

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 October 2010 (14.10.2010)

(10) International Publication Number
WO 2010/116190 A2

(51) International Patent Classification:
F04B 7/00 (2006.01) **B60K 6/12** (2006.01)
F04B 49/10 (2006.01)

(74) Agent: **HINDLE, Alistair, Andrew**; Hindle Lowther, 66 Hanover Street, Edinburgh EH2 1EL (GB).

(21) International Application Number:
PCT/GB2010/050605

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
7 April 2010 (07.04.2010)

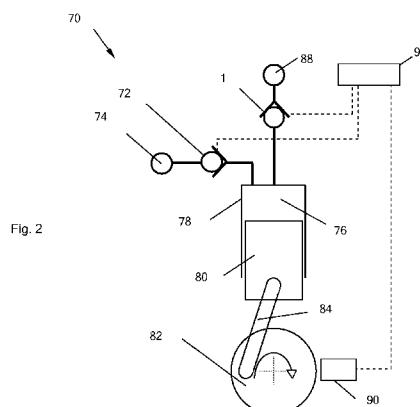
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09157533.2 7 April 2009 (07.04.2009) EP

(71) Applicant (for all designated States except US):
ARTEMIS INTELLIGENT POWER LIMITED [GB/GB]; Unit 3, Edgefield Industrial Estate, Edgefield Road, Loanhead, Midlothian EH20 9TB (GB).


(72) Inventors; and

(75) Inventors/Applicants (for US only): **LAIRD, Stephen, Michael** [GB/GB]; 25 (4F2) Montpelier, Edinburgh EH10 4LY (GB). **DUMNOV, Daniil, Sergeevich** [NZ/GB]; 15 Panmure Place, Edinburgh EH3 9HP (GB). **FIELDING, Michael, Richard** [GB/GB]; 6/5 Leamington Road, Edinburgh EH3 9PD (GB). **CALDWELL, Niall, James** [GB/GB]; 21 Brunstane Road South, Edinburgh EH15 2NH (GB).

Published:

- without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: FLUID WORKING MACHINE AND METHOD OF OPERATING A FLUID WORKING MACHINE

(57) Abstract: A fluid working machine comprises a working chamber of cyclically varying volume, a high pressure manifold, and an actuated high pressure valve for regulating the flow of fluid between the working chamber and the high pressure manifold. The actuated high pressure valve comprises a moveable valve member, operable between a closed position and at least one open position. A controllable opening mechanism provides an active urging force to urge the moveable valve member from the said closed position towards at least one said open position, the volume of the working chamber varying between a maximum volume and a minimum volume. The controllable opening mechanism provides the active urging force more than once while the volume of the working chamber is intermediate the maximum of chamber volume and the minimum of chamber volume.

WO 2010/116190 A2

1 Fluid Working Machine and Method of Operating a Fluid Working Machine

2

3 Field of the invention

4

5 The invention relates to the field of fluid working machines for driving rotatable shafts,
6 particularly those with electronically controlled commutating valves.

7

8 Background to the invention

9

10 Fluid working machines include fluid-driven and/or fluid-driving machines, such as
11 pumps, motors, and machines which can function as either a pump or as a motor in
12 different operating modes. Although the invention will be illustrated with reference to
13 applications in which the fluid is a liquid, such as a generally incompressible hydraulic
14 liquid, the fluid could alternatively be a gas.

15

16 When a fluid working machine operates as a pump, a low pressure manifold typically
17 acts as a net source of fluid and a high pressure manifold typically acts as a net sink
18 for fluid. When a fluid working machine operates as a motor, a high pressure
19 manifold typically acts as a net source of fluid and a low pressure manifold typically
20 acts as a net sink for fluid. Within this description and the appended claims, the
21 terms "high pressure manifold" and "low pressure manifold" refer to manifolds with
22 higher and lower pressures relative to each other. The pressure difference between
23 the high and low pressure manifolds, and the absolute values of the pressure in the
24 high and low pressure manifolds will depend on the application. A fluid working
25 machine may have more than one low pressure manifold and/or more than one high
26 pressure manifold.

27

28 Fluid working machines are known which comprise a plurality of working chambers of
29 cyclically varying volume, in which the displacement of fluid through the working
30 chambers is regulated by electronically controllable valves, on a cycle by cycle basis

1 and in phased relationship to cycles of working chamber volume, to determine the net
2 throughput of fluid through the machine. The net displacement of fluid also
3 determines the torque applied to the fluid working machine's shaft. For example,
4 EP 0 361 927 disclosed a method of controlling the net throughput of fluid (and
5 therefore the torque) through a multi-chamber pump by opening and/or closing
6 electronically controllable poppet valves, in phased relationship to cycles of working
7 chamber volume, to regulate fluid communication between individual working
8 chambers of the pump and a low pressure manifold. As a result, individual chambers
9 are selectable by a controller, on a cycle by cycle basis, to either displace a
10 predetermined fixed volume of fluid or to undergo an idle cycle with no net
11 displacement of fluid, thereby enabling the net torque of the pump to be matched
12 dynamically to demand. EP 0 494 236 developed this principle and included
13 electronically controllable poppet valves which regulate fluid communication between
14 individual working chambers and a high pressure manifold, thereby facilitating the
15 provision of a fluid working machine functioning as either a pump or a motor in
16 alternative operating modes. EP 1 537 333 introduced the possibility of part cycles,
17 allowing individual cycles of individual working chambers to displace any of a plurality
18 of different volumes of fluid to better match demand. Such machines are called
19 synthetically commutated fluid working machines, including the type known as a
20 Digital Displacement pump/motor (Digital Displacement is a trade mark of Artemis
21 Intelligent Power Limited).

22
23 Such fluid working machines are particularly useful in transmission systems,
24 especially those for vehicles, and especially so-called 'hybrid' vehicles.
25 US 2006/0118346 and WO 2006/055978 disclosed a number of layouts for
26 transmissions incorporating synthetically commutated fluid working machines and
27 also incorporating one or more fluid accumulators for energy storage. These
28 transmissions are efficient because they can recover kinetic energy when the vehicle
29 slows, then use the energy to accelerate the vehicle again some time later. WO
30 2008/012558 further disclosed a transmission and method of operation that requires
31 only one high pressure side and one low pressure side, as well as eliminating the
32 need for a precharge pump on the low pressure side, by operating in some modes
33 directly from a reservoir at atmospheric pressure.

34
35 GB 2,430,246 (Stein) and EP 08164003.9 (Stein) both disclose two-stage valve
36 assemblies which are suitable for regulating the supply of fluid from a high-pressure
37 manifold to a working chamber of a synthetically commutated fluid working machine.

1 The valve assemblies comprise a primary valve, a secondary valve, an
2 electromagnet and an armature (referred to as a moving pole). The primary valve
3 comprises a face-seating primary valve member and a primary valve seat. The
4 secondary valve is integral to the primary valve and includes a secondary valve
5 member which is moveable between a sealing position and an open position in which
6 a path is provided through the secondary valve for fluid to flow between opposite
7 sides of the primary valve member to reduce the pressure difference across the
8 primary valve member. Thus, the secondary valve, which has a much smaller surface
9 area than the primary valve, can be opened even when there is a substantial
10 pressure difference across the primary valve member. The working chamber is
11 effectively a closed volume, and so fluid can flow through the secondary valve to
12 equalise the pressure on either side of the primary valve member, thereby facilitating
13 the opening of the primary valve.

14

15 One problem of the two-stage valve assemblies is that the pressure in the working
16 chamber must be made sufficiently high for the primary valve to be open, because of
17 the limited force available from the armature. The length of time this takes depends
18 on a number of variables such as high pressure manifold pressure, fluid temperature
19 and working chamber leakage. Because of the uncertainty in these and other
20 parameters, the opening operation of the primary valve has been found to be not
21 reliable in some circumstances, causing the machine to operate incorrectly.

22

23 It is an object of the invention to provide an improved method of operating a fluid-
24 working machine incorporating a two-stage valve assembly according to the prior art,
25 so as to improve the reliability of the primary valve opening.

26

27 A further problem with fluid working machines operated by valve assemblies when
28 they are applied to transmission systems is that the rapid application of pressure
29 within the working chamber(s) due to the valve assembly opening leads to a sudden
30 uncontrollable shaft rotation, where the shaft of the fluid working machine is
31 connected to a typical load, especially one with the non-linear compliance known as
32 'hysteresis' or 'backlash', such as a transmission. The shaft may move too rapidly
33 and uncontrollably in one direction, creating noise, excessive wear, mechanical
34 fatigue, shock and discomfort for example.

35

36 It is therefore a further object of the invention to provide an improved method of
37 operating a fluid working machine, incorporating a valve assembly, with a compliant

1 load, for example a transmission such as a vehicle transmission, so as to control or
2 limit the initial movement of the shaft when the valve assembly is actuated.

3

4 A further problem with transmission systems incorporating fluid working machines
5 operated by valve assemblies is that the previously known methods of operating fluid
6 working machines require the transmission system to adjust the pressure of the high
7 pressure fluid source to accurately control the output torque at low or zero rotational
8 speed, because it is only possible to have working chambers which are either fully-
9 enabled or not enabled at all. Adjusting the fluid source pressure may not be
10 possible, especially when a fluid accumulator is more or less directly connected to the
11 fluid working machine, or may require additional components or energy
12 transformations, increasing system cost or decreasing energy efficiency.

13

14 It is therefore a further object of the invention to provide an improved method of
15 operating a fluid working machine incorporating a valve assembly, so as to control
16 the torque applied to the shaft of the fluid working machine, at least when rotating at a
17 slow speed.

