PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 98/38762
HO04L A2

(43) International Publication Date: 3 September 1998 (03.09.98)

(21) International Application Number: PCT/US98/02756 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 24 February 1998 (24.02.98)

(30) Priority Data:

60/039,167 26 February 1997 (26.02.97) us

(63) Related by Continuation (CON) or Continuation-in-Part
(CIP) to Earlier Application
us
Filed on

60/039,167 (CON)
26 February 1997 (26.02.97)

(71) Applicant (for all designated States except US): SIEBEL
SYSTEMS, INC. [US/US]; 1855 South Grant Street, San
Mateo, CA 94402 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ROTHWEIN, Thomas,
Michael [US/US]; 314 Ballymore Circle, San Jose, CA
95136 (US). COKER, John, L. [US/US]; 723 Chateau Drive,
Hilisborough, CA 94010 (US).

(74) Agents: GOLDMAN, Richard, M.; Cooley Godward LLP,
3000 El Camino Real, Five Palo Alto Square, Palo Alto,
CA 94306-2155 (US) et al.

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO
patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: METHOD OF DETERMINING VISIBILITY TO A REMOTE DATABASE CLIENT OF A PLURALITY OF DATABASE
TRANSACTIONS USING A NETWORKED PROXY SERVER

(57) Abstract

A method of establishing and maintaining a secure TCP/IP session between a server (301) having a database and a client (311). The
method includes sending a hello message from the client (311) to the server (301) to establish client authorization, the server (301) sends
a server session ID and a session private key to the client (311) to establish the session. Also disclosed is an article of manufacture that
includes a computer usable medium having computer readable program code for causing the above method, and a program storage device

tangibly embodying program code to effect the above method.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Ccu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/38762 PCT/US98/02756

10

15

20

25

METHOD OF DETERMINING THE VISIBILITY TO A REMOTE
DATABASE CLIENT OF A PLURALITY OF DATABASE
TRANSACTIONS USING A NETWORKED PROXY SERVER

INTRODUCTION

Technical Field

This invention relates to a system and method for providing updates to
a network of partially replicated relational database systems, and, more
particularly, for providing efficient access to a database by a remote client

using a networked proxy server.

Background

Relational databases are a commonly-employed data structure for
representing data in a business or other environment. A relational database
represents data in the form of a collection of two-dimensional tables. Each
table comprises a series of cells arranged in rows and columns. Typically, a
row in a table represents a particular observation. A column represents either

a data field or a pointer to a row in another table.

For example, a database describing an organizational structure may have
one table to describe each position in the organization, and another table to
describe each employee in the organization. The employee table may include
information specific to the employee, such as name, employee number, age,
salary, etc. The position table may include information specific to the position,

such as the position title ("salesman", "vice president”, etc.), a salary range,

-1-

WO 98/38762 ' PCT/US98/02756

10

15

20

25

30

and the like. The tables may be related by, for example, providing in each row
of the employee table a pointer to a particular row in the position table,
coordinated so that, for each row in the employee table, there is a pointer to
the particular row in the position table that describes that employee’s position.
A relational database management system (RDBMS) supports "joining" these
tables in response to a query from a user, so that the user making a query
about, for example, a particular employee, may be provided with a report of
the selected employee, including not only the information in the employee

table, but also the information in the related position table.

Relational databases may be much more complex than this example, with

several tables and a multiplicity of relations among them.

With the widespread use of inexpensive portable computers, it is
advantageous to replicate a database onto a portable computer for reference at
locations remote from the central computer. The replicated database may then
be referenced by the user of the portable computer, without requiring reference
to the main database, which may be maintained at a central location
inconvenient to the user of the portable computer. However, there are a

number of difficulties with the use of a replicated database.

One disadvantage is that a full copy of the central database may require
more data storage than is desired or economical. For example, a salesman
working in the field may néed to refer to the database for information regarding
sales opportunities in his sales area, but have no need to refer to any
information regarding sales opportunities outside of his area. One possible
approach to reduce the amount of required data storage is to simply replicate
only that portion of the database that is needed by the user. However, this
approach does not recognize that the criteria to determine which portions of the

data are required is likely to vary over time. For example, the salesman may

2.

WO 98/38762 PCT/US98/02756

10

15

20

25

30

have a new city added to his territory. Under conventional approaches, the
salesman would need to re-replicate his local copy of the database, this time
selecting data including the added city. Such a practice is inconvenient, subject

to error, and time-consuming.

A further disadvantage to a replicated database is the difficulties
encountered in attempting to update data using the replicated copy. A change
made to the replicated database is not made to the central database, leading to
a discrepancy between the information that is stored in the replicated copy of
the database and the information that is stored in the central database.
Although it is possible to journal modifications made to the replicated copy and
apply an identical modification to the central database, one problem that this
approach faces is the possibility of colliding updates; that is, where a user of
a replicated copy makes a change to data that is also changed by a user of the

central copy of by the user of another replicated copy.

It is therefore desirable to provide a capability to maintain one or more
partially-replicated copies of a central database, in such a way that the degree
of replication may be easily changed without requiring a refresh of the entire
replicated database, and that permits updates to be coordinated among users of
the central database and users of the partially replicated databases. In addition,
it is also desirable to provide access to the central database by the users of the
partially replicated databases over a wide area network, so that it is not
necessary for each user to call the central database directly. The ability to use
the Internet, a commercial online provider’s network, or even a corporate
intranet, significantly increases the utility of the partially replicated databases
by providing excellent connectivity at relatively minimal cost. Further, the
software and the replicated databases may be integrated with other services

which use the Internet.

WO 98/38762 PCT/USY8/02756

10

15

20

25

30

SUMMARY OF THE INVENTION

The present invention is directed to a method of maintaining a partially

replicated database in such a way that updates made to a central database, or
to another partially replicated database, are selectively propagated to the
partially replicated database. Updates are propagated to a partially replicated
database if the owner of the partially replicated database is deemed to have
visibility to the data being updated. Visibility is determined by use of
predetermined rules stored in a rules database. In one aspect of the invention,
the stored rules are assessed against data content of various tables that make up

a logical entity, known as a docking object, that is being updated.

In another aspect of the invention, the stored rules are assessed against
data content of one or more docking objects that are not necessarily updated,
but that are related to a docking object being updated. In one embodiment, the

visibility attributes of the related docking objects are recursively determined.

In yet another aspect of the invention, changes in visibility are
determined to enable the central computer to direct the nodes to insert the
docking object into its partially replicated database. Such changes in visibility
are determined so as to enable the central computer to direct a node to remove

a docking object from its partially replicated database.

In a further aspect of the invention, the predetermined rules are in
declarative form and specify visibility of data based upon structure of the data

without reference to data content.

In still another aspect of the invention, the transactions made to the
database are ordered and processed in such a way as to reduce the

computational resources required to calculate the visibility of the transactions.

WO 98/38762 PCT/US98/02756

10

15

20

25

30

In another aspect of the invention, the transactions are transmitted over
the Internet and provided to a networked proxy server which transmits the

requests to the central computer for database access.

In yet another aspect of the invention, security and access control are

provided for secure transmissions over an insecure network.

These and other aspects of the inventions will become apparent to one
skilled in the art by reference to the following drawings and detailed

description.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 depicts an overview of the operation of one embodiment of the

present invention.

Figure 2 depicts a database schema that shows the relationship of the

various components that make up a Docking Object.

Figure 3 depicts steps performed by an update manager to update a

database.

Figure 4 depicts steps performed by a Docking Manager to transmit

and/or receive one or more transaction logs.

Figure 5 depicts the steps performed by a merge processor to merge

transaction log records into an existing database.

Figure 6 depicts the steps performed by a log manager to prepare a

partial transaction log.

WO 98/38762 PCT/US98/02756

10

15

20

25

30

Figure 7 depicts the steps performed by a visibility calculator for

calculating visibility for a docking object as invoked by a log manager.

Figure 8 depicts the steps performed to synchronize a partially replicated

database in response to a change in data visibility.

Figure 9 depicts the overall structure of a system embodying the present

invention using a networked proxy server.

DESCRIPTION OF SPECIFIC EMBODIMENTS

Overview

Figure 1 depicts an overview of the operation of one embodiment of the
present invention. Figure 1 depicts a central computer system 1 and three
remote computer systems (or "nodes") 21-a, 21-b, and 21-c. Each of nodes 21-
a, 21-b and 21-c are depicted in various states of communication with central
computer system 1, as will be more fully explained. Central computer system
1 includes a central database 3, a docking manager 5, a merge processor 7 and
a log manager 9. Central computer system 1 additionally optionally includes

update manager 11 responsive to user input 13.

Node 21-a is a remote computer system, such as a mobile client such as
a laptop computer. Node 21-a includes a partially replicated remote database
23-a, update manager 31-a responsive to user input 33-a, docking manager 25-a
and merge manager 27-a. In operation, update manager is responsive to user
input 33-a to make changes to remote database 23-a as directed by the operator
of node 21-a. Updates made are recorded, or journaled, in node update log 35-

a.

At some point at the convenience of the operator of node 21-a, node

docking manager 35-a is activated, and enters into communication with central

-6-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

docking manager 5. Update log 35-a is taken as input by node docking
manager 25-a, and provided to central docking manager 5. Central docking
manager 5 creates a received node update log 19, which contains all the
information that had been recorded in update log 35-a. Optionally, partial log
17-a is taken as input by central docking manager 5 and provided to node

docking manager 25-a, as more fully described herein.

At some point in time, at the convenience of the operator of central
computer system 1, merge processor 7 is activated. Merge processor 7 takes
as input received node update log 19, and applies the updates described therein
to central database 3. In the process of applying the updates from received
node update log 19, merge processor journals the updates applied to central
update log 15. Optionally, update manager 11, responsive to user input 12
makes additional changed to central database 3 as directed by the operator of
central computer system 1. The updates made by update manager 11 are

additionally journaled in central update log 15.

At some point in time, at the convenience of the operator of central
computer system 1, log manager 9 is activated. Log manager 9 takes as input
central update log 15 and produces as output a set of partial logs 17-a, 17-b and
17-c according to visibility rules as will be further described herein. Each of
partial logs 17-a, 17-b and 17-c corresponds to one of nodes 21-a, 21-b and 21-
¢. When a node docking manager such as node docking manager 25-a enters
into communication with central docking manager 5 and optionally requests
transmission of its corresponding partial log, central docking manager 5 takes
as input the appropriate partial log, such as partial log 17-a, and presents it to
node docking manager 25-a. Node docking manager 25-a then replicates partial

log 17-a as merge log 37-a.

At some point in the future, at the convenience of the operator of node

-

WO 98/38762 ' PCT/US98/02756

10

15

20

25

30

21-a,
merge processor 27-a is activated. Merge processor 27-a takes as input merge

log 37-a, and applies the updates described therein to partially replicated
database 23-a.

In addition to node 21-a, Figure 1 also depicts two additional nodes 21-b .
and 21-c. Node 21-b is depicted in communication with central computer 1.
However, unlike node 21-a, the operator of node 21-b has requested only to
send his updates to central computer system 1, and has not requested to be
presented with changes made elsewhere to be made to his partially replicated
database 23-b. This may be, for example, if the operator has an urgent update
that must be made as soon as possible, but does not have the time to receive
updates from other nodes. Accordingly, Figure 1 shows only transmission of
node update log 35-a from node docking manager 25-b to central docking
manager 5, and no transmission from central docking manager 5 to node
docking manager 25-b. Accordingly, the merge manager for node 21-b is not

activated and is not shown.

Likewise, node 21-c is depicted as not in communication with central
computer system 1. Accordingly, the docking manager for node 21-c is not

activated and is not shown.

By the cycle described above, updates made by each of nodes 21-a, 21-b
and 21-c are presented to central computer system 1, permitting central
database 3 to be updated accordingly. In addition, each of the updates made
by each of the nodes 21-a, 21-b and 21-c, as well as updates made on central
computer system 1, are routed back to each of nodes 21-a, 21-b, and 21-c,
thereby keeping each of partial databases 23-a, 23-b and 23-c in

synchronization with each other and with central database 3.

WO 98/38762 | PCT/US98/02756

10

15

20

25

30

Database Structure

The synchronization of central database 3 with node databases 23-a, 23-b
and 23-c is performed using a construct called a Docking Object. A Docking
Object consists of Member Tables (including one Primary Table), Visibility
Rules, Visibility Events, and related Docking Objects.

A Member Table is a table of the relational database that makes up a
docking object. When a docking object is propagated from central database 3
to one of node databases 23-a, 23-b or 23-c, the propagation takes the form of
an insertion into each of the Member Tables associated with the particular
docking object. Similarly, when a docking object is scheduled to be removed
from a database, that removal consists of deleting records from the member
tables associated with the docking object. For example, a docking object that
represents a sales opportunity may include tables that represent the opportunity
itself (e.g., named "S_OPTY"), the product whose sale is represented by the
opportunity (e.g., named "S_OPTY_PROD"), the contact for the opportunity
(e.g., named "S_OPTY_CONTACT"), etc. Each of these tables is said to be
a member table of the "Opportunity Docking Object."

A Primary Table is a Member Table that controls whether a particular
instance of a Docking Object is visible to a particular node. The Primary Table
has a Primary Row-ID value that is used to identify a row of the Primary Table
being updated, deleted or inserted. For example, the "Opportunity Docking
Object” may have as a primary table the table S OPTY. The row-id of that
table, i.e., S_OPTY.row_id, is the Primary Row-ID for the Opportunity
Docking Object.

A Visibility Rule is a criterion that determines whether a particular
instance of a Docking Object is "visible" to a particular node 21. If a Docking

Object is visible to a particular node, that node will receive updates for data in

9-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

the Docking Object. Visibility Rules are of two types, depending on the field
RULE_TYPE. A Visibility Rule with a RULE_TYPE of "R" is referred to as
an SQL Rule. An SQL Rule includes a set of Structured Query Language
(SQL) statements that is evaluated to determine if any data meeting the criteria
specified in the SQL statements exists in the Docking Object. If so, the
Docking Object is visible to the node. A Visibility Rule with a RULE TYPE.
of "O" is referred to as a Docking Object Rule. A Docking Object Rule
specifies another Docking Object to be queried for visibility. If the specified
Docking Object is visible, then the Docking Object pointing to it is also visible.

A Related Docking Object is a Docking Object that is propagated or
deleted when the Docking Object under consideration is propagated or deleted.
For example, an Opportunity Docking Object may have related Docking
Objects representing the sales contacts, the organizations, the products to be
sold, and the activities needed to pursue the opportunity. When an Opportunity
Docking Object is propagated from Central Database 3 to one of node databases
23, the related docking objects are also propagated.

Figure 2 depicts a database schema that shows the relationship of the
various components that make up a Docking Object. The schema is a meta-
database, in that it does not describe the data being accessed in the database.
Rather, the schema is a separate database that defines the structure of the
database being accessed. That is, it is a database comprising tables that
describe the relationships and data contexts of another database.

Each of the tables shown in Figure 2 is a table in a relational database,
and as such is in row-column form. Many columns represent fields that are
common to all the illustrated tables. Such fields include for example, a
ROW_ID to identify a particular row in the table, as well as fields to tack the
date and time that a row was created and last modified, and the identity of the

user who created or modified the row. In addition, each table contains fields

-10-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

specific to that table, and which are described in detail below.

Table S DOBJ 61 describes the Docking Objects in an application.
Table S_DOBJ 61 includes the fields OB]_NAME and PRIMARY TABLE ID.
Field OBJ_NAME defines the name of the Docking Object being described.
Field PRIMARY_TABLE ID is used to identify the primary table associated
with this Docking Object.

Table S DOBJ_INST 63 describes whether a particular instance of a
Docking Object, described by table S DOBJ 61, is present on a particular
node’s database. Table S_DOBJ_INST 63 includes the fields NODE_ID,
DOBJ_ID and PR_TBL_ROW _ID. Field NODE ID points to a particular node
table 65. Field DOBJ_ID points to the Docking Object to which the Docking
Object instance applies. Field PR_TBL_ROW _ID is used to select a particular
row in the Primary Table of the Docking Object. This value identifies the
Docking Object instance.

Table S REL_DOBJ 67 describes the related Docking Objects of a
particular Docking Object, described by table S DOBJ 61. Table
S_REL DOBJ 67 includes the fields DOBJ_ID, REL DOBJ ID, and
SQL_STATEMENT. Field DOBJ _ID identifies the Docking Object that owns
a particular related Docking Object. Field REL_DOBJ _ID identifies the related
Docking Object that is owned by the Docking Object identified by DOBJ_ID.
Field SQL_STATEMENT is an SQL statement that may be executed to obtain
the Primary ID value of the related Docking Object.

