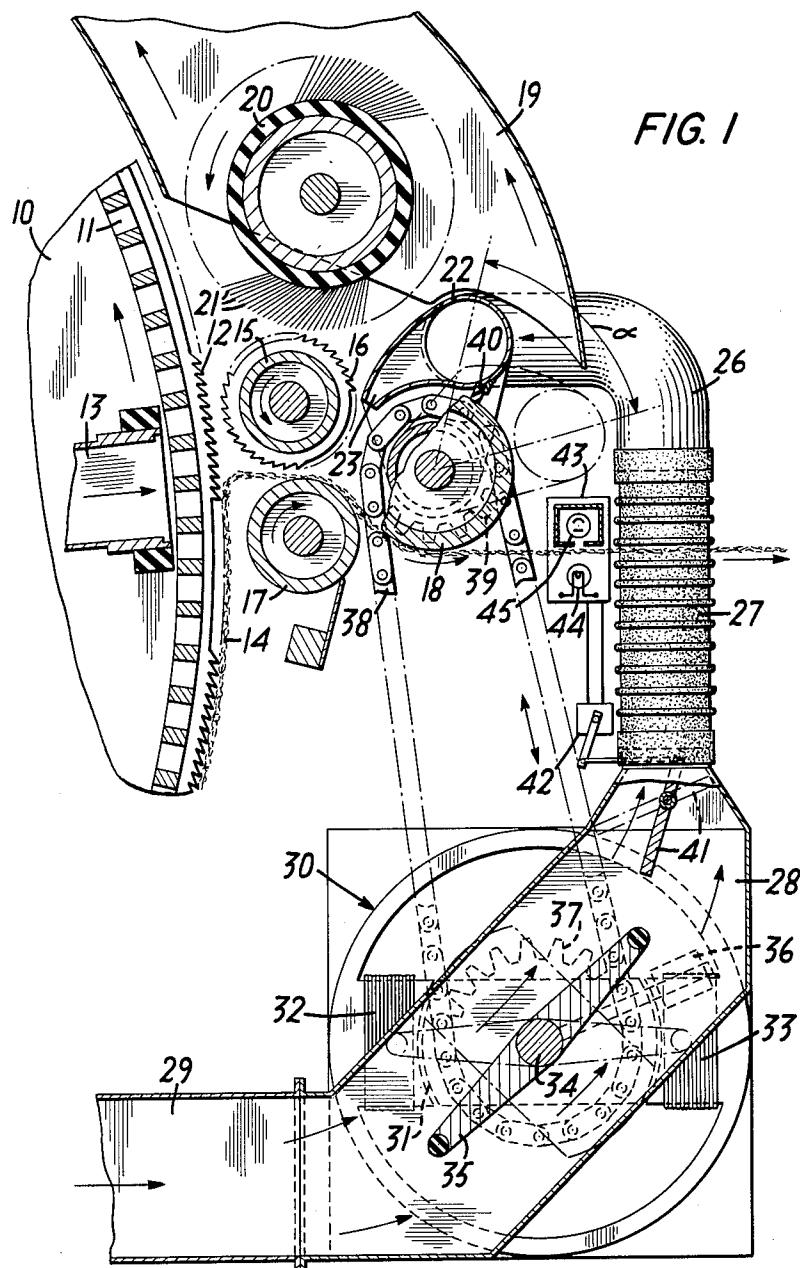


Feb. 22, 1966


F. REITERER

3,235,911

APPARATUS FOR DETACHING THE WEB OF FIBERS
FROM A CARDING MACHINE

Filed March 13, 1963

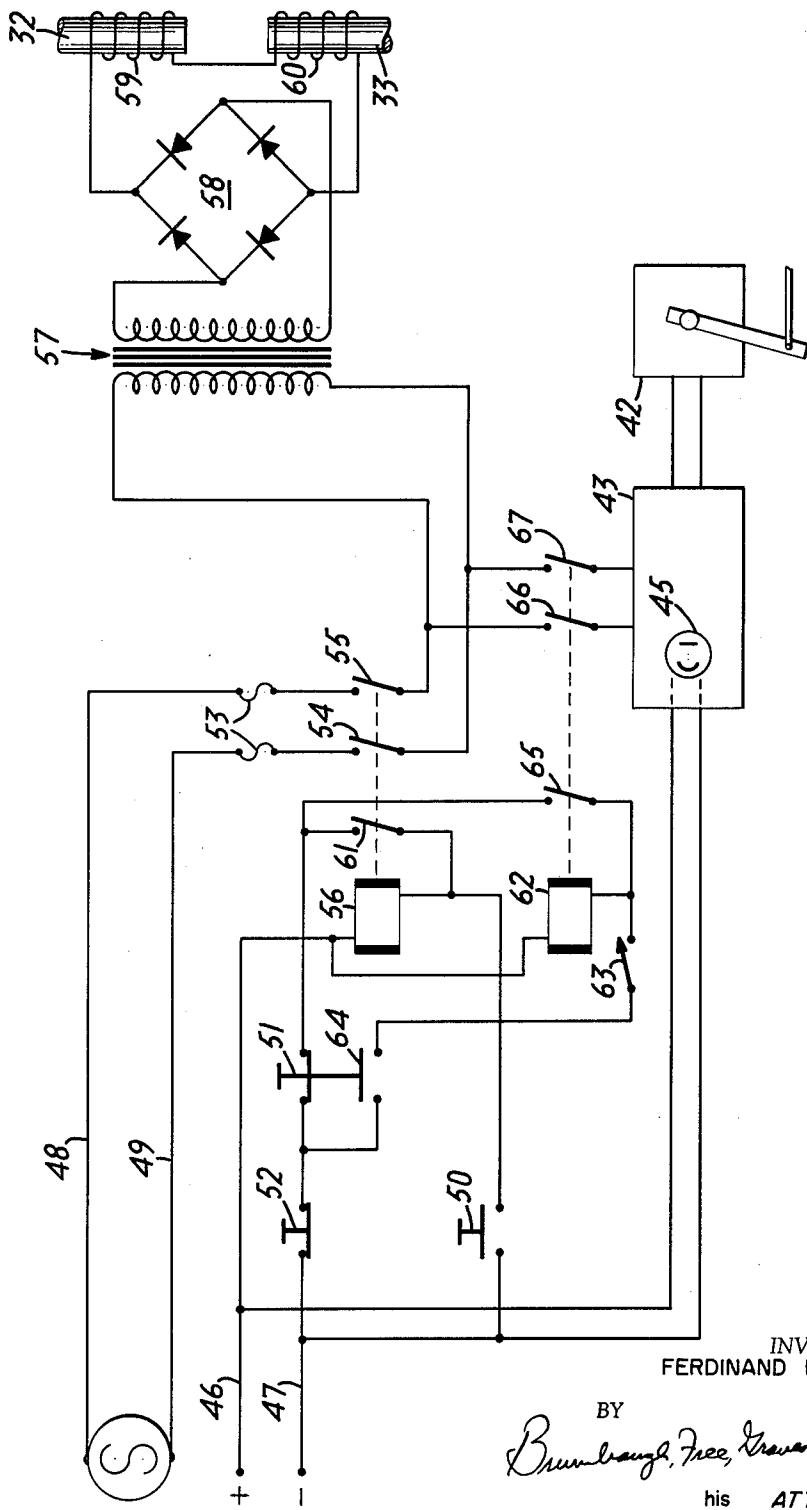
3 Sheets-Sheet 1

INVENTOR.
FERNAND REITERER

BY

Brennbaugh, Free, Graue & Donohue

his ATTORNEYS


Feb. 22, 1966

F. REITERER
APPARATUS FOR DETACHING THE WEB OF FIBERS
FROM A CARDING MACHINE

