
(19) United States
US 2010.0153714A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0153714 A1
Ramzan et al. (43) Pub. Date: Jun. 17, 2010

(54) USE OF MODULAR ROOTS TO PERFORM
AUTHENTICATION INCLUDING, BUT NOT
LIMITED TO, AUTHENTICATION OF
VALIDITY OF DIGITAL CERTIFICATES

(76) Inventors: Zulfikar Amin Ramzan, San
Mateo, CA (US); Craig B. Gentry,
Mountain View, CA (US);
Bernhard Bruhn, Stuttgart (DE)

Correspondence Address:
HAYNES AND BOONE, LLP
IP Section
2323 Victory Avenue, Suite 700
Dallas, TX 75219 (US)

(21) Appl. No.: 12/712,923

(22) Filed: Feb. 25, 2010

Related U.S. Application Data

(60) Continuation of application No. 1 1/454.394, filed on
Jun. 16, 2006, which is a division of application No.
11/304200, filed on Dec. 15, 2005, now Pat. No.
7,266,692.

(60) Provisional application No. 60/637,177, filed on Dec.
17, 2004.

Publication Classification

(51) Int. Cl.
H04L 9/32 (2006.01)
H04L 29/06 (2006.01)

(52) U.S. Cl. ... 713/158; 726/4
(57) ABSTRACT

Authentication of elements (e.g. digital certificates 140) as
possessing a pre-specified property (e.g. being valid) or not
possessing the property is performed by (1) assigning a dis
tinct integer p, to each element, and (2) accumulating the
elements possessing the property or the elements not possess
ing the property using a P-th root u' (mod n) of an integeru
modulo a predefined composite integer n, where P is the
product of the integers associated with the accumulated ele
ments. Alternatively, authentication is performed without
Such accumulators but using witnesses associated with Such
accumulators. The witnesses are used to derive encryption
and/or decryption keys for encrypting the data evidencing
possession of the property for multiple periods of time. The
encrypted data are distributed in advance. For each period of
time, decryption keys are released which are associated with
that period and with the elements to be authenticated in that
period of time. Authentication can be performed by accumu
lating elements into data which are a function of each element
but whose size does not depend on the number of elements,
and transmitting the accumulator data over a network to a
computer system which de-accumulates some elements as
needed to re-transmit only data associated with elements
needed by other computer systems. This technique is suitable
to facilitate distribution of accumulator data in networks such
as ad hoc networks.

RE-VALIDATION BY CA

CA 120

P
(mod n), list of valid pi

Patent Application Publication Jun. 17, 2010 Sheet 1 of 5 US 2010/O153714 A1

(SN

User Name

)

SSue Date
(D1)

Email 104D
Validity Address
Status

16OVS ("valid",
"revoked" or
"unknown") Expiration

Date (D2)
CA's CA's

Signature Signature N104-Sigca
160-SigcA

U2

FIG. 1
PRIOR ART

Patent Application Publication

Directory
210

C. Or No

CA's
Signature 104-SigcA

RE-VALIDATION BY CA

Jun. 17, 2010 Sheet 2 of 5 US 2010/O153714 A1

s CA's

* Signature 104-SigCA

FIG. 2
PRIOR ART

INITIAL CERTIFICATION 410
Generate public p, m;

420

Generate secret s = m/P (mod n) l, Jo

430

Transmit Sii to user

FIG. 4
FIG. 5

1/P v, -(hy/hi-)' (mod n), list of validp.
- N

Patent Application Publication Jun. 17, 2010 Sheet 3 of 5 US 2010/O153714 A1

WITNESS DERVATION BYUSER AUTHENTICATION (VERIFICATION)
710

s", = m,h/h, (mod n) lio

910 920

Transmit ACCumulator Report Group

Patent Application Publication Jun. 17, 2010 Sheet 4 of 5 US 2010/O153714 A1

110 D

msearcgGH: GHO, GH1, path (D)

-1 N.
GHO 110.0 110.1 GH1

mbuildG: GHO mbuildG: GH1

msearcgGH: GH0, GH1, "I St. msearcgGH, GH0, GH1,
path (D, 110.01) W I path (D, 110.11)

mbuildG: GH0 mbuildG: GH1 mbuildG: GH

FIG. 10

INITIAL CERTIFICATION
1110

Generate public pi mi

Generate secret sit = y, Pi (mod n) so Jo

Transmit sift to user

FIG. 11

1120

ti - m Pi (mod n)

1130

Patent Application Publication Jun. 17, 2010 Sheet 5 of 5 US 2010/O153714 A1

RE-VALIDATIONBY CA

vi, list of newly-revoked p, (RR)