18

19 Summary of the Invention

20

21 According to a first aspect of the present invention there is provided a method of
22 operating a fluid working machine, the fluid working machine comprising a working
23 chamber of cyclically varying volume, a high pressure manifold, and an actuated high
24 pressure valve for regulating the flow of fluid between the working chamber and the
25 high pressure manifold, the actuated high pressure valve comprising a moveable
26 valve member, operable between a closed position in which the actuated high
27 pressure valve seals the working chamber from the high pressure manifold and at
28 least one open position in which the working chamber is in fluid communication with
29 the high pressure manifold through the actuated high pressure valve, and a
30 controllable opening mechanism operable to provide an active urging force to urge
31 the moveable valve member from the said closed position towards at least one said
32 open position, the volume of the working chamber varying between a maximum
33 volume and a minimum volume, the method **characterised in that** the controllable
34 opening mechanism provides the active urging force more than once while the
35 volume of the working chamber is intermediate a maximum of chamber volume and a
36 minimum of chamber volume.

37

1 Surprisingly we have found that operating the fluid working machine by repeatedly
2 urging the movable valve member, while the working chamber volume lies between
3 either of the maximum or minimum volumes, confers new and desirable benefits to
4 the fluid working machine, causing it to operate more reliably, or more controllably, or
5 more smoothly, compared to the prior art in which the moveable valve member is
6 urged just once. This is unexpected because in the prior art only one urging was
7 found to be necessary to open the valve, and it was thought to be impossible to
8 obtain the benefits of controllability or smoothness. It is not obvious to urge the valve
9 member multiple times because doing so is more difficult, and consumes more
10 power, and because the benefits just described do not obviously follow from multiple
11 urging.

12

13 It may be that the controllable opening mechanism provides the active urging force to
14 urge the moveable valve member from the closed position towards at least one open
15 position more than once while the working chamber volume expands from the
16 minimum to the maximum volume.

17

18 By a maximum of working chamber volume and a minimum of working chamber
19 volume we refer to the largest and small volumes of the working chamber during a
20 cycle of working chamber volume, for example, the first cycle of working chamber
21 volume when a fluid working machine is started or a subsequent cycle of working
22 chamber volume while the fluid working machine is operating. A working chamber
23 may have more than one possible maximum volume or more than one possible
24 minimum volume in different operating modes.

25

26 Preferably, the fluid working machine is also operated at other times in at least one
27 additional operating mode, whereby the controllable opening mechanism actively
28 urges the moveable valve member from the closed position towards at least one open
29 position only once while the working chamber volume lies between but does not
30 reach either of the maximum or minimum volumes. The additional operating modes
31 may be activated for example when the rotatable shaft of the fluid working machine is
32 rotating above or below a certain speed or has rotated more than a certain angular
33 distance from a first angle, or when the fluid pressure in the high pressure manifold is
34 within certain ranges, or when the fluid pressure in the high pressure manifold is
35 controlled by another device in communication with the fluid working machine, or
36 when the desired behaviour of the fluid working machine can be more
37 advantageously achieved by the additional operating mode.

1
2 The fluid working machine is preferably a synthetically commutated fluid working
3 machine, for example a Digital Displacement pump/motor. Preferably the fluid
4 working machine also has controllable low pressure valves connecting each of
5 several working chambers to one or more low pressure manifolds. Preferably the
6 additional operating mode comprises a cycle-by-cycle operating mode, whereby the
7 fluid working machine is operated so as to actively control the high pressure valve,
8 and optionally one or more low pressure valves, in phased relation to cycles of
9 working chamber volume, to determine the net displacement of the fluid by the or
10 each working chamber on a cycle by cycle basis, to thereby determine the time
11 averaged net displacement of fluid by the working machine or one of more groups of
12 the working chambers, on at least some cycles of working chamber volume. The fluid
13 working motor may function only as a motor. Alternatively, the fluid working motor
14 may function as a motor or a pump in one or more alternative operating modes.

15
16 Preferably, the working chamber is a piston-in-cylinder working chamber. Preferably
17 the cycles of working chamber volume are mechanically coupled to the rotation of a
18 rotatable crankshaft. A fluid working machine may contain a plurality of working
19 chambers, each of whose volume is determined by the angular position of the same
20 rotatable crankshaft. The volume of each working chamber varies between a
21 maximum and minimum volume determined by the angular position of the rotatable
22 crankshaft. The maximum and minimum volume of each working chamber may be
23 the same as or different to that of other working chamber. The maximum and
24 minimum working chamber volumes may occur once each revolution of the rotatable
25 crankshaft, or more than once.

26
27 Preferably, the fluid working machine is operated so that the fluid pressure in the high
28 pressure manifold exceeds the pressure of the fluid in the low pressure manifold by at
29 least 1 Bar, 20 Bar or 100 Bar in operation.

30
31 It may be that the active urging force provided by the controllable opening
32 mechanism is provided for more than one active urging period, intermediate a
33 maximum of chamber volume and a subsequent minimum of chamber volume. The
34 controllable opening mechanism may also provide a background urging force outside
35 the active urging periods. Preferably the maximum active urging force is at least
36 twice, but even more preferably at least three times or at least five times, the
37 minimum background urging force provided outside the active urging periods.

1 Preferably the fluid working machine is operated so that the fluid pressure in the high
2 pressure manifold is higher than that of the fluid in the working chamber, for example
3 by at least 1 Bar, at least 20 Bar, or at least 100 Bar.

4
5
6 There may also be provided a closing mechanism for urging the moveable valve
7 member from an open position to the closed position. The closing mechanism may be
8 a controllable closing mechanism operated by electronic control. The controllable
9 opening mechanism and closing mechanism may be the same.

10
11 The controllable opening mechanism and/or the closing mechanism might include an
12 energy storage device such as a mechanical spring, compressed fluid volume or the
13 weight of the moveable valve member or some other part. Preferably the controllable
14 opening mechanism and/or any controllable closing mechanism is operated by
15 electronic control. The controllable opening mechanism and/or a controllable closing
16 mechanism may actively urge the moveable valve member by the application of
17 electrical stimulation, or the removal of electrical stimulation, or by a particular type of
18 electrical stimulation. The controllable opening mechanism and/or controllable
19 closing mechanism may comprise an electromagnet and an armature, rigidly or
20 compliantly coupled to the moveable valve member.

21
22 It may be that where the controllable opening mechanism comprises an
23 electromagnet and an armature, the time between each of the more than one active
24 urging periods is at least as long as the electrical time constant of the electromagnet.

25
26 By closed position is meant that the moveable valve member prevents fluid from
27 passing between the high pressure manifold and the working chamber. By open
28 position is meant that the moveable valve member does not prevent fluid from
29 passing from the high pressure manifold and the working chamber. Preferably a
30 closed position means that the moveable valve member is in sealing contact with a
31 valve seat formed in the high pressure valve or the fluid working machine. Preferably
32 the contact between the moveable valve member and the valve seat is an annular
33 ring, preferably forming a face sealing valve. Preferably an open position means that
34 the moveable valve member is spaced apart from the valve seat. The movement of
35 the valve member between the closed and an open position is along a valve member
36 movement path, which is preferably linear or in a straight line. The valve member
37 movement path is preferably perpendicular to the plane of the valve seat, or nearly

1 perpendicular, for example greater than 50, 60, 70, 80 or 90 degrees from the plane
2 of the valve seat. The valve movement path may be the same for each movement of
3 the moveable valve member or it may be different in different conditions.

4

5 Preferably the controllable opening mechanism is operated so as to actively urge the
6 moveable valve member from the closed position towards at least one open position
7 for a predetermined period of time and repeating the urging at a predetermined
8 frequency, while the working chamber volume lies between but does not reach either
9 of the maximum or minimum volumes. For example the active urging action might
10 happen for at least 1ms, 2ms, 5ms or 10ms at a time, might happen for no more than
11 1ms, 2ms, 5ms or 10ms at a time, or might be repeated at least once, twice, five
12 times, 10 times or 20 times a second.

13

14 Preferably the urging force of the controllable opening mechanism moves the
15 moveable valve member from the closed to at least one open position at least once
16 while the working chamber volume lies between but does not reach either of the
17 maximum or minimum volumes. It may be that the active urging force, which is
18 repeatedly present, does not move the moveable valve member every time the
19 controllable opening mechanism is operated, or it may be that the active urging force
20 does move the moveable valve member every time the controllable opening
21 mechanism is operated.

22

23 Preferably, the moveable valve member also moves from the closed to at least one
24 open position when the fluid pressure within the working chamber exceeds the fluid
25 pressure within the high pressure manifold.

26

27 Preferably the actuated high pressure valve further comprises a pilot valve which is
28 moveable between a closed position and at least one open position in which a path is
29 provided through the high pressure valve for fluid to flow between opposite sides of
30 the moveable valve member to reduce the pressure difference across the moveable
31 valve member. Preferably the sealing area of the pilot valve when in its closed
32 position is much less than the sealing area of the moveable valve member, preferably
33 less than a twentieth or a hundredth of the sealing area of the moveable valve
34 member. Preferably the pilot valve is urged from its closed towards the open position
35 by a pilot valve opening mechanism. Preferably at least part of the pilot valve opening
36 mechanism is the same as at least part of the opening mechanism that urges the
37 moveable valve member from its closed to an open position. The actuated high

1 pressure valve may further comprise a compliant coupling between any of the pilot
2 valve, moveable valve member and the opening mechanisms of the moveable valve
3 member or the pilot valve. Preferably the pilot valve is coupled to the moveable valve
4 member. Preferably the pilot valve is integral to the moveable valve member and
5 includes a pilot valve member. The pilot valve member may seal against a part of the
6 moveable valve member, and/or may move coaxially with the valve movement path
7 of the moveable valve member.

