

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199861327 B2
(10) Patent No. 746663

(54) Title
Terbenzimidazoles useful for medical therapy (topoisomerase inhibitors)

(51)⁶ International Patent Classification(s)
C07D 235/18 C07D 401/14
A61K 031/415

(21) Application No: 199861327 (22) Application Date: 1998 .01 .21

(87) WIPO No: WO98/31673

(30) Priority Data

(31) Number (32) Date (33) Country
08/786629 1997 .01 .21 US

(43) Publication Date : 1998 .08 .07
(43) Publication Journal Date : 1998 .10 .08
(44) Accepted Journal Date : 2002 .05 .02

(71) Applicant(s)
Rutgers, The State University of New Jersey

(72) Inventor(s)
Edmond J. Lavoie; Leroy Fong Liu; Qun Sun

(74) Agent/Attorney
WRAY and ASSOCIATES, PO Box 6292, Hay Street, EAST PERTH WA 6892

**CORRECTED
VERSION***

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

pages 1/8-8/8, drawings, replaced by new pages 1/9-9/9; due to late
INTERNATIONAL transmittal by the receiving Office

61327/98

OPERATION TREATY (PCT)

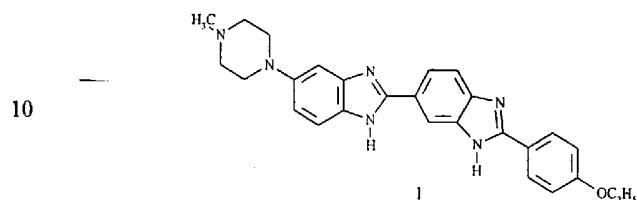
(51) International Patent Classification 6 : C07D 235/18, 401/14, A61K 31/415		A1	(11) International Publication Number: WO 98/31673 (43) International Publication Date: 23 July 1998 (23.07.98)
(21) International Application Number: PCT/US98/01005 (22) International Filing Date: 21 January 1998 (21.01.98)		(74) Agent: HOLLOWAY, Sheryl, S.; Schwegman, Lundberg, Woessner & Kluth, P.O. Box 2938, Minneapolis, MN 55402 (US).	
(30) Priority Data: 08/786,629 21 January 1997 (21.01.97) US		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KF, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US 08/786,629 (CIP) Filed on 21 January 1997 (21.01.97)			
(71) Applicant (for all designated States except US): RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY [US/US]; Old Queens Building, Somerset and George Streets, New Brunswick, NJ 08903 (US).		Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.	
(72) Inventors; and (73) Inventors/Applicants (for US only): LAVOIE, Edmond, J. [US/US]; 3 Guilford Court, Princeton Junction, NJ 08550 (US). LIU, Leroy, Fong [US/US]; 5 Fairaces Drive, Bridgewater, NJ 08807 (US). QUN, Sun [CN/CN]; Apartment 22, ReMian Road 201, Xiao Shan, Zhejiang 311200 (CN). Sun, Qun			
(54) Title: TERBENZIMIDAZOLES USEFUL FOR MEDICAL THERAPY (TOPOISOMERASE INHIBITORS)			
(57) Abstract			
<p>The invention provides a topoisomerase poison of formula (I) wherein Ar is aryl or a nitrogen-, sulfur- or oxygen-containing heteroaromatic group; X is H, CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each Y is individually H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl, or methoxyphenyl; n is 0 or 1; and each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; or a pharmaceutically acceptable salt thereof; for use in medical therapy (e.g. the treatment of fungal infection or cancer). The invention also provides novel compounds of formula (I); pharmaceutical compositions comprising compounds of formula (I); and therapeutic methods, comprising treating fungal infection or treating cancer by administering at least one compound of formula (I).</p>			

*(Referred to in PCT Gazette No. 49/1998, Section II)

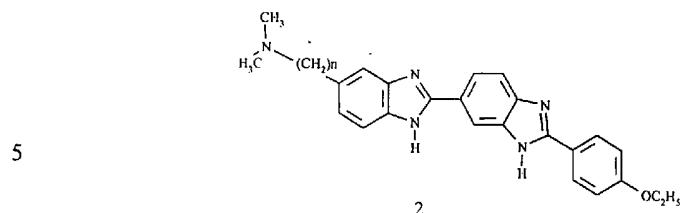
TERBENZIMIDAZOLES USEFUL FOR MEDICAL THERAPY (TOPOISOMERASE INHIBITORS)

5

Background of the Invention


This invention was made with the support of the United States National Institutes of Health Grant CA 39962. The U.S. Government has certain rights in the invention.

DNA topoisomerases are nuclear enzymes that control and 10 modify the topological states of DNA by catalyzing the concerted breaking and rejoining of DNA strands. See, for example, D'Arpa et al., Biochim. Biophys. Acta, 989, 163 (1989). Topoisomerase II enzymes alter the topological state of DNA by means of a double strand break in the DNA. By interfering with the breakage/reunion reaction of DNA topoisomerases, a number of agents have 15 been shown to convert these enzymes into net DNA-breaking enzymes, resulting in efficient cell killing. See L. F. Liu, in Topoisomerases: topoisomerase targeting drugs, Adv. in Pharmacol., 29B (1994); L. K. Wang et al., Chem. Res. Toxicol., 6, 813 (1993). Thus, mammalian topoisomerase II represents an effective pharmacological target for the development of cancer 20 chemotherapeutics. (A. Y. Chen et al., Annu. Rev. Pharmacol. Toxicol., 34, 191 (1994)). Among the clinical agents in use which are recognized as topoisomerase II inhibitors are etoposide (VP-16), teniposide (VM-26), mitoxantrone, *m*-AMSA, adriamycin (doxorubicin), ellipticine and daunomycin.

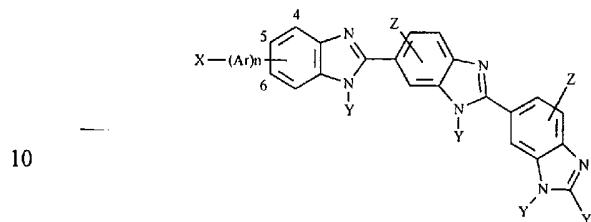

In comparison to topoisomerase II inhibitors, there are relatively 25 few known topoisomerase I inhibitors. Camptothecin represents the most extensively studied mammalian topoisomerase I inhibitor. See R. C. Gallo et al., J. Natl. Cancer Inst., 46, 789 (1971) and B. C. Giovannella et al., Cancer Res., 51, 3052 (1991). The interference of camptothecin with the breakage/reunion reaction of topoisomerase I, results in accumulation of a covalent intermediate, 30 in which topoisomerase I is reversibly trapped in a cleaved state, termed the cleavable complex (Y.-H. Hsiang et al., J. Biol. Chem., 260, 14873 (1985); S. E. Porter et al., Nucl. Acids Res., 17, 8521 (1989); C. Jaxel et al., J. Biol. Chem.,

266, 20418 (1991)). The broad spectrum of potent antineoplastic activity observed for camptothecin has prompted further efforts to identify other agents which can effectively poison mammalian topoisomerase I.

It has recently been demonstrated that Hoechst 33342 (1), 2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5'-bi-1H-benzimidazole, is an inhibitor of topoisomerase I.

This agent, which binds to the minor groove of DNA, traps the reversible cleavable complex derived from DNA and topoisomerase I and produces a limited number of highly specific single-strand DNA breaks. For example, see A.Y. Chen et al., Cancer Res., **53**, 1332 (1993) and A. Chen et al., PNAS, **90**, 8131 (1993). A limitation of Hoechst 33342 as an anticancer agent is the previously reported observation that it is not effective against tumor cell lines which overexpress MDR1. While KB 3-1 cells are known to be quite sensitive to Hoechst 33342, with an IC₅₀ of approximately 9 nM, this compound is approximately 130-fold less cytotoxic to KB V-1 cells, which are known to overexpress MDR1. Recently, several analogs of this bisbenzimidazole have been synthesized, to further investigate the structure activity relationships associated with their potency as mammalian topoisomerase I inhibitors and the related cytotoxicity. For example, Q. Sun et al., Bioorg. and Med. Chem. Lett., **4**, 2871 (1994) disclosed the preparation of bis-benzimidazoles of formula (2):

where n is 0, 1, 2, or 3. However, these compounds were found to be about one order of magnitude less cytotoxic than Hoechst 33342.


10 More recently, Q. Sun et al., in Abstract 2688, Scientific Proceedings-86th Annual Meeting of the AACR (Toronto, CA, March 18-22, 1995) disclosed that a trisbenzimidazole derivative, 5-(2-pyridyl)-2-[2'-benzimidazol-5"-yl benzimidazol-5'-yl]benzimidazole has similar potency as an inhibitor of human topoisomerase I as Hoechst 33342.

15 Mycotic infections have become increasingly important in the last two decades, causing high mortality among immunocompromised patients, such as transplant recipients and cancer and AIDS patients. The expanding patient population and some existing problems in current antifungal chemotherapy have created a demand for more effective and safe antifungal agents for the treatment
20 of this increasingly important class of opportunistic infections. Based on studies in *Saccharomyces cerevisiae* and *Candida albicans*, nuclear fungal topoisomerase I shows promise as a molecular target for antifungal agents (see J. M. Fostel et al., *Antimicrob. Agents Chemother.*, **39**, 586 (1995); J. M. Fostel et al., *Antimicrob. Agents Chemother.*, **36**, 2131 (1992)). Studies in *S. cerevisiae*
25 have established topoisomerase I to be a fungicidal target for camptothecin (J. Nitiss et al., *PNAS USA*, **85**, 7501 (1988)). Studies in *C. albicans* have demonstrated differences in sensitivity of the human and *Candida* topoisomerase I to the aminocatechol A-3253 (J. M. Fostel (1995) cited above).

Aspergillus fumigatus and *A. niger* are two important life-threatening
30 systemic human pathogens. There is an urgent need for more effective antifungal agents for the treatment of patients with these opportunistic infections.

Summary of the Invention

The invention provides a therapeutic method for the treatment of a fungal infection comprising administering to a mammal afflicted with a fungal infection, particularly a systemic fungal infection, an effective antifungal amount 5 of a compound of general formula (I):

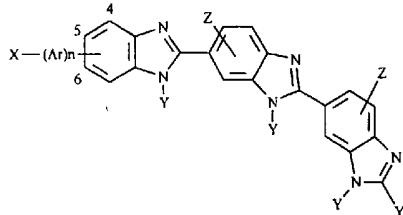
(I)

wherein Ar is aryl or a nitrogen-, sulfur- or oxygen-containing heteroaromatic group; X is H, CN, CHO, OH, acetyl, CF_3 , $\text{O}(\text{C}_1\text{-C}_4)\text{alkyl}$, NO_2 , NH_2 , halogen or halo($\text{C}_1\text{-C}_4$)alkyl; each Y is individually H, ($\text{C}_1\text{-C}_4$)alkyl or aralkyl; Y' is H, ($\text{C}_1\text{-C}_4$) alkyl, phenyl or methoxyphenyl; each Z is individually H, ($\text{C}_1\text{-C}_4$)alkyl, halogen or halo($\text{C}_1\text{-C}_4$)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.