Table S DOBJ_TBL 69 describes the member tables of a particular
Docking Object, described by table S DOBJ 61. Table S DOBJ TBL 69
includes the fields DOBJ_ID, TBL ID, and VIS EVENT FLG. Field
DOBJ_ID identifies the Docking Object that contains the member table

-11-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

described by the row. Field TBL ID identifies the particular table in the
database that is the member table described by the row. Field
VIS_EVENT_FLG is a flag that indicates whether a change to this Docking
Object can result in a visibility event. A value of "Y" indicates that a change

can result in a visibility event; a value of "N" indicates that it cannot.

Table S_ DOBJ_VIS RULE 71 contains the visibility rules associated
with a particular Docking Object. S DOBJ_VIS RULE 71 contains the fields
DOBJ_ID, RULE SEQUENCE, RULE TYPE, SQL STATEMENT and
CHECK_DOBJ_ID. Field DOBJ_ID identifies the Docking Object with which
a particular visibility rule is associated. Field RULE SEQUENCE is a
sequence number that indicates the sequence, relative to other visibility rules
in table S_DOBJ_VIS_RULE 71, in which the particular visibility rule should
be run. RULE_TYPE specifies whether the particular visibility rule is of type
"R," indicating an SQL visibility rule or of type "O," indicating a Docking
Object visibility rule.

If RULE_TYPE is equal to "R," field CHECK DOBJ ID is not
meaningful, and field SQL_STATEMENT contains an SQL statement that is
evaluated using the Primary ROW-ID of the primary table associated with this
Docking Object and a particular Node 21. If the SQL statement returns any
records, the Docking Object is deemed to be visible to the Node 21 for which

visibility is being determined.

IfRULE_TYPE is equal to "O," both field CHECK_DOBJ_ID and field
SQL_STATEMENT are meaningful. Field CHECK DOBJ ID specifies a
docking object whose visibility should be determined. If the specified docking
object is deemed to be visible, then the docking object associated with the
visibility rule is also visible. Field SQL STATEMENT contains a SQL

statement that, when executed, returns the Row-ID of the docking object

-12-

WO 98/38762 | PCT/US98/02756

10

15

20

25

30

identified bry CHECK_DOBIJ_ID that corresponds to the docking object instance
associated with the visibility rule.

Table S_APP_TBL 73 is an Application Table that describes all the
tables used in a particular application. It is pointed to by table S DOBJ TBL
69 for each member table in a docking object, and by table S DOBJ for the
primary table in a docking object. S _APP TBL 73 points to table
S_APP_COL 75, which is an Application Column Table that describes the
columns of data in a particular application. S APP_TBL 73 points to table
S_APP_COL 75 directly through a primary key and indirectly through such
means as a Foreign Key Column Table 81, User Key Column Table 83, and
Column Group Table 85. The relationship of an Application Table,
Application Column Table, Foreign Key Column Table, User Key Column
Table and Column Group Table are well known in the art and are not further

described.

Update Processing

Figure 3 depicts steps performed by an update manager 31 such as
update manager 31-a, 31-b or 31-¢ in updating a database, such as a node
database 23-a, 23-b or 23-c, responsive to user input. Execution of update
manager 31 begins in step 101. In step 103, the update manager 31 accepts
from the user input 33 in the form of a command requesting that the data in
database 23 be altered. The request may be in the form of a request to delete
a row of a table, to add a row to a table, or to change the value of a cell at a
particular column of a particular row in a table. In step 105, using a well-
known means, the update manager 31 applies the requested update to database
23. In step 107, the update manager 31 creates a log record describing the
update and writes it to update log 35.

The contents of a log record describe the update made. Each log record

indicates the node identifier of the node making the update, an identification of

-13-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

the table being updated, and an identification of the type of update being made,
i.e., an insertion of a new row, a deletion of an existing row, or an update to
an existing row. For an insertion, the log record additionally includes an
identifier of the row being inserted, including its primary key and the values
of the other columns in the row. For a deletion, the log record identifies the
primary key of the row being deleted. For an update, the log record identifies
the primary key of the row being updated, the column within the row being
updated, the old value of the cell at the addressed row and column, and the

new value of the cell.

After writing a log record in step 107, the update processor exits for this
update. The foregoing description of the update processing preferably includes
additional steps not material to the present invention, for example, to assure
authorization of the user to make the update, to stage and commit the write to
the database to allow for rollback in the event of software or hardware failure,
and the like. These steps are well-known in the art and are not described

further.

An update manager 11 executing in central computer system 1 operates
in an analogous manner, except that it updates central database 3 and writes its

log records to central update log 11.

Docking Processing
Figure 4 depicts steps performed by a Docking Manager 25 such as

Docking Manager 25-a, 25-b or 25-c to transmit and/or receive one or more
transaction logs. Docking Manager 25 is invoked by the user of a remote node
such as node 21-a, 21-b or 21-c, whereby the user requests that the node dock
with central computer 1 to upload an update log such as update log 35-a to
central computer 1, to download a partial log such as partial log 17-a, or both.

Execution of Docking Manager 25 begins in step 121. In step 123, Docking

-14-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

Manager 25 connects with central computer 1 under the control of Central
Docking Manager 5. This connection can be any connection that enables data
exchange. It is anticipated that the most common form of a connection is a
telephone line used in conjunction with a modem, but other forms of data
connection, such as a Local Area Network or a TCP/IP connection may also
be used. Step 125 checks to see whether the user has requested that node
update log 35-a be uploaded to the Central Computer 1. If so, execution
proceeds to step 127. If not, step 127 is skipped and control is given to step
129. In step 127, Docking Manager 25 uploads its update log to central
computer 1. The upload may be accomplished with any known file transfer
means, such as XMODEM, ZMODEM, KERMIT, FTP, ASCII transfer, or
any other method of transmitting data. In step 129, Docking Manager 25
checks to see whether the user has requested that a partial log such as partial
log 17-a be downloaded from Central Computer 1. If so, execution proceeds
to step 131. If not, step 131 is skipped and control is given to step 133. In
step 131, Docking Manager 25 downloads its partial log from central computer
1. The download may be accomplished with any known file transfer means,
such as XMODEM, ZMODEM, KERMIT, FTP, ASCII transfer, or any other
method of transmitting data. In step 133, having completed the requested data

transfer, Docking Manager 25 exits.

Merge Processing

Merge processing is performed by a processor such as node merge
processor 27-a, 27-b, or 27-c, or central merge processor 7. The merge process
serves to update its associated database with a transaction that has been entered
by a user of a computer remote from the computer where merge processing is
being performed. Merge processing is analogous to update processing and is
similar in form to update processing as previously disclosed with reference to
figure 3, with three differences. First, the input to a merge processor is not an

update entered directly by a user, but rather is a log file that is obtained from

-15-

WO 98/38762 | PCT/US98/02756

10

15

20

25

30

a computer remote from the computer where the merge is executing. A second
difference is that, as shown by in Figure 1, merge processing does not produce
a log when performed at a node. The function of a log on a node is to record
a transaction for propagation to Central Computer system 1 and thence to other
nodes as required. A transaction that is the subject of a merge in a node has
been communicated to Central Computer System 1, and there is no need to re-

communicate it.

A third difference is that merge processing must be capable of detecting
and resolving multiple conflicting transactions. For example, assume that a
field contains the value "Keith Palmer." Assume further that a user at node 27-
a enters a transaction to update that field to "Carl Lake," and a user at node 27-
b enters a transaction to update the same field to "Greg Emerson." Without
collision detection, data among various nodes may become corrupt. When the
transaction for user 27-a is merged, the field is updated from "Keith Palmer"
to "Carl Lake." Without collision handling, when the transaction for node 27-b
is merged, the field would be updated to "Greg Emerson," and the central
database would then be out of synch with the database of node 27-a.
Furthermore, when merge processing is performed on each of nodes 27-a and
27-b, each node will update its database with the other’s transactions, leaving

at least one node out of synch with the other node and with central database.

Therefore, merge processing must also have a means of detecting
collisions and correcting them. In the above example, a simple way to detect
and correct a collision is to compare the value in the database to the value that
the merge log reflects as being the previous value in the node database. If the
two values do not match, Merge processor 7 may reject the transaction and
generate a corrective transaction to be sent to the node from which the
conflicting transaction originated. In the above example, when the transaction

for node 27-b was presented to merge processor 7, merge processor 7 would

-16-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

compare "Keith Palmer," the prior value of the field as recorded by node 27-b
to "Carl Lake," the present value of the field as recorded in central database
3. Detecting the mismatch, merge processor 7 may then generate a transaction
to change the value "Greg Emerson" to "Carl Lake," and write that transaction
to update log 15. In a subsequent docking operation, that transaction would be
routed back to node 27-b to bring its database 23-b in synch with the other

databases.

The above is one example of a collision and a resulting corrective action.
Other types of collisions include, for example, an update to a row that has
previously been deleted, inserting a row that has previously been inserted, and
the like. Merge processing must detect and correct each of these collisions.
This may be performed using any of a number of well-known methods, and is

not discussed further.

Figure 5 depicts the steps performed by merge processor such as central
merge processor 7. Although it depicts merge processor 7 writing to central
database 3 and to transaction log 15, it is equally representative of a node
merge processor such as node merge processor 27-a, 27-b or 27-c updating a
node database 23-a, 23-b or 23-c. Merge processing begins at step 141. In
step 143, merge processor 7 finds the first unprocessed transaction on received
log 19. Instep 147, merge processor 7 selects a transaction from received log
19. In step 149, merge processor 149 attempts to update database 3 according
to the transaction selected in step 147. 1In step 151, merge processor 7
determines whether the database update of step 149 failed due to a collision.
If so, merge processor proceeds to step 153, which generates a corrective
transaction. Following the generation of the corrective transaction, the merge
processor returns to step 149 and again attempts to update database 3. If no
collision was detected in step 151, execution proceeds to step 157. Instep 157,

merge processing checks to see if it is executing on central computer 1. If so,

-17-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

step 155 is executed to journal the transaction to log 15. In any case, either if
step 157 determines that the merge processing is being performed on a node or
after step 155, execution proceeds to step 159. Step 159 checks to see if any
transactions remain to be processed from log 19. If so, execution repeats from
step 147, where the next transaction is selected. If not, merge processing exits

in step 161.

Log Management

Figure 6 depicts the steps to be performed by log manager 9 to prepare
a partial transaction log such as partial transaction log 17-a, 17-b, or 17-c. The
procedure depicted in Figure 6 is executed for each node available to dock with
central computer system 1. Log manager 9 begins execution in step 171. In
step 173, Log Manager 9 finds the first unprocessed transaction for the node
whose partial transaction log is being prepared. In step 175, log manager 9
selects a transaction for processing. In step 177, log manager 9 checks to see
whether the selected transaction originated on the same node for which
processing is being performed. If so, there is no need to route the transaction
back to the node, and control proceeds to step 179. Step 179 checks to see
whether there are any transactions remaining to be processed. If so, control is
given again to step 175. If not, control passes to step 189, which records the
last transaction that was processed for this node, and then exits at step 191. If
the transaction originates in other than the same node as the node for which
processing is being performed, control is given to step 181. Step 181 calls a
visibility calculator to determine whether the selected transaction is visible to
the node being processed. The Visibility calculator routine is described in
detail further herein. In step 183, merge processor 9 checks to see whether the
visibility calculator determined that the transaction is visible. If it is not
visible, control is passed to step 179, which performs as disclosed above. If
the transaction is visible, control is passed to step 185. Step 185 writes a

record for this transaction to the partial transaction log for the node being

-18-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

processed, for example, partial transaction log 17-a for node 21-a. Instep 187,
the log manager 9 records the last transaction that was processed for this node,
and then passes control to step 179, which determines whether to select

additional transactions or exit, as disclosed above.

Visibility Calculation

Figure 7 depicts a flowchart describing the procéss a visibility calculator
for calculating visibility for a docking object as invoked by step 181 of log
manager 9. The visibility calculator is called with the node-id of the node for
which visibility is being calculated, the docking object for which the visibility
is being calculated, and the row-id of the docking object whose visibility id
being calculated. The visibility calculator uses this information, in conjunction
with information obtained from meta-data stored in the schema depicted in
Figure 2, to determine whether a particular transaction that updates a particular

row of a particular docking object is visible to a particular node.

The Visibility calculator begins execution at step 201. In step 203, the
visibility calculator makes a default finding that the transaction is not visible.
Therefore, unless the visibility calculator determines that a transaction is
visible, it will exit with a finding of no visibility. In step 205, the visibility
calculator selects the first visibility rule associated with the docking object.
This is done by finding the table S DOBJ VIS RULE 71 associated with the
current Docking Object as pointed to by table S DOBJ 61. In step 205, the
visibility calculator selects the row of table S DOBJ VIS RULE 71 with the
lowest value for field RULE SEQUENCE.

In step 207, the Visibility Calculator checks the field RULE_TYPE for
a value of "R." The value of "R" indicates that the rule is a SQL visibility
rule. If so, the Visibility Calculator proceeds to step 209. In step 209 the
Visibility Calculator obtains a SQL statement from field SQL_ STATEMENT

-19-

WO 98/38762 PCT/US98/02756

10

15

20

25

and executes it. An example of such an SQL statement might be:

SELECT "X’ FROM S_OPTY EMP
WHERE OPTY_ID = :PrimaryRowld
AND EMP ID = :Nodeld,

This SQL statement causes a query to be made of application table
S_OPTY_EMP. The query selects any records meeting two criteria. First, the
records selected must have a field OPTY_ID, which is a row id or key, equal
to the Primary Row-ID of the Docking Object whose visibility is being
determined. Second, the records selected must have a field EMP_ID, which
may be for example, an identifier of a particular employee, equal to the Nodeld
of the node for whom visibility is being determined. In ordinary language, this
SQL statement will return records only if a row is found in a table that matches
employees to opportunities, where the opportunity is equal to the one being

updated, and the employee to whom the opportunity is assigned is the operator

of the node.

This is a simplistic example, provided for maximum comprehension.
More complex SQL statements are possible. For example, the rule:

SELECT °X’ FROM

&Table Owner.S ACCT POSTN ap

&Table Owner.S EMP POSTN ep

WHERE ap.POSITION_ID = ep.POSITION ID
AND ep.EMP _ID = :Nodeld;

This rule queries the tables S ACCT POSTN (which relates a particular

20-

WO 98/38762) PCT/US98/02756

10

15

20

account with a particular position in the organization that is responsible for the
account) and S_ EMP_POSTN (which relates what employee corresponds to a
particular position). The condition "ap.POSITION ID = ep.POSITION ID"
requires finding a row in the account-to-position table that has the same position
as a row in the employee-to-position table. The condition "ep.EMP ID =
:Nodeld" further requires that the selected row in the employee-to-position table
also have an Employee ID equal to the ID of the user of the Node for which
visibility is being determined. In ordinary language, this condition allows
visibility if the employee occupies the position that has responsibility for the

account in the docking object being updated.

There is no particular limit to the complexity of the conditions in the
SQL statement used to evaluate visibility. Particular implementations of SQL
may impose limitations, and resource considerations may make it desirable to
use less complex statements, but these limitations are not inherent in the

Invention.

Step 211 evaluates whether the execution of SQL._STATEMENT in step
209 returned any records. If records were returned, this indicates that the
Node for which visibility is being checked has visibility to the docking object
being processed. Accordingly, if records are returned, the Visibility Calculator

proceeds to step 213. In step 213, the transaction is marked visible. Because

21-

WO 98/38762 PCT/US98/02756

10

15

20

no further rules need to be evaluated to determine visibility, the visibility
calculator proceeds to step 228. Step 228 synchronizes the databases by
determining whether the calculated visibility requires the insertion or deletion
of a docking object into a particular node’s partially replicated database. This
may occur, for example, if a node is determined to have visibility to a docking
object due to a change to a related docking object. For example, an owner of
2 node may be assigned to a particular activity that is related to a particular
sales opportunity. As a result, the node should be provided with a copy of the

object representing the sales opportunity.

Figure 8 depicts the steps performed to synchronize a partially replicated
database in response to a change in data visibility. Execution begins in step
241. In step 243, the Visibility Calculator references the visibility just
calculated for a docking object. If the Docking Object is visible, execution
proceeds to step 245. Step 245 references the S DOBJ_INST table, to verify
that a row exists for the Docking Object for the current node. If a row exists,
this indicates that the node in question already has a copy of the referenced
Docking Object, and the routine proceeds to step 255, where it exits. If,
however, no row exists for the Docking Object at the node being processes,
this indicates that the node in question does not have a copy of the Docking

Object on its partially replicated database. The routine then proceeds to step

247, where a transaction is generated to direct the node to insert the Docking

2.

WO 98/38762 | PCT/US98/02756

10

15

20

Object into its partially replicated database.