- N

FIG. 12

WITNESS DERVATION BYUSER

FIG. 13

AUTHENTICATION (VERIFICATION)
1410

w = mv (mod n)

FIG. 14

US 2010/0153714 A1

USE OF MODULAR ROOTS TO PERFORM
AUTHENTICATION INCLUDING, BUT NOT

LIMITED TO, AUTHENTICATION OF
VALIDITY OF DIGITAL CERTIFICATES

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application is a continuation of U.S.
patent application Ser. No. 1 1/454.394, filed Jun. 16, 2006,
incorporated herein by reference, which is a division of U.S.
patent application Ser. No. 1 1/304.200 filed on Dec. 15, 2005,
incorporated herein by reference, which claims priority under
35 U.S.C. S 119(e) to provisional U.S. patent application No.
60/637,177 filed Dec. 17, 2004, incorporated herein by ref.
CCC.

BACKGROUND OF THE INVENTION

0002 The present invention relates to performing authen
tication as to whether or not an element possesses a pre
specified property. An example is authenticating validity of a
digital revocation in a public key infrastructure, or authenti
cating validity of an entitlement to use a resource (e.g. to sign
onto a World WideWeb site).
0003 FIG. 1 illustrates digital certificate validation and
revocation in a public key infrastructure. Digital certificates
104 are used in public key infrastructures (PKI) to facilitate
secure use and management of public keys in a networked
computer environment. Users U1, U2, ... utilize their com
puter systems 110.1, 110.2. . . . to generate respective key
pairs (PK, SK) where PK is the public key and SK is the secret
key. FIG. 1 shows a key pair (PK, SK) for user U1. The
users register their public keys PK, over a network, with a
certification authority (CA) 120. Alternatively, the key pairs
can be generated by CA 120 and sent to the users. CA 120 is
a secure, trusted computer system. For each public key PK,
CA 120 generates a digital certificate 104. Certificate 104
contains the public key PK and the user's name and/or email
address or addresses, may also contain the certificate's serial
number SN (generated by the CA to simplify the certificate
management), the certificate issue date D1, the expiration
date D2, an identification of algorithms to be used with the
public and secret keys, an identification of the CA120, and
possibly other data. The data mentioned above is shown at
104D. Certificate 104 also contains CA's signature 104-Sig
on the data 104D. The signature is generated using CAs
secret key SK. CA 120 sends the certificate 104 to the
user's (key owner's) computer system 110. Either the owner
or the CA120 can distribute the certificate to other parties to
inform them of the user's public key PK. Such parties can
verify the CA's signature 104-Sig with the CA's public key
PK to ascertain that the certificate's public key PK does
indeed belong to the person whose name and email address
are provided in the certificate.
0004. A certificate may have to be revoked prior to its
expiration date D2. For example, the certificate owner Umay
change his affiliation or position, or the owner's private key
SK, may be compromised. Other parties must be prevented
from using the owner's public key if the certificate is revoked.
0005 One approach to prevent the use of public keys of
revoked certificates is through a certificate revocation list
(CRL). ACRL is a signed and time-stamped list issued by CA
120 and specifying the revoked certificates by their serial
numbers SN. These CRLs must be distributed periodically

Jun. 17, 2010

even if there are no new revoked certificates in order to pre
vent any type of replay attack. The CRL management may be
unwieldy with respect to communication, search, and Verifi
cation costs. The CRL approach can be optimized using so
called delta-CRLs, with the CA transmitting only the list of
certificates that have been revoked in the previous time period
(rather than for all time periods). The delta-CRL technique
still has the disadvantage that the computational complexity
of verifying that a certificate is currently valid is basically
proportional to the number of time periods, since the verifier
must confirm that the certificate is not in any of the delta
CRLS.

0006 Certificate revocation trees (CRTs) can be used
instead of CRLs as described in 15 (the bracketed numbers
indicate references listed at the end before the claims).
0007 Instead of CRLs and CRTs, CA 120 could answer
queries about specific certificates. In FIG. 1, user U2 issues a
query 150 with the serial number SN of certificate 104 of user
U1. CA 120 responds with a validity status information 160
containing the serial number SN, a validity status field 160VS
(“valid, “revoked' or “unknown), and a time stamp “Time'.
The response is signed by CA (field 160-Sig). This
approach is used for Online Certificate Status Protocol
(OCSP). See 23. Disadvantageously, the CA's digital signa
ture 160-Sig can be quite long (over 1024 bits with RSA),
especially since the CA must be very secure. In addition, if
CA 120 is centralized, the CA becomes a validation bottle
neck. If CA 120 is decentralized (replicated), the security is
weakened as the CA's signing key SK is replicated.
0008 FIG. 2 illustrates a “NOVOMODO approach,
which allows CA 120 to provide an unsigned validity status
through untrusted directories 210 at pre-specified time inter
vals (e.g. every day, or every hour, etc.). Directories 210 are
computer systems that do not store secret information. The
system works as follows.
0009 Letfbe a predefined public length-preserving func
tion

