Abstract:

Methods for the treatment of cancer using double negative (DN) T cells are described. The DNTs may be used for the treatment of chemotherapy-resistant cancers such as recurring or relapsing acute myeloid leukemia (AML). The use of allogenic DNTs, such as those derived from healthy donors, that do not exhibit toxicity towards normal host tissues and the complications associated with graft-versus-host-disease, is also described.
Immunotherapy for the Treatment of Cancer

Related Applications

[0001] This Application claims priority to US Provisional Patent Application No. 62/037,889 filed August 15, 2014, the contents of which are incorporated by reference herein in their entirety.

Field of the Invention

[0002] The disclosure relates to the treatment of cancer such as leukemia and lymphoma, including acute myeloid leukemia (AML) using double negative T cells.

Background of the Invention

[0003] Acute myeloid leukemia (AML) is the leading cause of adult acute leukemia and accounts for -80% of all adult leukemia (Menzin et al., 2002). Despite the extensive research done to develop more effective ways of targeting the disease, AML is associated with low long-term survival; only -5% of elderly patients and -30% younger patients with AML manage to survive for 5 years or longer (Ungewickell and Medeiros, 2012; Ho and et al., 2012). Conventional chemotherapy can effectively achieve initial remission of the disease in >70% of the treated AML patients (Ungewickell and Medeiros, 2012). However, due to the highly heterogeneous nature of the disease, -30% of AML patients do not respond to chemotherapy (Ungewickell and Medeiros, 2012; Bucisano et al., 2012). Furthermore, chemotherapy fails to achieve complete clearance of the disease in most patients, and more than 70% of patients in remission suffer from relapsing AML within 2 years after the initial treatment (Ungewickell and Medeiros, 2012; Bucisano et al., 2012). There is no standard treatment regime for patients with relapsing AML, which is associated with poor prognosis (Ferrara et al., 2004). Relapsing AML is caused by a phenomenon called minimal residual disease (MRD), which is mediated by an AML cell population with resistance to chemotherapy (Garces-Eisele, 2012; Lin and Levy, 2012). It is known that MRD is largely
contributed by leukemic stem cell (LSC) population, as it has the ability to withstand harsh environment and conditions, such as chemotherapy (Ishikawa et al., 2010; Kadowaki and Kitawaki, 2011; Vaz et al., 2013). Therefore, development of treatments to target AML-LSC and MRD to achieve relapse-free clearance of the disease has been an active area of research.

[0004] Allogeneic hematopoetic stem cell transplantation (allo-HSCT) is a potential curative treatment for AML patients and is associated with higher disease-free survival rates than conventional chemotherapy (Alatrash and Molldrem, 2009). Donor-derived T cell mediated anti-leukemic effects contribute to the increased survival in patients, as T cell depleted grafts result in higher relapse rates (Alatrash and Molldrem, 2009). However, the use of allo-HSCT in the clinic is limited by a shortage of suitable donors, the toxicity of the treatment, and other associated complications (Alatrash and Molldrem, 2009; Shlomchik, 2007). Potent immune responses can be induced on normal tissues, resulting in tissue damage and, possibly, in death of the patients in severe cases (Alatrash and Molldrem, 2009; Shlomchik, 2007) thus posing a major obstacle that limits the use of allogenic cellular therapies.

[0005] Since the early work on utilizing T cell immunotherapy to treat melanoma patients, significant progress has been made in adoptive T cell therapy for other cancers, which further supports the potential use of cellular therapies to achieve relapse-free AML clearance (Rosenberg et al., 1988). Antigens that are upregulated in leukemic cells, leukemia associated antigens (LAA), have been identified, and the anti-leukemic effect of LAA-specific T cells has been demonstrated in vitro and in animal models (Vaz et al, 2013; Teague and Kline, 2013). However, the use of LAA-specific T cells is hampered by difficulties in isolation and expansion of these cells (Kochenderfer et al., 2010; Johnson et al., 2009; Parkhurst et al., 2011; Robbins et al., 2011). Furthermore, even though many LAAs are over expressed in AML, expression of the antigens in other tissues such as thymus prevents development of mature T cells with receptors that have high avidity.
towards LAAs due to thymic selection of T cell specificity (Teague and Kline, 2013). Alternatively, attempts have been made to use transgenic CD8+ T cells expressing transgenic TCRs or chimeric Ag receptor against LAAs, such as Wilms' tumour antigen or Lewis Y, respectively (Peinert et ai, 2010; Xue et ai, 2010). These T cells have a significantly increased ability to bind to LAAs and show excellent anti-tumour activity (Kochenderfer et ai, 2010; Johnson et ai, 2009; Parkhurst et ai, 2011; Robbins et ai, 2011). However, the potential side-effects associated with gene therapy, together with complicated and long procedures, imposes limitations on using these strategies to treat AML. In addition, injecting supra-physiological numbers of genetically engineered T cells can lead to severe adverse events, including death. Thus, the development of new cellular immunotherapies with potent effects on a broad range of cancers without the requirement of identifying LAAs may revolutionize leukemia immunotherapy.

[0006] Double negative T cells (DN T cells or DNTs) are mature peripheral T lymphocytes that express the CD3-TCR complex but do not express CD4, CD8, or NKT cell markers aGalCer-loaded CD1d and Ja24-Va14; they represent 1-3% of peripheral blood mononuclear cells (PBMC) in humans (Zhang et ai, 2000). Protocols for expanding DNTs from AML patients during chemotherapy-induced complete remission have been described and AML patient DNTs have been shown to have significant anti-leukemic activity against the primary AML cells obtained from the same patient in vitro (Young et ai, 2003; Merims et ai, 2011).

[0007] Previously, DNTs have been shown to induce the killing of an allogeneic AML cell-line in a dose-dependent manner through the perforin-granzyme dependent pathway (Merims et ai, 2011). In animal models, it has also been shown that unlike conventional CD4+ or CD8+ T cells, infusion of allogeneic mouse DNTs may confer immune inhibitory function (Zhang et ai, 2000; Young et ai, 2003; He et ai, 2007). However, the activity of DNTs with respect to patient primary leukemic cells had not been studied in vivo.

Summary of the Invention
In one aspect of the invention, it has been determined that double negative (DN) T cells (DNTs) are effective for the treatment of cancer such as lymphoma or leukemia. In particular, immunotherapy using DNTs has been demonstrated to be effective for the treatment of acute myeloid leukemia (AML), including killing of leukemic cells that are resistant to treatment with chemotherapy. Optionally, the DNTs may be autologous, such as DNTs from a subject with cancer or suspect of having cancer, or allogenic, such as DNTs from a healthy donor without cancer. Remarkably, DNTs were observed to have a cytotoxic effect on cancer cells in vitro and in vivo in xenograft models without detectable toxicity to normal cells and tissues.

As shown in Example 2, injected DNTs have been demonstrated to proliferate and persist in vivo and migrate to different tissues including blood, spleen and lung and populations of DNTs were also observed in lungs, liver and bone marrow, suggesting that DNTs may target tumors in these organs. The inventors have also demonstrated that allogenic DNTs from healthy donors selectively target AML cells and exhibit cancer killing activity. DNTs were also shown to inhibit engraftment in an AML xenograft model, showing that DNTs can reduce the level of leukemic cells in vivo. Furthermore, as shown in Example 6, injected DNTs migrate from the blood to the bone marrow and target pre-existing AML cancer cells, suggesting that DNTs can be effective in a clinical setting for treating subjects with AML.

A number of cancer cell lines were also demonstrated to exhibit a high level of susceptibility to DNT cell mediated cytotoxicity in vitro, including Daudi (B cell lymphoma (Burkitt’s lymphoma)), Jurkat (acute T cell lymphoma), K562 (Chronic myeloid leukemia), U937 (Chronic myeloid leukemia) as well as primary and established lung cancer cell lines (data not shown).

Chemotherapy is the standard treatment used for patients with AML and can be effective at reducing the leukemia load and achieving initial remission of the disease. However, chemotherapy often fails to achieve complete clearance leading to a high rate of relapse in AML patients. The
ability to eliminate AML cells that are non-responsive to chemotherapy and lower the relapse rate is therefore expected to significantly increase the survival of patients with AML. As shown in Example 7 the inventors have demonstrated that DNTs are effective in killing chemotherapy-resistant cancer cells and in particular chemotherapy-resistant AML. DNTs may therefore be useful for immunotherapy in subjects who do not respond to chemotherapy or to prevent or treat cases of relapsing or recurring cancers such as AML and/or chemotherapy-resistant minimal resistant disease (MRD).

[0012] In another aspect of the invention, DNTs have been shown to be effective for killing cancer cells in combination with a cell cycle inhibitor. As shown in Example 9, combination therapy using DNTs and the cell cycle inhibitor AraC lowered the level of AML engraftment relative to treatment with AraC alone.

[0013] As set out in Example 10, allogenic DNTs have a potent anti-leukemic effect against primary AML patient blasts, including chemotherapy-resistant cancer cells *in vitro* and in xenograft models without detectable toxicity to normal cells and tissues. Allogeneic DNTs were not observed to attack normal peripheral blood mononuclear cells (PBMC) or hematopoietic progenitor/stem cells, nor cause xenogeneic graft-versus-host disease in mice.

