Office de la Proprieté

Canadian

CA 2818472 C 2015/10/06

du Canada. Office Y anen 2 818 472

U | A f

d'rngtrJgs?rri](laSg:nada Inrc]il?gt?;%ya(r)\ada (12) (B)IZEXE)TA%A;’\IAA-PElﬁﬁ
13) G

(22) Date de depot/Filing Date: 2006/06/07
(41) Mise a la disp. pub./Open to Public Insp.: 200/7/01/01
(45) Date de délivrance/lssue Date: 2015/10/06

(62) Demande originale/Original Application: 2 550 974
(30) Priorté/Priority: 2005/07/01 (US11/173798)

51) Cl.Int./Int.Cl. GO6F 71//30(2006.01),
GO6F 11/00(2006.01)

(72) Inventeur/Inventor:
DODGE, DAN, CA

(73) Proprietaire/Owner:
2236008 ONTARIO INC., CA

(74) Agent: RIDOUT & MAYBEE LLP

(54) Titre : VERIFICATION OPTIMISEE AU DEMARRAGE DE L'INTEGRITE DU SYSTEME D' ARCHIVAGE
54) Title: OPTIMIZED STARTUP VERIFICATION OF FILE SYSTEM INTEGRITY

l TRAVERSE EACH FiLE NODE TO

SCAN BLOCKS OF TRANSACTION FILE
TO FIND ALL TRANSACTION RECORDS B REMOVE UNCOMMITTED
345 TRANSACTIONS
1’" 485
CREATE AN ARRAY OF BLOCK L
| RECORDS IDENTIFYING EACH DEVICE TRAVERSE EACH FILE NODE TO
BLOCK HAVING A TRANSACTION GENERATE EXTENTS POOL

RECORD 515
350

#

POPLILATE A TRANSACTION LIST FOR
EACH ENTRY IN THE BLOCK RECORD
1 ARRAY
380

'

SORT THE BLOCK ARRAY BY
TRANSACTION IDENTIFI=R VALUES
415

_ !

FOR EACH TRANSACTION IN EACH
BLOCK OF THE BLOCK RECORDS
ARRAY ;

L |

CREATE NEW FILE NODE FOR THE
FILE iDENTIFIER

430

S THERE A FILE KOD
CORRESPONDING TO THE
FiD?
425

Y

LINK TRANSACTION FILE RECORD
WITH EXISTING TRANSACTION FILE
RECORDS FOR THE FILE NODE
435

(57) Abréegée/Abstract:

A computer system having a transaction based file system Is disclosed. The computer system includes the system software that
manages the file data and the file system structure of files stored on a persistent data storage device and maintains a transaction
file that includes a plurality of transaction records. Each of the transaction records has a header section and a data section. The
header section of each transaction record includes one or more fields that are designated to store information corresponding to a
fle transaction that Is represented by the transaction record. The file system software executes a startup process in which a
reconstructed file system is generated In random access memory. The startup process skips verification of the data section of a
transaction record when the transaction record meets one or more predetermined criterion.

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

P s gye— ey W WA " Sl — -y

1)

CA 02818472 2013-05-31

ABSTRACT

A computer system having a transaction based file system Is disclosed. The
computer system includes file system software that manages the file data and the
file system structure of files stored on a persistent data storage device and
malntains a transaction file that includes a plurality of transaction records., Each of
the transaction records has a header section and a data sectlon. The header
sectlon of each transaction record Includes one or more fieids that are designated to
store information corresponding to a file transaction that Is represented by the
transaction record. The flle system software executes a startup process In which a
reconstructed file system [s generated in random access memory. The startup

process skips verification of the data section of a transaction record when the
transaction record meets one or more predetermined criterion.

10

15

20

25

CA 02818472 2013-05-31

OPTIMIZED STARTUP VERIFICATION OF FILE SYSTEM INTEGRITY

BACKGROUND OF THE INVENTION

TECHNICAL FIELD

[0001] This invention is generally directed to a file system for use in a
computer, embedded controller, or the like. More particularly, this invention is
directed to a transaction based file system in which the startup verification of the

file system integrity is optimized.
RELATED ART

[0002] Computers, embedded controllers, and other microprocessor based
systems are typically constructed from a variety of different hardware components.
The hardware components may include a processor, I/O devices, human interface
devices, and the like. Additionally, such systems use memory storage units to
maintain the data used in the system. The memory storage units may take on a
variety of different forms including, but not limited to, hard disk drives, floppy disk

drives, random access memory, flash memory, and the like.

[0003] High-level application programs that are executed in such systems
must often interact seamlessly with these hardware components, including the
memory storage units. To this end, many systems run an operating system that
acts as an interface between the application programs and the system hardware.
File system software may be included as part of the operating system, or it may be
provided as an ancillary software component that interacts with the operating
system. In either instance, the file system software organizes the data within the
memory storage units for ready access by the processor and the high-level

application programs that the processor executes.

[0004] There are a number of different file system classifications since there
are many ways to implement a file system. For example, a transaction based file

system is one in which the file system is always maintained in a consistent state
1

10

15

20

25

CA 02818472 2013-05-31

since all updates to the file system structure and the data are logged as
transactions to a transaction file. More particularly, all updates to the file system

are made as transactions within the transaction file, and the contents of the file
system are dynamically re-constituted by successively applying all of the

transactions that have been committed.

[0005] A transaction in the transaction file is either committed or it has not
been completed. If the operation of the file system is interrupted, such as due to a
power outage, for example, the state of the file system can be restored by
consulting the contents of the transaction file. Any committed transactions are
used by the file system, and any transactions that are not complete are rolled back,

restoring the file system to the state it was in prior to the attempted update.

[0006] Restoration of the file system to a consistent state requires that the
file system software execute a predetermined startup process. During a typical
startup process, the integrity of each transaction stored in the transaction file is
verified before it becomes part of the file system. Additional file system operations
also may be executed during the startup process. The traditional manner in which
transaction verification and other file system operations are performed after a file
system interruption, however, is often sub-standard in that the operations are time,

process and resource intensive.

SUMMARY

[0007] A computer system that may be used in implementing a transaction
based file system is disclosed. The computer system includes a processor, random
access memory that is accessible by the processor, and a persistent data storage
device that is likewise accessible by the processor. The computer system also may
includes file system software. The file system software may be executed by the
processor and operates to manage the file data and the file system structure of the
files stored on the persistent data storage device. Additionally, the file system
software may maintain a transaction file that includes a plurality of transaction

records. Each of the transaction records has a header section and a data section.

10

15

20

25

30

CA 02818472 2013-05-31

The header section of each transaction record may include one or more fields that
are designated to store information corresponding to a file transaction that is
represented by the transaction record. If the operation of the file system software
is interrupted, the file system software resumes its execution using a startup
process in which a reconstructed file system is generated in the random access
memory. During system restart, the startup process may skip verification of the
data section of a transaction record when the transaction record meets one or more
predetermined criterion. For example, the startup process may make a distinction
between transaction records merely affecting file data versus transaction records
that affect the metadata of the file system. As transactions are found during the
startup process, the file system software may identify whether a transaction
impacts file data or metadata. Since only the metadata is required to ensure that
the file system is in a consistent state after startup, the transaction records relating
to metadata may be selected as the only subset of transaction records that are
subject to complete verification. Verification of other transaction records may, for
example, be limited to a check of the information contained in the header section of

each remaining transaction record.

[0008] The transaction file may be stored, for example, in flash memory. In
such instances, the startup process may be further enhanced. For example, the
startup process may limit its header information verification to the first transaction
record of a sequence of transaction records in the same block of the flash memory
device. Neither the header nor data sections of the trailing transaction records of
the sequence are verified during startup and the startup process moves on to
processing the transaction records of the next device block, if any. Still further, the
startup process may check the header section information to determine whether
the memory locations in a device block have been erased or retired. If the memory
locations in the device block have been erased or retired, startup processing

continues with the next device block.