20 Preferably, Ar is a ($\text{C}_6\text{-C}_{12}$)aryl, such as phenyl, or a 5- to 12-membered heteroaryl group, most preferably a 5-6 membered heteroaryl group, comprising 1-3 N, S or non-peroxide O, wherein each N is unsubstituted or is substituted with H, ($\text{C}_1\text{-C}_4$)alkyl or benzyl. Ar can occupy the 4, 5, 6 or 7 position of the benzo ring, as shown, preferably the 5 position, and X can occupy 25 any available position on Ar. Positions 4, 7 and 5, 6 are equivalent when Y is H. According to one embodiment, Ar is phenyl, and X is Cl or Br, preferably occupying the *para* position. As drawn, Z may occupy any position on the benzo moiety. Z is preferably H, halogen, CH_3 or CF_3 .

According to another embodiment, n is 0, and X is halogen, for 30 example, F, Br, Cl or I, preferably Cl or Br, and preferably occupies the 5-

position of the benzo moiety. Y is preferably H or CH₃. Y' is preferably H, CH₃, ethyl or 4-methoxyphenyl.


While a number of known inhibitors of human topoisomerase I were found to be ineffective against a fungal topoisomerase I, including nitidine and coraline, the compounds of formula (I) are inhibitors of fungal topoisomerase I, as demonstrated by their ability to promote DNA cleavage in the presence of *Aspergillus* topoisomerase I. As disclosed hereinbelow, it was unexpectedly found that the *Aspergillus* enzyme is completely resistant to some of the most potent human topoisomerase I poisons such as nitidine and coraline, and to the less potent mono-benzimidazole human topoisomerase I poisons.

Studies using yeast expressing human or yeast topoisomerase I also suggest similar resistance of the yeast topoisomerase I to these compounds. It appears that the fungal enzymes are substantially different in their drug sensitivity than their human counterpart.

Furthermore, compounds of formula (I) also are cytotoxic to mammalian tumor cells, including camptothecin-sensitive and camptothecin-resistant tumor cells and tumor cell lines exhibiting multi-drug resistance due to expression of the P-glycoprotein. Accordingly, the invention provides a therapeutic method for the treatment of cancer comprising administering to a mammal (i.e. a human), an effective anticancer amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof.

The invention also provides novel compounds of formula (I). For example, the invention provides a compound of formula (I):

25

30

(I)

wherein Ar is (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl or methoxyphenyl; each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof. A preferred compound is a compound of formula (I) wherein Y' is methoxyphenyl. Another preferred compound is a compound of formula (I) wherein n is 1. Another preferred compound is a compound of formula (I) wherein X is CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl, and n is 0. Yet another preferred compound is a compound of formula (I) wherein at least one Z is halogen or halo(C₁-C₄)alkyl, and n is 0.

The invention also provides pharmaceutical compositions adapted for both systemic and topical administration, comprising one or more compounds of formula (I), or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable vehicle.

The invention also provides a compound of formula (I), or a pharmaceutically acceptable salt thereof for use in medical therapy (i.e. treating fungal infections or cancer), as well as the use of a compound of formula (I), or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for treating fungal infections or for treating cancer.

Brief Description of the Drawings

Figure 1 is a schematic depiction of the synthesis of compounds

10-16.

Figure 2 is a schematic depiction of the preparation of intermediates 4-8 used to prepare compounds of the invention.

Figure 3 is a schematic depiction of the preparation of intermediate 2.

Figure 4 is a schematic depiction of the synthesis of compounds JSKIV-68, -37 and -47.

Figure 5 is a schematic depiction of the preparation of intermediate JSKIV-44.

Figure 6 is a schematic depiction of the preparation of analogs modified on the central benzimidazole moiety.

5 Figure 7 is a schematic depiction of the preparation of analogs modified on the terminal benzimidazole moiety, wherein Z and Y' are as defined above.

Detailed Description of the Invention

The aryl groups (Ar) useful in the present compounds comprise

10 (C₆-C₁₈)aryl, preferably (C₆-C₁₄) aryl, e.g., systems containing aromatic rings, which systems comprise a total of 6 to 12 carbon atoms. Thus, as used herein, the term "aryl" includes mono- or bis-(C₁-C₄)alkyl-substituted aryl, such as tolyl and xylol; ar(C₁-C₄)alkyl, such as benzyl or phenethyl; and alkylalkyl. Preferably aryl is phenyl, benzyl or naphthyl.

15 Heteroaromatic rings include aromatic rings containing up to 3 ring heteroatoms such as N, S or non-peroxide O, and up to 12 ring atoms. Representative aromatic rings include thiophene, benzothiophene, naphthothiophene, trianthrene, furan, benzofuran, isobenzofuran, pyran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, pyridine,

20 pyrazine, triazole, tetrazole, pyrazine, triazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, phenazine, isothiazole, phenothiazine, oxazole, isoxazole, furazan, phenoxazine

25 and the like. Preferred heteroaromatic rings have a 5- or 6-membered

heteroaromatic ring which may or may not be fused to an aromatic ring such as a benzo ring, e.g., the preferred 2-, 3- or 4-pyridyl substituents.

The term "alkyl" includes straight-chain or branched alkyl, as well as cycloalkyl and (cycloalkyl)alkyl, e.g., methyl, ethyl, i-propyl, 5 cyclopropyl or cyclopropylmethyl.

Methoxyphenyl includes 2-, 3-, or 4-methoxyphenyl.

Pharmaceutically acceptable salts include the acid addition salts of basic NH with organic or inorganic acids, e.g., hydrochloride, carbonate, sulfate, bicarbonate, acetate, phosphate, tartarate, citrate, malate, maleate, and 10 propionate salts, and the like.

The preparation of representative substituted trisbenzimidazoles is outlined in Figure 1. With the exception of phenylenediamine which was commercially available, the appropriately substituted phenylenediamines were synthesized by catalytic hydrogenation of the respective *o*-nitroaniline 15 derivatives. These phenylenediamines were then coupled with 5-formyl-2-(benzimidazo-5'-yl)benzimidazole, 2, by heating them together in nitrobenzene at 150°C to provide the various trisbenzimidazoles, 10-16, in yields ranging from 43-96%, employing the general methodologies of M. P. Singh et al., Chem. Res. Toxicol., 5, 597 (1992) and Y. Bathini et al., Synth Comm., 20, 955 (1990).

20 The requisite nitroanilines, as outlined in Figure 1, with the exception of 3 which was commercially available, were synthesized from 4-bromo-2-nitroaniline, 17. Compound 17 was prepared from *o*-nitroaniline in good yield, 94%, using 2,4,4,6-tetrabromo-2,5-cyclohexadienone as the bromination reagent. G. J. Fox et al., Org. Syn., 55, 20 (1973). While 25 allyltributyltin and phenyltributyltin are commercially available, the pyridyltributyltin derivatives were prepared from tributyltin chloride and 2-, 3-, and 4-bromopyridine, respectively. See D. Peters et al., Heterocyclic Chem., 27, 2165 (1990). These tributyltin derivatives were then coupled with 4-bromo-2-nitroaniline using $PdCl_2(PPh_3)_2$ as the catalyst in DMF as outlined in Figure 2 to 30 provide compounds 4, 5, 6, 7, and 8, respectively, in accord with the methodology of M. Iwao et al., Heterocycles, 36, 1483 (1993). This

methodology can generally be applied to prepare 3-, 4-, 5- or 6-aryl- and heteroaryl-substituted 2-nitroanilines from the corresponding bromonitroanilines.

The preparation of 5-formyl-2-(benzimidazo-5'-yl)benzimidazole, 9, was accomplished as outlined in Figure 3. Reduction of 5-
5 benzimidazolecarboxylic acid to 5-hydroxymethylbenzimidazole was
accomplished using LiAlH₄. Oxidation of the resulting crude benzyllic alcohol
with tetrapropylammonium perruthenate (TPAP) and N-methylmorpholine N-
oxide provided in two steps the desired 5-formylbenzimidazole in 32% an
overall yield. See, A. Cherif et al., *J. Med. Chem.*, 35, 3208 (1992). Coupling of
10 5-formylbenzimidazole with 4-cyano-1,2-phenylenediamine provided 5-cyano-2-
(benzimidazol-5'-yl)benzimidazole, 19, which, when treated with Ni-Al catalyst
in the presence of aqueous formic acid, gave 5-formyl-2-(benzimidazol-5'-
yl)benzimidazole, 9, in 65% yield. (J. R. Pipier et al., *J. Med. Chem.*, 31, 2164
(1988)).

15 The compounds of the present invention can be formulated as
pharmaceutical compositions and administered to a mammalian host, such as an
immunosuppressed human patient afflicted with a systemic or local fungal
infection, in a variety of forms adapted to the chosen route of administration, i.e.,
orally or parenterally, by intravenous, intramuscular, topical or subcutaneous
20 routes.

Thus, the present compounds may be systemically administered,
e.g., orally, in combination with a pharmaceutically acceptable vehicle such as
an inert diluent or an assimilable edible carrier. They may be enclosed in hard or
soft shell gelatin capsules, may be compressed into tablets, or may be
25 incorporated directly with the food of the patient's diet. For oral therapeutic
administration, the active compound may be combined with one or more
excipients and used in the form of ingestible tablets, buccal tablets, troches,
capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions
and preparations should contain at least 0.1% of active compound. The
30 percentage of the compositions and preparations may, of course, be varied and
may conveniently be between about 2 to about 60% of the weight of a given unit

dosage form. The amount of active compound in such therapeutically useful compositions is such that an effective dosage level will be obtained.

The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; 5 excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin or a flavoring agent such as peppermint, oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to 10 materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose as a 15 sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the active compound may be incorporated into sustained-release preparations and devices. 20 The active compound may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the active compound or its salts can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage 25 and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical dosage forms suitable for injection or infusion use can include sterile aqueous solutions or dispersions or sterile powders comprising the active ingredient which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate

dosage form must be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycols, and the like),

- 5 vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersion or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example,
- 10 parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

- 15 Sterile injectable solutions are prepared by incorporating the active compound in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and
- 20 the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.

For topical administration, the present compounds may be administered in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.

Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Useful liquid carriers include water, alcohols or glycols or water-alcohol/glycol blends, in which the present compounds can be dissolved or dispersed at effective levels,

optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump-type or aerosol sprayers. The liquid compositions can also be employed as eyedrops, mouth washes, douches, etc. Antibacterial presaturated wipes are disclosed by Anderson (U.S. Pat. No. 4,896,768).

10 Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.

Other examples of useful dermatological compositions which can be used to deliver the compounds of formula (I) to the skin are disclosed in Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 15 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).

20 Useful dosages of the compounds of the present invention can be determined by comparing their *in vitro* activity, and *in vivo* activity in animal models, to that of an equivalent dosage of camptothecin (see, for example, B. C. Giovanella et al., *Cancer Res.*, **51**, 3052 (1991)) or Hoechst 33342 (see, A. Y. Chen et al., *Cancer Res.*, **53**, 1332 (1993)). Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.

25 Generally, the concentration of the compound(s) of formula (I) in a liquid composition, such as a lotion, will be from about 0.1-25 wt-%, preferably from about 0.5-10 wt-%. The concentration in a semi-solid or solid composition such as a gel or a powder will be about 0.1-5 wt%, preferably about 0.5-2.5 wt-%. Single dosages for injection, infusion or ingestion will generally vary between 50-1500 mg, and may be administered, i.e., 1-3 times daily, to yield levels of about 0.5 - 50 mg/kg, for adults.

