

(19)

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 2 889 978 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

25.01.2017 Bulletin 2017/04

(51) Int Cl.:

H02H 11/00 (2006.01)

H02H 7/08 (2006.01)

H02H 7/09 (2006.01)

H02H 7/097 (2006.01)

H01H 47/02 (2006.01)

H02M 1/32 (2007.01)

(21) Application number: **14199051.5**

(22) Date of filing: **18.12.2014**

(54) Phase sequence switching device for three-phase power supply

Phasenfolgeschaltvorrichtung für ein Drehstromnetzteil

Dispositif de commutation de séquence de phase pour alimentation triphasée

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **25.12.2013 JP 2013267054**

(43) Date of publication of application:

01.07.2015 Bulletin 2015/27

(73) Proprietor: **Toshiba Schneider Inverter
Corporation
Mie (JP)**

(72) Inventor: **Matsuda, Hiromasa**

Mie (JP)

(74) Representative: **Awapatent AB**

Junkersgatan 1

582 35 Linköping (SE)

(56) References cited:

**CN-Y- 2 907 025 DE-A1- 3 421 828
US-A- 4 163 270**

EP 2 889 978 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] Embodiments described herein relate to a phase sequence switching device for a three-phase power supply.

[0002] An inverter device connected to a three-phase power supply in use is provided with a fan which serves to cool the inverter device and which is designed to be fed with electrical power directly from the three-phase power supply. In this case, there is a possibility of error in a phase sequence when the three-phase power supply is connected to power-supply terminals for the fan. Upon occurrence of erroneous connection, the fan is reverse rotated with the result of reduction in a cooling efficiency. In view of this problem, a switching circuit is conventionally provided in addition to a power-supply switch. The switching circuit is capable of detecting and switching a phase sequence.

[0003] U.S. Patent No. 4,163,270 discloses a safety apparatus for use with a three-phase AC hoist motor. When a switch S1 is closed in either direction from a neutral position, a phase sequence of the power supply is detected by phase detector circuitry 13. When the phase sequence differs, a relay K2 is actuated so that energization to a hoist motor M is switched.

[0004] German Patent Application Publication No. DE 3421828 A1 discloses a circuit which detects a phase sequence of a single phase to actuate a relay so that a correct connection state is achieved in any case. Either one of input terminals A and B is connected to an output terminal C by relay R1 or R2. Two relays are simultaneously actuated and are normally held in either connection state.

[0005] In the conventional switching circuit, however, there is a possibility of interphase short circuit of the three-phase power supply depending upon a state of the circuit when a relay used for switching the phase sequence malfunctions or causes welding or the like due to oscillation or noise.

[0006] Embodiments will be described, merely by way of examples, with reference to the accompanying drawings, in which:

FIG. 1 is a circuit diagram showing an electrical arrangement including a phase sequence switching device according to a first embodiment;

FIG. 2 is a circuit diagram showing an electrical arrangement in a state of positive phase connection;

FIG. 3 is a circuit diagram showing an electrical arrangement in a state of reverse phase connection;

FIG. 4 is a circuit diagram similar to FIG. 1, showing a second embodiment;

FIG. 5 is a circuit diagram showing an electrical arrangement in a state of positive phase connection; and

FIGS. 6A and 6B are diagrammatic views explaining an operation of a Form C contact relay.

[0007] In general, according to one embodiment, a phase sequence switching device for a three-phase power supply is disposed in a power supply path from a three-phase power supply to a load. The device includes a power-supply side relay, a load side relay and a switching circuit. The power-supply side relay includes two Form C contact relays connected to two phases of the three-phase power supply respectively. The Form C contact relays have first travelling contacts respectively. The load side relay includes two Form C contact relays connected to two phases between the power-supply side relay and the load. The Form C contact relays have second travelling contacts respectively. The switching circuit switches from a disconnected state to a state where the first travelling contacts connected to the respective two phases of the three-phase power supply are connected to the respective second travelling contacts connected to the respective two phases of the load in a positive phase when a relay action of one of the power-supply side relay and the load side relay is performed. The switching circuit also switches from the disconnected state to a state where the first travelling contacts connected to the respective two phases of the three-phase power supply are connected to the respective second travelling contacts connected to the respective two phases of the load in a reverse phase when a relay action of the other relay is performed.

[0008] A first embodiment will be described with reference to FIGS. 1 to 3, 6A and 6B. Referring to FIG. 1, an electrical arrangement is shown which includes a phase sequence switching device of the first embodiment. In the arrangement, a load connected to a three-phase power supply 1 is a three-phase electric motor 2 configuring a cooling fan of an inverter device. The motor 2 is connected via a phase sequence switching device 3 to the power supply 1. The power supply 1 has three-phase lines L1 to L3 connected to terminals of a terminal block 4 respectively. The terminals of the terminal block 4 are also connected via fuses 5a, 5b and 5c to power supply lines 3a, 3b and 3c respectively. A controller 6 is configured to detect phase voltages of the power supply lines 3a to 3c to carry out switching control of phase sequence as will be described in detail later. The controller 6 includes a phase sequence detection circuit and a relay drive circuit both of which are provided for performing switching control of phase sequence, although neither circuit is shown.

[0009] The power supply line 3a is directly connected to an R-phase terminal of the motor 2. The other power supply lines 3b and 3c are connected to a power-supply side relay 7. A load side relay 8 is provided at the motor 2 side and connected to an S-phase terminal and a T-phase terminal of the motor 2. A switching circuit 9 is connected between the relays 7 and 8.

[0010] The relay 7 includes two Form C contact relays 7a and 7b and a relay coil 7c. The Form C contact relays 7a and 7b include normally open contacts a, normally closed contacts b and traveling contacts c respectively. The power supply lines 3b and 3c are connected to the traveling contacts c of the relays 7a and 7b respectively. The load side relay 8 includes two Form C contact relays 8a and 8b and a relay coil 8c. The Form C contact relays 8a and 8b include normally open contacts a, normally closed contacts b and traveling contacts c respectively. The traveling contacts c of the relays 8a and 8b are connected to the S-phase and T-phase terminals of the motor 2 respectively.

[0011] The switching circuit 9 connects the contacts of the relay 7 and the contacts of the relay 8 in the following manner. The normally closed contacts b of the relays 7a and 7b are connected to the normally open contacts a of the relays 8a and 8b respectively. On the other hand, the relays 7a and 7b have normally open contacts a connected to normally closed contacts b of the relays 8b and 8a respectively.