8

9 The fluid working machine is preferably operated so that, at least when the working
10 chamber is made into effectively a closed volume, the pilot valve is moved from a
11 closed to at least one open position by the active urging of the controllable opening
12 mechanism. Preferably, fluid flows through the pilot valve to equalise the pressure on
13 either side of the moveable valve member. Preferably, the moveable valve member
14 itself is opened when the pressure equalises on either side of the moveable valve
15 member. Preferably, the working chamber is made into an effective closed volume by
16 the closure of the controllable low pressure valves. Preferably, pressure in the
17 working chamber (and possible other working chambers) causes the shaft to rotate,
18 and both the pilot valve and the moveable valve member are closed before the
19 working chamber volume reaches a maximum.

20

21 Preferably, the fluid working machine is operated so that the pressure difference
22 between the high pressure manifold and the working chamber is such that the active
23 urging force exerted on the moveable valve member by the opening mechanism,
24 when the moveable valve member is in the closed position, is insufficient to open the
25 moveable valve member against the pressure difference, but the force exerted on the
26 pilot valve by the opening mechanism is sufficient to open the pilot valve against the
27 pressure difference, in at least some operating conditions.

28

29 Preferably the active urging force of the controllable opening mechanism moves at
30 least the pilot valve from its closed position to at least one open position at least once
31 while the working chamber volume lies between but does not reach either of the
32 maximum or minimum volumes.

33

34 It may be that the fluid working machine is operated so that the active urging force
35 from the controllable opening mechanism proportionally controls the rate of fluid flow
36 through the pilot valve and/or the movable valve member, by which we mean that a

1 continuous adjustment of the fluid flow rate is possible, under control of the
2 controllable opening mechanism.

3

4 To achieve some objects of the invention it may be that the fluid working machine
5 further comprises one or more sensors. Preferably the fluid working machine is
6 operated so that the duration or frequency of the active urging action by the
7 controllable opening mechanism changes in response to the one or more said
8 sensors.

9

10 One or more said sensors may be a working chamber volume sensor. The working
11 chamber volume sensor may be a sensor detecting the angle of the rotatable shaft,
12 which determines the volume of one or more working chambers. The frequency or
13 duration of the active urging action may increase or decrease as the working
14 chamber volume changes towards maximum volume, or the frequency or duration of
15 the active urging action may increase or decrease as the working chamber volume
16 changes towards minimum volume. The frequency or duration of the active urging
17 action may increase or decrease as the rate of change of working chamber volume
18 increases or decreases.

19

20 One or more said sensors may be a pressure sensor, sensing the fluid pressure
21 within one or more of the working chamber, high pressure manifold or low pressure
22 manifold. It may be that the fluid working machine is operated so that duration or
23 frequency of the active urging action by the controllable opening mechanism changes
24 in response to one or more of the pressure sensors, especially a high pressure
25 manifold pressure sensor. The frequency or duration of the active urging action may
26 increase or decrease as the fluid pressure sensed by the pressure sensors increases
27 or decreases. The frequency or duration of the active urging action may increase or
28 decrease as the rate of change of fluid pressure sensed by the pressure sensors.

29

30 One or more said sensors may be a valve position sensor, which senses the position
31 of the or each actuated high pressure valve and/or the or each controllable low
32 pressure valve. It may be that the fluid working machine is operated such that the
33 duration or frequency of the active urging action by the controllable opening
34 mechanism changes in response to one or more of the valve position sensors, for
35 example a high pressure valve position sensor. The frequency or duration of the
36 active urging action may increase or decrease as the sensed valve is sensed to be in

1 an open position. The frequency or duration of the active urging action may increase
2 or decrease the rate of change of valve position, or sensed acceleration of the valve.

3

4 It may be that the fluid working machine further comprises one or more working fluid
5 viscosity sensors, for example, a working fluid temperature sensor. It may be that the
6 fluid working machine is operated so that the duration or frequency of the active
7 urging action changes in response to sensed or estimated fluid viscosity. The
8 frequency or duration of the active urging action may increase or decrease as the
9 viscosity decreases.

10

11 It is possible that more than one of the sensed fluid pressure, sensed working
12 chamber volume and sensed valve position affect the duration and frequency of the
13 active urging action.

14

15 Typically, the active urging force is a force arising from the magnetic force applied to
16 an armature operably linked to the moveable valve member by an electromagnet
17 responsive to the flow of current through the electromagnet

18

19 To achieve some objects of the invention it is preferable that the controllable opening
20 mechanism can provide a background urging force that urges the moveable valve
21 member in the direction of the at least one open position from the closed position, but
22 with less force than the active urging force described above. By less force is meant
23 less than half, ideally less than one fifth and even more ideally less than one tenth of
24 the active urging force would generate when the valves were in the same position
25 between the at least one open position and the closed position. Preferably, the
26 background urging force holds the moveable valve member in at least one open
27 position, in operation. It may be that the background urging force does not open the
28 pilot valve in operation. The controllable opening mechanism could provide the
29 background urging force by the use of Pulse Width Modulation (PWM) of the urging
30 force. The PWM of the urging force could be at a rate higher than the repetition rate
31 of the active urging force (if any), for example five times, 10 times or 20 times the
32 frequency of the active urging force. It may be that where the controllable opening
33 mechanism comprises an electromagnet and an armature, the PWM of the urging
34 force could be at a rate higher than the electrical time constant of the electromagnet,
35 for example five times, 10 times or 20 times the time constant of the electromagnet.

36

1 It may be that the fluid working machine is operated so that the controllable opening
2 mechanism provides the background urging force in between at least some of the
3 more than one times the controllable opening mechanism actively urges the
4 moveable valve member from the closed position towards at least one open position.
5 The background urging force may start before the first active urging force or may start
6 after it; the background urging force may finish after the last active urging force or
7 may finish before it. The background urging force preferably starts and finishes while
8 the working chamber volume lies between but does not reach either of the maximum
9 or minimum volumes, but may extend beyond this time.

10
11 According to a second aspect of the present invention there is provided a fluid
12 working machine comprising a fluid working machine controller, a working chamber of
13 cyclically varying volume, a high pressure manifold, and an actuated high pressure
14 valve for regulating the flow of fluid between the working chamber and the high
15 pressure manifold, the actuated high pressure valve comprising a moveable valve
16 member, operable between a closed position in which the actuated high pressure
17 valve seals the working chamber from the high pressure manifold and at least one
18 open position in which the working chamber is in fluid communication with the high
19 pressure manifold through the actuated high pressure valve, and a controllable
20 opening mechanism operable to provide an active urging force to urge the moveable
21 valve member from the said closed position towards at least one said open position,
22 the volume of the working chamber varying between a maximum volume and a
23 minimum volume, the method **characterised by** the controller having an operating
24 mode in which the controllable opening mechanism is caused by the controller to
25 provide the active urging force more than once while the volume of the working
26 chamber is intermediate a maximum of chamber volume and a minimum of chamber
27 volume.

28
29 The fluid working machine controller is an electronic controller capable of operating
30 the machine in accordance with any of the methods just described. The electronic
31 controller may operate by executing computer software comprising program code
32 which, when executed on a fluid working machine controller, causes the controller to
33 carry out any parts of the method just described. The controller may have one or
34 more operating modes in which the controllable opening mechanism is caused to
35 provide the active urging force more than once while the volume of the working
36 chamber is intermediate a maximum of chamber volume and a minimum of chamber
37 volume and one or more operating modes in which the controllable opening

1 mechanism is caused to provide the active urging force more than once while the
2 volume of the working chamber is intermediate a maximum of chamber volume and a
3 minimum of chamber volume or the controller may only have one or more operating
4 modes in which the controllable opening mechanism is caused to provide the active
5 urging force more than once while the volume of the working chamber is intermediate
6 a maximum of chamber volume and a minimum of chamber volume.

7

8 There may be a plurality of actuated high pressure valves operating from a plurality of
9 high pressure manifolds (or just one high pressure manifold). There may be several
10 working chambers associated with each of some actuated high pressure valves, for
11 example in the manner disclosed in WO2006/109079.

12

13 Further optional features of the fluid working machine of the second aspect of the
14 invention correspond to those described above in relation to the first aspect of the
15 invention.

16

17 The invention also extends in a third aspect to a transmission system comprising a
18 fluid working machine according to the second aspect of the invention, a controller to
19 operate the fluid working machine, a high pressure fluid source in fluid
20 communication with the said high pressure manifold, a low pressure fluid sink, a
21 rotational output, and one or more rigid and/or non-rigid links between the fluid
22 working machine and the rotational output. A non-rigid link may be one or more
23 torsionally compliant (including non-linear compliant) components such as
24 driveshafts, gearboxes, gearsets, differentials, tyres, tracks and/or clutches, arranged
25 in series or parallel.

26

27 According to a fourth aspect of the present invention there is provided computer
28 software comprising program code which, when executed by a computing device,
29 causes the computing device to operate a fluid working machine by the method of the
30 first aspect.

31

32 The computer software may be stored on a computer readable carrier.

33

34 Description of an Example Embodiment

35

36 An example embodiment of the present invention will now be illustrated with
37 reference to the following Figures in which:

Figure 1 shows an actuated high pressure valve:

Figure 2 shows a fluid working machine;

Figure 3 shows a transmission system incorporating a fluid working machine, for example in a tractor;

Figure 4 shows a method of reliably opening an actuated high pressure valve in a fluid working machine, where the working chamber is pressurised only slowly;

Figure 5 shows a method of reliably opening an actuated high pressure valve in a fluid working machine, where the actuated high pressure valve movement is slowed by friction or damping;

Figure 6 shows a method of gently taking up slack in a transmission system incorporating a fluid working machine;

Figure 7 shows a method of modulating the shaft torque in a fluid working machine or transmission system; and

Figure 8 shows a method of operating a fluid working machine in two operating modes.