The present terbenzimidazoles are particularly useful to treat systemic fungal infections, or "deep mycoses." Such infections include

coccidiomycosis, chromoblastomycosis, cryptococcosis, systemic moniliasis, histoplasmosis, aspergillosis, rhodotorulosis, sporotrichosis, paracoccidioidosis, phycomycosis, blastomycosis, and candidiasis. Susceptible fungi include *candida (monilia) albicans*, which is a member of the normal flora of the

5 mucous membranes in the respiratory, gastrointestinal, and female genital tracts. In these and other locations it may gain dominance and be associated with pathologic conditions. Sometimes it produces systemic progressive disease in debilitated or immunosuppressed patients. *Candida* may produce blood stream infection, thrombophlebitis, endocarditis, or infection of the eyes and other

10 organs when introduced intravenously (tubing, needles, hyperalimentation, narcotic addiction, etc.). Other yeasts (e.g., *torulopsis glabrata*) may be pathogenic under similar circumstances.

The present compounds can also be used against *cryptococcus neoformans* infections. The fungus is free-living in the soil and is found

15 frequently in pigeon feces. In man, it can cause primary pulmonary infection that is occasionally followed by fatal meningitis.

Blastomyces (Ajellomyces) dermatitidis infections can also be inhibited. This fungus causes a chronic granulomatous disease, North American blastomycosis, which may be limited to the skin or lung or may be widely

20 disseminated in the body. The present compounds can also be used against *Blastomyces brasiliensis*, an ascomycete which causes South and Central American blastomycosis (paracoccidioidal granuloma), or to treat infection with *H. capsulatum*, which usually occurs through the respiratory tract, and can lead to clinical pneumonia and protracted illness.

25 Infections due to *Coccidioides immitis* can also be treated, which can cause an influenza-like illness, with fever, malaise, cough, aches, pains and sweats, and which can progress to a highly fatal form called "coccidioidal granuloma." The compounds are also effective against *Geotrichum candidum*, a yeast-like fungus which produces geotrichosis, an infection of bronchi, lungs, and mucous membranes, and *Sporothrix (Sporotrichum) schenckii*, a fungus that causes sporotrichosis, a chronic granulomatous infection of skin, lymphatics, and

other tissues in animals and man. The present compounds can also be used to treat chromoblastomycosis, maduromycosis and phycomycosis, caused by *Rhizopus* sp. or *Mucor* sp.

The present compounds are particularly effective against

5 *Aspergillus* species. *Aspergillus fumigatus* and other *Aspergillus* sp. have become a frequent cause of systemic fungal infection in an altered host. Patients with leukemia or lymphoma, immunosuppressed persons (especially AIDS patients or patients undergoing organ transplants), and those receiving intensive corticosteroid therapy are particularly susceptible to aspergillosis. The portal of entry is the respiratory tract, and in most cases of aspergillosis pulmonary manifestations occur, predominantly necrotizing bronchopneumonia, hemorrhagic pulmonary infarction, or granulomas (aspergillomas).

The present compounds are also useful to inhibit the growth of fungi, including yeasts, on the skin of humans and animals such as household

15 pets, farm animals and zoo animals. Such gram-positive microorganisms include *Propionibacterium acnes* which is the primary pathogen which causes human acne vulgaris. Mycotic skin infections of animals and humans can also be treated, including tinea capitis, tinea cruris (jock itch), tinea corporis (ringworm), tinea pedis (athlete's foot) and tinea unguium. Fungi associated with such 20 dermatophytosis include *T. mentagrophytes*, *M. audrevinii*, *T. rubrum*, *E. floccosum* and *M. pelineum*.

The present compounds are also effective against fungi associated with infections of the membranes of body cavities. Such infections include thrush, vaginitis and paronychia. See R. T. Yousef et al., *Mykosen*, 21, 190

25 (1978) and H. Gershon, *J. Pharm. Sci.*, 68, 82 (1979). The present compounds can also be used in cosmetic and skin-cleansing compositions such as soaps, shampoos, deodorants, and skin-softening lotions, where they can function as deodorants, i.e., to control odor-causing bacteria on the skin. The present compounds can also be used in shampoos, rinses, and other haircare products, to 30 inhibit *Pityrosporum ovale* (dandruff, skin lesions in immune-suppressed subjects).

The present analogs can also be used to treat cancers known to be susceptible to topoisomerase I inhibitors, including, but not limited to, Burkitt's tumor, chronic lymphocytic leukemia, multiple myeloma, squamous cell and large cell anaplastic carcinomas, adenocarcinoma of the lung, Ewing's sarcoma, non-Hodgkins lymphoma, breast tumor, colon tumor, stomach tumor, oat cell bronchogenic carcinoma, squamous cell carcinoma of the cervix, ovarian tumors, bladder tumors, testicular tumors, endometrial tumors, malignant melanoma and acute lymphocytic leukemia, and prostatic carcinoma. The present compounds can be administered as single agents, or in combination with other antineoplastic drugs commonly employed to treat these cancers.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
449999

The invention will be further described by reference to the following detailed examples, wherein melting points were determined with a Thomas-Hoover unimelt capillary melting point apparatus. Infrared spectral data (IR) were obtained on a Perkin-Elmer 1600 Fourier transform spectrophotometer and are reported in cm^{-1} . Proton (^1H NMR) and carbon (^{13}C NMR) nuclear magnetic resonance were recorded on a Varian Gemini-200 Fourier Transform spectrometer. NMR spectra (200 MHz ^1H and 50 MHz ^{13}C) were recorded in CDCl_3 (unless otherwise noted) with chemical shifts reported in δ units downfield from tetramethylsilane (TMS). Coupling constants are reported in hertz. Mass spectra were obtained from Midwest Center for Mass Spectrometry within the Department of Chemistry at the University of Nebraska-Lincoln. Combustion analyses were performed by Atlantic Microlabs, Inc., Norcross, GA, and were with in $\pm 0.4\%$. THF was freshly distilled from sodium and benzophenone prior to use. Allyltributyltin and phenyltributyltin were purchased from Aldrich Chemical Company.

Aspergillus nidulans strain R21 (*pabaA1, yA2*) was used throughout the examples. The bibenzimidazole Hoescht dye 33342 (Ho33342), camptothecin, and berenil were purchased from Sigma Chemical Co. Monobenzimidazoles (QS/II/9, 48, 50, 51, and 59A), terbenzimidazoles (11 and 13) and protoberberines (coralyne, DMII/33) and nitidine were synthesized as described below, and as by (Q. Sun et al., *Biorg. & Med. Chem. Lett.*, 4, 2871

(1994), and *J. Med. Chem.*, **38**, 3638 (1995); Kim et al., *Biorg. & Med. Chem. Lett.*, **4**, 62 (1996); *J. Med. Chem.*, **39**, 992 (1996); D. Makhey et al., *Med. Chem. Res.*, **5**, 1 (1995); *Biorg. & Med. Chem. Lett.*, **4** 781 (1996). (See Fig. 8 for structures.) All the drugs were dissolved in dimethyl sulfoxide (Sigma

5 Chemical Co.) at a concentration of either 1, 5 or 10 mg/ml and kept frozen in aliquots at -20°C.

Example 1. General Procedure for $PdCl_2(PPh_3)_2$ -catalyzed Coupling Reaction of 4-Bromo-2-nitroaniline (13) with Tin Compounds.

10

(A) 4-Phenyl-2-nitroaniline (5). A solution of 4-bromo-2-nitroaniline **17** (1.0 g, 4.67 mmol), tributylphenyl tin (2.2 g, 6.07 mmol), bis(triphenylphosphine)palladium (II) chloride (164 mg, 0.234 mmol), and **15** triphenylphosphine (613 mg, 2.34 mmol) in DMF (15 ml) was heated under N_2 at 120°C overnight. After the solution was cooled to room temperature, the reaction mixture was directly chromatographed on silica gel eluting with 2-5% EtOAc/Hexane to give 752 mg (75%) of **5** as a yellow solid: mp 169-171 °C; IR (CHCl₃) 3517, 3398, 3022, 1635, 1525, 1250; ¹H NMR δ 8.38 (1H, d, *J* = 2.2), 7.66 (1H, dd, *J* = 8.7, 2.2), 7.59-7.54 (2H, m), 7.49-7.34 (3H, m), 6.90 (1H, d, *J* = 8.8), 6.13 (NH, brs); ¹³C NMR δ 144.2, 139.3, 135.0, 130.9, 129.5, 127.8, **20** 126.8, 124.4, 119.8, 112.8; Anal. Calcd for C₁₂H₁₀N₂O₂: C, 67.28; H, 4.70; N, 13.08. Found: C, 67.38, H, 4.76; N, 13.01.

(B) 4-Allyl-2-nitroaniline (4). Prepared from 4-bromo-2-nitroaniline **17** **25** (1.70 g, 7.84 mmol) and allyltributyltin (3.38 g, 10.2 mmol) as a yellow solid in 96% yield as described above for **5**: mp 29-31 °C; IR (KBr) 3490, 3374, 1638, 1518, 1341, 1253; ¹H NMR δ 7.90 (1H, d, *J* = 2.0), 7.19 (1H, dd, *J* = 8.5, 2.0), 6.77 (1H, d, *J* = 8.5), 6.05 (NH, brs), 6.00-5.80 (1H, m), 5.11 (1H, dd, *J* = 1.4, **30** 1.4), 5.04 (1H, ddd, *J* = 6.6, 3.0, 1.5), 3.28 (1H, d, *J* = 6.6); ¹³C NMR δ 143.81, 137.13, 129.34, 125.59, 119.49, 116.95, 39.18; HRMS (EI) calcd for C₉H₁₀N₂O₂ 178.0742, found 178.0746.

(C) 4-(2'-Pyridyl)-2-nitroaniline (6). Prepared from 4-bromo-2-nitroaniline **17** (597 mg, 2.75 mmol) and 2-tributylstannylpyridine (1.01 g, 2.75

mmol) as a yellow solid in 52% yield as described above for **5**: mp 146-148 °C; IR (CHCl₃) 3516, 3397, 3020, 1634, 1524, 1341, 1250; ¹H NMR δ 8.74 (1H, d, *J* = 2.2), 8.63 (1H, dd, *J* = 4.9, 1.5), 8.13 (1H, dd, *J* = 8.8, 2.1), 7.78-7.66 (2H, m), 7.20 (1H, ddd, *J* = 4.8, 4.7, 1.9), 6.92 (1H, d, *J* = 8.8), 6.37 (NH, brs); ¹³C NMR δ 155.6, 150.1, 145.6, 137.4, 134.5, 129.1, 124.7, 122.4, 119.8, 119.7; Anal. Calcd for C₁₁H₉N₃O₂: C, 61.39; H, 4.21; N, 19.53. Found: C, 61.29; H, 4.23; N, 19.43.

(D) 4-(3'-Pyridyl)-2-nitroaniline (7). Prepared from 4-bromo-2-nitroaniline 17 (1.42 g, 6.53 mmol) and 3-tributylstannylpyridine (3.60 g, 9.79 mmol) as a yellow solid in 32% yield as described above for **5**: mp 177-179 °C; IR (CHCl₃) 3515, 3399, 3052, 2983, 1638, 1524, 1341, 1259; ¹H NMR δ 8.68 (1H, d, *J* = 1.7), 8.42 (1H, dd, *J* = 4.8, 1.5), 8.22 (1H, d, *J* = 2.2), 7.74 (1H, ddd, *J* = 7.9, 2.4, 1.6), 7.50 (1H, dd, *J* = 8.7, 2.2), 7.23 (1H, ddd, *J* = 8.0, 4.8, 0.8), 6.92 (1H, d, *J* = 8.8), 6.56 (NH, brs); ¹³C NMR δ 148.7, 147.8, 145.4, 135.0, 134.4, 133.8, 126.5, 124.4, 124.0, 120.4; Anal. Calcd for C₁₁H₉N₃O₂: C, 61.39; H, 4.21; N, 19.53. Found: C, 61.28; H, 4.16; N, 19.40.

