
することが認められるであろう。
【００９４】
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　図１は、患者の生存性を予測することができる、人工ニューラルネットワークを発生す
るのに用いられる、本発明の１つの実施形態に従う方法を図示するフローチャート１００
である。
【００９５】
　方法は３つのステップ１０２、１０４、および１０６を含む。
　ステップ１０２で、患者の健康データが電子データベースに記憶される。患者の健康デ
ータは複数の組のデータを含み、各々の組は、心拍変動性データに関する第１のパラメー
タおよびバイタルサインデータに関する第２のパラメータのうち少なくとも１つを有する
。複数の組のデータの各々は患者の生存性に関する第３のパラメータをさらに有する。
【００９６】
　ステップ１０４で、人工ニューラルネットワーク（ＡＮＮ）を形成するように相互接続
されたノードのネットワークが設けられる。ノードは複数の人工ニューロンを含み、各々
の人工ニューロンは関連付けられた重みを有する少なくとも１つの入力を有する。ステッ
プ１０４で設けられる人工ニューラルネットワーク（ＡＮＮ）は、生体ニューラルネット
ワークの構造および／または機能的局面をシミュレーションする数学モデルまたは計算モ
デルであってもよい。
【００９７】
　ステップ１０６で、人工ニューラルネットワークは、複数の人工ニューロンのうち各々
の人工ニューロンの少なくとも１つの入力の関連付けられた重みが患者の健康データから
の異なる組のデータのそれぞれの第１、第２、および第３のパラメータに応答して調節さ
れるように患者の健康データを用いてトレーニングされる。この結果、人工ニューラルネ
ットワークがトレーニングされて患者の生存性に関する予測を発生する。
【００９８】
　以上で言及したように、（ステップ１０４で与えられるＡＮＮなどの）人工ニューラル
ネットワークは、人間の脳がパターン認識タスクに近付いて人工知能ベースのアプローチ
を与えて分類問題を解決するやり方に基づいている。モデルは事前にわかっている入力－
出力の対を用いたトレーニングプロセスの間に「学習」される。次に、トレーニングされ
たモデルは新しいデータでテストされる。
【００９９】
　単層および多層フィードフォワードネットワークを含むさまざまな人工ニューラルネッ
トワークトポロジーを利用可能である。そのようなＡＮＮは典型的にＢＰ（誤差逆伝播）
ベースであり、これにより隠れ層の重みがトレーニングの間に調節されて誤差関数を最小
化する。
【０１００】
　発明の実施形態では、ＡＮＮのノードは、（ＡＮＮの少なくとも１つの実際の入力であ
る）少なくとも１つの入力と、少なくとも１つの人工ニューロンと、（ＡＮＮの少なくと
も１つの実際の出力である）少なくとも１つの出力とを含む。
【０１０１】
　図２は、本発明の１つの実施形態に従う人工ニューラルネットワーク２００の概略図で
ある。図１に示されるフローチャート１００を参照して、人工ニューラルネットワーク２
００をステップ１０４で設けてもよい。
【０１０２】
　図２に示される実施形態では、ＡＮＮ２００は単一の隠れ層フィードフォワードネット
ワーク（ＳＬＦＮ）である。ＡＮＮ２００は、入力層２０２、隠れ層２０４、および出力
層２０６を有する。
【０１０３】
　入力層２０２は、１つ以上の入力ノード２０２1、２０２2、２０２3、…および２０２n

を含む。図２は、隠れ層２０４が３つの人工ニューロン２０４1、２０４2、および２０４

3のみを有していると示すが、任意の数の人工ニューロンを用いてもよいことが認められ
るであろう。出力層は２つの出力ノード２０６1および２０６2を有する。
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【０１０４】
　入力ノード２０２1、２０２2、２０２3、…および２０２nの各々の出力は、隠れ層２０
４中の人工ニューロン２０４1、２０４2、および２０４3のあらゆる１つの入力に接続さ
れてもよい。しかしながら、簡略さのため、入力層２０２と隠れ層２０４との間の２、３
のそのような接続しか図２には図示しない。同様に、人工ニューロン２０４1、２０４2、
および２０４3の各々の出力は、出力層２０６中の出力ノード２０６1および２０６2のあ
らゆる１つの入力に接続されてもよい。このように、相互接続されたノードのネットワー
クが形成される。
【０１０５】
　人工ニューロン２０４1、２０４2、および２０４3の各々は少なくとも１つの入力を有
する。簡略さのため、人工ニューロン２０４1の入力２０８1および２０８2である、人工
ニューロンの１つについての入力のみを図２で標識付ける。それぞれの人工ニューロン（
２０４1、２０４2、および２０４3）の各々の入力は関連付けられた重みを有する。
【０１０６】
　ＡＮＮ２００をトレーニングして患者の生存性を予測する際、各々の人工ニューロン（
たとえば、人工ニューロン２０４1の入力２０８1および２０８2）の少なくとも１つの入
力の関連付けられた重みは、患者の健康データからの異なる組のデータのそれぞれの第１
、第２、および第３のパラメータに応答して調節される。図１のフローチャート１００の
ステップ１０２を参照して、第１のパラメータは心拍変動性データに関し、第２のパラメ
ータはバイタルサインデータに関し、第３のパラメータは患者の生存性に関する。
【０１０７】
　次に、トレーニングされたＡＮＮ２００を用いて、ある徴候を呈している患者が生存す
るかまたは死亡するかについての臨床的決定を補助することができる、すなわち、トレー
ニングされたＡＮＮ２００は、患者の生存性に関する予測を補助することができる。
【０１０８】
　トレーニングされたＡＮＮ２００を用いて、患者の生存性を以下のように予測してもよ
い。患者の心拍変動性データに関する第１の組のパラメータが測定される。患者のバイタ
ルサインデータに関する第２の組のパラメータも測定される。第１の組のパラメータおよ
び第２の組のパラメータを処理して、トレーニングされた人工ニューラルネットワーク２
００への入力に好適な処理済みデータを発生する。処理済みデータは、たとえば入力層２
０２で人工ニューラルネットワーク２００への入力２１２として与えられる。次に人工ニ
ューラルネットワーク２００から出力２１４が得られ、出力２１４は患者の生存性に関す
る予測を与える。
【０１０９】
　図３は、本発明の１つの実施形態に従う人工ニューラルネットワーク３００の概略図で
ある。図１に示すフローチャート１００を参照して、人工ニューラルネットワーク３００
をステップ１０４で設けてもよい。
【０１１０】
　図３に示す実施形態では、ＡＮＮ３００は、多層フィードフォワードネットワークであ
る。ＡＮＮ３００は、入力層３０２、隠れ層３０４、および出力層３０６を有する。
【０１１１】
　図３のＡＮＮ３００と図２のＡＮＮ２００との間の主な相違は、図３のＡＮＮ３００が
単一層の人工ニューロンを有する代わりに、相互接続された人工ニューロン３０４nのい
くつかの層を有する点である。人工ニューロン３０４nの各々の層は人工ニューロン３０
４nの前のおよび後に引続く層と相互接続されてもよい。
【０１１２】
　別の相違は、（図２のＡＮＮ２００のトレーニングと比べて）ＡＮＮ３００をトレーニ
ングして患者の生存性を予測するのにより長時間かかることである。というのも、入力を
有する人工ニューロン３０４n（たとえば３０８1および３０８2）がより多く存在し、そ
れらの関連付けられる重みを患者の健康データに応答して調節する必要があるからである



