(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 April 2003 (10.04.2003)

(10) International Publication Number
WO 03/029383 A1

(51) International Patent Classification: C09K 11/06,
H05B 33/14

(21) International Application Number: PCT/JP02/09673

(22) International Filing Date:

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

(72) Inventors; and

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BI, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published: with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ORGANIC LUMINESCENCE DEVICE

(57) Abstract: In an organic luminescence device formed of one or plural layers of organic films between an anode and a cathode, at least one layer is any one of a luminescence layer, an electron injection layer and an electron-transporting layer and is formed of at least a phenolic derivative of any one of formulas (1-a), (1-b), (2-a) and (2-b) characterized by having at least two phenoxide portions connected to each other via a specific divalent bond in its molecular structure. By the use of the phenolic derivative, the resultant organic luminescence device produces a high-lumiance fluorescent luminescence at a low voltage for a long period of time.
DESCRIPTION

ORGANIC LUMINESCENCE DEVICE

[TECHNICAL FIELD]

The present invention relates to an organic (electro-)luminescence device including a layer of a specific phenolic derivative capable of directly converting electric field energy into light energy under application of electric field.

[BACKGROUND ART]

An organic luminescence device generally comprises a pair of electrodes (comprising an anode and a cathode) and a film comprising a fluorescent organic compound disposed between the electrodes. Into the organic compound layer (film), holes and electrons are injected from the anode and the cathode, respectively, thus forming excitons of the fluorescent organic compound. When the excitons are returned to ground state, the organic luminescence device emits light or causes luminescence.

According to a study by Eastman Kodak Co. ("Appl. Phys. Lett.", vol. 51, pp. 913- (1987)), it has been reported that a function-separation type organic luminescence layer comprising mutually laminated two layers including a layer of an aluminum
quinolinol complex (as an electron transporting and luminescent material) and a layer of a triphenylamine derivative (as a hole transporting material) causes luminescence at a luminance (brightness) of ca. 1,000 cd/m² under application of a voltage of ca. 10 volts. This is also reported in, e.g., U.S. Patent Nos. 4,539,507; 4,720,432 and 4,885,211.

Further, by changing species of the fluorescent organic compound, it is possible to effect luminescence over broad wavelength regions ranging from an ultraviolet region to an infrared region. In this regard, various compounds have been extensively studied in recent years. Such compounds have been proposed in, e.g., U.S. Patent Nos. 5,151,629, 5,409,783 and 5,382,477, and Japanese Laid-Open Patent Applications (JP-A) 2-247278 (corr. to U.S. Patent Nos. 5,130,603 and 6,093,864), JP-A 3-255190 (corr. to U.S. Patent No. 5,227,252), JP-A 5-202356, JP-A 9-202878 and JP-A 9-227576.

In addition to the above-mentioned organic luminescence devices using low-molecular weight materials, an organic luminescence device using a conjugated polymer has been reported by a research group of Cambridge University ("Nature", vol. 347, pp. 539- (1990)). According to this report, a signal layer of polyphenylenevinylene (PPV) is formed through a wet-coating process and luminescence from the single
layer is confirmed. Such an organic luminescence device using a conjugated polymer has also been proposed by, e.g., U.S. Patent Nos. 5,247,190, 5,514,878 and 5,672,678, JP-A 4-145192 (corr. to U.S. Patent Nos. 5,317,169 and 5,726,457), and JP-A 5-247460.

As described above, recent progress in organic luminescence device is noticeable, and the resultant organic luminescence devices are characterized by high luminance (brightness) under application of a low voltage, various (light-)emission wavelengths, high-speed responsiveness, small thickness and light weight, thus suggesting possibility of wide applications.

However, the above-described organic luminescence devices are still required to effect light output (emission) at a higher luminance and/or a higher conversion efficiency in the present state. These organic luminescence devices are also still insufficient in terms of durability such that the devices are liable to be changed in their properties with time when used for a long period or liable to be deteriorated by the influence of ambient air containing oxygen or of humidity. Further, in the case of using the organic luminescence devices for full-color display, it is necessary to effect luminescences of blue, green and red with good color
purities. However, a satisfactory solution to the problem has not been realized yet.

[DISCLOSURE OR INVENTION]

A generic object of the present invention is to provide improvements to problems as mentioned above encountered in organic luminescence devices proposed heretofore.

A more specific object of the present invention is to provide an organic (electro-) luminescence device capable of effecting light output (emission) at high efficiency and luminance while realizing a prolonged life.

Another object of the present invention is to provide an organic luminescence device capable of providing a wide variety of emission wavelengths and emission hues, and a good durability.

A further object of the present invention is to provide an organic luminescence device which can be produced easily and relatively inexpensively.