(E) 4-(4'-Pyridyl)-2-nitroaniline (8). Prepared from 4-bromo-2-nitroaniline 17 (165 mg, 0.76 mmol) and 4-tributylstannylpyridine (280 mg, 0.76 mmol) as a yellow solid in 25% yield as described above for **5**: mp 230-232 °C; IR (CHCl₃) 3518, 3398, 3032, 1636, 1528, 1344; ¹H NMR (CD₃OD) δ 8.55 (2H, d, *J* = 6.3), 8.52 (1H, d, *J* = 2.3), 7.84 (1H, dd, *J* = 8.9, 2.3), 7.71 (2H, d, *J* = 6.4), 7.13 (1H, d, *J* = 8.9); ¹³C NMR (CD₃OD) δ 149.4, 133.4, 124.0, 120.7, 120.0; HRMS (EI) calcd for C₁₁H₉N₃O₂ 215.0695, found 215.0698.

25 Example 2. **5-Formyl-2-(benzimidazol-5'-yl)benzimidazole (9).**

A mixture of 5-cyano-2-(benzimidazol-5'-yl)benzimidazole 19 (148 mg, 0.57 mmol), Ni-Al catalyst (500 mg), formic acid (7 ml) and water (3 ml) was heated under refluxed under N₂ for 4h. The hot reaction mixture was immediately filtered through a plug of celite, and evaporated to give a yellow solid. The yellow solid was then dissolved in hot water (5 ml), and the solution was neutralized to pH 9 by 2N NaOH. The solid precipitated was collected by suction

filtration and further purified by flash chromatography on silica gel (15% MeOH/EtOAc) to give 142 mg (95%) of 9 as a white solid: mp > 275 °C; IR (KBr) 3106, 2835, 1685, 1618, 1432, 1293; ¹H NMR (CD₃OD) δ 10.01 (1H, s), 8.39 (1H, s), 8.35 (1H, s), 8.13 (1H, s), 8.06 (1H, dd, *J* = 8.6, 1.6), 7.83 (1H, dd, *J* = 8.4, 1.4), 7.77 (1H, d, *J* = 8.5), 7.71 (1H, d, *J* = 8.3); HRMS (FAB) calcd for C₁₅H₁₁N₄O 263.0933, found 263.0932.

Example 3. General Procedures for Preparing 5-substituted Trisbenzimidazoles.

(A) 2-[2'-(Benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (10). A mixture of 5-formyl-2-(benzimidazol-5'-yl)benzimidazole 9 (121 mg, 0.46 mmol) and phenylenediamine (60 mg, 0.55 mmol) in nitrobenzene (8 ml) was heated at 150 °C under N₂ overnight. The mixture was cooled to room temperature and chromatographed on silica gel (0-20% MeOH/EtOAc) to afford 155 mg (96%) of 10 as a solid: mp > 275 °C; IR (KBr) 3400, 3157, 1630, 1542, 1438, 1294; ¹H NMR (DMSO-d₆ + 3 drops of CF₃COOH) δ 9.71 (1H, s), 8.75 (1H, s), 8.65 (1H, d, *J* = 1.1), 8.48 (1H, dd, *J* = 8.7, 1.5), 8.21 (1H, dd, *J* = 8.6, 1.6), 8.14 (1H, d, *J* = 8.8), 8.08 (1H, d, *J* = 8.7), 7.90 (2H, dd, *J* = 6.2, 3.1), 7.61 (2H, dd, *J* = 6.1, 3.1); ¹³C NMR (DMSO-d₆ + 3 drops of CF₃COOH) δ 154.4, 149.8, 133.2, 132.0, 131.7, 126.2, 125.5, 125.4, 123.9, 123.6, 116.3, 115.9, 114.23, 114.17, 114.13; HRMS (FAB) calcd for C₂₁H₁₅N₆ 351.1358, found 351.1367.

(B) 5-Cyano-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (11). Hydrogenation of 3 (70 mg, 0.43 mmol) was accomplished at 40 psi H₂ at room temperature for 1 h using 10% Pd-C (30 mg) in EtOAc (10 ml). The reaction mixture was filtered and concentrated *in vacuo* to afford a solid. The solution of this solid and 9 (87 mg, 0.33 mmol) in nitrobenzene (5 ml) was heated at 150 °C under N₂ overnight. The mixture was cooled to room temperature, and chromatographed directly on silica gel (0-10% MeOH/EtOAc) to give 107 mg (86%) of 11 as a solid: mp > 280 °C; IR (KBr) 3416, 3148, 2222, 1626, 1553, 1441, 1292; ¹H NMR (DMSO-d₆ + 3 drops of

CF_3COOH) δ 8.50 (1H, s), 8.46 (1H, s), 8.40 (1H, s), 8.18-8.11 (3H, m), 7.81-7.75 (3H, m), 7.62 (1H, dd, J = 8.3, 1.5); HRMS (FAB) calcd for $\text{C}_{22}\text{H}_{13}\text{N}_7$ 376.1310, found 376.1309.

(C) 5-Propyl-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (12). Prepared from 4-allyl-2-nitroaniline **4** (312 mg, 1.75 mmol) and 5-formyl-2-(benzimidazol-5'-yl)benzimidazole **9** (121 mg, 0.46 mmol) in 79% yield as described above for **11**: solid; mp > 270 °C; IR (KBr) 3421, 3068, 2957, 1434; ^1H NMR (DMSO-d₆ + 3 drops of CF_3COOH) δ 9.66 (1H, s), 8.73 (1H, s), 8.59 (1H, s), 8.48 (1H, dd, J = 8.7, 1.5), 8.13 (1H, dd, J = 8.7, 1.4), 8.11 (1H, d, J = 8.7), 8.02 (1H, d, J = 8.5), 7.79 (1H, d, J = 8.4), 7.66 (1H, s), 7.45 (1H, dd, J = 8.5, 1.3), 2.80 (2H, t, J = 7.0), 1.70 (2H, m), 0.96 (3H, t, J = 7.2); ^{13}C NMR (DMSO-d₆ + 3 drops of CF_3COOH) δ 153.84, 149.74, 141.64, 141.01, 139.37, 133.10, 132.26, 131.99, 130.34, 127.08, 126.26, 125.14, 141.64, 141.01, 139.37, 133.10, 132.26, 131.99, 130.34, 127.08, 126.26, 125.14, 15 122.91, 117.52, 116.32, 116.06, 115.76, 113.78, 112.99, 37.45, 24.73, 13.74.

(D) 5-Phenyl-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (13). Prepared from 4-phenyl-2-nitroaniline **5** (247 mg, 1.15 mmol) and 5-formyl-2-(benzimidazol-5'-yl)benzimidazole **9** (201 mg, 0.77 mmol) in 89% yield as described for **11**: solid; mp 262-164 °C dec; IR (KBr) 20 3402, 3104, 1627, 1552, 1442, 1290; ^1H NMR (DMSO-d₆ + 3 drops of CF_3COOH) δ 9.66 (1H, s), 8.74 (1H, s), 8.65 (1H, s), 8.50 (1H, dd, J = 8.8, 1.1), 8.21 (1H, dd, J = 8.7, 1.4), 8.12 (1H, d, J = 8.8), 8.06 (1H, s), 8.05 (1H, d, J = 8.4), 7.97 (1H, d, J = 8.7), 7.89 (1H, dd, J = 8.7, 1.5), 7.80 (2H, d, J = 7.0), 7.61-7.47 (3H, m); HRMS (FAB) calcd for $\text{C}_{27}\text{H}_{19}\text{N}_6$ 427.1667, found 427.1666.

(E) 5-(2-Pyridyl)-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (14). Prepared from 4-(2'-pyridyl)-2-nitroaniline, **6** (110 mg, 0.50 mmol), and 5-formyl-2-(benzimidazol-5'-yl)benzimidazole **9** (51 mg, 0.25 mmol) in 84% yield as described above for **11**: solid; mp > 275 °C; IR (KBr) 3411, 3157, 1630, 1593, 1432; ^1H NMR (CD₃OD) δ 8.59 (1H, d, J = 4.8), 8.35 (1H, s), 8.31-8.25 (2H, m), 8.10 (1H, s), 8.04-7.94 (2H, m), 7.85-7.77 (3H, m),

7.72 (1H, d, J = 8.6), 7.68 (1H, d, J = 8.7), 7.64 (1H, d, J = 8.7), 7.30 (1H, m);
HRMS (FAB) calcd for $C_{26}H_{18}N_7$, 428.1624, found 428.1611.

(F) **5-(3-Pyridyl)-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (15).** Prepared from 4-(3'-pyridyl)-2-nitroaniline **7** (183 mg, 5 0.85 mmol) and 5-formyl-2-(benzimidazol-5'-yl)benzimidazole **9** in 46% yield as described above for **11**: solid; mp > 275 °C; IR (KBr) 3400, 3070, 2836, 1438, 1289; 1 H NMR (CD_3OD) δ 8.83 (1H, d, J = 1.6), 8.49 (1H, dd, J = 4.9, 1.5), 8.38 (1H, d, J = 1.1), 8.31 (1H, d, J = 1.1), 8.29 (1H, s), 8.11 (1H, ddd, J = 8.0, 2.3, 1.6), 8.05 (1H, dd, J = 8.5, 1.6), 8.00 (1H, dd, J = 8.5, 1.6), 7.81 (1H, d, 10 J = 1.1), 7.77-7.68 (3H, m), 7.55-7.47 (2H, m); HRMS (FAB) calcd for $C_{26}H_{18}N_7$, 428.1624, found 428.1612.

(G) **5-(4-Pyridyl)-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]benzimidazole (16).** Prepared from 4-(4'-pyridyl)-2-nitroaniline **8** (35 mg, 0.16 mmol) and 5-formyl-2-(benzimidazol-5'-yl)benzimidazole **9** (50 mg, 0.19 15 mmol) in 43% yield as described above for **11**: solid; mp > 280 °C; IR (KBr) 3411, 3118, 1600, 1552, 1439, 1290; 1 H NMR (CD_3OD) δ 8.51 (2H, d, J = 6.2), 8.33 (1H, d, J = 1.1), 8.27 (1H, s), 8.25 (1H, d, J = 1.1), 8.01 (1H, dd, J = 8.6, 1.7), 7.96 (1H, dd, J = 8.9, 2.0), 7.87 (1H, d, J = 1.0), 7.74-7.56 (6H, m); HRMS (FAB) calcd for $C_{26}H_{18}N_7$, 428.1624, found 428.1625.

20

Example 4. 4-Bromo-2-nitroaniline (17).

A solution of 2-nitroaniline (5 g, 36.2 mmol) in CH_2Cl_2 (100 ml) was cooled to -10°C, and treated by 90% 2,4,4,6-tetrabromo-2,5-cyclohexadienone (19.8 g, 43.5 mmol) in 5 portions. The mixture was stirred at -10°C – 0°C for 1 25 hr. After being warmed to room temperature, the reaction mixture was washed by 2N NaOH (60 ml) and brine (50 ml), dried over Na_2SO_4 and evaporated. Flash chromatography on silica gel (5% EtOAc/Hexane) gave 7.40 g (94%) of **17** as a yellow solid: mp 109-110 (lit. mp 112-113 °C); 1 H NMR δ 8.27 (1H, d, J = 2.3), 7.43 (1H, dd, J = 8.9, 2.4), 6.73 (1H, d, J = 8.8), 6.09 (NH, brs).