[0012] When the relay coil 7c is non-energized, the normally open contacts a of the relays 7a and 7b of the power-supply side relay 7 are open and the normally closed contacts b of the relays 7a and 7b are electrically conducted with the traveling contacts c of the relays 7a and 7b respectively. Further, upon energization of the relay coil 7c, the normally open contacts a of the relays 7a and 7b are switched to be electrically conducted with the traveling contacts c of the relays 7a and 7b with the result that the normally closed contacts b are opened, respectively. Regarding the load side relay 8, too, the relays 8a and 8b are operable in the same manner as described above by switching the relay coil 8c between a non-energized state and an energized state.

[0013] The load side relay 8 functions as a positive phase power-supply switch, and the power-supply side relay 7 functions as a reverse phase power-supply switch in the above-described arrangement. Further, the Form C contact relays 7a, 7b, 8a and 8b used in the foregoing arrangement are non-operating (OFF) when the relay coils 7c and 8c are not energized (unenergized), as shown in FIG. 6A. In this case, the traveling contacts c are in contact with the respective normally closed contacts b, so that the normally open contacts a are open. The relays 7a, 7b, 8a and 8b are operating (ON) when the relay coils 7c and 8c are energized, as shown in FIG. 6B. At this time, the traveling contacts c are brought into contact with the normally open contacts a and the normally closed contacts b are open, respectively.

[0014] The working of the above-described configuration will be described with reference to FIGS. 2 and 3 as well as FIG. 1. When the power-supply lines L1 to L3 of the three-phase power supply 1 are connected to the terminal block 4, the controller 6 of the phase sequence switching device 3 detects voltages between the connected phase lines L1 to L3 thereby to determine whether or not the phase lines are connected in a correct phase sequence. The controller 6 determines to execute the positive phase power-supply when the three-phase power-supply lines L1 to L3 connected to the terminal block 4 correspond to the respective terminals R, S and T of the three-phase motor 2 as the result of voltage detection. Further, the controller 6 determines to execute the reverse phase power-supply when the three-phase power-supply lines L1 to L3 connected to the terminal block 4 have reverse phases to the respective terminals R, S and T of the three-phase motor 2 as the result of voltage detection.

[0015] When driving the motor 2 to operate (ON) the fan, the controller 6 controls drive of the power-supply side or load side relay 7 or 8 in a manner as shown in the following TABLE 1, based on the foregoing determination:

TABLE 1

Operation of motor 1	Power-supply side relay 7	Load side relay 8
Stop (standby state)	OFF	OFF
Rotation (positive-phase energization)	OFF	ON
Rotation (reverse-phase energization)	ON	OFF
(Abnormal state)	(ON)	(ON)

[0016] In TABLE 1, the abnormal state refers to a case where both relays 7 and 8 are in an ON state due to oscillation, noise, failure of contact operation or the like. The power supply can be prevented from an occurrence of short-circuited state in an abnormal condition as denoted above.

[0017] FIG. 2 shows a case where the load side relay 8 is controlled to be turned on by the controller 6 so that the controller 6 performs the positive phase power supply to the motor 2. The controller 6 supplies an ON signal to the relay coil 8c. The relays 8a and 8b of the load side relay 8 are simultaneously turned on so that the traveling contacts c are switched to electrically conduct the normally open contacts a respectively. The power supply lines L2 and L3 of the three-phase power supply 1 are connected to the terminals S and T of the motor 2 respectively with the result that electrical power is supplied from the power supply 1 to the motor 2. The motor 2 is thus rotated in the normal rotational direction so that the fan blows air against the inverter.

[0018] On the other hand, FIG. 3 shows another case where the power-supply side relay 7 is controlled to be turned on so that the controller 6 performs the reverse phase power supply to the motor 2. The controller 6 supplies an ON signal to the relay coil 7c. The relays 7a and 7b of the power-supply side relay 7 are simultaneously turned on so that

the traveling contacts c are switched to electrically conduct the normally open contacts a respectively. The power supply lines L2 and L3 of the power supply 1 are switched by the switching circuit 9 to be connected to the terminals T and S of the motor 2 respectively with the result that electrical power is supplied from the power supply 1 to the motor 2 in a phase reverse to the state where the power supply 1 is connected to the terminal block 4. The motor 2 is thus rotated in the normal rotational direction so that the fan blows air against the inverter.

[0019] The relays 7 and 8 can be simultaneously in an ON state in the occurrence of malfunction due to oscillation or the like but not by the control of the controller 6. Even in this case, however, the motor 2 can be operated in a safe state without occurrence of interphase short circuit in which the power supply lines L2 and L3 are short circuited.

[0020] Further, even upon occurrence of welding of the relay contacts or the like in either one or both of the relays 7 and 8, occurrence of interphase short circuit can be prevented irrespective of energization of the relay coil 7c or 8c. A case can occur where two-phase (single-phase) energization is carried out for the three-phase motor 2 in some situations. Even in this case, however, occurrence of interphase short circuit can be prevented. Further, although a rotational state of the motor 2 is not normal in this case, a temperature detection thermistor is incorporated in the inverter. Accordingly, a protecting function works against unusual temperature even when a trouble in the fan rotation reduces the cooling performance.

[0021] The above-described first embodiment can achieve the following advantageous effects. The power-supply lines 3b and 3c are connected to the power-supply side relay 7 having the Form C contact relays 7a and 7b and the load side relay 8 having the Form C contacts 8a and 8b. The switching circuit 9 is connected between the relays 7 and 8. As a result, the interphase short circuit of the three-phase power supply 1 can be prevented even when either relay 7 or 8 is on-off operated in any manner. This can prevent occurrence of disconnection of the fuses 3a to 3c due to short-circuit currents in the trouble of relay switching control.

[0022] Further, in any case where the power-supply lines L1 to L3 of the power supply 1 are connected to the terminal block 4 in a positive phase connection state or in a reverse phase connection state, the motor 2 can be operated in a predetermined rotating direction when either relay 7 or 8 is operated. This requires no configuration of providing a power-supply on-off relay in addition to the relays which switch the phase sequence. Further, either relay 7 or 8 can be operated in an easy manner in a short time without operating a plurality of relays. Still further, the configuration in which two relays 7 and 8 having the same specification are used has an effect of commonalizing components and reducing the number of types of components.

[0023] Although the power-supply side relay 7 and the load side relay 8 are configured to be used as the reverse-phase power-supply switch and the positive-phase power-supply switch respectively in the foregoing embodiment, the power-supply side relay 7 may be used as a positive-phase power-supply switch and the load side relay 8 may be used as a reverse-phase power-supply switch contrary to the foregoing embodiment by modifying the connection of the switching circuit 9.