[0009] Other systems, methods, features and advantages of the invention will
be, or will become, apparent to one with skill in the art upon examination of the

following figures and detailed description. It is intended that all such additional

3

10

15

20

25

CA 02818472 2013-05-31

systems, methods, features and advantages be included within this description, be

within the scope of the invention, and be protected by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The invention can be better understood with reference to the following
drawings and description. The components in the figures are not necessarily to
scale, emphasis instead being placed upon illustrating the principles of the
invention. Moreover, in the figures, like referenced numerals designate

corresponding parts throughout the different views.

[0011] Figure 1 is a block diagram of a computer system that may implement
a transaction based file system in which startup verification of the file system

integrity is optimized.

[0012] Figure 2 is a tree diagram showing one example of an arrangement of

files and directories that may be implemented in the transaction based file system.

[0013] Figure 3 is a block diagram illustrating one manner in which records of

a metafile may be arranged to implement the file system structure shown in Figure
2.

[0014] Figure 4 illustrates one manner of logically arranging a transaction

record in a transaction file of the transaction based file system.

[0015] Figure 5 shows the physical arrangement of memory in one type of

flash media device.

[0016] Figures 6 and 7 illustrate various manners in which transaction records
may be arranged in flash media devices for use in the transaction based file

system.

[0017] Figure 8 illustrates a number of interrelated processing steps that may
be used to generate an extents pool that, in turn, is employed in a reconstructed

file system that is created by the computer system during startup.

4

10

15

20

25

CA 02818472 2013-05-31

[0018] Figures 9 through 11 are directed to exemplary formats for various

record types used in the processing steps shown in Figure 8.

[0019] Figure 12 is directed to an exemplary format for a directory node

record of the regenerated file hierarchy used in the reconstructed file system.

[0020] Figure 13 is directed to an exemplary format for a file node record of

the regenerated file hierarchy used in the reconstructed file system.

[0021] Figure 14 illustrates a number of interrelated processing steps that
may be used to construct the regenerated file hierarchy used in the reconstructed

file system.

[0022] Figure 15 is a logical representation of a reconstructed file system that
has been generated in the manner set forth in connection with Figures 8 through 14

as applied to the exemplary file and directory arrangement shown in Figure 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0023] Figure 1 illustrates the components that may be employed in an
exemplary transaction based computer system 10. As shown, the exemplary
system 10 includes a processor 15, read only memory 20, and a persistent storage
unit 30. Computer system 10 also may include random access memory 35, an 1/0
interface 40, and a user interface 45. The specific components that are used in

computer system 10 may be tailored to the particular function(s) that are to be

executed by the computer system 10. Accordingly, the presence or absence of a
component, other than processor 15, may be specific to the design criterion
imposed on the computer system 10. For example, user interface 45 may be

omitted when the computer system 10 takes the form of an embedded controller or
the like.

[0024] Read only memory 20 may include operating system code 43 that
controls the interaction between high-level application programs executed by the

processor 15 and the various hardware components, including memory devices 20

10

15

20

25

30

CA 02818472 2013-05-31

and 35, the persistent storage unit 30, and the interface devices 40 and 45. The
operating system code 43 may include file system software for organizing files
stored on the persistent storage unit 30. Alternatively, the file system software may
be provided as a separate software component that merely interacts with the
operating system code 43. In the latter case, the code corresponding to the file
system software may be stored in read only memory 20, persistent storage unit 30
or the like. When computer system 10 is networked with other computers and/or
storage devices through I/0 interface 40, the file system software may be stored
remotely and downloaded to computer system 10 as needed. Figure 1, however,

illustrates storage of the file system software 47 in read only memory 20.

[0025] The persistent storage unit 30 may take on any number of different
forms. For example, the persistent storage unit 30 may take the form of a hard
disc drive, floppy disk drive, and the like. It also may be in the form of a non-
rotating media device, such as non-volatile memory implemented in an integrated
circuit format (e.g., flash memory, and the like.). Still further, persistent storage
unit 30 need not be limited to a single memory structure. Rather, the persistent
storage unit 30 may inciude a number of separate storage devices of the same type
(e.g., all flash memory) and/or separate storage devices of different types (e.g.,

one or more flash memory units and one or more hard disk drives).

[0026] The files stored in the persistent storage unit 30 include data that is
interpreted in accordance with a predetermined format used by an application
program or by the operating system code 43. For example, the data stored within
a file may constitute the software code of an executable program, the ASCII text of
a database record, data corresponding to transactions executed (or not executed)

by computer system 10, and the like.

[0027] In this exemplary system 10, the file system software 47 organizes the
files stored on the persistent storage unit 30 using an inverted hierarchical
structure. Figure 2 is a diagram showing one manner in which the inverted
hierarchical structure, shown generally at 50, may be implemented. In the

traditional hierarchical structures used by many file systems, the top level of the file

6

10

15

20

25

CA 02818472 2013-05-31

structure begins with the root directory and each directory points downward to the
files and subdirectories contained within the directory. In the exemplary inverted
hierarchical structure 50, however, the child files and child directories contained
within a parent directory point upward to the parent directory. Depending on
where the file system begins its organization, the root directory may constitute the

lowest level of the file system structure.

[0028] The exemplary inverted hierarchical structure 50 includes five files 55,
60, 65, 70 and 75 at the highest level of the file system structure. Files 55, 60 and
65 are contained within directory 80 while files 70 and 75 are contained within
directory 85. Accordingly, the file system software 47 organizes the file system so
that the file system records representing child files 55, 60 and 65 point to the
record for their parent directory 80. Similarly, file system records representing

child files 70 and 75 point to the record for their parent directory 85.

[0029] At the next level of the exemplary inverted hierarchical structure 50,
files 90 and 95 as well as directory 80 are contained within directory 100, while
directory 85 may be contained within directory 105. Accordingly, the file system
software 47 organizes the file system so that file system records representing child
directory 80 and child files 90 and 95 point to the record for their parent directory
100. Similarly, the file system record representing child directory 85 points to the

record for its parent directory 105.

[0030] The root directory 110 may form the trunk of the inverted hierarchical
structure 50. In this example, directories 100 and 105 and file 115 are contained

within the root directory 110. Accordingly, the file system software 47 organizes the
file system so that file system records representing child directories 100 and 105
and child file 115 point to the record for their parent directory 105.

[0031] One manner in which the file system software 47 may organize the
records of the file system to implement an inverted hierarchical structure is shown
In Figure 3. In this implementation of the file system, the file system software 47

may generate one or more metafiles that include records corresponding to each file

10

15

20

25

30

CA 02818472 2013-05-31

and directory used in the file system. Figure 3 shows a single metafile 120 and an
exemplary manner in which the records within the metafile 120 may be arranged
and formatted. In this example, metafile 120 may be arranged as a table that
includes a plurality of equal length record entries 125. Each record entry 125
corresponds to a single file or directory may be used in the file system. A unique
file identifier, such as the one shown at 130, may be used by the file system
software 47 to address a corresponding record 125 of the metafile 120. If each
record entry 125 has the same record length, the format for the file identifier 130
may be chosen so that it may be used, either directly or indirectly, as an index to
the desired record in metafile 120. For example, file identifier 130 may constitute
an offset value that may be used along with the memory address location of the
first record of metafile 120 to calculate the memory address location of the first

byte of the metafile record having the desired directory/file information.

[0032] In the example of Figure 3, the file identifier 130 is pointing to record
135 (Entry 7) in metafile 120. Record 135 is shown in Figure 3 in an expanded
form adjacent to the metafile 120. The expanded form of record 135 also
illustrates a basic record format that may be used for each record entry 125. In this
example, record 135 includes a number of different fields containing information
relating to the file or directory represented by the record. This information, among
other things, corresponds to the logical location of the file or directory within the

structure of the file system.