[0014] Accordingly, in one embodiment there is provided a method of treating cancer in a subject in need thereof, comprising administering to the subject an effective amount of DNTs as described herein. Also provided is the use of DNTs as described herein for the treatment of cancer in a subject in need thereof. In one embodiment, the cancer is leukemia. In a preferred embodiment, the cancer is acute myeloid leukemia (AML). In one embodiment, the cancer is chronic myeloid leukemia (CML). In one embodiment, the cancer is lymphoma. In one embodiment, the cancer is non-Hodgkin lymphoma (NHL). In one embodiment, the cancer is B cell lymphoma, such as Burkitt's lymphoma. In one embodiment, the cancer is acute T cell lymphoma. In one embodiment, the cancer is lung cancer.
In one embodiment, the cancer is resistant to treatment with chemotherapy. For example, in one embodiment the cancer is chemotherapy-resistant AML. In one embodiment, the methods and uses described herein are for the treatment of a subject with recurring or relapsing cancer. In one embodiment, the cancer is recurring, relapsing or refractory leukemia or lymphoma. In one embodiment, the cancer is relapsing cancer such as relapsing AML caused by minimal residual disease (MRD) or leukemic stem cells. In one embodiment, the subject is not in complete remission. For example, in one embodiment the subject has one or more detectable cancer cells, optionally one or more detectable leukemic or lymphoma cells. In one embodiment, the subject has previously undergone chemotherapeutic treatment for cancer but the cancer cells do not respond to the chemotherapy treatment (i.e. refractory cancer). In one embodiment, the subject has previously undergone chemotherapeutic treatment for cancer and has one or more detectable cancer cells. In one embodiment, the subject has not previously undergone chemotherapeutic treatment for cancer. In one embodiment, DNTs are for use or administration in a subject who has cancer or is suspected of having cancer who is not undergoing chemotherapy.

In one embodiment, there is provided a method for inhibiting the growth or proliferation of cancer cells comprising contacting the cancer cells with one or more DNTs. Also provided is the use of DNTs as described herein for inhibiting the growth or proliferation of cancer cells. Optionally, the cancer cells are in vivo or in vitro. In one embodiment, the cancer cells are leukemic cells. In a preferred embodiment, the cancer cells are AML cells. In one embodiment, the cancer cells are lymphoma cells. In one embodiment, the cancer cells are cells that are resistant to treatment with chemotherapy. For example, in one embodiment the cancer cells are AML cells that are resistant to treatment with a cell cycle inhibitor such as AraC. In one embodiment, the cancer cells are cancer stem cells, such as leukemic stem cells.

The DNTs described herein may be readily obtained by a person of skill in the art and are readily distinguished from other kinds of T
cells. In one embodiment, the DNTs do not express CD4 and CD8. In one embodiment, the DNTs express CD3-TCR complex and do not express CD4 and CD8. In one embodiment, the DNTs have the phenotype CD3+, v5-TCR+ or ap-TcR+, CD4-, CD8-, α-Gal-, PD-1-, CTLA4-. In one embodiment, the DNTs have the phenotype CD3+, v5-TCR+ or ap-TcR+, CD4-, CD8-, α-Gal-, PD-1-, CTLA4-, CD44+, CD28-. In one embodiment, the DNTs have the phenotype CD3+, CD4-, CD8-, α-Gal-, PD-1-, CTLA4-, CD44+. In one embodiment, the DNTs have the phenotype CD3+, CD4-, CD8-, α-Gal-, Ja24-, Va14-, CD44+, PD-1-, CTLA4-, CD45Ro+. In one embodiment, the DNTs may be obtained from a sample comprising peripheral blood mononuclear cells (PBMC). In one embodiment, the sample is a blood sample. Optionally, the sample is from a healthy donor or from a subject with cancer or suspected of having cancer and the DNTs are used to treat the subject.

[0018] Optionally, the DNT cells may be expanded in vitro or ex vivo before their administration or use for the treatment of cancer as described herein. In one embodiment, the DNTs are formulated for use or administered to the subject by intravenous injection.

[0019] In one embodiment, the DNTs are autologous DNTs obtained from a subject, such as a subject with cancer or suspected of having cancer. In one embodiment, the DNTs are from a subject with one or more detectable cancer cells, optionally one or more leukemic or lymphoma cells. In one embodiment, the DNTs are from a subject who has previously been treated for cancer. In one embodiment, the DNTs are from a subject in complete remission. In one embodiment, the DNTs are from a subject who is not in complete remission. In one embodiment, the DNTs are obtained from the subject prior to, during or after chemotherapy. For example, the DNTs may be obtained from a subject prior to starting a course of chemotherapy, after a first round of chemotherapy, between rounds of chemotherapy, or after one or more rounds of chemotherapy. In one embodiment, the DNTs are obtained from the subject the same day, within 3 days, within 1 week, within 2 weeks,
within 3 weeks or within 1 month of the administration of a chemotherapeutic agent to the subject.

[0020] In one embodiment, the DNTs are allogenic, such as DNTs obtained from one or more subjects without cancer. In one embodiment, the DNTs are obtained from one or more healthy donors.

[0021] In one embodiment, the DNTs are for use or administration to a subject for the treatment of cancer, such as for the treatment of leukemia or lymphoma. In one embodiment, the DNTs are for use or administration to a subject who is not undergoing chemotherapy. In another embodiment, the DNTs are for use or administration to a subject prior to, during or after chemotherapy. For example, the DNTs may be for use or administration to a subject prior to starting a course of chemotherapy, after a first round of chemotherapy, between rounds of chemotherapy, or after one or more rounds of chemotherapy. In one embodiment, the DNTs are administered to the subject the same day, within 3 days, within 1 week, within 2 weeks, within 3 weeks or within 1 month of chemotherapy. In one embodiment, chemotherapy comprises the use or administration of one or more chemotherapeutic agents, such as cell cycle inhibitors as described herein.

[0022] Optionally, two or more separate doses of DNTs may be administered or used for the treatment of cancer in a subject in need thereof. For example, in one embodiment the methods and uses described herein include a first dose of DNTs and at least one additional dose of DNTs. In one embodiment, the at least one additional dose is for use or administration at least 3 days after the last dose of DNTs, at least 5 days after the last dose of DNTs, or optionally between 3 days and two weeks after the last dose of DNTs. In one embodiment, the two or more separate doses are for administration or use prior to, during or after chemotherapy.

[0023] In one embodiment, the DNTs are recombinant cells that have been modified to express one or more exogenous proteins. For example, in one embodiment, the DNTs described herein express a receptor with a high avidity to a cancer biomarker, such as a protein expressed on the surface of a
cancer cell. In one embodiment, the DNTs express a Chimeric Antigen Receptor (CAR) that preferentially binds to a cancer cell, such as a leukemic cell. For example, in one embodiment the DNTs described herein express one or more receptors that bind to CD33, CD19, CD20, CD123 and/or LeY.

In one embodiment, the DNTs preferentially kill and/or inhibit the proliferation of cancer cells relative to normal cells. In one embodiment, the DNTs preferentially kill and/or inhibit the proliferation of leukemic cells relative to normal cells. For example, in one embodiment, the DNTs preferentially kill and/or inhibit the proliferation of AML blasts relative to other hematopoietic cells or peripheral blood mononuclear cells (PBMCs). In one embodiment, the DNTs preferentially kill and/or inhibit the proliferation of leukemic stem cells relative to normal hematopoietic stem cells.

In another embodiment, the DNTs do not cause an allogeneic immune response when used or administered to a subject for the treatment of cancer.

The inventors have determined that combination therapy using DNTs and a chemotherapeutic agent such as a cell cycle inhibitor is surprisingly effective at killing cancer cells and in particular AML. Accordingly, in one embodiment there is provided a method of treating cancer in a subject comprising administering to the subject an effective amount of DNTs and a chemotherapeutic agent. Also provided is the use of an effective amount of DNTs and a chemotherapeutic agent for the treatment of cancer. In one embodiment, the chemotherapeutic agent is a cell cycle inhibitor. In one embodiment, the cell cycle inhibitor is a DNA synthesis inhibitor. Optionally, the DNTs and the chemotherapeutic agent are administered to the subject at different times or at the same time.

In one embodiment, the chemotherapeutic agent is a cell cycle inhibitor. In one embodiment, the cell cycle inhibitor is a cell cycle dependent chemotherapy drug. Exemplary cell cycle inhibitors include, but are not limited to, Doxorubicin, Melphalan, Roscovitine, Mitomycin C, Hydroxyurea, 5 Fluorouracil, Cisplatin, Ara-C, Etoposide, Gemcitabine, Bortezomib,
Sunitinib, Sorafenib, Sodium Valproate, HDAC Inhibitors, or Dacarbazine. Examples of HDAC inhibitors include, but are not limited to, FR01228, Trichostatin A, SAHA and PDX101.

[0028] In one embodiment there is provided a method of treating acute myeloid leukemia (AML) in a subject comprising administering to the subject an effective amount of DNTs and a chemotherapeutic agent. In one embodiment, the chemotherapeutic agent is a cell cycle inhibitor. In one embodiment, the cell cycle inhibitor is AraC. In one embodiment, the subject has recurrent or relapsing AML, such as recurrent or relapsing AML caused by minimal residual disease (MRD). In one embodiment, the subject has leukemia that is refractory to chemotherapy.