[0024] FIGS. 4 and 5 illustrate a second embodiment. Only the differences between the first and second embodiments will be described here. The second embodiment differs from the foregoing embodiment in that a Form C contact relay is additionally provided on the power-supply line 3a. Accordingly, the phase sequence switching device 10 includes the power-supply side relay 11, the load side relay 12 and the switching circuit 13, instead of the power-supply side relay 7, the load side relay 8 and the switching circuit 9.

[0025] Referring to FIG. 4, the power-supply side relay 11 includes three Form C contact relays 11a to 11c and a relay coil 11d for on-off controlling the relays 11a to 11c respectively. The load side relay 12 includes three Form C contact relays 12a to 12c and a relay coil 12d on-off controlling the relays 12a to 12c. The relays 11b and 11c correspond to the relays 7a and 7b of the power-supply side relay 7 in the first embodiment respectively. The relays 12b and 12c correspond to the relays 8a and 8b of the load side relay 8 in the first embodiment respectively. The relay coils 11d and 12d correspond to the relay coils 7c and 8c respectively.

[0026] The relays 11a and 12a are disposed to correspond to the power-supply side and the load side by cutting the power-supply line 3a. The switching circuit 13 includes parts corresponding to the power-supply lines 3b and 3c, and the connection structures of these parts are the same as those in the switching circuit 9. A part corresponding to the power-supply line 3a has a connection structure in which the normally open contact a of either one of the relays 11a and 12a is connected to the normally closed contact b of the other relay 12a or 11a in the relays 11a and 12a respectively.

[0027] In the above-described configuration, the load side relay 12 functions as a positive phase power-supply switch in the same manner as in the first embodiment, and the power-supply side relay 11 functions as a reverse phase power-supply switch in the same manner as in the first embodiment.

[0028] The working of the above-described configuration will be described with reference to FIG. 5. When the power-supply lines L1 to L3 of the three-phase power-supply 1 are connected to the terminal block 4, the controller 6 of the phase sequence switching device 10 detects voltages between the connected phase lines L1 to L3 thereby to determine whether or not the phase lines are connected in a correct phase sequence. The controller 6 determines to execute the positive phase power-supply when the three-phase power-supply lines L1 to L3 connected to the terminal block 4 correspond to the respective terminals R, S and T of the three-phase motor 2 as the result of voltage detection. Further,

the controller 6 determines to execute the reverse phase power-supply when the three-phase power-supply lines L1 to L3 connected to the terminal block 4 have reverse phases to the respective terminals R, S and T of the three-phase motor 2 as the result of voltage detection.

[0029] When driving the motor 2 to operate (ON) the fan, the controller 6 controls drive of the power-supply side or load side relay 11 or 12 in a manner as shown in the following TABLE 2, based on the foregoing determination:

TABLE 2

Operation of motor 2	Power-supply side relay 11	Load side relay 12
Stop (standby state)	OFF	OFF
Rotation (positive-phase energization)	OFF	ON
Rotation (reverse-phase energization)	ON	OFF
(Abnormal state)	(ON)	(ON)

[0030] In TABLE 2, the abnormal state refers to a case where both relays 11 and 12 are in an ON state due to oscillation, noise, failure of contact operation or the like. The power supply can be prevented from an occurrence of short-circuited state in an abnormal condition as denoted above.

[0031] FIG. 5 shows a case where the load side relay 12 is controlled to be turned on by the controller 6 so that the positive-phase power supply is executed for the motor 2. The controller 6 supplies an ON signal to the relay coil 12d. The relays 12a, 12b and 12c of the load side relay 12 are simultaneously turned on so that the traveling contacts c are switched to electrically conduct the normally open contacts a respectively. The power supply lines L1, L2 and L3 of the three-phase power supply 1 are connected to the terminals R, S and T respectively. As a result, the power supply 1 is connected to the motor 2 in the positive phase. The motor 2 is connected to the power supply 1 in a normal state, whereby the motor 2 is rotated in a normal rotating direction so that the fan carries out a blowing operation.

[0032] On the other hand, when determining that electrical power be supplied to the motor 2 in the reverse phase, the controller 6 supplies an ON signal to the relay coil 11d to turn on the relay 11 although this control manner is not shown. In this case, the relays 12a, 12b and 12c of the power supply side relay 12 are simultaneously turned on so that the traveling contacts c are switched to electrically conduct the normally open contacts a respectively. The power supply line L1 is connected to the terminal R of the motor 2, and the power supply lines L2 and L3 cross each other in the switching circuit 13 to be connected to the terminals T and S of the motor 2 respectively. As a result, the power supply 1 is connected to the motor 2 in the phase reverse to the connected state of the power supply lines L2 and L3 with the result that electrical power is supplied to the motor 2 in the reverse phase. The motor 2 is connected to the power supply 1 in a normal state, whereby the motor 2 is rotated in a normal rotating direction so that the fan carries out a blowing operation.

[0033] The relays 11 and 12 can be simultaneously in an ON state in the occurrence of malfunction due to oscillation or the like but not by the control of the controller 6. Even in this case, however, the motor 2 can be operated in a safe state without occurrence of interphase short circuit in which the power supply lines L2 and L3 are short circuited.

[0034] Further, even when welding of the relay contacts or the like occurs and the relays are held in the ON state irrespective of turn-off of the relay operation, a case can occur where two-phase (single-phase) energization is carried out in the motor 2. Even in this case, however, occurrence of interphase short circuit can be prevented.

[0035] The second embodiment described above can achieve the same working and effects as those in the first embodiment. Further, the relays 11 and 12 are provided with the Form C contact relays 11a and 12a corresponding to the power supply line 3a. Accordingly, all the power-supply lines to the motor 2 can be turned to the OFF state when the motor 2 is not energized. As a result, even when an external motor 2 is outside the inverter chassis, for example, electrical power from the three-phase power supply 1 can be prevented from being applied to any of the terminal R, S or T of the motor 2 during stop of the motor 2.

[0036] Although the power-supply side relay 11 and the load side relay 12 are configured to be used as the reverse-phase power-supply switch and the positive phase power-supply switch respectively in the foregoing embodiment, the power-supply side relay 11 may be used as a positive phase power-supply switch and the load side relay 12 may be used as a reverse-phase power-supply switch contrary to the foregoing embodiment by reversing the connection of the switching circuit 13.