With reference to Figures 1A through 1D, an actuated high pressure valve 1 has an annular valve housing 2, which encompasses a body portion 4, both made from a magnetically permeable material. An electromagnet 6 and pole 46 (together functioning as the controllable opening mechanism) is formed around the body portion. An annular poppet cage 8 extends from the valve housing and encompasses a primary poppet valve head 10 which functions as the moveable valve member. In a closed position, the primary poppet valve head mates with the primary valve seat 12 to form a seal, biased towards the closed position by the main spring 48 acting on the armature 36.

The valve assembly is located within a fluid working machine 70 shown in Figure 2, with the inlet connected to a high pressure manifold 88, and the outlet attached to a piston 80 and cylinder 78 creating a working chamber 76. The piston is driven by a

1 rotating shaft 82 by a connecting rod 84. The electromagnet 6 is switchable under the
2 control of a controller 92 to enable current to be supplied to the electromagnet when
3 required. The controller synchronises current pulses with cycles of working chamber
4 volume taking into account signals from the shaft position sensor 90. The controller is
5 also able to actively close and allow to open a low pressure valve 72 connected to a
6 low pressure manifold 74.

7

8 The fluid working machine 70 is located within a transmission system 500 shown in
9 Figure 3. The transmission includes an engine 450 driving a hydraulic pump/motor
10 451 through a reduction gearset 452. The hydraulic pump/motor takes fluid from a
11 low pressure side 456, itself fed by a reservoir 453 through a charge pump 454
12 and/or a check valve 455. The hydraulic pump/motor can pressurise or depressurise
13 a high pressure line 457 which itself feeds a fluid accumulator 458 through a
14 controllable blocking valve 459, and the fluid working machine 70. The shaft of the
15 fluid working machine (not shown) is connected via a bell housing 501 to a gearbox
16 502. The gearbox and fluid working machine are supported by at least one semi-rigid
17 engine mount 515. The gearbox drives a driveshaft 503 whose first section 504 is
18 supported by a driveshaft bearing 505 and driven by a first spline 506, and whose
19 second section 507 is driven from the first by a universal joint 508 and includes an
20 expanding spline 509. The second driveshaft section drives a differential 510 through
21 a driving flange 511, the differential then driving a left half shaft 512 and a right half
22 shaft 513, each respectively driving a left tyre (not shown) and a right tyre 514. In an
23 alternative embodiment or an alternative operating condition, the transmission
24 operates in the opposite direction with the tyres driving the differential, which in turn
25 drives the second driveshaft section, which in turn drives the first driveshaft section,
26 which first draftshaft section drives the gearbox. In practical systems the driveshaft
27 and tyres have a measurable amount of torsional elastic compliance, and the
28 gearbox, first spline, universal joint, expanding spline and differential all have
29 measurable amounts of torsional mechanical hysteresis known as 'backlash' or 'slop'.
30 Together the compliance and hysteresis have the effect that it is possible for the fluid
31 working machine's shaft to rotate some noticeable angle, for example 10 degrees to
32 90 degrees, without any tyre rotation and without requiring significant torque on the
33 fluid working machine's shaft, especially when the direction of rotation changes.

34

35 Returning to Figure 1, the primary poppet valve head includes a secondary valve seat
36 14, against which a secondary valve member 20 (acting as the pilot valve) is biased,
37 so that the second valve is biased towards a closed position. The sealing area of the

1 secondary valve is around a hundredth of the sealing area of the primary valve. Only
2 when the secondary valve member is not in sealing contact with the secondary valve
3 seat can fluid flow between the outlet 26 of the valve and the interior chamber 22, and
4 therefore allow fluid from the inlet into the working chamber. A path is also provided
5 for fluid to flow directly from the inlets to the outlet when the primary poppet valve is
6 open, irrespective of whether the secondary valve is open, and this path offers a
7 much higher flow rate than the path through the secondary valve, due to its much
8 larger area.

9

10 The valve assembly comprises three springs. The main spring 48 extends around the
11 secondary valve member and is in compression throughout operation. A charge
12 spring 54 also extends around the secondary valve member, and drives the
13 secondary valve to open when compressed. The secondary valve includes a
14 peripheral flange 44 which itself has an outward surface 66 against which the inward
15 surface 52 of the armature can react, to form a distance limiting mechanism. A pilot
16 spring 58 is relatively relaxed when the valve assembly is in the fully closed state
17 illustrated in Figure 1A, but is compressed when the secondary valve has opened but
18 the primary valve has not opened, illustrated in Figure 1C, urging the primary valve
19 open.

20

21 When no current is supplied to the electromagnet, the valve adopts the closed
22 position illustrated in Figure 1A. The net force on the rigid stem due to the preload
23 within the charge spring and the pilot spring seals the secondary valve. The primary
24 valve and secondary valve are also retained in the closed positions by the pressure
25 differential between the internal chamber of the valve assembly and the outlet, and
26 the closing action of the main spring acting through the armature.

27

28 When current is supplied to the electromagnet, the electromagnet exerts an attractive
29 force (functioning as the active urging force) on the armature sufficient to move the
30 armature upwards. The elastic coupling allows the armature to move initially without
31 movement of the secondary valve member (Figure 1B). The armature contacts the
32 outward surface of the peripheral flange, opening the secondary valve (acting as the
33 pilot valve) and creating a small path for fluid to flow into the cylinder (Figure 1C). If
34 the flow through of fluid is sufficient or long enough to build pressure in the cylinder
35 equal to or close to that in the inlet, the primary poppet valve opens to allow a
36 relatively unrestricted through flow of fluid (Figure 1D).

37

1 Figure 4 shows a method of operating the fluid working machine of Figure 2 so as to
2 more reliably open the valve than was possible before the present invention, when
3 the valve has a very small secondary valve or large working chamber so that the
4 working chamber takes a long time to pressurise. A time series 100 shows the urging
5 force 101 created by the electromagnet, the position of the secondary valve 102 (low
6 being closed, high being open), the position of the main valve 103 (low and high as
7 before), and the pressure in the cylinder 104.

8

9 Before time 110 the valve and fluid working machine is at rest, with the low pressure
10 valve closing the path from the cylinder to the low pressure manifold. At time 110 the
11 controller energises the electromagnet to create the active urging force which opens
12 the secondary valve. Pressure in the high pressure manifold (and valve inlet) is high
13 enough to hold the primary valve head closed, so the primary valve fails to open
14 (corresponding to the valve state shown in Figure 1C). However, the cylinder
15 pressure rises as a small amount of fluid flows through the secondary valve. At time
16 111 the electromagnet power is reduced using Pulse Width Modulation (PWM), to
17 function as the background urging force. The secondary valve stays open and
18 pressure continues to rise, despite the valve having failed to open fully. Between time
19 112 and time 113 the electromagnet is fully energised again, but the pressure
20 difference is still too high. After energising it at time 114, however, the cylinder
21 pressure is close enough to the valve inlet pressure that the primary valve head
22 moves when the urging force is fully developed (time 115, corresponding to the valve
23 state of Figure 1D), and the now unrestricted fluid flow causes the pressure to jump to
24 the full inlet pressure. At time 116 the energising power is again reduced, but the
25 primary valve head stays open.

26

27 Figure 5 shows a method of operating the fluid working machine of Figure 2 so as to
28 more reliably open the valve than was possible before the present invention, where
29 the secondary valve and/or armature movement is fluidly or frictionally damped. A
30 time series 400 shows the current 401 in the electromagnet 6, the position of the
31 armature 36 (low being down, high being up, when the valve is oriented as in Figure
32 1), the downwards force 403 on the armature from all of the outward facing surface
33 66 and the three springs, the upwards force 404 on the armature from the
34 electromagnet, the secondary valve member position 405, the working chamber
35 pressure 406 and the primary poppet valve head position 407.

36

1 Before time 410 the valve and fluid working machine is at rest as shown in Figure 1A,
2 with a downwards bias force on the armature 36 from the three springs 48, 54 and
3 58, a high pressure at the inlet 28 and a low pressure at the outlet 26. Despite the
4 pressure difference across the valve there is no hydraulic force applied to the
5 armature, because the secondary valve member 20 is in contact with the seat 16,
6 which takes the hydraulic force. At time 410 the controller energises the
7 electromagnet to create an upwards force on the armature, acting as the active
8 urging force. The force rises as the electromagnet current increases. Once the
9 upwards force exceeds the combined spring forces at time 411, the armature begins
10 to move, compressing the main spring 48 and the charge spring 54. As the armature
11 moves, the downward force from the springs increases. However, the upwards force
12 also increases as the magnetic circuit efficiency increases, due to the reducing gap
13 between the pole and the armature. In moving, the armature overcomes fluid
14 damping forces (not shown) caused by fluid escaping from between the armature and
15 the pole, and friction forces due to the sliding of the armature through the flux bridge.
16 Therefore providing a high urging force at this time would waste energy because
17 damping and friction forces dissipate more energy if the urging is strong. At time 412
18 the electromagnet is changed to a PWM mode, which causes the current to fall
19 (acting as the background urging force), but the upwards force on the armature
20 continues to exceed the downwards spring forces, causing the armature to move
21 slowly. At time 413 the inward surface 52 of the armature hits the outward surface 66
22 of the peripheral flange 44 and the armature stops moving, because the hydraulic
23 force sealing the secondary valve member is transferred to the armature. At time 414
24 the electromagnet is reenergised, causing an increase in current and therefore
25 upwards force. Because the armature does not have to move far and it is in an
26 efficient position close to the pole, the large upwards force overcomes the hydraulic
27 force plus the spring forces at time 415, moving the final distance to press against the
28 pole by time 416, and opening the secondary valve a small distance. The
29 electromagnet can be returned to the PWM mode to maintain the secondary valve
30 partially open, at time 417. The working chamber pressure rises as fluid flows thereto,
31 and the hydraulic force sealing the secondary valve falls rapidly. When the pressure
32 across the valve equalises at time 418, the secondary valve member is urged fully
33 open (time 419) by the charge spring 54, and the primary poppet valve head opens
34 by time 420.