[0029] In another embodiment, there is provided a composition comprising DNTs and a chemotherapeutic agent. In one embodiment, the chemotherapeutic agent is a cell cycle inhibitor. In one embodiment, the cell cycle inhibitor is AraC. Optionally, the composition further comprises a pharmaceutically acceptable carrier. In one embodiment there is also provided the use of a composition comprising DNTs and a chemotherapeutic agent for the treatment of cancer. In one embodiment, the composition is for the treatment of AML. In one embodiment, the composition is for the treatment of AML that is resistant to chemotherapy with a chemotherapeutic agent alone.

[0030] Other features and advantages of the present disclosure will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples while indicating preferred embodiments of the disclosure are given by way of illustration only, since various changes and modifications within the spirit and scope of the disclosure will become apparent to those skilled in the art from this detailed description.

Brief Description of the Drawings

[0031] One or more embodiments of the disclosure will now be described in relation to the drawings in which:
[0032] Figure 1a shows the expansion of DNTs from peripheral blood of AML patients and healthy volunteers and that the DNTs can be expanded ex vivo and in vitro. The number of DNTs expanded from 36 and 7 DNT-expansion cultures from 20ml PB of 24 patients in remission and 7 HVs were determined, respectively. Figure 1b shows the proliferation and Figure 1c) the migration of ex-vivo expanded HV DNT in a NSG mouse model. 2x10^7 CFSE labeled DNTs intravenously injected into NSG mice with 10^5 IU IL-2 supplement injected intraperitoneally on day 0, 2, 3, and 7. Figure 1b shows a representative plot of change in CFSE fluorescence of human CD45+ cells in spleen measured on day 2, 7, 10, and 14 post-injection. Figure 1c shows the frequency and number of human cells harvested from blood, spleen, bone marrow, liver, and lung (n=3). The number the mean value and SEM and error bar represent SEM of each group. (***p < 0.001).

[0033] Figure 2a shows representative plots of a newly developed flow-based killing assay to determine the in vitro susceptibility of primary AML samples to DN T cell mediated cytotoxicity. The assay was conducted with primary AML sample, 090596, and normal PBMC from healthy donor at different effector to target ratios. Annexin V fluorescence was used to determine the level of apoptosis after the co-culture. Figure 2b shows results from the flow-based killing assay conducted against healthy and leukemic cells using allogeneic DNTs. Flow-based killing assay conducted with allogeneic DNTs expanded from three healthy donors (HDs) against different targets: AML (filled), AML3 and two primary AML patient blasts, and PBMC and hematopoetic stem and progenitor cells (HSPCs) obtained from three healthy donors (open) to determine the percentage specific killing. Each plot represents the average of three killing assays conducted and the error bars represent SEM.

[0034] Figure 3a shows the results of screening patient AML blasts for susceptibility to DN T cell-mediated cytotoxicity in vitro and demonstrates, in one embodiment, that HD DNTs induce potent cytoloytic activity against a majority of primary AML blasts in vitro. Percentage specific killing of 21
primary AML samples mediated by allogeneic DNTs at 4:1 effector to target ratio. Figure 3b shows that treatment of AML with DNTs prior to injection significantly reduces the level of AML engraftment in vivo. Primary AML blast #0578 was cultured with or without DNTs for 18 hrs and intrafemorally injected into sublethally irradiated (225cGy) NSG mice (n=5 and n=3, respectively). 31 days post blast-transplantation, mice were sacrificed and the injected bone marrow cells were harvested, stained with human anti-CD45 and anti-CD33, and analyzed by FACS. The level of AML engraftment was determined by the frequency of human CD45+ and CD33+ cells. The average % engraftment is shown for each group and the error bar represents SEM. * shows significant difference compared to blast alone control (*p < 0.05)

[0035] Figure 4 shows that anti-leukemic activity is mediated by allogeneic DNTs and that allogenic DNTs can target primary AML blasts in vivo. Sublethally irradiated NSG mice were engrafted with primary AML by intrafemoral injection of 5.0x10^6 #5786 (Figure 4a) or #090392 (Figure 4b) patient blasts. 10 or 14 days post #5786 or #090392 injection, respectively, the mice were injected i.v. with 2x10^7 HV DNTs or PBS. On day 14-21 post DNT injection, mice were sacrificed, and cells from blast-injected bones were stained with anti-human CD38, CD33, CD34, and CD45 fluorescently-tagged antibodies. The frequency of AML cells in the blast-injected bones was determined by the percentage of human CD38, CD33, CD33 and/or CD45 positive cells.

[0036] Figure 5 shows that multiple dose therapy enhances the efficacy of DNT cell therapy. NSG mice engrafted with 2.4x10^6 blasts (#090240) were treated with DNTs, or remained untreated 10 days post-blast injection, as described above. 37 days post blast injection, mice were sacrificed and spleen was harvested. AML blasts found in the spleen of DNT cell-treated (•) or untreated (●) mice, and primary patient AML blast, 090240 (-) were used as targets for the flow-based killing assay conducted with DNTs expanded from 2 healthy donors, and the % specific killing for each target was determined, as described in Example 3. To determine if the residual AML
blasts after DNT treatment were resistant to DN T cell-mediated cytotoxicity, the residual blasts were isolated from spleens of DN T cell- and PBS-treated mice. The susceptibility of harvested residual AML cells and the primary AML blast initially used for engraftment to DN T cell-mediated cytolysis in vitro was determined using flow-based killing assay (Figure 5a). Based on this observation, the efficacy of multi-dose DN T cell treatment was tested. Figures 5b and 5c) show that DNTss can mediate in vivo anti-leukemic activity in a dose-dependent manner. NSG mice engrafted with 2.4x10^6 blasts #090240, as described above, and were treated with 2x10^7 DNTs on day 20 (1x DNT) or on day 10 and day 20 (2x DNT) post blast injection, or remained untreated. On day 34 post blast injection, mice were sacrificed, and the frequency of AML cells engrafted in blast-injected bone marrow (Figure 5b) and spleen (Figure 5c) were determined as described above. The average % AML engraftment are shown and the error bar represents SEM (*p < 0.05, **p <0.01)

[0037] Figure 6 shows that DNTs can target both chemotherapy-susceptible and chemotherapy-resistant AML. Flow-based killing assay was conducted against primary AML samples obtained from chemotherapy-resistant, refractory (empty) or relapsing (filled) patients (Figure 6a) or chemotherapy-susceptible patients (Figure 6b). Cells were co-incubated at 4:1 effector to target ratio for 2 hours. Figure 6c) shows a comparison of the percentage specific killing at 4:1 effector to target ratio calculated from the chemotherapy-resistant (n=10) and -susceptible (n=8) samples. The numbers represent average % specific killing value with SEM. n.s. - not statistically significant.

[0038] Figure 7 shows the potential targeting of LSC mediated by DNTs in vivo. NSG mice engrafted with highly aggressive blast, 090240, were treated with 2x10^7 DNT or PBS 10 days post blast injection. On 39 days post blast injection, mice were sacrificed, and the frequency or the frequency and the number of AML cells in non-injected tissues, non-injected bones (Figure 7a) and spleen (Figures 7b and 7c) were determined, respectively. Each line
represents the average and the error bar represents SEM. (*p < 0.05, **p < 0.01, ***p < 0.001)

Figure 8 shows the anti-leukemic activity of DNT- and chemocombination therapy. NSG mice engrafted with blast, 090240, were treated with PBS (no treatment, □), or AraC (AraC, ■), or AraC followed by DNTss (AraC + DNT, ●). On 37 days post blast injection, mice were sacrificed, and the frequency of AML cells in injected bone (Figure 8a), non-injected bones (Figure 8b) and spleen (Figure 8c) were determined. Each line represents the average and the error bar represents SEM (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure 9a shows the effect of a chemotherapy drug, AraC on the susceptibility of AML cells to the cytotoxic activity of DNTs. KG1a was treated with 1µg/ml AraC or PBS for 14hrs. Subsequently, KG1a were co-cultured with ex vivo expanded DNTs from healthy donors at 4:1 effector to target ratio for 4 hours. The level of specific killing induced for each targets was determined as described above. Figure 9b shows that Ara-C does not interfere with the cytotoxic function of DNTs. Ex vivo expanded DNTs were pre-treated with Ara-C or PBS for 14 hours, and was used for in vitro killing assay against AML cell line, OCI-AML3 at 4:1 effector to target ratio for 4 hours. The level of specific killing induced by each DNTs were determined as described above.

Figure 10 shows the phenotypic characterization of PBMCs and DNTs post-expansion. PBMCs (top panels) or DNTs harvested 14 days after expansion (bottom panels) were stained with antibodies against human CD3, CD4, CD8, and αGalCer-CD1d. Filled histograms represent the fluorescence minus one (FMO) control. Numbers on the graphs represent the frequency of the population in each quadrant or gate. (**p < 0.001)

Figures 11a and 11b show that DNTs from healthy donors (HD) do not attack hematopoietic stem cells in vivo and affect their differentiation. CD1 33+CD34+ human HSPC were intravenously injected into sublethally irradiated NSG mice (5x10⁶ cells/mouse, n=13). Eight weeks post HSPC
injection, 7 mice were intravenously injected with 10^7 ex vivo expanded allogeneic DNTs. Eight weeks post DNT injection, cells from PB were harvested and stained with anti-mouse CD45, anti-human CD45, CD3, CD19, CD1 1b, CD56, CD33, and CD34 antibodies. The percentage of human leukocytes (Figure 11a) and its subsets (Figure 11b) were determined by flow cytometry analysis. Horizontal bars represent the mean value and the error bars represents SEM of each group.