30

Example 5. 5-Formylbenzimidazole (18).

A suspension of 5-benzimidazolecarboxylic acid (1.57 g, 9.7 mmol) in dry THF (50 ml) was cooled to -78°C under N₂, and treated with LiAlH₄ (736 mg, 19.4 mmol). After the addition, the mixture was allowed to warm slowly to room temperature and then stirred at r.t. overnight. The mixture was quenched by MeOH and H₂O cautiously, and passed through a short silica gel column eluting with 10% MeOH/EtOAc. The eluate was concentrated to give 876 mg crude alcohol as a solid. The crude alcohol (876 mg) was dissolved in a mixture of DMF (3 ml), THF (10 ml) and CH₂Cl₂ (40 ml). 4-Methylmorpholine N-oxide (2.25 g, 19.2 mmol), 4Å molecular sieves (5 g), and TPAP (169 mg, 0.48 mmol) were subsequently added to the crude alcohol solution. The mixture was stirred at room temperature overnight, and filtered through a pad of silica gel eluting with 10% MeOH/EtOAc. The elute was concentrated and further purified by flash chromatography on silica gel eluting with 0-10% MeOH/EtOAc to give 452 mg (32%, 2 steps) of 17 as a white solid: mp 164-166 °C; IR (KBr) 3087, 2818, 1690, 1292; ¹H NMR (CD₃OD) δ 9.95 (1H, s), 8.34 (1H, s), 8.08 (1H, d, *J* = 1.5), 7.74 (1H, dd, *J* = 8.4, 1.5), 7.63 (1H, d, *J* = 8.4); ¹³C NMR (CD₃OD) δ 194.2, 146.0, 143.0, 139.8, 133.6, 124.9, 120.7, 116.6; Anal. Calcd for C₈H₆N₂O: C, 65.75; H, 4.14; N, 19.17. Found: C, 65.60; H, 4.17; N, 19.08.

20

Example 6. 5-Cyano-2-(benzimidazol-5'-yl)benzimidazole (19).

A mixture of 5-formylbenzimidazole 18 (211 mg, 1.44 mmol) and 4-cyano-1,2-phenylenediamine (230 mg, 1.73 mmol) in nitrobenzene (10 ml) was heated at 150°C under N₂ overnight. The mixture was cooled to room temperature and directly chromatographed on silica gel eluting with 0-15% MeOH/EtOAc to give 244 mg (65%) of 18 as a solid: mp >270 °C; IR (KBr) 3110, 2826, 2224, 1627, 1426, 1294; ¹H NMR (CD₃OD) δ 8.41 (1H, s), 8.33 (1H, s), 8.07 (1H, dd, *J* = 8.6, 1.5), 7.98 (1H, s), 7.78 (1H, d, *J* = 8.4), 7.73 (1H, d, *J* = 8.4), 7.56 (1H, dd, *J* = 8.4, 1.5); ¹³C NMR (DMSO-d₆ + 3 drops of CF₃COOH) δ 153.4, 140.4, 138.3, 132.9, 131.6, 127.0, 125.8, 125.3, 120.8,

119.8, 116.0, 115.8, 113.9, 105.5; HRMS (FAB) calcd for C₁₅H₁₀N₅ 260.0936, found 260.0935.

Example 7.

5 (A) **5-Bromo-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]-benzimidazole (JSK IV-37)** A mixture of 5-formyl-2-(benzimidazol-5'-yl)benzimidazole (118.8 mg, 0.45 mmol) and 5-bromophenylenediamine (169.6 mg, 0.90 mmol) in nitrobenzene (5 mL) was heated at 150°C under N₂ overnight. The mixture was cooled to room temperature and chromatographed using 0-10% methanol/ethyl acetate to afford 127.3 mg (66%) of brownish yellow solid: mp>280°C; IR (KBr) 3101, 1626, 1547, 1440; ¹H NMR (DMSO-d₆) δ 7.34 (dd, 1H, J=7.0, 2.0), 7.57 (d, 1H, J=9.0), 7.71-7.80 (m, 3H), 8.04-8.18 (m, 2H), 8.39 (s, 2H), 8.50 (s, 1H); ¹³C NMR (DMSO-d₆ + 3 drops CF₃COOH) δ 114.1, 115.8, 116.2, 116.4, 117.0, 118.6, 123.5, 125.3, 126.2, 128.7, 128.9, 131.8, 132.0, 132.3, 133.1, 134.4, 138.3, 140.6, 151.1, 153.4.

10 (B) **5-Chloro-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]-benzimidazole (JSK IV-68)** A mixture of 5-formyl-2-(benzimidazol-5'-yl)benzimidazole (160 mg, 0.61 mmol) and 5-chlorophenylenediamine (174 mg, 1.22 mmol) in nitrobenzene (5 mL) was heated at 150°C under N₂ overnight. The mixture was cooled to room temperature and chromatographed using 0-10% methanol/ethyl acetate to afford 167 mg (71%) of brownish yellow solid: mp>280°C; IR (KBr) 3103, 2826, 1427, 1293; ¹H NMR (DMSO-d₆) δ 7.24 (dd, 1H, J=8.5, 2.0), 7.60-7.81 (m, 4H), 8.07-8.17 (m, 2H), 8.40 (s, 2H), 8.50 (s, 1H); ¹³C NMR (DMSO-d₆ + 3 drops CF₃COOH) δ 114.3, 114.4, 115.3, 115.5, 115.6, 116.2, 118.5, 123.1, 125.4, 125.5, 125.6, 129.4, 132.4, 132.9, 133.0, 135.2, 138.9, 140.9, 151.8, 153.5.

15 (C) **5-(p-Chlorophenyl)-2-[2'-(benzimidazol-5"-yl)benzimidazol-5'-yl]-benzimidazole (JSK IV-47)** A mixture of 5-formyl-2-(benzimidazol-5'-yl)benzimidazole (99 mg, 0.38 mmol) and 5-(p-chlorophenyl)phenylenediamine (154 mg, 0.71 mmol) in nitrobenzene (5 mL) was heated at 150°C under N₂ overnight. The mixture was cooled to room temperature and chromatographed

using 0-10% methanol/ethyl acetate to afford 85 mg (49%) of brownish yellow solid: mp>280°C; IR (KBr) 3046, 2820, 1426, 1282; ¹H NMR (DMSO-*d*₆ + 3 drops CF₃COOH) δ 7.56 (d, 2H, J=8.5), 7.82 (d, 2H, J=8.5), 7.88-8.21 (m, 6H), 8.48 (d, 1H, J=8.8), 8.63 (s, 1H) 8.72 (s, 1H), 9.69 (s, 1H); ¹³C NMR (DMSO-*d*₆ + 3 drops CF₃COOH) δ 111.8, 113.8, 114.7, 115.8, 116.1, 117.7, 123.0, 124.1, 125.2, 125.3, 129.2, 129.3, 131.9, 132.1, 133.0, 133.1, 137.2, 138.5, 139.3, 141.6, 150.8, 153.8.

(D) 4-Bromophenylenediamine (JSK IV-35) To 2-nitro-4-

bromoaniline (340 mg, 1.57 mmol) in absolute ethanol (20mL) was added SnCl₂ (1.50g, 7.91 mmol) and refluxed overnight. The reaction mixture was then basified to pH 11 with 2N NaOH and extracted with ether to give 275 mg (94%) of product. This product was used without further purification for the synthesis of JSK IV-37.

(E) 4-Chlorophenylenediamine (JSK IV-67) To 2-nitro-5-

chloroaniline (304 mg, 1.76 mmol) in absolute ethanol (20 mL) was added SnCl₂ (1.68g, 8.86 mmol) and refluxed overnight. The reaction mixture was then basified to pH 11 with 2N NaOH and extracted with ether to give 250 mg (quantitative yield) of product. This product was used without further purification for the synthesis of JSK IV-68.

(F) *p*-Chlorotributylphenyltin (JSK IV-42) 4-Bromochlorobenzene (3.2 g, 16.62 mmol) was dissolved in dry THF (20mL). After bringing the reaction temperature down to -78°C with an acetone/dry ice bath, nBuLi (15.58 mL, 1.6M, 1.5 equiv.) was added slowly and stirred at -78°C for 30 min. Tributyltinchloride (6.77 mL, 1.5 equiv.) was added and stirred overnight while bringing the reaction to room temperature. Reaction mixture was quenched by stirring the reaction flask open in air for 1 hour after which THF was rotavaporated off. Product was obtained as an oil (7.35g, 97%) after passing the mixture through a quick silica gel column eluting with 100% hexanes.

(G) 2-Nitro-5-(*p*-chlorophenyl)aniline (JSK IV-44) To JSK IV-42

30 (2.02 g, 5.04 mmol) and 2-nitro-4-bromoaniline (730 mg, 3.36 mmol) in DMF (18 mL) was added Pd(PPh₃)₂Cl₂ (117.9 mg, 0.17 mmol) and PPh₃ (440.2 mg,

1.70 mmol) and heated at 120°C overnight. DMF was rotavaporated off and the mixture was separated on a silica gel column eluting with 5-10% ethylacetate/hexanes to give 270 mg (32%) of reddish solid.

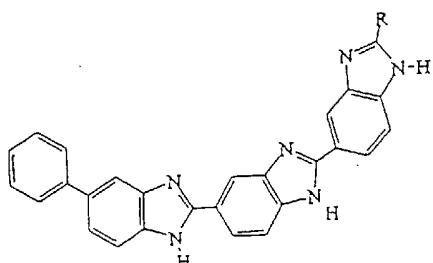
(H) 4-(*p*-Chlorophenyl)phenylenediamine (JSK IV-46) JSK IV-44

5 (190 mg, 0.77 mmol) was dissolved in ethyl acetate (100 mL) and after adding 10% Pd-C (40 mg) was reduced by hydrogenation (45 psi). Product (quantitative yield) was used in JSK IV-47 without further purification.

1. **CH**
2. **CH**
3. **CH**
4. **CH**
5. **CH**

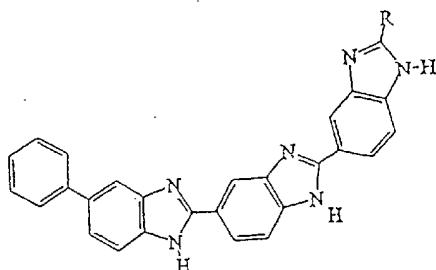
Example 8 - BioassaysCytotoxicity assay

The cytotoxicity was determined using the as MTT-microtiter plate tetrazolium cytotoxicity assay (MTA) following the procedures of F. Denizot et al., J. Immunol.