If step 243 determines that the Docking Object is not visible, execution
proceeds to step 249. Step 249 references the S DOBJ_INST table, to verify
that no row exists for the Docking Object for the current node. If step 243
determines that no row exists in the S DOBJ INST table for the current
docking object for the current row, this indicates that the node in question does
not have a copy of the referenced Docking Object, and the routine proceeds to
step 255, where it exits. If, however, a row exists for the Docking Object at
the node being processed, this indicates that the node in question does have a
copy of the Docking Object on its partially replicated database. The routine
then proceeds to step 251, where a transaction is generated to direct the node

to delete the Docking Object from its partially replicated database.

Referring again to Figure 7, following the data synchronization routine
of step 228, the Visibility Calculator proceeds to step 229, where it exits.
Referring to Figure 6, as previously described, the resulting finding of visibility
is available to be checked by the log manager in step 183 to determine to write

the transaction.

Referring again to figure 7, if step 211 determines that no records were

returned by the execution of the SQL statement in step 209, execution proceeds

23-

WO 98/38762 . PCT/US98/02756

10

15

20

with step 215. Step 215 checks to see whether there are any remaining
visibility rules to be assessed. If not, the visibility calculator proceeds to step
228 to synchronize the database, and then to step 229, where it exits. In this
case, the default mark of no visibility that was set in step 203 remains set.
This value will also be used by the log manager as shown in Figure 6, step

183, to determine not to write the transaction.

Referring again to Figure 7, if rules remain to be assessed, control
proceeds to step 217, which selects the next rule to be processed. Control is

then given again to step 207 to begin processing the new rule.

The preceding text provided a description of the processing or SQL
visibility rule; that is, visibility rules of type "R." If step 207 determines that
the visibility rule is not of type "R," the visibility rule is of type ;'O." Type
"O" indicates a docking-object visibility rule. In such a case, the docking
object being processed will be considered to be visible if it is related to a
particular related docking object that is visible. If field RULE _TYPE is not
equal to "R," then. execution proceeds to step 221. Step 221 determines the
related Docking Object whose visibility must be determined to determine
whether the current docking object is visible. The related Docking Object
identifier is obtained from field CHECK DOBJ ID in table

S_DOBJ_VIS RULE 71. 1In step 223, the Visibility Calculator determines

24-

WO 98/38762 PCT/US98/02756

10

15

20

which row in the related Docking Object must be queried for visibility. In
order to determine this, the Visibility Calculator obtains a predetermined SQL
statement from the field SQL_STATEMENT and executes it. The SQL
statement is a query that select one or more rows of the Docking Object that,
for example, correspond to the docking object for which the Visibility

Calculator was invoked.

For example, assume that it is desired to indicate that a record for a
sales opportunity should be visible if the Node has visibility to any sales quote
made for that sales opportunity. This may be accomplished using the following
SQL statement:

SELECT" ID" FROM

&Table Owner.S DOC QUOTE
WHERE OPTY ID=:Primary Rowld

This SQL statement accesses a table S DOC_QUOTE that contains all
sales quotes. The WHERE clause specifies retrieval of all rows where the
Opportunity ID of the row is equal to the Row-ID of the opportunity for which
visibility is being calculated. The Visibility manager retrieves the specified

Row-Ids, thereby identifying the rows of the S DOC _QUOTE table whose

visibility must checked.

Having determined the a related docking object and the row-ID of that

related docking object upon whose visibility the visibility of the current docking

25-

WO 98/38762 PCT/US98/02756

10

15

20

object depends, the Visibility Calculator proceeds to stép 225. In step 225, the
Visibility Calculator recursively invokes itself to determine visibility of the
related docking object. The recursively invoked Visibility Calculator operates
in the same manner as the Visibility Calculator as called from the Log Manager
9, including the capability to further recursively invoke itself. When the
recursive call concludes, it returns a visibility indicator for the related Docking
Object, and control proceeds to step 227. In step 227, the Visibility calculator
determines whether the related Docking Object was determined to have been
visible. If so, the Visibility Calculator proceeds to step 213 to mark the
originally current Docking Object as visible, and then to step 228 to
synchronize the database and then to step 229 to exit. If the related Docking
Object was not determined to be visible, control proceeds to step 215 to
determine whether additional visibility rules remain to be assessed.

The Visibility Calculator, in conjunction with the Log Manager is
therefore able to determine what subset of update transaction data is required
to be routed to any particular node. This operation serves to reduce the
transmission of unneeded data from the Central Computer 1 to the various
nodes such as nodes 21-a, 21-b and 21-c that utilize partially replicated
databases, and to reduce the system resources such as disk space needed to
store, and the CPU time needed to process, what would otherwise be required

to maintain a fully replicated database on each remote node.

26-

WO 98/38762 PCT/US98/02756

10

15

20

The operation of the log manager 9 in conjunction with the Visibility
Calculator herein described will be apparent from reference to the description
and to the drawings. However, as a further aid in the description of these
facilities, a pseudocode representation of these facilities is hereto attached as

an Appendix.

Internet Session Manager

The following terms will be used in describing the Internet Session

Manager:

o SISM: Siebel Internet Session Manager (also referred to as Internet
Session Manager).

o SISMGR: The application server which implements SISM (the program
itself).

o SIS API: The client-side application programming interface for

communicating with the SISM server.

The Internet Session Manager provides database functionality and access
to mobile clients that are connecting via a wide area network such as the
Internet, a corporate intranet, or a commercial online provider. The
functionality and access thus provided to mobile clients is comparable to that
of clients connected to the central database via a local area network. The

Internet Session Manager also provides security for data that flows between the

27-

WO 98/38762 PCT/US98/02756

10

15

20

client and fhe database, as will be described herein.

Overview of Internet Session Manager

SISMGR is a new application server process which currently runs on
Windows NT, but may be ported to later versions of Windows NT and to
UNIX. One or more instances of SISMGR run continuously on a machine to
accept connections from remote clients. Each client connection "into" SISMGR
corresponds to a database connection "from" SISMGR, which essentially acts
as the connector between the client and the database. Thus, a machine running
SISMGR is configured as a networked proxy server. The overall structure of
system using the Internet Session Manager is shown in Figure 9. SISMGR has

several advantages over a direct SQL connection such as Oracle’s SQL*Net):

1. Security for data which flows between the client and server.
2. True access control for client authentication.
3. Central monitoring and control of remote access.

Data Security
SISMGR addresses several methods of intercepting the data transferred
between the client and SISMGR:
4. No one besides the two parties (mobile client and SISMGR) should be
able to read the contents of the transmissions.

5. No one should be able to alter the data during transmission and have the

8-

WO 98/38762 , PCT/US98/02756

5

10

15

20

results accepted.

6. No one should be able to replay parts of a previous transmission and

have the results accepted.

These three types of attacks are primarily addressed through encryption.
Encryption techniques fall into two basic categories: public key and private key
cryptography. Private key cryptography uses a key which must be kept secret
(hence the “private”), and is very secure as long as the key is not
compromised. Encryption and decryption are rapid, and private key encryption
is used to transmit the bulk of the data in secure systems. Public key
cryptography techniques provide encryption and decryption through a pair of
keys, designated as the “private key” and the “public key” (although they are
interchangeable). The power of this technique is that one key can be given to
the world and one kept secret. The “trick” of public key cryptography is that
data encrypted with the public key can only be decrypted with the private key
and vice versa. Thus a message can be encrypted (with the public key) which
can only be decrypted by the intended recipient and a message can be verified
as having been sent by a person if it can be decrypted with that person’s public
key. Further discussion may be found in "PGP: Pretty Good Privacy" by
Simson Garfinkel, and U.S. Patents No. 4,405,829, 4,218,582, 4,424,414, and

4,200,770, the disclosures of which are hereby incorporated by reference.

29

WO 98/38762 PCT/US98/02756

10

15

20

SISMGR uses a session key and sequencing to provide a secure
communication channel. The first packet sent by the client contains the client’s
public key, which can be verified by the server against an internal database or
trusted certification authority (CA). The server reply contains a session
identifier (unique for each communication session) and a session private key
(randomly generated by the server) and will be encrypted with the client’s
public key. All further messages in both directions are encrypted with the
session key using private key cryptography. All messages will contain the non-
repeating session identifier allocated by the server, which prevents messages
from being replayed in another session. Each message in a session has a
monotonically increasing identifier to prevent messages from being replayed in

or removed from the session.

Access Control

In addition to preventing communications between legitimate users from
being intercepted, it is necessary to prevent illegitimate users from gaining
access to SISMGR. This is especially important in implementations where all
Visibility Rule checking is performed by the client and access to SISMGR
provides full access to the corporate database, but is still of importance in
implementations where Visbility Rule checking is performed by the Central

Computer 1.

-30-

WO 98/38762 PCT/US98/02756

10

15

20

Access control prevents both illegitimate use of the Siebel client
application as well as special programs which pretend to be clients. As in all
security systems, the weak link is keeping the private key from getting out.
Thus, the private key is stored in encrypted form on the user’s laptop, and the
user must enter a password (or phrase) to unlock his/her private key.
Otherwise, anyone with access to the laptop would have access to the corporate
database. The user must still enter his/her database name and password to

actually log in.

One skilled in the art will recognize that hardware-based authentication
schemes, such as those which use PCMCIA or flash memory cards to hold the
keys and possibly perform the encryption, may be used without departing from

the spirit or scope of the present invention.

Monitoring and Control

The SISMGR keeps a list of hosts which are allowed to connect.
Connections from hosts or network addresses which are not listed will be
rejected. This helps avoid attacks from systems which should not have access.
An access control list is of particular utility on an intranet where all points of
access are known in advance. Further details of the access control list will be

described below.

31-

WO 98/38762 PCT/US98/02756

10

15

20

In an alternative embodiment of the invention, SISMGR may include
security auditing tools which check for patterns of behavior which might
indicate attacks on the system, such as logins outside typical working hours,
many failed login attempts, or sessions with atypical query patterns. Further,
there could be a mechanism for evaluating the load and response time for
clients, to enable system administrators to ensure good throughput at peak

times.

Architecture

The functionality of the Internet Session Manager is implemented in a
common DLL (ssasis30.d11) and a number of connector DLLs (such as
ssx30072.d11 for Oracle). A simple executable wraps this functionality to
produce a server. SISMGR is a main routine which links in and initializes the SISM
DLL and displays errors on the console. In another embodiment, this functionality

may be implemented as a Windows NT service which has no user interface at all.

Also part of the SISM functionality is the “SIS network APL” also a DLL
(ssasna30.dl1) which encodes and decodes the messages which flow back and
forth between the mobile client and the SISMGR. The actual messages, their

parameters, and the actual format of the data are all defined in the SIS network API.

As will be described below, the present embodiment of the invention defines

a set of messages which allow the client to implement a connector which executes its

-32-

WO 98/38762 . PCT/US98/02756

10

15

20

25

SQL operaﬁons using the SIS network API to talk to the SISMGR. However, the
architecture may be extended to provide further functionality for mobile clients. For
example, an "object manager" server may be used to implement a "thin client’

interface and even alternate clients.

SISMGR |
Malibu
SSA
| Internet connectdr SISM DLL
| SIS network AP} { SIS network API|
Client SISMGR

This implementation essentially moves the actual database connection (the code
which talks to the database vendor APIs) out of the client process and into the
SISMGR process. This permits the imposition of additional restrictions and provides
complete central control over the data which passes across the connection between the

client and the database server.

SISMGR provides a session-oriented protocol as part of the security setup.
The first message sent by a client must be a HELLO message, which establishes the
client authentication and creates a session ID which is used by all remaining requests
in this session. The details of the HELLO message (and all other messages) can be

found in the sisnapi.h header file below.

SISMGR supports direct SQL access messages which provide direct support
for the client connector operations. The messages in this group all translate directly
into database operations, although a single message may logically correspond to
multiple database API calls. Before any other SQL operations can be performed, the
user must log into the SQL database. This is done with the LOGIN message, which
takes database connection information. The LOGOUT message terminates a login

session. Only a single login session may be active at once for a client.

-33-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

Actual SQL statements are always executed against a “statement context.”
This statement context corresponds to an ODBC HSTMT or an Oracle cursor.
(ODBC, or Open DataBase Connectivity, is a specification for an API that enables
applications to access multiple database management systems using SQL. HSTMT
a statement handle.) Before an actual SQL statement can be executed, a statement
must be allocated with the ALLOCSTMT message (which returns a HSTMT).
Statements can be freed with the FREESTMT message or simply re-used for another
SQL statement. These statement IDs must be specified for executing statements and

fetching rows.

The EXEC message is used to execute a SQL statement (usually a DML, or
Data Manipulation Language, statement) one or more times with different bind
variables. Because no output is returned from the statement, this cannot be used for
queries. However, the ability to re-execute the statement for each set of bind
variables is very useful for reducing round trips for repetitive operations. The
QUERY and FETCH messages provide query support. QUERY is sent to begin a
new query statement and return the first batch of results. FETCH is used to get the
next batch of results. The size of the result set can be specified in QUERY to limit
the number of rows fetched by each request. The COMMIT and ROLLBACK
messages are provided to commit and roll back database transaction operations. The
EXEC message can also request that a commit be performed if the operation is

successful without requiring an explicit COMMIT message be sent.

To support literature and correspondence (fulfillment), SISMGR provides
simple file services. Basic file-oriented operations can be performed for files by
specifying file names relative to the root directory configured into the SISMGR.
Information about files can be obtained by using the FILEINFO message, which
returns standard file information but does not actually open the file. To open a file
and allocate a “file ID” which is used by the other operations on this section, the
FILEOPEN message is used. FILEOPEN returns roughly the same information as
returned by FILEINFO, plus the file ID. Files are closed after use with the
FILECLOSE message. Files are read from and written to using the FILEREAD and

-34-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

FILEWRITE messages. These operate very similarly to the standard file operations
and their use is well known in the art. In the present embodiment, one restriction is
that a file may only be opened for reading or writing, not both. Opening a file for
write always truncates the existing contents (if any) and creates the file if it does not

exist.

Also provided are high-speed (tuned) connectors for the different databases as
part of SISM, in the same way that these connectors are provided in the client. The
SISM connectors are simpler than the client connectors because they do not need to
know how to format statements. They need only execute them, collect results, and

handle errors.

The abstract class CSSSISDbConn (declared in sismcon.h) defines the
template which each connector function must follow, and defines the interface which
database-specific connectors must implement to support the SISM client database
operations. The templates correspond roughly to the ANSI cursor model, but with
some compression to reduce round trips. The data passed to the functions is taken
directly out of the messages with little translation by SISMGR, but the connectors are

not themselves dependent on the message format.

An instance of a sub-class of CSSSISDbConn is created for each client
connection when it attempts to log in. The client passes information about which
database it wants to log into and the user name and password of the user to log in as.
SISMGR maps the requested “database” into the database-specific information as it

validates the request.

Each client request is translated into one or more calls to this API, which is
structured slightly differently from the messages for simplicity. The main goal of the
message API is to minimize round trips. The main goal of the connector API is to

be easy to implement.

SISMGR is a multi-threaded program, and each client instance runs in its own

-35-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

PCT/US98/02756

thread. As is the case everywhere else in SISMGR, the connector implementations

must be careful to be multi-threading-safe.

If necessary, synchronization objects

implemented in SISMGR can be used, but this will probably reduce throughput when

many clients are connected.

Further details of CSSSISDbConn, related code, and the functionality may be

seen in the following sismcon.h code:

// FILE:
5; DESCRIPTION

sismcon.h

// Generic DB-specific connector class for Internet Session Manager.

#ifndef __ SISMCON H
#define _ SISMCON H__

#ifndef __ SISNAPI H
#include "sisnapi.h"

#endif

class CSSSISDbStmt;

#define

MAX_NUM_STMTS 256

class SS_EXPORT CLASS CSSSISDbConn

: public CSSSISObject

protected:

BOOL m_bConnected;

CSSSISDbStmt* m_dbStmtArray [MAX NUM_STMTS] ;
public:

//

// ~When the client sends a LOGIN request,

called

the Login method 1is

// this should perform any database-specific login operations and

return an appropriate error status.

Logoff performs the reverse

operations and frees all resources associated with the previous

login.

CSSSISDbConn for each client, the database login is one-to-one

with the instance of CSSSISDbConn.

Thus both session and login

information should be stored in members of the sub-class.

rtual BOOL DoLogon

virtual BOOL Logon

virtual BOOL

virtual BOOL Logoff

//

//
//
)
// Note that since there is an instance of a concrete sub-class of
//
//
//
/1
vi

(const char* pInstance,

consgt char* pUserName,
const char* pPassword) = 0;

(const char* pInstance,

const char* pUserName,
const char* pPassword) ;

DoLogoff (void) = 0;
(void) ;

// The statement executing APIs parallel the SISM request messages

// closely.

-36-

The Execute call prepares a SQL statement and then

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

60

65

executes it a specified number of times, each time with a
different set of bind variables. If no bind variables are
given, the statement should be executed once.

no persistent cursor information should be maintained. The
number of rows affected (a sum of all executions) should be

//
//
//
//
// No output values are expected from the Execute statement and
//
//
returned to the caller through the last parameter.