Figure 12 shows that DNT cells can rescue NSG mice injected with lethal dose of AML cell line. Sublethally irradiated NSG mice were injected with 10^6 MV4-11 intravenously, and starting on day 7, received three injections of 2×10^7 DNT (n=9) or PBS (n=10) with four days apart between injections. Arrows represent the time of DNT or PBS injections. **p<0.01 ; ***p<0.001.

Detailed Description

In one aspect the inventors have determined that DNTs are useful for the treatment of cancer and in particular for the treatment of leukemia or lymphoma. In one embodiment, it has also been determined that DNTs may be used to inhibit the growth or proliferation of cancer cells or to kill cancer cells, including cancer cells that are resistant to chemotherapy. In a preferred embodiment, the DNTs described herein may be used for the treatment AML, or the treatment of recurring or relapsing AML such as AML caused by minimal residual disease. In another embodiment, the DNTs described herein may be used for the treatment of lymphoma.

As used herein, the term "cancer" refers to one of a group of diseases caused by the uncontrolled, abnormal growth of cells that can spread to adjoining tissues or other parts of the body. Cancer cells can form a solid tumor, in which the cancer cells are massed together, or exist as dispersed cells, as in leukemia.

The term "cancer cell" refers a cell characterized by uncontrolled, abnormal growth and the ability to invade another tissue or a cell derived from such a cell. Cancer cells include, for example, a primary cancer
cell obtained from a patient with cancer or cell line derived from such a cell. In one embodiment, the cancer cell is a hematological cancer cell such as a leukemic cell or a lymphoma cell. For example, in one embodiment the cancer cell may be a leukemic cell from a subject with AML or a lymphoma cell such as a cell from a subject with Non-Hodgkin Lymphoma (NHL). In one embodiment, the cancer cell may be a leukemic cancer cell in a subject with AML. In one embodiment, the DNTs described herein may be used to inhibit the growth or proliferation of cancer cells in vitro, ex vivo or in vivo. In one embodiment, the DNTs described herein may be used to kill cancer cells in vitro, ex vivo or in vivo.

[0047] As used herein, "chemotherapy-resistant cancer" refers to cancers that do not respond to treatment with chemotherapy or that relapses following treatment with chemotherapy. For example, chemo-resistant cells may be primary cancer cells obtained from subjects who do not respond to chemotherapy or cancer cells obtained from subjects who have initially responded to chemo and into remission but experience relapse of the disease. In some subjects, after relapse, the cancer cells no longer respond to chemotherapy and said subjects have chemotherapy-resistant cancer. In one embodiment, chemo-resistant cells are primary leukemic cells directly obtained from subjects.

[0048] The term "leukemia" as used herein refers to any disease involving the progressive proliferation of abnormal leukocytes found in hematopoietic tissues, other organs and usually in the blood in increased numbers. "Leukemic cells" refers to leukocytes characterized by an increased abnormal proliferation of such cells.

[0049] As used herein, "acute myeloid leukemia" ("AML") refers to a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells.

[0050] As used herein, "chronic myeloid leukemia" ("CML") refers to a cancer characterized by the increased and unregulated growth of
predominantly myeloid cells in the bone marrow and the accumulation of these cells in the blood.

[0051] As used herein, "lymphoma" refers to disease characterized by blood cell tumors that develop from lymphatic cells. Optionally, lymphoma may be Hodgkin Lymphoma (HL) or a non-Hodgkin lymphoma (NHL. Examples of NHL include Burkitt's lymphoma and T cell lymphoma. "Lymphoma cells" refer to lymphocytes characterized by an increased abnormal proliferation of such cells.

[0052] The term "subject" as used herein includes all members of the animal kingdom including mammals, and suitably refers to humans. Optionally, the term "subject" includes mammals that have been diagnosed with cancer or are in remission. In one embodiment, the term "subject" refers to a human having, or suspecting of having, a hematological cancer. In one embodiment, the term "subject" refer to a human having AML or suspected of having AML, optionally recurrent or relapsing AML.

[0053] In one embodiment, the methods and uses described herein provide for the treatment of cancer. The term "treating" or "treatment" as used herein and as is well understood in the art, means an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease (e.g. maintaining a patient in remission), preventing disease or preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, diminishment of the reoccurrence of disease, and remission (whether partial or total), whether detectable or undetectable. "Treating" and "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. "Treating" and "treatment" as used herein also include prophylactic treatment. In one embodiment, treatment methods comprise administering to a subject a therapeutically effective amount of DNTs as described herein and optionally consists of a single administration, or
alternatively comprises a series of administrations. In some embodiments, the treatment methods and uses described herein include combination therapy with DNTs and a cell cycle inhibitor.

[0054] As used herein, "reducing the growth or proliferation of a cancer cell" refers to a reduction in the number of cells that arise from a cancer cell as a result of cell growth or cell division and includes cell death. The term "cell death" as used herein includes all forms of killing a cell including necrosis and apoptosis.

[0055] In one embodiment, the methods and uses described herein involve the administration or use of an effective amount of DNTs and optionally a cell cycle inhibitor. As used herein, the phrase "effective amount" or "therapeutically effective amount" means an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example in the context or treating a cancer such as AML, an effective amount is an amount that for example induces remission, reduces tumor burden, and/or prevents tumor spread or growth of leukemic cells compared to the response obtained without administration of the compound. Effective amounts may vary according to factors such as the disease state, age, sex and weight of the animal. The amount of a given compound that will correspond to such an amount will vary depending upon various factors, such as the given drug or compound, the pharmaceutical formulation, the route of administration, the type of disease or disorder, the identity of the subject or host being treated, and the like, but can nevertheless be routinely determined by one skilled in the art.

[0056] In one embodiment, the methods and compositions described herein involve the administration or use of double negative (DN) T cells. DNTs exhibit a number of characteristics that distinguish them from other kinds of T cells. In one embodiment, the DNTs do not express CD4 or CD8. In one embodiment, the DNTs express CD3-TCR complex and do not express CD4 and CD8. In one embodiment, the DNTs have the phenotype CD3+, ap-TcR+, CD4-, CD8-, CD44-, CD28-. In one embodiment, the DNTs have the
phenotype CD3+, ap-TcR+, CD4-, CD8-, a-Gal-, PD-1-, CTLA4-, CD44+, CD28-. In one embodiment, the DNTs have the phenotype CD3+, CD4-, CD8-, α-Gal-, PD-1-, CTLA4-, CD44+, CD28-. Optionally, the DNTs have the phenotype CD3+, CD4-, CD8-, α-Gal-, PD-1-, CTLA4-, CD44+, CD45R0+. DNTs may be obtained using technologies known in the art such as, but not limited to, fluorescent activated cell sorting (FACS). In one embodiment, DNTs may be isolated from peripheral blood mononuclear cells. Optionally, the DNTs may be autologous cells or allogenic cells.

[0057] In one embodiment, the DNTs are autologous cells obtained from a subject with cancer or suspected of having cancer. Optionally, the DNTs are obtained from the subject prior to, during or after chemotherapy. In one embodiment, the DNTs are obtained from a subject prior to, during or after a course of chemotherapy. For example, in one embodiment, the DNTs are obtained after a first round of chemotherapy, or after one or more rounds of chemotherapy.

[0058] In some embodiments, the DNTs may be expanded in vitro or ex vivo before use or administration to a subject. Exemplary methods for isolating and expanding DNTs are described in US Patent No. 6,953,576 "Method of Modulating Tumor Immunity" and PCT Publication No. WO2007/056854 "Method of Expanding Double Negative T Cells", both of which are hereby incorporated by reference in their entirety.

[0059] In one embodiment, the DNTs may be obtained from a subject to which the DNTs will later be administered (i.e. autologous cells), in order to treat cancer, reduce the growth or proliferation of cancer cells or kill cancer cells. In one embodiment, the DNTs may be allogenic. As used herein, the term "allogenic" refers to cells which are originally obtained from a subject who is a different individual than the intended recipient of said cells, but who is of the same species as the recipient. Optionally, allogenic cells may be cells from a cell culture. In a preferred embodiment, the DNTs are obtained from a healthy donor. As used herein the terms "healthy volunteer" ("HV") or "healthy donor" ("HD") refer to one or more subjects without cancer. In one
embodiment, the healthy donor is a subject with no detectable cancer cells, such as a subject with no detectable leukemic cells.

[0060] In one embodiment, the DNTs may be formulated for use or prepared for administration to a subject using pharmaceutically acceptable formulations known in the art. Conventional procedures and ingredients for the selection and preparation of suitable formulations are described, for example, in Remington’s Pharmaceutical Sciences (2003 - 20th edition) and in The United States Pharmacopeia: The National Formulary (USP 24 NF19) published in 1999. The term "pharmaceutically acceptable" means compatible with the treatment of animals, in particular, humans.