(28) JP 6159250 B2 2017.7.5

10

20

30

40

50

。
【０１１３】
　機能的に、隠れ層３０４はＡＮＮ２００の隠れ層２０４と同じ態様で依然として働く。
同様に、入力層３０２および出力層３０６は、ＡＮＮ２００の入力層２０２および出力層
２０６とそれぞれ同じ態様で機能する。このように、入力層３０２、隠れ層３０４、およ
び出力層３０６の機能はさらに詳述しない。
【０１１４】
　発明のさらなる実施形態では、システムは、戦闘状態、複数車両による自動車事故、ま
たはテロ事件などの大量の死傷者が出る状況などで患者をトリアージする手段として用い
られてもよい。トレーニングされたＡＮＮ３００を用いて、ある徴候を呈している患者が
生存するか死亡するかに関する臨床的決定を補助することができる。すなわち、トレーニ
ングされたＡＮＮ３００は患者の生存性に関する予測を補助することができる。
【０１１５】
　図４は、発明の実施形態に従って構築される、患者の生存性を予測するのに用いられる
システム４００のブロック図を示す。
【０１１６】
　システム４００はリアルタイムでＥＣＧ信号を取得し、ノイズおよび異所性収縮をフィ
ルタリングし、ＨＲＶパラメータを生成し、これらを血圧、酸素飽和度、呼吸数、脈拍、
および年齢などの他のバイタルパラメータと組合せて複合トリアージスコアにする。シス
テム４００の目的は、リスク予測に基づいて患者の迅速なリアルタイムでのトリアージに
おいて医療スタッフを補助する、持ち運び可能で現場で使用可能な一体化デバイスを有す
ることである。そのようなシステム４００は、集団災害シナリオおよび救急科のように大
勢の患者の負担がかかる状況に特に適用可能であろう。
【０１１７】
　予測子としてＨＲＶを用いる公知のシステムが存在するが、そのようなシステムは主に
敗血症および頭部外傷などの特定の患者の状態に注目していた。さらに、利用可能なＨＲ
Ｖ分析ソフトウェアパッケージは、ＲＲ間隔（ＥＣＧ鼓動－鼓動間隔）が外部で生成され
ることを要件とするか、または利用可能な特徴という観点で限られた機能性しか有してい
ない。これらのパッケージは、記録全体を用いてオフラインで、または選択されたセグメ
ントに対して働き、ＨＲＶパラメータを計算する前に非正弦鼓動を識別しかつ絶縁する自
動的方法を有していない。
【０１１８】
　システム４００は公知の既存のシステムに対して以下の利点を有する。
　１．患者からの生のＥＣＧ信号を動的に取得しかつ処理して、ノイズならびに移動およ
び干渉などの他のアーティファクトの影響を低減する。
【０１１９】
　２．非正弦鼓動およびアーティファクトを自動的に絶縁した後にＲＲ間隔シーケンスを
生成する。
【０１２０】
　３．時間および周波数領域ＨＲＶパラメータを計算しかつ表示する。
　４．適切なセンサおよび信号調整回路を用いて、血圧、呼吸数、およびＳｐＯ２（動脈
血酸素飽和度）を含むリアルタイムのバイタルサインを取得しかつ表示する。
【０１２１】
　５．さまざまな可能な患者結果に関するリスクスコアを計算しかつ表示する。
システム４００は以上の機能を「リアルタイム」で行なうことができる。
【０１２２】
　システム４００は、信号取得ブロック４０２、信号処理ブロック４０４、および分析ブ
ロック４０６の３つの主な機能ブロックを有する。
【０１２３】
　信号取得ブロック４０２は、患者４０１からのＥＣＧ信号および他のバイタルサインを
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取得するためのセンサおよび信号調整ハードウェア４０８を有する。センサおよび信号調
整ハードウェア４０８は、ＥＣＧ信号、血圧、ＳｐＯ２、および呼吸数を検出するセンサ
を含んでもよい。
【０１２４】
　信号取得ブロック４０２はデータ取得（ＤＡＱ）カード４１０を有し、これは１つの実
施形態では、センサおよび信号調整ハードウェア４０８からの出力を処理するために用い
られる信号調整回路を内蔵する。信号調整回路はこれらのセンサからの信号を処理するよ
うに設計される。信号調整回路は、センサが測定するさまざまな信号の絶縁および増幅な
どの機能を行なう電子構成要素を備える。各々の信号調整回路の出力は、約１Ｖのピーク
振幅を有する信号である。
【０１２５】
　ＤＡＱカード４１０は、コンピュータへのインターフェイスとしても働いてもよい。入
力パネルも、患者４０１の年齢および性別などの付加的な情報を受付ける。ＤＡＱカード
を用いて、さらなる処理のためにコンピュータとインターフェイスするため、センサおよ
び信号調整ハードウェア４０８から取得した信号のアナログ－デジタル変換を行なう。Na
tional Instruments PCMCIAまたはＵＳＢカードをこの目的のために用いてもよい。ＤＡ
Ｑカードは、好ましくは、約１０ｋＨｚのサンプリングレートを有し、かつ１６ビット量
子化を用いるべきである。
【０１２６】
　信号処理ブロック４０４は、信号処理モジュール４２６、バイタルサインモジュール４
２０、および患者情報モジュール４１８を含む。
【０１２７】
　信号処理モジュール４２６は、ＥＣＧ前処理モジュール４１２、鼓動検出および後処理
モジュール４１４、およびＨＲＶパラメータ算出モジュール４１６を含む。
【０１２８】
　ＥＣＧ前処理モジュール４１２は、信号取得ブロック４０２からの生のＥＣＧデータを
処理して、ＥＣＧデータから最終的に抽出されるＨＲＶパラメータの精度に影響を及ぼし
得るノイズ、動きアーティファクト、および電力線干渉などの望まれない信号を抑制する
。鼓動検出および後処理モジュール４１４は、後処理の間に、ＥＣＧ前処理モジュール４
１２からのノイズ除去された信号に対して作用して心拍を検出するとともに、非正弦鼓動
を排除する。連続正弦鼓動同士の間の持続時間は、ＲＲＩ（鼓動から鼓動までの間隔）シ
ーケンスにコンパイルされ、そこからＨＲＶパラメータが計算される。
【０１２９】
　ＨＲＶパラメータ算出モジュール４１６を用いて鼓動検出および後処理モジュール４１
４の出力からＨＲＶパラメータを抽出する。
【０１３０】
　患者情報モジュール４１８は、年齢、性別、グラスゴーコーマスコア（ＧＣＳ）、およ
び病歴などの、患者４０１についての付加的な情報に関する入力を受ける。分析ブロック
４０６を用いて正規化を行なう。
【０１３１】
　血圧、ＳｐＯ２、および呼吸数などのバイタルサインデータはバイタルサインモジュー
ル４２０によって処理される。分析ブロック４０６を用いて正規化が行なわれる。
【０１３２】
　分析ブロック４０６は、ＨＲＶパラメータおよび患者情報分析モジュール４２２および
リスクスコアモジュール４２４を含む。発明の実施形態に従うＡＮＮ（たとえば図１から
図３を参照）が分析ブロック４０６中で実現されることが認められるであろう。
【０１３３】
　分析ブロック４０６は、信号処理ブロック４０４から得られるＨＲＶパラメータを計算
し、これらを、病院の記録からまたは現地調査を行なうことから得られる患者の健康デー
タから得られる結果を用いて特徴の組にコンパイルする。年齢、性別、グラスゴーコーマ
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スコアなどの、システムにキー入力可能な患者４０１の人口統計も、患者４０１のバイタ
ルサインとともに分析で用いられる。患者４０１の死亡、病棟への受入れ許可、および集
中治療部（ＩＣＵ）への受入れ許可などの異なる結果に関する予測を与えるリスクスコア
が計算されて、コンピュータ画面に表示されてもよい。
【０１３４】
　信号処理ブロック４０４および分析ブロック４０６は、（点線ブロックとして図４に図
示される）携帯電子デバイス４３０上に配備される「LabView」などのソフトウェアを用
いて実現されてもよい。「LabView」プログラムは、上述のように、信号取得、ノイズ除
去、鼓動検出、後処理、ＨＲＶパラメータの計算、およびリスクスコアの表示を行なう。
このように、携帯電子デバイス４３０はスタンドアロンデバイスとして作用し、ここで、
携帯電子デバイス４３０用の好適な配備プラットフォームは「National Instruments」に
よる「CompactRIO」であろう。
【０１３５】
　さらに詳細には、信号取得ブロック４０２からのＥＣＧ信号について、基線変動および
シフトならびに動きアーティファクトによる高周波干渉および低周波ばらつきを抑制する
１－５０Ｈｚ帯域フィルタを用いて「LabView」プログラム内でノイズ除去を行なう。ノ
イズ除去された信号は画面４３２上に表示される。
【０１３６】
　別の実施形態（図示せず）では、信号取得ブロック４０２、信号処理ブロック４０４、
および分析モジュール４０６は単一の携帯電子デバイスに一体化される。
【０１３７】
　鼓動検出は、ＥＣＧサンプルポイントｘ（ｎ）の１Ｄアレイから以下のように行なわれ
る。本発明の１つの実施形態では、ＥＣＧサンプルポイントｘ（ｎ）の１Ｄアレイが設け
られた場合、始めの数秒のデータ内の最大値（ref_peak）を求めた後に上側および下側振
幅しきい値（ＴupperおよびＴlower）が設定される。しきい値は以下のように定義される
。
【０１３８】
　Ｔupper = ref_peak + 0.4* ref_peak
　Ｔlower = ref_peak - 0.35* ref_peak
次に、ＱＲＳピークは、以下の条件が満たされた場合にポイントｉで発生するといわれて
いる。
【０１３９】
　ｘ（ｉ）はＴupperとＴlowerとの間にあり；
　ｘ（ｉ＋１）－ｘ（ｉ）＜０であり；かつ
　ｘ（ｉ）－ｘ（ｉ－１）＞０である；
式中、Ｒピークは最大値を有するポイントである。
【０１４０】
　フィルタリングされたＥＣＧ信号内の他のＱＲＳピークの位置は、別のピーク値の場所
特定をすることと、別のピーク値のいずれかの側の他の最小値を場所特定することとのプ
ロセスを繰返すことによって場所特定されてもよい。別のピーク値が上側振幅しきい値を
上回りつつ他の最小値が両者とも下側しきい値を下回る場合、ピーク値の場所はＲ位置と
して示される。Ｒ位置の左側の最も近くで発生する最小値の場所がＱ位置として示され、
Ｒ位置の右側の最も近くで発生する最小値の場所がＳ位置として示される。このように、
別のＱＲＳピークの場所が定められる。
【０１４１】
　鼓動検出の上記技術は、最小限のユーザ入力で異所性収縮およびノイズを補正した後、
所与のＥＣＧデータからＲＲ間隔シーケンスを自動的に生成する。鼓動検出技術は公知の
データベース（たとえばＭＩＴ－ＢＩＨ不整脈データベース、ウェブサイト：http://www
.physionet.org/physiobank/database/mitdb/）からのデータを用いてテストされ、結果
は、手動で注釈付けられた値にぴったり一致するとわかった。技術はより高レベルのノイ
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ズおよび動きアーティファクトの影響を受ける救急車のＥＣＧデータについてもテストさ
れ、良好な結果を得た。
【０１４２】