35

36 From the above descriptions referencing Figures 4 and 5, it can be seen that it is not
37 simply repeated attempts at urging the valve open that ultimately cause it to open, but

1 the intervening periods of background urging that cause the cylinder pressure to rise
2 over time, or the armature to move against friction and fluid damping without
3 needless expenditure of energy. The background urging keeps power consumption
4 down while maintaining the secondary valve open or the armature moving towards
5 the pole. The only way to achieve the equalised cylinder pressure and the full
6 armature movement, according to the teachings of the prior art, is to maintain the full
7 urging force for a very long time, typically 15 or more milliseconds. This consumed a
8 lot of power and may even have damaged the electromagnet, compared to the
9 method of the invention, where pulses of typically 4 milliseconds can be used.

10

11 Figure 6 shows a method of operating the transmission system in Figure 3 so as
12 obtain a smoother shaft movement than was possible without the present invention. A
13 time series 200 shows the urging force 201 created by the electromagnet, the
14 position of the secondary valve 202 (low being closed, high being open), the pressure
15 in the cylinder 203, the position of the main valve 204 (low and high as before), the
16 angle of the shaft 205 and the torque applied to the shaft by the piston 206.

17

18 Before time 210 the high pressure valve and shaft are at rest, the low pressure valve
19 closes the path from the cylinder to the low pressure line, and the fluid accumulator is
20 changed with fluid which pressurises the high pressure line through the open blocking
21 valve and therefore the high pressure valve inlet. At time 210 the controller energises
22 the electromagnet to open the secondary valve. Pressure in the high pressure line
23 holds the primary valve head closed. Fluid flowing from the fluid accumulator through
24 the secondary valve causes the shaft to rotate freely without raising very much
25 pressure in the cylinder, because the hysteresis of the transmission system
26 components means that very little torque is required to initially rotate the fluid working
27 machine's shaft. At time 211 the electromagnet is deenergised, the cylinder pressure
28 falls and the shaft may stop rotating. After deenergising, the electromagnet may for a
29 short time generate a continuing closing force (functioning as the background urging
30 force) due to the built up current. This process is repeated between times 212 and
31 213. A controller monitoring the shaft rotation through a shaft sensor decides
32 between times 213 and 214 that the shaft rotation is not fast enough, so it increases
33 the frequency of the electromagnet energising - i.e. the gap between times 214 and
34 213 is less than the gap between times 211 and 212. The controller could also have
35 increased the duration of the energising pulses, or if the shaft rotation was too fast it
36 could have reduced the duration or frequency of the energising pulses. The controller
37 may also be configured to know properties of the transmission system, so as to be

1 able to create the right energising pulses without reference to the shaft position
2 sensor. At time 215 the hysteresis is taken up and the torque on the fluid working
3 machine's shaft increases rapidly, in the opposite direction to the shaft rotation (i.e. to
4 oppose the rotation). The cylinder pressure rises until the valve is closed at time 216,
5 after which the pressure slowly falls due to unavoidable leakage, between the piston
6 and cylinder for example. The next time the controller opens the valve at time 217 the
7 rise in cylinder pressure is sufficient to open the primary valve. Between times 217
8 and 218 the controller detects that the shaft is not moving and only provides a shorter
9 pulse ending at time 218, then energises the electromagnet using PWM (functioning
10 as the background urging force) to maintain the primary valve open. The cylinder
11 pressure then stays at the high pressure manifold pressure.

12

13 In contrast to the fluid working machine operating method disclosed in the prior art,
14 the short opening bursts of the secondary valve mean that the shaft rotates relatively
15 slowly to take up the 'backlash' or 'slop' in the transmission system, reducing the
16 shock and noise when the 'backlash' or 'slop' is completely taken up. This can have
17 the advantage of increasing lifetime of the transmission system, including the fluid
18 working machine.

19

20 Figure 7 shows a method of operating the transmission system in Figure 3 so as
21 modulate the shaft torque when stationary, which was not possible without the
22 present invention. A time series 300 shows the urging force 301 created by the
23 electromagnet, the position of the secondary valve 302 (low being closed, high being
24 open), the pressure in the cylinder 303, the position of the main valve 304 (low and
25 high as before), the angle of the shaft 305 which is rotating with a constant, low,
26 speed, and the torque applied to the shaft by the piston 306.

27

28 Before time 310 the valve and shaft are at rest, with the low pressure valve providing
29 a fluid path from the cylinder to the low pressure manifold, and the fluid accumulator
30 is changed with fluid which pressurises the high pressure line through the open
31 blocking valve and therefore the high pressure valve inlet. At time 310 the controller
32 energises the electromagnet to open the secondary valve, as well as closing the low
33 pressure valve (not indicated). Pressure in the high pressure line holds the primary
34 valve head closed. Fluid flowing from the fluid accumulator through the secondary
35 valve raises pressure in the cylinder, so that the piston causes a proportional torque
36 on the shaft. At time 311 the electromagnet is deenergised, the cylinder pressure falls
37 and the torque falls. This process is repeated between times 312 and 313. A

1 controller monitoring the shaft rotation through a shaft sensor, or the tyre rotation
2 through another sensor (not shown) decides between times 313 and 314 that the time
3 averaged shaft torque is not high enough (for example the tyre rotation is too slow),
4 so it increases the frequency of the electromagnet energising - i.e. the gap between
5 times 314 and 313 is less than the gap between times 311 and 312. The controller
6 could also have increased the duration of the energising pulses, or if the tyre rotation
7 was too fast it could have reduced the duration or frequency of the energising pulses.
8 If the high pressure valve had been a type that allowed proportional control of the
9 fluid flow through the secondary valve by adjusting the intensity of the energising
10 pulses, the controller could have increased or decreased the intensity of the
11 energising pulses to allow more or less fluid into the cylinder. Note that the shaft
12 torque is gradually falling compared to the cylinder pressure because the mechanical
13 advantage of the piston on the fluid working machine's shaft will change (in this
14 example, reducing) as the shaft rotates. The controller continues to modulate the time
15 averaged shaft torque by causing energising pulses between times 316 and 317,
16 after which it decides (by knowing the shaft angle) that the piston is not suitable for
17 use anymore. At that time it could use one or more different cylinders in the same
18 way, or use a different operating method (for example those given in the prior art) to
19 maintain the desired tyre torque.

20
21 In contrast to the fluid working machine operating method disclosed in the prior art,
22 the repeated opening of the secondary valve allows the controller to modulate or
23 control the torque on the shaft provided by individual cylinders, without the necessity
24 to control the pressure in the high pressure manifold. For example the controller can
25 control the tyre torque while the high pressure manifold of the fluid working machine
26 is connected to the accumulator.

27
28 Figure 8 shows a method of operating the fluid working machine of Figure 2 whereby
29 there is an additional mode in which the high pressure valve is opened only once a
30 revolution. A time series 430 shows the electromagnet activation 431 and working
31 chamber volume 432 for one working chamber, the working chamber volume
32 expanding between Top Dead Centre (TDC, acting as the minimum volume) and
33 Bottom Dead Centre (BDC, acting as the maximum volume) and contracting in the
34 rising parts of the curve.

35
36 Before time 440 the machine's shaft is rotating, but the working chamber is idle, i.e.
37 with low pressure valve open and high pressure valve closed to isolate the working

1 chamber from the high pressure manifold. At time 440, just before TDC at time 441,
2 the electromagnet (acting as the active urging force) attempts to open the high
3 pressure valve, and may indeed open it to allow some fluid into the working chamber,
4 for example to modulate the pressure in the working chamber. This happens again
5 before time 442, and between that time and time 443 PWM (acting as the background
6 urging force) is used between two more full electromagnet actuations. Thus the fluid
7 working machine is operated in the manner of the current invention. Between time
8 443 (BDC) and time 444 (TDC) the high pressure valve is not actively urged open,
9 though it may be open passively if the low pressure valve is held closed deliberately
10 or accidentally, and the working chamber exhausts fluid to the high pressure
11 manifold. After time 444, another TDC, the high pressure valve is again urged open,
12 but, in the manner of the prior art it is only urged open this one time before reaching
13 the BDC point at time 445. Between time 445 and time 446 (yet another TDC), no
14 urging is carried out, but more interestingly between time 446 and time 447 (yet
15 another BDC), also, no urging is carried out. This behaviour corresponds to the
16 method of operating a fluid working machine with cycle-by-cycle working chamber
17 activation disclosed in the prior art, and may continue indefinitely. Together the
18 periods of cylinder expansion with one urging or with no urging (i.e. cycle-by-cycle
19 activation) act as the additional operating mode. Of course the fluid working machine
20 may return to the operating mode of multiple urging at any time.

21
22 Further variations and modifications may be made within the scope of the invention
23 herein disclosed.

1 Claims

2

3 1. A method of operating a fluid working machine (70), the fluid working machine
4 comprising a working chamber (76) of cyclically varying volume, a high
5 pressure manifold (88), and an actuated high pressure valve (1) for regulating
6 the flow of fluid between the working chamber and the high pressure manifold,
7 the actuated high pressure valve comprising a moveable valve member (10),
8 operable between a closed position in which the actuated high pressure valve
9 seals the working chamber from the high pressure manifold and at least one
10 open position in which the working chamber is in fluid communication with the
11 high pressure manifold through the actuated high pressure valve, and a
12 controllable opening mechanism (6, 46) operable to provide an active urging
13 force to urge the moveable valve member from the said closed position
14 towards at least one said open position, the volume of the working chamber
15 varying between a maximum volume and a minimum volume, the method
16 **characterised in that** the controllable opening mechanism provides the active
17 urging force more than once while the volume of the working chamber is
18 intermediate the maximum of chamber volume and the minimum of chamber
19 volume.