[0061] In one embodiment, DNTs described herein are surprisingly effective in reducing the proliferation of cancer cells and/or treating cancer in combination with a chemotherapeutic agent. In one embodiment, the chemotherapeutic agent is a cell cycle inhibitor. In one embodiment, the cell cycle inhibitor is a DNA synthesis inhibitor. Accordingly, in one embodiment there is provided a method of treating cancer in a subject comprising administering to the subject DNTs and a chemotherapeutic agent. Also provided is a use of DNTs and a chemotherapeutic agent for the treatment of cancer in a subject in need thereof. In one embodiment, the chemotherapeutic agent is cytarabine (AraC). In one embodiment, the cancer is a leukemia such as acute myeloid leukemia (AML). In some embodiments, DNTs in combination with a chemotherapeutic agent such as a cell cycle inhibitor may be used to treat cancers that are chemotherapy resistant, such as recurring or relapsing AML.

[0062] As used herein the term "cell cycle inhibitor" refers to a chemotherapeutic agent that inhibits or prevents the division and/or replication of cells. In one embodiment, the term "cell cycle inhibitor" includes an chemotherapeutic agent selected from Doxorubicin, Melphalan, Roscovitine, Mitomycin C, Hydroxyurea, 50Fluorouracil, Cisplatin, Ara-C, Etoposide, Gemcitabine, Bortezomib, Sunitinib, Sorafenib, Sodium Valproate, HDAC
Inhibitors, or Dacarbazine. Examples of HDAC inhibitors include, but are not limited to, FR01228, Trichostatin A, SAHA and PDX101.

[0063] As used herein the term "DNA synthesis inhibitor" refers to a chemotherapeutic agent that inhibits or prevents the synthesis of DNA by a cancer cell. Examples of DNA synthesis inhibitors include, but are not limited to, AraC (cytarabine), 6-mercaptopurine, 6-thioguanine, 5-fluorouracil, capecitabine, floxuridine, gemcitabine, decitabine, vidaza, fludarabine, nelarabine, cladribine, clofarabine, pentostatin, thiarbine, troxatubine, sapacitabine or forodesine. In one embodiment, the DNA synthesis inhibitor is cytarabine or another deoxycytidine analogue as described herein. In one embodiment, the DNA synthesis inhibitor is a DNA elongation terminator and functions in a similar way to cytarabine such as fludarabine, nelarabine, cladribine, or clofarabine.

[0064] As used herein, "AraC" (Arabinofuranosyl Cytidine) refers to a compound comprising a cytosine base and an arabinose sugar that is converted into Arabinofuranosylcytosine triphosphate *in vivo*. AraC is also known as cytarabine or cytosine arabinoside.

[0065] In one embodiment, the DNTs and the chemotherapeutic agent are administered to the subject at the same time, optionally as a composition comprising the DNTs and the chemotherapeutic agent, or as two separate doses. In one embodiment, the DNTs and the chemotherapeutic agent are used or administered to the subject at different times. For example, in one embodiment, the DNTs are administered prior to, or after the chemotherapeutic agent. In one embodiment, the DNTs are administered prior to, or after the chemotherapeutic agent separated by a time of at least 1 minute, 2 minutes, 5 minutes, 10 minutes, 30 minutes, 45 minutes, 1 hour, 1.5 hours, 2 hours, 3 hours, 4 hours, 5 hours, 8 hours, 10 hours, 12 hours, 16 hours, or 24 hours. Optionally, in some embodiments the DNTs and chemotherapeutic agent are administered to the subject separated by more than 24 hours, 36 hours, 48 hours, 3 days, 4 days, 5 days, 6 days, one week, 10 days, 12 days, two weeks, three weeks, one month, 6 weeks, 2 months, or
greater than 2 months. In one embodiment, the DNTs are administered or used between 2 days and 7 days after the chemotherapeutic agent.

[0066] In another embodiment, there is provided a composition comprising DNTs and a chemotherapeutic agent. In one embodiment, the chemotherapeutic agent is a DNA synthesis inhibitor. In one embodiment, the DNA synthesis inhibitor is cytarabine or another deoxycytidine analogue as described herein. Optionally, the compositions described herein include a pharmaceutically acceptable carrier such as those described in Remington's Pharmaceutical Sciences (2003 - 20th edition) and in The United States Pharmacopeia: The National Formulary (USP 24 NF19) published in 1999. Also provided is the use of a composition comprising DNTs and a chemotherapeutic agent for the treatment of cancer. In one embodiment, the cancer is leukemia, optionally AML. In one embodiment, composition is for use in the treatment of cancer that is resistant to treatment with chemotherapy alone. In one embodiment, the subject has leukemia, optionally AML.

[0067] The following non-limiting examples are illustrative of the present disclosure:

Example 1: Expansion of DNTs from peripheral blood of healthy donors.

[0068] 20 ml PB was obtained from HD or AML patients in complete remission after chemotherapy. DNTs were expanded as previously described (Merims et al, 2011). Briefly, CD4+ and CD8+ cells were depleted from peripheral blood mononuclear cells (PBMC) by using RosetteSep™. The remaining CD4- CD8- PBMC were stimulated with plate-bound anti-CD3 antibody for 3 days, washed, followed by re-stimulation with soluble CD3 from day 7 to day 10. Culture media was replaced with IL-2 containing fresh media on day 3, 7 and 10. Cells were counted and stained with anti-CD3, CD4, CD8, iNKT TCR (TCR Va24-Ja18) antibodies and NKT receptor-antigen (α-Galactosylceramid) at the end of the 2 week expansion. Higher expansion potential of HD DNTs over patient DNTs were demonstrated in expansion cultures prepared with the equal volume of PB of AML patients in complete remission and HD, as significantly higher number of DNTs were obtained
when expanded from PB of HD (3.97±18.24 x 10^6) than that of patient (3.25±0.9169 x10^7) (Figure 1a). Furthermore, DNTs failed to expand in about 50% of AML cases, and higher purity of DNT-population was obtained when PB of HD (90.74% ± 1.7%) were used compared to 65.0% ± 19.8% when AML patient PB were used (Table 1). Lower expansion potential and purity of patient DNT may be partly due to exhaustion from encountering of AML cells in patient blood and/or abnormal physiology caused by rigorous chemotherapy. Failure to expand or to acquire pure DNTs for treatment can impose a serious limitation in the use of DNTs in clinical setting. However, these data indicate that such limitations can be avoided using HD DNTs, providing a rationale to focus on allogeneic HD DNTs.

<table>
<thead>
<tr>
<th>Culture #</th>
<th>Patient</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CD3</td>
<td>94.0±7.2</td>
<td>97.04±0.3</td>
</tr>
<tr>
<td>Statistics</td>
<td>P=0.044</td>
<td></td>
</tr>
<tr>
<td>% DNT</td>
<td>65.0±19.8</td>
<td>90.74±1.7</td>
</tr>
<tr>
<td>Statistics</td>
<td>P < 0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Frequency of patient and HV DNT cell at the end of expansion. Summary of the purity of DNT cells at the end of expansion cultures set-up with patient or HV peripheral blood.

Example 2: Characterizing human DNTs in a NSG mouse model.

Successful adoptive T cell therapy relies on the survival and persistence of injected T cells in recipients so these cells can find and eliminate tumor cells. Ideally, the infused T cells are able to further multiply in recipients so that relatively small numbers of T cells will be needed for injection. Since DNTs are generated in a relatively short period (within 2 weeks of initial sample collection), these DNTs are likely early effectors and may proliferate and persist after injection. To test this hypothesis, an
immunodeficient NSG mouse model was used. Day 10 ex vivo expanded DNTs were labeled with 5 µM CFSE and 2x10^7 cells were intravenously injected into sublethally irradiated NSG mice. In order to sustain human DNTs, recipient mice were supplemented with intraperitoneal injection of hrIL-2 (10,000 international unit (i.u.)). Blood, spleen, bone marrow, liver, and lung were harvested on day 2, day 4, and day 7 to determine the proliferation, migration, and the persistence of DNTs in vivo. As shown in Figure 1b, CFSE dilution was observed from day 2 to day 4, but not from day 4 to day 7, indicating that after adoptive transfer, DNTs proliferated in the first few days post injection. The harvested cells were stained with anti-human CD45 antibody and analyzed using FACS to determine the frequency of DNTs in different tissues over time. Relatively higher frequency of DNTs was detected in blood, spleen, and lung post-injection, while, smaller, but noticeable DNT population was observed in liver and bone marrow up to 7 days post injection (Figure 1c).

Example 3: Development of a flow-based killing assay.

Chromium release assay has been the standard assay that is widely used to determine the level of cytotoxicity of target cells. However, due to a low chromium isotope loading efficiency and high rate spontaneous death of primary AML patient blasts, the widely used chromium-release assay was not optimal for determining the susceptibility of primary AML blasts to DNT-mediated cytotoxicity in vitro. In order to determine the ability of ex vivo expanded DNTs to induce cytotoxic activity against AML in vitro, a new flow cytometry-based killing assay was developed. In this assay, DNTs were labeled with fluorescent membrane dye, PKH-26, and co-cultured with primary AML-blasts for 2 hours at different effector to target ratios. Target and effector cells were cultured alone as controls to determine the level of spontaneous cell death. 2 hour post co-incubation, cells were stained with surface markers CD33 and CD45 antibody to identify AML that is CD45^low and/or CD33^+, and Annexin V to identify the level of cell-death (Figure 2). Percentage specific killing was determined as:
Specific killing = \% \text{AnnexinV}^{\text{ML-DNT co-culture}} - \% \text{AnnexinV}^{\text{ML allogeneic}}

[0071] Compared to the conventional chromium release assay, the flow-based killing assay is faster, associated with lower background noise, and doesn’t require additional preparation of the target cell, such as isotope loading. This new assay allows for directly monitoring the level of AML cell apoptosis mediated by DNTs in a dose-dependent manner, while avoiding the limitations associated with the standard chromium release assay. Furthermore, it can be used to determine the effect of DNTs on different subpopulation of AML population. However, the flow-based killing assay cannot determine the level of the cumulative cell death.