　検出されたＱＲＳ群から処理済みＲＲ間隔（ＲＲＩ）シーケンスを得ることができる。
処理済みＲＲＩを用いて以下のＨＲＶパラメータを算出し、これから、含まれる時間領域
および周波数領域測定値を測定してもよい。
【０１４３】
　時間領域測定値の例は以下のとおりである。
　時間領域測定値
　１．ＲＲ間隔の平均長さ（ａＲＲ）：シーケンス中のすべての正弦ＲＲ間隔の平均（Ｎ
－Ｎ）
　２．すべてのＮ－Ｎ間隔の標準偏差（ＳＤＮＮ）
　３．平均心拍（平均ＨＲ）
　４．すべての瞬間心拍値の標準偏差（ＳＤＨＲ）
　５．連続Ｎ－Ｎ間隔の平均二乗された差の平方根（ＲＭＳＳＤ）：隣接するＮ－Ｎ間隔
の間の差の二乗の和の平均の平方根
　６．ＨＲＶ三角指数：すべてのＮＮ間隔のヒストグラムの高さで除算されたすべてのＮ
－Ｎ間隔の合計数
　７．最小二乗技術を用いてＮ－Ｎ間隔ヒストグラムにフィッティングされる三角形の基
線の幅（ＴＩＮＮ）。
【０１４４】
　周波数領域測定値の例は以下のとおりである。
　周波数領域測定値
　周波数領域測定値は、ロム－スカーグルピリオドグラムを用いて生成されるＲＲＩシー
ケンスパワースペクトルに基づいて算出される。次に、以下のパラメータを算出する。
【０１４５】
　１．合計パワー（ＴＰ）：０．４ＨｚまでのセグメントにわたるＮ－Ｎ間隔の分散
　２．ＶＬＦ：非常に低い周波数範囲＜０．０４Ｈｚ中のパワー
　３．ＬＦ：低い周波数範囲０．０４－０．１５Ｈｚ中のパワー
　４．ＨＦ：高い周波数範囲０．１５－０．４Ｈｚ中のパワー
　５．ＬＦｎｏｒｍ：正規化された単位でのＬＦパワー：LF norm = LF/(TP-VLF)×100%
　６．ＨＦｎｏｒｍ：正規化された単位でのＨＦパワー：HF norm = HF/(TP-VLF)×100%
　７．ＬＦ／ＨＦ：ＬＦ／ＨＦの比。
【０１４６】
　上記ＨＲＶパラメータに加えて、ユーザは、年齢、性別、グラスゴーコーマスコア、呼
吸数、血圧、ＳｐＯ２、および心拍などの他の患者４０１パラメータも入力することがで
きる。患者４０１のこれらのパラメータを用いてリスクスコアを算出して患者４０１の生
存性を予測する。リスクスコアを算出する際、分析ブロック４０６内の人工ニューラルネ
ットワークは上記図１から図３に概略を述べたようにトレーニングされていることが認め
られるであろう。分析ブロック４０６の出力はリスクスコアであり、それは、死亡、病院
への受入れ許可、およびＩＣＵへの受入れ許可を含む病院結果の各々毎の「高」、「中程
度」または「低」リスクとして患者を分類する。
【０１４７】
　図５から図９の各々は、図４のシステム４００のそれぞれの機能ブロックによって実現
される、発明の実施形態に従うフローチャートを示す。
【０１４８】
　図５は、図４の信号取得ブロック４０２によって実現される、発明の実施形態に従うフ
ローチャート５００を示す。
【０１４９】
　ステップ５０２で、患者を選んで生存性に関する予測を行なう。
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　ステップ５０４で、患者のＥＣＧ信号、脈拍、パルスオキシメトリ、血圧、および臨床
情報を得る。臨床情報の例は、年齢、性別、および病歴（たとえば、癌、糖尿病、心疾患
）を含む。
【０１５０】
　ステップ５０６で、患者のＥＣＧ信号、脈拍、パルスオキシメトリ、血圧、および臨床
情報がデータ取得（ＤＡＱ）カードに送られる。ステップ５０６からのすべての情報はリ
アルタイムでコンピュータまたはスタンドアロンデバイスにデータとして送られるＤＡＱ
カードによって取得される。
【０１５１】
　ステップ５０８で、ステップ５０６からの情報がサンプリングされ、ステップ５１０で
アナログ信号からデジタルデータに変換される。
【０１５２】
　ステップ５１２で、信号取得ブロック４０２（図４を参照）は、収集されたデジタルＥ
ＣＧデータの記録長さをチェックする。ステップ５１０で得られたデジタルデータからの
ＨＲＶパラメータの確実な算出のためには少なくとも６分の記録長さが要件とされること
を注記する。デジタルＥＣＧデータの６分分のデータを依然として収集しなければならな
い場合、フローチャート５００はステップ５０４に戻る。一方、６分間のデジタルＥＣＧ
データが記録されていれば、フローチャートはステップ５１４で止まる。ステップ５１４
で、デジタルＥＣＧデータは、患者のバイタルサインおよび臨床情報とともに、コンピュ
ータまたはスタンドアロンデバイスに記憶される。
【０１５３】
　図６は、図４の信号処理モジュール４２６によって実現される、発明の実施形態に従う
フローチャート６００を示す。
【０１５４】
　フローチャート６００はステップ６０２で始まり、ＥＣＧ前処理モジュール４１２は、
生のＥＣＧデータおよびバイタルサインデータを入力として有している。
【０１５５】
　生のＥＣＧデータは、データポイントの単一の連続長さを常に含有しているわけではな
いことがある。しばしば、最上位のものが取除かれることがあったり、または設定が変更
されてその結果データ中に乖離が生じたりしていたかもしれない。したがって、ステップ
６０４で、較正値を取除くかまたはトリミングして、データセグメントは１つの連続した
データのストリームを得るように分離され、連結される。
【０１５６】
　ステップ６０６で、信号処理モジュール４２６は、較正値を有するフィルタリングされ
ていないＥＣＧデータをトリミングさせる。フィルタリングされていないＥＣＧデータ中
のノイズおよびアーティファクトの影響は周知である。ＥＣＧ信号の低い振幅により、さ
まざまな源からのノイズおよび干渉の影響をそれが非常に受けやすくなってしまう。これ
らは、高周波ノイズ、電力線干渉、基線変動、動きアーティファクト、および他の低周波
歪みを含む。ノイズの存在はＱＲＳ検出段階で偽陽性という結果を生じる可能性があり、
このため、ＨＲＶシーケンスの生成およびその後のＨＲＶ分析に誤差を注入してしまう。
【０１５７】
　基線変動などの低周波ノイズを除去し、かつＱＲＳ群の顕著な歪みなしに高周波ばらつ
きを減衰もする（帯域フィルタを用いるなどの）ノイズ除去技術が存在する。急激な基線
移動および他のアーティファクトの存在の結果、ＱＲＳ群としてピークが誤って検出され
てしまう可能性がある。これらのアーティファクトはＱＲＳ群と同じ周波数範囲内にあり
得るため、それらを排除することは難しいかもしれない。このように、ステップ６１０で
、フィルタリングされていないトリミングされたＥＣＧデータから基線変動が除去され、
ステップ６１２でＤＣオフセットが除去される。
【０１５８】
　ＱＲＳ群の周波数成分は典型的に１０から２５Ｈｚの範囲にある。ステップ６１４で、
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ステップ６１２からのデータは、動作周波数範囲が５から約２８Ｈｚである帯域フィルタ
を用いて処理される。このように、帯域フィルタは、ステップ６１２からのフィルタリン
グされていないトリミングされたＥＣＧデータ内のＱＲＳ群を改良することによってＱＲ
Ｓ群の場所特定を容易にして高周波ばらつきを抑制することが認められるであろう。信号
を大幅に歪ませたり誤検出の可能性を増大させたりせずに成功裡に基線変動を排除しかつ
ＱＲＳ群を拡大する帯域周波数範囲が適用される。
【０１５９】
　ステップ６１６で、ＱＲＳを検出しかつＨＲＶ測定値を算出するためのさらなる処理に
用いられる、ノイズ除去されたＥＣＧ信号が得られる。ステップ６１８で、ノイズ除去さ
れたＥＣＧ信号波形が、たとえば画面４３２（図４を参照）に表示される。
【０１６０】
　図７は、図４の鼓動検出および後処理モジュール４１４によって実現される、発明の実
施形態に従うフローチャート７００を示す。
【０１６１】
　フローチャート７００はステップ７０２で始まり、鼓動検出および後処理モジュール４
１４はノイズ除去されたＥＣＧ信号を有する。
【０１６２】
　要約すると、ステップ７０４から７２６の目的は、ＱＲＳ群の場所を検出することであ
り、これによりＲＲ間隔の算出が可能になる。ＱＲＳ群の場所、大きさ、および形状、な
らびに隣接する群同士の間の持続時間は、ＨＲＶ分析から排除すべき異所性収縮および他
の非正弦律動をふるい落とせるようにする。このように、患者からのＥＣＧ信号から確実
な心拍変動性データを抽出することができる。
【０１６３】
　ステップ７０６から７１４で、フィルタリングされたＥＣＧ信号中で最初に発生する最
大ピークデータ値が場所特定される。場所特定された最大ピーク値から上側振幅しきい値
および下側振幅しきい値が定められる。ピーク値およびピーク値のいずれかの側の最小値
が場所特定される。発明の実施形態では、いずれかの側は、ピーク値の左および右側を指
す。ピーク値が上側振幅しきい値を上回りつつ最小値が下側振幅しきい値を下回るか否か
という条件が満たされていることがチェックされる。条件が満たされている場合、ピーク
値の場所はＲ位置として示される。Ｒ位置の左側の最も近くで発生する最小値の場所がＱ
位置として示され、Ｒ位置の右側の最も近くで発生する最小値の場所がＳ位置として示さ
れる。フィルタリングされたＥＣＧ信号内のＱＲＳピークの場所はこのように定められる
。
【０１６４】
　ステップ７０４から７２６に関するさらなる詳細を以下のように与える。
　ステップ７０４で、修正されたしきい値プラス導関数法（threshold-plus-derivative 
method）を用いる。というのも、これはノイズの存在下で有効でありかつロバストである
ことが分かっているからである。修正されたアルゴリズムは以下のように働く。
【０１６５】
　ステップ７０６で、ＥＣＧサンプルポイントｘ（ｎ）の１Ｄアレイがノイズ除去された
ＥＣＧデータの始めの数秒内に与えられると、最大ピークデータ（ref_peak）値が求めら
れる。ステップ７０８で、上側および下側振幅しきい値が求められる。
【０１６６】
　発明の実施形態では、上側および下側振幅しきい値（ＴupperおよびＴlower）は、デー
タの始めの数秒内の最大値（ref_peak）を求めた後に設定される。しきい値は以下のよう
に定義される。
【０１６７】
　Ｔupper = ref_peak + 0.4* ref_peak
　Ｔlower = ref_peak - 0.35* ref_peak
　ステップ７１０で、ＥＣＧサンプルポイントが上側および下側振幅しきい値（Ｔupper
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およびＴlower）と交わるか否かが判断される。フローチャート７００は、ＥＣＧサンプ
ルポイントがこの判断基準をパスしない場合はステップ７１２に進まない。ＱＲＳ群検出
のための上側および下側振幅しきい値（ＴupperおよびＴlower）の使用により、（たとえ
ば電極の載置または動きアーティファクトの結果としての）ノイズによる大きなピークが
ＱＲＳ群として検出されないことが確実になる。
【０１６８】
　ステップ７１２は、ＥＣＧサンプルポイントが上側および下側振幅しきい値（Ｔupper