According to the present invention, there is provided an organic luminescence device, comprising: a pair of an anode and a cathode, and at least one organic layer disposed between the anode and the cathode, wherein said at least one organic layer comprises a layer comprising at least one species of a phenolic
derivative represented by the following formula (1-a) or (1-b):

\[
\begin{align*}
&\text{(1-a),} \\
&\text{(1-b),}
\end{align*}
\]

wherein

\(R \) denotes a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a nitrile group, a substituted silyl group, a substituted or unsubstituted alkyl group, an substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a substituted or unsubstituted azomethine group, a substituted or unsubstituted carbonyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted ether group, and a substituted or
unsubstituted heterocyclic group;

M denotes an alkali metal;

m is an integer of 2 - 100;

m' is an integer of 1 - 100;

a is an integer of 1 - 4; and b is an integer of 0 - 3, with the proviso that 1 ≤ a+b ≤ 4; and

X denotes a divalent group selected from the group consisting of a single bond, an alkylene group having 1 - 10 carbon atoms, -(alkylene)-(substituted or unsubstituted nitrogen)-(alkylene)-O-, -(alkylene)-S-, a substituted or unsubstituted nitrogen, -O-,-S-, -SO-, -SO2-, a polysulfide having 2 - 10 sulfur atoms, a polysulfoxide having 2 - 10 sulfur atoms, -CO- and -COO-.

According to the present invention, there is also provided an organic luminescence device, comprising:

a pair of an anode and a cathode, and

at least one organic layer disposed between the anode and the cathode, wherein

said at least one organic layer comprises a layer comprising at least one species of a phenolic derivative represented by the following formula (2-a) or (2-b):
wherein

\[R \] denotes a substituent selected from the

group consisting of a hydrogen atom, a halogen atom, a
nitro group, a nitrile group, a substituted silyl
group, a substituted or unsubstituted alkyl group, an
substituted or unsubstituted alkenyl group, a
substituted or unsubstituted aralkyl group, a
substituted or unsubstituted aryl group, a substituted
or unsubstituted amino group, a substituted or
unsubstituted azomethine group, a substituted or
unsubstituted carbonyl group, a substituted or
unsubstituted alkoxy group, a substituted or
unsubstituted ether group, and a substituted or
unsubstituted heterocyclic group;
M2 denotes an alkali earth metal;
n is an integer of 1 - 50;
n' is an integer of 0 - 50;
c is an integer of 1 or 2; and d and e are an integer of 0 - 3, with the proviso that 1 ≤ c+d ≤ 4 and 1 ≤ c+e ≤ 4;

X2 denotes a divalent group selected from the group consisting of a single bond, an alkylene group having 1 - 10 carbon atoms, -(alkylene)-(nitrogen)-, -(alkylene)-O-, -(alkylene)-S-, a substituted or unsubstituted nitrogen, -O-, -S-, -SO-, -SO₂-, -CO- and -COO-; and

X3 denotes a divalent group selected from the group consisting of a single bond, an alkylene group having 1 - 10 carbon atoms, -(alkylene)-(substituted or unsubstituted nitrogen)-, -(alkylene)-O-, -(alkylene)-S-, a substituted or unsubstituted nitrogen, -O-, -S-, -SO-, -SO₂-, a polysulfide having 2 - 10 sulfur atoms, a polysulfoxide having 2 - 10 sulfur atoms, a polysulfone having 2 - 10 sulfur atoms, -CO- and -COO-.

According to the present invention, there is further provided an apparatus, comprising: the above-mentioned organic luminescence device and means for applying an electric field to the organic luminescence device.

These and other objects, features and
advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.

[BRIEF DESCRIPTION OF THE DRAWINGS]

Figures 1 to 3 are schematic sectional views each illustrating a basic structure of an organic luminescence device according to an embodiment of the present invention.

[BEST MODE FOR PRACTICING THE INVENTION]

The organic luminescence device according to the present invention is characterized in that at least one organic (compound) layer disposed between the pair of electrodes (anode and cathode) includes a layer comprising at least one species of a phenolic derivative represented by any one of the above-mentioned formulas (1-a), (1-b), (2-a) and (2-b).

The phenolic derivative used in the present invention may include a phenolic derivative having a cyclic structure as represented by the formula (1-a) or the formula (2-a) and a phenolic derivative having a chain structure as represented by the formula (1-b) or the formula (2-b).

In each of the formulas (1-a), (1-b), (2-a)
and (2-b), as described above, R represents a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a nitrile group, a substituted silyl group, a substituted or unsubstituted alkyl group, an substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a substituted or unsubstituted azomethine group, a substituted or unsubstituted carbonyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted ether group, and a substituted or unsubstituted heterocyclic group.

Examples of the substituted silyl group may include dimethylsilyl, trimethylsilyl, triethylsilyl, triphenylsilyl, tertiary(t-)-butoxydimethylsilyl, and t-butyldiphenylsilyl.

Examples of the alkyl group may include methyl, ethyl, n-propyl, iso-propyl, t-butyl and octyl.

Examples of the alkenyl group may include vinyl, allyl (or 2-propenyl), 1-propenyl, iso-propenyl and 2-butenyl.

Examples of the aralkyl group may include benzyl and phenethyl.

Examples of the alkoxy group may include
methoxy, ethoxy, propoxy, 2-ethyl-octyloxy, phenoxy, 4-butylphenoxy and benzyloxy.

Examples of the aryl group may include phenyl, 4-lithiumoxyphenyl, 4-potassiumoxyphenyl, 4-cesiumoxyphenyl, 4-methylphenyl, 4-ethylphenyl, 3-chlorophenyl, 3,5-dimethylphenyl, N,N'-diphenylaminophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl, pyrenyl, and ferrocenyl.