10010 f: {0,1}"->0,1"
where {0,1}" is the set of all binary strings of a length n. Let
f denote the f-fold composition; that is, f(x)=x for i=0, and
f(x)=f(f(x)) for i>0. Letfbe one-way, i.e. given f(x) where
X is randomly chosen, it is hard (infeasible) to find a pre
image Z such that f(z)=f(x), except with negligible probabil
ity. “Infeasible” means that given a security parameterk (e.g.
kn), the pre-image Z cannot be computed in a time equal to
a predefined polynomial ink except with negligible probabil
ity. Let us assume moreover that f is one-way on its iterates,
i.e. for any i, given y=f(x), it is infeasible to find Z such that
f(z)=y.
0011 We can assume, without loss of generality, that CA

is required to provide a fresh validity status every day, and the
certificates are valid for one year, i.e. 365 days (D2-D1-365
days). To create a certificate 104 (FIG. 2), CA 120 picks a
random 'seed number X and generates a "hash chain co, c.
... c.36s wherein:

We will sometimes denote x as x(SN) for a certificate with a
serial number SN, and similarly cc.(SN) where i=0, 1,....
The value cois called a “validation target'. CA 120 inserts Co
into the certificate 104 together with data 104.D (FIG. 1). CA
120 also generates a random revocation seed number No.
computes the “revocation target N=f(No), and inserts N
into certificate 104. CA 120 keeps all c, secret for i>0. The

US 2010/0153714 A1

values X and No are also secret. Clearly, all c, can all be
computed from X, and the validation target co can be com
puted from any c, CA 120 stores in its private storage the
values x and No for each certificate 104, and possibly (but not
necessarily) caches the c, values.
0012 Every day i (i=1,2,... 365), a certificate re-valida
tion is performed for the valid certificates as follows. For each
certificate 104, CA distributes to directories 210 a validation
data structure which includes, in addition to a validity status
indication (not shown in FIG.2, can be “valid’ or “revoked):
0013 1. the certificate’s “i-token” c, if the certificate is
valid on day i;

0014 2. the revocation seed No if the certificate has been
revoked.

(We will call c, a “validity proof, and No a “revocation
proof.) This information is distributed unsigned. Each direc
tory 210 provides this information, unsigned, to a requester
system 110 in response to a validity status request 150 (FIG.
1). To verify, the requester (verifier) 110 performs the follow
ing operations:
0015 1. If the validity status is “valid', the verifier 110
checks that f(c.) co

0016. 2. If the validity status is “revoked, the verifier 110
checks that f(N)=N. Despite the validity information
being unsigned, the scheme is secure because given c., it is
infeasible to compute the Subsequent tokens c. c. 2, . . .

0017. To reduce the communication between CA120 and
directories 210, a hash chain (1) can be generated for a set of
certificates 104, and a single i-token c, can be distributed for
the set if the set is “unrevoked' (i.e. all the certificates are
unrevoked in the set). The certificate 140 will contain a sepa
rate target co for each set containing the certificate and asso
ciated with a hash chain (see 1).
0018 Certificate revocation can also be performed using
accumulators. See 37. An accumulator is a way to combine
a set of values (e.g. a set of valid certificates) into a shorter
value. A formal definition of a “secure” accumulator is given
in Appendix A at the end of this disclosure before the claims.
An accumulator example can be constructed as follows. Let
us denote all possible values that can be accumulated as p, .
... p. (For example, each p, can be a unique number assigned
to a certificate, and we want to accumulate the values corre
sponding to the valid certificates.) Suppose Vo is the accumu
lator value for the empty set. Let f be a one-way function. To
accumulate p, we compute the accumulator as follows:

Now to accumulate p, we set the accumulator to be v f(v.
pa), and so on. More generally, the accumulator value for
Some set {p, Pit.

v(p; pl.) f(f(. . . f(vo, pi) . . .), pi) (3)
The function f can be chosen such that the accumulation
order does not matter, i.e.

f(f(1, p.), p.)-f(f(v, p.), p.) (4)

(this is the “quasi-commutative' property).
0019. In each period, CA 120 can send to the directories
210 a pair (v, t) where V, is the accumulator value for the set
of the valid certificates, and t is a time stamp. The directories
can respond to queries 150 with some proof that the accumu
lator value V, accumulates the value p, corresponding to the
certificate of interest.