[0033] The inverted hierarchical structure of the file system may be
implemented by employing a metafile record format in which each metafile record
includes a pointer to the metafile record representing its parent directory. Figure 3
shows a metafile record format in which each metafile record includes a parent
identifier field 140 that stores the file identifier of its parent directory. In this
example, the parent record identifier 140 of metafile record 135 corresponds to the
file identifier used to address record 145 (Entry 9). Record 145, in turn, includes
information pertaining to the directory containing the file or directory represented
by record 135.

10

15

20

25

30

CA 02818472 2013-05-31

[0034] Each metafile record also may include other information pertaining to
the directory or file that the record represents. In the exemplary record format of
record 135, a number of different information fields are employed. The information
fields include a mode field 150, user identification field 155, group identification
field 160, access time field 165, modified time field 170, created time field 175, file
size field 180 and short name field 185. The mode field 150 may be used to
determine whether the file or directory represented by the record is a system
file/directory, a hidden file/directory, a read only file/directory, and the like. The
user identification field 155 and group identification field 160 contain information
relating to user and group ownership of the represented file or directory. The
access time field 165, modified time field 170, and created time field 175 contain
information relating to the time at which the represented file or directory was last
accessed, the time at which the represented file or directory was last modified and
the time at which the represented file or directory was created, respectively. The
size field 185 contains information on the size of the file represented by the record
and is zero for directory records. Finally, the short name field 185 contains ASCII
characters representing the short text name of the corresponding file or directory.
The length of the short name field 185 may be chosen, for example, to conform to
the POSIX standard. Additionally, each record may include hash values and/or
name sums that correspond to the short name. Such hash values and/or name
sums may be used by the file system software 47 to quickly search for a particular
directory and/or file record.

[0035] Each record in metafile 120 also may include a field for an extended
record identifier 190. The extended record identifier 190 may be used as a file
identifier that points to an extended record in the metafile 120. The extended
record may contain further information for the file or directory represented by the
record and may be particularly useful in instances in which all of the information
pertaining to a particular file or directory does not fit within the memory space

allocated for a single metafile record.

[0036] Figure 3 illustrates one manner in which an extended record identifier
190 may be used. In this example, the extended record identifier 190 of record

S

10

15

20

25

30

CA 02818472 2013-05-31

135 corresponds to the file identifier (fid) used to access record 195 (Entry 11) in
metafile 120. An exploded view of record 195 is shown adjacent the exploded view
of record 135 in Figure 3. This exploded view illustrates one record format that
may be used for the extended record. As shown, each extended record may include
its own parent identifier field 200. The parent identifier field 200 of an extended
record, however, corresponds to the file identifier of the record which points to the
extended record. In the example shown in Figure 3, the contents of the parent
identifier field 200 may be used to point back to record 135 (Entry 7).

[0037] In those instances in which the memory space allocated for two record
entries is insufficient to hold all of the information pertaining to a file or directory,
the extended record 195 may point to yet a further extended record using its own
extended record identifier, such as the one included in field 205 of record 195.
Although the format for the further extended record pointed to by extended file
identifier 125 is not shown, the further extended record may likewise include a

parent record identifier that points back to record 195.

10038] The type of information included in an extended record may vary
between file systems. In Figure 3, the extended record 195 includes a long name
field 210 that contains ASCII characters corresponding to the text of the long name
of the file or directory represented by the record 135. Further fields may be
reserved in an expansion area 215 of each extended record, such as record 195, to

store additional information relating to the corresponding file or directory.

[0039] In the previous example, the extended records used by the file system
are stored in metafile 120. However, the extended records and any further
extended records may alternatively be stored in a separate metafile, multiple
metafiles, and the like. The separate metafile(s) need not share the same storage
medium with metafile 120 nor with each other. Rather, the metafiles may be
stored in different storage media accessible to processor 15. Even the basic
metafile records (directory and file records that do not have corresponding
extended records) may be distributed among multiple files and/or multiple storage

media. As such, although the metafile records of the exemplary system are stored

10

10

15

20

25

30

CA 02818472 2013-05-31

in a single metafile, the metafile may alternatively be in the form of many individual

files on the same or different storage media.

[0040] By organizing the files and directories of computer system 10 in an
inverted hierarchical structure, it becomes possible to realize one or more file
system advantages. For example, the file system is capable of being implemented
in any manner in which typical file and directory transactions (i.e., moving a
file/directory, deleting a file/directory, creating a file/directory, copying a
file/directory) are accomplished atomically as a change, addition or deletion of a
single metafile record. In this implementation, for example, the file/directory
represented by record 135 may be moved to another directory in the hierarchy
merely by changing the parent identifier 140 so that it points to the metafile record
for the new parent directory. This may be accomplished with a single write

operation to record 135 in the metafile 120.

[0041] The inverted hierarchical structure may be employed to optimize a
transactional or log-based system. An exemplary transactional or log-based system
may be constructed from the components shown in Figure 1. In this example, a
transaction file 220 may be maintained in the persistent storage unit 30 and may
be used to keep records of the transactions associated with each file and directory
of the file system. Updates to the file system are committed atomically based on
the transaction records contained in transaction file 220. In one of its simplest

forms, every transaction record may be stored as a single logical page that may be

mapped to a physical block or sector of the persistent storage unit 30.

[0042] One manner in which a transaction record 225 may be formatted for
use in computer system 10 is shown in Figure 4. Generally stated, each transaction
record 225 of the transaction file 220 includes a header field 230 and a
corresponding data field 230. The header field 230 may include a number of
different sub-fields. The sub-fields shown in Figure 4 include a transaction
sequence field 240, a file identification field 245, a transaction status field 250, a
cluster high field 255, a cluster low field 260 and number of clusters field 265.
Additionally, further sub-fields may be included in header 230 to verify the integrity

11

10

15

20

25

30

CA 02818472 2013-05-31

of the transaction and for error correction. These further sub-fields include a
cluster sum field 247, a transaction sum field, an error correction code field 257 to
check and correct header 230, an error correction code field 259 to check and
correct data 235, and a further status field 262 indicative of the condition of the

memory locations in which the transaction record may be stored.

[0043] Each of the sub-fields of header field 230 has a meaning to the file
system software 47. In this example, the transaction sequence field 240 may be a
monotonically increasing transaction identifier that may be assigned by the file
system software 47. When a new transaction record may be added to the
transaction file 220, the value stored in the transaction sequence field 240 of the
new record may be increased by a predetermined amount over the value of the
transaction sequence field of the chronologically preceding transaction record.
Consequently, transaction records having larger transaction identifier values are
considered to have been added to the transaction file 220 later in time than
transaction records having lower transaction identifier values. This chronological
sequencing of the transactions, as represented by the value of the transaction
sequence field 240 (and, in certain circumstances, the position of the transaction
record within a block of the transaction file 220), allows the file system software 47
to apply (i.e., commit) the transactions in the proper order to maintain the integrity
of the file system contents. Other ways of keeping track of the chronological

sequencing of the transactions also may be used.

10044] File system software 47 uses the transaction status field 250 to
determine whether the transaction of a transaction record 225 has been committed.
Once a transaction has been committed, further alteration of the committed
transaction record 225 may be inhibited by the file system software 47. This
ensures consistency of the file system and also allows the file system to store the

transaction file 220 in, for example, write-once media, flash media, or the like.

[0045] The file identification field 245 of header 230 identifies the file that
may be affected by the transaction record 225. The format for the file identification

field 245 may be selected so that it is the same as the file identifiers used in the

12

10

15

20

25

30

CA 02818472 2013-05-31

metafile records. The cluster high field 255 and cluster low field 260 may be used
by the file system software 47 to determine the starting address (or offset) at
which the data 235 may be to be written into the identified file while the number of
clusters field 265 may be used to determine how many clusters of the identified file

are to be overwritten by the data 235.