//

vi

rtual BOOL Execute (SISStmtId stmtId,
CSSSISColRowData* pIBinds,
inté& numAffected) ;
virtual BOOL ExecutedndFetch (SISStmtId stmtId,

CSSSISColRowData* pIBinds,
CSSSISColRowbData*& pFetched,

int& numFetched) ;
//
// For statements which return output (SELECT statements), we use
// the ANSI model of preparing the statement and executing it and
// then fetching results. The prepare must open a cursor which
// 1is returned to the caller for future calls to Fetch and finally
// a call to Close.
//
// The fetch function takes an argument of the number of rows to
// fetch (at most) and an indicator for whether this drains the
// cursor. This information is returned to the client.
//
virtual BOOL Prepare (SISStmtId stmtId,
const char* pStmt,
CSSSISColRowbData* pOBinds,
int nMaxFetch) ;
virtual BOOL Fetch (SISStmtId stmtId,
CSSSISColRowData*& pFetched,
inté& numFetched,
BOOL& bEOF) ;
virtual BOOL AllocStmt (SISStmtIds& stmtId) = 0;
virtual void DoFreeStmt (CSSSISDbStmt* pbbStmt) = 0;
virtual BOOL FreeStmt (SISStmtId stmtId) ;
//

// For maintaining the transaction state, the Commit and Rollback
// methods perform the DB operations.

//

virtual BOOL Commit (void) = 0;

virtual BOOL Rollback (void) = 0;

virtual void Release (void) = 0;
protected:

CSSSISDbConn (void) ;

virtual ~C8SSISDbConn (void) ;
private:

BOOL GetStmt (SISStmtld stmtId,

}i

CSSSISDbStmt*& pDbStmt) ;

-37-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

class SS_EXPORT_ CLASS CSSSISDbStmt: public CSSSISObject

protected:
CSSSISDbConn* m_pDbConn;
CSSSISColRowData* m_pOutputBindColData;
public:

CSSSISDbStmt (CSSSISDbConn* pDbConn) ;
virtual ~CSSSISDbStmt (void);

virtual BOOL DoExecuteAndFetch (CSSSISColRowData* pIBRinds,
int& numFetched) = 0;

virtual BOOL DoFetch (int& numFetched,
BOOL& bLEOF) = 0;

virtual BOOL DoPrepare (const char* pStmt,
CSSSISColRowData* pOBinds,
int nMaxFetch) = 0;

virtual BOOL Execute (CSSSISColRowData* pIBRinds,
int& numAffected) = 0;

BOOL ExecuteAndFetch (CSSSISColRowData* pIBinds,

CSSSISColRowData*& pFetched,
int& numFetched) ;

BOOL Fetch {CSSSISColRowData*& pFetched,
int& numFetched,
BOOL& DbEOF) ;

BOOL Prepare (const char* pStmt,

CSSSISColRowData* pOBinds,
int nMaxFetch) ;

/
/ EBach DLL which implements a specific database connector must have
// an exported function named CreateSISDbConn which takes as its

single
// argument a reference to a CSSSISDbConn* into which it will return
// the constructed instance of a sub-class of CSSSISDbConn.
The typedef here gives the format of the function which must be
implemented by the connector. All other methods implemented by

//
//
//
// the connector are done as methods on the constructed CSSSISDbConn
// instance.

//

t

ypedef BOOL (*SIS_CREATE_FN) (CSSSISDbConn*&) ;

#endif // !_ SISMCON H__

One important data structure defined in the SIS network API is
CSSSISColRowData (declared in sisnapi . h) which is the buffer which holds rows
and columns of data input bind variables to SQL statements and rows of data output
by a query. For efficiency, these data structures are passed directly back and forth
between the connector methods and the messages sent and received by SISMGR.
This avoids excess data copying. Further details of CSSSISColRowData and other
information will be apparent from inspection of sisnapi.h, which defines the

structure of messages that flow back and forth between the client and the SISM

-38-

WO 98/38762 ' PCT/US98/02756

10

15

20

25

30

server. The protocal is structured as request/reply (remote procedure call). The
client may implement a non-blocking model to avoid “locking up” while waiting for
the reply, but a simple client implementation could treat these as regular procedure
calls, not requiring a major change in architecture.

The messages have a simple format common format made up of a constant
header and an optional list of attributes. The attributes are message specific and list

the elements of the message which are required.

At the lowest level, all data are represented as either integers or strings. All
integer data are in “network byte order” to avoid interpretation problems on
heterogeneous architectures. All string data are an array of bytes (which may include
the NUL byte), although usually these will be true C strings which are NUL
terminated. Strings are always byte-oriented since the data is not byte swapped for

transmission.

The length of the header and the length of the body are both explicitly given.
This allows for advances in the protocol to be made without breaking older
implementations (unless desired) as long as new fields are appended to the existing

messages.

The request, and associated replies contain the header plus additional
information. All negative acknowlegement (NAK) messages have the same format:

a generic error code (defined in sisnapi.h) and optional detail information.

When the message is actually transmitted, the entire message (both the header
and body) are compressed and encrypted (except for the HELLO request and NAK
messages and the NOACCEPT notify message). Because of this, the length of the
entire message (after compression and encryption) are sent as a SISUInt32 (in the

clear) immediately before the message data and are not included in the header length.

In order to make it easier for the client and server to construct and parse the

messages sent back and forth, a set of classes are given to pack and unpack the

-39.

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

messages and perform the compression and encryption as necessary. The abstract
superclass of these is CSSSISMessage, which has four sub-classes (one for each

message type). Following is the sisnapi.h file, showing the details of the
CSSSISMessage and other structures.

// FILE: sisnapi.h
// DESCRIPTION
//

// Public header file for the Siebel Internet Session message API.

#ifndef _ SISNAPI H
#define _ SISNAPI H

class CSSSISColRowData;

enum SISMessageType
{
SIS_MSG_UNKNOWN
SIS_MSG_REQUEST
SIS _MSG_ACK
SIS_MSG_NAK
SIS_MSG_NOTIFY

}i

~

, // client request message
// server success message

It
B W N = O

-

// server failure message

// server status message

enum SISRequestCode;

class SS_EXPORT CLASS CSSSISMegsage

{

public:
SISMessageType GetType () const { return m_type; }

//
// Methods for constructing a message.

// Firstly, the message type is given, which allows the header to
be

// constructed. Then, data is added according to the actual
contents

// of the message.

//
protected:

BOOL Add_int (unsigned int wvalue) ;

BOOL Add_str (const char* pStr);

-40-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

BOOL Add_str (const char* pBuf,
int nLen) ;
BOOL Add_crd (CSSSISColRowData* pCRD) ;
public:
virtual BOOL Encode (SISMessageType) ;
BOOL Complete () ;
unsigned char¥* GetData () { return m_pDataBuf; }
int GetLength () const { return (m_pDataPtr -

m_pDataBuf) ; }

The sisnapi.h file also defines methods for unpacking a message. The
message data is given, from which the message contents will be extracted. The
CopyData method makes a copy of the given buffer while TakeData just keeps a

pointer to the passed buffer and will free it when the message is deleted.

public:
BOOL CopyData (unsigned char* pData,
int nLen) ;
BOOL TakeData (unsigned char* pData,
int nlen) ;
void DropData () ;
virtual BOOL Decode () ;
public:
CSSSISMessage () ;
virtual ~CS8SSISMessage () ;
void Release () ;
protected:
BOOL Get_int (unsigned int* pBuf);

-41-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

BOOL Get_str (char** ppData,
int* pLen) ;

BOOL Get_crd (CSSSISColRowData** ppCRD) ;

private:

SISMessageType m_type;

unsigned char* m_pDataBuf;

unsigned char* m_pDataPtr;

int m_nBufSize;

int m_nHeaderLen;

unsigned char* m_pBodyLen;

BOOL Extend (int nNeedBytes = -1);

Further provided are functions to connect to the SISM server (or any TCP/IP
server). These functions do not transmit or receive any data. They simply construct
and tear down the TCP/IP connection. SISConnectServer returns a socket identifier
which is passed to SISSendMessage and SISReadMessage to actually transmit and
receive message data. Only a single server session created by SISConnectServer may
be outstanding at any one time. This is because there is only a single buffer used by

SISReadMessage for collecting the input as it arrives on the socket.

The function SISIsConnBroken may be called to return the status of the
connection. If it returns TRUE, no more messages can be read or sent over this

connection, and a new connection must be established (or the client should terminate).

//
extern int SS_EXPORT_API SISConnectServer (const char* pHostName,
int nInetPort) ;

extern void SS_EXPORT_API SISDisconnect (int nSocketId);

extern BOOL SS_EXPORT_API SISIsConnBroken (int nSocketId) ;

-42-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

Secuﬁty is also provided for SISMGR in the sisnapi.h file. The client
transmits its public key using SISCryptGetPublicKey() in the HELLO message, in the
clear. The server generates a session key and exports it, encrypted with the client’s
public key using SISCryptGenSessionKey(), and sends it back in the HELLO ACK,
also in the clear. The HELLO and the HELLO ACK are the only messages in the
clear. All other messages are encrypted with SISCryptEncrypt() and decrypted with
SISCryptDecrypt(), using the session key. SISCryptlnitialize() is called by the client
before the HELLO message and by the server before the HELLO ACK to initialize

the cryptography session. If required, a key container is created and a public key

generated.

SISCryptGetPublicKey() is called by the client to get the public key prior to
encoding the HELLO message.

SISCryptImportKey() is called by the client to import the session key on the
HELLO ACK and by the server to import the client’ss public key in the HELLO

message.

SISCryptValidatePublicKey() is called by the server on receipt of the HELLO

message to validate and import the client’s public key.

SISCryptGenSessionKey() is called by the server prior to sending the HELLO
ACK to generate a session key, encrypted by the client’s public key.

SISCryptEncrypt() and SISCryptDecrypt() work with the CompressBuf

structure.

//

typedef unsigned long SISCryptProvider; // HCRYPTPROV
typedef unsigned long SISCryptKey; // HCRYPTKEY

extern BOOL SS_EXPORT API SISCryptInitialize (

SISCryptProvider* phProv) ; //
out

43-

WO 98/38762

10

15

20

25

30

35

40

45

extern BOOL SS_EXPORT_API SISCryptGetPublicKey (

PCT/US98/02756

SISCryptProvider hProv, //
in

SISCryptKey* phPublicKey, //
out

unsigned char** ppszPublicKeyBlob, //
out

DWORD* pdwPublicKeyLength); //
out
extern BOOL SS_EXPORT API SISCryptImportKey (

SISCryptProvider hProv, //
in

SISCryptKey* phKey, //
out

unsigned char* pszKeyBlob, //
in

DWORD dwKeyLength) ; //
in
extern BOOL SS_EXPORT API SISCryptValidatePublicKey (

SISCryptProvider hProv, //
in

SISCryptKey* phPublicKey, //
out

unsigned char* pszPublicKeyBlob, //
in

DWORD dwPublicKeyLength); //
in
extern BOOL SS_EXPORT_API SISCryptGenSessionKey (

SISCryptProvider hProv, //
in

SISCryptKey hPublicKey, //
in

SISCryptKey* phSessionKey, //
out

unsigned char** ppszSessionKeyBlob, //
out

DWORD* pdwSessionKeyLength) ;//
out
extern void SS_EXPORT API SISCryptDestroyKey (

SISCryptKeyé hKey) ; //

in/out

-44-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

extern void SS_EXPORT API SISCryptRelease (

SISCryptProvider hProv); /7
in

When a message comes in on a socket (bytes are ready to read), the function
SISReadMessage is called. This function will block until the entire message has been
read or until the connection is closed. The sub-class of CSSSISMessage appropriate
to the received message is returned. The session key to be used to decrypt the
message is passed in. If a message is in the clear, this is 0 (HELLO, HELLO ACK).
If more bytes are read on the socket than are needed to complete the message, they
will be saved in a buffer private to SISReadMessage. Because of this, this function

is not thread safe and cannot be used by the SISMGR itself.

SISDecodeMessage takes the buffer given (which is already assumed to be a
complete message) and decodes it as an actual message. This is the form used by the
SISMGR. SISReadMessage reads the necessary data, then calls SISDecodeMessage
to build the message structure. The buffer is kept by the message which is
constructed and will be freed when the message is deleted. The caller must not
modify or free the passed data because it is used as the actual message buffer. The

session key to be used for decryption is passed in.

SISCheckMessages returns the number of messages which can be gotten using
SISReadMessage without blocking. SISCheckMéssages may actually read data, but

will not block. If the connection is broken, SISCheckMessages returns -1.

When a message is to be sent, the appropriate concrete sub-class of
CSSSISMessage is created and the data is encoded, using the virtual Encode method.
Then the message is written onto the socket in one piece. As soon as this function
returns, the message can be deleted. The session key to be used for message
encryption is passed in. If this is O, the message is sent in the clear. This happens

only in HELLO and HELLO ACK msgs and also the server’s NoAccept() response.

-45-

WO 98/38762 . PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

//
extern BOOL SS_EXPORT API SISReadMessage (int nSocketId,

CSSSISMessage*& pReturn,
SISCryptKey hSessionKey) ;

extern BOOL SS_EXPORT API SISDecodeMessage (unsigned char* pBuf,

int nlen,
CSSSISMessage*& pReturn,
SISCryptKey

hSessionKey) ;
extern int SS_EXPORT_API SISCheckMessages (int nSocketId) ;

//

//

extern BOOL SS_EXPORT API SISSendMessage (int nSocketId,
CssSsIsMessage* pMsg,
SISCryptKey hSessionKey) ;

Each request has a unique code (SIS_REQ_*) which identifies the request
(operation) from the client. Success and failure (ACK and NAK) reply messages will
be returned for each request message. A simple success message might contain no
special information, but a more complex one would contain results of the operation.
The format of all NAK messages is the same. When a request is constructed, the
next “request sequence number” is assigned to it for sequence verification. This is
done automatically when the request is created. The request ID is used to connect
the ACK or NAK reply to its original request. This mechanism provides for allowing

asynchronous requests.

//
typedef unsigned long SISSessionld;
typedef unsigned long SISSequence;

enum SISRequestCode

SIS _REQ HELLO = 101, // establish connection with server

SIS _REQ LOGON = 102, // attempt to log the user in to the
corporate DB

SIS_REQ LOGOFF = 103, // close DB connection for current user

SIS_REQ ALLOCSTMT = 201, // allocate a statement for executing
DML or query

SIS_REQ EXEC = 202, // execute a DML statement--no query
results

SIS_REQ QUERY = 203, // execute a query and return first
rOws

SIS REQ FETCH = 204, // fetch more results on the statement

SIS_REQ FREESTMT = 205, // free a statement opened by
SIS_REQ ALLOCSTMT

SIS_REQ COMMIT = 206, // commit operations on a session

SIS_REQ ROLLBACK = 207, // rollback operations on a session

-46-

WO 98/38762 PCT/USY8/02756

10

15

20

25

30

35

40

45

50

SIS_REQ FILEINFO = 208, // return information about a file on
the server

SIS_REQ FILEOPEN = 209, // open a file on the file server

SIS REQ FILEREAD = 210, // read a chunk of data from the given
file

SIS_REQ FILEWRITE = 211, // write a chunk of data to the given
file

SIS_REQ FILECLOSE = 212, // close a file opened with OPENFILE

14

class SS_EXPORT_CLASS CSSSISRequestMsg : public CSSSISMessage //
ABSTRACT

public:
SISRequestCode GetRequest () const { return m_request; }
SISSessionId GetSessionId () const { return m sessionId; }
SISSequence GetSequence () const { return m_sequence; }
virtual BOOL Encode (SISRequestCode,
SISSessionlId,
SISSequence&) ;
virtual BOOL Decode () ;
CSSSISRequestMsg () ;
virtual ~CSSSISRequestMsg () ;
private:
SISRequestCode m_request;
SISSessionId m_sessionId;
SISSequence m_sequence;
//

“Positive acknowlegement” messages may contain additional information
specific to the message to which they reply to. A generic ACK merely indicates that
the request was processed sucessfully. Most of the actual ACKs add information to
the basic ACK structure. Thus, the CSSSISACKMsg class is subclassed in parallel
to the CSSISSRequestMsg class. Currently these are one-to-one.