3,235,911

Filed March 13, 1963

3 Sheets-Sheet 2

INVENTOR.
FERDINAND REITERER

BY
Brennagh, Free, Grauer & Donohue
his ATTORNEYS

Feb. 22, 1966

F. REITERER
APPARATUS FOR DETACHING THE WEB OF FIBERS
FROM A CARDING MACHINE

3,235,911

Filed March 13, 1963

3 Sheets-Sheet 3

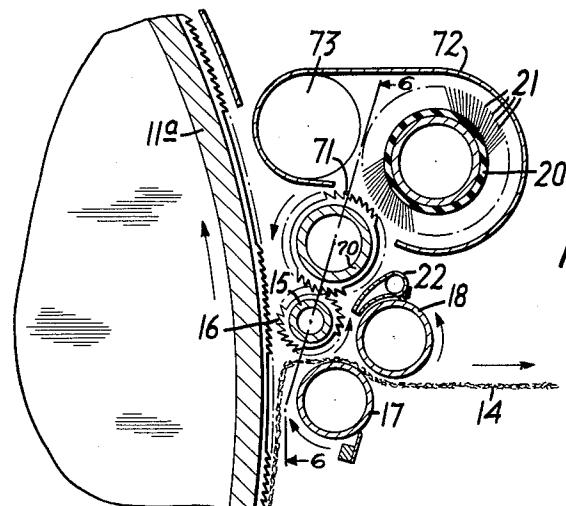


FIG. 5

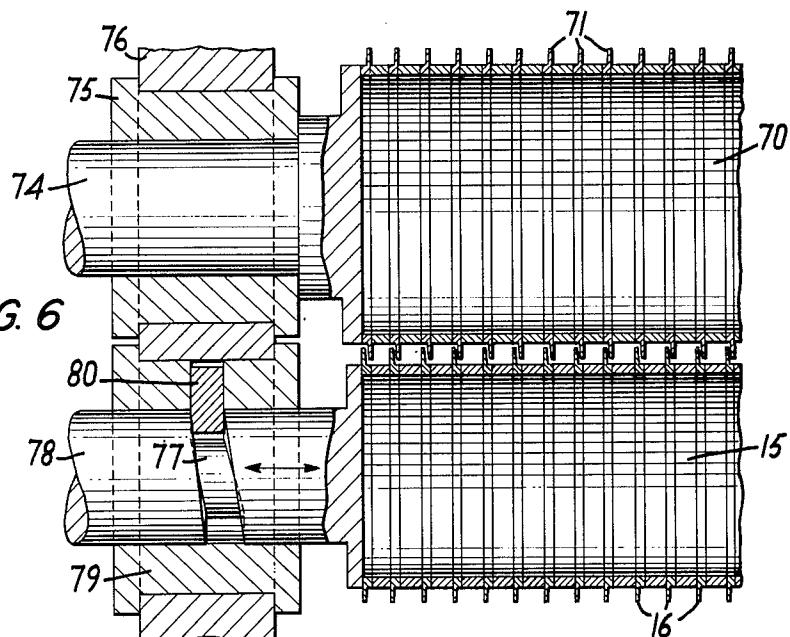


FIG. 6

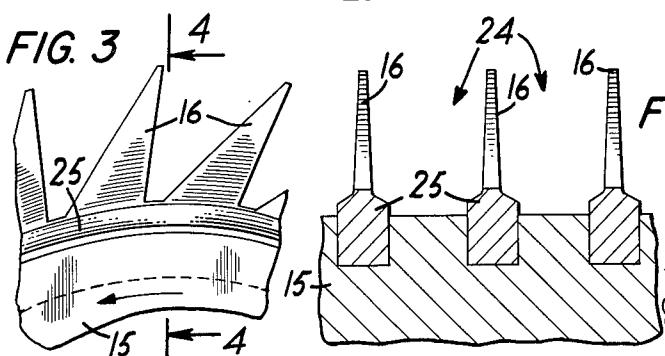


FIG. 4

INVENTOR.
FERNAND REITERER

BY
Bloomberg, Greene & Donohue
his ATTORNEYS

United States Patent Office

3,235,911

Patented Feb. 22, 1966

1

3,235,911

APPARATUS FOR DETACHING THE WEB OF FIBERS FROM A CARDING MACHINE

Ferdinand Reiterer, Rueil-Malmaison, France, assignor, by direct and mesne assignments, to Whitin Machine Works, Whitinsville, Mass., a corporation of Massachusetts