Jun. 17, 2010

0020. A common accumulator is an RSA accumulator
defined as follows:

f(; p)=v mod in (5)

where p is a positive integer, and n=qq is the product of large
prime numbers q and q. In this case,

v(p, . . .
0021. The certificate validation is performed as follows.
Without loss of generality, suppose that the values p, ..., p.
correspond to the valid certificates in a period j. Then the
accumulator value distributed by CA120 to directories 210 is

,p})=vil: P. mod n (6)

v=yof P. modin (7)

If a verifier 110 inquires a directory 210 of the status of a
certificate corresponding to the value p, which is one of p, ..
., p, the directory sends to the verifier the accumulator value
V, and a “witness” value

s=vo ..ai-lail. . . an modin (8)

The verifier checks that

s, p=y, mod n (9)

If this equality holds, the certificate is assumed to be valid.
(0022. The witness s, , is hard to forge provided that it is
hard to compute the p-th root of V. The p-th root computa
tion is hard if the adversary does not know the factorization of
in and the strong RSA assumption is valid (this assumption is
defined in Appendix A). However, it is possible to keep p, and
S., secret. For example, instead of providing the values s, ,
and p, to the verifier, the verifier can be provided with a proof
that Such values exist and are known to the certificate owner.
0023. Accumulators can be used more generally to prove
that an element satisfies some pre-specified property.

SUMMARY

0024. This section summarizes some features of the inven
tion. Other features are described elsewhere in this disclosure.
The invention is defined by the appended claims.
0025. In some embodiments of the present invention,
accumulators are constructed using modular roots with expo
nents corresponding to the accumulated values. For example,
Suppose we need an accumulator to accumulate all the ele
ments that possess Some property (e.g. all the valid certifi
cates) or all the elements that do not possess that property
(e.g. all the revoked certificates). We will associate each ele
ment with an integer greater than 1. Let PP {p,...,p} be
the set of integers associated with the elements to be accu
mulated (as in (7)), and denote the product of these integers as

(10)

(By definition herein, the product of the empty set of numbers
is 1: i.e. P-1 if PP is empty.) In some embodiments, the
accumulator value represents the P-th root of some value u,
C.2.

=u' modn (11)
In some embodiments, the following advantages are
achieved.

US 2010/0153714 A1

0026. Suppose the value (11) accumulates valid digital
certificates. The value (11) can be modified by exponentiation
to de-accumulate all the values p, except for Some given value
p, i.e. to compute

pl. . . Pi-LPi+1 . . . Pm = 1. Fi (12)

This exponentiation can be performed by a directory 210 or
by the certificate owner's system 110, without knowledge of
factorization of the modulus n. The value (12) is the accumu
lator value as if p, were the only accumulated value. The
witness value needed for verification can also be computed as
if p, were the only accumulated value. The verification (the
authentication) can be performed using the values that do not
depend on accumulated values other than p. Alternatively, the
verification can be performed with the accumulator and wit
ness values that incorporate some other accumulated values
but not necessarily all the accumulated values. Therefore, if a
directory 210 or a user 110 are responsible for providing
validity proofs for less than all of the certificates, the directory
210 or the user 110 (the “validity prover) can use an accu
mulator that accumulates less than all of the valid certificates.
In some embodiments, this feature reduces the number of
computations needed to be performed by all of the provers.
0027. In some embodiments, the value u-u() can depend
on the time period for which the authentication is provided
(unlike the value Vo in (7)). Therefore, the time stamp t can be
omitted.
0028. In some embodiments, the accumulator accumu
lates the revoked certificates rather than the valid certificates.
In some embodiments, the witness values for an integer p,
depend on other p values.
0029. In some embodiments, the witness values are used
as encryption keys for encrypting validity proofs. The validity
proofs can be constructed using a non-accumulator based
validation system, e.g. as in FIG. 2. For example, let c.(i)
denote the token c, for the period j for a certificate 140i,
where c, is formed as in (1). At the set-up time, when a user
system 110 joins the certificate validation system, the CA
generates the tokens c,(i) for all the periods j for the user. The
CA also generates the witness values for all the periodsj. The
CA encrypts each token c.(i) under a key equal to (or obtained
from) the witness value for the period j, under a symmetric
encryption system. CA120 transmits all the encrypted values
to the user.
0030. In each period, if the certificate 140.i is still valid,
CA 120 transmits the decryption key (the witness value) for
the period to the user, enabling the user to recover the token
c.(i). The user provides the token to the verifiers to proof the
certificate validity as described above in connection with FIG.
2.
0031. Some embodiments of the invention are suitable for
limited bandwidth or low reliability networks, for example in
adhoc networks, where the nodes 110 may have low compu
tational and transmission power, and where the nodes may
have only incomplete information about the topology of the
network. (An ad hoc network is a self-configuring wireless
network of mobile routers.)
0032 Some embodiments are communication and storage