20

21 2. A method of operating a fluid working machine according to Claim 1, wherein
22 cycles of working chamber volume are mechanically coupled to rotation of a
23 rotatable crankshaft (82).

24

25 3. A method of operating a fluid working machine according to Claim 1 or Claim
26 2, wherein the active urging force is active for the duration of an active urging
27 period, the controllable opening mechanism providing at least two said active
28 urging periods, and the controllable opening mechanism provides a
29 background urging force outside the active urging periods, wherein the
30 maximum active urging force is at least twice the minimum force of the
31 background urging force.

32

33 4. A method of operating a fluid working machine according to any one
34 preceding Claim, wherein the fluid working machine has an additional
35 operating mode in which the controllable opening mechanism urges the
36 moveable valve member from the closed position towards at least one open

1 position only once is intermediate a maximum of chamber volume and a
2 minimum of chamber volume.

3

4 5. A method of operating a fluid working machine according to any one
5 preceding Claim, wherein the pressure of the fluid in the high pressure
6 manifold is higher than that of the fluid in the at least one working chamber at
7 least when the active urging force is active.

8

9 6. A method of operating a fluid working machine according to any one
10 preceding Claim, wherein the controllable opening mechanism actively urges
11 the moveable valve member for a predetermined period of time and repeats
12 the active urging at a predetermined frequency.

13

14 7. A method of operating a fluid working machine according to any one
15 preceding claim, wherein the active urging force of the controllable opening
16 mechanism moves the moveable valve member from the closed to at least
17 one open position at least once while the working chamber volume is
18 intermediate a maximum of chamber volume and a minimum of chamber
19 volume.

20

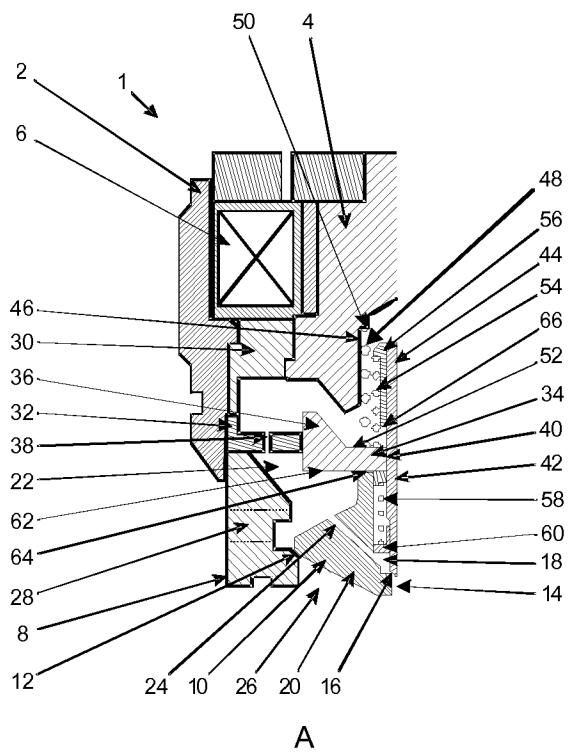
21 8. A method of operating a fluid working machine according to any one
22 preceding claim, wherein the actuated high pressure valve further comprises
23 a pilot valve (20) coupled to the moveable valve member, the pilot valve being
24 moveable between a closed position and at least one open position in which
25 the pilot valve is operable to admit fluid into the at least one working chamber
26 from the high pressure manifold when the pilot valve is in the at least one
27 open position, wherein the active urging force of the controllable opening
28 mechanism moves at least the pilot valve from the closed position to at least
29 one open position at least once while the working chamber volume is
30 intermediate a maximum of chamber volume and a minimum of chamber
31 volume.

32

33 9. A method of operating a fluid working machine according to any one
34 preceding Claim, wherein the fluid working machine further comprises one or
35 more sensors (90) and either or both the duration or frequency of the urging of
36 the controllable opening mechanism is changed in response to the output of
37 the one or more said sensors.

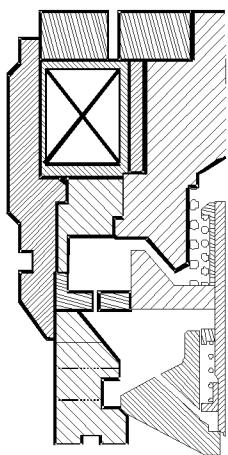
1
2 10. A method of operating a fluid working machine according to Claim 9, wherein
3 the one or more said sensors comprises at least one of a pressure sensor for
4 measuring the fluid pressure within the high pressure manifold and/or the
5 working chamber, a working chamber volume sensor, a fluid viscosity sensor,
6 and a valve position sensor for measuring the position of the moveable valve
7 member.

8
9 11. A method of operating a fluid working machine according to any one
10 preceding Claim, wherein the controllable opening mechanism is also
11 operable to provide a background urging force urging the moveable valve
12 member from the closed position towards at least one open position between
13 the more than one times it urges the moveable valve member from the closed
14 position towards the at least one open position.

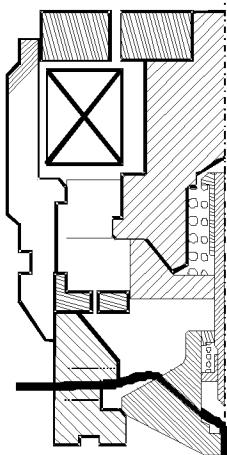

15
16 12. A fluid working machine (70) comprising a fluid working machine controller
17 (92), a working chamber (76) of cyclically varying volume, a high pressure
18 manifold (88), and an actuated high pressure valve (1) for regulating the flow
19 of fluid between the working chamber and the high pressure manifold, the
20 actuated high pressure valve comprising a moveable valve member (10),
21 operable between a closed position in which the actuated high pressure valve
22 seals the working chamber from the high pressure manifold and at least one
23 open position in which the working chamber is in fluid communication with the
24 high pressure manifold through the actuated high pressure valve, and a
25 controllable opening mechanism (6, 46) operable to provide an active urging
26 force to urge the moveable valve member from the said closed position
27 towards at least one said open position, the volume of the working chamber
28 varying between a maximum volume and a minimum volume, **characterised**
29 **by** the controller having an operating mode in which the controllable opening
30 mechanism is caused by the controller to provide the active urging force more
31 than once while the volume of the working chamber is intermediate a
32 maximum of chamber volume and a minimum of chamber volume.

33
34 13. A transmission system (500) comprising a fluid working machine according to
35 claim 12, a controller (92) to operate the fluid working machine, a high
36 pressure fluid source (457) in fluid communication with the said high pressure

1 manifold, a low pressure fluid sink (453), a rotational output (503), and a non-
2 rigid link (502) between the fluid working machine and the rotational output.
3


4 14. Computer software comprising program code which, when executed on the
5 controller (92) of a fluid working machine (70), causes the fluid working
6 machine to operate according to the method of any one of claims 1 to 11.
7

8 15. A computer readable carrier storing computer software according to claim 14.