5 Methods, 89, 271 (1986); J. Carmichael et al., Cancer Res., 47, 936 (1987) and T. J. Mosmann et al., Immunol. Methods, 65, 55 (1983). The human lymphoblast RPMI 8402 and its camptothecin-resistant variant cell line, CPT-K5 were provided by Dr. Toshiwo Andoh (Aichi Cancer Center Research Institute, Nagoya, Japan). See, for example, T. Andoh et al., Adv. Pharmacol., 29B, 93 (1994). The 10 cytotoxicity assay was performed using 96-well microtiter plates. Cells were grown in suspension at 37°C in 5% CO₂ and maintained by regular passage in RPMI medium supplemented with 10% heat inactivated fetal bovine serum, L-glutamine (2 mM), penicillin (100 U/ml), and streptomycin (0.1 mg/ml). For determination of IC₅₀, cells were exposed continuously with varying 15 concentrations of drug concentrations and MTT assays were performed at the end of the fourth day. The drug sensitive human epidermoid carcinoma KB3-1 cell line (S. Aliyama et al., Somatic Cell Mol. Genet., 1-1, 117 (1985)) and its vinblastine-selected multidrug-resistant variant KBV- I cells (D. W. Shen et al., Science, 32, 643 (1986)) were provided by Dr. Michael Gottesmann (National Cancer Institute, Bethesda, ML). These cells were grown as monolayer cultures at in 5% CO₂ and 20 maintained by regular passage in Dulbecco's minimal essential medium supplemented with 10% heat inactivated fetal bovine serum. KBV- I cells were similarly maintained except they were grown in the presence of 1 ug/ml vinblastine.

25 Results

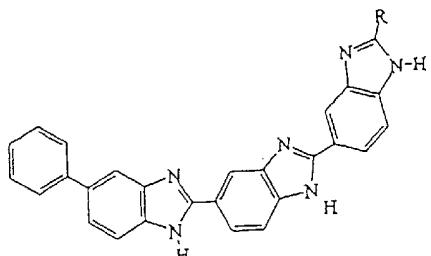
As shown in Tables 1-3, compounds 87 and 88 according to the present invention demonstrated cytotoxicity in several cell lines.


Resistance ratios of 2"-substituted 5-phenylterbenzimidazoles

Compound	R	IC ₅₀ (μM)		Resistance ratio ^a
		RPMI 8402	CPT-K5	
87		0.06	2.95	49
88		0.38	>90.00	>200

a)Resistance ratio is the ratio of IC₅₀ in the RPMI 8402 cells to the IC₅₀ in the CPT-K5 cells.
Compounds are considered cross-resistant when the ratio is greater than 10.

Cytotoxicity of 2"-substituted compounds in MDR1 cell lines



Compound	R	KB3-1 ^a	KBV-1 ^a	KBH1.0-(3-23) ^a
87		0.006	>40.00	>40.00
88		11.27	28.00	18.00

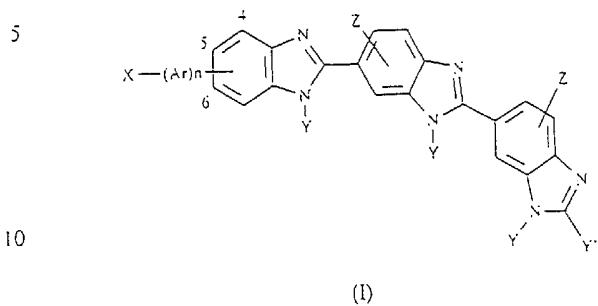
a) cytotoxicity in IC₅₀ (μM) unless otherwise indicated.

Cytotoxicity of 2"-substituted compounds in various camptothecin
resistant cell lines

Compound	R	Cytotoxicity (IC50 in μ M)			
		U937 ^a	U937/CR ^b	A2780 ^c	CPT12000 ^d
87		0.02	0.01	-	0.002
88		0.13	0.56	13.15	9.39

a) Human myeloid leukemia cells;

b) Camptothecin-resistant variant of U937. Mutation at 361 Phenylalanine to Serine.


c) Human ovarian cancer cells.

d) Camptothecin-resistant variant of A2780. Mutation at 717 Glycine to Valine and 729 Threonine to Isoleucine.

WHAT IS CLAIMED IS:

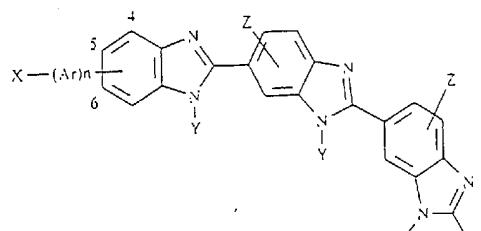
1. A compound of formula (I):

15 wherein Ar is (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CN (when n ≠ 1), CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl or phenyl; Y is H, (C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Z is individually H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl or methoxyphenyl; each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof, when used in medical therapy.

? Claim 1 wherein Y' is methoxyphenyl.

3. Claim 1 wherein n is 1.

25 4. Claim 1 wherein X is CN, CHO, OH, acetyl, CF_3 , $\text{O}(\text{C}_1\text{-C}_2)\text{alkyl}$, NO_2 , NH_2 , halogen or halo- $(\text{C}_1\text{-C}_2)\text{alkyl}$; and n is 0.


5. Claim 1 wherein at least one Z is halogen or halo(C₁-C₄)alkyl; and n is 0.

6. Claim 1, 2, 3, 4, or 5 wherein the medical therapy is the treatment of fungal infection.

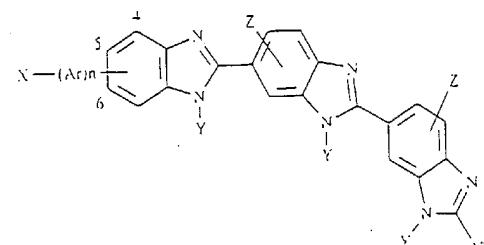
7. Claim 1, 2, 3, 4, or 5 wherein the medical therapy is the treatment of cancer.

8. The use of a compound of formula (I):

wherein Ar is (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CN (when n ≠ 1), CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl or benzyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl or methoxyphenyl; each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for treating fungal infection.

9. Claim 8 wherein Y' is methoxyphenyl.

10. Claim 8 wherein n is 1.


25

11. Claim 8 wherein X is CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; and n is 0.

12. Claim 8 wherein at least one Z is halogen or halo(C₁-C₄)alkyl; and n is 0.

13. The use of a compound of formula (I):

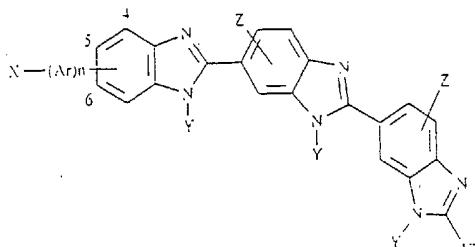
10

wherein Ar is (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CN (when n ≠ 1), CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl or methoxyphenyl; each Z is individually H, (C₁-C₄)alkyl, halogen or halo-(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for treating cancer.

14. Claim 13 wherein Y' is methoxyphenyl.

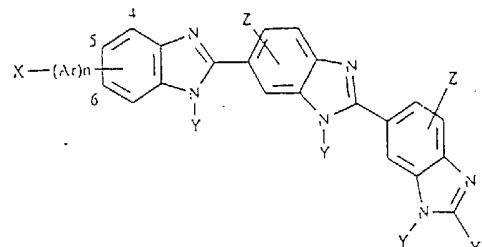
20

15. Claim 13 wherein n is 1.


16. Claim 13 wherein X is CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; and n is 0.

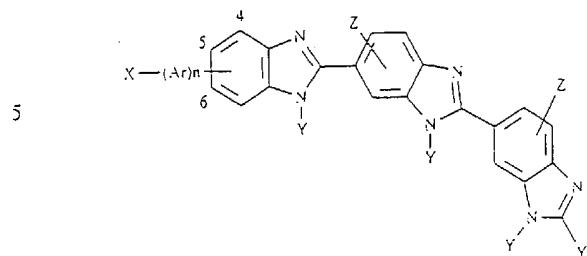
25

17. Claim 13 wherein at least one Z is halogen or halo-(C₁-C₄)alkyl; and n is 0.

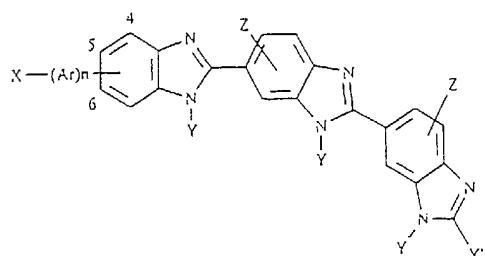


18. A compound of formula (I):

10 wherein Ar is benzo, (C_6 - C_{12})aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C_1 - C_4)alkyl or benzyl; X is H, CHO, OH, acetyl, CF_3 , $O(C_1$ - $C_4)$ alkyl, NO_2 , NH_2 , halogen or halo- (C_1 - C_4)alkyl; each of Y is H, (C_1 - C_4)alkyl or aralkyl; Y' is 15 methoxyphenyl; each Z is individually H, (C_1 - C_4)alkyl, halogen or halo(C_1 - C_4)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.


19. A compound of formula (I):

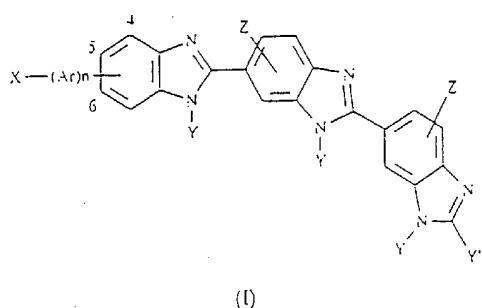
25 wherein Ar is benzo, (C_6 - C_{12})aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C_1 - C_4)alkyl or benzyl; X is H, CHO, OH, acetyl, CF_3 , $O(C_1$ - $C_4)$ alkyl, NO_2 , NH_2 , 30 halogen or halo- (C_1 - C_4)alkyl; each of Y is H, (C_1 - C_4)alkyl or aralkyl; Y' is methoxyphenyl; each Z is individually H, (C_1 - C_4)alkyl, halogen or halo(C_1 - C_4)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.


20. A compound of formula (I):

10 wherein Ar is benzo, (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl; 15 each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.

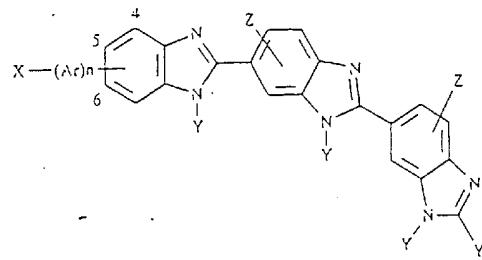
21. A compound of formula (I):

20



wherein Ar is benzo, (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl;

each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.


22. A compound of formula (I):

5

wherein X is CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl; each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl; and n is 0; or a pharmaceutically acceptable salt thereof.

23. A compound of formula (I):

wherein X is H, CN, CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl; each Z is individually H, (C₁-C₄)alkyl, halogen or halo(C₁-C₄)alkyl, provided at least

one Z is halogen or halo(C_1 - C_4)alkyl; and n is 0; or a pharmaceutically acceptable salt thereof.

24. The compound of claim 18, 19 or 20 wherein n is 1.

5

25. The compound of claim 21 or 22 wherein Ar is at the 5-position.

26. The compound of claim 21 or 24 wherein Ar is phenyl.

10 27. The compound of claim 21 or 24 wherein Ar is 2-pyridyl.

28. The compound of claim 18, 19, 20, 21, 22, 23 or 25 wherein X is halogen.

15 29. The compound of claim 28 wherein X is Cl.