[0037] The foregoing embodiments may be modified as follows. Although the phase sequence switching device is applied to the three-phase motor 2 rotating the fan as the load in each foregoing embodiment, the device may be applied to any load driven by the three-phase power supply.

[0038] The phase sequence switching device may be applied to any configuration provided with a separate power-supply on-off switch.

[0039] The phase sequence switching device is configured to perform phase sequence switching in each foregoing

embodiment while the power-supply side relay and the load side relay serve also as the power-supply on-off switches. In the case where the phase sequence switching device is configured to have a separate power-supply on-off switch, the switching circuit may be connected so that a positive-phase power supply can be carried out while both power-supply side and load side relays are in an off-state.

5

Claims

1. A phase sequence switching device for a three-phase power supply, which is provided in a power supply path from a three-phase power supply (1) to a load (2), **characterized by**:

a power-supply side relay (7, 11) including two Form C contact relays (7a, 7b, 11b, 11c) connected to two phases of the three-phase power supply (1) respectively, the Form C contact relays (7a, 7b, 11b, 11c) having first travelling contacts (c of 7a, c of 7b, c of 11b, c of 11c) respectively;

15 a load side relay (8, 12) including two Form C contact relays (8a, 8b, 12b, 12c) connected to two phases between the power-supply side relay (7, 11) and the load (2), the Form C contact relays (8a, 8b, 12b, 12c) having second traveling contacts (c of 8a, c of 8b, c of 12b, c of 12c) respectively; and

20 a switching circuit (9, 13) which switches from a disconnected state to a state where the first traveling contacts (c of 7a, c of 7b, c of 11b, c of 11c) connected to the respective two phases of the three-phase power supply (1) are connected to the respective second traveling contacts (c of 8a, c of 8b, c of 12b, c of 12c) connected to the respective two phases of the load (2) in a positive phase when a relay action of one of the power-supply side relay (7, 11) and the load side relay (8, 12) is performed, the switching circuit (9, 13) switching from the disconnected state to a state where the first travelling contacts (c of 7a, c of 7b, c of 11b, c of 11c) connected to the respective two phases of the three-phase power supply (1) are connected to the respective second traveling contacts (c of 8b, c of 8a, c of 12c, c of 12b) connected to the respective two phases of the load (2) in a reverse phase when a relay action of the other relay (8, 12 or 7, 11) is performed.

2. The device according to claim 1, wherein the switching circuit (9, 13) supplies the three-phase power to the load (2) in a positive phase connection when one of the power-supply side relay (7, 11) and the load side relay (8, 12) carries out a relay action, and the switching circuit (9, 13) supplies the three-phase power to the load (2) in a reverse phase connection when the other relay carries out a relay action.

3. The device according to claim 1, further **characterized by** a controller (6) configured to detect phase voltages of the three-phase power supply (1) and to cause the power-supply side relay (7, 11) or the load side relay (8, 12) to carry out the relay action so that the detected phase voltages correspond to a current carrying direction required of the load (2).

4. The device according to any one of claims 1 to 3, wherein the power-supply side relay (11) and the load side relay (12) have respective Form C contact relays (11a, 12a) corresponding to the remaining phase of the three-phase power supply (1), and the switching circuit (13) is wired between the Form C contact relays (11a, 12a) provided in the remaining phase so that the remaining phase of the three-phase power supply (1) is connected to the load (2) when one of the power-supply side and load side relays (11, 12) is operated and so that the remaining phase of the three-phase power supply (1) is disconnected from the load (2) when both relays (11, 12) are in an off-state or both relays (11, 12) are operated.

45

Patentansprüche

1. Phasenfolgeschaltvorrichtung für ein Drehstromnetzteil, die in einem Stromversorgungspfad von einem Drehstromnetzteil (1) zu einer Last (2) vorgesehen ist, **gekennzeichnet durch**:

ein netzteilseitiges Relais (7, 11), das zwei Relais mit Form-C-Kontakt (7a, 7b, 11 b, 11 c) aufweist, die entsprechend mit zwei Phasen des Drehstromnetzteils (1) verbunden sind, wobei die Relais mit Form-C-Kontakt (7a, 7b, 11 b, 11 c) entsprechend erste Wanderkontakte (c von 7a, c von 7b, c von 11 b, c von 11 c) aufweisen; ein lastseitiges Relais (8, 12), das zwei Relais mit Form-C-Kontakt (8a, 8b, 12b, 12c) aufweist, die zwischen dem netzteilseitigen Relais (7, 11) und der Last (2) mit zwei Phasen verbunden sind, wobei die Relais mit Form-C-Kontakt (8a, 8b, 12b, 12c) entsprechend zweite Wanderkontakte (c von 8a, c von 8b, c von 12b, c von 12c) aufweisen; und

5 einen Schaltstromkreis (9, 13), der in einer positiven Phase aus einem getrennten Zustand in einen Zustand schaltet, in dem die ersten Wanderkontakte (c von 7a, c von 7b, c von 11 b, c von 11 c), die mit den entsprechenden zwei Phasen des Drehstromnetzteils (1) verbunden sind, mit den entsprechenden zweiten Wanderkontakte (c von 8a, c von 8b, c von 12b, c von 12c), die mit den entsprechenden zwei Phasen der Last (2) verbunden sind, verbunden sind, wenn ein Relaisvorgang eines des netzteilseitigen Relais (7, 11) und des lastseitigen Relais (8, 12) erfolgt, wobei der Schaltstromkreis (9, 13) in einer umgekehrten Phase aus dem getrennten Zustand in einen Zustand schaltet, in dem die ersten Wanderkontakte (c von 7a, c von 7b, c von 11 b, c von 11 c), die mit den entsprechenden zwei Phasen des Drehstromnetzteils (1) verbunden sind, mit den entsprechenden zweiten Wanderkontakte (c von 8b, c von 8a, c von 12c, c von 12b), die mit den entsprechenden zwei Phasen der Last (2) verbunden sind, verbunden sind, wenn ein Relaisvorgang des anderen Relais (8, 12 oder 7, 11) erfolgt.

10

15 2. Vorrichtung nach Anspruch 1, wobei der Schaltstromkreis (9, 13) bei einer Verbindung der positiven Phase den Drehstrom der Last (2) zuführt, wenn eines des netzteilseitigen Relais (7, 11) und des lastseitigen Relais (8, 12) einen Relaisvorgang ausführt, und der Schaltstromkreis (9, 13) bei einer Verbindung der umgekehrten Phase den Drehstrom der Last (2) zuführt, wenn das andere Relais einen Relaisvorgang ausführt.