All “negative acknowlegement” messages are the same format for simplicitly.
A NAK code is returned plus optionally some detail as a text message for the user.
The NAK code allows the client to perform recovery as appropriate and the detail
message may be displayed to the user if desired (probably most interesting for
debugging). A single NAK message has an array of error indications within it. This
represents the heirarchy of errors which are recognized by the
software from general to specific. Often, there will only be a single error, but

typically there will be errors from different levels. When constructing a NAK

47-

WO 98/38762 PCT/US98/02756

message, the ertor information passed in is copied into the NAK struct and deleted
when the NAK message is deleted. When unpacking a NAK message, the
CSSSISErrorlnfo structs should be read, but not modified or pointers kept because

5
//
class SS_EXPORT_CLASS CSSSISACKMsg : public CSSSISMessage //
ABSTRACT
10 public:
SISSequence GetRequestId () const { return m_requestId;
SISRequestCode GetRequestType () const { return m_reqType;
virtual BOOL Encode (SISSequence requestId,
15 SISRequestCode reqType) ;
virtual BOOL Decode () ;
CSSSISACKMsg () ;
20 virtual ~CSSSTISACKMsg () ;
private:
SISSequence m_requestId;
25 SISRequestCode m_reqType;
i
/1
30 //
enum SISErrorType
SIS_NAK INTERNAL = 0,
SIS_NAK_ SISM = 1, // SISM errors (one of SIS_ERR * below)
35 SIS_NAK_DBNATIVE = 2, // database vendor specific error
SIS_NAK DBGENERIC = 3 // database non-vendor specific error
// (one of SIS _DBGEN_ERR_* below)
}i
40 enum SISErroxCode
SIS_ERR PARAMS = 100, // generic error in message params
SIS_ERR_VERSION = 101, // protocol version not supported
SIS_ERR_KEY = 102, // invalid client public key
45 SIS_ERR_AUTH = 103, // invalid authentication info.
SIS_ERR_CONNECT = 104, // invalid connect string (DB instance)
SIS _ERR_LIMIT = 105, // resource allocation not allowed
SIS_ERR_REQUEST = 106, // unexpected request type
SIS ERR STMTID = 107, // invalid statement ID given
50 SIS_ERR_ACCESS = 108, // access to system resource denied
SIS _ERR_FILESYS = 109, // error opening/reading/writing file
SIS ERR FILEID = 110, // invalid file ID given
SIS_ERR_FILECAT = 111, // invalid file category used
SIS ERR_CRYPTINIT = 112, // error initializing Crypto API
55 SIS_ERR_SESSKEY = 113 // error generating session key
}i
60 enum STSDbGenErrorCode

they will be deleted with the containing message.

SIS_DBGEN_ERR WRITECONFLICT = 101,

-48-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

60

SIS_DBGEN ERR DUPCONFLICT
SIS_DBGEN ERR_INVALLOGON

PCT/US98/02756

102,
103

class SS_EXPORT_CLASS CSSSISErrorInfo

public:
SISErrorType
unsigned int
char*

BOOL

void

}i

m_errType;
m_erxCode;
m_pMessage;

SetErrorInfo (SISErroxType type,

unsigned int code,

const char* pMessage) ;
CopyErrorInfo (const CSSSISErrorInfo* pCopy);

Release () ;

CSSSISErrorInfo ();
~C8SSISErrorInfo ();

class SS_EXPORT CLASS CSSSISNAKMsg : public CSSSISMessage // FINAL

public:
SISSequence

int
CSSSISErrorInfo*

virtual BOOL

virtual BOOL

virtual BOOL

static BOOL
virtual

private:
SISSequence
CSSSISErrorInfo**
int

GetRequestId () const { return m_requestId; }
GetErrorCount () const { return m_nErrInfos;

GetErrorInfo (int nIndex);

Encode (SISSequence request,
CSSSISErrorInfo** ppErrs,
int neErr) ;

Encode (SISSequence,

SISErrorType type,
unsigned int code,
const char* pMessage) ;

Decode () ;

NewNAK (CSSSISNAKMsg*& pReturn) ;

CSSSISNAKMsg () ;
~CSSSISNAKMsg () ;

m_requestId;
m_ppErrinfos;
m_nErrInfos;

In addition to the RPC protocol initiated by the client, the server can send

messages to the client (SIS_NTY_*). These messages are not acknowleged by the

client, and the server does not wait for a response. The client can choose to

handle or not handle these notifications (for example, notify the user).

_49.

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

The HELLO message contains information from the client which allows the
server to begin communicating with it. The major piece of client information is
the public key the client is using. The server will encrypt the service reply
message with the client’s public key. The hello request message is sent clear.

The hello reply messages are sent encrypted with the client’s public key. All
other messages are encrypted with the session key sent by the server in the
HELLO ACK message. The HELLO ACK contains a session identifier allocated
by the server (which must be sent with every succeeding message), and a session
private key randomly generated by the server with which to encrypt all succeeding

messages.

enum SISNotifyCode

SIS_NTY NOACCEPT
connection

SIS_NTY_ SHUTDOWN

SIS_NTY TIMEOUT

SIS _NTY PROTOCOL

SIS_NTY SESSION

101, // server does not accept client

102, // server is shutting down

103, // client has been idle too long
104, // invalid use of protocol

105 // client session state failure

}i

class SS_EXPORT_CLASS CSSSISNotifyMsg : public CSSSISMessage //
FINAL

public:
SISNotifyCode GetNotify () const { return m_notify; }
const char* GetDetail () const return m_pDetail; }
virtual BOOCL Encode (SISNotifyCode,
const char* pDetail) ;
virtual BOOL Decode () ;
CSSSISNotifyMsg () ;
virtual ~CSSSISNotifyMsg () ;
private:
SISNotifyCode m_notify;
char* m_pDetail;
//
//

#define SIS _PROTO VERSION 0x00010001

class SS_EXPORT_CLASS CSSSISHelloRegMsg : public CSSSISRequestMsg

public:
unsigned long GetProtoVersion () const { return m_protoVer;
unsigned char* GetKeyData () return m_pKey; }
DWORD GetKeyLength () const return m_nKeyLen;

-50-

WO 98/38762 . PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

}
virtual BOOL Encode (SISSequences sequence,
unsigned char* pKey,
int nKeyLen) ;
virtual BOOL Decode () ;
CSSSISHelloRegMsg () ;
~CSSSISHelloRegMsg () ;
private:
unsigned long m_protoVer;
unsigned char¥* m_pKey;
DWORD m_nKeylen;
}i
clasg SS_EXPORT CLASS CSSSISHelloACKMsg : public CSSSISACKMsg
public:
SISSessionId GetSessionId () const return m_sessionId; }
unsigned char* GetKeyData 9] return m_pKey;
DWORD GetKeyLength () const return m_nKeyLen; }
virtual BOOL Encode (SISSequence sequence,
SISSessionId gessionld,
unsigned char* pKey,
int nKeyLen) ;
virtual BOOL Decode () ;
CSSSISHelloACKMsg () ;
~CSSSISHelloACKMsg () ;
private:
SISSessionId m_sessionId;
unsigned char* m_pKey;
DWORD m_nKeyLen;
}i
//

The login message takes enough information to allow the user to log into
the system. Generally, the login message is the second message sent (after
HELLO). This message and all later messages are sent encrypted with the session

key sent by the server in the HELLO ACK message.

The logoff message just specifies that the connection to the database is to
be closed. This does not shut down the connection, but it does free all resources
associated with that login. The commit parameter indicates whether the open
transaction on the login should be committed or rolled back. If bCommit is

TRUE, then the transaction will be committed. Otherwise, it will be rolled back.

51-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

60

65

//

PCT/US98/02756

class SS_EXPORT_CLASS CSS8SISLogonRegMsg : public CSSSISRequestMsg

public:
const char*
const char*
const char*

virtual BOOL

virtual BOOL

private:
char*
char*
char*

I

GetInstance () const return m _pInstance;
GetUserName () const return m_pUserName;
GetPassword () const return m_pPassword;

Encode (SISSessionId sessionId,
SISSequence& sequence,
const char* plInstance,
const char* pUserName,
const char* pPassword);

Decode () ;

CSSSISLogonRegMsg () ;
~CSSSISLogonRegMsg () ;

m_pInstance;
m_pUsexrName;
m_pPassword;

class SS_EXPORT_CLASS CSSSISLogonACKMsg : public CSSSISACKMsg

public:
virtual BOOL

virtual BOOL

}i

//
//

Encode (SISSequence) ;
Decode () ;

(SSSISLogonACKMsg () ;
~CSSSISLogonACKMsg () ;

class SS_EXPORT_CLASS CSSSISLogoffReqMsg : public CSSSISRequestMsg
{

public:
BOOL

virtual BOOL

virtual BOOL

private:
BOOL

’

GetCommit () const { return m_bCommit; }
Encode (SISSessionlId sessionld,
SISSequenceé& sequence,
BOOL bCommit) ;
Decode () ;

CSSSISLogoffReqMsg () ;
~CSSSISLogoffRegqMsg () ;

m_bCommit ;

class SS_EXPORT_ CLASS CSSSISLogoffACKMsg : public CSSSISACKMsg

public:
virtual BOOL

Encode (SISSequence) ;

_52-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

virtual BOOL Decode () ;

CSSSISLogoffACKMsg () ;
~C8SSISLogoffACKMsg () ;

The SQL execution messages are intended to bundle communications into
as few round-trips as possible. Typically, only one round trip is required for each
user action. To accomplish this, several logical actions are performed by each
request/reply. The major data structure exchanged over the protocol contains an
array of values oriented into columns and rows (internally, the data is column
major). Each column has a defined width and is guaranteed to be NUL
terminated. All data are represented for transmission as strings. The data are
encapsulated into the CSSSISColRowData which is used both to specify input bind

variable values (in requests) and to return output bind variables (in ACKs).

To construct an instance of CSSSISColRowData, the structure is created by
calling the function new. Then DefineCol is called for each column in the result
set. The width must be specified at creation because the entire data block is
allocated in one piece. Once all columns have been defined, Allocate is called to
create the space and set up the pointers into the data block. The messages which
take pointers to CSSSISColRowData blocks hang onto the pointers until deleted,
but do not delete the passed-in blocks. Therefore, the blocks must be kept valid
until the message which uses them is deleted, and the blocks must be separately

deleted afterwards.

//
struct _SISColInfo;

class SS_EXPORT_CLASS CSSSISColRowData

public:
BOOL AddCol (int nwWidth,
const char* pName = NULL) ;
BOOL Allocate (int nRowCount) ;
int GetNumCols () const return m_nCols;
int GetNumRows () const return m nRows;
int GetColwidth (int nColIndex) const;
const char* GetColName (int nColIndex) const;
int GetColIndex (const char* pName) const;
BOOL GetColData (int nColIndex,

-53-

WO 98/38762
char*
int

5 BOOL
short*
char*

10
short
void
15
BOOL
BOOL
20
BOOL
25
BOOL
30 BOOL
const;
BOOL
const;
35 void
40
private:
_SISColInfo*
int
int
45 int
char*
short*
}i
50
!/

55

60

PCT/US98/02756

char* pBuf) const;

GetColDbataPtr (int nColIndex) ;
GetColDataSize (int nColIndex) const;
GetColIndData (int nColIndex,
short* pIndBuf) const;

GetColIndDataPtr (int nColIndex) ;
GetColRowData (int nColIndex,

int nRowIndex) ;
GetColRowInd (int nColIndex,

int nRowIndex) const;
Reset (void) ;
SetColbata (int nColIndex,

const char* pBuf,

int numRows) ;
SetColIndData (int nColIndex,

const short* pIndBuf,

int numRows) ;
SetColRowData (int nCol,

int nRow,

const char* pbData);
SetColRowInd (int nCol,

int nRow,

short indicator) ;

IsSameShape (const CSSSISColRowData* pAs)

HasSameData (const CSSSISColRowData* pAs)

Release () ;

CSSSISColRowData () ;
~CSSSISColRowData () ;

m_pCols;
m_nCols;
m _nColSize;
m_nRows;
m_pDataBuf;
m_pIndBuf;

Before a statement can be executed (either DML or query), a “statement”

must be opened. This may or may not correspond to an actual database cursor,

but is used to specify the execution context for the statement (encapsulating

whatever database state is necessary). For example, in an ODBC implementation

)

this corresponds to an HSTMT. The statement allocated this way must be closed

with a FREESTMT request, otherwise the resources will be held open. The

statement may be re-used for subsequent statements by sending an EXEC or a

-54-

WO 98/38762 . PCT/US98/02756

10

15

20

25

30

35

40

45

QUERY méssage using the same statement. The EXEC request is used for a SQL
statement which will not produce output columns (or where the client doesn’t care)
and requires only a single round trip. The given statement can be immediately
reused for another statement as desired. Input bind variables can still be used with
EXEC. In fact, a DML statement executed with EXEC can be executed multiple
times by specifying multiple rows of data in the CSSSISColRowData block used
for the input binds. All executions are done at the same time with a single round '

trip.

If the Commit flag is specifed as TRUE, a commit operation will be done
after the statement is executed. This helps reduce traffic by avoiding a separate
COMMIT request after a single DML statement. If multiple DML statements are
to be executed as a transaction, Commit should be specified only on the last one,

or a separate COMMIT request should be made.

/7
typedef unsigned long SISStmtId;

class SS_EXPORT_CLASS (CSSSISAllocStmtReqMsg : public CSSSISRequestMsg

public:
virtual BOOL Encode (SISSessionId sessionId,
SISSequence& sequence) ;
virtual BOOL Decode () ;
CSSSISAllocStmtRegMsg () ;
~CSSSISAllocStmtRegMsg () ;
}i
class SS_EXPORT CLASS CSSSISAllocStmtACKMsg : public CSSSISACKMsg
public:
SISStmtId GetStmtId () const { return m_stmtId; }
virtual BOOL Encode (SISSequence sequence,
SISStmtId stmt) ;
virtual BOOL Decode () ;
CSSSISAllocStmtACKMsg () ;
~C8SSISAllocStmtACKMsg () ;
private:
SISStmtId m_stmtId;

I

-55-

WO 98/38762 . PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

//
//
class SS_EXPORT_CLASS CSSSISExecReqMsg : public CSSSISRequestMsg
public:
SISStmtId GetStmtId () const { return m_stmtId; }
const char* GetStmt () const { return m_pStmt; }
CSSSIsColRowData* GetInputBinds () return m_pIBinds; }
BOOL GetCommit () const { return m bCommit; }
virtual BOOL Encode (SISSessionlId sessionld,
SISSequence& sequence,
SISstmtId stmt,
const char* pStmt,
CSSSISColRowData* pIBinds,
BOOL bCommit) ;
virtual BOOL Decode () ;
CSSSISExecRegMsg () ;
~CSSSISExecRegMsg () ;
private:
SISStmtId m_stmtId;
char* m_pStmt;
CSSSisColRowData* m_pIBinds;
BOOL m_bCommit;

’

class SS_EXPORT CLASS CSSSISExecACKMsg : public CSSSISACKMsg

public:
int GetRowsAffected () const { return m_nRows; }
virtual BOOL Encode (SISSequence sequence,
int nRowsAffected) ;
virtual BOOL Decode () ;
CSSSISExecACKMsg () ;
~CSSSISExecACKMsg () ;
private:
int m_nRows;
//

The QUERY and FETCH requests are used when data is to be returned to
the client (from a SELECT statement). Input binding, statement preparation,
execution, and initial result fetching are all done by the query request. More data
can be collected with the FETCH request. The QUERY request specifies the SQL
statement, the input binding values as a CSSSISColRowData block, and the
number of rows desired to be fetched immediately. The input binds may only
specify a single row of values since the query will be executed only once per

request. The reply will return no more than the number of rows specified. This

-56-

WO 98/38762

10

15

20

25

30

35

40

45

PCT/US98/02756

can be zero, in which case the query is executed, but no rows are fetched until a

FETCH request is sent.

The QUERY request also defines the shape of the data to be retrieved. A
second CSSSISColRowData block should be specified which has the columns
defined, but no actual row values (Allocate never called). This is used by SISM

in binding output values for retrieving results from the query. The output values
in the QUERY and FETCH ACK messages will have the same shape as the block
specified in the QUERY request. If the ACK returns all the rows available, the

EOF member will be set to true. Further FETCH requests are unnecessary.

The FETCH request specifies a statement started by the QUERY request on

which additional rows will be returned. As with QUERY, the reply will return no

more than the number of rows specified as the maximum in the QUERY request.

If the ACK returns all the rows available, the EOF member will be set to true.

There is no need to make further FETCH requests.