30. The compound of claim 26 wherein X-Ar is *p*-chlorophenyl.

31. The compound of claim 30 wherein each Y is H; and each Z is H.

20

32. The compound of claim 18, 19 or 20 wherein n is 0.

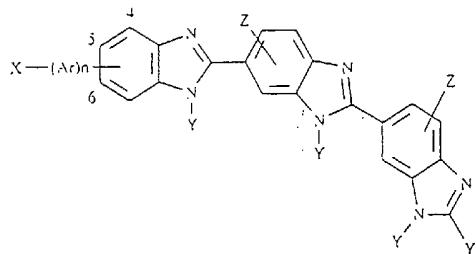
33. The compound of claim 32 wherein X is Cl.

25 34. The compound of claim 33 wherein X is Br.

35. The compound of claim 33 or 34 wherein Y' is 4-methoxyphenyl; each Y is H; and each Z is H.

36. The compound of claim 18, 19, 20, 21 or 22 wherein at least one Z is halogen or halo(C_1 - C_4)alkyl.

37. The compound of claim 36 wherein at least one Z is F or CF₃.


38. The compound of claim 21 or 24 wherein Ar is benzo.

39. The compound of claim 38 wherein Ar is 4,5-benzo.

5 40. The compound of claim 38 wherein Ar is 5,6-benzo.

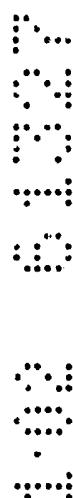
41. A pharmaceutical composition comprising a compound of claim 18, 19, 20, 21, 22, 23 or 24 and a pharmaceutically acceptable carrier.

10 42. A therapeutic method comprising treating fungal infection by administering to a mammal in need of such therapy, an effective amount of a compound of formula (I):

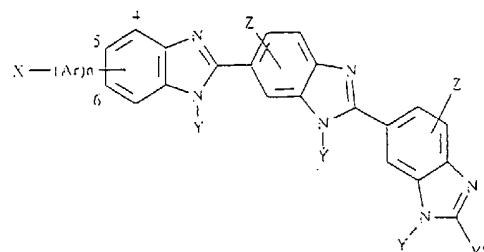
(I)

wherein Ar is (C₆-C₁₂)aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S 15 or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C₁-C₄)alkyl or benzyl; X is H, CN (when n ≠ 1), CHO, OH, acetyl, CF₃, O(C₁-C₄)alkyl, NO₂, NH₂, halogen or halo-(C₁-C₄)alkyl; each of Y is H, (C₁-C₄)alkyl or aralkyl; Y' is phenyl or methoxyphenyl; each Z is individually H, (C₁-C₄)alkyl, 20 halogen or halo(C₁-C₄)alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.

43. A therapeutic method comprising treating fungal infection by administering to a mammal in need of such therapy, an effective amount of a compound of claim 18, 19, 20, 21, 22, 23 or 24.



44. The method of claim 42 wherein the mammal is a human.


45. The method of claim 42 wherein the fungal infection is a systemic infection.

5

46. The method of claim 42 wherein the compound is administered in combination with a pharmaceutically acceptable vehicle.

47. A therapeutic method comprising treating cancer by administering to a mammal in need of such therapy, an effective amount of a compound of formula (I):

(I)

wherein Ar is (C_6-C_{12}) aryl or (5- to 12-membered)heteroaryl comprising 1-3 N, S or non-peroxide O, wherein N is unsubstituted or is substituted with H, (C_1-C_4) alkyl or benzyl; X is H, CN, CHO, OH, acetyl, CF_3 , $O(C_1-C_4)$ alkyl, NO_2 , NH_2 , halogen or halo- (C_1-C_4) alkyl; each of Y is H, (C_1-C_4) alkyl or aralkyl; Y' is phenyl or methoxyphenyl; each Z is individually H, (C_1-C_4) alkyl, halogen or halo- (C_1-C_4) alkyl; and n is 0 or 1; or a pharmaceutically acceptable salt thereof.

20 48. A therapeutic method comprising treating cancer by administering to a mammal in need of such therapy, an effective amount of a compound of claim

19, 20, 21, 22, 23 or 24. The method of claim 47 wherein the mammal is a human.

50. The method of claim 47 wherein the compound is administered in combination with a pharmaceutically acceptable vehicle.

DATED this THIRTIETH day of JANUARY 2002

Rutgers, The States University of New Jersey
Applicant

Wray & Associates
Perth, Western Australia
Patent Attorneys for the Applicant.

...
...
...
...
...

...
...
...

...