20 3. Vorrichtung nach Anspruch 1, ferner **gekennzeichnet durch** eine Steuerung (6), die dazu ausgestaltet ist, Phasenspannungen des Drehstromnetzteils (1) zu erfassen und zu bewirken, dass das netzteilseitige Relais (7, 11) oder das lastseitige Relais (8, 12) den Relaisvorgang derart ausführt, dass die erfassten Phasenspannungen einer Stromführungsrichtung entsprechen, die von der Last (2) verlangt wird.

25 4. Vorrichtung nach einem der Ansprüche 1 bis 3, wobei das netzteilseitige Relais (11) und das lastseitige Relais (12) entsprechende Relais mit Form-C-Kontakt (11a, 12a) aufweisen, die der verbleibenden Phase des Drehstromnetzteils (1) entsprechen, und der Schaltstromkreis (13) zwischen den Relais mit Form-C-Kontakt (11a, 12a), die in der verbleibenden Phase vorgesehen sind, derart verdrahtet ist, dass die verbleibende Phase des Drehstromnetzteils (1) mit der Last (2) verbunden ist, wenn eines des netzteilseitigen und lastseitigen Relais (11, 12) betrieben wird, und derart, dass die verbleibende Phase des Drehstromnetzteils (1) von der Last (2) getrennt ist, wenn beide Relais (11, 12) in einem Aus-Zustand sind oder beide Relais (11, 12) betrieben werden.

30

Revendications

35 1. Dispositif de commutation de séquence de phases pour alimentation triphasée, pourvu dans un circuit d'alimentation d'une alimentation triphasée (1) d'une charge (2), **caractérisé par** :

40 un relais côté alimentation (7, 11) incluant deux relais de contact de forme C (7a, 7b, 11 b, 11 c) connectés respectivement à deux phases de l'alimentation triphasée (1), les relais de contact de forme C (7a, 7b, 11 b, 11 c) comportant respectivement des premiers contacts mobiles (c de 7a, c de 7b, c de 11 b, c de 11 c) ;

45 un relais côté charge (8, 12) comportant deux relais de contact de forme C (8a, 8b, 12b, 12c) connectés à deux phases entre le relais côté alimentation (7, 11) et la charge (2), les relais de contact de forme C (8a, 8b, 12b, 12c) comportant respectivement des deuxièmes contacts mobiles (c de 8a, c de 8b, c de 12b, c de 12c) ; et un circuit de commutation (9, 13) qui commute d'un état déconnecté à un état où les premiers contacts mobiles (c de 7a, c de 7b, c de 11 b, c de 11c) connectés aux deux phases respectives de l'alimentation triphasée (1) sont connectés aux deuxièmes contacts mobiles respectifs (c de 8a, c de 8b, c de 12b, c de 12c) connectés aux deux phases respectives de la charge (2) dans une phase positive quand une action de relais est effectuée par un relais parmi le relais côté alimentation (7, 11) et le relais côté charge (8, 12), le circuit de commutation (9, 13) commutant de l'état déconnecté à un état où les premiers contacts mobiles (c de 7a, c de 7b, c de 11b, c de 11c) connectés aux deux phases respectives de l'alimentation triphasée (1) sont connectés aux deuxièmes contacts mobiles respectifs (c de 8b, c de 8a, c de 12c, c de 12b) connectés aux deux phases respectives de la charge (2) dans une phase inverse quand une action de relais est effectuée par l'autre relais (8, 12 ou 7, 11).

50 2. Dispositif selon la revendication 1, dans lequel le circuit de commutation (9, 13) alimente la tension triphasée à la charge (2) dans une connexion à phase positive quand un relais parmi le relais côté alimentation (7, 11) et le relais côté charge (8, 12) effectue une action de relais, et le circuit de commutation (9, 13) alimente la tension triphasée à la charge (2) dans une connexion à phase inverse quand l'autre relais effectue une action de relais.

55 3. Dispositif selon la revendication 1, **caractérisé en outre par** un contrôleur (6) configuré pour détecter des tensions

de phase de l'alimentation triphasée (1) et pour commander au relais côté alimentation (7, 11) ou au relais côté charge (8, 12) d'effectuer l'action de relais de telle sorte que les tensions de phase détectées correspondent à une direction de transport de courant requise de la charge (2).

5 4. Dispositif selon l'une quelconque des revendications 1 à 3, dans lequel le relais côté alimentation (11) et le relais côté charge (12) comportent des relais de contact de forme C respectifs (11a, 12a) correspondant à la phase restante de l'alimentation triphasée (1), et le circuit de commutation (13) est branché entre les relais de contact de forme C (11a, 12a) pourvus dans la phase restante de telle sorte que la phase restante de l'alimentation triphasée (1) est connectée à la charge (2) quand un relais parmi le relais côté alimentation et le relais côté charge (11, 12) est actionné, et de telle sorte que la phase restante de l'alimentation triphasée (1) est déconnectée de la charge (2) quand les deux relais (11, 12) sont dans un état coupé ou que les deux relais (11, 12) sont actionnés.