Examples of the amino group may include amino, methylamino, ethylamino, dimethylamino, diethylamino, methylethylamino, benzylamino, methylbenzylamino, anilino, diphenylamino, phenyltolylamino, and ditolylamino.

Examples of the azomethine group may include methylimino, ethylimino, phenylimino, (4-dimethylaminophenyl)imino, (4-cyanophenyl)imino, (4-fluorophenyl)imino, 2-pyridylimino, 9-anthrylimino, and 1-pyrenylimino.

Examples of the carbonyl group may include acetyl, propionyl, isobutyryl, methacryloyl, benzoyl, naphthoyl, anthrolyl and toluoyl.

Examples of the ether group may include methoxymethyl, methoxydimethylmethyl, methoxyethyl, ethoxymethyl, and phenoxyethyl.

Examples of the heterocyclic group may include pyridyl, bipyridyl, methylpyridyl, thiethyl, terthienyl, propylthienyl, furyl, quinolyl, carbazolyl
and N-ethylcarbazolyl.

Examples of the optional substituents which may be possessed by the above-mentioned groups for R may include: alkyl group, such as methyl, ethyl, n-propyl, iso-propyl, t-butyl, and octyl; aralkyl group, such as benzyl and phenethyl; alkoxy group, such as methoxy, ethoxy, propoxy, 2-ethyl-octyloxy, phenoxy, 4-butylphenoxy and benzyloxy; aryl group, such as phenyl, 4-methylphenyl, 4-ethylphenyl, 3-chlorophenyl, 3,5-dimethylphenyl, N,N'-diphenyl-aminophenyl, biphenyl, terphenyl, naphthyl, anthranyl, phenanthryl and pyrenyl; and heterocyclic group, such as pyridyl, bipyrtdyl, methylpyridyl, thienyl, terthienyl, propylthienyl, furyl, quinolyl, carbazolyl, and N-ethylcarbazolyl.

In the formulas (1-a) and (1-b), examples of the alkali metal (M1) may include metals in Group 1 of the periodic table, such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs) and francium (Fr). Among these metals, Li, K and Cs are preferred.

In the formulas (2-a) and (2-b), examples of the alkali earth metal (M2) may include metals in Group 2 of the periodic table, such as beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and radium (Ra). Among these metals, Be, Mg and Ca are preferred.

In the formula (1-a), m may preferably be an
integer of 2 - 10.

In the formula (1-b), m' may preferably be an integer of 1 - 10.

In the formula (2-a), n may preferably be an integer of 1 - 5.

In the formula (2-b), n' may preferably be an integer of 0 - 5.

Examples of the optional substituents which may be possessed by the substituted nitrogen-(containing) group for X1, X2 and X3 may include: alkyl group, such as methyl, ethyl, n-propyl, iso-propyl, t-butyl, and octyl; aralkyl group, such as benzyl and phenethyl; aryl group, such as phenyl, 4-methylphenyl, 4-ethylphenyl, 3-chlorophenyl, 3,5-dimethylphenyl, N,N'-diphenylaminophenyl, biphenyl, terphenyl, naphthyl, anthryl, phenanthryl and pyrenyl; and heterocyclic group, such as pyridyl, bipyridyl, methylpyridyl, thienyl, thienyl, propylthienyl, furyl, quinolyl, carbozolyl, and N-ethylcarbazolyl.

Specific examples of the phenolic derivatives of the formulas (1-a), (2-a), (1-b) and (2-b) described above may include those (Example Compound Nos. 1-138) shown below, wherein Me represents methyl, tBu represents t-butyl, and Ph represents phenyl.

Incidentally, the phenolic derivatives used in the present invention inclusive of those enumerated below are synthesized by, e.g., methods as reported by

Formula (1-a)
Formula (2-a)
Formula (1-b)
Formula (2-b)
Synthesis Example 1 (Ex. Comp. No. 1)

In a nitrogen atmosphere, 600 mg (1.41 mM) of calix[4]arene was dissolved in 150 ml of ethanol, followed by stirring under heating on an oil bath heated at 80 °C. To the solution, a solution of 135 mg (5.64 mM) of lithium hydroxide in 30 ml of ethanol was gradually added dropwise. The reaction solution was changed from a white (turbid) solution to a transparent solution, followed by stirring under heating or 4 hours. After standing to cool, the solvent was distilled off to obtain a white solid. The white solid was dried and aerated with nitrogen to obtain 570 mg of an objective phenolic derivative (Ex. Comp. No. 1).

Synthesis Example 2 (Ex. Comp. No. 3)

In a nitrogen atmosphere, 600 mg (1.41 mM) of calix[4]arene was dissolved in 150 ml of ethanol, followed by stirring under heating on an oil bath heated at 80 °C. To the solution, a solution of 316 mg (5.64 mM) of lithium potassium in 30 ml of ethanol was gradually added dropwise. The reaction solution was changed from a white (turbid) solution to a transparent solution, followed by stirring under heating or 2 hours. After standing to cool, the solvent was distilled off to obtain a white solid. The white solid was dried and aerated with nitrogen to obtain 747 mg of an objective phenolic derivative (Ex.
Comp. No. 3).

Synthesis Example 3

A phenolic derivative (Ex. Comp. No. A) shown below was synthesized.