1/9

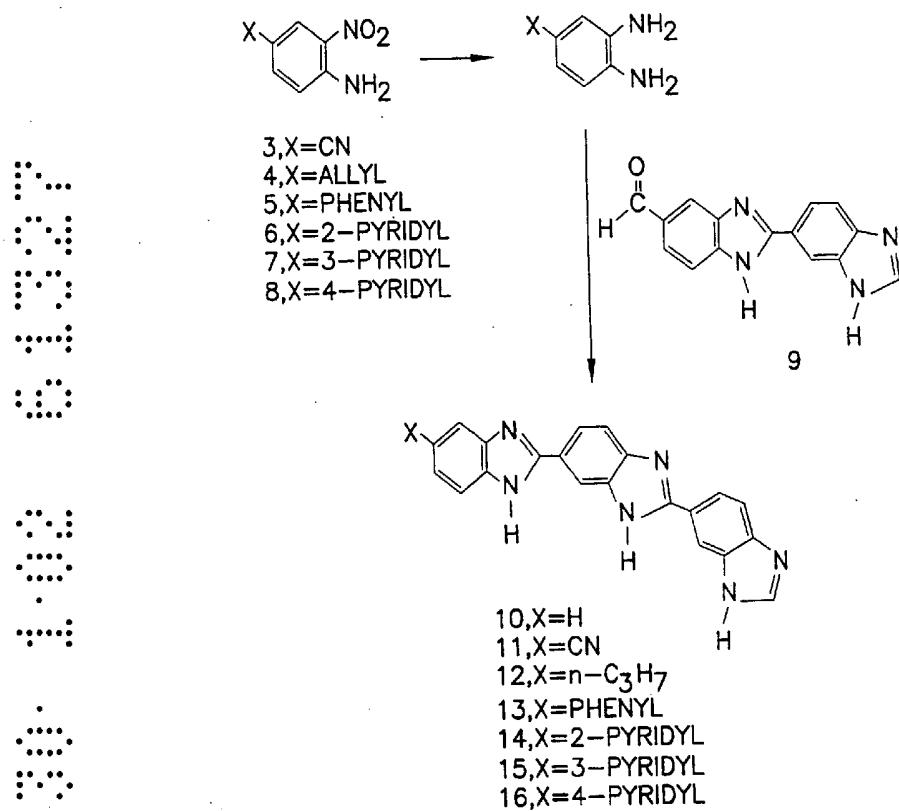


FIG. 1

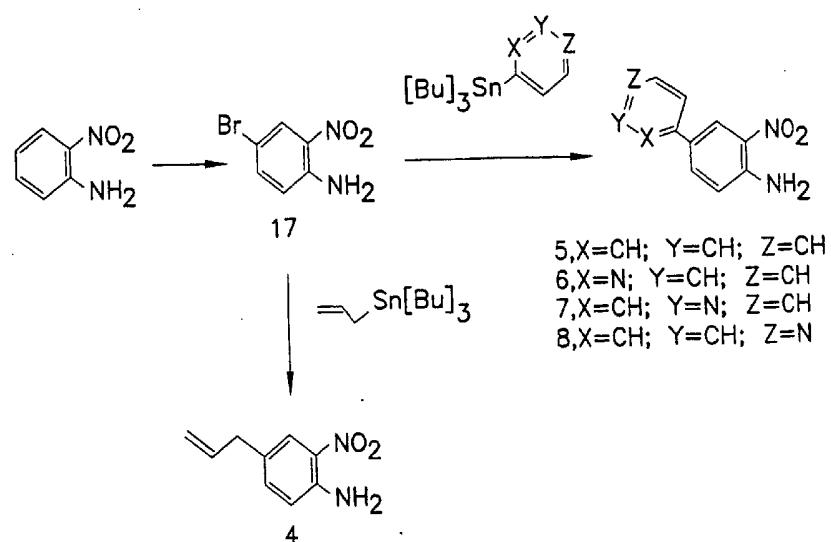


FIG. 2

3/9

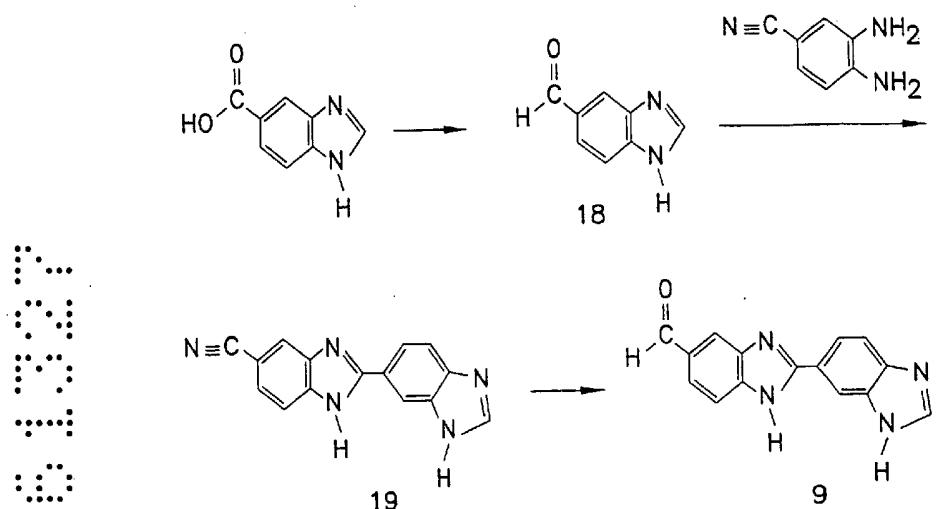


FIG. 3

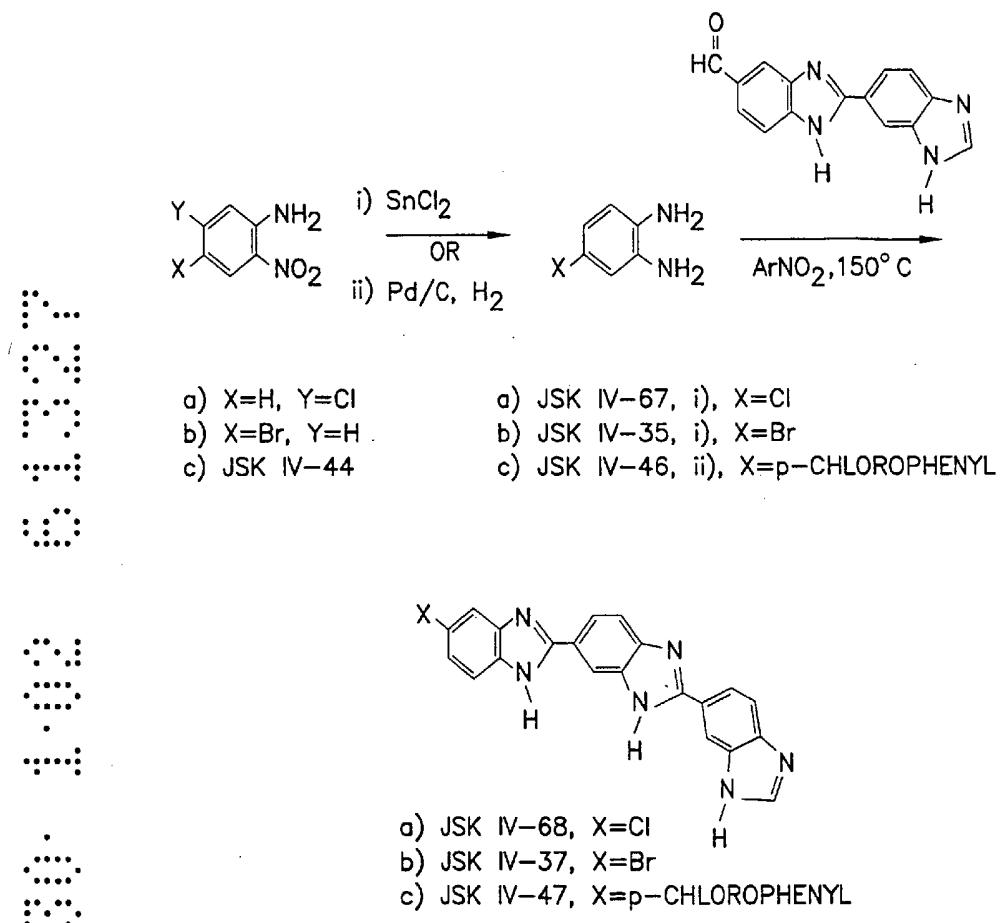


FIG. 4

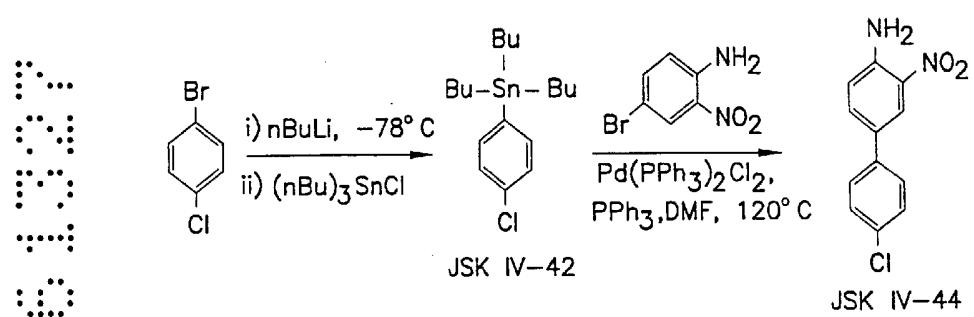


FIG. 5

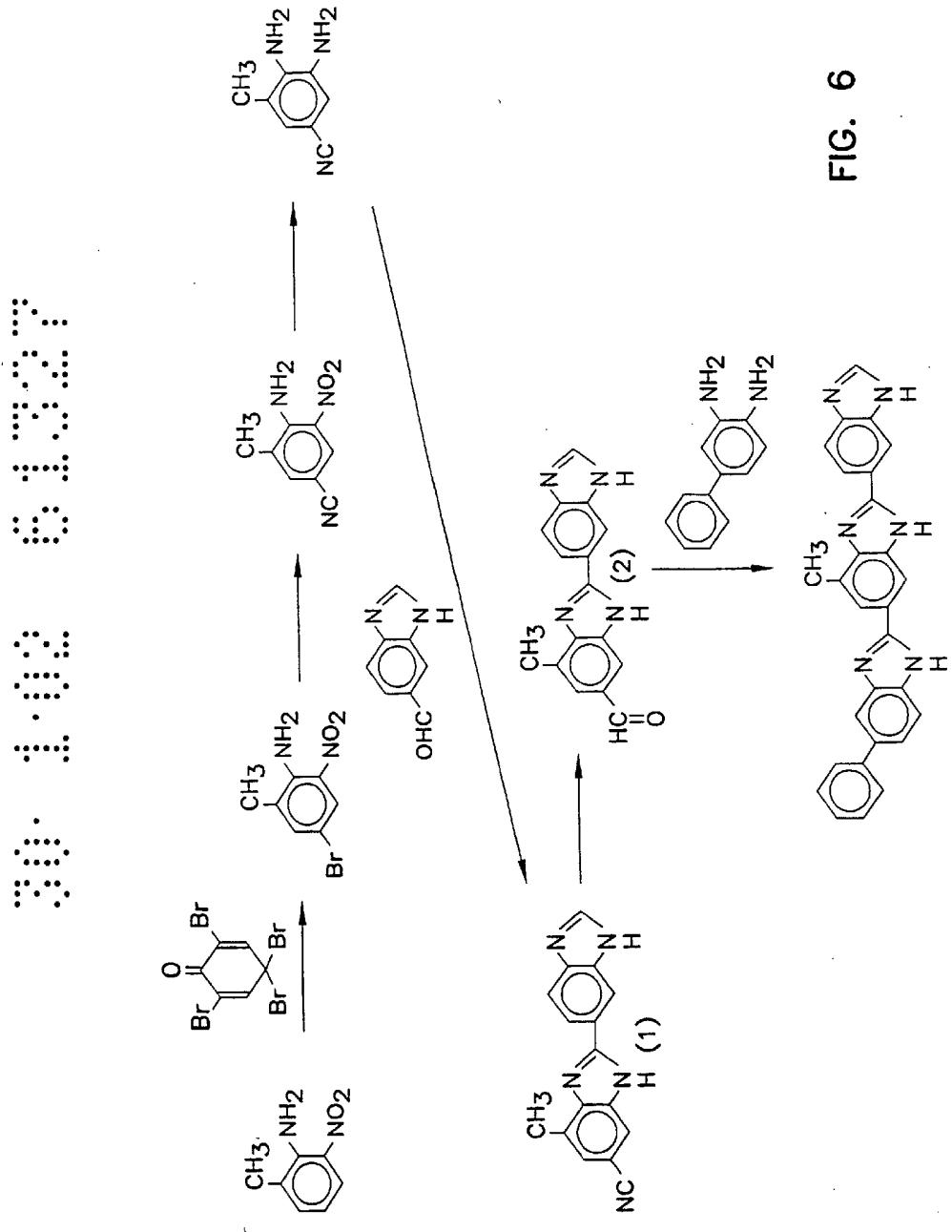
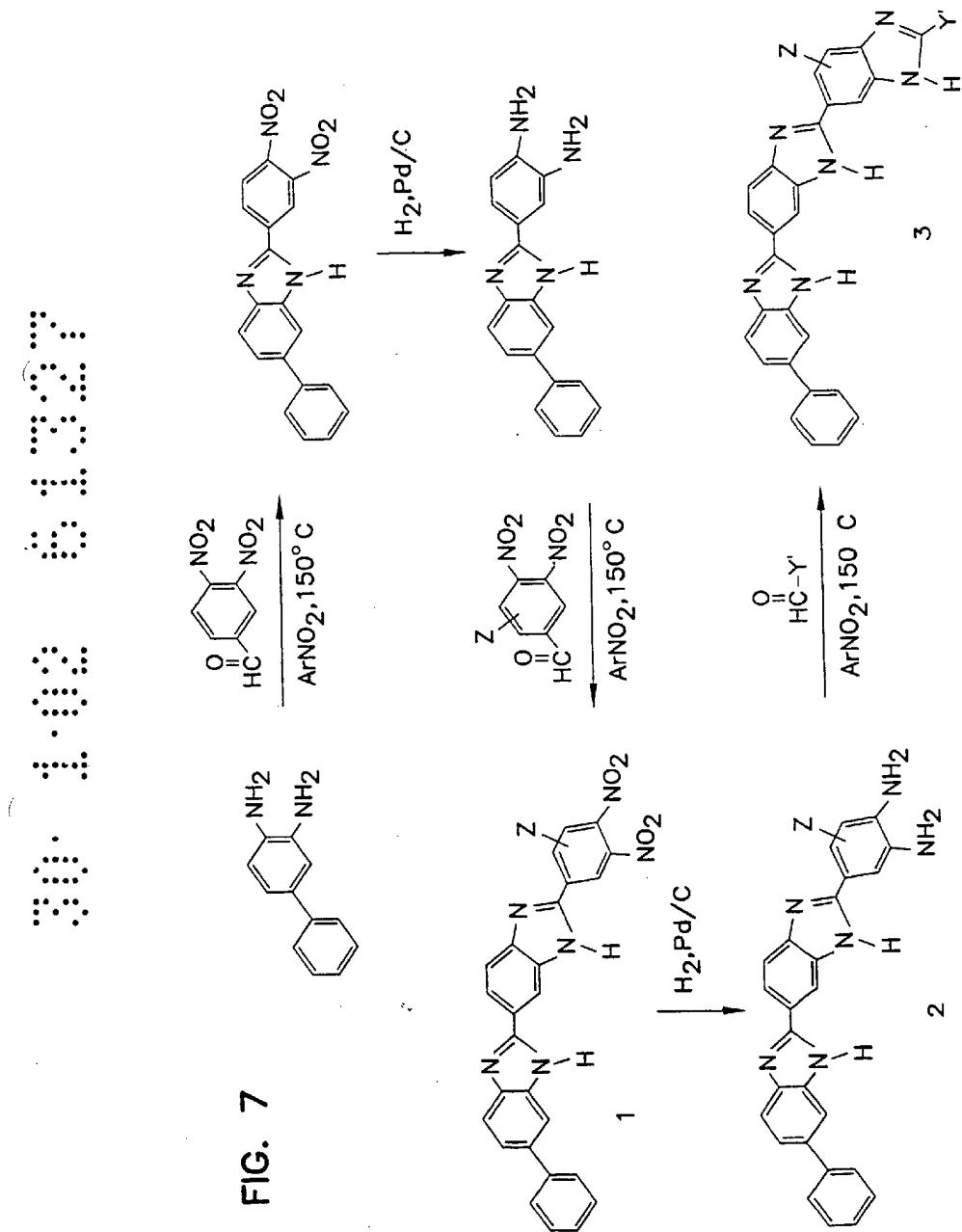
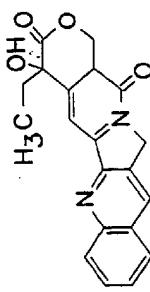
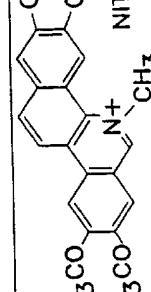
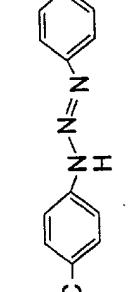
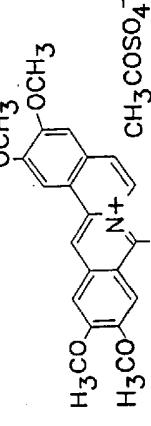
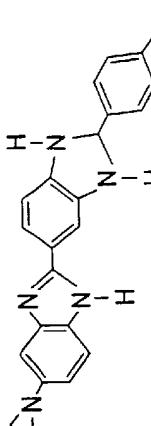
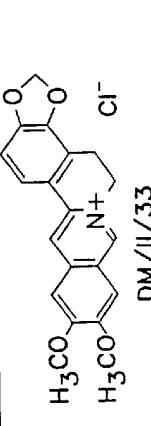



FIG. 6

330 142 61337

FIG. 8

FIG. 8A	FIG. 8B
---------	---------

FIG. 8A

	H	A	H	A
	+	+		-
CAMPTOTHECIN			NITIDINE	
	+	-		+
BERENIL			CORALYNE (DM/II/170)	
	+	+		-*
Ho33342			CORALYNE (DM/II/33)	

8/9

33 133 61327

		9/9	
H	A	H	A
+	-	+	-
	QS-II-51		QS-II-59 A
-	-	+	-
	QS-II-50		QS-II-9
-	-	+	+
	11		13

FIG. 8B