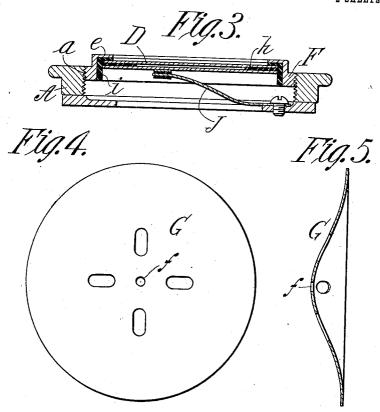
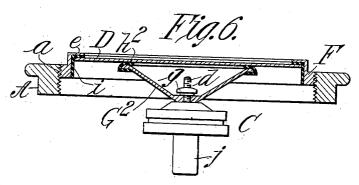

F. GOTTSCHALK. TELEPHONE TRANSMITTER. APPLICATION FILED JAN. 28, 1910.

977,620.

Patented Dec. 6, 1910.





F. GOTTSCHALK. TELEPHONE TRANSMITTER. APPLICATION FILED JAN. 28, 1910.

977,620.

Patented Dec. 6, 1910.

WITNESSES.

H.L. Spragur

a M. Mourey

inventor, Felix Gottschalk,

BY Sellons ATTORNEY

UNITED STATES PATENT OFFICE.

FELIX GOTTSCHALK, OF NEW YORK, N. Y.

TELEPHONE-TRANSMITTER.

977,620.

Specification of Letters Patent.

Patented Dec. 6, 1910.

Application filed January 28, 1910. Serial No. 540,526.

To all whom it may concern:

Be it known that I, Felix Gottschalk, a citizen of the United States of America, and resident of New York, in the county of New York and State of New York, have invented certain new and useful Improvements in Telephone-Transmitters, of which the following is a full, clear, and exact description.

This invention relates to improvements in 10 telephone transmitters, and more particularly pertains to the combinations or arrangements of parts to acquire a transmitter which is improved in the following respects: That the requirement of the ordinary for-15 wardly projecting mouthpiece is excluded; that the instrument is constituted a sanitary one in every respect; that it is one of the highest operative efficiency owing to its ca-pability of delicate and faithful transmis-20 sion of the vibrations produced by the sound waves without loss of reproductive results in the slightest variations thereof; that it is more nearly proof against the destructive action of moisture, especially that from the 25 breath of the speaker penetrating within the casing; and that it is not only of simplified and cheapened construction, but it is also susceptible of an easy assemblage and adjustment of its parts and a displacement or 30 removal of any of the parts as occasion therefor may require.

The invention is hereinafter described in conjunction with the accompanying draw-

ings and set forth in the claims.

In the drawings:—Figure 1 is substantially a central vertical sectional view, on an enlarged scale, from front to rear of a telephone transmitter of the Bell type in which my present improvements are em-40 bodied. Fig. 2 is a rear view of the transmitter, on a somewhat smaller scale, as seen with the rear portion of the casing removed; Fig. 3 is a sectional view, somewhat enlarged, of the forward portion of the instrument as 45 taken on line 3—3, Fig. 2; Figs. 4 and 5 are respectively a rear and a central sectional view of a cup-shaped shell which is comprised in the novel portion of the instrument. Fig. 6 is a sectional view centrally through 50 the forward portion of the instrument representing a slight modification.

Similar characters of reference indicate corresponding parts in all of the views.

In the drawings,—A represents the casing 55 of the transmitter represented as of the usual form as at present found in the Bell instru- | justed forwardly and readwardly through

ment; and the casing has a comparatively

large circular aperture a through its front.
B represents the usual bridge supported within the casing, mounted on which is the 60 resistance cup C which comprises the front electrode b between which and the rear electrode, as usual, is the granular carbon. The front electrode b has a forwardly projecting screw threaded stud d.

D represents the diaphragm which is contained in a ring F which is screw engaged in the apertured front of the casing A and has an inwardly extending shoulder-constituting flange e, the construction of such ring 70 being such that the disk diaphragm is restrained against radial and forward dis-placement by the internal circular wall of

the ring and by its shoulder.

G represents a member or appliance lo- 75 cated between the diaphragm and the front electrode and in substantial contact with both of said parts of the instrument, such member constituting the medium for the transmission of the vibrations produced by 80 the sound waves on the diaphragm to the front or "top" electrode. This interposed medium G is preferably constituted by a very thin and light metallic shell of dished or cup shape, forwardly widening and hav- 85 ing its back at its converged portion provided with a perforation f whereby it is somewhat loosely engaged about the stud d which projects forwardly from the front electrode. The small nut g engaged on the \mathfrak{so} threaded stud d when set up against the back of the dished or forwardly flaring cup G, binds the latter against the electrode; and the said cup shaped shell G, as especially represented in Figs. 1 and 5 is of a 95 size diametrically approximate that of the disk diaphragm; and it has its marginal portion so formed as to have more or less of such marginal portion in plane with, and facewise contact against, the diaphragm; 100 although for considerations of operativeness of the instrument a thin ring h of mica or waxed or gummed paper is interposed between the diaphragm disk and the approximate marginal portions of the metallic 105 shell G; and the diaphragm and shell are also separated by an insulating lining ring i from the metallic ring F and the casing A in which the ring is detachably fitted.