A

B

C

D

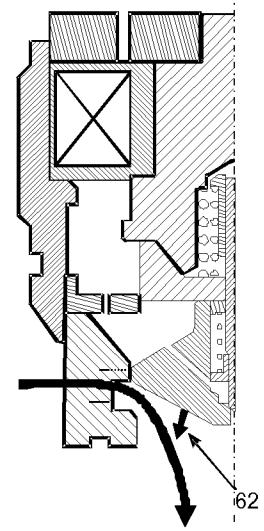


Fig. 1

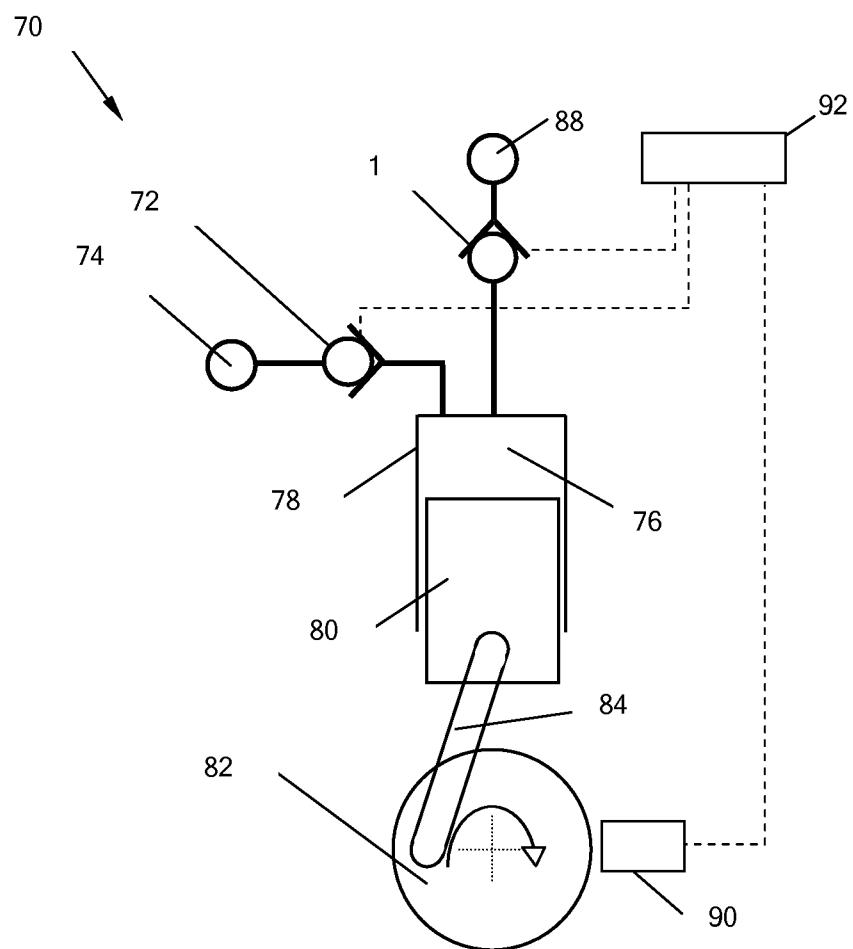


Fig. 2

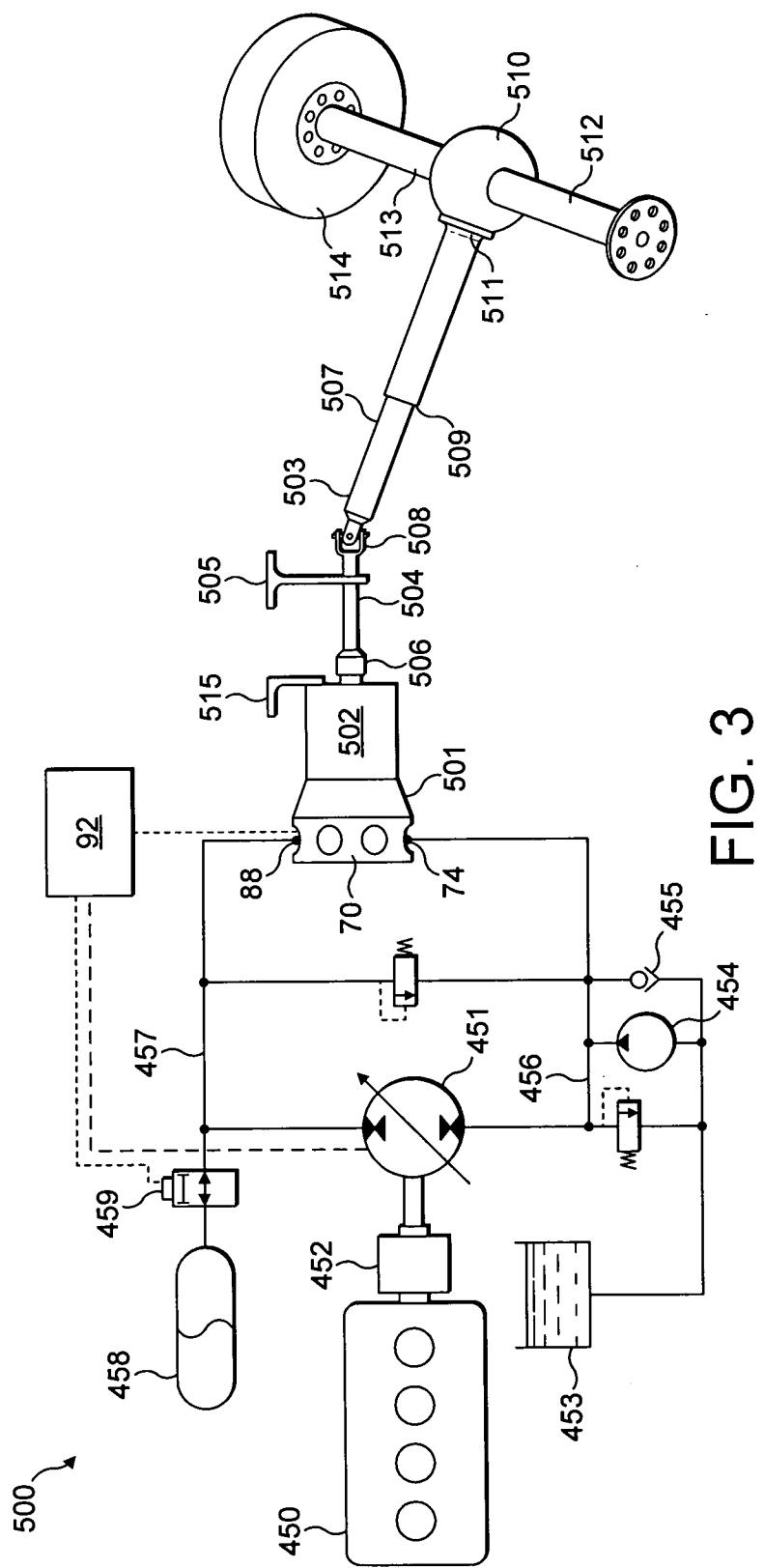
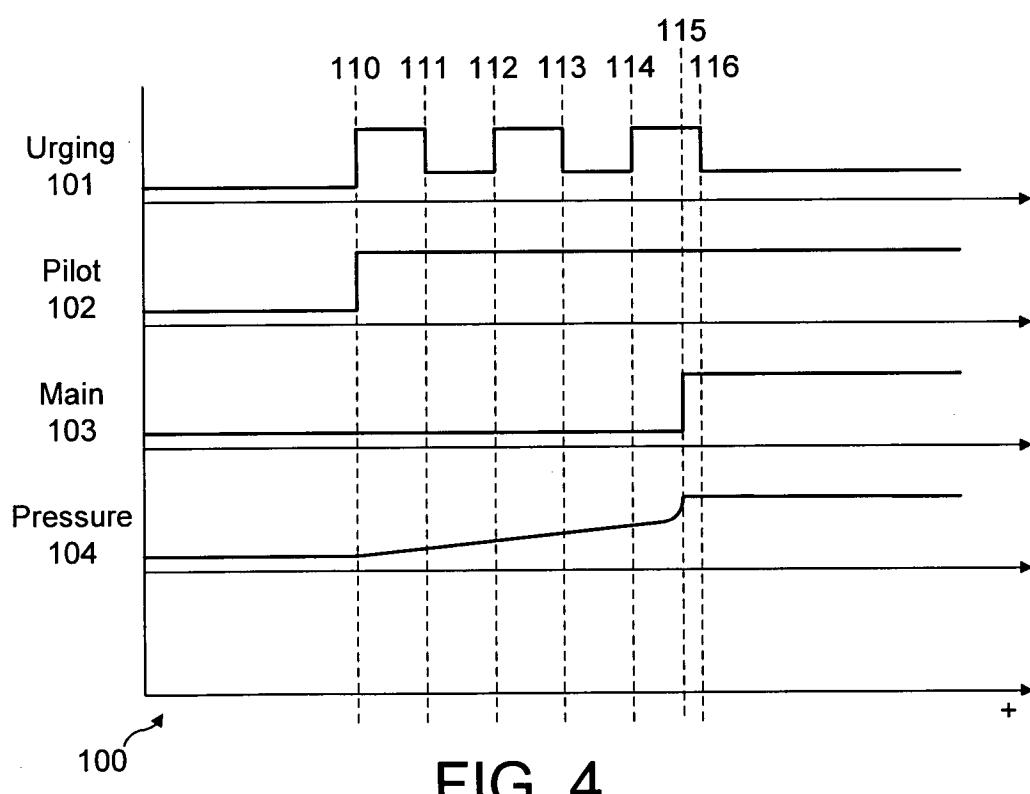