Example 4: DNTs expanded from HD selectively target AML in a dose-dependent manner but do not kill normal allogeneic PBMC *in vitro.*

[0072] To determine the cytotoxicity of allogeneic DNTs towards leukemic cells relative to normal PBMC, the flow-based killing assay was conducted with allogeneic DNTs expanded from 3 different healthy donors against normal PBMCs obtained from two HDs, HSPCs obtained from two HDs, two primary AML patient samples and AML cell lines, OCI-AML3 and KG1a. DNTs from all three donors showed potent killing activity against the two primary AML blasts and AML cell lines in a dose-dependent fashion, but showed no killing activity against allogeneic PBMCs and HSPCs (Figure 2b). Since DNTs may persist in recipients as seen in Example 2 and Figure 1c, the co-culture of healthy PBMC and allogeneic DNTs was extended to 14 hrs. Again, DNTs did not induce killing of normal allogeneic PBMC (data not shown). This finding is consistent with the reports in mice that infusion of allogeneic DNTs does not cause pathological lesions in recipients and thus are safe. The ability of DNTs to target allogeneic leukemic cells but not healthy PBMC suggests that allogeneic DNTs are safe to use for treating leukemia patients.

Example 5: DNTs are able to kill primary AML blasts *in vitro* and inhibit leukemia engraftment in NSG mice.
To determine the ability of DNTs expanded from HD to kill leukemic cells, cytotoxicity assays were conducted against primary AML blasts samples obtained from a panel of 23 patients. Although, there was variation in the level of susceptibility, in 19/23 cases, patient primary blasts were susceptible to DNT-mediated cytotoxicity in a dose-dependent manner \textit{in vitro}, while 4 patient blasts showed high level of resistance (Figure 3a). These data demonstrate that allogeneic DNTs can effectively target most primary AML blasts.

Although \textit{in vitro} screening demonstrated significant level of cytotoxicity mediated by DNTs, whether this would translate into lower AML engraftment or transient reduction in AML number remained uncertain. Next, to investigate the effect of DNT on AML engraftment \textit{in vivo}, the engraftment level of AML treated with or without DNT cells was determined using an established AML-NSG xenograft model (Barabe \textit{et al.}, 2007). Briefly, AML blast #0578 was cultured with or without DNTs for 18 hours, followed by injection into the right femur of sublethally irradiated NSG mice. 31 days post-transplantation, mice were sacrificed, and the engraftment of AML in the injected bone was determined. The AML engraftment level was significantly reduced in mice injected with AML blasts pre-incubated with DNTs compared to no-treatment control, demonstrating that the effect mediated by DNTs can reduce the level of leukemic cells \textit{in vivo} (Figure 3b).

\textbf{Example 6: DNTs mediate anti-leukemic activity against primary AML in a dose-dependent manner \textit{in vivo}.}

The reduction in AML engraftment observed in Figure 3b is likely the result of killing of AML cells in vitro prior to their infusion. To further determine whether infused DNTs can migrate to the site of leukemia engraftment and eliminate preexisting AML in the bone marrow, which more closely resembles conditions in a clinical setting, DNT treatment was administered to NSG mice engrafted with AML blasts, as previously described (Barabe \textit{et al.}, 2007). Briefly, mice were injected with 2.5x10^6-5.0x10^6 primary AML blasts, #5786 or #090392, into the right femur. Ten to fourteen days later
at which time the human leukemic cells engrafted the recipients, AML engrafted mice were intravenously injected with either PBS or 2 × 10^7 DNTs. Mice were sacrificed after 14-21 days post DNT injection, and cells from the bones injected with AML cells were harvested and stained with fluorescently tagged anti-human CD3, CD33, CD45, CD19, CD34, and CD38 antibodies to determine the level of AML engraftment via FACS analysis. The engraftment frequency of AML cells was compared between DNT- and PBS-treated groups. The frequency of AML blasts #5786 and #090392 were significantly reduced in the injected bone of the DNT treated group compared to PBS treated group (Figures 4a and 4b). These results demonstrate that DNTs can migrate from blood to the bone marrow, where AMLs are originated, and target pre-existing AML in bone marrows.

[0076] While DNT treatment significantly reduced the frequency of AML engraftment, some residual blasts in DNT treated group were observed. Two possibilities may account for the residual AML cells: 1) these cells are resistant to DNT-mediated cytotoxicity; 2) one dose DNT treatment may not be sufficient to eliminate a large numbers of preexisting AML cells. To determine whether the remaining AML cells are susceptible to DNT-mediated cytotoxicity, residual AML blasts were isolated from DNT-treated and untreated group and used as targets along with primary AML blast initially used for the engraftment in our flow-based killing assays. The residual AML blasts obtained from DNT-treated mice were equally susceptible to DNT-mediated killing in vitro as primary AML cells and AML cells obtained from PBS treated group (Figure 5a), indicating that it was unlikely that persistence of AML cells is due to their resistance to DNT killing. In addition, we observed that the ability of DNTs to reduce AML engraftment inversely correlated with the frequencies of preexisting AML cells in recipients (Figure 5b), supporting the notion that more than one DNT treatment may further reduce the level of AML engraftment. To test this hypothesis, NSG mice were injected intrafemorally with high engraftment blast #090240. Ten days after AML cell injection, the recipient mice were intravenously infused with one dose DNTs as before. After another 10 days, half of the DNT-treated mice were treated
with a second dose of DNTs from the same donor. Control mice were injected with PBS as controls. The group treated with two doses of DNTs showed the lowest level of AML engraftment in bone marrows and in spleen (Figures 5b and 5c). In spleen, second dose DNTs significantly reduced the frequency of the blast compared to group treated with single dose of DNTs (Figure 5c). Though statistically not significant, the same trend was observed for the bone marrows (Figure 5b), perhaps due to a very high frequency of preexisting AML cells in the bone marrow. Taken together, these data indicate that DNTs are able to eliminate AML cells and inhibit leukemia engraftment in xenograft models. It is therefore likely that multiple injections can enhance the efficacy of DNT treatment. Furthermore, DNT may be particularly effective as an adjuvant therapy after elimination of the majority of AML cells by conventional chemotherapy for targeting MRD. The initial administration or use of chemotherapy such as AraC may help eradicate the majority of cancer cells, followed by a dose of DNTs may be more effective against relatively fewer cells that remain that are chemotherapy resistant.

Example 7: Chemotherapy resistant AML is susceptible to DNTs.

[0077] Chemotherapy is the standard treatment used for AML patients. Chemotherapy is effective at reducing the leukemia load and achieving the initial remission of the disease. However, it often fails to achieve complete clearance of the disease leading to a high rate of relapse in AML patients.

[0078] One of the major limitations of AML patient treatment is therefore the failure to effectively target chemotherapy resistant AML, which results in the high rate of relapsing AML. To study whether DNTs can target chemotherapy resistant AML, AML samples obtained from chemotherapy susceptible and resistant patients were used as targets for DNTs in our *in vitro* killing assays. Remarkably, 7 out of 10 chemotherapy resistant (Figure 6a) and 7 out of 8 chemotherapy susceptible (Figure 6b) AML patient samples showed significant susceptibility to DNTs. Furthermore, the level of average specific killing was comparable in the chemotherapy -susceptible and - resistant groups, 19.8±3.7% and 16.6±4.1%, respectively (Figure 6c). The killing
of chemotherapy resistant AML by DNTs was further validated by in vivo experiments conducted with samples obtained from chemotherapy resistant, non-responding (#5786, Figure 4a) and relapsing (#090240, Figures 5b and 5c), patients, as described in Example 6. DNT treatment significantly reduced the AML load in both samples. These results demonstrate that DNTs can be used as potential immunotherapy to treat chemotherapy non-responding patients and highlight the potential for clinical use of DNTs against chemotherapy-resistant MRD to achieve relapse-free remission.

Example 8: Potential LSC-targeting activity mediated by DNTs.

Previously, the potential cytotoxic activity of DNTs against LSCs was demonstrated as DNTs targeted AML with expression of CD34, a marker expressed by LSC (Merims et al., 2011). However, as not all CD34+ cells represent the LSC population, the effect of DNTs on LSC remained uncertain. In vivo experiments done with highly aggressive AML sample, #090240 showed high level of AML engrafted in non-injected tissues, spleen and non-injected bones. Due to their cancer-initiating and populating characteristics, engraftment of AML in non-injected tissues is thought to be mediated by LSCs. The results provided herein provide evidence of the potential killing of LSCs mediated by DNTs as DNT treatment reduced the level AML engraftment in non-injected bones (Figure 7a) and spleen (Figures 7b and 7c). Whether this reduction is caused by the killing of non-LSC AML at the site of engraftment or killing of engraftment-inducing LSC is unknown.