//
class SS_EXPORT_CLASS CSSSISQueryRegMsg :

public:

SISStmtId

const char*
CSSSISColRowData*
CSSSISColRowData*
int

virtual BOOL

virtual BOOL

private:

SISStmtId

char*
CSSSISColRowData*
CSSSISColRowbhatax*
int

public CSSSISRequestMsg

GetStmtId () const { return m_stmtId; }
GetStmt () const { return m_pStmt; }
GetInputBinds () return m_pIBinds; }
GetOutputDesc () return m_pODesc; }
GetMaxFetch () const { return m nMaxFetch; }

(SISSessionId
SISSequence&
SISStmtId stmt,

const char¥* pStmt,
CSSSISColRowData* pIBinds,
CSSSISColRowData* pODesc,

int nMaxFetch) ;

Encode sessionld,

sequence,

Decode () ;

CSSSISQueryRegMsg () ;
~CSSSISQueryReqMsg () ;

m_stmtId;
m_pStmt;
m_pIBinds;
m_pODesc;
m_nMaxFetch;

-57-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

60

65

class SS_EXPORT_CLASS (CSSSISQueryACKMsg

public:
CSSSISColRowbata* GetFetchvals () { return m_pFetch; }
int GetActualRows () const { return m _nActual; }
BOOL GetEOF () comnst { return m bEOF;
virtual BOOL Encode (SISSequence sequence,
CSSSISColRowbata* pFetch,
int nActual,
BOOL bEOF) ;
virtual BOOL Decode () ;
CSSSISQueryACKMsg () ;
~CS8SSISQueryACKMsg () ;
private:
CSSSISColRowData* m_pFetch;
int m nActual;
BOOL m_bEOF ;
}i
//
//
class SS_EXPORT_CLASS CSSSISFetchRegMsg : public CSSSISRequestMsg
public:
SISStmtId GetStmtId () const { return m_stmtId; }
virtual BOOL Encode (SISSessionId sessionId,
SISSequence& sequence,
SISStmtId stmt) ;
virtual BOOL Decode () ;
CSSSISFetchRegMsg () ;
~CSSSISFetchRegMsg () ;
private:
SISStmtId m_stmtId;

1

class SS_EXPORT CLASS CSSSISFetchACKMsg

PCT/US98/02756

: public CSSSISACKMsg

public CSSSISACKMsg

public:
CSSSISColRowData* GetFetchvals () { return m_pFetch; }
int GetActualRows () const { return m nActual;
BOOL GetEOF () const { return m_bEOF; }
virtual BOOL Encode (SISSequence sequence,
CSSSISColRowhata* pFetch,
int nActual,
BOOL bEQF) ;
virtual BOOL Decode () ;
CSSSISFetchACKMsg () ;
~CSSSISFetchACKMsg () ;
private:
CSSSISColRowData* m_pFetch;
int m_nActual;

-58-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

BOOL

//

PCT/US98/02756

m_bEOF;

The FREESTMT request closes a statement created with the ALLOCSTMT

request. This implicitly invalidates any query which is currently active on this

statement. The COMMIT request commits outstanding DML operations on the

current session (login). The ROLLBACK request rolls back outstanding DML

operations on the current session (login).

/7

class SS_EXPORT_CLASS CSSSISFreeStmtRegMsg : public CSSSISRequestMsg

public:
SISStmtId

virtual BOOL

virtual BOOL

private:
BOOL

’

GetStmtId () const { return m_stmtId; }

Encode (SISSessionId sessionId,
SISSequence& sequence,
SISStmtId stmt) ;

Decode () ;

CSSSISFreeStmtRegMsg () ;
~CSSSISFreeStmtRegMsg () ;

m_stmtId;

class SS_EXPORT CLASS (CSSSISFreeStmtACKMsg : public CSSSISACKMsg

public:
virtual BOOL

virtual BOOL

}i

//
//

Encode (SISSequence) ;
Decode () ;

CSSSISFreeStmtACKMsg () ;
~CSSSISFreeStmtACKMsg () ;

class SS_EXPORT_CLASS CSSSISCommitRegMsg : public CSSSISRequestMsg

public:
virtual BOOL

virtual BOOL

Encode (SISSessionld sessionId,
SISSequenceé& sequence) ;

Decode () ;

CSSSISCommitRegMsg () ;
~C8S8SISCommitReqMsg () ;

_50.

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

class SS_EXPORT CLASS CSSSISCommitACKMsg : public CSSSISACKMsg

public:
virtual BOOL Encode (SISSequence);
virtual BOOL Decode () ;
CSSSISCommitACKMsg () ;
~CSSSISCommitACKMsg () ;
}i
//
//
class SS_EXPORT_CLASS CSSSISRollbackReqMsg : public CSSSISRequestMsg
public:
virtual BOOL Encode (SISSessionId sessionld,
SISSequenceé& sequence) ;
virtual BOOL Decode () ;

CSS8SISRollbackReqMsg () ;
~C8SSISRollbackReqMsg () ;

}i

class SS_EXPORT_CLASS CSSSISRollbackACKMsg : public CSSSISACKMsg

public:
virtual BOOL Encode (SISSequence);
virtual BOOL Decode ();
CSSSISRollbackACKMsg () ;
~CS8SSISRollbackACKMsg () ;
}i
//

This next group of messages support remote file access through the
SISMGR, which is used to implement literature and correspondence (fulfillment)
requests. These messages provide simple file-style access to files located on the
machine running SISMGR or remotely accessible from it. The basic file

operations are supported: open, read, write and close.

Files are requested by category and name. The category can be used to
identify different groups of documents and to allow the files to be partitioned for
different sets of users. The server may also enforce different access restrictions
on different categories. An open file is identified by a SISFileld which is returned
by open and which all other file-related requests must provide. This file ID must

be closed when the operations are complete.

~60-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

60

65

//

typedef unsigned long SISFileId;

enum SISFileMode

{

}i

class SS_EXPORT_CLASS CSSSISFileInfoRegMsg

SIS_MODE_NONE
SIS_MODE_READ
SIS_MODE_WRITE
SIS_MODE_RDWR

public:

const char*
const char*

virtual BOOL

virtual BOOL

private:

’

#ifndef TIME T DEFINED
time_t;

char*
char¥*

typedef long

#endif

typedef unsigned int

class SS_EXPORT CLASS CSSSISFileInfoACKMsg

public:

}

}
}
}

const char*
size_t
time_t
time_t
SISFileMode

virtual BOOL

virtual BOOL

private:

0

(1 << 0),

(L << 1),
SIS MODE_READ |

GetCategory ()

PCT/US98/02756

SIS_MODE_WRITE

const {

GetFileName () const

Encode (SISSessionId
SISSequence&
const char+*
const char*

Decode () ;

: public CSSSISRequestMsg

return m_pCategory;
return m_pFileName;

sessionld,

sequence,

pCategory,

pFileName) ;

CSSSISFileInfoRegMsg () ;

~CSSSISFileInfoRegMsg () ;

m_pCategory;
m_pFileName;

size_t;

GetFileName

GetFileSize

GetCreateTime

GetWriteTime

GetFileModes

O
0
0
0
0

const

const

const

const

const

{
{
{
{
{

return

return

return

return

return

Encode (SISSequence sequence,
const char* pFileName,
nFileSize,
createTime,
writeTime,
SISFileMode modes) ;

size_
time
time_

Decode () ;

t
t
t

CSSSISFileInfoACKMsg () ;

~CSSSISFileInfoACKMsg () ;

61-

: public CSSSISACKMsg

m_pFileName;
m_nFileSize;
m_createTime;
m_writeTime;

m_modes; }

WO 98/38762

10

15

20

25

30

35

40

45

50

55

60

65

};

class SS_EXPORT CLASS CSSSISFileOpenRegMsg

char*
unsigned long
time_t

time_t
SISFileMode

public:

const char*
const char*
SISFileMode

virtual BOOL

virtual BOOL

private:

’

class SS_EXPORT_CLASS CSSSISFileOpenACKMsg

char*
char*
SISFileMode

public:

SISFileld
const char*

size_t
time_t

time t

virtual BOOL

virtual BOOL

private:

SISFileld
char*
unsigned long
time_t

time_t

PCT/US98/02756

m_pFileName;
m_nFileSize;
m_createTime;
m_writeTime;
m_modes;

public CSSSISRequestMsg

GetCategory () const
GetFileName () const
GetOpenMode () const

return m_pCategory;
return m_pFileName;
return m_openMode; }

Encode (SISSessionld sessionId,
SISSequence& sequence,
const char* pCategory,
const char* pFileName,
SISFileMode openMode) ;

Decode () ;

CS8SSISFileOpenRegMsg () ;
~CSSSISFileOpenReqgMsg () ;

m_pCategory;
m_pFileName;
m_openMode ;

public CSSSISACKMsg

GetFileId () const { return m_fileId; }

GetFileName () const { return m pFileName;
GetFileSize () const { return m nFileSize;
GetCreateTime () const { return m_createTime;
GetWriteTime () const { return m_writeTime;

Encode (SISSequence sequence,

SISFileIld file,
const char* pFileName,
size_t nFileSize,
time_t createTime,
time_t writeTime) ;
Decode () ;
CSSSISFileOpenACKMsg () ;
~CSSSISFileOpenACKMsg () ;
m _filelId;
m_pFileName;

m nFileSize;
m_createTime;
m_writeTime;

-62-

WO 98/38762

10

15

20

25

30

35

40

45

50

55

60

65

}i

PCT/US98/02756

class SS_EXPORT CLASS CSSSISFileReadRegMsg : public CSSSISRequestMsg

public:
SISFileld
size_t

b
int

}

virtual BOOL

virtual BOOL

private:
SISFileId
size_t
int

}i

GetFileld () const return m_fileId; }
GetChunkSize () const return m_nChunkSize;
GetMaxChunks () const { return m nMaxChunks;

Encode (SISSessionId sessionId,
SISSequence& sequence,
SISFileld file,
size_t chunkSize,
int maxChunks) ;

Decode () ;

CSSSISFileReadRegMsg () ;
~CSSSISFileReadReqgMsg () ;

m_fileId;
m_nChunkSize;
m_nMaxChunks;

class SS_EXPORT_CLASS CSSSISFileReadACKMsg : public CSSSISACKMsg

public:
unsigned char*
size t
BOOL

virtual BOOL

virtual BOOL

private:
unsigned char*
size_t
BOOL

GetChunkData () return m_pbata; }
GetChunkSize () const { return m_nDatalen; }
GetEOF () const { return m_bEOF; }
Encode (SISSequence sequence,

unsigned char* pData,

size t nDatalen,

BOOL bEOF) ;
Decode () ;
CSSSISFileReadACKMsg () ;

~CSSSISFileReadACKMsg () ;

m_pData;
m_nDatalien;
m_bEOF;

class SS_EXPORT_CLASS CSSSISFileWriteRegMsg : public CSSSISRequestMsg

public:
SISFileld
unsigned char*
size_t

}

virtual BOOL

GetFileId () const { return m fileId; }
GetChunkData O return m_pData; }
GetChunkSize () const { return m nDatalen;

Encode (SISSessionId sessionld,
SISSequenceé& sequence,
SISFileId file,
unsigned char* pbData,

-63-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

60

size_t nDatalen) ;

virtual BOOL Decode () ;

CSSSISFileWriteReaMsg () ;
~CSSSISFileWriteRegMsg () ;

private:
SISFileId m_fileId;
unsigned char* m_pData;
size_t m_nDatalen;
}i
class SS_EXPORT CLASS CSSSISFileWriteACKMsg : public CSSSISACKMsg
public:
virtual BOOL Encode (SISSequence sequence) ;
virtual BOOL Decode () ;
CSSSISFileWriteACKMsg () ;
~CSSSISFileWriteACKMsg () ;
}i

clasgs SS_EXPORT_CLASS CSSSISFileCloseRegMsg : public CSSSISRequestMsg

public:
SISFileId GetFileId () const { return m_fileId; }
virtual BOOL Encode (SISSessionld sessionId,
SISSequence& seguence,
SISFileId file);
virtual BOOL Decode () ;
CS8SSISFileCloseRegMsg () ;
~C8SSISFileCloseRegMsg () ;
private:
SISFileId m_filelId;

i

class SS_EXPORT CLASS CSSSISFileCloseACKMsg : public CSSSISACKMsg

public:
virtual BOOL Encode (SISSequence sequence) ;
virtual BOOL Decode () ;
CSSSISFileCloseACKMsg () ;
~CSSSISFileCloseACKMsg () ;
}i
//

Following are wrapper functions for creating all of the different classes

implemented in this library, if SISNAPI is not implemented as a DLL.

!/
extern BOOL SS_EXPORT_API SISNewMessage (SISMessageType msgType,

-64-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

SISRequestCode regCode,
CSSSISMessage*& pReturn) ;

extern BOOL SS_EXPORT_API SISNewMessage (SISMessageType msglype,
CSSSISMessage*& pReturn) ;

extern BOOL SS_EXPORT API SISNewColRowData (CSSSISColRowData*é&
pReturn) ;

extern BOOL SS_EXPORT API SISNewErrorInfo (CSSSISErrorInfo*é&
pReturn) ;

#endif // _ SISNAPI H__

Configuration

SISMGR creates database connections in responsge to client regquests
and actiong, and does not create an initial connection to the
corporate database. At startup, SISMGR loads its configuration
information from the Windows NT registry. Configuration information
is stored as values set on the Configuration key. The configuration
parameters read at startup are as follows:

. Allow Connections From

Allows specification of a set of host names or network addresses from
which connections will be accepted. Network addresses are specified
in the usual format and allow sub-nets to be specified with

wildcarding (for example: 206.79.143.* for all addresses in the
206.79.143 “class C” subnet). Multiple host names and network addresses are
separated by commas. If specified as * . * . * . * no host address validation is
performed.

o Internet Port Number

Specifies the Internet port number at which the server will listen for client
connections. Clients must connect to the correct machine and to this port number
to contact SISMGR.

o Maximum Connections

Specifies the maximum number of connections allowed at any one time. If
specified as 0, no limit is placed on the number of connections.

. Maximum Idle Minutes

Specifies the maximum number of minutes a client can be idle (not sending any
messages) before the connection is automatically closed by SISMGR. This can be

used to free up resources held by a client when a salesperson leaves it running. If

-65-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

specified as 0, clients are never timed out.

. Connect String Map

Specifies the mappings between “connect strings” specified by the client when
connecting and database vendors and “instance” identifiers for instantiating a
connector when the client logs in. The format of this value is a sequence of
connect string “maps” separated by commas. Each map is comprised of the
connect string as specified by the user, the database vendor this corresponds to,
and the database instance to connect to. For example: MPengr=oracle:dev
indicates that the user-supplied connect string “MPengr” will be implemented by
the Oracle connector using the database instance “dev” (which must be known to
the machine on which SISMGR is running).

o Oracle Connector DLL

Specifies the name of the DLL which implements the connector to Oracle
databases. This will be used for connections which map to Oracle database
instances. The value should be the name of the DLL which implements the SISM
connector for Oracle. For example: ssx30072.d11 for the Oracle 7.2
connector.

o Sybase Connector DLL

Specifies the name of the DLL which implements the connector to Sybase SQL
Server databases. This will be used for connections which map to Oracle database
instances. The value should be the name of the DLL which implements the SISM
connector for Sybase SQL Server. For example: ssx30s11.d11 for the Sybase
system 11 connector.

o Informix Connector DLL

Specifies the name of the DLL which implements the connector to Informix On-
line databases. This will be used for connections which map to Informix database
instances. The value should be the name of the DLL which implements the SISM
connector for Informix On-line. For example: ssx30172.d11 for the Informix
7.2 connector.

o Microsoft Connector DLL

Specifies the name of the DLL which implements the connector to Microsoft SQL

Server databases. This will be used for connections which map to Microsoft

~66-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

database instances. The value should be the name of the DLL which implements
the SISM connector for Microsoft SQL Server. For example: ssx30mé60.d11 for
the Microsoft 6.0 connector.
o Update Frequency
Specifies the frequency in seconds with which SISMGR updates the statistics in the
registry key for monitoring programs and checks the control key for shutdown
requests. The default is 5 seconds, which allows for fine-grained monitoring.
. Message Resource DLL
Specifies the name of the DLL which is loaded for handling error,
warning, and informational messages. Internally, error codes are used and
are translated into strings only when errors are reported to the user. For
example, ssrsis30.enu for US English.
. File Root Directory
Specifies the absolute path name to the directory which contains the files which are
available to be served to clients using the file access messages.
. Configuration Password
Specifies the password which must be entered by the user when starting up the
configuration user interface applet. This value is not read or set by SISMGR

itself.

A user interface may be provided for editing the registry values. For
example, a Windows NT control panel applet may be used, or some other form to

make the Ul consistent with other system services.

Once the system preferences have been read, SISMGR is up and begins

accepting connections.

CONCLUSION

Various modifications to these embodiments will be readily apparent to

those skilled in the art, and the generic principles defined herein may be applied to
other embodiments without the use of inventive faculty. Thus, the present

invention is not intended to be limited to the embodiments shown herein, but is to

-67-

WO 98/38762 PCT/US98/02756

be accorded the widest scope consistent with the principles and novel features
disclosed herein.

All publications and patent applications mentioned in this specification are
herein incorporated by reference to the same extent as if each individual

5 publication or patent application was specifically and individually indicated to be

incorporated by reference.