[0046] As noted above, persistent storage unit 30 may include one or more
flash memory devices. Flash memory devices store information in logic gates,
called *"memory cells,” each of which typically stores one bit of information. More
recent advances in flash memory technology have also enabled such devices to
store more than 1 bit per cell, sometimes referred to as multi-level cell devices.
Additionally, flash memory is non-volatile, which means that the contents of

memory cells are not lost when power is withdrawn from the device.

[0047] Although flash device technology is continuously evolving, dominant
technologies include NAND flash memory and NOR flash memory. NOR flash
devices and NAND flash devices generally differ in the type of logic gate used for
each storage cell. An exemplary logical architecture 270 of one type of NAND flash
memory device 270 is shown in Figure 5. As illustrated, the available memory on
the device 270 may be organized into contiguous physical blocks 280 each having
an equal number of memory cells (i.e., 16K bytes). NAND flash memory device 270
further divides each of the contiguous blocks 280 into a specific number of physical
sectors or pages 290. Each physical page 290, in turn, may be further divided into
a data area 295 and spare area 300. The data area 295 is normally reserved for
storage of data, while the spare area 300 is typically reserved for maintenance of
meta-information about the data stored in data area 295. The meta-information
may include, for example, error-correcting codes used for verification and

correction of sector contents, cyclic redundancy check data, and the like..

[0048] NOR flash devices have an architecture similar to that shown in Figure
5, except that the spare areas of each page are located on opposite sides of the
data area. NOR flash devices also offer random access read and programming

operations, allowing individual memory locations to be read on or read. However,

13

10

15

20

25

30

CA 02818472 2013-05-31

once a memory location in a block has been written, NOR flash devices do not allow
the block to be rewritten a smaller granularity than a block. Likewise, NOR flash

devices do not allow erase operations at a smaller granularity than a block. insert

quick mark saved document

[0049] The data area 295 and spare area 300 are typically set to specific sizes
in both NOR and NAND flash devices. For example, each page 290 of the
exemplary NAND flash device 270 of Figure 5 includes a data area 295 of 512 bytes
and a spare area 300 of 16 bytes for a total page size of 528 bytes. The NAND
flash device 270also employs 32 pages 290 per block 280. Other page sizes may
be used in computer system 10 and are commercially available. For example,
many NAND devices include blocks having 64 pages where each page stores 2112
bytes so that the total data area per page is 2048 bytes and the spare area per
page is 64 bytes.

[0050] Flash memory devices, such as NAND flash device 270, typically
perform erase operations on an entire block 280 of memory at a time. An erase
operation sets all bits within the block 280 to a consistent state, normally to a
binary “1” value. Programming operations on an erased block 280 of flash device
270 can only change the contents of an entire page 290 (although NOR flash
devices may be programmed in a slightly different manner). Once a page 290 of a
NAND flash device is programmed, its state cannot be changed further until the

entire block 280 may be erased again. Reading of the contents of flash device 275

also occurs at the page level.

[0051] Figure 6 illustrates one manner in which transaction records may be
organized in a flash memory device, such as NAND flash device 270. In this
example, each transaction record 310 may be comprised of two or more contiguous
logical pages 315. Each logical page 315, in turn, may be comprised of two or more
contiguous physical pages 290 of a block 280 of device 270. Meta-data information
for the transaction record 310 may be stored in spare area 300, and may include
some of the fields described in connection with header 230 of Figure 4. Depending

on the size of the spare area 300 of each page 290, the meta-data information may

14

10

15

20

25

CA 02818472 2013-05-31

be divided among multiple spare areas 300 of the transaction record 310. A
division of the meta-data information between the spare areas 300 of two
consecutive physical pages 290 is shown in Figure 6. The transaction records
shown in Figure 6 also may be organized so that each transaction 310 corresponds
to a single logical page 315 that, in turn, may be comprised of, for example, two

contiguous physical pages 290.

[0052] An alternative arrangement in which there may be a one-to-one
correspondence between each logical page 315 and a physical page 290 of flash
device 270 is shown in Figure 7. A difference between this arrangement and the
one shown in Figure 6 is that all of the meta-data information 320 may be stored in
a single spare area 300 of the first physical page 290 of the transaction 310.
Arrangements of this type may be particularly suitable when large capacity flash
devices are employed. However, the meta-data information 320 also may be
divided between the spare areas 300 of the two contiguous physical pages 290 of

the transaction record.

[0053] The sequence identifiers for the transaction records 310 stored in the
same device block 290 may have the same values. In such instances, the
sequence identifier provides chronological information that may be used to compare
the time relationship between the transaction records of different device blocks.
Chronological information on the transaction records 310 stored in the same block
can be derived from the offset location of the transaction record 310 within the

block 290, with later occurring transaction records 310 occurring at larger offsets.

[0054] After the computer system 10 has been started or powered on, the
integrity of the file system may be verified by generating a reconstructed version of
the file system in random access memory 35. The reconstructed file system, shown
generally at 330 of Figure 1, may be generated using the valid, committed
transactions stored in the transaction file 220 and from the file/directory
information stored in metafile 120. In Figure 1, the reconstructed file system 330

includes a regenerated file hierarchy 335 and an extents table 340.

15

CA 02818472 2013-05-31

[0055] One manner of generating the extents table 340 is shown in Figures 8
through 11. Figure 8 illustrates a number of interrelated processing steps that may
be used to generate the extents pool 340 while Figures 9 through 11 illustrate the
logical organization of various tables and arrays generated and used in these

5> operations.

[0056] Generation of the extents table 340 may commence at step 345 of
Figure 8 by scanning the blocks of the transaction file 220 to find all of the
transaction records. The blocks may be scanned in sequence from the lowest
ordered block to the highest ordered block in which a committed transaction record

10 is found. As transactions are found within the blocks, an array of block records
identifying each device block having a transaction record may be generated at step
350.

[0057] As the file system software 47 scans the blocks of the transaction file
220 four transactions, the file system software may encounter a block that has

15 been erased as a result of transactions that have been retired, or because the
blocks have not yet been assigned for use in the file system. The transaction
header may be structured so that there are no valid transactions that will have all
of the bits of the header set to the erased value, typically a binary "1". As the file
system software 47 scans the blocks of the transaction file 220, any transaction in

20 which the header indicates an erased block may be skipped. This header invariant
may be enforced by using a single bit as a flag to indicate the transaction is in use
by the file system when it is the inverse of the erase value. Upon finding such an
erase signature value in a transaction header, scanning of the remaining pages in
the block may be skipped thereby saving the time that would otherwise be used to

25 access the erased pages. The overall system startup time may be correspondingly

decreased.

[0058] The organization of an exemplary block array 355 is shown in Figure 9.
Each block array record 360 includes a sequence field 365, a begin transaction field
370 and a number of transactions field 375. The sequence field 365 may be used

30 to store the transaction identifier value for the transaction records stored in the

16

10

15

20

25

CA 02818472 2013-05-31

block. The begin transaction field 370 may be used to store an index to the first
transaction in the block and the number of transactions field 375 may be used to

store the number of transactions found in the block.

[0059] At step 380 of Figure 8, the file system software 47 populates a
transaction list table for each record entry in the block array 355. Figure 9
illustrates one manner in which the transaction list table 385 may be organized. In
this example, each record 360 of the block array 355 points to at least one
transaction list record 390 of the transaction list table 385. More particularly, a
transaction list record 390 may be generated for each transaction found in the
block represented by a given block array record 360. The value stored in the
number of transactions field 375 of the given block array record 360 corresponds to
the number of transactions in the given block and designates how many records
390 for the given block will be added to transaction list table 385.

[0060] Each transaction list record 390 of the transaction list table 385 may
have the same record length and include the same record fields. The exemplary
fields used in records 390 of Figure 9 include a file cluster offset field 395, a device
cluster index field 400, a number of clusters field 405 and a file identifier/idx field
410. The file cluster offset field 395 may be used to identify the physical location of
the transaction within the block. The device cluster index field 400 may be used to
identify where the data for the transaction begins. The number of clusters field 405
may be used to identify how many clusters of data are present within the
transaction. Finally, the file identifier/idx field 410, as will be set forth below, is
multipurpose. Initially, however, the value stored in the file identifier/idx field 410
may be used to identify the file to which the transaction applies. The file identifier
value stored in field 410 may directly correspond to the file identifier used to
reference the record in metafile 120. Upon the completion of step 380, the records
360 of block array 355 will be arranged, for example, in increasing block order,
while the records 390 for each block array record 360 will be arranged in increasing

page order.