![Chemical structure](image)

In a nitrogen atmosphere, 5 g (33.3 mM) of 4-t-butylphenol, 2.13 g (6.66 mM) of sulfur (S8) and 670 mg (16.7 mM) of sodium hydroxide were dissolved in 10 ml of tetraethylene glycol dimethyl ether followed by stirring at room temperature. The reaction solution was gradually heated on an oil bath and stirred on the oil bath for 6 hours at 200 °C. After standing to cool, the reaction solution was diluted with the addition of toluene and diethyl ether, followed by addition of 0.5M-sulfuric acid aqueous solution to precipitate a solid. The precipitated solid and a solid obtained after distilling-off of the solvent were together purified by silica gel column chromatography (eluent: hexane/chloroform = 2/3) to obtain 3 g of 4-t-butylthiacalix[4]arene.

In a nitrogen atmosphere, 1.02 g (1.41 mM) of 4-t-butylthiacalix[4]arene was dissolved in 150 ml of
ethanol and stirred on an oil bath heated at 80 °C.

To the solution, a solution of 135 mg (5.64 mM) of lithium hydroxide in 30 ml of ethanol was gradually added dropwise. The reaction solution was changed from a white (turbid) solution to a transparent solution, followed by stirring under heating or 4 hours. After standing to cool, the solvent was distilled off to obtain a white solid. The white solid was vacuum-dried and aerated with nitrogen to obtain 970 mg of an objective phenolic derivative (Ex. Comp. No. A).

Synthesis Example 4 (Ex. Comp. No. 101)

In a nitrogen atmosphere, a solution of 3 g (9.93 mM) of 2,6-bis(2-hydroxybenzyl)phenol and 1.23 g (9.93 mM) of 2-hydroxybenzylalcohol in 70 ml of diethyl ether was added dropwise at room temperature to a solution of ethyl magnesium bromide prepared from 4 g (36.7 mM) of ethyl bromide, 0.9 g (37 mM) of magnesium and 100 ml of diethyl ether, followed by stirring for 1 hour. The reaction mixture was subjected to distillation off of diethyl ether, and 200 ml of toluene was added thereto, followed by stirring on an oil bath heated at 100 °C for 10 hours. After standing to cool, 10 %-sulfuric acid aqueous solution was added to the resultant mixture. The organic layer was washed with saturated sodium bicarbonate aqueous solution and saturated saline
water, followed by drying with anhydrous magnesium sulfate and distilling-off of the solvent. The resultant residue was purified by silica gel column chromatography (eluent: hexane/acetone = 4/1) to obtain 1.22 g of 2,2'-methylenebis[6-(2-hydroxybenzyl)phenyl].

In a nitrogen atmosphere, 575 mg (1.41 mM) of 2,2'-methylenebis[6-(2-hydroxybenzyl)phenol] was dissolved in 150 ml of ethanol, followed by stirring under heating on an oil bath heated at 80 °C. To the solution, a solution of 135 mg (5.64 mM) of lithium hydroxide in 30 ml of ethanol was gradually added dropwise. The reaction solution was changed from a white (turbid) solution to a transparent solution, followed by stirring under heating for 4 hours. After standing to cool, the solvent was distilled off to obtain a white solid. The white solid was vacuum-dried and aerated with nitrogen to obtain 550 mg of an objective phenolic derivative (Ex. Comp. No. 101).

In the organic luminescence device of the present invention, the organic compound layer(s) comprising at least one species of the above-mentioned phenolic derivative of the formula (1-a), (1-b), (2-a) and (2-b) may be formed between the pair of anode and cathode (electrodes) by vacuum deposition or wet-coating process. The organic compound layer(s) may preferably be formed in a (total) thickness of at most
10 µm, more preferably at most 0.5 µm, further preferably 0.01 - 0.5 µm.

The organic compound layer(s) constituting the organic luminescence device of the present invention may have a single-layer structure as shown in Figure 1 or a laminate structure of two or more layers as shown in Figures 2 and 3.

More specifically, Figure 1 is a schematic sectional view illustrating an embodiment of the organic luminescence device of the present invention. Referring to Figure 1, the organic luminescence device includes a substrate 1, and an anode 2, a luminescence layer 3 and a cathode 4 disposed in this order on the substrate 1 so as to form a laminate structure. The luminescence layer 3 may comprise a single species of luminescent material exhibiting a hole-transporting function, an electron-transporting function and a luminescence function in combination or a mixture of plural compounds exhibiting these functions, respectively. The luminescence layer 3 may have a thickness of 1 nm to 1 µm, preferably 5 - 500 nm.

Figure 2 is a sectional view showing a laminate structure of another embodiment of the organic luminescence device. Referring to Figure 2, the organic luminescence device includes a substrate 1, and an anode 2, a hole-transporting layer 5, an electron-transporting layer 6 and a cathode 4 disposed
successively in this order on the substrate 1 so as to form a laminate structure. In this case, either one or both of the hole-transporting layer 5 and the electron-transporting layer 6 may contain a luminescent material also having a hole-transporting function and/or an electron-transporting function, respectively, for constituting a luminescence layer 3 singly or in combination. One of the layers 6 and 5 may contain a material having no luminescent function but having a good electron-transporting or hole-transporting function. Each of the hole-transporting layer 5 and the electron-transporting layer 6 may have a thickness of 1 nm to 1 μm, preferably 5 - 500 nm.