efficient.
0033. The invention is not limited to the features and
advantages described above. Other features are described
below. The invention is defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0034 FIGS. 1, 2 are block diagrams illustrating prior art
certificate revocation schemes.

Jun. 17, 2010

0035 FIG. 3 illustrates a digital certificate according to
Some embodiments of the present invention.
0036 FIG. 4 is a flowchart of operations performed by a
certification authority (CA) in initial certification according
to some embodiments of the present invention.
0037 FIG. 5 is a block diagram illustrating certificate
re-validation operations performed by a CA according to
Some embodiments of the present invention.
0038 FIG. 6 is a flowchart of witness derivation opera
tions according to some embodiments of the present inven
tion.
0039 FIG. 7 is a flowchart of authentication according to
Some embodiments of the present invention.
0040 FIG. 8 is a block diagram showing data transmitted
over networks in de-accumulation operations according to
Some embodiments of the present invention.
0041 FIG. 9 is a state diagram illustrating accumulator
transmissions according to Some embodiments of the present
invention.
0042 FIG. 10 is a block diagram showing data transmis
sions in determining the network paths according to some
embodiments of the present invention.
0043 FIG. 11 is a flowchart of operations performed by a
certification authority (CA) in initial certification according
to some embodiments of the present invention.
0044 FIG. 12 is a block diagram illustrating certificate
re-validation operations performed by a CA according to
Some embodiments of the present invention.
0045 FIG. 13 is a flowchart of witness derivation opera
tions according to some embodiments of the present inven
tion.
0046 FIG. 14 is a flowchart of authentication according to
Some embodiments of the present invention.

DESCRIPTION OF PREFERRED
EMBODIMENTS

0047. The embodiments described in this section illustrate
but do not limit the invention. The invention is defined by the
appended claims.
0048. In the following description, numerous details are
set forth. However, the present invention may be practiced
without these details. Some portions of the detailed descrip
tions that follow are presented in terms of algorithms and
symbolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep
resentations are the means used by those skilled in the data
processing arts to most effectively convey the Substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
steps leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec
trical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of com
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.
0049. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing or “computing or "calculating or “deter

US 2010/0153714 A1

mining or “displaying or the like, refer to the action and
processes of a computer system, or some computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers
and other storage into other data similarly represented as
physical quantities within the computer system storage,
transmission or display devices.
0050. The present invention also relates to apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, Such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran
dom access memories (RAMs), EPROMs, EEPROMs, mag
netic or optical cards, or any type of media Suitable for storing
electronic instructions, and each coupled to a computer sys
tem.

0051. Some of the algorithms presented herein are not
inherently related to any particular computer or other appa
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required operations. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. A
machine-readable medium includes any mechanism for Stor
ing or transmitting information in a form readable by a
machine (e.g., a computer). For example, a machine-readable
medium includes read only memory (“ROM); random
access memory (RAM); magnetic disk storage media; opti
cal storage media; flash memory devices; electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.); etc.

Preliminaries

0052 Model And Notation.
0053. In our model, we have a certification authority CA,
a certificate owner or holder Owner, and a certificate verifier
VV. Here Owner has a certificate issued by CA. The concept
of a certification authority may apply more generally to any
authority responsible for issuing access control privileges or
authorizations to a plurality of individuals. The concept of an
owner may be tied to a specific human being or organization
operating a computer or to the computer itself, e.g. a world
wide web server. Similarly, the verifier may be tied to a
specific human being or organization operating a computer or
to the computer itself, e.g. an access control server determin
ing if it should permit access to certain services.
0054. In a given transaction, VV wishes to ascertain that
the certificate has not been revoked prior to its expiration date.
To do so, VV must obtain a proof of validity or a proof of
revocation that is or has been issued by the certification
authority CA. VV may obtain this proof either from the CA
directly, or through some other distribution mechanism.
0055 We let {0,1}* denote the set of all bit strings. For a
bit strings, we denote its length by Is. We let H denote a
cryptographic compression function that takes as inputab-bit
payload as well as a V-bit initialization vector or IV, and
produces a V-bit output. We assume be2v, which holds for all
well-known constructions in use. For the constructions we