17

10

15

20

25

30

CA 02818472 2013-05-31

[0061] At step 415, the records 360 of block array 355 are sorted based on
the values stored in the sequence fields 365. This operation may be performed to
place the records 390 of the transaction list table 385 in chronological order (i.e.,

the order in which the corresponding transactions are to be applied to the files of

the file system).

[0062] A temporary file 440 storing file node information corresponding to the
transaction records of the file system may then be generated in RAM 35 using the
sorted records of block array 355 and transaction list table 385. To this end, a basic
record corresponding to the root directory of the file system may be first added to
temporary file 440. The information used to generate the root directory node in
temporary file 440 may be obtained from the record corresponding to the root

directory file stored in metafile 120.

[0063] A logical representation of one manner of arranging the file node
records in temporary file 440 is shown generally at 445 of Figure 10. In this
example, each file node record 450 includes a file node field 455 and a start field
460. The contents of the file node field 455 may be used to identify the file node to
which various transaction records 390 of the transaction list table 385 may be
linked. For the sake of simplicity, the contents of the file node field 455 may have
the same format as the file identifiers used to access the corresponding record
entries 125 of metafile 120. The contents of the start field 460 may be used to

identify the location of the first transaction record 390 in transaction list table 385
that corresponds to the file identified in the file node field 455. As such, each file
node record 450 identifies a file within the file system as well as the location of the

first transaction relating to the identified file.

[0064] At step 420, each of the sorted records 360 and 390 of the block array
355 and transaction list table 385 are traversed to determine whether or not the
temporary file 440 includes a file hode record 450 corresponding to the file
identifier stored in file identifier/idx field 410. If a file node record 450 with the
same file identifier as the transaction record 390 is not found in the temporary file

440 at step 425, a new file node record 450 may be created at step 430. Once a

13

10

15

20

25

30

CA 02818472 2013-05-31

file node record 450 corresponding to the transaction list record 390 exists in
temporary file 440, the transaction list record 390 may be linked into a list of
transactions for the file node record 450. In this example, the transaction list
record 390 may be linked into the list of transactions for the file node record 450 at
step 435 of Figure 8. The manner in which a transaction list record 390 may be
linked into the list of transactions for the file node may depend on whether the
transaction list record 390 may be the first transaction list record of the file node or
a subsequent transaction list record for the file node. If it is the first transaction list
record of the file node, the start field 460 of the file node record 450 may be
updated to identify the starting location of this first transaction list record 390. As
such, the contents of the start field 460 of the file node record 450 may be used to
point to a location in the transaction list table 385 that, in turn, contains extent
information for the first transaction applied to the file. The function of the file
identifier/idx field 410 changes when the transaction list record 390 may be to be
appended to existing transaction list records for the file node (i.e., when it is not
the first transaction list record for the file node). More particularly, the value and
the function of the field 410 may be changed so that it points to the last transaction
record 390 associated with the file node. This is illustrated in Figure 10, where the
start field 460 of file node record 450 points to the beginning of transaction list
record 390. The file identifier/idx field 410 of record 390, in turn, points to the
beginning of transaction list record 465, which contains the information on the
location of the second transaction for the file represented by the file node record
450. Similarly, the start field 460 of file node record 470 points to the beginning of
transaction list record 475. The file identifier/idx field 410 of transaction list record
475 points to the beginning of transaction list record 480, which contains the
information on the location of the second transaction for the file represented by the

file node record 470.

[0065] Once all of the transaction list records of the transaction list table 385
have been linked in the proper manner with the corresponding file node records,
the transaction list records for each file node are traversed at step 485 to remove

any transaction list records that reference uncommitted and/or bad file

15

10

15

20

25

30

CA 02818472 2013-05-31

transactions. Removal of such transaction list records may be accomplished in a
variety of different manners. For example, the file system software 47 may check
the status field of the last occurring transaction to determine whether or not it was
committed. If the transaction has been committed, the corresponding record in the
transaction list table 385 may be left undisturbed. If the transaction has not been
committed, however, the corresponding record in the transaction list table 385 may

be removed or otherwise ignored.

[0066] To expedite this type of transaction commitment checking, the file
system software 47 only needs to ensure that the last occurring transaction has
been committed. Commitment checking of all other records may be skipped since
only the last occurring transaction is impacted by a power failure, improper system
shutdown, or the like. By skipping commitment checking of all other records, the

time required for system startup may be substantially reduced.

[0067] Although it is shown as part of a linear sequence, step 485 may be
executed as each transaction list record may be processed for incorporation in the
corresponding file node. For example, file system software 47 may check the
status information included in the header of each transaction record to determine
whether the transaction has been committed. This check may occur as each
transaction record may be used to populate the corresponding transaction list
record. Once the file system software 47 finds a transaction that has not been

committed, no further processing of the transaction list table 385 in steps 420

through 485 of Figure 8 is necessary.

[0068] At step 490, entries are generated in extents pool 340 for each of the
file nodes. One manner in which this may be accomplished is shown in Figure 11.
In this example, the content of the start field 460 of each file node may be changed
so that it now operates as an extents index field 487. The extents index field 487
points to the first location in the extents pool 340 containing information on the
location of the transaction data for the first transaction for the file. Each extents
record 490 may include a number of clusters field 495, a start cluster field 500, and

a next extent field 505. The start cluster field 500 identifies the starting location in

20

10

15

20

25

30

CA 02818472 2013-05-31

device 270 where the first file transaction for the file corresponding to the file node
may be stored. The number of clusters field 495 identifies how many contiguous
clusters of device 270 are used to store the file transaction. The next extents field
505 identifies the extents index of the next extents record for the file represented
by the file node. In this example, extents index 487 points to extents record 510

while the next extents field 505 of extents record 510 points to extents record 515.

[0069] The data used to populate the records of the extents pool 340 may be
derived, at least in part, from the data stored in the transaction list table 385. In
the example shown here, the extents pool 340 may be a more compact form of the
transaction list table 385. To this end, file system software 47 may combine
transaction list records having contiguous data into a single extents record entry if
the transaction list records are part of the same file node. Similarly, there is no
further need to maintain the block array 355 in RAM 35. Therefore, block array 355
may be discarded from RAM 35.

[0070] The integrity of the transactions in the transaction file 220 may be
checked during the execution of the various steps used to generate extents pool
340. For example, integrity checking of the transaction records may be executed
during either steps 350 or 380 of Figure 8. Common data checks include CRC and
ECC techniques.

[0071] To decrease the startup time of the computer system 10, error
checking techniques may be limited to the information included in the header for
certain transactions. As transactions are found during the startup process shown in
Figure 8, the file system software 47 may identify whether the transaction impacts
file data or metadata, such as directory structure information in metafile 120. This
distinction may be based on the file identifier associated with the transaction.
Normally, metadata will be represented by file identifiers that are well-known and
hard coded into the file system software 47 (e.q., they will identify the metafile 120
as the file that is the subject of the transaction). Since only the metadata is

required to ensure that the files system is in a consistent state after startup, data

checking techniques on the data portion of the transaction are only performed when

21

10

15

20

25

30

CA 02818472 2013-05-31

the transaction relates to such metadata. If the transaction does not relate to a

change of the metadata, data checking techniques may be initially limited solely to

the checking of the header information. In the transaction record format shown in
Figure 6, the principal header information that must be verified on system startup
may be stored in the first spare area 300 of each transaction record 310. This
allows the file system software 47 to skip verification of the header information
included in the second spare area of each transaction record 310 thereby further
optimizing the startup sequence. As will be explained in further detail below, error
checking of the data portion of each transaction may be deferred until the time that
the corresponding file may be first accessed by the file system software 47 after

completion of the startup sequence.