Filed Mar. 13, 1963, Ser. No. 264,821

Claims priority, application France, May 28, 1962, 898,977, 899,041; Aug. 7, 1962, 906,289

11 Claims. (Cl. 19—106)

This application is a continuation-in-part of my copending application Serial No. 141,132, filed September 27, 1961, for "Pneumatic Web Removal in Carding Machines," now Patent No. 3,145,428.

This invention relates to devices for removing a web of fibers from a carding machine and, more particularly, to a new and improved web detaching arrangement for carding machines and the like which is especially adapted to assure complete removal of the fibers from the carding machine at high speed and without damage to the fiber web.

In order to avoid the disadvantages of conventional web detaching arrangements, such as vibrating combs which tend to disrupt the alignment of the fibers in a web and which limit the speed of operation of the machine, my above-mentioned copending application describes a detaching arrangement utilizing a plurality of detaching rollers arranged to withdraw the fiber web from the doffer of a carding machine. The arrangement described in that application includes a device for directing a blast of air along the surface of the doffer in the direction opposite to the rotation thereof to assist in detaching the web, along with a hollow perforated roller through which air passes and one or more conveying rollers to direct the web away from the doffer. While that arrangement represents a considerable improvement over the vibrating comb type detachers, nonetheless, it leaves room for further refinement.

Accordingly, it is an object of the present invention to provide a new and improved arrangement for removing a web of fibers from a carding machine.

Another object of the invention is to provide a web detaching arrangement capable of detaching a web of fibers at high speed without disrupting the alignment of the fibers in the web.

These and other objects of the invention are attained by providing, in a carding machine having a cylinder covered with a toothed clothing, a first detaching roller rotating in the same direction as the cylinder and having a plurality of teeth which move closely adjacent to the cylinder clothing to remove the web of fibers therefrom, a second detaching roller rotating in the opposite direction and disposed adjacent to the first roller to receive the web therefrom, along with a nozzle for directing air adjacent to the teeth of the first detaching roller in a direction opposite to the direction of motion thereof and toward the surface of the second detaching roller to direct the web of fibers against the surface of the second roller. A third roller may also be provided to hold the web against the surface of the second roller.

Preferably, the teeth on the primary detaching roller are slanted in the direction opposite to their direction of motion to facilitate removal of the web therefrom by the current of air. In addition, to improve the efficiency of the web removal by the air current, the teeth on the first roller are preferably spaced from each other in the lateral direction, thereby allowing the air to disengage fibers which are held at the base of the teeth. Moreover, in one embodiment, these teeth are arranged in adjacent circles about the first roller and a further roller is provided with similarly mounted teeth which

2

move in the spaces between the teeth of the first roller so as to clean that roller. If desired, either the first roller or the cleaning roller in this embodiment may also be oscillated in the axial direction to assure complete cleaning of the channels between the teeth.

As a further feature, the velocity of the air current may be regulated in accordance with the density of the fiber web so that higher air velocities, which are more effective in detaching heavy webs, will not be applied to lighter and more fragile webs. Also, if desired, the air supply and the location of the outlet nozzle for the current of air may be controlled so that when operation of the machine is initiated, a strong current of air is supplied but, after the starting period has been completed, the air may be shut off and the air outlet nozzle retracted.