FIG. 3

4 / 7

5 / 7

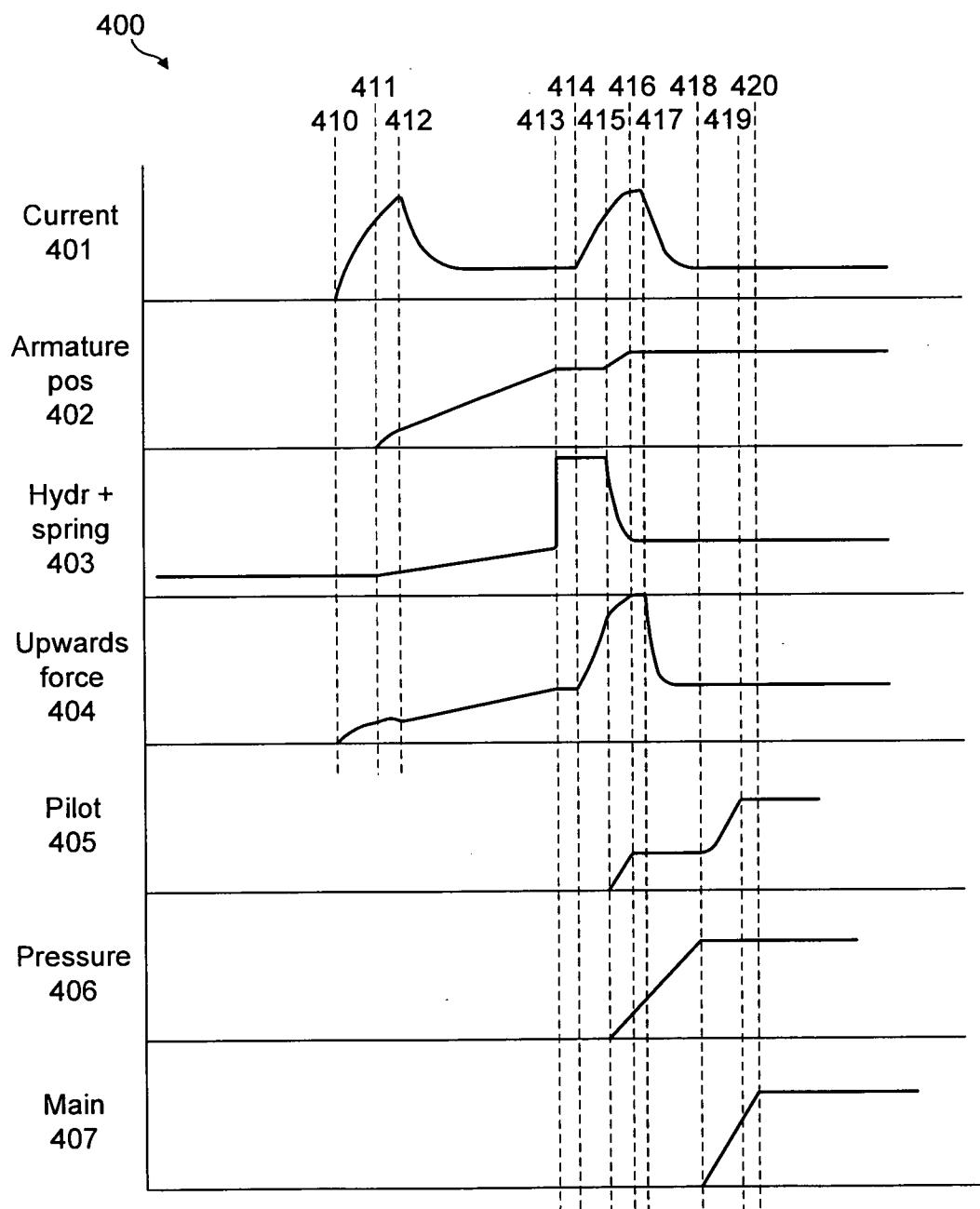
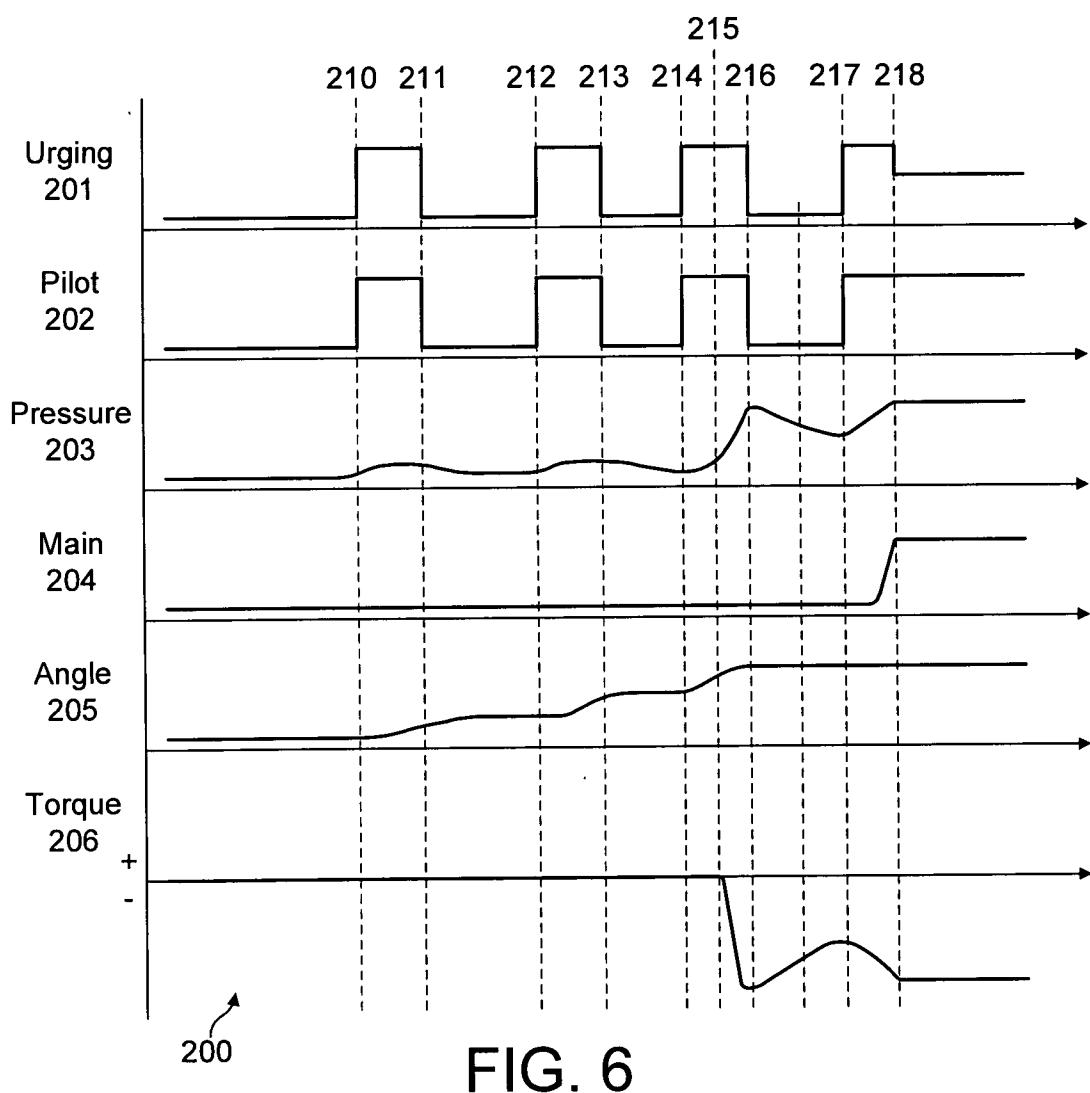



FIG. 5

6 / 7

7 / 7

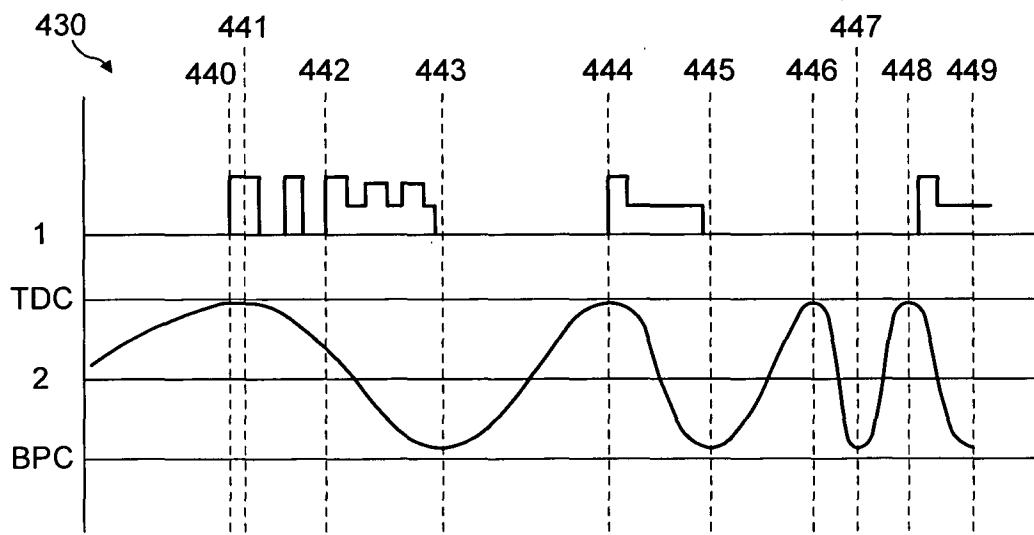
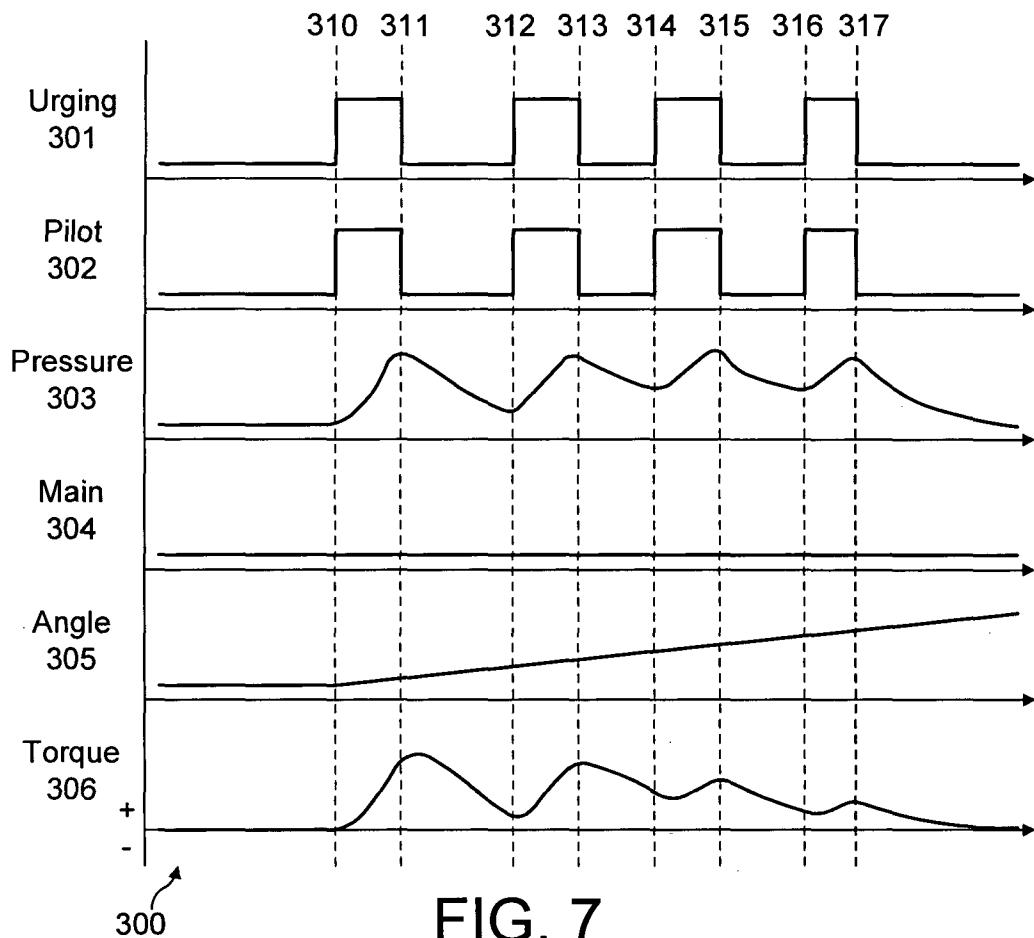



FIG. 8