[0072] Any startup verification of the transaction records may be further
optimized by limiting error checking solely to the first transaction header of a series
of sequential transactions. During startup scanning of the transaction file 220, when
a transaction header is found that indicates that a number of sequential transaction
records for the same file follow, verification of the headers of the trailing
transactions in the sequence may be skipped once the header for the first
transaction record of the sequence has been verified. Scanning and verification of
header information may then resume with the next block following the last of the

trailing transactions.

[0073] The next broad step in generating the reconstructed file system 330 in
RAM 35 may be the construction of the regenerated file hierarchy 335. In this
example, the regenerated file hierarchy 335 may be comprised of both file and
directory node records. An exemplary format for a directory node record is shown
generally at 520 of Figure 12 while a corresponding exemplary format for a file

node record is shown generally at 525 of Figure 13.

[0074] Directory node record 520 includes a number of different fields that
are used by the file system software 47. More particularly, directory node record
520 may include a sibling field 530, a file identifier field 535, a parent identifier field
540, a child field 545 and a directory named field 550. Similarly, file node record of

22

10

15

20

25

30

CA 02818472 2013-05-31

Figure 13 includes a number of different fields that are used by the file system
software 47. The file node record fields may include a sibling field 555, a file

identifier field 560, an extents index field 565 and a name sum field 570.

[0075] Since the data contained in the records of metafile 120 may be used in
the construction of the regenerated file hierarchy 335, the manner in which the
metafile records are arranged in the metafile 120 will have an impact on the system
startup performance. To this end, the records of metafile 120 are arranged in a
single metafile as contiguous records having the same length and are all stored in
the same storage media. This arrangement enhances the speed with which the file
system software 47 may access the metafile data and reduces the amount of

processing that is required for such access.

[0076] One sequence of steps that may be used to populate the fields for
each file node record 525 and directory node record 520 of the regenerated file
hierarchy 335 is shown in Figure 14. The illustrated sequence may be executed for
each record in metafile 120 and may start at step 575. At step 575, a file identifier
may be generated based on the offset of the first record entry within the metafile
120. A check of the regenerated file hierarchy 335 may be made at step 580 to
determine whether a file node record 525 or directory node record 520
corresponding to the file identifier is already present. If a corresponding record 520
or 525 is not present, a new record file may be created in the regenerated file

hierarchy 335. The format of the newly created record depends on whether the file
identifier corresponds to a file entry or directory entry in metafile 120. The file

system software 47 will make this determination and apply the proper record
format 520 or 525.

[0077] At step 585, the fields for the newly created record are populated
using the attributes for the file/directory that are found in the metafile 120. If the
newly created record corresponds to a directory node, the parent identifier field 540
and directory name field 550 are populated using the data in the parent file
identifier and short name fields of the corresponding record in metafile 120. If the

newly created record corresponds to a file node, the name sum field 570 may be

23

10

15

20

25

30

CA 02818472 2013-05-31

populated using data that is directly stored or derived from the file name data of
the corresponding record in metafile 120. The extents index field 565 may be
populated using the data found in the extents index field 487 of the corresponding

file node record 450 (see Figure 11).

[0078] If the newly created file corresponds to a directory node, a search
through the regenerated file hierarchy 335 may be undertaken at step 590 to
determine whether the parent node exists. If the parent node does not exist, a
directory record corresponding to the parent node may be added to the regenerated
file hierarchy 335.

[0079] At step 595, the newly generated file/directory record may be linked
into the tree structure for the parent directory node. If the child field 545 of the
newly generated file/directory record indicates that the parent directory has no
children, the value of the child field 545 of the parent directory record may be reset
to point to the newly generated file/directory record and the sibling field 555 or 530
of the newly generated file/directory record may be set to indicate that the newly
generated file/directory record does not have any siblings. If the child field 545 of
the parent node record indicates that the parent directory node has children, the
sibling field 565 or 530 of the newly generated file/directory record may be set to
point to the existing child of the parent directory and the child field 545 of the
parent directory may be set to point to the newly generated file/directory record. If
the newly generated file/directory record corresponds to a directory node, the

parent identifier field 540 of the newly generated directory record may be set to

point to the parent directory node.

[0080] At step 600, the file system software 47 recursively ascends the
parent nodes, beginning with the parent directory of the newly generated
file/directory record, and executes a series of processing steps until the root node is
reached. At this point, the parent directory node of the newly generated
file/directory record may be referred to as the current directory node. In the
exemplary process shown in Figure 14, the file system software 47 checks the

regenerated file hierarchy 335 to determine whether a directory node record

24

10

15

20

25

30

CA 02818472 2013-05-31

corresponding to the parent node of the current directory exists. This process may
be executed at steps 605 and 610. If such a directory record does not exist in the
regenerated file hierarchy 335, a new directory record may be generated at step
615. The child field 545 of the newly generated directory record may be then set to
point to the current directory node record as the only child of the new directory
record. At step 620, the parent identifier field 540 of the current directory node
record may be set to point to the newly generated directory record. The sibling
field 530 of the current directory node record may be set to indicate that there are

no siblings for the current directory node record at step 625.

[0081] If the check executed at steps 605 and 610 indicate that there is a
directory record in the regenerated file hierarchy 335 that corresponds to parent
node of the current directory, then the current directory node may be linked into
the generalized tree structure of the parent directory node at step 630. To this
end, the parent identifier field 540 of the current node may be set to point to the
location of the parent node record in the regenerated file hierarchy 335. The sibling
field 530 of the current directory node may be set to point to the same record as
pointed to by the child field 545 of the parent node record. Finally, the child field

545 of the parent directory node may be set to point to the location of the current

directory node.

[0082] At step 635, the file system software 47 checks to determine whether
the recursive directory processing is completed. In this example, the recursive
directory processing is completed when the processing a sends to the root node,
which has a unique and recognizable file identifier. If the root node has been
reached at step 635, processing of the next file record entry in metafile 120 may be
begun at step 640, which returns control of the processing back to step 575. If the

root node has not been reached at step 635, then processing of the next parent

node in the ascending file/directory hierarchy may be repeated beginning at step
605.

[0083] Figure 15 is a logical representation of the reconstructed file system

330 and corresponds to the application of the processing steps of Figures 8 and 14

25

10

15

20

25

30

CA 02818472 2013-05-31

to a file system having the file hierarchy shown in Figure 2. In this exemplary
representation, lines 665, 670, 675, and 680 represent pointers that correspond to
the content of the parent identifier fields 540 for the directory node records
representing directories 105, 100, 80 and 85, respectively. Lines 645, 650, 660,
655 and 652 represent pointers that correspond to the content of the child identifier
fields 545 for the directory node records representing directories 110, 100, 105, 80
and 85, respectively. Lines 685, 690, 695 and 705 represent pointers that
correspond to the content of the sibling identifier fields 530 for the directory node
records corresponding directories 100, 105 and 80, respectively. Lines 700, 705,
710 and 715 represent pointers that correspond to the content of the sibling
identifier fields 555 for the file node records corresponding to files 90, 55, 60 and

/0, respectively.

(0084] One manner of accessing data in the transaction file 220 of persistent
storage unit 30 using the reconstructed file system 330 is also illustrated in Figure
15. As shown, the file system software 47 provides a file identifier 730 for the file
node record that the software is to access. In this example, the file identifier 730
points to the file node record representing file 55. The file system software 47 then
uses the contents of the extents index 565 of the file node record as an index into
extents pool 340 to locate the data for the file in the transaction file 220. It will be
recognized, however, that the file system software 47 may use the contents of the
reconstructed file system 330 in a variety of different manners other than the one

illustrated in Figure 15.