およびＴlower）と交われば行なわれる。ステップ７１２で、ステップ７１０で判断基準
のチェックをパスしたサンプルポイントをＱＲＳピークと考えることができるか否かが判
断される。以下のさらなる条件が満たされれば、ＱＲＳピークがポイントｉで発生すると
いえる。
【０１６９】
　ｘ（ｉ）はＴupperとＴlowerとの間にあり；
　ｘ（ｉ＋１）－ｘ（ｉ）＜０であり；かつ
　ｘ（ｉ）－ｘ（ｉ－１）＞０である；
式中、Ｒピークが最大値を有するポイントである。
【０１７０】
　さらなる上記条件が満たされると、Ｒピークのいずれかの側のウインドウ内の最も近い
ローカル最小値を場所特定することによってＱおよびＳ波に対応するポイントが定められ
る。次にステップ７１４で、Ｑ、Ｒ、およびＳ位置の正確な場所が保存される。そうでな
い場合（すなわち、上記さらなる条件が満たされない場合）、フローチャート７００はス
テップ７１０に戻る。フィルタリングされたＥＣＧ信号内の他のＱＲＳピークの位置は、
ステップ７１０および７１２のプロセスを繰返すこと、すなわち、別のピーク値を場所特
定し、別のピーク値のいずれかの側の他の最小値を場所特定すること、によって場所特定
してもよい。別のピーク値が上側振幅しきい値を上回りつつ他の最小値が両者とも下側し
きい値を下回る場合、ピーク値の場所はＲ位置として示される。Ｒ位置の左側の最も近く
で発生する最小値の場所がＱ位置として示され、Ｒ位置の右側の最も近くで発生する最小
値の場所がＳ位置として示される。このように、別のＱＲＳピークの場所が定められる。
次にステップ７１４で、ＱＲＳピークのすべての位置が記憶される。
【０１７１】
　ノイズ以外に、異所性収縮、および（運動、筋肉、または他のアーティファクトによる
）他のアウトライアーを識別しなければならない。なぜなら、それらはＲＲ間隔シーケン
スに摂動を起こす可能性があるからである。
【０１７２】
　異所性収縮は、洞房結節の自律神経調節が一時的に失われた場合に生じ、正常な被験者
および心疾患を有する患者の両方で起こる心房または心室の早期収縮を開始させる。一般
的に、大部分のそのような異所性収縮は広いＱＲＳ群とともに顕在化する。
【０１７３】
　ステップ７１６から７２６を用いて、ＲＲ間隔内の情報のシーケンスからアウトライア
ーを除去する。プロセスは、ＲＲ間隔の中央値および標準偏差値を求めることに係る。標
準偏差値に基づく許容因子が算出される。許容因子分だけ中央値のいずれかの側に及ぶＲ
Ｒ間隔内にある情報の部分が保持される。情報の保持された部分から心拍変動性データを
得てもよく、情報のシーケンスからの情報の残余の部分は破棄される。
【０１７４】
　ステップ７１６から７２６についてのさらなる詳細を以下のように与える。
　ステップ７１６で、非正弦鼓動が絶縁される。非正弦鼓動に隣接する鼓動が除去され、
ステップ７１８で明瞭なＱＲＳピークを発生する。
【０１７５】
　次にステップ７２０で、正常な鼓動に基づいてＲＲ間隔シーケンスが生成される。一旦
これがなされると、正弦律動に対応する鼓動の場所が次段の処理のアレイに記憶される。
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検出されたピークを用いて、ＲＲ間隔は連続ＱＲＳピーク間の距離に対応する。算出され
た間隔は後処理のためにアレイに記憶される。ノイズ、アーティファクト、および絶縁さ
れた異常鼓動は既にフィルタリングされているが、鼓動は、代償性休止期によりまたはい
くつかの鼓動の除去により、非常に短いまたは非常に長いＲＲ間隔という結果をもたらす
可能性がある。したがって、シーケンスはアウトライアーを含有することがある。
【０１７６】
　これらのアウトライアーを自動的に識別するため、ステップ７２０でシーケンスの統計
的性質をＲＲ間隔シーケンスに適用する。
【０１７７】
　ステップ７２２で、以下のようにＲＲＩ限界を算出する。
　１．ＲＲ間隔シーケンスについての中央値および標準偏差を求める。
【０１７８】
　２．標準偏差に基づいて許容因子を算出する。
　３．中央間隔からＭｓ超離れて存在する任意の間隔を探す。式中、Ｍは許容因子である
。アウトライアーは、中央間隔からＭｓ超離れて存在する間隔内に存在する。
【０１７９】
　４．これらのアウトライアーを分離する、これはステップ７２４で行なわれる。
　ステップ７２４で、値の広がりに基づいて許容因子を算出する。許容因子を用いてアウ
トライアーを分離し、こうしてノイズのあるデータおよび正常なデータの両方を取扱う。
したがって、ＨＲＶパラメータを計算する前にステップ７２６で、ノイズのないおよび異
所性収縮のない正弦ＲＲＩシーケンスが生成される。
【０１８０】
　図６および図７を要約すると。発明の実施形態の心拍変動性データを抽出することは、
ＥＣＧ信号をフィルタリングしてノイズおよびアーティファクトを除去することと、フィ
ルタリングされたＥＣＧ信号内のＱＲＳ群を場所特定することと、ＱＲＳ群の連続ＱＲＳ
ピーク間のＲＲ間隔を求めることと、ＲＲ間隔内の情報のシーケンスを処理して心拍変動
性データを得ることとを備える。
【０１８１】
　図８は、図４のＨＲＶパラメータ算出モジュール４１６によって実現される、発明の実
施形態に従うフローチャート８００を示す。
【０１８２】
　フローチャート８００はステップ８０２で始まり、ＨＲＶパラメータ算出モジュール４
１６は、正弦ＲＲ間隔（正弦ＲＲＩ）シーケンスを有する。
【０１８３】
　ＨＲＶ尺度の３つのカテゴリ、すなわち、時間領域データ、周波数領域データ、および
幾何学的領域データは、正弦ＲＲＩシーケンスから算出される。
【０１８４】
　ステップ８０４で、ＲＲ間隔の平均（平均ＲＲ）、ＲＲ間隔の標準偏差（ＳＴＤ）、瞬
間心拍の平均（平均ＨＲ）、瞬間心拍の標準偏差（ＳＴＤ＿ＨＲ）、隣接するＲＲ間隔同
士の間の差の二乗平均（ＲＭＳＳＤ）、５０ｍｓ超異なる連続ＲＲ間隔の数（ＮＮ５０）
、および５０ｍｓ超異なる連続ＲＲ間隔の百分率（ｐＮＮ５０）などの時間領域データが
算出される。時間領域分析は、短期（５分未満）および長期記録（２４時間超）の両者に
ついて経時的にＲＲ間隔から算出される（主に標準偏差に基づく）統計的パラメータに基
づいている。
【０１８５】
　平均ＲＲ、ＳＴＤ、平均ＨＲ、ＳＴＤ＿ＨＲ、ＲＭＳＳＤ、ＮＮ５０、およびｐＮＮ５
０という用語の各々の意味を以下に与える。
【０１８６】
　平均ＲＲ（またはａＲＲ）は、ミリ秒または秒で測定されるＲＲ間隔の平均幅である。
これは心拍の一般的概念を与え、長期および短期の記録の両者について算出可能である。
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【０１８７】
　ＳＴＤ（またはＳＤＮＮ）は、データセット［２１］中のすべてのＲＲ間隔の標準偏差
であり、値の広がりの一般的概念を与える。ＳＴＤは短期および長期の記録の両者につい
て好適である。
【０１８８】
　平均ＨＲは瞬間心拍の平均である。
　ＳＴＤ＿ＨＲは瞬間心拍の標準偏差である。
【０１８９】
　ＲＭＳＳＤ（またはｒ－ＭＳＳＤまたはＳＤＳＤ）は、２４時間の間隔中の連続心臓周
期の間の差の二乗の和の平均の平方根をとることによって求められる。これは、ＲＲ間隔
長さのばらつきの指数である。ＲＭＳＳＤは長期間にわたるばらつきの高感度の尺度では
ないが、これは早期心室収縮の保持のような誤って分類されたまたは鼓動を標識付けする
誤差に対して特に感度が高い。時間領域変数のうち、これは迷走神経の影響に最も敏感で
ある。とはいえ、これは、交感神経および副交感神経の寄与を定めることはできない。
【０１９０】
　ＮＮ５０（またはＲＲ－５０）は、２つの連続ＲＲ間隔の間の差が５０ｍｓを超える２
４時間中の時間の合計数である。これは誤って標識付けされた鼓動に対するすべての尺度
のうち最も感度が高く、早期の心室または心房の収縮の発生が迅速にＲＲ５０のカウント
を増す。これは、正常な正弦律動の心臓周期のより長いばらつきに対しても感度が高い。
【０１９１】
　ｐＮＮ５０（または％ＲＲ５０）は、平均心拍によって正規化される、５０ｍｓ超の正
常なＲＲ間隔の間の絶対的差の百分率である。
【０１９２】
　ステップ８０６で、迷走神経の活動の指数である、非常に低い周波数範囲（≦０．０４
Ｈｚ）中のパワー（ＶＬＦ）、低い周波数範囲（０．０４から０．１５Ｈｚ）中のパワー
（ＬＦ）、高い周波数範囲（０．１５から０．４Ｈｚ）中のパワー（ＨＦ）、セグメント
中のＮＮ間隔の分散から推測され、ｍｓ2で測定される合計パワー（ＴＰ）、ＨＦパワー
に対するＬＦパワーの比（ＬＦ／ＨＦ）、正規化された単位でのＬＦパワー：LF/(TP-VLF
)×100 (LFnorm)、および正規化された単位でのＨＦパワー：HF/(TP-VLF)×100 (HFnorm)
などの周波数領域データが算出される。スペクトル分析は、周波数領域中のＨＲＶを評価
するための高感度の定量的方法である。分析は、時系列を周波数領域に変換し、パワース
ペクトルを求めることによって行なわれる。さまざまな帯のスペクトルエネルギの分布が
定量化され、変動性の指数として用いられる。このエネルギの分布は自律神経系の交感神
経および副交感神経アームの寄与を反映する。
【０１９３】
　ステップ８０８で、間隔のヒストグラムの高さで除算したすべてのＲＲ間隔の合計数（
ＨＲＶ指数）および最小二乗法を用いてＲＲヒストグラムにフィッティングされた三角形
の底辺の幅（ＴＩＮＮ）などの幾何学的領域データが得られる。
【０１９４】
　ＨＲＶ指数およびＴＩＮＮという用語の意味を以下に与える。
　ＨＲＶ指数（またはＨＲＶ三角指数またはＲＲ三角指数）は、ＲＲ間隔シーケンスがサ
ンプル密度分布に変換された後に得られる。三角指数は、密度分布の積分、すなわち、密
度分布の最大値で除算したすべてのＲＲ間隔の数である。
【０１９５】
　ＴＩＮＮ、ＲＲ間隔ヒストグラムの三角内挿は、ＲＲ間隔分布に近似する三角形の底辺
として測定されるサンプル密度分布の基線幅である。
【０１９６】
　ステップ８１０で、上記１６個のＨＲＶパラメータ（平均ＲＲ、ＳＴＤ、平均ＨＲ、Ｓ
ＴＤ＿ＨＲ、ＲＭＳＳＤ、ＮＮ５０、ｐＮＮ５０、ＶＬＦ、ＬＦ、ＨＦ、ＴＰ、ＬＦ／Ｈ
Ｆ、ＬＦｎｏｒｍ、ＨＦｎｏｒｍ、ＨＲＶ指数、およびＴＩＮＮ）は、分類子トレーニン
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グ（すなわち、分析ブロック４０６内の人工ニューラルネットワークのトレーニング）お
よび患者結果予測のために組合され、分析ブロック４０６（図４を参照）へ送られる。
【０１９７】
　図９は、図４の分析ブロック４０６中でデータがどのように流れるかのブロック図での
表示を示す。
【０１９８】
　分析ブロック４０６はまず、トレーニングデータを用いてトレーニングされるように構
成され（参照番号９０２で表わされる）、その後テストデータを用いて、トレーニングさ
れた分析ブロック４０６がテストされる（参照番号９０４で表わされる）。
【０１９９】
　ステップ９０６で、各々の患者がＨＲＶパラメータ、（年齢、性別、民族性のような）
臨床情報、およびバイタルサインの特徴ベクトルとして表わされるトレーニングデータセ
ットが構築される。
【０２００】
　ステップ９０８で、特徴ベクトルとして表わされるトレーニングデータセットは、特徴
の次元性を低減するために特徴選択および／または抽出アルゴリズムでさらに処理されて
、冗長な情報を除去する。
【０２０１】
　差別的な特徴以外に、分類子の選択は、効率的な予測システムを構築するのに重要な役
割を果たす。分類子の判定は通常、未知のパターンを類別する分類子の性能を指すその一
般化能力を評価することに依存する。同じ分類子は異なる適用例に対してさまざまな性能
を有することがあるので、適切な分類子を選ぶ前に適用例の需要を分析しなければならな
い。未知の患者結果を予測するためには、分類子は、テストサンプルに対する類別を行な
う前にトレーニングサンプルでトレーニングされなければならない。したがって、適切な
パターン表現をステップ９０８で選んだ後に、ステップ９１０で、手元の適用例に好適な
分類モデルを学習する。
【０２０２】
　ステップ９１２で、患者からのテストデータは、ＨＲＶ測定値、臨床情報、およびバイ
タルサインの組合せ特徴ベクトルとして表わされる。
【０２０３】
　ステップ９１４で、特徴選択および／または抽出アルゴリズムは、差別的情報を抽出す
るための組合せ特徴ベクトルとして表わされる患者からのテストデータに適用される。
【０２０４】
　ステップ９１６で、抽出された差別的情報は、ステップ９１０で選択された分類モデル
を用いて処理される。ステップ９１６からの出力９１８はテストデータの標識であり、患
者結果に関する予測を与える。
【０２０５】
　図１０は、無線技術を利用する、発明の実施形態に従うシステムを図示するフローチャ
ート１０００を示す。
【０２０６】
　フローチャート１０００はステップ１００２で始まり、ここで患者生存性予測システム
は、臨床情報、ＨＲＶパラメータ、バイタルサイン、および患者生存性リスク予測につい
てのデータを有する。
【０２０７】
　ステップ１００４で、ＧＰＲＳまたはＷＡＰなどの無線技術を用いて、ステップ１００
２に記載される患者生存性予測システムと、病院サーバ、他の携帯デバイス、または救急
センターサーバなどの周辺システムとの間のネットワークインフラストラクチャを確立す
る。ステップ１００６、１００８、および１０１０で、患者生存性予測システムのデータ
が病院サーバ、携帯デバイス、および救急センターサーバに送信される。ステップ１００
６、１００８、および１０１０は、臨床医がリアルタイムで遠隔に患者の状態を受信し分
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析することを可能にする。
【０２０８】
　図１１は、４０件の死亡および６０件の生存を含む、分析のために選ばれた１００人の
患者の生のＥＣＧデータ特性を要約する。データセットは２５歳から９２歳の６３人の男
性および３７人の女性患者を含んだ。バイタルサインおよび患者結果は、患者の人口統計
（年齢、人種、性別）、および優先順位コードなどの情報を含む病院記録から得られた。
【０２０９】
　これらの１００人の患者は、Singapore General Hospital (SGH)、Department of Emer
gency Medicine (DEM)で診察を受けた重病の患者から取得された。「重病」とは、ＤＥＭ
での最も重篤なカテゴリＰ１またはＰ２にトリアージされる患者を指す。これらはＥＣＧ
モニタを経た外傷および非外傷患者を含む。ＥＣＧ信号は、LIFEPAK 12 除細動器／モニ
タを用いて取得され、CODE-STAT Suiteを用いてダウンロードされ、患者の病院記録と一
致された。事例は、それらが７０％超正弦律動を含有した場合は検討に含まれ、非正弦律
動（心房および心室不整脈）の大きなセグメントが存在した場合は排除された。
【０２１０】
　図１１に示される生のＥＣＧデータは、確実なＨＲＶ測定値を得るには前処理される必
要がある。図１２は、ＥＣＧ信号がどのように前処理されてＨＲＶパラメータを算出する
かを図示する、発明の実施形態に従うフローチャート１２００を示す。
【０２１１】
　ステップ１２０２で、生のＥＣＧデータ１２１０は、５－２８Ｈｚの帯域フィルタを用
いてノイズおよびアーティファクトの影響を低減するように処理される。この周波数範囲
は、容易なピーク検出のため、バックグラウンドノイズに対してＱＲＳ群を向上させるこ
とがわかっている。
【０２１２】
　ステップ１２０４で、修正されたしきい値プラス導関数法を実現してＱＲＳ群を検出す
る。
【０２１３】
　ステップ１２０６で、すべての異所性収縮および他の非正弦鼓動が排除される。
　ステップ１２０８で、正弦律動に基づいてＲＲ間隔が算出される。事例は、（検出され
た正弦鼓動の数／検出された鼓動の合計数として測定される）正弦律動をそれらが７０％
超含有すれば検討に含まれ、それらが持続性不整脈またはノイズ／アーティファクトの大
きなセグメントを含有する場合は排除される。結果的に得られる鼓動－鼓動（ＲＲ）間隔
シーケンス１２１０がさまざまなＨＲＶ測定値を算出するために用いられる。
【０２１４】
　発明の実施形態では、ステップ１２０２から１２０８は、図６および図７を参照して説
明したような方法論を用いることができる。このように、ステップ１２０２から１２０８
についてはさらなる詳細な説明は行なわない。
【０２１５】
　人工ニューラルネットワークの分類
　発明の実施形態で用いられる人工ニューラルネットワークのトレーニングにおいて、第
１のパラメータ、第２のパラメータ、または第１のパラメータと第２のパラメータとの組
合せは、患者の健康データの特徴ベクトルとして分類されてもよい。次に、人工ニューラ
ルネットワークは特徴ベクトルでトレーニングされる。人工ニューラルネットワークの１
つの目的は死亡率を予測することであるので、人工ニューラルネットワークは２クラス分
類問題（患者結果が死亡または生存のいずれかである）を解決するように実現される。
【０２１６】
　発明の実施形態では、さまざまなトレーニングアルゴリズムを用いて人工ニューラルネ
ットワーク（２００，３００）をトレーニングし、最適な隠れ層重みを定めてもよい（図
２および図３についての説明を参照）。
【０２１７】
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　たとえば、人工ニューラルネットワーク（２００，３００）のトレーニングは誤差逆伝
播学習に基づいてもよい。レーベンバーグ－マルカートアルゴリズムを用いて誤差逆伝播
学習を行ってもよい。
【０２１８】
　エクストリームラーニングマシン（ＥＬＭ）
　エクストリームラーニングマシンアーキテクチャを用いて、（図２に示されるものなど
の）ＳＬＦＮを用いて発明の実施形態をトレーニングしてもよい。従来の勾配ベースの学
習アプローチと比較して、ＥＬＭは学習プロセスが速い一方で、良好な一般化能力を保持
する。エクストリームラーニングマシンは、人工ニューラルネットワークのすべてのパラ
メータを同調させる必要性を排除することによってトレーニングの速度を向上させるとい
う利点を有する。エクストリームラーニングマシンは、追加ニューロンまたは放射基底関
数（ＲＢＦ）カーネルのいずれかを用いてＳＬＦＮについて実現され得る。
【０２１９】
　エクストリームラーニングマシンアーキテクチャでは、人工ニューラルネットワークの
各々の人工ニューロンの少なくとも１つの入力の関連付けられた重みおよびバイアスは、
無作為選択を通して初期化される。各々の人工ニューロンの出力重みは、最小二乗解決策
を見出すことによって定められてもよい。
【０２２０】
　Ｎ個のサンプルからなる以下のトレーニングセット
【０２２１】