The invention now being fully described, it will be apparent to one of
ordinary skill in the art that many changes and modifications can be made thereto

without departing therefrom.
10

-68-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

APPENDIX

Writing User Transaction Log File for a Given Laptop Node

This program will be called by a server-side process that processes transaction log
entries for all Laptop Nodes. For each Laptop Node, the calling process is building the
UserTrxnLogFileName and calling Program 1.

Input Parameters

LaptopNodeld - node_id of the destination laptop
UserTxnLogFileName - full path of the file where txns will be written
MaxBatchTxns - number of txns between commits and updates to the
S_DOCK_STATUS table
o MaxTxns - number of txns to process in this session. Use this parameter
to limit processing.

MAIN ALGORITHM

-- CHECK PARAMETERS

IF (MAXTXNS < 1 || MAXBATCHTXNS < 1) THEN
INVALID PARAMETER

END IF

-- GET LAST LOG_EXTRACT NUMBER FOR THE LAPTOP FROM S_DOCK STATUS
LAST TXN_COMMIT_ NUMBER = UTLDSTATGETLOGNUM (LAPTOPNODEID) ;

-- INITIALIZE VARIABLES

NUMTXNS = 0; -- TOTAL NUMBER OF TXNS PROCESSED
NUMBATCHTXNS = 0; -- TOTAL NUMBER OF TXNS WRITTEN IN THE CURRENT
BATCH

-~ READ DOCKING OBJECT AND TABLE DEFINITIONS INTO MEMORY STRUCTURES
STARTDICTAPI ();

-- OPEN THE USER LOG TXN FILE
OPEN USER LOG TXN FILE

-~ SELECT AND PROCESS NEW TXNS IN S_DOCK_TRANSACTICN LOG
-- WHERE TXN_COMMIT_NUMBER > LAST TXN COMMIT NUMBER
FOR EACH NEW TXN LOOP

-- STOP PROCESSING IF REACH MAXTXNS
IF NUMTXNS = MAXTXNS THEN

BREAK;
END IF;

-- PREVENT CIRCULAR TXNS. DO NOT SEND THE TXN BACK TO THE
ORIGINATING LAPTOP
IF TXN.ORIGINNODEID = LAPTOPNODEID THEN
GOTO NEXT TRANSACTION
END IF;

-- PROCESS ALL OTHER TYPES OF TRANSACTIONS

-- THIS IS THE VISIBILITY CALCULATOR!

-- THIS ROUTINE ALSO PROCESSES IMPLICIT VISIBILITY EVENTS

-- LATER: DATA MERGE CAN CALL THIS FUNCTION TO CHECK WHETHER A TXN
IS

- STILL VISIBLE WHEN MERGING TXNS INTC A LAPTOP OR SERVER
DATABASE.

-69-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

60

65

CHECKVISIBILITY (LAPTOPNODEID, LOGRECORDTYPE, TABLENAME,
TRANSROWID) ;
IF TXN IS VISIBLE THEN
-- WRITE TRANSACTIONS TO USERTXNLOG FILE DEPENDING ON THE
-- TYPE OF LOGRECORDTYPE.
WRITE THE TXN TO THE USER LOG FILE
++NUMBATCHTXNS
END IF;

-- FINISHED PROCESSING THE TXN

-- COMMIT (IF NEEDED)

IF NUMBATCHTXNS = MAXBATCHTXNS THEN
-- ASSUME THAT SEPARATE PROCESS COMES AROUND AND DELETES
-- TXNS IN S_DOCK_TRANSACTION LOG THAT HAVE BEEN PROCESSED
-- FOR ALL NODES. SO, NO NEED TO DELETE THE TXNS FROM THE LOG.
UPDATE LAST LOG_EXTRACT NUMBER FOR LAPTOP IN S_DOCK_STATUS
COMMIT;
NUMBATCHTXNS = 0

END IF;

++NUMTXNS
END LOOP; /* EACH TRANSACTION IN THE TXN LOG TABLE */

-- COMMIT
UPDATE LAST LOG_EXTRACT NUMBER FOR LAPTOP IN S _DOCK_STATUS
COMMIT;

-- CLOSE LOG FILE (IF NEEDED)

IF USERTXNLOGFILEP != NULL THEN
CLOSE FILE;

END IF;

STOPDICTAPI () ;

CHECK VISIBILITY ROUTINES

-- CHECK IF A RECORD IN THE TXN ILOG IS VISIBLE TO A LAPTOPNODEID
BOOL CHECKVISIBILITY (LAPTOPNODEID, LOGRECORDTYPE, TABLENAME,
TRANSROWID)

-- SQLSTATEMENTS ROUTED BASED ON THE DESTINATION LIST
IF LOGRECORDTYPE IN (’SQLSTATEMENT') THEN
IF LAPTOP NODE IN DESTINATION LIST THEN
RETURN TRUE;
END IF;

-- SHADOW AND MULTI RECORD LOGRECORDTYPES ARE ROUTED TO ALL NODES
-- NO VISIBILITY EVENTS WITH THESE LOGRECORDTYPES.
ELSTF LOGRECORDTYPE IN (’SHADOWOPERATION’, 'MULTIRECORDDELETE’,
'MULTIRECORDUPDATE’) THEN
RETURN TRUE;

-- SIMPLE DELETES NEED MORE PROCESSING
ELSIF LOGRECORDTYPE IN (’SIMPLE DELETE’) THEN

IF (TABLE.VISIBILITY IN (’ENTERPRISE’, ’'LIMITED’)) THEN
RETURN TRUE;

END IF;

-- SIMPLE INSERTS AND SIMPLE UPDATES NEED MORE PROCESSING
-- CHECKTXNVISIBILITY () ALSO PROCESSES IMPLICIT VISIBILITY EVENTS
ELSTF LOGRECORDTYPE IN (’/SIMPLE INSERT’, ’'SIMPLE UPDATE’) THEN
IF (TABLE.VISIBILITY = ’'ENTERPRISE’) THEN
RETURN TRUE;
ELSTF TABLE.VISIBILITY = ‘LIMITED’ THEN
IF CHECKTXNVISIBILITY (LAPTOPNODEID, TABLE, ROWID) THEN

-70-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

60

65

RETURN TRUE;
END IF;
END IF;
END IF;

}

-- CHECK IF A RECORD IN THE TXN LOG IS VISIBLE TO A LAPTOPNODEID
STATIC BOOL CHECKTXNVISIBILITY (LAPTOPNODEID, TABLE, ROWID)

BOOL BVISIBLE = FALSE;

FIND THE TABLE IN THE DICTIONARY;
IF TABLE NOT FOUND THEN

ERROR: TABLE NOT DEFINED
END IF;

FOR ALL DOCKING OBJECTS THAT THE TABLE BELONGS TO LOOP
-- GENERATE SQL TO GET PRIMARYID VALUES OF THE DOCKING OBJECT
GENERATEPRIMARYIDSQL (TABLE, ROWID, DOCKINGOBJECT) ;
FOR EACH PRIMARYID VALUE RETRIEVED LOOP
CHECKOBJECTVISIBILITY (LAPTOPNODEID, PRIMARYTABLE,
PRIMARYROWID)
IF OBJECT IS VISIBLE THEN
-- BECAUSE CHECKOBJECTVISIBILITY() ALSO PROCESSES IMPLICIT
-- VISIBILITY EVENTS, WE MUST LOOP THROUGH ALI. DOCKING OBJECTS
-- EVEN IF WE ALREADY KNOW THAT THE TXN IS VISIBLE.
-- EXCEPTION: IF THE TABLE HAS VIS _EVENT FLG = ’'N’
-- THEN WE CAN RETURN IMMEDIATELY.
IF TABLE.VISIBILITYEVENTFLG = ‘N’ THEN
RETURN TRUE;
ELSE
BVISIBLE = TRUE;
END IF;
END IF;
END LOOP;
END LOOP;

RETURN BVISIBLE;

-- CHECK IF AN INSTANCE OF A DOCKING OBJECT IS VISIBLE TO THE LAPTOP
USER.

-- ALSO PROCESSES IMPLICIT VISIBILITY EVENTS!

BOOL CHECKOBJECTVISIBILITY (LAPTOPNODEID, DOCKINGOBJECTNAME,
PRIMARYROWID)

FOR EACH VISIBILITY RULE FOR THE DOCKING OBJECT LOOP
IF RULETYPE = RULESQL THEN
RUN THE SELECT SQL STATEMENT USING PRIMARYROWID;
IF ANY ROWS RETURNED THEN
-- ROW IS VISIBLE
-- PROCESS AN IMPLICIT DOWNLOAD OBJECT
DOWNLOADORJECTINSTANCE (LAPTOPNODEID, PRIMARYTABLENAME,
PRIMARYROWID) ;
RETURN TRUE;
END IF;
ELSIF RULETYPE = CHECKDOCKINGOBJECT THEN
RUN THE PARAMETERSQL USING PRIMARYROWID TO GET NEWPRIMARYROWID
FOR EACH RECORD RETRIEVED BY PARAMETERSQL LOOP
-- RECURSIVE!
CHECKOBJECTVISIBILITY (LAPTOPNODEID, CHECKDOCKINGOBJECTNAME,
NEWPRIMARYROWID) ;
IF RC = TRUE THEN
-- PROCESS AN IMPLICIT DOWNLOAD OBJECT
DOWNLOADOBJECTINSTANCE (LAPTOPNODEID, PRIMARYTABLENAME,

71-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

50

55

60

65

PRIMARYROWID) ;
RETURN TRUE;
END IF;
END LOOP;
END IF;
END LOOP;

-- OBJECT IS NOT VISIBLE.

-- PROCESS AN IMPLICIT REMOVE OBJECT
REMOVEOBJECTINSTANCE (LAPTOPNCDEID, PRIMARYTABLENAME,
PRIMARYROWID) ;

RETURN FALSE;

GENERATE SQL STATEMENT TO GET PRIMARYID

-- GENERATE THE SELECT SQL STATEMENT TO GET THE PRIMARYID VALUE OF
-- THE DOCKING OBJECT FOR THE GIVEN MEMRERTABLE

-- SQL STATEMENT LOOKS LIKE:

-- SELECT TP.<ROW_ID>

- - FROM <TABLE OWNER>.<TABLE> T1,

-- <TABLE_OWNER>.<PKTABLE> T2,

-- ... ONE OR MORE INTERMEDIATE TABRLES BETWEEN THE TABLE

-- AND THE PRIMARYTABLE

- - <TABLE OWNER>.<PKTABLE> TN

-- <TABLE_OWNER>.<PRIMARYTABLE> TP

-- WHERE T1.ROW_ID = :ROW_ID /* ROW_ID IN TRANSACTION LOG */
-- /* JOIN TO PK TABLE T2 */

-- AND Ti.<FKCOLUMN> = T2.<PKCOLUMN>

-- AND <T1 FKCONDITION>

-- /* ANY NUMBER OF JOINS UNTIL REACH THE TABLE THAT JOINS
-- TO THE PRIMARYTABLE */

-- /* JOIN FROM T2 TO TN */

-- AND T2.<FKCOLUMN> = TN.<PKCOLUMN>

-- AND <T2 FKCONDITION>

-- /* JOIN TO THE PRIMARYTABLE */

-- AND TN.<FKCOLUMN> = TP.<PKCOLUMN>

-- AND <TN FKCONDITION>

-- NOTE THAT THERE MAY BE ONE OR MORE PATHS FROM THE MEMBER TABLE
-- TO THE PRIMARY TABLE. WE NEED TO GENERATE A SQL SELECT STATEMENT
-- FOR EACH OF THE PATHS AND UNION THE STATEMENTS TOGETHER.

-- THIS FUNCTION ASSUMES THAT THERE ARE NO LOOPS IN THE DEFINITION.

-- THESE SQL STATEMENT DO NOT CHANGE FOR EACH TABLE IN A DOCKING
OBJECT,
-- SO WE CAN CALCULATE THEM ONE AND STORE THEM IN MEMORY.

STRUCT

CHAR* SELECTLIST;
CHAR* FROMCLAUSE;
CHAR* WHERECLAUSE ;

UINT NUMTABLES; /* ALSO THE NUMBER OF JOINT TO REACH THE PRIMARY
TABLE */
} GENSTMT;

GENERATEPRIMARYIDSQL (TABLE, DOCKINGOBJECT)

/* THERE MAY BE MORE THAN ONE SQL STATEMENT, SO WE HAVE A DYNAMIC

272-

WO 98/38762 PCT/US98/02756

ARRAY OF SQL STATEMENTS. EACH ELEMENT IN THE ARRAY IS A PATH
FROM THE TABLE TO THE PRIMARY TABLE*/

DYNARRID GENSTMTARR;

GENSTMT NEWGENSTMT;

5
CHAR* SQLSTMT;
DYNARRCREATE (GENSTMTARR) ;
10 -- CREATE THE FIRST ELEMENT AND INITIALIZE

NEWGENSTMT = MALLOC () ;
NEWGENSTMT . NUMTABLES = 1;
NEWGENSTMT . SELECTLIST = "SELECT ROW_ID";
NEWGENSTMT . FROMCLAUSE = "FROM <TABLE> T1'";

15 NEWGENSTMT . WHERECLAUSE = "WHERE T1.ROW_ID = :ROW_ID";
DYNARRAPPEND (GENSTMTARR, &NEWGENSTMT)

/* RECURSIVELY FOLLOW FKS TO THE PRIMARYTABLE */
BUILD THE SELECT, FROM AND WHERE CLAUSE SIMULTANEOUSLY */
20 ADDPKTABLE (TABLE, DOCKINGOBJECT, GENSTMTARR, 0);

-- UNION ALIL THE PATHS TOGETHER
NUMSTMTS = DYNARRSIZE (GENSTMTARR) ;
FOR ALL ELEMENTS IN THE ARRAY LOCP

25 TMPSQLSTMT = GENSTMTARR[J] .SELECTLIST)|| GENSTMTARR [J] .FROMCLAUSE
H GENSTMTARR [J] . WHERECLAUSE ;
SQLSTMT = SQLSTMT || ‘UNION’ || TMPSQLSTMT;
END LOOP;
30 DYNARRDESTROY (GENSTMTARR) ;

IF SQLSTMT = NULL THEN
ERROR: NO PATH FROM TABLE TO PRIMARY TABLE.
END IF;

35 }

-- RECURSIVELY FOLLOW ALL FKS TO THE PRIMARY TABLE
ADDPKTABLE (TABLE, DOCKINGOBJECT, GENSTMT, INPUTSTMTNUM)

40
UINT NUMFKS = 0;
UINT STMTNUM;
GENSTMT NEWGENSTMT;
45 FOR ALL FKS FOR THE TABLE LOOP

IF PKTABLE IS A MEMBER TABLE OF THE DOCKING ORJECT THEN
-- IF THERE’S MORE THAN ONE FK, THEN THERE IS MORE THAN ONE PATH
-- OUT OF THE CURRENT TABLE.
-- COPY THE SQL STMT TO A NEW DYNARRELMT TO CREATE A NEW PATH
50 IF NUMFKS > 0 THEN
-- CREATE A NEW ELEMENT AND COPY FROM GENSTMT [INPUTSTMINUM]
NEWGENSTMT = MALLOC() ;
NEWGENSTMT . NUMTABLES = GENSTMT [INPUTSTMTNUM] . NUMTABLES ;
NEWGENSTMT . SELECTLIST = GENSTMT [INPUTSTMTNUM] . SELECTLIST;
55 NEWGENSTMT . FROMCLAUSE = GENSTMT [INPUTSTMTNUM] . FROMCLAUSE ;
NEWGENSTMT . WHERECLAUSE = GENSTMT [INPUTSTMTNUM] . WHERECLAUSE ;
DYNARRAPPEND (GENSTMTARR, &NEWGENSTMT) ;
STMTNUM = DYNARRSIZE (GENSTMTARR) ;

60 -- PUT A CHECK HERE FOR INFINITE LOOPS
IF STMTNUM == 20 THEN
ERROR: PROBABLY GOT AN INFINITE LOOP?
END IF;
ELSE
65 STMTNUM = INPUTSTMINUM;
END IF;

-73-

10

15

20

25

30

35

40

45

50

55

60

65

WO 98/38762 PCT/US98/02756

-- APPEND THE NEW PKTABLE TO THE FROMCLAUSE AND WHERECLAUSE
GENSTMT [STMTNUM] . FROMCLAUSE =
GENSTMT [STMTNUM] . FROMCLAUSE || ",\N <TABLE> T<NUMTABLES +
1>";
GENSTMT [STMTNUM] . WHERECLAUSE =
GENSTMT [STMTNUM] . WHERECLAUSE | |
"AND T<NUMTABLES>.<FKCOLUMN> = T<NUMTABLES + 1>.<PKCOLUMN>"

"AND <FKCONDITION FOR TABLE IF ANY>";
++GENSTMT . NUMTABLES ;