Further objects and advantages of the invention will be apparent from a reading of the following description in conjunction with the accompanying drawings, in which:

FIG. 1 is a view in cross section of a representative embodiment of the invention;

FIG. 2 is an electrical circuit diagram showing a portion of the control system for the machine of FIG. 1;

FIG. 3 is an enlarged fragmentary view illustrating the teeth on the primary detaching roller in the machine of FIG. 1;

FIG. 4 is a view in longitudinal section taken along the line 4—4 of FIG. 3 and looking in the direction of the arrows;

FIG. 5 is a cross-sectional view of a further embodiment of the invention wherein a cleaning roller is provided for the primary detaching roller; and

FIG. 6 is an enlarged view in longitudinal section taken along the line 6—6 of FIG. 5.

In the embodiment of the invention shown in FIGS. 1—4, the detaching arrangement is mounted adjacent to the periphery of a doffer cylinder 10 having a perforated peripheral wall 11 upon which a toothed clothing 12 is mounted, along with an internal air duct 13 arranged to direct air through the wall 11 toward the detaching arrangement to assist in removing a web of fibers 14 from the clothing 12. It will be understood, however, that the detaching arrangement of the present invention can also be used with conventional doffers having an imperforate peripheral wall and no internal air duct, as in the embodiment shown in FIG. 5.

The detaching arrangement illustrated in FIG. 1 comprises a primary detaching roller 15 rotating in the same direction as the doffer 11 and having a plurality of teeth 16 mounted on its periphery, the teeth being located close enough to the clothing 12 of the doffer to draw the web of fibers 14 away from the clothing, either by direct contact of the teeth with the web or by motion of the current of air carried by the teeth 16 as the roller 15 rotates. A second, web guiding, roller 17 is mounted adjacent to the roller 15 and rotates in the opposite direction so as to receive the web 14 on its outer surface, which is preferably smooth, and a third, web guiding, roller 18 rotating in the same direction as the first roller 15 and the doffer is located close to the second roller and beyond the roller 15 so as to hold the web of fibers 14 against the surface of the second roller over a substantial portion of its area. Preferably, the separation between the rollers 15, 17 and 18 is great enough so that the web is not compressed as it passes between them and, if desired, the spacing of the roller 18 from the roller 15 may be made adjustable so as to vary the area of contact of the web 14 with the surface of the roller 17.

Disposed above the three detaching and web guiding rollers is a suction hood 19 into which dust and short

fibers released by detachment of the web are drawn and, in order to facilitate dust removal, a dust collecting cylinder 20 of the type described in my copending application for "Dust Removing System for Carding Machines," Serial No. 179,118, filed March 12, 1962, is mounted at the opening of the hood. As described in that application, the cylinder 20 is covered with a plurality of fine needles 21 which catch the dust and carry it into the hood where it is removed by centrifugal force and by the current of air flowing into the hood.

In order to make certain that the web 14 does not adhere to the teeth 16 of the primary detaching roller 15, a blowing nozzle 22 having an air outlet opening 23 extending parallel to the axis of the rollers 15, 17 and 18 is mounted adjacent to the roller 15 so as to direct a current of air tangent to its surface and toward the surface of the second web guiding roller 17. To facilitate passage of the air current between the teeth 16 and thereby improve the effectiveness of the air current in removing the web 14 from the teeth, the teeth are spaced in the lateral direction, as shown in FIG. 4, rather than being closely adjacent as in the usual toothed clothing, thereby providing channels 24 for the air between adjacent rows of teeth. To accomplish this, the teeth 16 may be formed on a strip 25 which is wound spirally around the roller 15 with adjacent turns in spaced relation or separate circular portions of the strip 25 may be mounted in spaced relation on the roller. In either case, the spacing between adjacent rows of teeth should be at least as great as the height of the teeth above the strip and, in a particular case, a spacing of two millimeters between adjacent rows of teeth was found to be satisfactory.