【数４】

【０２２２】
（式中、ｘjはｐ×１個の入力ベクトルであり、ｔjはｑ×１個のターゲットベクトルであ
る）を与えられると、Ｎ個の隠れノードを有するＳＬＦＮが以下のような式で表わされる
。
【０２２３】

【数５】

【０２２４】
式中、ｘjはｊ＝１，２，…，Ｎ個の入力ベクトルについての複数の人工ニューロンのう
ち１つの入力への入力ベクトルであり、ｗiはｘjの入力ベクトルを受ける人工ニューロン
の入力の関連付けられた重みであり、ｇ（ｗi・ｘj＋ｂi）は、ｉ＝１，２，…，Ｎ個の
人工ニューロンについてのｘjの入力ベクトル…を受ける人工ニューロンの出力であり、
βiはｉ番目の隠れニューロンをそれぞれの出力ニューロンに関連付ける出力重みベクト
ルであり、ｂiはｉ番目の隠れニューロンのバイアスである。患者の生存性に関する予測
は上記式（２）から導出される。
【０２２５】
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【数６】

【０２２６】
　サポートベクトルマシン（ＳＶＭ）
　別のトレーニングアルゴリズムは、人工ニューラルネットワークをサポートベクトルマ
シンアーキテクチャに基づかせている。サポートベクトルマシンは、２値分類のために設
計された学習機械である。サポートベクトルマシンにおいて、入力ベクトルは、線形決定
面（超平面）が構築される非常に高次元の特徴空間に非線形にマッピングされる。表面は
、それが最大マージンを有する入力ベクトルを分離するように選ばれる。
【０２２７】
　各々の人工ニューロンの少なくとも１つの入力の関連付けられた重みは、サポートベク
トルマシンが用いるライブラリから初期化される。好適なライブラリの例は、Chang他に
よるＬＩＢＳＶＭソフトウェアパッケージであろう。
【０２２８】
　線形に分離可能な特徴（ｘ1，ｙ1），…，（ｘN，ｙN）の組がトレーニングデータとし
て与えられると考える。式中
【０２２９】
【数７】

【０２３０】
であり、超平面は＜ｗ，ｘ＞＋ｂ＝０である。ベクトルの組は、これが誤差なしに分離さ
れかつマージンが最大であれば、超平面によって最適に分離されているといえる。カノニ
カル超平面はパラメータｗおよびｂについて制約を有する。すなわち、ｍｉｎxi　ｙi（
（ｗ，ｘi）＋ｂ）＝１である。カノニカル形式の分離超平面は次の制約を満たさなけれ
ばならない。
【０２３１】
　ｙi（＜ｗ，ｘi＞＋ｂ）≧１，ｉ＝１，…，Ｎ　　　　（５）
　最適な超平面を求めるように制約最適化の問題を解決するため、二次計画法を用いる。
最適化の判断基準はクラス間のマージンの幅である。次に、新しいパターンｘについて、
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超平面決定関数を以下にように書くことができる。
【０２３２】
【数８】

【０２３３】
大部分の実世界のデータは非線形に分布するため、カーネルトリックを用いて分類子を非
線形となるように延在させた。この中で核関数を用いて単純ドット積を置き換える。次に
重みベクトルは特徴空間中の拡張となり、我々はサポートベクトルマシンの決定関数を得
る。これは以下によって与えられてもよい。
【０２３４】

【数９】

【０２３５】
式中、ｓｇｎ（）は符号関数であり、（ｘ；ｘi）は特徴ベクトルの組であり、ｋ（ｘ；
ｘi）はｘおよびｘiによって構築される核行列であり、ｙiは１または－１であり、これ
は特徴ベクトルｘiのラベルであり、ａiおよびｂは最適な決定超平面を規定するのに用い
られるパラメータであるため、パターンの２つのクラス間のマージンを特徴空間中で最大
化することができる。
【０２３６】
　３つの核を用いて多様な解決策を与えてもよく、それらは線形核ｋ（ｘi，ｘj）＝ｘi

・ｘj、シグモイド核ｋ（ｘi，ｘj）＝ｔａｎｈ（ａｘi・ｘj＋γ）、および放射基底関
数（ＲＢＦ）核
【０２３７】
【数１０】

【０２３８】
であり、式中、ｓはＲＢＦ関数の幅である。
　セグメントベースの方法
　患者からのＥＣＧ信号を測定する際、ＥＣＧ信号の長さは患者によって異なり、これは
ＨＲＶ測定値の算出に影響する。
【０２３９】
　長さのばらつきの可能な影響を回避するため、すべての患者について同一長さのＥＣＧ
信号のセグメントを抽出する。生のＥＣＧデータは非正弦鼓動およびノイズを含有するた
め、抽出はＲＲ間隔シーケンスに対して行なわれる。図１３は、抽出がどのように行なわ
れるかを示す。図１３で、ＲＲ間隔（１３０８、１３１０、および１３１２）内の情報の
シーケンス（１３０２、１３０４、および１３０６）は、発明の実施形態に従ってセグメ
ント１３１４に区分される。
【０２４０】
　発明の実施形態では、ＲＲ間隔（１３０８、１３１０、および１３１２）内の情報のシ
ーケンス（１３０２、１３０４、および１３０６）は、非オーバーラップセグメント１３
１４に区分されてもよい。非オーバーラップセグメント１３１４を用いて人工ニューラル
ネットワークをトレーニングしてもよい。
【０２４１】
　発明の他の実施形態では、フィルタリングされたＥＣＧ信号の各々のＲＲ間隔（１３０
８、１３１０、および１３１２）内の信号の長さを抽出してもよい。信号の長さを非オー
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バーラップセグメント１３１４に区分してもよく、非オーバーラップセグメント１３１４
の少なくとも１つを選択して人工ニューラルネットワークをトレーニングしてもよい。
【０２４２】
　発明の実施形態では、非オーバーラップセグメント１３１４の各々は実質的に等しい長
さであってもよい。発明の実施形態では、非オーバーラップセグメント１３１４は固定長
を有してもよい。発明の実施形態では、非オーバーラップセグメント１３１４の各々は長
さが等しくなくてもよい。発明の実施形態では、非オーバーラップセグメント１３１４は
調節可能な長さであってもよい。
【０２４３】
　抽出は信号の端１３０６から始まる。というのも、記録のこの部分は元のシーケンス中
のいずれの他のセグメントよりも患者結果とよく相関するからである。シーケンス全体（
１３０８、１３１０、および１３１２）および抽出された部分（１３０２、１３０４、お
よび１３０６）はそれぞれ、「グローバル」信号および「ローカル」信号である。
【０２４４】
　Ｎ個（患者の数）の特徴ベクトルのみでは高い予測精度を達成しないかもしれない。ロ
ーカルシーケンス（１３０２、１３０４、および１３０６）を固定長のいくつかの非オー
バーラップセグメント１３１８、１３２０、および１３２２にさらに区分してもよく、患
者結果の予測は患者の対応のセグメントを用いて多数決によって与えられる。
【０２４５】
　まず、同じ患者のＭ個のセグメントを有する分類子の集団を組合せて全体的な予測性能
を向上させる。予測子の出力はクラスラベルであるか、またはクラス特有の連続値（それ
らのクラスに与えられるサポートの度合い）のいずれかであり得るので、２種類の組合せ
規則が存在する。患者結果は０または１のいずれかとしてコードされるため、多数決など
のラベルベースのストラテジを組合せ方法として用いることができる。この規則は最大数
の投票数を受けるクラスを探し、これをテストパターンのための予測されたラベルに割当
てる。セグメントベースの予測方法の詳細を以下に詳述し、ＥＣＧデータを図１３に示す
が、セグメントベースの予測方法は脳波記録法（ＥＥＧ）などの他の１－Ｄ生物医学的信
号に適用可能であることが注記される。
【０２４６】
【数１１】

【０２４７】
　ここまでは合計セグメント（ＴＳ）方法アプローチを論じている。というのも、すべて
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のＭ個のセグメントを決定に用いるからである。完全ＴＳアルゴリズムを以下に与える。
【０２４８】
　ＴＳアルゴリズム
　入力
　－Ｎ人の患者Ｓ1…，ＳNのＥＣＧ信号
　－バイタルサインおよび患者結果ｙ1，…，ｙNを含む病院記録
　－繰返しの回数Ｋおよび合計セグメントの数Ｍ。
【０２４９】
　ＨＲＶ測定値の算出
　１．フィルタリング、ＱＲＳ検出、非正弦鼓動除去など、元のＥＣＧ信号に対して前処
理を行なう。
【０２５０】
　２．「ローカル」ＲＲ間隔信号を抽出してシーケンスＳ’1…，Ｓ’Nを得る。
　３．Ｓ’NをＭ個の非オーバーラップセグメントに区分し、ＨＲＶ測定値
【０２５１】
【数１２】