Jun. 17, 2010

describe here, we typically take b-2V. We assume these cryp
tographic compression functions are collision resistant; that
is, finding two distinct inputs mizm. Such that H (IV, m)-H
(IV, m) is difficult. We assume that the IV is fixed and
publicly known. For notational simplicity, we will not always
explicitly list IV as an argument in the hash function. A
practical example of such a cryptographic compression func
tion is SHA-126. SHA-1’s compression function has an
output and IV size of 20-bytes and a 64-byte payload size. In
many embodiments, we will not need to operate on data larger
than the compression function payload size; however there
are numerous standard techniques such as iterated hashing or
Merkle-trees 19 for doing so. For simplicity, we will use the
term hash function instead of compression function, where it
is understood that a hash function can take arbitrary length
strings {0,1}* and produce a fixed length output in {0,1}''.
0056. In practice, one often constructs a length preserving
function that is one way on its iterates by starting with a hash
function H and padding part of the payload to make it length
preserving.
0057 Finally, for a real number r, we set r to be the
ceiling of r, that is, the Smallest integer value greater than or
equal to r. Similarly, r denotes the floor of r, that is, the
largest integer value less than or equal to r.
0.058 Let Abe an algorithm. By A() we denote that A has
one input. By A(,) we denote that A has several inputs).
By A we will denote that A is an indexed family of algo
rithms. ye-A(X) denotes thaty was obtained by running A on
input X. In case A is deterministic, then this y is unique; if A
is probabilistic, theny is a random variable. If S is a set, then
ye-S denotes thaty was chosen from Suniformly at random.
Let b be a boolean function. The notation (ye-A(x):b(y))
denotes the event that b(y) is true after y was generated by
running A on input X. Finally, the expression

denotes the probability that b(x) is TRUE after the value x,
was obtained by running algorithms A. . . . A on inputsy,

y,

Accumulation of Valid Certificates

0059. Some accumulator schemes will now be described
with respect to the digital certificate validation. These
schemes can also be used for other authentication operations
as described above.
0060. To simplify the description, we will assume that
each certificate owner Ui operates just one system 110.i and
owns at most one certificate. This is not in fact necessary.
0061 CA Set-Up.
0062. The CA 120 generates a composite modulus n. In
Some embodiments, n is the product of two primes, but in can
also be the product of three or more primes. In some embodi
ments, n is public, but n is hard to factor, and the factorization
is known only to the CA120.
0063. Initial Certification (FIG. 4):
0064 Suppose the i-th useru, joins the system in or after
Some time periodjo. At step 410, the CA assigns a positive
integer p, to u. The numbers p, are chosen to be mutually
prime with the modulus n. Also, each p, does not divide the
LCM (lowest common multiple) of the remaining numbers p,
1zi. For example, the numbers p, ..., p, can be distinct prime
numbers, or pairwise relatively prime.
0065. The CA computes a unique public value me(Z/
nZ) for the user u?. (Z/nZ is the ring of all residue classes

US 2010/0153714 A1

modulo n, and (Z/nZ)* is the multiplicative group of the
invertible elements of Z/nZ, i.e. of the elements defined by
integers mutually prime with n.) In some embodiments,

where H is a predefined function, e.g. a one-way collision
resistant function, u, is the user identification (e.g. user name),
and w, is an optional string (which may containu,’s public key
and/or some other information). The value m, thus binds p, to
us identity. If desired, any one or more of the values, p, m,
and the identification of the function H can be made part of
the certificate 140. See FIG. 3 showing a certificate 140
containing mi, and specifying the functions H and H. (H.
is described below).
0066. At step 420, the CA computes an “initial certificate'
value

Sim; lipi (mod n) (14)

The CA keeps this value secret, and transmits it to the useru,’s
system 110 in an encrypted form.
0067. Certificate Re-Validation by CA in Time Periodj
(FIG. 5):
0068. At the start of, or shortly before, the period, the CA
performs the following operations. Lett denote the total num
ber of users in the system (i.e. the total number of users for
whom the initial certification of FIG. 4 has been performed).
Let UU denote the set of these users: UU={u,...., u}. PP
denotes the set of the corresponding p numbers: PP={p, ...
, p}. Let UUC UU be the subset of users that are to be
re-validated in periodj. Let PPC PP be the corresponding set
of numbers p, and let

P=ate PPF (15)

i.e., P, is the product of the integers in PP. (By definition, the
product of the empty set of numbers is 1.) The CA computes

where H is the same as H or some other function. The CA
also computes the accumulator

Of note, in some embodiments, the root in (17) exists with a
very high probability.
0069. The CA transmits the following data to the system
110 of each user in UU (this data can also be broadcast to a
larger set of users if Such broadcast transmission is more
efficient in terms of communication):
10070) 1. v.
(0071) 2. the list of users in UU which may be just the list
of numbers p, in PP. (Since there can be overlap among
these lists for different periods j, the CA can simply trans
mit the information that has changed since the previous
period; in this case, the CA transmits the list of numbers in
PP, to each new user at step 430 of FIG. 4.)