In addition, as shown in FIG. 3, the teeth 16 are preferably sloped in the direction opposite to the direction of motion of the roller 15 to make it easier for the fibers of the web to slip off the teeth under the influence of the current of air from the nozzle 22.

Air is supplied to the nozzle 22 through a conduit 26 provided with a flexible section 27 and connected through a damper housing 28 to an air pressure duct 29. As will be apparent from the description of the control circuit of FIG. 2, which follows, the air supply may be controlled in either of two ways. First, in certain cases, it is desirable to provide a strong current of air upon initiating operation of the carding machine in order to make certain that the detached web of fibers passes between the rollers 17 and 18 but to terminate the flow of air and remove the nozzle from its position between the rollers 15 and 18 after the machine has been started. This mode of operation is accomplished by an electromagnet 30 at one side of the damper housing 28 having a pivotally mounted armature 31 movable between two pole pieces 32 and 33. A shaft 34 attached to this armature carries a damper 35 and an eccentric weight 36 arranged so that the damper 35 is in the open position, shown in solid lines in FIG. 1, when the armature 31 is aligned with the pole pieces 32 and 33 by energization of the electromagnet. When the electromagnet is deenergized, the weight 36 moves the damper and the armature to the positions shown in dashed outline so that the passageway through the damper housing is closed.

In addition, the shaft 34 carries a gear 37 which is linked by a chain 38 to a similar gear 39 mounted at one end of the roller 18 so as to be movable with respect to the roller. Affixed to the gear 39 is a support plate 40 on which one end of the nozzle 22 is mounted, the other end (not visible in the drawings) being similarly supported for pivotal motion about the axis of the roller 18. With the damper 35 in the open position shown in solid lines in FIG. 1 permitting air to pass to the nozzle, the gear 39 is turned so that the nozzle is in the position shown in solid lines in FIG. 1 directing the air tangent to the roller 15. When the damper 35 is turned to the closed position, shutting off the air supply, the chain 38

rotates the gear 39 so as to move the nozzle to the retracted position shown in dashed outline in FIG. 1. As a result of this retraction, the nozzle will not interfere with the flow of air into the hood 19 during normal operation of the machine.

In other instances, it is desirable to maintain the flow of air from the nozzle 22 past the roller 15 at reduced velocity during normal operation of the machine, the velocity being dependent upon the density or thickness of the fiber web. To this end, another damper 41 is mounted in the housing 28 and the position of this damper is regulated by a conventional control device 42, in accordance with a control signal received from a web density detecting unit 43. The typical density detecting unit shown in FIG. 1, by way of example, consists of a light source 44 and a photoelectric cell 45 disposed on opposite sides of the web 14 and arranged to provide an electric control signal to the device 42, directing it to move the damper 41 toward the closed position in response to decreasing web density or thickness and toward the open position in response to increasing web density.

A typical electrical control circuit for the air control system is shown in FIG. 2 wherein a low voltage direct current source is connected to two conductors 46 and 47 and a source of alternating current at line voltage is connected to two conductors 48 and 49. In order to initiate the operation of the machine, a push button switch 50 is provided in the usual manner and two further push button switches 51 and 52, which are normally closed, 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 10070 10075 10080 10085 10090 10095 10100 10105 10110 10115

of the electromagnet so that the weight 36 rotates the shaft 34 to close the damper 35 and pivot the nozzle 22 the retracted position shown in dotted lines.

If continuous application of a controlled air current is desired, the switch 63 is closed before operation is initiated or before the button 51 is depressed. This switch has no effect on the starting of the machine since the switch 64 is normally opened but, when the switch 51 is depressed, this closes the switch 64 energizing the relay 62 and, at the same time, maintaining the relay 56 energized through the switch 64 and the contacts 65 and 61 and, when the button 51 is released, the holding circuit is maintained through that switch. Closing of the contacts 66 and 67 supplies power to the control unit 42 through the detecting device 43 so that the position of the damper is controlled in accordance with the illumination of the photocell 45, increasing the air current for dense or thick webs and decreasing it for light webs. Upon depression of the stop button 52, both relays are released, closing the damper 35 and retracting the nozzle 22 in the manner described above.