-- PKTABLE IS THE PRIMARY TABLE THEN DONE.
IF PKTABLE = PRIMARYTABLE THEN
RETURN ;
ELSE
ADDPKTABLE (PKTABLE, DOCKINGOBJECT, GENSTMT, STMTNUM) ;
END IF;

~-- ONLY COUNT FKS TO OTHER MEMBER TABLES IN THE SAME DOCKING
OBJECT
++NUMFKS ;

END IF;
END LOOP;

RETURN;

PROCESS VISIBILITY EVENTS

-- DOWNLOAD AN OBJECT INSTANCE TO A LAPTOP
-- THIS FUNCTION ALSO DOWNLOADS ALL RELATED DOCKING OBJECT INSTANCES.
BOOL DOWNLOADOBJECTINSTANCE (LAPTOPNODEID, OBJECTNAME, PRIMARYROWID)

-- CHECK IF THE OBJECT INSTANCE IS ALREADY DOWNLOADED TC THE LAPTOP
FIND THE OBJECT INSTANCE IN THE S _DOBJ INST TABLE
IF EXISTS ON LAPTOP THEN
RETURN TRUE;
END IF;

-- REGISTER OBJECT INSTANCE IN S_DOBJ_INST TABLE

-- WRITE DOWNLOAD OBJECT RECORDS TO THE TXN LOG

FOR EACH MEMBER TABLE OF THE DOCKING OBJECT LOOP
GENERATE SQL SELECT STATEMENT TO DOWNLOAD RECORDS
WRITE EACH RETRIEVED RECORD TO THE USER TXN ILOG FILE

END LOOP;

-- DOWNLOAD RECORDS FOR PARENT OBJECT INSTANCES
FOR EACH RELATEDDOCKINGOBJECT LOOP
RUN PARAMETERSQL TO GET NEWPRIMARYID OF RELATEDDOCKINGOBJECTS
FOR EACH NEWPRIMARYID RETRIEVED LOOP
-- CHECK IF THE INSTANCE OF THE OBJECT IS VISIBLE TO THE LAPTOP
USER
CHECKOBJECTVISIBILITY (LAPTOPNODEID, OBJECTNAME, PRIMARYROWID)
IF VISIBLE THEN
DOWNLOADOBJECTINSTANCE (LAPTOPNODEID,

RELATEDDOCKINGOBJECT,
NEWPRIMARYROWID) ;

END IF;
END LQOP;
END LOOP;

RETURN TRUE;

-74-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

-- REMOVE AN OBJECT INSTANCE TO A LAPTOP
-~ THIS FUNCTION ALSO REMOVES ALL RELATED DOCKING OBJECT INSTANCES.
BOOL REMOVEOBJECTINSTANCE (LAPTOPNODEID, OBJECTNAME, PRIMARYROWID)

-- CHECK IF THE OBJECT INSTANCE IS ALREADY DOWNLOADED TO THE LAPTOP
FIND THE OBJECT INSTANCE IN THE S_DOBJ_INST TABLE
IF DOES NOT EXIST ON LAPTOP THEN
RETURN TRUE;
END IF;

-- DELETE THE OBJECT INSTANCE FROM S_DOBJ_INST TABLE

-- WRITE REMOVE OBJECT RECORDS TO THE TXN LOG

FOR EACH MEMBER TABLE OF THE DOCKING OBJECT LOOP
GENERATE SQL SELECT STATEMENT TO GET RECORDS TO DELETE
WRITE EACH RETRIEVED RECORD TO THE USER TXN ILOG FILE

END LOOP;

-- REMOVE FOR PARENT OBJECT INSTANCES
FOR EACH RELATEDDOCKINGOBJECT LOOP
RUN PARAMETERSQL TO GET NEWPRIMARYID OF RELATEDDOCKINGOBJECTS
FOR EACH NEWPRIMARYID RETRIEVED LOOP
-- CHECK IF THE INSTANCE OF THE OBJECT IS VISIBLE TO THE LAPTOP
USER
CHECKOBJECTVISIBILITY (LAPTOPNODEID, OBJECTNAME, PRIMARYROWID)
IF NOT VISIBLE THEN
REMOVEOBJECTINSTANCE (LAPTOPNODEID,
RELATEDDOCKINGOBJECT, NEWPRIMARYROWID) ;
END IF;
END LOOP;
END LOOP;

RETURN TRUE;

}

75-

WO 98/38762 PCT/US98/02756

10

15

20

25

30

35

40

45

WE CLAIM:

1.

10.

A METHOD OF ESTABLISHING AND MAINTAINING A SECURE TCP/IP SESSION

BETWEEN A SERVER (301) HAVING A DATABASE AND A CLIENT (311),

COMPRISING:

(n) SENDING A HELLO MESSAGE FROM THE CLIENT (311) TO THE SERVER
(301) ESTABLISHING CLIENT AUTHORIZATION;

(B) SAID SERVER (301) SENDING A SERVER SESSION ID AND A SESSION
PRIVATE KEY TO THE CLIENT (311).

THE METHOD OF CLAIM 1 WHEREIN THE CLIENT'S (311) HELLO MESSAGE
CONTAINS THE CLIENT’S (311) PUBLIC KEY.

. THE METHOD OF CLAIM 1 COMPRISING ENCRYPTING THE SERVER (301)

SESSION ID USING THE CLIENT’'S (311) PUBLIC KEY.

THE METHOD OF CLAIM 1 COMPRISING SENDING ALL MESSAGES BETWEEN THE
CLIENT (311) AND THE SERVER (301) WITH THE SESSION ID INCLUDED
THEREIN.

THE METHOD OF CLAIM WHEREIN THE SESSION ID IS A UNIQUE, NON-
REPEATING SESSION ID.

THE METHOD OF CLAIM 1 WHEREIN EACH MESSAGE IN THE SESSION HAS AN
IDENTIFIER.

THE METHOD OF CLAIM 6 WHEREIN THE IDENTIFIER IS MONTONICALLY
INCREASING.

THE METHOD OF CLAIM 1 COMPRISING STORING THE CLIENT (311) PRIVATE
KEY AT THE CLIENT (311),

. THE METHOD OF CLAIM 1 WHEREIN INDIVIDUAL MESSAGES COMPRISE SQL

COMMANDS .

AN ARTICLE OF MANUFACTURE COMPRISING:

A COMPUTER USABLE MEDIUM HAVING COMPUTER READABLE PROGRAM
CODE MEANS EMBODIED THEREIN FOR ESTABLISHING AND MAINTAINING
A SECURE TCP/IP SESSION, THE COMPUTER READABLE PROGRAM MEANS
IN SAID ARTICLE OF MANUFACTURE COMPRISING:

(A) COMPUTER READABLE PROGRAM CODE MEANS FOR CAUSING A COMPUTER
TO EFFECT SENDING A HELLO MESSAGE FROM THE CLIENT (311) TO
THE SERVER (301) ESTABLISHING CLIENT AUTHORIZATION; AND

(B) COMPUTER READABLE PROGRAM CODE MEANS FOR CAUSING THE

-76-

WO 98/38762
11.
5
12.
10
13.
15
14.
20
15.
25
16.
30 17.
18.
35
19.
40
(n)
45 (B)

PCT/US98/02756

COMPUTER TO EFFECT SAID SERVER (301) SENDING A SERVER
SESSION ID AND A SESSION PRIVATE KEY TO THE CLIENT (311).

THE ARTICLE OF MANUFACTURE OF CLAIM 10 COMPRISING COMPUTER
READABLE PROGRAM CODE MEANS FOR CAUSING THE COMPUTER TO
INCORPORATE THE CLIENT'S (311) PUBLIC KEY IN THE CLIENT'S
(311) HELLO MESSAGE.

THE ARTICLE OF MANUFACTURE CLAIM 10 COMPRISING COMPUTER
READABLE PROGRAM CODE MEANS FOR ENCRYPTING THE SERVER (301)
SESSION ID USING THE CLIENT'S (311) PUBLIC KEY.

THE ARTICLE OF MANUFACTURE OF CLAIM 10 COMPRISING COMPUTER
READABLE PROGRAM CODE FOR SENDING ALL MESSAGES BETWEEN THE
CLIENT (311) AND THE SERVER (301) WITH THE SESSION ID
INCLUDED THEREIN.

THE ARTICLE OF MANUFACTURE OF CLAIM 10 COMPRISING COMPUTER
READABLE PROGRAM CODE FOR GENERATING IS A UNIQUE, NON-
REPEATING SESSION ID.

THE ARTICLE OF MANUFACTURE OF CLAIM 10 COMPRISING COMPUTER
READABLE PROGRAM CODE FOR GENERATING AN IDENTIFIER FOR EACH
MESSAGE IN THE SESSION.

THE ARTICLE OF MANUFACTURE OF CLAIM 15 COMPRISING COMPUTER
READABLE PROGRAM CODE FOR GENERATING A MONTONICALLY
INCREASING IDENTIFIER.

THE ARTICLE OF MANUFACTURE COMPRISING COMPUTER READABLE
PROGRAM CODE FOR STORING THE CLIENT (311) PRIVATE KEY AT THE
CLIENT (311),

THE ARTICLE OF MANUFACTURE OF CLAIM 10 COMPRISING COMPUTER
READABLE PROGRAM CODE FOR GENERATING SQL COMMANDS AS
INDIVIDUAL MESSAGES IN THE SESSION.

A PROGRAM STORAGE DEVICE READABLE BY A MACHINE, TANGIBLY
EMBODYING A PROGRAM OF INSTRUCTIONS EXECUTABLE BY A MACHINE
TO PERFORM METHOD STEPS FOR ESTABLISHING AND MAINTAINING A
SECURE TCP/IP SESSION BETWEEN A SERVER (301) HAVING A
DATABASE AND A CLIENT (311), SAID METHOD STEPS COMPRISING:
SENDING A HELLO MESSAGE FROM THE CLIENT (311) TO THE SERVER
(301) ESTABLISHING CLIENT AUTHORIZATION;

SAID SERVER (301} SENDING A SERVER SESSION ID AND A SESSION

77-

WO 98/38762
20.
5
21.
10
22.
15
23.
20 24.
25.
25
26.
30
27.

PCT/US98/02756

PRIVATE KEY TO THE CLIENT (311).

THE PROGRAM STORAGE DEVICE OF CLAIM 19 WHEREIN SAID METHOD
STEPS FURTHER COMPRISE THE CLIENT'S (311) HELLO MESSAGE
CONTAINS THE CLIENT'S (311) PUBLIC KEY.

THE PROGRAM STORAGE DEVICE OF CLAIM 19 WHEREIN SAID METHOD
STEPS FURTHER COMPRISE ENCRYPTING THE SERVER (301) SESSION
ID USING THE CLIENT’'S (311) PUBLIC KEY,.

THE PROGRAM STORAGE DEVICE OF CLAIM 19 WHEREIN SAID METHOD
STEPS FURTHER COMPRISE SENDING ALL MESSAGES BETWEEN THE
CLIENT (311) AND THE SERVER (301) WITH THE SESSION ID
INCLUDED THEREIN.

THE PROGRAM STORAGE DEVICE OF CLAIM 22 WHEREIN SATID METHOD
STEPS FURTHER COMPRISE GENERATING A UNIQUE, NON-REPEATING
SESSION ID.

THE PROGRAM STORAGE DEVICE OF CLAIM 19 WHEREIN SAID METHOD
STEPS FURTHER COMPRISE ASSIGNING EACH MESSAGE IN THE SESSION
AN IDENTIFIER.

THE PROGRAM STORAGE DEVICE OF CLAIM 24 WHEREIN SAID METHOD
STEPS FURTHER COMPRISE ASSIGNING EACH MESSAGE IN THE SESSION
A MONTONICALLY INCREASING IDENTIFIER.

THE PROGRAM STORAGE DEVICE OF CLAIM 19 WHEREIN SAID METHOD
STEPS FURTHER COMPRISE STORING THE CLIENT (311) PRIVATE KEY
AT THE CLIENT (311),

THE PROGRAM STORAGE DEVICE OF CLAIM 19 WHEREIN SAID METHOD

STEPS FURTHER COMPRISE INCORPORATING SQL COMMANDS IN
INDIVIDUAL MESSAGES.

78-

6/1

(92 31nY) L33HS 3LnllLsans

USER INPUT | 13 1
Y
upDATE |77
3 ¥
FIG._1 , =
F & | /
[MERGE |——{=—
A Y 9
=19 [LoaMGR V.
T 5 IR}
DOCK |- =| E| =
I \17a “17b “17¢
mmmmmmmd Rl
: 25b . 25a
e e = 37a
— DOCK — DOCK ="
— ~35¢ — ~35b — ~35a Y
%f E/ %f 27a
= = = | MERGE
I 1 I
UPDATE ,.8\ UPDATE 4-@\ UPDATE 4.8{7
) 23¢ . 23b . 234
31c 31b | 31a
\ \ \
850 \ 21c 39 \21b 358 \ 21a
USER INPUT USER INPUT USER INPUT

T9L8€/86 OM

95L70/86S1/1Dd

WO 98/38762

2/9

PCT/US98/02756

63 65 67
S_DOBJ_INST ~ p---| NODE S_REL_DOBJ
T T T
| ! ! 61
S_DOBJ
: PRIMARY
o7t | TABLE 1 e
S_DOBJ_VIS_RULE ! S_DOBJ_TBL
]
T
: L 73
S_APP_TBL
| ! X |
85 ! 81 83
7
P FOREIGN KEY COLUMN USER KEY COLUMN
a | |
A A ! ! 75
S_APP_COL

SUBSTITUTE SHEET (RULE 26)

WO 98/38762

-

33

3/9

101

START

Y

103

USER INPUT

ACCEPT
USER
INPUT

Y

105

UPDATE
DATABASE

PCT/US98/02756

’///31

A

107

CREATE
LOG
RECORD

Y

EXIT

109

FIG.-3

SUBSTITUTE SHEET (RULE 26)

23

35

WO 98/38762

PCT/US98/02756

4/9

121 ,///25

START
' 123
CONNECT TO
CENTRAL
COMPUTER
125

UPLOAD

REQUEST
2

127

SEND LOG

129

DOWNLOAD

REQUEST
?

131

RECEIVE LOG

133

EXIT

FIG.-4

SUBSTITUTE SHEET (RULE 26)

WO 98/38762

~d

5/9

141

START

FIND FIRST
UNPROCESSED
TRANSACTION

SELECT

T

Y

TRANSACTION

g

UPDATE

e 143

’l e 147

149

PCT/US98/02756

/7

DATABASE

GENERATE
CORRECTIVE
TRANSACTION

CENTRAL

COMPUTER
?

151

157

Y

WRITE TO
LOG

159

YES TRANS-

ACTIONS
REMAIN

161

SUBSTITUTE SHEET (RULE 26)

FIG.-5

LTI

WO 98/38762

6/9
171

START

PCT/US98/02756

/9

173
FIND FIRST
UNPROCESSED
TRANSACTION
Y
SELECT | 175
TRANSACTION

CALL VISIBILITY

ACTIONS
REMAINING
2

NO

179

CALCULATOR
189
183 UPDATE LAST-
LOG-
NO EXTRACTED
YES
185 191
WRITE PARTIAL END
TRANSACTION
LOG
v 187
UPDATE LAST-
LOG-
EXTRACTED
|

SUBSTITUTE SHEET (RULE 26)

WO 98/38762 PCT/US98/02756

7/9 201
(START i

7 203

DEFAULT:
MARK NOT
VISIBLE

¢ 205

SELECT FIRST
RULE

YES

209

221 y

EXECUTE

DETERMINE
RELATED SQL_STATEMENT

OBJECT

223 211

\
GET ROW ID

RECORDS\YES
RETURNED
?

\ 225

CALL
VISIBILITY NO
CALCULATOR

227

VISIBLE \ YES 1
?

o
Lt

Y

NO MARK
- VISIBLE

217

215
213/

RULES

REMAIN
?

SELECT
NEXT
RULE

+<

228
SYNCHDBs |~

FIG._7 229

SUBSTITUTE SHEET (RULE 26)

WO 98/38762 PCT/US98/02756

8/9

241

START 228
/

DOCKING
OBJECT
VISIBLE

?

YES NO

245

DOCKING DOCKING

OBJECT IN YES - NG OBJECT IN
S_DOBJ_INST S_DOBJ_INST
? 2
247 251
INDICATE INDICATE
INSERT DELETE
REQUIRED REQUIRED
255

FIG.-8

SUBSTITUTE SHEET (RULE 26)

WO 98/38762 , PCT/US98/02756

9/9

HEADQUARTERS
CORPORATE SERVER

SISMGR

CORPORATE
DATABASE

CORPORATE FIREWALL

ENCRYPTED
SECURE SESSIONS

SALESPERSON A SALESPERSON B
INTERNET SERVICE INTERNET SERVICE
PROVIDER PROVIDER

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