Figure 3 is a sectional view showing still another embodiment of the organic luminescence device of the present invention. Referring to Figure 3, the organic luminescence device includes a substrate 1, and an anode 2, a hole-transporting layer 5, a luminescence layer 3, an electron-transporting layer 6 and a cathode 4 disposed successively in this order on the substrate 1 to form a laminate structure. In this embodiment, the carrier transporting functions and the luminescent function of the organic compound layer are separated and assigned to the respective layers. Each of the hole-transporting layer 5, the luminescence layer 3 and the electron-transporting layer 6 may contain a single species or plural species of
compounds showing respectively expected functions so as to exhibit desired performances. More specifically, in the case of using plural species of compounds in combination, a lot of latitude is provided in selection of materials for each layer, and various compounds having different emission wavelengths can be used to provide a variety of luminescence hues.

Further, as the carriers and excitons are effectively confined in the central luminescence layer 3, it is possible to increase the luminescence efficiency.

In the embodiment of Figure 3, each of the hole-transporting layer 5, the luminescence layer 3 and the electron-transporting layer 6 may have a thickness of 1 nm - 1 μm, preferably 5 - 500 nm.

It is to be understood however that Figures 1 - 3 described above merely show basic structures of the organic luminescence device according to the present invention, and various modifications thereof are possible. For example, between the organic compound layer(s) and the electrodes (anode and cathode), it is possible to dispose an insulating layer, an adhesive layer, or an interference layer. Further, the hole-transporting layer 5 can be divided into two layers with different ionization potentials. Further, the electron-transporting layer 6 may be
formed as a single layer or a lamination layer consisting of an electron-transporting layer and an electron injection layer closer to the cathode 4.

The phenolic derivatives represented by the formulas (1-a), (1-b), (2-a) and (2-b) have better electron injection performance and electron-transporting performance than conventional compounds and can be adopted in any of the device structures shown in Figures 1 to 3.

The organic compound layer containing the phenolic derivative of any one of the formulas (1-a), (1-b), (2-a) and (2-b) is particularly useful as an electron injection layer and/or an electron-transporting layer and/or a luminescence layer. In this instance, the luminescence layer may directly contact the cathode 4 or contact the cathode 4 via another layer (such as the electron injection layer or the electron-transporting layer).

In the present invention, the phenolic derivative of the formula (1-a), (1-b), (2-a) or (2-b) can be used to constitute an electron injection layer, an electron-transporting layer and/or a luminescence layer, as desired, in combination with another compound, such as a known hole-transporting compound, luminescent compound or electron-transporting compound, examples of which are enumerated in Tables 1 - 6 hereinbelow.
Table 1

[Hole-transporting materials (low-molecular weight)]

<table>
<thead>
<tr>
<th></th>
<th>Chemical Structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M: Cu, Mg, AlCl, TiO, SrCl₂, Zn, Sn, MnCl, GaCl, etc</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2

[Electron-transporting (luminescent) materials]

<table>
<thead>
<tr>
<th>5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M : Al, Ga</td>
<td>M : Al, Ga</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M : Zn, Mg, Be</td>
<td>M : Zn, Mg, Be</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M : Zn, Mg, Be</td>
<td>M : Zn, Mg, Be</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M : Zn, Mg, Be</td>
<td>M : Al, Ga</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M : Al, Ga</td>
<td></td>
</tr>
</tbody>
</table>
Table 3

[Luminescent materials]

<table>
<thead>
<tr>
<th>5</th>
<th>C_{2}H_{5}N</th>
<th>Coumarin6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>C_{2}H_{5}N</td>
<td>Nile red</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>DTPABVi</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Rubrene</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>Coronene</td>
</tr>
</tbody>
</table>
Table 4

[Electron-transporting (luminescent) materials]

<table>
<thead>
<tr>
<th>No.</th>
<th>Structure 1</th>
<th>Structure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5

[Hole-transporting material (polymeric)]

<table>
<thead>
<tr>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVCz</td>
<td>DPA-PS</td>
<td>TPA-PMMA</td>
<td>TPD-PMMA</td>
<td>TPD-PMAA</td>
</tr>
</tbody>
</table>
Table 6

[Polymeric luminescent (charge-transporting) materials]
As mentioned above, the organic compound layer(s) containing the phenolic derivative of the formula (1-a), (1-b), (2-a) or (2-b) or other organic compound layers may be formed into film by vacuum deposition or coating of a solution of the relevant compound in an appropriate solvent. In the case of the solution coating, the organic compound can be used in mixture with an appropriate binder resin to form a film.

The binder resin used for the above purpose may be selected from a wide variety of scope. Examples thereof may include: polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacrylic resin, butyral resin, polyvinyl acetal resin, diallyl phthalate resin, phenolic resin, epoxy resin, silicone resin, polysulfone resin, and urea resin. These resins may be used singly or in combination of two or more species or in the form of copolymers.

As a material for the anode (2 shown in Figures 1 - 3), it is preferred to use one having as large a work function as possible, examples of which may include: metals, such as gold, platinum, nickel, palladium, cobalt, selenium and vanadium, and their alloys; metal oxides, such as tin oxide, zinc oxide, indium tin oxide (ITO), and indium zinc oxide; and
electroconductive polymers, such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide. These compounds may be used singly or in combination of two or more species.