[0085] As noted above, complete verification of the integrity of a file is not
performed during startup so that startup processing may be expedited. Instead,
the file system software 47 may defer complete verification of the file until the first
time that the file may be accessed. To this end, the file system software 47 may
maintain a table indicating whether or not the integrity of each file has been
completely verified. Alternatively, the file system software 47 may use one or more
bits of each file node record in the regenerated file hierarchy 335 to indicate
whether the integrity of the file has been completely verified. This indicator may be

checked by the file system software 47 at least the first time that a file may be

26

10

15

CA 02818472 2013-05-31

accessed after startup. If the indicator shows that the file has not been completely
verified, a complete verification of the file may be executed at that time.
Alternatively, since the headers of the transactions for the file have already been
checked, the file system software need only verify the integrity of the data portions
of each transaction for the file. The verification processes may include one or more

CRC processes, one or more ECC processes, and the like.

[0086] As shown in Figures 5, 6 and 7, a number of different fields in each of
the transaction record headers may be dedicated to verifying the integrity of the
entire transaction record. If the integrity checks fail and an application using the
relevant error-correcting codes cannot correct the error, then a program error may

be reported back to the application or system that made the request to access the

file contents.

[0087] While various embodiments of the invention have been described, it
will be apparent to those of ordinary skill in the art that many more embodiments
and implementations are possible within the scope of the invention. Accordingly,

the invention is not to be restricted except in light of the attached claims and their

equivalents.

27

CA 02818472 2015-03-05

Claims:

1. A computer-implemented method comprising:
providing a file system structure of files on a persistent data storage device;
maintaining a transaction file on the persistent data storage device;

including a plurality of transaction records in the transaction file with a
processor, each of the transaction records representing a file transaction that

affects at least one of the files stored on the persistent data storage device; and

generating a reconstructed file system in a random access memory with the
processor in a startup process from the transaction records and the file system
structure of the files, wherein generating the reconstructed file system comprises
glenerating a regenerated file hierarchy in the random access memory that includes
a file node record for each file affected by the file transactions represented by the
transaction records, wherein the file node record for each affected file identifies a
corresponding physical location in the persistent data storage device that includes a
transaction record representing at least one of the file transactions that affects a

file identified by the file node record; and

error checking a data portion of the transaction record representing the at
least one of the file transactions that affect the file identified by the file node
record, the transaction record comprising the data portion and a metadata portion,
wherein the transaction record is identified by the file node record and the data
portion is error checked when the file identified by the file node record is first

accessed after completion of the startup process.

2. The method of claim 1 wherein generating the reconstructed file system
further comprises generating a plurality of transaction list records in the random
access memory corresponding to the transaction records stored in the persistent
data storage device, each of the transaction list records identifying a physical
location in the persistent data storage device at which a corresponding one of the

transaction records is stored.
28

CA 02818472 2015-03-05

3. The method of claim 2 wherein generating the reconstructed file system
further comprises sorting the transaction list records in the random access memory

in an order in which the corresponding file transactions are to be applied to the

files.

4, The method of claim 3 wherein generating the reconstructed file system
further comprises linking the transaction list records together that are related to a

respective one of the affected files.

D. The method of claim 4 wherein error checking further comprises determining,
for each of the affected files, whether the last occurring file transaction for the
affected file was committed, and, in response to a determination that the last
occurring file transaction was committed, removing or ignoring the corresponding
transaction list record without checking whether the other file transactions related

to the affected file were committed.

6. The method of claim 1 wherein generating the reconstructed file system
further comprises generating a plurality of block records in the random access
memory from a scan of the transaction records, each one of the block records
identifying a corresponding device block of the persistent data storage device that

includes at least one of the transaction records.

/. The method of claim 6 wherein generating the reconstructed file system
further comprises generating, for each one of the block records, at least one
transaction list record in the random access memory for each transaction record
stored in the corresponding device block of the persistent data storage device, each
of the at least one transaction list record identifying a physical location within the
corresponding device block of the persistent data storage device at which each
transaction record is stored, the at least one transaction list record included in a

plurality of transaction list records.

8. The method of claim 7 wherein generating the regenerated file hierarchy
further comprises generating the file node record in the random access memory for

each file affected by the file transactions identified by the transaction list records,

29

CA 02818472 2015-03-05

each file node record identifying an affected file within the file system, each file
node record identifying a first of the transaction list records that relates to the
affected file, the file node record identifying the corresponding physical location in
the persistent data storage device that includes the transaction record
corresponding to the first of the transaction list records through inclusion of a

pointer in the file node record to the first of the transaction list records.

0. An apparatus comprising:

a persistent data storage device comprising a file system structure of files
and a transaction file on the persistent data storage device, the transaction file
comprising including a plurality of transaction records, each of the transaction
records representing a file transaction that affects at least one of the files stored on

the persistent data storage device;
a random access memory; and

a processor configured to generate a reconstructed file system in the random
access memory in a startup process from the transaction records and the file
system structure of the files, wherein the reconstructed file system in the random
access memory comprises a regenerated file hierarchy that includes a file node
record for each file affected by the file transactions represented in the transaction
records, wherein the file node record for each affected file identifies a
corresponding physical location in the persistent data storage device that includes a
transaction record representing at least one of the file transactions that affects a
file identified by the file node record, wherein the processor is further configured to
error check a data portion of the transaction record representing the at least one of
the file transactions affecting the file identified by the file node record, the
transaction record comprising a metadata portion and the data portion, wherein the
transaction record is identified by the file node record and the data portion is error
checked in response to a request to access the file identified by the file node record

after the startup process is completed.

30

CA 02818472 2015-03-05

10. A non-transitory machine readable medium having tangibly stored thereon
executable instructions that, when executed by a processor, cause the processor to

perform the method of any one of claims 1-8.
11. An apparatus, comprising:
a processor;

a memory coupled to the processor, the memory storing executable
instructions that, when executed by the processor, cause the processor, to perform

the method of any one of claims 1-8.

31

CA 02818472 2013-05-31

TEMPORARY
FILE
440

REGENERATED
FILE HIERARCHY
335

EXTENTS
POOL
340

METAFILE
120

PERSISTENT
STORAGE
30

TRANSACTION
FILE
220

330

OPERATING
SYSTEM CODE
43

FILE SYSTEM

SOFTWARE
47

PROCESSOR
15

Fig. 1

Ve

/O
40

USER
INTERFACE

45

CA 02818472 2013-05-31

0S

Z ‘b4 orr

. 1004

GOl n 001
31 AJ0103dI(

Ad01034Id

g8 3 06 08
Ad0L034IC0 J1id = Q15! AJO1034I(

GG
3114

=RE =BlE

CA 02818472 2013-05-31

o ———

g}

b AYINT

NOISNVaX3 w6l 0} AdLN3

5 AMINT Otl

Ghl
L AMIN3 aid
- GE1 9 AdLNS
JANVYN ONOT G AdLN3
cel F A LN
KN ¢ AdLN3
s Gl
¢ AdLN3
| Ovl
dld INIHYd | Adld INIHYd 19vY 13714
002 . GCl
Ald d3aN3LX3 Ald d3aN3LX3 100y
G0C Ll AYLINT L AHLIN3 <l

06 0zl S18Y.13714

CA 02818472 2013-05-31

¢I¢
/

Gl

¢ SNLVLS

\ 65

¢00d

LSC

1003

.v

262
1472

NS | NS
NOILOVSNYYL | ¥3LSNT0

|

V1v(Q

i

\ G9¢

Sd3LSNTo

Ge¢

\ 09¢

0E¢C

\ ave

J3aV3H

1) 74

CA 02818472 2013-05-31

G b

0.2
——— 082
08¢ 013 ‘5601 ‘L40T ‘€201
062 0018
O6¢ 1€ 3OV
(S31A991)
IHVdS
. ZM0078
(S3LAB Z1S) L 39Vd
V.1VQ | A0
760 ﬂ . 08
F (SILAG M9L)
0 M08