【０２５２】
を算出する。式中、ｎ＝１，…，Ｎであり、ｍ＝１，…，Ｍである。
　４．
【０２５３】

【数１３】

【０２５４】
を有する特徴ベクトル
【０２５５】

【数１４】

【０２５６】
およびバイタルサインを構築する。式中、ｍ＝１，…，Ｍである。
　ＡＣＰ事象または死亡率の予測
　ｋ＝１，…，Ｋについて
　ａ）　Ｎtrn人の患者を無作為に選択することによるデータセットをトレーニングセッ
トに区分し、かつ残余のＮtst人の患者をテストセットに区分する。各々の患者はＭ個の
特徴ベクトルによって表わされるので、ＮtrnＭ個のサンプルがトレーニングセット中に
存在し、ＮtstＭ個のサンプルがテストセット中に存在する。
【０２５７】
　ｂ）　ＮtrnＭ個の特徴ベクトルを有する分類子をトレーニングして、テストセット中
のＮtstＭ個のサンプルについてラベルを予測する。したがって、各々のテスト患者はＭ
個の予測された結果を受ける。多数決規則を適用すると、式（８）を用いて、すべてのテ
スト患者に対する最終的な予測結果が得られる。
【０２５８】
　ｃ）　予測されたラベルおよびそれらの対応の現実のラベルから。精度、感度、および
特異度を算出する。
【０２５９】
　End for
　出力
　－Ｋ回の繰返しの平均された結果を算出する。
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【０２６０】
　－最終結果を記憶し、表示し、かつ分析する。
　すべてのセグメントを選択する代わりに、選択的セグメント（ＳＳ）方法を用いること
ができる。ＳＳ方法はセグメントのうちいくつかのみを選択する。
【０２６１】
　ＳＳ方法の背後にある原理は、ユークリッド距離［６］が選択判断基準として用いられ
るクラス間差を最小限にするようにいくつかの「最適な」セグメントを選択することであ
る。具体的に、特徴の組内でクラスの中心が定められ、任意の患者のＭ個のセグメントの
各々と中心との間の距離が算出される。ＭIが選択されたセグメントの数であるとすると
、ＭI個のセグメントが保持され、それらは破棄されるセグメントよりも対応のクラスの
中心により近い。その結果、データセットのサイズがＮ×ＭからＮ×ＭIに低減された。
選択動作が管理される（クラス情報が用いられる）ので、セグメントの選択は元のデータ
セットのための前処理と考えることができる。完全ＳＳアルゴリズムを以下に与える。
【０２６２】
　ＳＳアルゴリズム
　入力
　－ＥＣＧ信号Ｓ1…，ＳN

　－バイタルサインおよび患者結果ｙ1…，ｙN

　－繰返しの回数Ｋ、合計セグメントの数Ｍ、および選択されたセグメントの数Ｍ’。
【０２６３】
　ＨＲＶ測定値の算出
　１．ＴＳアルゴリズムのステップ１－３を行ない、各患者毎にＭ個のセグメントを得る
。
【０２６４】
　２．
【０２６５】
【数１５】

【０２６６】
および
【０２６７】
【数１６】

【０２６８】
としてクラス中心を算出する。式中、Ｎiはｉ＝０，１についてのクラスωi中のサンプル
の数である。
【０２６９】
　３．Ｎ個のセグメントとＭ個のセグメントの間のユークリッド距離
【０２７０】

【数１７】

【０２７１】
およびクラス中心Ｃ0，Ｃ1を算出する。
　４．距離をソートし、各患者毎に個別に他のセグメントよりも対応の中心に近いＭ’個
のセグメントを選択する。
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【０２７２】
　５．
【０２７３】
【数１８】

【０２７４】
を有する特徴ベクトル
【０２７５】

【数１９】

【０２７６】
およびバイタルサインを構築する。式中、ｍ’＝１；…，Ｍ’である。
　ＡＣＰ事象または死亡率の予測
　ｋ＝１，…，Ｋについて
　－合計Ｍ個のセグメントの代わりにＭ’個の選択されたセグメントを用いることによっ
て作成されたデータセットを用いてＴＳアルゴリズム中のステップａ）－ｃ）を行なう。
【０２７７】
　End for
　出力
　－Ｋ回の繰返しの平均された結果を算出する。
【０２７８】
　－最終的な結果を記憶し、表示し、かつ分析する。
　要約すると、人工ニューラルネットワークを分類するための上記方法のいずれかを用い
て患者の生存性を予測する方法を容易にしてもよい。
【０２７９】
　図１４は、患者の生存性を予測する、本発明の１つの実施形態に従う方法を図示するフ
ローチャート１４００である。
【０２８０】
　ステップ１４０２で、患者の心拍変動性データに関する第１の組のパラメータが測定さ
れる。
【０２８１】
　ステップ１４０４で、患者のバイタルサインデータに関する第２の組のパラメータが測
定される。
【０２８２】
　ステップ１４０６で、相互接続されたノードのネットワークを含む人工ニューラルネッ
トワークが設けられ、ノードは複数の人工ニューロンを含む。各々の人工ニューロンは、
複数の組のデータを有する電子データベースを用いて人工ニューラルネットワークをトレ
ーニングすることによって調節される関連付けられた重みを有する少なくとも１つの入力
を有する。各々の組のデータは、少なくとも、心拍変動性データに関するパラメータと、
バイタルサインデータに関するパラメータとを有し、各々の組のデータは患者の生存性に
関するパラメータをさらに有する。
【０２８３】
　ステップ１４０８で、第１の組のパラメータおよび第２の組のパラメータが処理されて
、人工ニューラルネットワークへの入力に好適な処理済みデータを発生する。
【０２８４】
　ステップ１４１０で、処理済みデータは人工ニューラルネットワークへの入力として与
えられる。
【０２８５】
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　ステップ１４１２で、人工ニューラルネットワークから出力が得られ、出力は患者の生
存性に関する予測を与える。
【０２８６】
　発明の実施形態では、第１の組のパラメータの処理済みデータおよび第２の組のパラメ
ータの処理済みデータが特徴ベクトルとして表わされてもよい。
【０２８７】
　発明の実施形態では、処理済みデータは、正規化されたデータとして表わされる第１の
組のパラメータおよび第２の組のパラメータであってもよい。
【０２８８】
　発明の実施形態では、処理済みデータは非オーバーラップセグメントに区分されてもよ
く、そのため、人工ニューラルネットワークへの入力は処理済みデータの非オーバーラッ
プセグメントのうち１つ以上の組を含んでもよい。結果は処理済みデータの非オーバーラ
ップセグメントのうち１つ以上の組の各々毎に得られてもよく、そのため、結果の各々は
患者の生存性を予測すると考えられてもよい。
【０２８９】
　発明の実施形態では、多数決を用いて患者の生存性に関する予測を判断してもよく、多
数決は以下の関数によって表わされる。
【０２９０】
【数２０】

【０２９１】
式中、Ｄm,jは最終決定のための中間変数であり、Ｄm,jはｍ番目の分類子が決定集合中で
クラスｊを選べば１の値を割当てられ、そうでない場合は０を割当てられる。
【０２９２】
　発明の実施形態では、人工ニューラルネットワークの結果は２クラスラベルとしてコー
ドされてもよい。患者の生存性を予測する方法は次に、２クラスラベル結果の各々にラベ
ルベースのアルゴリズムを適用して人工ニューラルネットワークからの出力を決定し、こ
れにより、患者の生存性に関する予測を与えるステップをさらに含んでもよい。
【０２９３】
　発明の実施形態では、心拍変動性データは、時間領域データ、周波数領域データ、およ
び幾何学的領域データを含んでもよい。
【０２９４】
　図１５は、発明の実施形態に従う患者生存性予測システム１５００の概略を示す。
　患者生存性予測システム１５００は、患者の心拍変動性データに関する第１の組のパラ
メータを受ける第１の入力１５０２と、患者のバイタルサインデータに関する第２の組の
パラメータを受ける第２の入力１５０４とを含む。
【０２９５】
　患者生存性予測システム１５００は、人工ニューラルネットワークを実現する命令を記
憶するメモリモジュール１５０６を含む。人工ニューラルネットワークは相互接続された
ノードのネットワークを含み、ノードは複数の人工ニューロンを含む。各々の人工ニュー
ロンは、複数の組のデータを有する電子データベースを用いて人工ニューラルネットワー
クをトレーニングすることによって調節される関連付けられた重みを有する少なくとも１
つの入力を有する。各々の組のデータは、心拍変動性データに関するパラメータおよびバ
イタルサインデータに関するパラメータのうち少なくとも１つを有する。各々の組のデー
タはさらに、患者の生存性に関するパラメータを有する。
【０２９６】
　患者生存性予測システム１５００は、人工ニューラルネットワークの機能を行ない、か
つ第１の組のパラメータおよび第２の組のパラメータに基づいて患者の生存性に関する予
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測を出力するようにメモリモジュール１５０６に記憶された命令を実行するプロセッサ１
５０８をさらに含む。ディスプレイ１５１０は患者の生存性に関する予測を表示する。
【０２９７】
　発明の実施形態では、患者生存性予測システム１５００は、第１の入力１５０２からの
第１の組のパラメータおよび第２の入力１５０４からの第２の組のパラメータを受けるポ
ート１５１２を含む。
【０２９８】
　図１６は、発明の実施形態に従う患者生存性予測システム１６００の概略を示す。
　患者生存性予測システム１６００は、図１５の患者生存性予測システム１５００と同様
の構成要素を共有する。患者生存性予測システム１６００と図１５の患者生存性予測シス
テム１５００との間の主な対比は、患者生存性予測システム１６００が第１の入力１５０
２からの第１の組のパラメータおよび第２の入力１５０４からの第２の組のパラメータを
受けるのに単一のポートを用いないことである。むしろ、患者生存性予測システム１６０
０は第１の入力１５０２からの第１の組のパラメータを受ける第１のポート１６０２と、
第２の入力１５０４からの第２の組のパラメータを受ける第２のポート１６０４とを有す
る。
【０２９９】
　図１７は、発明の実施形態に従う患者生存性予測システム１７００の絵を示す。
　図１７で、患者生存性予測システムはＥＣＧセンサ１７０２と血圧センサ１７０４とを
有する。患者の生存性を予測するのに用いられる人工ニューラルネットワークはラップト
ップ１７０６で実現される。
【０３００】
　図１８から図２１は、ラップトップ１７０６の画面に示されるような患者生存性予測シ
ステムの出力のスナップショットを示す。
【０３０１】
　図１８は、生のＥＣＧデータ１８０２を処理して、フィルタリングされたＥＣＧデータ
１９０４を発生する結果を示す。
【０３０２】
　図１９は、患者生存性予測システム１７００が表示することができるさまざまな信号の
グラフを示す。
【０３０３】
　図２０は２人の異なる患者の予測結果を示し、一方の場合（２１０２）では、７２時間
以内に心停止が起こらないと予測される。他方の場合（２１０４）では、７２時間以内に
心停止が起こると予測される。
【０３０４】
　図２１は、患者の生存性を予測するのに用いられる、本発明の１つの実施形態に従う方
法を図示するフローチャート２１５０を示す。
【０３０５】
　方法は、６つのステップ２１５２、２１５４、２１５６、２１５８、２１６０、および
２１６２を含む。
【０３０６】
　ステップ２１５２で、患者の心拍変動性データに関する第１の組のパラメータが測定さ
れる。
【０３０７】
　ステップ２１５４で、患者のバイタルサインデータに関する第２の組のパラメータが測
定される。
【０３０８】
　ステップ２１５６で、患者の特性に関する第３の組のパラメータが得られる。
　ステップ２１５８で、必要な場合、第１の組のパラメータ、第２の組のパラメータ、お
よび第３の組のパラメータが、電子データベースで実現されるスコアリングモデルに対し
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、正規化されたデータ値の組として与えられる。スコアリングモデルは、第１の組のパラ
メータ、第２の組のパラメータ、および第３の組のパラメータの各々のパラメータに関連
付けられるそれぞれのカテゴリを有し、各々のカテゴリは複数の予め規定された値の範囲
を有し、複数の値の範囲の各々は予め規定されたスコアを有する。
【０３０９】
　ステップ２１６０で、第１の組のパラメータ、第２の組のパラメータ、および第３の組
のパラメータの各パラメータ毎のスコアが定められる。スコアは、第１の組のパラメータ
、第２の組のパラメータ、および第３の組のパラメータのそれぞれのパラメータに関連付
けられるカテゴリの複数の値の範囲の、正規化されたデータ値の組を包含するそれぞれの
予め規定された値の範囲に（ステップ２１５８からの）正規化されたデータの組を割当て
ることによって定められる。
【０３１０】
　ステップ２１６２で、第１の組のパラメータ、第２の組のパラメータ、および第３の組
のパラメータの各パラメータ毎のスコアの和である合計スコア（ステップ２１６０を参照
）が得られる。合計スコアは患者の生存性に対する指標を与える。
【０３１１】
　図２１Ｂに図示される方法は、以下の例に従って実現されてもよく、この例は判定の７
２時間以内の患者の心停止を予測することに関する。
【０３１２】
　患者が判定のためにトリアージ区域に搬送されると、（年齢などの）患者の特性、（Ｇ
ＣＳ、体温、脈拍、呼吸数、ＳＢＰ、ＤＢＰ、ＳｐＯ２、および疼痛スコアなどの）バイ
タルサイン、ならびにＨＲＶパラメータ（時間、周波数、および幾何学的領域）が発明の
実施例に従う患者生存性予測システムによって記録されかつ分析される。この実施形態で
は、測定されたＨＲＶパラメータは第１の組のパラメータになる一方で、測定されたバイ
タルサインデータは第２の組のパラメータを形成する。患者の特性は第３の組のパラメー
タを形成し、これは患者の病院記録からも得られ得る。さらなる患者の健康データも患者
生存性予測システムによって記録されてもよいことが認められる。
【０３１３】
　患者生存性予測システムは、スコアリングモデルが実現される電子データベースを有し
てもよい。スコアリングモデルは、単変量解析などのロジスティック回帰に基づいてもよ
い数学モデルに基づいてもよい。１つの実施形態では、ロジスティック回帰数学モデルを
、たとえば、心血管（ＣＶＳ）および非心血管（非ＣＶＳ）患者のサンプルからのデータ
に対して用いてもよい。ロジスティック回帰数学モデルは、ＣＶＳおよび非ＣＶＳ患者に
ついての人口学的パラメータ（年齢）とバイタルサインとＨＲＶパラメータとの組合せを
用いて別個にフィッティングされてもよい。予測の性能は、受診者特性（ＲＯＣ）分析、
ならびに感度、特異度、陽性的中率（ＰＰＶ）、および陰性的中率（ＮＰＶ）を通して調
査されてもよい。以下の表１は、発明の１つの実施形態に従う、スコアリングモデル内の
第１の組のパラメータ、第２の組のパラメータ、および第３の組のパラメータの整理を要
約する。
【０３１４】
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【表１－１】