The resistance cup C which is carried at 110 the forward portion of the stem may be ad-

the bridge so that when the diaphragm carrying ring is screwed home the resistance cup may be properly positioned to insure that the shell G will have the proper nature of contact with, or in proximity to, the diaphragm; and the resistance cup will be held in its adjusted position by the confining screw k. It is, therefore, to be understood that the cup shaped shell is in circuit with 10 the front electrode, the diaphragm disk is insulated from the casing, while the casing is in metallic connection with the back electrode, the wire x having connection, as usual, with the front electrode, these conditions last referred to being unchanged from the customary ones in ordinary telephones; although it is not necessary to depend upon this particular method of electrical circuit, as the back electrode might be insulated 20 from the casing, having the wire x connected therewith, then not requiring that the diaphragm be insulated from the casing; or again any of the known methods for the course of the electric current may be em-25 ployed.

The springs J J arranged oppositely from the axial center of the instrument and provided and operating substantially as usual may exert their tensioning effect against the 30 diaphragm through the medium of the cup shaped shell G by having their free ends yieldingly in contact against the latter, or the free ends of the springs having the rubber cushion h2 thereon may have bearings 35 directly against the diaphragm outside of the cup shaped shell G2, which may, as represented in Fig. 6, be of considerably lessened diameter than that of the diaphragm.

It will be appreciated from the foregoing 40 descriptions and the drawings accompanying same that this instrument is one presenting a closed character at its front at which a large diaphragm area is exposed; and the front aspect of the instrument is 45 one of attractive simplicity. And the instrument, moreover, is one having the capability of a most delicate adjustment as between the resistance cup and the medium constituted by the member G which is in-50 terposed between the front electrode and the disk diaphragm.

I claim:

1. In a telephone transmitter, a casing having an apertured front, and a resistance 55 cup, comprising the electrodes, within the casing, a diaphragm located at, and closing, the apertured front of the casing forward of the front electrode, and a shell provided with a flat marginal portion interposed between 60 the diaphragm and front electrode for the transmission therethrough of vibrations from the former to the latter.

2. In a telephone transmitter, a casing having an apertured front, and a resistance

casing, a diaphragm located at, and closing, the apertured front of the casing forward of the front electrode, and a forwardly opening cup shaped member in contact at its forward portion with the margin of the rear side of 70 the diaphragm, and at its rear portion with the front electrode of the resistance cup.

3. In a telephone transmitter, a casing having an apertured front, and a resistance cup within the casing comprising the elec- 75 trodes, one thereof having a forwardly projecting stud, a diaphragm located at, and closing, the apertured front of the casing, and a thin walled shell having a perforation in the rear portion thereof and engaged 80 about said stud with such rear portion against the front electrode, and having its forward portion in contact against the mar-

gin of the diaphragm.

4. In a telephone transmitter, a casing 85 having an apertured front, and a resistance cup within the casing comprising the electrodes, one thereof having a forwardly projecting stud, a diaphragm located at, and closing, the apertured front of the casing, a 90 thin walled shell having a perforation in the rear portion thereof and engaged about said stud with such rear portion against the front electrode, and having its forward portion in contact against the margin of the dia- 95 phragm, and a nut screw engaged on said stud and binding the shell to the front electrode.

5. In a telephone transmitter, the combination with the casing having a compara- 100 tively large aperture in its front, and having therewithin the resistance cup comprising the electrodes, of a ring screw-engaged in the apertured front of the casing and having an inwardly extending shoulder-constituting 105 flange, a diaphragm disk restrained against radial and forward displacement by said ring and its shoulder, and a medium between the margin of the diaphragm disk and the front electrode for the transmission 110 of vibrations from the one to the other.

6. In a telephone transmitter, the combination with the casing having a comparatively large aperture in its front and having therewithin the resistance cup comprising 115 the electrodes, of a ring, detachably connected in the apertured front of the casing, and having a diaphragm disk therewithin, and a forwardly opening cup shaped shell, the rear portion of which is in contact against the 120 front electrode, while its widened forward portion is located within said ring and has a contact against the rear surface of the diaphragm.

7. In a telephone transmitter, the combi- 125 nation with the casing having a comparatively large aperture in its front and having therewithin the resistance cup comprising the electrodes, the front one thereof having a 65 cup, comprising the electrodes, within the | forwardly projecting screw threaded stud, 130

of a ring screw engaged in the apertured front of the casing and having an inwardly extending shoulder - constituting flange, a diaphragm disk restrained against radial and forward displacements was aid ring and its shoulder, a rearwardly convergent member having an aperture in its back, engaged about said stud, in contact against the front electrode, and having its forward portion 10 extended within said ring, and in contact

against the diaphragm, and a nut screwing on the stud against the rear portion of said rearwardly convergent member.
Signed by me at New York, N. Y., in presence of two subscribing witnesses.

FELIX GOTTSCHALK.

Witnesses:

J. J. LOCKWOOD, F. J. McAdams.