0 39vd 062 0 %0078 30IN3A HSY 14 08¢

CA 02818472 2013-05-31

310

315

300

1295

310
TRANSACTION: 2 LOGICAL PpOmm,VUl

LOGICAL PAGE LOGICAL PAGE ‘
290 290 290 290

DATA _ DATA | | DATA — DATA
| 295

9
300

315

DATA

DATA

TRANSACTION: 2 LOGICAL PAGES——»

SEQUENCE
FID

STATUS 1
CLUSTER HIGH

CLUSTER LOW
NUMBER OF CLUSTERS
TRANSACTION SUM

320

ECC 1

STATUS 2

ECC 2

CLUSTER SUM

,

DATA — DATA —

320

CA 02818472 2013-05-31

310 310
Vﬁpz@poﬂ_oz“ 2 LOGICAL PAGE —TRANSACTION: 2 LOGICAL PAGES—>
LOGICAL PAGE—»+—LOGICAL PAGE

290 200

.wa A’lantA!FY 315
_ DATA — DATA || DATA — DATA

295

300

STATUS 1 320
STATUS 2

NUMBER OF CLUSTERS
CLUSTER HIGH

SEQUENCE

FID FIg. 7

CLUSTER LOW
ECC 1

| TRANSACTION SUM
CLUSTER SUM
ECC 2

CA 02818472 2013-05-31

SCAN BLOCKS OF TRANSACTION FILE
TO FIND ALL TRANSACTION RECORDS
345

CREATE AN ARRAY OF BLOCK
RECORDS IDENTIFYING EACH DEVICE
BLOCK HAVING A TRANSACTION
RECORD
350

POPULATE A TRANSACTION LIST FOR
EACH ENTRY IN THE BLOCK RECORD
ARRAY
380

SORT THE BLOCK ARRAY BY
TRANSACTION IDENTIFIER VALUES
415

FOR EACH TRANSACTION IN EACH
BLOCK OF THE BLOCK RECORDS
ARRAY
420

S THERE A FILE NQD

CORRESPONDING TO THE
FID?
425

TRAVERSE EACH FILE NODE TO
REMOVE UNCOMMITTED
TRANSACTIONS
485

TRAVERSE EACH FILE NODE TO
GENERATE EXTENTS POOL
515 |

CREATE NEW FILE NODE FOR THE
FILE IDENTIFIER

430

- LINK TRANSACTION FILE RECORD
WITH EXISTING TRANSACTION FILE

RECORDS FOR THE FILE NODE
435

CA 02818472 2013-05-31

wmm
w_.oox%mi %\pz%ﬂ_oz:ﬂ;wrm »\
365 370 375 395 400 NUM 405 410

355 ﬁ
A | SEQUENCE BEG | NUM FIDCLUSTER | DEVCLUSTER CLUSTER JIDX(FID)
260 4-BYTES 2-BYTES/2-BYTES 3-BYTES 3-BYTES 2-BYTES,” 2-BYTES

ooy I R N e N R N R

NUM . .
BLOCKS _ X
Fig. 9 NUM

TRANSACTIONS

CA 02818472 2013-05-31

455 385
TRANSACTION LIST TABLE \l
405 410

445
e\ | 395 400 NUM
- ENODE FIDCLUSTER | DEVCLUSTER CLUSTER IDX(FID)| 309
380 3-BYTES 3-BYTES 2-BYTES ~ 2-BYTES
- I N R
e I S R
— I I N R
A75 . 410 |
so | FILENODE . |
— I N
s [
. 465 NUM
TRANSACTIONS

CA 02818472 2013-05-31

450

455

FILENODE

XTINTS

487

490

510

515

340
EXTENTS POOL \l

495 500 505
1.' FRER NEREC
NUM CLUSTERS | START CLUSTERS| NEXT XTNT
ll'

Fig. 11

WO N O

65535

CA 02818472 2013-05-31

520
DIRECTORY NODE /

SIBLING

@)
N

DIRECTORY NAME

99

Fig. 12

CA 02818472 2013-05-31

525
FILE NODE /

— -

SIBLING

599

e ———

FID

560

EXTENTS INDEX

05

p—

NAME SUM

570

Fig. 13

CA 02818472 2013-05-31

GENERATE AFILE
IDENTIFIER BASED ON
THE OFFSET OF THE FILE
ENTRY RECORD WITHIN
THE METAFILE
975

LOOK FOR AN EXISTING

FILE NODE OR DIRECTORY

NODE FOR THE FILE
IDENTIFIER IN THE
REGENERATED FILE
HIERARCHY, CREATING IF
[T DOES NOT EXIST
580

POPULATE THE
ATTRIBUTE INFORMATION
OF THE NODE RECORD
WITH THE
CORRESPONDING
INFORMATION FROM THE

METAFILE
585

LOOK FOR THE PARENT
NODE IN THE
REGENERATED FILE
HIERARCHY, CREATING
ONE IF IT DOES NOT EXIST
590

LINK THE FILE/DIRECTORY
NODE RECORD INTO THE
TREE STRUCTURE FOR
THE PARENT DIRECTORY
595

NO

RECURSIVELY ASCEND
THE PARENT NODES,
PERFORMING THE
FOLLOWING STEPS Al
EACH DIRECTORY NODE
600

LOOK IN THE
REGENERATED FILE
HIERARCHY FOR A
DIRECTORY ENTRY FOR
THE PARENT OF THE
CURRENT DIRECTORY
605

DOES THE
DIRECTORY ENTRY
EXIST?
610

YES

LINK THE CURRENT
DIRECTORY NODE INTO

THE GENERALIZED TREE

STRUCTURE FOR THE
PARENT DIRECTORY
NODE
630

THE “ROOT" NODE?

YES

NEXT RECORD OF
METAFILE

640

CREATE A NEW
DIRECTORY ENTRY,
POINTING TO THE
CURRENT DIRECTORY
ENTRY AS THE ONLY
CHILD OF THE NEW
DIRECTORY ENTRY
615

SET THE CURRENT
DIRECTORY ENTRY'S

| PARENT AS THE NEWLY

CREATED DIRECTORY

ENTRY
620

SET ENTRY'S SIBLING TO
‘EMPTY"

625

Fig. 14

CA 02818472 2013-05-31

0¢¢

3114 NOILOVSNVHL

0L/ . GO/
Gl 0/ a9 09 Gg
3714 =y[E =§iE 3714 3714
GL/ _ GGO
€S9 00/ G69 G/9
a8 g6 06 08
AYOLOINI 3714 3714 AMOLOFMIa |]
. 089 L .
| 689 059
093 —
. Gl G0l 001
Gl b1 . _ 3714 AYOLOINIC AYOLOINIA
069 .
GY9 —
049
0ll
100¥

599

SCAN BLOCKS OF TRANSACTION FILE
TO FIND ALL TRANSACTION RECORDS

345

:

CREATE AN ARRAY OF BLOCK
RECORDS IDENTIFYING EACH DEVICE
BLOCK HAVING A TRANSACTION
RECORD
350

POPULATE A TRANSACTION LIST FOR
EACH ENTRY IN THE BLOCK RECORD
ARRAY
380

v

!

SORT THE BLOCK ARRAY BY
RANSACTION IDENTIFIER VALUES
415

- '

FOR EACH TRANSACTION IN EACH
BLOCK OF THE BLOCK RECORDS
ARRAY

420 |

S THERE A FILE NOD
CORRESPONDING TO THE
FiD?
425

TRAVERSE EACH FILE NODE TO
REMOVE UNCOMMITTED
TRANSACTIONS
485

_

TRAVERSE EACH FILE NGDE TO
GENERATE EXTENTS POOL
518

CREATE NEW FiLE NODE FOR THE
FILE iDENTIFIER

430

LINK TRANSACTION FILE RECORD
WITH EXISTING TRANSACTION FILE
RECORDS FOR THE FILE NODE
439

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