【０３１５】
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【表１－２】

【０３１６】
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【表１－３】

【０３１７】
　表１に示されるように、スコアリングモデルは複数のカテゴリ（年齢、ＧＣＳ、体温、
脈拍、…、ＬＳ－ＬＦ／ＨＦ比）を有し、各々のカテゴリは複数の予め規定された値の範
囲を有する（たとえば、カテゴリ「年齢」は、値＜４０、４０－４９、…、≧８０の範囲
を有する）。複数の予め規定された値の範囲の各々は予め規定されたスコアを有する（た
とえば、カテゴリ「年齢」については、値の範囲＜４０、４０－４９、…、≧８０は、そ
れぞれスコア１、２、…および４を有する）。
【０３１８】
　カテゴリの各々は、第１の組のパラメータ、第２の組のパラメータ、および第３の組の
パラメータのそれぞれのパラメータに関連付けられる。たとえば、カテゴリ「ａＲＲ」、
「ＳＴＤ」、…および「ＬＳ－ＬＦ／ＨＦ比」はＨＲＶパラメータであり、したがって、
この実施形態では第１の組のパラメータと関連付けられる。第１の組のパラメータの「ａ
ＲＲ、ＳＴＤ、…およびＬＳ－ＬＦ／ＨＦ比」パラメータは、表１に示されるスコアリン
グモデルの対応の「ａＲＲ、ＳＴＤ、…およびＬＳ－ＬＦ／ＨＦ比」カテゴリと関連付け
られる。
【０３１９】
　表１で、予め規定された値の範囲と、カテゴリ「年齢」のそれらのそれぞれのスコア値
との両者が、たとえばＣＶＳおよび非ＣＶＳ患者のサンプルから導出され、変数をグルー
プ分けする。予め規定された値の範囲とバイタルサイン（すなわち、カテゴリ「ＧＣＳ」
、「体温」、「脈拍」、「呼吸数」、「ＳＢＰ」、「ＤＢＰ」、「ＳｐＯ２」、および「
疼痛スコア」）のそれらのそれぞれのスコア値との両者が、ＣＶＳおよび非ＣＶＳ患者か
ら導出されるデータに応じて導出される。予め規定された値の範囲とＨＲＶパラメータ（
すなわち、カテゴリ「ａＲＲ」、「ＳＴＤ」、…および「ＬＳ－ＬＦ／ＨＦ比」）のそれ
らのそれぞれのスコア値との両者は、シンガポールの健常な母集団のＥＣＧの研究に基づ
いている。
【０３２０】
　表１に示されるように、第１の組のパラメータ、第２の組のパラメータ、および第３の
組のパラメータからの必要なパラメータのみが正規化される。たとえば、第１の組のパラ
メータからのパラメータ「年齢」および第２の組のパラメータからのパラメータ「体温」
は正規化される必要はない。なぜなら、スコアリングモデル中のそれらの対応のカテゴリ
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【０３２１】
　必要な場合、第１の組のパラメータ、第２の組のパラメータ、および第３の組のパラメ
ータの各パラメータ毎の正規化されたデータはその関連付けられたカテゴリに割当てられ
る。さらに、正規化されたデータは、関連付けられたカテゴリ内のそれぞれの値の範囲に
割当てられ、正規化されたデータは、それぞれの値の範囲内に入るか、またはそれによっ
て包含される。正規化されたデータをその関連付けられたカテゴリ内のそのそれぞれの値
の範囲に割当てることの目的は、表１に要約されたスコアリング方法に基づいて正規化さ
れたデータのスコアを定めることである。表１から、最大の可能なスコアが１００であり
、最小の可能なスコアが１５であることを観察することができる。
【０３２２】
　以下の表２は、患者の人口統計、バイタルサイン、およびＨＲＶパラメータの各パラメ
ータ毎の、表１に要約されたスコアリング方法を用いることから得られた個別のスコアの
要約を示す。
【０３２３】
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【０３２４】
　表２に示されるように、第１の組のパラメータ、第２の組のパラメータ、および第３の
組のパラメータの各パラメータ毎の各々のスコアの和である合計スコアが得られる。合計
スコアは患者の生存性に関する指標を与える。
【０３２５】
　以下の表３は、発明の実施形態に従うスコアリングモデル内の複数のリスクカテゴリの
整理を要約する。
【０３２６】
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【表３】

【０３２７】
　複数のリスクカテゴリの（低、中程度、高、および非常に高いなどの）各カテゴリは、
予め規定された値の範囲を有する。表２で得られる合計スコアは、合計スコアを包含する
予め規定された値の範囲を有するカテゴリに割当てている。このように、表２からの合計
スコア「８８」については、患者は、７２時間以内に心停止を起こすリスクのレベルが「
非常に高い」と判定される。表３に示される実施形態では、複数のリスクカテゴリの各々
の数値範囲を任意の態様で定めてもよい。
【０３２８】
　表４は、１０２１人の患者のサンプルについて７２時間以内に心停止が起こったか否か
の実際の結果に対して、図２１Ｂに示されるようなスコアリングモデルを用いることから
得られる結果の要約を示す。
【０３２９】
　表４から、図２１Ｂのスコアリングモデルを用いることによって得られた結果は、１０
２１人の患者について、２６人（またはサンプルサイズの２．５％）が「低」リスクカテ
ゴリに属し、６６１人（またはサンプルサイズの６４．７％）が「中程度」リスクカテゴ
リに属し、３３３人（またはサンプルサイズの３２．６％）が「高」リスクカテゴリに属
した一方で、１人（またはサンプルサイズの０．１％）が「非常に高い」リスクカテゴリ
に属したことを示す。単一の小数位の精度がサンプルサイズの百分率での値に当てはまる
。
【０３３０】
　「低」リスクカテゴリの２６人の患者の中で心停止は起こらなかった。「中程度」のリ
スクカテゴリの６６１人の患者のうち、３．２％が７２時間以内に心停止を起こした。「
高」リスクカテゴリの３３３人の患者のうち、９．０％が７２時間以内に心停止を起こし
た。「非常に高い」リスクカテゴリの１人の患者については、７２時間以内に心停止を起
こした。
【０３３１】
【表４】

【０３３２】
　表４から、７２時間以内の心停止を予測するスコアの９５％のＣＩ（信頼区間）での曲
線下面積（ＡＵＣ）は０．６３３から０．７６９の範囲にわたり、平均精度０．７０１を
有する。
【０３３３】
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　実験データセット１
　８つのバイタルサインを用いて患者結果の予測のための特徴ベクトルの一部を形成した
実験を行なった。これらのバイタルサインは、体温、呼吸数、脈、収縮期血圧（ＳＢＰ）
、拡張期血圧（ＤＢＰ）、酸素飽和度（ＳｐＯ２）、グラスゴーコーマスコア（ＧＣＳ）
、および疼痛スコアである。
【０３３４】
　データセット中、各々の患者は２４次元の特徴ベクトルとして表わされ、対応の結果は
０（生存したまたは退院した）または１（死亡した）としてコードされた。１００人の患
者のうち、４０例が死亡し、６０例が生存した。分類の前に、特徴の組は、元のデータに
対して最小－最大正規化を行なうことによって間隔［－１，１］に変換される。ｍｉｎA

およびｍａｘAが属性ベクトルＡ＝［ｘ1（ｉ），…，ｘN（ｉ）］の最小および最大値で
あり、式中、ｉ∈［１，２４］であり、Ｎはサンプルの合計数であると想定する。最小－
最大正規化は、
【０３３５】