A modification of the detaching arrangement of the present invention is shown in FIGS. 5 and 6. In this embodiment, the detaching and web guiding rollers 15, 17 and 18 are the same as described above with reference to FIG. 1 and the doffer is substantially the same except that the outer wall 11a thereof is imperforate. Moreover, the air nozzle 22 of this embodiment need not be retractable because it does not interfere with the flow of air, the collecting hood being arranged in a different manner from that of FIG. 1. In this arrangement, the teeth 16 on the roller 15 are mounted in a series of axially spaced circles around the periphery of the roller, as indicated in FIG. 6, and another roller 70 having similarly arranged rings of teeth 71 is mounted closely adjacent to the roller 15 so that the teeth 71 pass between the rings of teeth 16 and very close to the surface of the roller 15. The roller 71 is rotated in the same direction as the roller 15 but the teeth 71 thereon are slanted forwardly in the direction of rotation so as to be most effective in cleaning the channels between the circles of teeth 16 on the roller 15, and the rotary speed of the cleaning roller 70 is preferably about 10 to 20 percent greater than that of the detaching roller 15.

A suction hood 72, connected to a suction duct 73 and having a dust collecting cylinder 20 of the type described in connection with the FIG. 1 embodiment, is mounted so that the opening of the hood and the periphery of the dust collecting cylinder closely are adjacent to the cleaning roller 70 on the opposite side thereof from the roller 15. Consequently, the dust and short fibers cleaned from the roller 15 by the roller 70 are drawn from the surface of that roller into the hood.

Furthermore, in order to clean the channels between the rings of teeth 16 more completely, one of the rollers 15 and 70 may be oscillated with respect to the other. In the embodiment shown in FIG. 6, this is accomplished by mounting the shaft 74 for the roller 70 in fixed axial position in a bearing 75 provided in a support plate 76 and forming a groove 77 around the shaft 78 for the roller 15 at an angle to a plane perpendicular to that shaft. To oscillate the shaft 78, the bearing 79 for this shaft, which is fixed in the plate 76, carries a pin 80 which projects into the groove 77. Consequently, during each rotation of the shaft, the roller 15 will be displaced slightly in the axial direction and then restored to its original position, permitting the teeth 71 to sweep the entire width of the channels between the teeth 16. With this arrangement, the lateral spacing between the rings of teeth on both rollers may be increased somewhat and, in one case, a five millimeter spacing was found to be satisfactory.

Although the invention has been described herein with reference to specific embodiments, many modifications and variations therein will readily occur to those skilled

in the art. Accordingly, all such variations and modifications are included within the intended scope of the invention as described by the following claims.

I claim:

1. Apparatus for detaching a web of fibers from the clothing of a cylinder in a fiber processing machine comprising a primary detaching roller rotating in the same direction as the cylinder and having a plurality of teeth on its outer surface movable adjacent to the clothing to detach a web of fibers therefrom, a second web guiding roller rotating in the opposite direction and having a surface adjacent to the primary roller so as to receive the web of fibers from the primary roller, nozzle means arranged to direct a current of air tangent to the surface of the primary detaching roller in a direction opposite to the direction of rotation thereof and toward the surface of the second web guiding roller, and means for detecting the density of the web of fibers and air current control means responsive to the detecting means for controlling the strength of the current of air from the nozzle means in accordance with the web density.

2. Apparatus according to claim 1 wherein the detecting means comprises light source means and photoelectric means disposed on opposite sides of the web of fibers.