0072 Personal Accumulator and Witness Derivation by
Users (FIG. 6):
(0073. At step 610, each useru, in UU, computes its “per
sonal accumulator” V,(p.), i.e. the accumulator which accu
mulates only the user's p, value:

v, p.)=(h/h)' (mod n) (18)

Jun. 17, 2010

This value is computed from the v, value (17) by exponentia
tion:

I (19)

At step 620, the user aggregates this personal accumulator
with previous personal accumulators to obtain a witness for
the periodj:

sis, v, p.) S-1 (h/h,)' (mod n) (20)
The equations (20) and (14) imply that

sis, (h/h)' (mod n) (21)
(0074. User Authentication (FIG. 7):
(0075) A useru, can provides, to the verifier, along with (if
necessary) the values for (u, p, jo, w). At Step 710, the
verifier:
0076 1. computes m, from (13) or obtains it from the
certificate 140 (FIG. 3):

10077 2. computes hi-H.G) and h, H.G.) (see (16); and
0078. 3. confirms that

s, f=m,h/h (mod n) (22)
0079 Alternative User Authentication:
0080. Instead of giving the witness s, , to the verifier, the
user can use s, , as a private key in an identity-based GQ
(Guillou-Quisquater) signature scheme. This scheme is
described in Appendix B at the end of this disclosure before
the claims. The CA performs the functions of GQ's PKG
(private key generator); GQ's parameters are set as follows:
B-S, V p, and J=m, mod n. The authentication proceeds
as follows:
I0081. The verifier sends to the user a random message m.
I0082. The user generates a random number r and com
putes:

where H is some predefined public function (e.g. Hor H).
The user sends the values m, r, and D to the verifier.
I0083. The verifier computes J-m, mod n and checks that
the following equations hold:

I0084. This scheme may reduce total bandwidth because
the verifier does not need the certificate 140. Note: for the GQ
signature scheme to be secure, it is desirable that each
p >2 60.
0085 Remarks.
I0086) 1. First, scan be computed in some other way, not
necessarily as in (14).
I0087 2. Anonymous Authentication.
I0088. If we want to allow the user nodes 110 to sign
messages anonymously—i.e., to be able to authenticate them
selves as users that have been certified by the CA, but without
revealing their actual identities—we can handle initial certi
fication differently. For example, instead of (13), the CA can
set m, to be independent of the user's identity, e.g.:

The m, value is then provided to the user. To hide the fact that
the m, value is provided to the user, the m, value may be

US 2010/0153714 A1

transmitted to the user via a secure channel (e.g., by encrypt
ing this value Such that only u, can decrypt it). Then, it follows
from (14) and (21) that:

s=h, "Pi (mod n) (26)

0089. As mentioned below in Appendix A, there are effi
cient Zero-knowledge (ZK) proofs through which useru, can
prove, in the j" time period, that it knows a p" root of h,
modulo n for Some (unrevealed) numberp that is contained in
a specified interval I of integers, i.e.

See 41, 42. The interval I can be an interval containing all
the numbers p,. Using this scheme, the user can authenticate
itself anonymously if and only if it has obtained an initial
certificates, and the subsequent personal accumulator val
ues V,(p.) (see (18), (19)).
The CA can revoke the user as before i.e., by not re-vali
dating it (not including p, in the product P, in FIG. 5).
0090. As mentioned above, the accumulator techniques
are not limited to a user possessing a single certificate or to a
digital certificate revocation. For example, a useru, may or
may not possess one or more of entitlements e. e. . . . e.
During initial certification, the user u, is assigned a unique
integer p, if the user is to be certified for an entitlement e.
The entitlement proof proceeds as described above with
respect to equations (13)-(26), with numbers p, replaced by p,
k with s, , replaced by s, , , etc.
0091. In some of these embodiments, however, a value p,

is computed as the product of P. For example, if the user is
initially certified for all the entitlements, then:

P; Pi, 1 . . . Pi, - (27)