On the other hand, as a material for the cathode (shown in Figures 1 - 3), it is preferred to use one having a small work function, examples of which may include: metals, such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, silver, lead, tin and chromium, and their alloys. It is also possible to use metal oxide, such as indium tin oxide (ITO). The cathode may be formed in a single layer or a lamination of plural layers.

The substrate shown in Figures 1 - 3 for the organic luminescence device of the present invention may include an opaque substrate of metal, ceramics, etc., and a transparent substrate of glass, quartz, plastics, etc. It is possible to form the substrate with a color filter film, a fluorescent color conversion film, a dielectric reflection film, etc., thus controlling emitted luminescent light.

In order to prevent contact with oxygen and/or moisture, the organic luminescence device of the present invention may further include a protective layer or a sealing layer. Examples of the protective layer may include: an inorganic film of diamond, metal oxide, metal nitride, etc.; a polymer film of
fluorine-containing resin, poly(paraxylene, polyethylene, silicone resin, polystyrene, etc., and a film of light-curable resin. It is also possible to effect packaging of the organic luminescence device per se with a sealing resin while covering the organic luminescence device with glass, gas-impermeable film, metal, etc.

Hereinbelow, the present invention will be described more specifically based on Examples.

Example 1

An electroluminescence device of a structure as shown in Figure 3 was prepared in the following manner.

A 0.7 mm-thick glass substrate (substrate 1) coated with a 120 nm-thick film of ITO (indium tin oxide) (anode 2) formed by sputtering was successively washed with acetone and isopropyl alcohol (IPA) under application of ultrasonic wave and then washed with IPA under boiling, followed by cleaning by UV/ozone (i.e., irradiation with ultraviolet rays in the ozone-containing atmosphere), to obtain a transparent conductive substrate (including the substrate 1 and the ITO anode 2 formed thereon).

As a solution for a hole transport layer 5, 0.5 wt. % of TPD (N,N'-diphenyl-N,N'-m-tolyl-4,4'-diamino-1,1'-biphenyl) represented by a structural formula shown below was dissolved in chloroform.
The thus-prepared solution was spin-coated on the above-prepared transparent conductive substrate for 10 sec at 500 rpm (1st coating) and then for 1 min. at 1000 rpm (2nd coating), followed by drying for 10 min. at 80 °C in a vacuum oven to completely remove the solvent, thus forming a 50 nm-thick TPD film (hole transport layer).

On the TPD film, a 50 nm-thick film of Alq 3 (tris-(8-quinolinolato)aluminum) (luminescence layer 3) was formed by vacuum deposition under a vacuum of 4.0x10⁻⁴ Pa and at a film thickness growth rate of 0.3 nm/sec.

On the Alq 3 film, a 5 nm-thick film for a phenolic derivative (Example Compound No. 1) (electron injection (transport) layer 6) and a 150 nm-thick aluminum (Al) film (cathode 4) were successively formed by vacuum deposition under a vacuum of 4.0x10⁻⁴ Pa and at a film thickness growth rate of 1.0 - 1.2 nm/sec, thus obtaining an organic luminescence device having a structure shown in Figure 3 according to the present invention.
The thus-prepared organic luminescence device was covered with a protective plate of glass so as not to cause moisture absorption leading to a device deterioration, followed by sealing with an acrylic resin-based adhesive, in a dry air atmosphere.

The resultant organic luminescence device (effective luminescence area: 4 mm²) was supplied with a DC voltage at an increment of 0.1 volt (V) from a power supply ("R-6144", available from Advantest Co.) to measure a device current (by "DMM2700", available from Keithley Co.) and a (luminescence) luminance (by "BM-7 fast", available from Topcon Co.), thereby to evaluate device characteristics in the following manner in terms of a drive voltage, a luminescence efficiency, an initial applied voltage, an initial luminance, an applied voltage after continuous luminescence, and a luminance after continuous luminescence.

<Drive voltage>

The drive voltage was evaluated as a voltage (V) providing a luminance of 100 cd/m².

<Luminescence efficiency>

The luminescence efficiency was evaluated as a value (cd/A) at the luminance of 100 cd/m².

<Applied voltage and luminance>

The organic luminescence device was continuously supplied with a constant current of 3.1
mA (current density of 100 mA/cm²) for 240 hours (continuous luminescence test).

At an initial stage and after the continuous luminescence test (continuous current application for 240 hours), a voltage (V) applied to the organic luminescence device and a resultant luminance (cd) were measured, respectively.

The results are shown in Table 7 appearing hereinafter.

Comparative Example 1

An organic luminescence device was prepared and evaluated in the same manner as in Example 1 except that the film of phenolic derivative (Ex. Comp. No. 1) (electron transport layer 6) was not formed, i.e., the Al film was directly formed on the Alq 3 film.

The results are shown in Table 7.

Comparative Example 2

An organic luminescence device was prepared and evaluated in the same manner as in Example 1 except that the phenolic derivative film (Ex. Comp. No. 1) was changed to a 1 nm-thick LiF film (which was ordinarily used as an electron injection (transport) film of a conventional organic luminescence device).