10

15

20

25

30

35

40

45

50

55

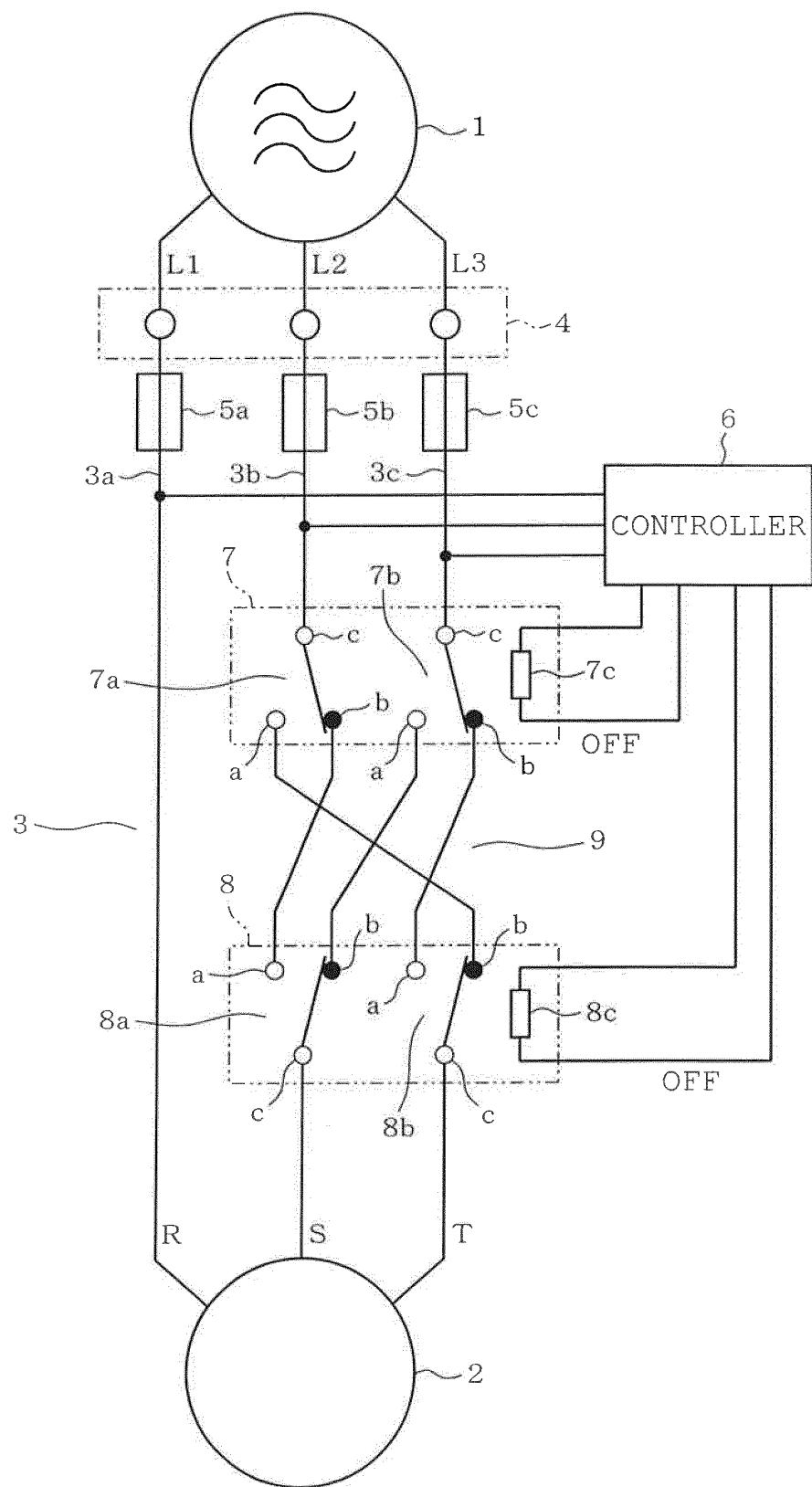


FIG. 1

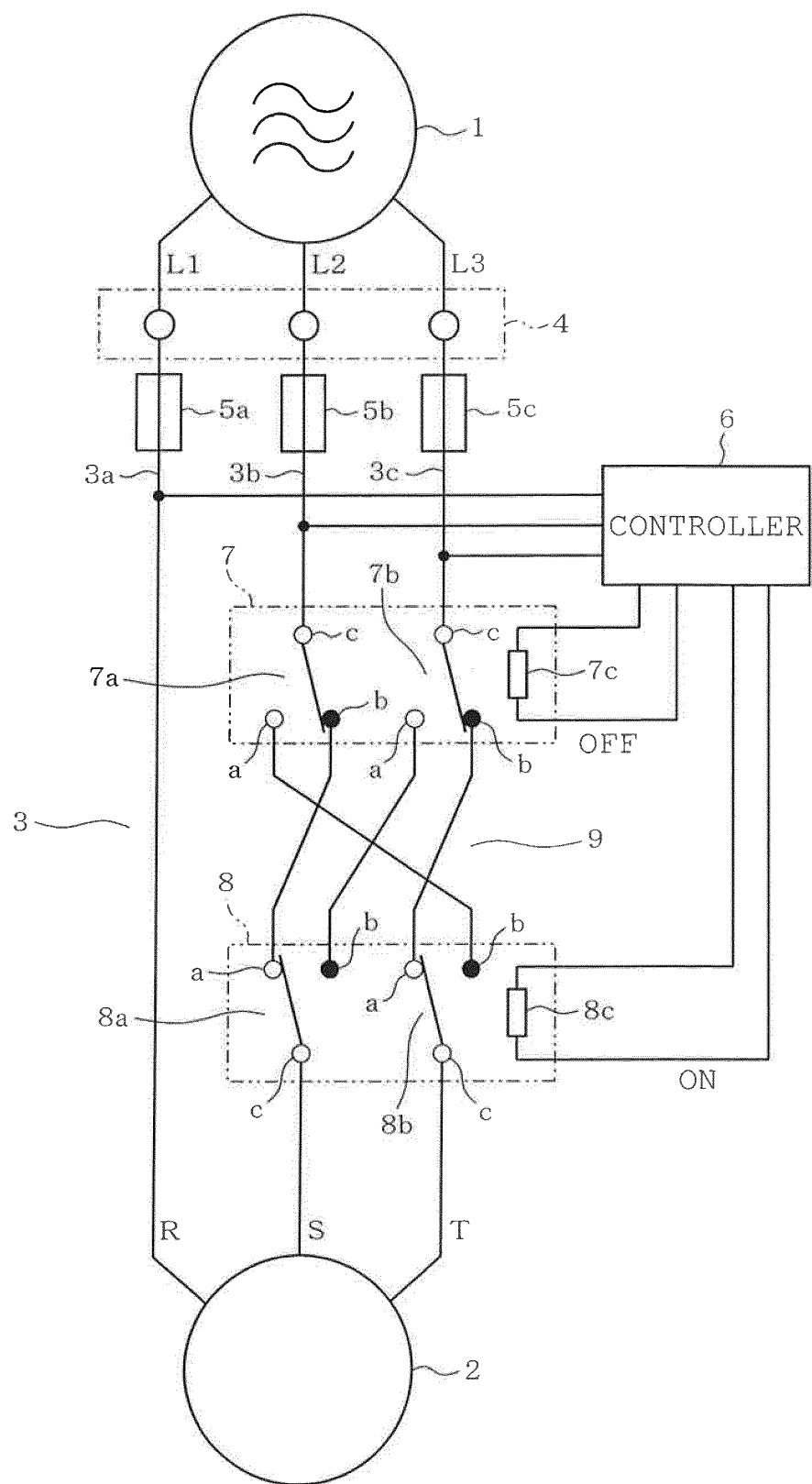


FIG. 2

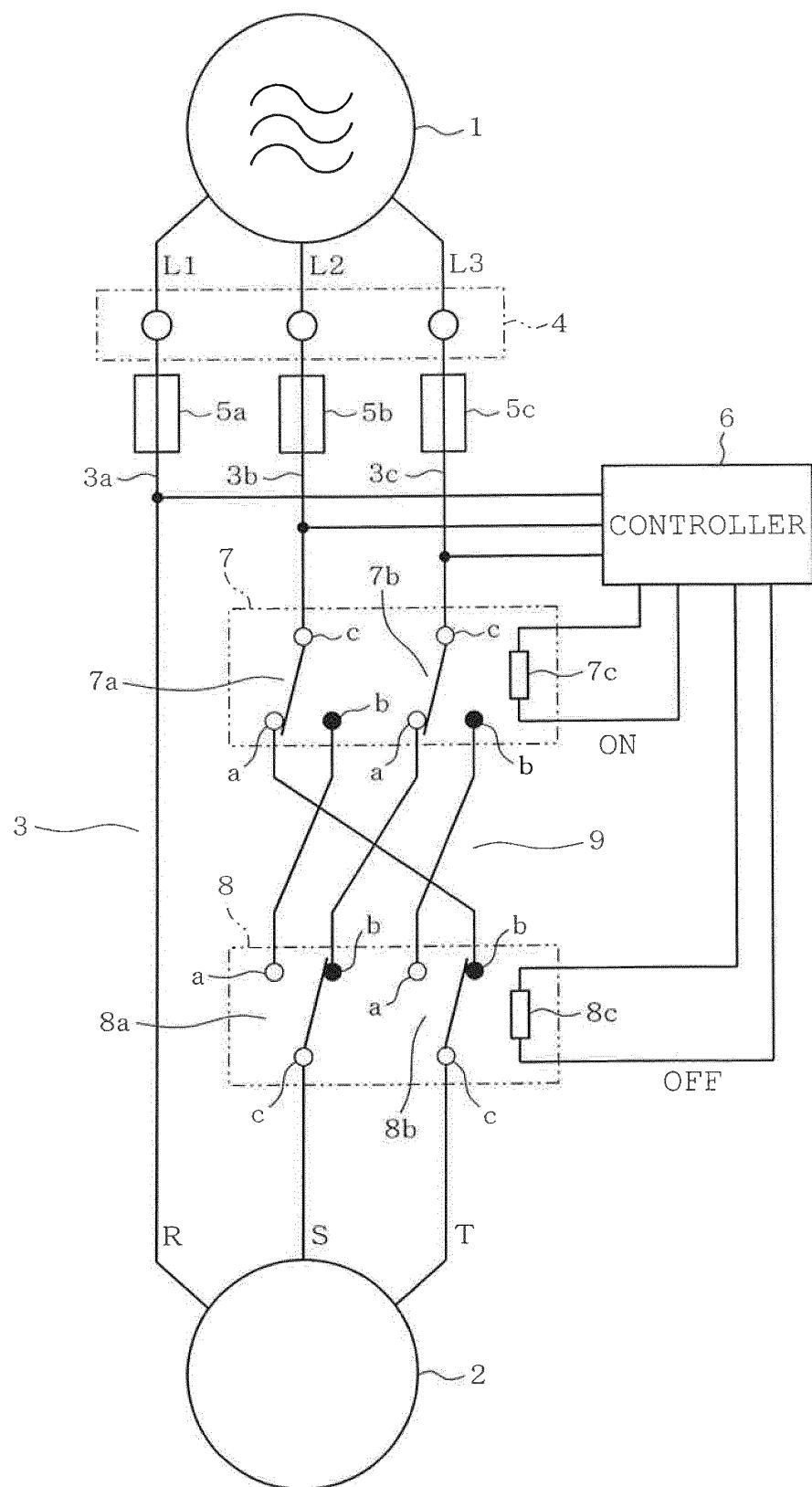