Example 9: Efficacy of DNT- and chemo- combination therapy.

Chemotherapy is effective at reducing the size of leukemia in large-number and achieving the initial remission of the disease. However, it is not very effective at achieving the complete clearance of the disease, and thus comes with the limitation of MRD mediated relapsing AML. In contrast, DNT therapy is effective at specifically targeting AML, including cancers that cannot be killed by chemotherapy, as shown in Example 7. However, the level of AML-load seems to be an important determining factor for the efficacy of DNT therapy, as is in other cellular therapies against other cancers. To
determine if DNT- and chemo-therapy can be used in combination to overcome the limitations associated with individual therapy, #090240-AML engrafted NSG mice were intraperitoneal injected with standard chemotherapeutic agent, arabinofuranosyl cytidine (AraC), at 60mg/kg over five days, starting on 13 days post blast injection. 3 days after the last Ara-C injection, mice were injected with DNT or PBS with IL-2 supplement, as previously described. 14 days post DNT injection, mice were sacrificed, and bone marrows and spleen were harvested. There was a significant reduction in the frequency of AML with the combination therapy in injected bone (Figure 8a), non-injected bone (Figure 8b) and spleen (Figure 8c). Although statistically not significant, combination therapy also resulted in lower average AML engraftment frequency than either of the treatments alone in all three tissues. In spleen, the group that received the combination therapy had significantly lower level of AML engraftment than the group that received AraC therapy alone (Figure 8c). These data collectively demonstrate the additive anti-leukemic effect mediated by DNT- and chemo-therapy, and the potential of utilizing DNT therapy after chemotherapy to target residual blasts post-chemotherapy in clinic. Combination therapy with DNT and chemotherapeutic agents such as AraC is therefore likely to be more effective in treating AML than either immunotherapy with DNT or chemotherapy alone. Previously, it was not known whether chemotherapy followed by DNT would result in any advantage in the reduction of cancer cells. As set out above, AraC and DNT appear to target different AML cells and combination therapy may therefore result in a significant advantage compared to either treatment alone.

[0081] To determine whether the superior anti-leukemic activity of AraC and DNT combined treatment is due to synergistic effect of the two or merely an additive effect of two different treatments, in vitro killing assay was conducted against leukemic stem cell-like AML cell line, KG1a. KG1a treated with AraC or PBS for 14 hours were co-incubated with DNTs. AraC rendered KG1a significantly more susceptible to DNTs as % killing induced by DNTs was $15.38 \pm 0.51\%$ against untreated KG1a and $45.59 \pm 2.34\%$ for AraC-treated KG1a (Figure 9a). Nevertheless, treating DNT cells with AraC for
14hrs prior to *in vitro* killing assay against OCI-AML3 had no effect on DNT mediated cytotoxicity, suggesting that DNTs can be used simultaneously with chemotherapy drugs (Figure 9b).

Example 10: Selective cytotoxic activity of allogeneic double negative T cells against acute myeloid leukemia

As set out below, the inventors have determined that allogeneic human DNTs have potent anti-leukemic effect against primary AML patient blasts, including chemotherapy-resistant ones *in vitro* and *in vivo* without detectable toxicity to normal cells and tissues. These findings support the use of DNTs expanded from HDs as a new cell therapy for AML patients to overcome the limitations of current treatments and increase patient survival.

Ex vivo expanded allogeneic DNTs induce potent cytolytic activity against primary AML patient blasts *in vitro* and *in vivo.*

Previously, the cytotoxicity of *ex vivo* expanded DNTs from peripheral blood (PB) of AML patients in complete remission against autologous CD34+ leukemic blasts was demonstrated *in vitro* (Merims *et al.*, 2011), but only 30% of patients' DNTs could be expanded (12 out of 36 cultures expanded to 3x10^7 DNTs or higher).

Here, the inventors have surprisingly shown that DNTs can be expanded from all HDs tested with an average of 10-fold higher total number of DNTs than that of AML patients (Figure 1a) and significantly higher purity (90.74% ± 1.7% for HD DNTs vs. 65.0% ± 19.8% for patient DNTs) (Figure 10).

Infusion of DNTs does not attack normal allogeneic PBMC and CD34+ HSPC.

To further determine the potential effect of allogeneic DNTs on normal HSPC engraftment and differentiation, NSG mice were humanized by engraftment of CD34+ CD133+ HD HSPC and treated with DNTs from different HDs. As reported by others (McDermott *et al.*, 2010, Drake *et al.*, 2010).
2011), consistently high chimerism (-70-80%) was observed within the spleens and BM, of engrafted mice, while chimerism in peripheral blood was -15%. Importantly, no difference was observed in the frequency (Figure 11a) and differentiation of lineages (Figure 11b) between DNT-treated and non-treated mice. These findings suggest that DNTs do not target HSPC nor interfere with the differentiation of HSPC into hematopoietic lineages. Together, these results support the safety of DNTs as a new cancer immunotherapy by demonstrating that ex vivo expanded allogeneic DNTs have potent anti-leukemia activities, yet are not cytotoxic to normal tissues and hematopoietic cells.

Allogeneic DNTs prolong the survival of NSG mice with lethal AML.

[0086] In contrast to the majority of primary AML blasts, AML cell line, MV4-11 is lethal to NSG mice. When three injections of DNTs were given to MV4-11 injected NSG mice, significant survival benefit was observed in DNT-treated group (Figure 12). Collectively, these results demonstrate that ex vivo expanded allogeneic DNTs are cytotoxic to chemotherapy resistant primary AML blasts *in vitro* and effective in reducing leukemia loads in xenograft models.

Discussion

[0087] Despite the extensive use of chemotherapy to treat AML patients for the past decade, the high rate of relapse due to chemotherapy resistance remains a major challenge to patient survival (Lin & Levy, 2012, Hourigan & Karp, 2013). Allogeneic-HSCT is a potential curative treatment for AML patients, but its application is limited by associated toxicity and donor availability (Brissot & Mohty, 2015, Vyas *et al.*, 2015, MacDonald *et al.*, 2013). As evident in HSCT, T cell and NK cell therapy, the graft-versus-leukemia effects in allogeneic settings are stronger than those in autologous settings due to donor immune cells recognizing allo-antigens, which elicit robust immune reactions toward transformed cells (Arpinati & Curti, 2014, Campbell & Hasegawa, 2013, Ruggeri *et al.*, 2002, June, 2007). Allogeneic DNTs from healthy individuals can effectively target a large array of primary AML blasts *in*
vitro (Figures 2b, 3a, 6a and 6b) and *in vivo* (Figures 4 and 6c). Further, residual blasts post-DNT treatment showed a high level of susceptibility to DNT killing, one which was comparable to that associated with the untreated group and primary blast initially used for engraftment (Figure 5a) This suggests that unlike chemotherapy, AML blasts do not develop resistance to DNTs after the treatment. Consistent with this, multiple DNT treatments further reduce the leukemic burden (Figure 5b and 5c). More importantly, DNTs effectively targeted chemotherapy resistant AML cells (Figures 5b, 5c, and 6). These data suggest that DNTs target AML cells via mechanisms that differ from chemotherapy and that DNTs may be used either alone for chemotherapy non-responding AML or in combination with chemotherapy to target relapse-initiating chemotherapy resistant AML to overcome the current limitation in AML patient treatment.

In agreement with the lack of allogeneic response (Figures 2b and 12), DNTs from a single donor could kill array of primary AML cells and AML blasts from single patient were lysed to a similar degree by DNTs from different donors (data not shown). These features point to a broader applicability of DNTs as a cellular therapy and avoid the need for producing therapeutic cells from each patient. Furthermore, with a recent success in treating lymphoma (Maude *et al.*, 2014), studies utilizing CAR technology to target AML has become more active (Kenderian *et al.*, 2015, Lichtenegger *et al.*, 2015, Tettamanti *et al.*, 2014, Wang *et al.*, 2015). Given their readily expandability and constitutively high expression of effector molecules with anti-cancer immune responses (Merims *et al.*, 2011), DNTs may serve as a good cellular vector for CAR technology to further enhance their anti-tumor activity. Further, as primary blasts obtained from chemotherapy resistant and relapsing patients are susceptible to DNT-mediated cytotoxicity *in vitro* and *in vivo* (Figure 6 and 7), DNTs may be used as the first line to treat chemotherapy refractory patients or as a consolidation therapy after the conventional chemotherapy to target chemotherapy-resistant minimal residual diseases.
While the present disclosure has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the disclosure is not limited to the disclosed examples. To the contrary, the disclosure is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
References:

40

5

Claims:

1. A method of treating leukemia or lymphoma in a subject in need thereof, comprising administering to the subject an effective amount of double negative T cells (DNTs).

2. The method of claim 1, wherein the leukemia is acute myeloid leukemia (AML).

3. The method of claim 1 or 2, wherein the DNTs are autologous.

4. The method of claim 3, wherein the DNTs are from a subject with one or more detectable cancer cells.

5. The method of claim 3 or 4, wherein the DNTs are from a subject who has previously been treated for cancer.

6. The method of claim 5, wherein the DNTs are from a subject who is not in complete remission.

7. The method of any one of claims 3 to 7, wherein the DNTs are obtained from the subject prior to, during or after chemotherapy.