3. Apparatus for detaching a web of fibers from the clothing of a cylinder in a fiber processing machine comprising a primary detaching roller rotating in the same direction as the cylinder and having a plurality of teeth on its outer surface movable adjacent to the clothing to detach a web of fibers therefrom, a second web guiding roller rotating in the opposite direction and having a surface adjacent to the primary roller so as to receive the web of fibers from the primary roller, nozzle means arranged to direct a current of air tangent to the surface of the primary detaching roller in a direction opposite to the direction of rotation thereof and toward the surface of the second web guiding roller, and means for retracting the nozzle means away from the primary detaching roller, means for shutting off the current of air through the nozzle means, and connecting means providing simultaneous operation of the retracting means and the means for shutting off the air current.

4. Apparatus for detaching a web of fibers from the clothing of a cylinder in a fiber processing machine comprising a primary detaching roller rotating in the same direction as the cylinder and having a plurality of teeth on its outer surface movable adjacent to the clothing to detach a web of fibers therefrom, a second web guiding roller rotating in the opposite direction and having a surface adjacent to the primary roller so as to receive the web of fibers from the primary roller, nozzle means arranged to direct a current of air tangent to the surface of the primary detaching roller in a direction opposite to the direction of rotation thereof and toward the surface of the second web guiding roller, and control means for controlling the supply of air to the nozzle means responsive to starting of the fiber processing machine to supply maximum air current to the nozzle means and to termination of the starting operation to reduce the air current to the nozzle means.

5. Apparatus according to claim 4 wherein the control means includes means for regulating the current of air according to the density of the web after termination of the starting operation.

6. Apparatus according to claim 4 wherein the control means includes means for shutting off the current of air and retracting the nozzle means after termination of the starting operation.

7. Apparatus for detaching a web of fibers from the clothing of a cylinder in a fiber processing machine comprising a primary detaching roller rotating in the same direction as the cylinder and having a plurality of teeth on its outer surface movable adjacent to the clothing to

detach a web of fibers therefrom, a second detaching roller rotating in the opposite direction and having a surface adjacent to the primary roller so as to receive the web of fibers from the primary roller, and means for directing the web of fibers away from the teeth of the primary roller and toward the surface of the second roller, wherein the teeth on the primary detaching roller are disposed in rows which are spaced in the axial direction of the roller so as to provide channels between adjacent rows of teeth, and wherein the spacing between adjacent rows of teeth is at least as great as the height of the teeth.

8. Apparatus for detaching a web of fibers from the clothing of a cylinder in a fiber processing machine comprising a primary detaching roller rotating in the same direction as the cylinder and having a plurality of teeth on its outer surface movable adjacent to the clothing to detach a web of fibers therefrom, a second detaching roller rotating in the opposite direction and having a surface adjacent to the primary roller so as to receive the web of fibers from the primary roller, and means for directing the web of fibers away from the teeth of the primary roller and toward the surface of the second roller, wherein the teeth on the primary detaching roller are disposed in rows which are spaced in the axial direction of the roller so as to provide channels between adjacent rows of teeth, and wherein the rows of teeth are circularly disposed about the primary roller and including a cleaning roller rotating adjacent to the primary roller

and having similarly spaced circular rows of teeth arranged to pass adjacent to the surface of the primary roller between the rows of teeth thereon.

5 9. Apparatus according to claim 8 including means for providing relative oscillation between the primary detaching roller and the cleaning roller in the axial direction with a displacement less than the spacing between the rows of teeth.

10 10. Apparatus according to claim 8 including dust collecting hood means having an opening disposed adjacent to the cleaning roller to collect dust therefrom.

11. Apparatus according to claim 8 wherein the cleaning roller rotates in the same direction as the primary detaching roller and the teeth on the cleaning roller are 15 slanted forwardly in the direction of rotation thereof.

References Cited by the Examiner

UNITED STATES PATENTS

20	561,960	6/1896	Borios	-----	19—151
	2,731,679	1/1956	Kennette et al.	-----	19—106 X

FOREIGN PATENTS

25	423,609	2/1911	France.
	63,688	7/1892	Germany.
	2,270	1869	Great Britain.
	4,208	1876	Great Britain.

DONALD W. PARKER, Primary Examiner.