The results are shown in Table 7 below.
Table 7

<table>
<thead>
<tr>
<th>Ex. No.</th>
<th>Drive voltage (V)</th>
<th>Luminescence efficiency (cd/A)</th>
<th>Voltage and luminance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initial (V):(cd)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 1</td>
<td>4.5</td>
<td>4.1</td>
<td>8.2;3800</td>
</tr>
<tr>
<td>Comp. Ex. 1</td>
<td>14.2</td>
<td>0.7</td>
<td>17.5;1100</td>
</tr>
<tr>
<td>Comp. Ex. 2</td>
<td>4.7</td>
<td>3.6</td>
<td>8.8;3600</td>
</tr>
</tbody>
</table>

As apparent from the above results, the phenolic derivative (Ex. Comp. No. 1) used in the present invention was found to function as an electron injection material to exhibit better performances than the conventional material (LiF), thus improving a low-voltage drive characteristic and a luminescence efficiency while effectively suppressing an increase in drive voltage and a lowering in luminance in the continuous luminescence test.

This may be attributable to a function of Li in the phenolic derivative (Ex. Comp. No. 1) that electrons are effectively transferred from the Al electrode (cathode 4) to the Alq 3 film (luminescence layer 3). In this regard, LiF is an insulating material, thus exhibiting a smaller electron-transporting performance. On the other hand, it is considered that the phenolic derivative used in the
present invention has a higher electron-transporting performance, thus effectively suppressing a lowering in electron-transporting performance in the continuous luminescence test.

When a similar evaluation was performed as to organic luminescence devices using phenolic derivatives (Ex. Comp. Nos. 2-66), all the organic luminescence device using the phenolic derivatives exhibited better performances (such as better electron-transporting (or injection) performance and better luminescence performance in the continuous luminescence test) than the organic luminescence devices prepared in Comparative Examples 1 and 2.

Further, the organic luminescence device using phenolic derivatives containing K or Li caused less deterioration in material (thermal decomposition) particularly in the vacuum deposition step.

Example 2

An organic luminescence device was prepared and evaluated in the same manner as in Example 1 except that the electron injection (transport) layer 6 (the film of phenolic derivative (Ex. Comp. No. 1)) was changed to a 20 nm-thick co-deposition film of Alq 3 and a phenolic derivative (Ex. Comp. No. 4) formed by adjusting a film thickness growth rate while changing a current passing through a slide boat so as to provide the phenolic derivative (Ex. Comp. No. 4)
with a concentration of 10 vol. %.

The results are shown in Table 8 below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Drive voltage (V)</th>
<th>Luminescence efficiency (cd/A)</th>
<th>Voltage and luminance Initial (V);(cd)</th>
<th>After 240H (V);(cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 2</td>
<td>4.1</td>
<td>4.5</td>
<td>7.8;4200</td>
<td>8.2;4100</td>
</tr>
</tbody>
</table>

As apparent from the above results, the phenolic derivative (Ex. Comp. No. 4) used in the present invention was found to exhibit excellent electron injection performance and luminescence durability when the phenolic derivative was used in combination with Alq 3 (electron-transporting material) for constituting a co-deposited film as an electron injection film.

Similar good results were also attained when the concentration of the phenolic derivative (Ex. Comp. No. 4) was in the range of 5 - 90 vol. % and the thickness of the co-deposited film was in the range of 5 - 100 nm.

When a similar evaluation was performed as to organic luminescence devices using other phenolic derivatives (Ex. Comp. Nos. 1-3 and 5-138), all the organic luminescence devices using the phenolic
derivatives exhibited better performances (such as better electron injection and luminescence durability) than the organic luminescence devices prepared in Comparative Examples 1 and 2.

Further, when Alq 3 used in combination with the phenolic derivative (Ex. Comp. No. 4) in the co-deposited film was changed to electron-transporting materials shown in Table 2, similar improvements in performances were confirmed.

Further, when the phenolic derivative (Ex. Comp. No. 4) was used in combination with Alq 3 for forming a co-deposited film in a concentration of 0.1 - 10 vol. %, a resultant electron-transporting performance was improved, i.e., a luminescence initiation voltage (drive voltage) was lowered.

[INDUSTRIAL APPLICABILITY]

As described above, the organic luminescence device according to the present invention using a phenolic derivative represented by any one of the above-mentioned formulas (1-a), (1-b), (2-a) and (2-b) provides a high luminescence efficiency and a prolonged luminescence life, particularly, in the case where an organic layer using the phenolic derivative is used singly or in combination with another compound as a layer exhibiting an electron-transporting and/or injection performance.
CLAIMS

1. An organic luminescence device, comprising:
 a pair of an anode and a cathode, and
 at least one organic layer disposed between
 the anode and the cathode, wherein
 said at least one organic layer comprises a
 layer comprising at least one species of a phenolic
derivative represented by the following formula (1-a)
or (1-b):

 ![Diagram 1-a](image)
 (1-a),

 ![Diagram 1-b](image)
 (1-b),

 wherein
 R denotes a substituent selected from the
 group consisting of a hydrogen atom, a halogen atom, a
 nitro group, a nitrile group, a substituted silyl
group, a substituted or unsubstituted alkyl group, an
 substituted or unsubstituted alkenyl group, a
substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a substituted or unsubstituted azomethine group, a substituted or unsubstituted carbonyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted ether group, and a substituted or unsubstituted heterocyclic group;