8. The method of claim 7, wherein the DNTs are obtained from the subject after one or more rounds of chemotherapy.

9. The method of claim 1 or 2, wherein the DNTs are allogenic.

10. The method of claim 9, wherein the DNTs are from one or more subjects without cancer.

11. The method of any one of claims 1 to 10, wherein the DNTs are obtained from a sample comprising peripheral blood mononuclear cells (PBMC).

12. The method of claim 11, wherein the sample is a blood sample.
13. The method of any one of claims 1 to 12, wherein the DNTs have been expanded in vitro or ex vivo.

14. The method of any one of claims 1 to 13, wherein the subject has recurrent, relapsing or refractory AML.

15. The method of claim 14, wherein the recurrent or relapsing AML is caused by minimal residual disease (MRD) or leukemic stem cells.

16. The method of any one of claims 1 to 15, wherein the DNTs are administered to the subject by intravenous injection.

17. The method of any one or claims 1 to 16, wherein the DNTs are administered to the subject prior to, during or after chemotherapy.

18. The method of claim 17, wherein the DNTs are administered to the subject the same day, within 3 days, within 1 week, within 2 weeks, within 3 weeks or within 1 month of chemotherapy.

19. The method of any one of claims 1 to 18, further comprising administering to the subject one or more additional doses of an effective amount of DNTs.

20. The method of claim 19, wherein the additional doses are administered at least 3 days after the last dose of DNTs, at least 5 days after the last dose of DNTs, or optionally between 3 days and two weeks after the last dose of DNTs.

21. A method of inhibiting the growth or proliferation of leukemic or lymphoma cells comprising contacting the cells with double negative (DN) T cells.

22. The method of claim 21, wherein the DNTs are allogenic.

23. The method of claim 21 or 22, wherein the leukemic or lymphoma cells
are resistant to chemotherapy.

24. The method of any one or claims 21 to 23, wherein the leukemic cells are Acute Myeloid Leukemia (AML) cells.

25. The method of any one of claims 21 to 24, wherein the leukemic or lymphoma cells are in vitro or in vivo.

26. A method of treating leukemia or lymphoma in a subject in need thereof comprising administering to the subject an effective amount of allogeneic DNTs and a chemotherapeutic agent.

27. The method of claim 26, wherein the chemotherapeutic agent is a cell cycle inhibitor.

28. The method of claim 27, wherein the cell cycle inhibitor is AraC.

29. The method of any one of claims 26 to 28, for the treatment of Acute Myeloid Leukemia (AML) in a subject in need thereof.

30. Use of an effective amount of double negative (DN) T cells for treating leukemia or lymphoma in a subject in need thereof.

31. The use of claim 30, wherein the leukemia is acute myeloid leukemia (AML).

32. The use of claim 30 or 31, wherein the DNTs are autologous.

33. The use of claim 32, wherein the DNTs are from a subject with one or more detectable cancer cells.

34. The use of claims 30 or 31, wherein the DNTs are from a subject who has previously been treated for cancer.

35. The use of any one of claims 30 to 34, wherein the subject is not in complete remission.
36. The use of claim 34 or 35, wherein the DNTs are obtained from the subject prior to, during or after chemotherapy.

37. The use of claim 36, wherein the DNTs are obtained from the subject after one or more rounds of chemotherapy.

38. The use of claim 30 or 31, wherein the DNTs are allogeneic.

39. The use of claim 38, wherein the DNTs are from one or more subjects without cancer.

40. The use of any one of claims 30 to 39, wherein the DNTs are obtained from a sample comprising peripheral blood mononuclear cells (PBMC).

41. The use of claim 40, wherein the sample is a blood sample.

42. The use of any one of claims 30 to 41, wherein the DNTs have been expanded in vitro or ex vivo.

43. The use of any one of claims 30 to 42, wherein the subject has recurrent, relapsing or refractory AML.

44. The use of claim 43, wherein the recurrent or relapsing AML is caused by minimal residual disease (MRD) or leukemic stem cells.

45. The use of any one of claims 30 to 44, wherein the DNTs are for use by intravenous injection.

46. The use of any one or claims 30 to 45, wherein the DNTs are for use prior to, during or after chemotherapy.

47. The use of any one of claims 30 to 46, wherein the DNTs are for use the same day, within 3 days, within 1 week, within 2 weeks, within 3 weeks or within 1 month of chemotherapy.
48. The use of any one of claims 30 to 47, further comprising the use of one or more additional doses of an effective amount of DNTs.

49. The use of claim 48, wherein the additional doses are for use at least 3 days after the last dose of DNTs, at least 5 days after the last dose of DNTs, or optionally between 3 days and two weeks after the last dose of DNTs.

50. Use of an effective amount of double negative (DN) T cells for inhibiting the growth or proliferation of leukemic or lymphoma cells.

51. The use of claim 50, wherein the DNTs are allogeneic.

52. The use of claim 50 or 51, wherein the leukemic or lymphoma cells are resistant to chemotherapy.

53. The use of any one of claims 50 to 52, wherein the leukemic cells are Acute Myeloid Leukemia (AML) cells.

54. The use of any one of claims 50 to 53, wherein the leukemic or lymphoma cells are \textit{in vitro} or \textit{in vivo}.

55. Use of an effective amount of allogeneic DNTs and a chemotherapeutic agent for treating leukemia or lymphoma in a subject in need thereof.

56. The use of claim 55, wherein the chemotherapeutic agent is a cell cycle inhibitor.

57. The use of claim 56, wherein the cell cycle inhibitor is AraC.

58. The use of any one of claims 55 to 57, for the treatment of Acute Myeloid Leukemia (AML) in a subject in need thereof.

59. A composition comprising DNTs and a chemotherapeutic agent.

60. The composition of claim 59, wherein the chemotherapeutic agent is a
cell cycle inhibitor.

61. The composition of claim 60, wherein the cell cycle inhibitor is AraC.

62. The composition of any one of claims 59 to 61, further comprising a cytokine such as IL-2.

63. The composition of any one of claims 59 to 62, for use in the treatment of acute myeloid leukemia in a subject in need thereof.
Fig. 1
2/14

a) 0:1 1:1 Allo PBMC 4:1 8:1

Count

Annexin V

090596

Annexin V

b)

% Specific Killing

1 to 1 4 to 1 8 to 1

DNT:Target (x:1)

Fig. 2

Targets:
- AML3
- 110164
- 090596
- KG1a
- HD1 PBMC
- HD2 PBMC
- HD 3 HSPC
Fig. 3 (Cont.)
Fig. 4

5/14

a) Blast # 5786

b) Blast # 090392
Fig. 5
b) Bone marrow

% AML Engraftment vs Treatment

No Treatment | 1x DNT | 2x DNT

c) Spleen

% AML Engraftment vs Treatment

No Treatment | 1x DNT | 2x DNT

Fig. 5 (Cont.)
Fig. 6
Fig. 7
Fig. 9
13/14

a)

Peripheral blood

![Graph showing % Chimerism for Untreated and Allogeneic DNT samples.]

b)

![Bar chart showing percentage of T cell, B cell, and Myeloid cell with PBS and DNT treatments.]

Fig. 11
Fig. 12
INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2015/050780

A. CLASSIFICATION OF SUBJECT MATTER

IPC: A61K 35/17 (2015.01), A61P 35/02 (2006.01)

According to International Patent Classification (IPC) or to both national classification and P C

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K 35/17 (2015.01), A61P 35/02 (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Databases: Canadian Patent Database, CAplus, Biosis, Medline, Questel Orbit, Pubmed and Scopus.

Keywords: DNT, double negative, T cell, lymphoma, leukemia, adoptive, transfer, immunotherapy, Zhang, Chen, Li

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

☑ Further documents are listed in the continuation of Box C. ☑ See patent family annex.

* Special categories of cited documents:
 - “A” document defining the general state of the art which is not considered to be of particular relevance
 - “E” earlier application or patent but published on or after the international filing date
 - “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - “O” document referring to an oral disclosure, use, exhibition or other means
 - “P” document published prior to the international filing date but later than the priority date claimed
 - “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - “&” document member of the same patent family

Date of the actual completion of the international search
20 October 2015 (20-10-2015)

Date of mailing of the international search report
04 November 2015 (04-11-2015)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C14 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 001-819-953-2476

Authorized officer
Jacinth Abrahm (613) 639-7687

Form PCT/ISA/210 (second sheet) (January 2015)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☑ Claim Nos.: 1 - 29 because they relate to subject matter not required to be searched by this Authority, namely:

Claims 1 - 29 are directed to methods for treatment of the human or animal body, which the International Search Authority is not required to search. Nevertheless, this Authority has carried out a search based on the alleged effects or purposes/uses of the DNTs in these claims.

2. ☐ Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos.:

Remark on Protest ☐ The additional search fees were accompanied by the applicant=s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant=s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN1 01313061 A</td>
<td>26 November 2008 (26-11-2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1 01313061 B</td>
<td>15 May 2013 (15-05-2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1 948788A4</td>
<td>01 July 2009 (01-07-2009)</td>
<td></td>
</tr>
</tbody>
</table>