FIG. 3

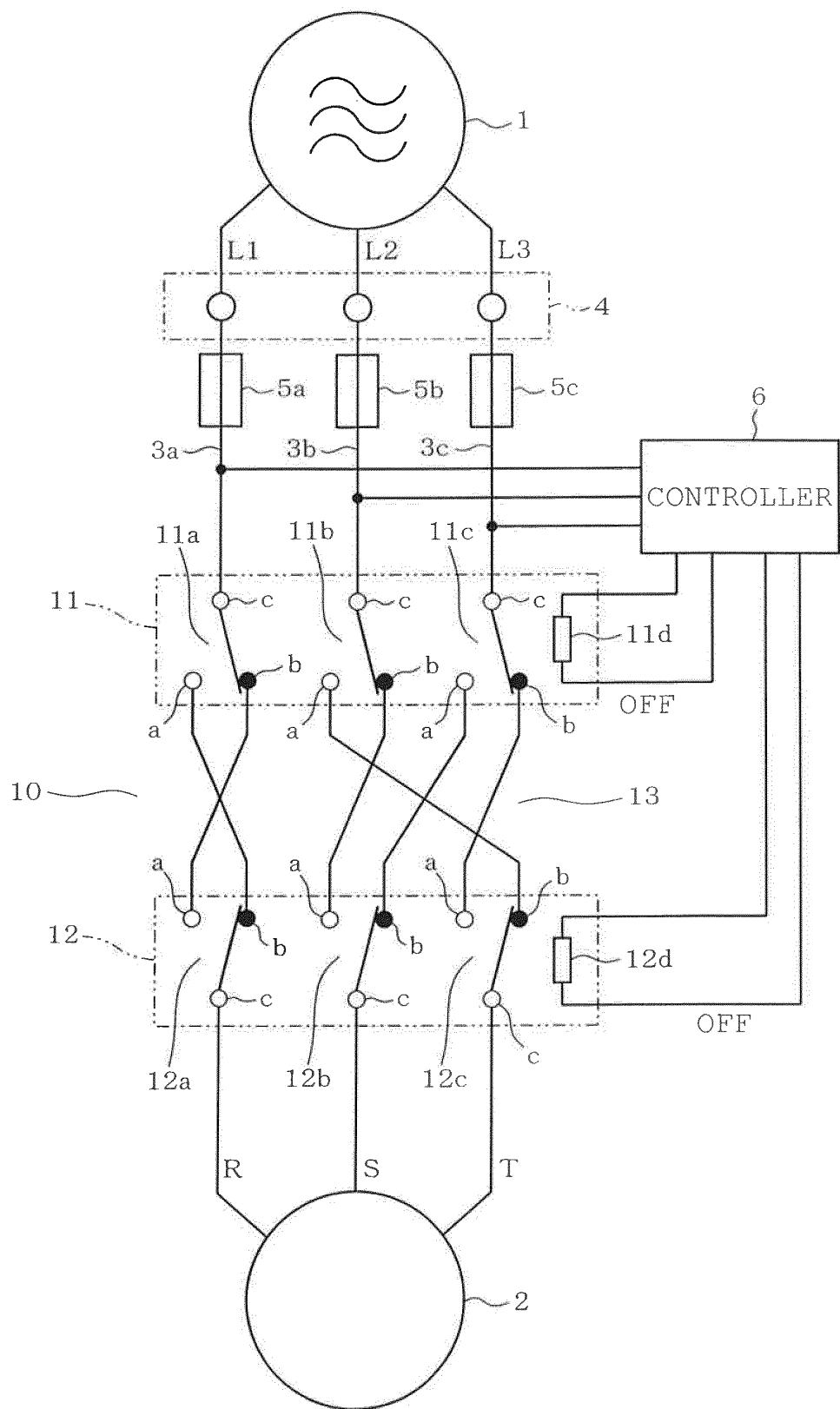


FIG. 4

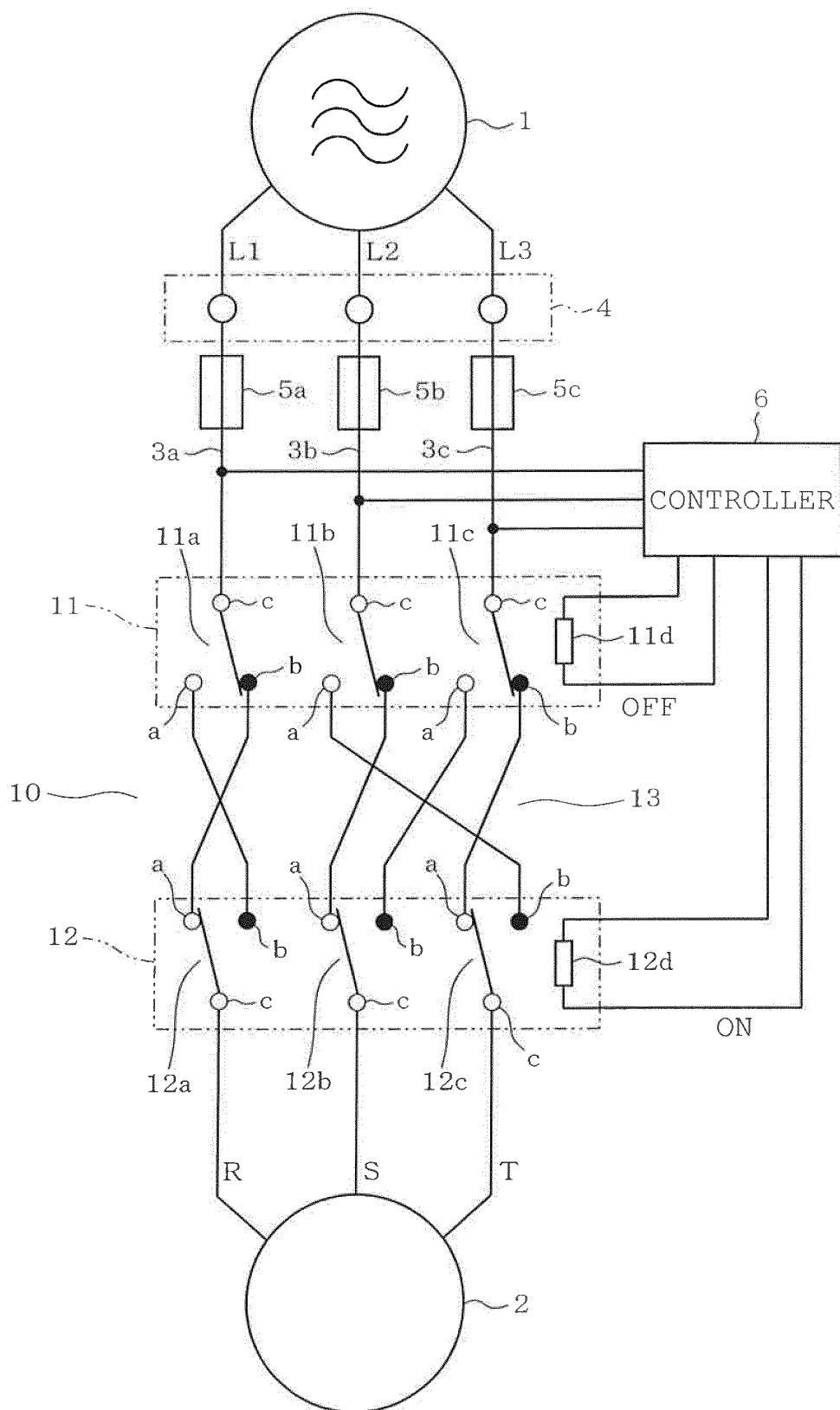
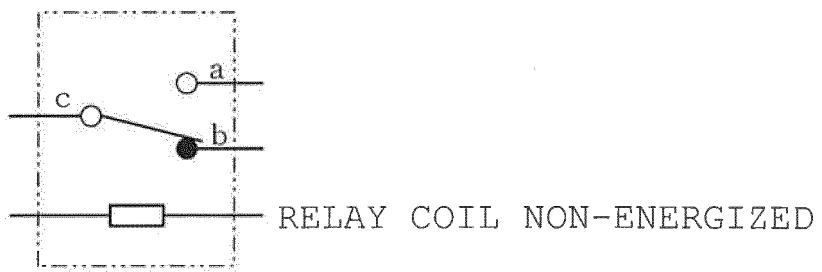
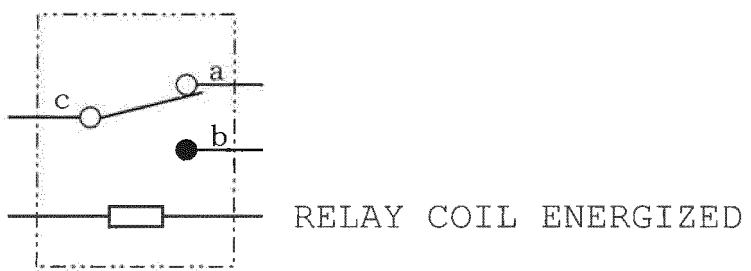




FIG. 5

DURING NON-OPERATING (OFF)

FIG. 6A

DURING OPERATION (ON)

FIG. 6B

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4163270 A [0003]
- DE 3421828 A1 [0004]