M_1 denotes an alkali metal;

m is an integer of $2 - 100$;

m' is an integer of $1 - 100$;

a is an integer of $1 - 4$; and b is an integer of $0 - 3$, with the proviso that $1 \leq a + b \leq 4$; and

X_1 denotes a divalent group selected from the group consisting of a single bond, an alkylene group having $1 - 10$ carbon atoms, $-(\text{alkylene})-(\text{substituted or unsubstituted nitrogen})-$, $-(\text{alkylene})-O-$, $-(\text{alkylene})-S-$, a substituted or unsubstituted nitrogen, $-O-$, $-S-$, $-SO-$, $-SO_2-$, a polysulfide having $2 - 10$ sulfur atoms, a polysulfoxide having $2 - 10$ sulfur atoms, a polysulfone having $2 - 10$ sulfur atoms, $-\text{CO}-$ and $-\text{COO}-$.

2. An organic luminescence device, comprising:

a pair of an anode and a cathode, and

at least one organic layer disposed between the anode and the cathode, wherein
said at least one organic layer comprises a layer comprising at least one species of a phenolic derivative represented by the following formula (2-a) or (2-b):

\[
\begin{align*}
\text{(2-a),} \\
\text{(2-b),}
\end{align*}
\]

wherein

- **R** denotes a substituent selected from the group consisting of a hydrogen atom, a halogen atom, a nitro group, a nitrile group, a substituted silyl group, a substituted or unsubstituted alkyl group, an substituted or unsubstituted alkenyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted amino group, a substituted or unsubstituted azomethine group, a substituted or unsubstituted carbonyl group, a substituted or
unsubstituted alkoxy group, a substituted or unsubstituted ether group, and a substituted or unsubstituted heterocyclic group;

M2 denotes an alkali earth metal;

n is an integer of 1 - 50;

n' is an integer of 0 - 50;

c is an integer of 1 or 2; and d and e are an integer of 0 - 3, with the proviso that 1 \leq c+d \leq 4 and 1 \leq c+e \leq 4;

X2 denotes a divalent group selected from the group consisting of a single bond, an alkylene group having 1 - 10 carbon atoms, -(alkylene)-(nitrogen)-, -(alkylene)-O-, -(alkylene)-S-, a substituted or unsubstituted nitrogen, -O-, -S-, -SO-, -SO_2-, -CO- and -COO-; and

X3 denotes a divalent group selected from the group consisting of a single bond, an alkylene group having 1 - 10 carbon atoms, -(alkylene)-(substituted or unsubstituted nitrogen)-, -(alkylene)-O-, -(alkylene)-S-, a substituted or unsubstituted nitrogen, -O-, -S-, -SO-, -SO_2-, a polysulfide having 2 - 10 sulfur atoms, a polysulfoxide having 2 - 10 sulfur atoms, a polysulfone having 2 - 10 sulfur atoms, -CO- and -COO-.

3. An organic luminescence device according to Claim 1 or 2, wherein the layer comprising said
phenolic derivative is a co-deposited film of said phenolic derivative and another compound or a film comprising a polymer and said phenolic compound dispersed therein.

4. An organic luminescence device according to Claim 1 or 2, wherein said organic layer further comprises a luminescence layer, and the layer comprising said phenolic derivative was disposed between the cathode and the luminescence layer.

5. An apparatus comprising an organic luminescence device according to Claim 1 or 2 and means for applying an electric field to the organic luminescence device.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION No
PCT/JP 02/09673

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C09K11/06 H05B33/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C09K H05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, PAJ, WPI Data, COMPENDEX, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 98 05693 A (UNIV OHIO) 12 February 1998 (1998-02-12), page 1, line 4 -page 5, line 20 claims 1-3,17,18</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>WO 01 66667 A (MIYANO SOTARO ;IKI NOBUHIKO (JP); KUMAGAI HITOSHI (JP); TAKEYA HAR) 13 September 2001 (2001-09-13) abstract</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 *"A" document defining the general state of the art which is not considered to be of particular relevance
 *"E" earlier document but published on or after the international filing date
 *"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 *"O" document referring to an oral disclosure, use, exhibition or other means
 *"P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"Z" document member of the same patent family

Date of the actual completion of the international search
5 December 2002

Date of mailing of the international search report
16/12/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer
Doslik, N
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 017, no. 582 (C-1123), 22 October 1993 (1993-10-22) & JP 05 170707 A (RES DEV CORP OF JAPAN; OTHERS: 01), 9 July 1993 (1993-07-09) abstract</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>WO 98 26287 A (ASPE DANIEL; CIS BIO INT (FR)) 18 June 1998 (1998-06-18) page 2, line 34 - page 5, line 5</td>
<td>1-5</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3742797 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 712433 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3820697 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 738209 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3966997 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0946615 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002516646 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002515169 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000515578 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9806122 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5955834 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6004681 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0166667 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 5489498 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0946870 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001506002 T</td>
</tr>
</tbody>
</table>

Form PCT/MSA/210 (patent family annex) (July 1992)