【数２１】

【０３３６】
を計算することによって、Ａの値ｖを［ｍｉｎ’Aおよびｍａｘ’A］の範囲中のｖ’にマ
ッピングする。この種類の正規化は元のデータ値の間の関係を保全し、したがって予測を
容易にする。患者生存性予測システムの実施形態を検証するために、７５人の患者をトレ
ーニングのために無作為に選択し、残余の２５人の患者をテストに用いる。この区分およ
び分類手順を５０回繰返し、平均した出力値を記録する。
【０３３７】
　図１１から、６０人の患者がクラス０に属し、４０人の患者がクラス１に類別されるこ
とがわかる。その結果、無作為な選択は偏ったトレーニングおよびテストの組を生じるこ
とがある。すなわち、２つのクラスのサンプル数はバランスが取れていない。これに代え
て、無作為な区分を両方のクラスに対して別個に行ない、これによりクラス０中の７５％
のサンプルおよびクラス１中の７５％のサンプルが各々の繰返しでトレーニングの組に入
る。検証システムを図２２に図示する。図２２に示されるアーキテクチャは、データ取得
、特徴抽出、および分類が個別に実現される大部分のパターン認識システムのように単純
明快であることがわかる。
【０３３８】
　実際、ＥＣＧ記録は長さおよび信号の品質において広くばらつきがある。したがって、
適格なＲＲ間隔シーケンスを確実にするにはいくつかの前処理工程が必要である。ＨＲＶ
測定値を計算する前に、ＱＲＳ検出および非正弦鼓動検出アルゴリズムをＭＩＴ－ＢＩＨ
データベースに対して検証した。これらのアルゴリズムは、ＱＲＳ群を検出しかつＭＩＴ
－ＢＩＨデータベース中のＥＣＧ信号について非正弦鼓動を検出する際に高い感度（９９
．８％）および特異度（９９．４％）をもって十分に機能することがわかった。
【０３３９】
　実験では、ＥＬＭおよびＳＶＭは分類用に実現される。したがって、これらのアルゴリ
ズムで用いられるいくつかのパラメータを明確化すべきである。ＥＬＭでは、隠れニュー
ロンの数は３０として割当てられる。ＳＶＭについては、ＬＩＢＳＶＭパッケージ中のパ
ラメータのデフォルト設定を用いる。予測性能を評価するため、分類の精度に加えて感度
および特異度を算出する。２値分類のために広く用いられる統計的測定値として働いて、
感度は、実際の陽性の数に対する正しく予測された陽性のサンプルの数の比を測定し、特
異度は、正しく識別される陰性の割合である。決定は、患者結果が死亡であれば陽性と規
定された一方で、陰性の例は生存を指す。したがって、以下の測定値を得る。
【０３４０】
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　－真陽性（ＴＰ）：死亡例が正しく死亡と予測された。
　－偽陽性（ＦＰ）：生存例が誤って死亡と予測された。
【０３４１】
　－真陰性（ＤＮ）：生存例が正しく生存と予測された。
　－偽陰性（ＦＮ）：死亡例が誤って生存と予測された。
【０３４２】
　その後、感度、特異度、および精度を定めかつ用いて、提案された方法を実験で評価し
た。
【０３４３】
　感度＝ＴＰ／（ＴＰ＋ＦＮ）
　特異度＝ＴＮ／（ＴＮ＋ＦＰ）
　精度＝（ＴＰ＋ＴＮ）／（ＴＰ＋ＦＰ＋ＴＮ＋ＦＮ）
一般的に、両方のクラスのより多くの事例を正しく認識できるように、高い感度、特異度
、および精度が望まれる。
【０３４４】
　セグメントベースの予測
　実現例では、各々のセグメントは２５０拍として設定され、患者当たり９個のセグメン
トが元のＲＲ間隔シーケンスから抽出される。３つの選択されたセグメント（Ｍ’＝３）
に対して投票に基づく予測ストラテジを適用することにより、バイタルサイン、ＨＲＶ測
定値、および組合せ特徴を用いる分類結果をそれぞれ図２３、図２４、および図２５に提
示する。
【０３４５】
　図２３および図２４はそれぞれ、伝統的なバイタルサインおよびＨＲＶ測定値を用いた
予測結果を示す。ＳＶＭは一般的に精度および特異度についてＥＬＭよりも優れているこ
とを観察できる。ＥＬＭおよびＳＶＭアルゴリズムの両者とも、感度の観点で、同等の性
能を達成する。バイタルサインに基づく結果と比較して、ＨＲＶ測定値に基づく結果は、
ＥＬＭを用いると、より高い精度および感度を与える。ＳＶＭを用いると、バイタルサイ
ンおよびＨＲＶ測定値に基づく結果は、精度の観点で同様の性能を生じる。さらに、バイ
タルサインをＨＲＶ測定値で置き換えることにより、感度が増大し、特異度が低減する。
一般的に、ＨＲＶ測定値またはバイタルサインのいずれかを用いた個別の死亡率の予測は
満足のいくものではない。ＨＲＶ測定値とバイタルサインとを組合せることにより、図２
５に見られるように、線形カーネルを有するＳＶＭを用いて最良の結果（精度：７８．３
２％、感度：６５％、特異度：８７．２％）が得られる。これらの結果から、ＨＲＶ測定
値とバイタルサインとを組合せることが一般的に予測の性能を向上できると観察される。
【０３４６】
　いくつかのパラメータは、最終結果、特に、選択されたセグメントの数Ｍ’に影響を及
ぼし得る。したがって、パラメータＭ’の異なる値を有する予測結果を以下のように調査
する。Ｍ’＝Ｍの場合、セグメントの全集合が選択される。すなわち、ＴＳ方法である。
Ｍ’＜Ｍであれば、よりコンパクトなデータセット（すなわち、より少ないクラス間ばら
つき）を生成するためのＭ’個のセグメントを予測に用いる。多数決を２クラス問題に適
用する際は、奇数の予測子を決定の組合せに用いるべきである。その結果、異なるＭ’個
のセグメントを投票のために選択し、図２６に結果を示す。Ｍ’が３である場合、ＳＶＭ
が最良の働きをし、ＥＬＭも良好な結果を達成することができることが観察される。さら
に、Ｍ’の増分によりデータセット中のサンプル数が増大する。したがって、単純なしか
し効果的な臨床用途用予測システムを維持するために、Ｍ’は３として設定される。
【０３４７】
　異なる予測ストラテジの比較
　予測ストラテジを以下のように要約し、図２７に図示する。
【０３４８】
　－グローバル：信号長さが２２７３拍から２１６９７拍へばらつく全ＲＲ間隔シーケン
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スからＨＲＶ測定値が算出される。
【０３４９】
　－ローカル：元の信号の最後の部分（２２５０拍長さ）であるローカルシーケンスから
ＨＲＶ測定値が算出される。
【０３５０】
　－合計セグメント：ローカルシーケンス中のすべての非オーバーラップセグメントを多
数決規則による予測に用いる。この研究では、各々のセグメントは２５０拍の長さであり
、したがって、患者当たり９個のセグメントがローカルシーケンスから得られる。
【０３５１】
　－選択的セグメント：ローカルシーケンス中のＭ’個の選択された非オーバーラップセ
グメントを多数決規則による予測に用いる。Ｍ’個のセグメントを選択するので、患者当
たりＭ’×２５０拍の長さの信号を分析に用いる。
【０３５２】
　図２８に見られるように、いくつかの場合、グローバルストラテジがローカルストラテ
ジよりも性能が優れており、他の場合では逆も然りであるが、最良の結果は選択的セグメ
ント法を用いることによって達成される。
【０３５３】
　実験データセット２
　別の研究では、Singapore General Hospital (SGH)、Department of Emergency Medici
ne (DEM)の重病の患者から８つのバイタルサインおよび生のＥＣＧデータを取得した。こ
れらのバイタルサインは、体温、呼吸数、脈、収縮期血圧（ＳＢＰ）、拡張期血圧（ＤＢ
Ｐ）、酸素飽和度（ＳｐＯ２）、グラスゴーコーマスコア（ＧＣＳ）、および疼痛スコア
を含む。ＥＣＧ信号はLIFEPAK 12除細動器／モニタを用いて取得され、CODESTAT Suiteを
用いてダウンロードされる。ＨＲＶ測定値を算出するために適格なＲＲ間隔を用いること
を確実にするため、正弦律動を７０％超含有する事例のみをデータセットに含む。要約す
ると、分析のために１００人の患者を選び、そのうち４０例が死亡し、６０例が生存して
退院する。
【０３５４】
　データセット中、各々の患者は２４次元特徴ベクトル（１６個のＨＲＶ測定値および８
つのバイタルサイン）として表わされ、対応する結果が０（生存して退院）または１（死
亡）としてコードされる。実験では、７５人の患者がトレーニングのために無作為に選択
され、残余の２５人の患者がテストのために用いられる。この区分および分類の手順を５
０回繰返し、最終結果は平均された出力値である。しかしながら、サンプルの無作為選択
の結果、トレーニングおよびテストの組のバランスが取れなくなることがあり、したがっ
て我々は、各クラス毎に個別に無作為区分を行ない、これによりクラス０中の７５％のサ
ンプルおよびクラス１中の７５％のサンプルが各々の繰返しでトレーニングの組の中に入
る。
【０３５５】
　分類のためにＥＬＭを実現する前に、最小－最大正規化を行なって特徴の組を間隔［－
１，１］に変換し、隠れニューロン数が帰納的に３０と定められる。さらに、感度、特異
度、および分類精度を算出して予測性能を評価する。実験結果を以下に報告し分析する。
【０３５６】
　患者結果のセグメントベースの分析
　１００人の患者のデータセット内で、ＲＲ間隔の長さは２２７３拍から２１６９７拍へ
ばらつき、したがってローカルシーケンスの最大長さは２２７３拍である。ローカルシー
ケンスは９個のセグメント（Ｍ＝９）に分けられ、その各々は２５０拍の長さであった。
セグメントベースの予測ストラテジを適用することにより、バイタルサイン、ＨＲＶ測定
値、および組合せ特徴を用いる分類結果を図２９に提示する。シグモイド活性化関数とと
もに組合せ特徴を用いて最良の結果（精度：７０．８８％、感度：４７．９３％、特異度
：７８．９２％）が得られ、ＨＲＶ測定値またはバイタルサインのいずれかを用いた死亡
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率の予測は満足のいくものではないことを観察することができる。バイタルサインおよび
ＨＲＶ測定値を個別に用いる場合、ＨＲＶ測定値によってより高い感度が達成される一方
で、バイタルサインは予測特異度において性能が勝っている。図２９から、ＨＲＶ測定値
とバイタルサインとを組合せることが一般的に予測の性能を向上できることが観察される
。
【０３５７】
　実際に、ＥＬＭ中の隠れノードの数は通常、ネットワークの複雑さおよび学習性能を制
御し、これにより最終結果に影響を及ぼし得る。
【０３５８】
　図３０、図３１、および図３２は、隠れノードの異なる数という観点でＥＬＭの性能を
示す。図３０から図３２で、ハードリミット、シグモイド、および正弦という活性化関数
をそれぞれ用いた。
【０３５９】
　活性化関数に拘らず、隠れノードの数が２０から３０へばらつく場合に良好な予測結果
が得られることがわかる。我々はまた、シグモイド関数の場合に３０個の隠れニューロン
を用いて最良の結果が得られることも観察する。さらに、図２９に見られるように、ＥＬ
Ｍを用いたトレーニングおよびテストの両者を数ミリ秒内で達成可能である。
【０３６０】
　異なる予測ストラテジの比較
　ＨＲＶ測定値をＥＣＧ信号から算出するやり方に従って用いる３つの予測ストラテジは
、グローバル、ローカル、およびセグメントベースの方法である。これらのストラテジの
詳細な説明は以下のとおりである。
【０３６１】
　－グローバルベースの方法：全ＲＲ間隔シーケンスからＨＲＶ測定値を算出する。
　－ローカルベースの方法：ローカルシーケンスからＨＲＶ測定値を算出して患者を表わ
す。
【０３６２】
　－セグメントベースの方法：多数決規則を用いた予測のために、ローカルシーケンス中
のすべての非オーバーラップセグメントを用いる。
【０３６３】
　グローバルおよびローカルストラテジを実現する場合に１組の特徴を用いて患者を表わ
す一方で、セグメントベースの方法が採用されればＭ組の特徴を１人の患者について算出
することが明らかである。図３３に見られるように、ローカルストラテジはグローバルス
トラテジよりも性能が優れており、最良の結果はセグメントベースの方法によって達成さ
れる。
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