In some embodiments, the integers p, are mutually prime
relative to each other and to the CA's modulus n. The useru's
initial certificate is s, m,'” (mod n) as in (14), and u, can
use exponentiation to de-accumulate all the values p, except
a selected value p, for some k:

4. Pit (28) lip;
Sikio - m" i.k (modn) = s.

The user can use this value to demonstrate that it possesses the
entitlement that corresponds to prime p, without revealing
the user's other entitlements. The CA can revoke a specific
entitlement e, for the user without revoking the user's other
entitlements, simply by issuing a validation accumulator in
(17) that does not accumulate p, (i.e. the product P, is
computed as in (15) except that p, is replaced with p?p, (the
numberp, is not included in the product)). If the user wants
to sign anonymously and unlinkably, then the user cannot
reveal its specific value of p, but it would seem to make it
difficult for a verifier to determine what entitlement the user is
claiming (if the verifier cannot see the value of p,). We can
get around this problem by, for example, associating each
entitlemente to a range of integers I. This range will contain
all the p, values for all the users u, initially certified to have
the entitlement e. The ranges I do not overlap in some
embodiments. Then the user can prove in ZK that it possesses
a modular p-th root (for some unrevealed number p in the
range I) of the appropriate value, i.e. the user can provide the
following proof of knowledge:

PK{(C, B): CP=C mod in Ape1} (29)

Jun. 17, 2010

where C-mh/h or C-h, (see (21), (26)). See 41), (42). The
user can also prove that it possesses multiple entitlements
simultaneously, e.g., by proving (in ZK if desired) its posses
sion of ap"root for somep that is the product of (for example)
two integers p and p in ranges corresponding to the claimed
entitlements:

See 41, 42.

0092. Users Moving From Network to Network:
0093 Suppose the CA has users (certificate owner sys
tems) 110 in different networks, and the users move from a
network to a network (e.g. Some of the networks may be ad
hoc networks). The CA can calculate a separate accumulator
(say, (17)) for each network. Each accumulator will accumu
late only the valid users in the corresponding network based
on the CA's knowledge of the current composition of users in
each network. Each user will compute its personal accumu
lator value and/or witness value (e.g., as in (18), (20), (26),
and/or (28)). The user can move to another network and use
the same personal accumulator value and/or witness value in
the other network.
0094 Aggregation of Personal Accumulators:
0.095 Multiple personal accumulators can be aggregated
into a single value, in order to save bandwidth; from this
aggregated value, a verifier can batch-verify that multiple
users are indeed certified. For example, in the scheme of
equations (17), (22), user u (if it is still valid) possesses a
personal values, that satisfies

where m, as in (13), and j, , is the periodj for the user u,
Denote

zi-m;(h/h,)(mod n). (32)
Then, for multiple users in period, their personal values can
simply be multiplied together

t (33)
S = Sii (modn)

where t' is the number of users which take part in the aggre
gation (or the number of certificates or entitlements belong
ing to a user if each u, is a certificate or an entitlement). A
verifier can use the value (33) to confirm that users (or cer
tificates or entitlements) (u,..., u) are valid by confirming
that:

t I , f' (34)
t' . II: Pi Sli=1 Pi = -P (modn)

i=1

0096 De-Accumulation.
0097 We will now discuss concrete approaches to the
de-accumulation of values from the accumulator computed
by the CA; however, we note that the CA does not need to
compute a single accumulator value that accumulates all of
the values associated to all of the valid nodes 110 in the
network. Instead, the CA can use a tradeoff, which we now

US 2010/0153714 A1

describe. De-accumulation is somewhat computationally
expensive. Procedure Split (V.P) below performs de-accumu
lation on an accumulator V that accumulatest k-bit numbers
P={p,}; the procedure's outputist personal accumulators; the
execution time is O(t log t) (where we consider k to be a
constant). Let us denote the accumulator accumulating an
empty set of values as u (in equation (17), u=h()/h (i-1)).

Then

0098
u=y"pi" (mod n). (35)

0099 Procedure Split(v.P):
0100 1. Split the set Pinto two disjoint halves P, and P.
10101) 2. Compute v=v"p (mod n); this is the accu
mulator for the set P.

0102. 3. Compute v = "Pi" (mod n); this is the accu
mulator for the set P.

(0103 4. If P has only one member, output (v, P.),
otherwise call Split (v, P).

0104 5. If P has only one member, output (v. P.),
otherwise call Split (v. P.).

End of Split (v.P)
0105. As a rule of thumb, exponentiating a number
modulo n by a product oft' numbers takes time proportional
to t'; thus, the first split operation (steps 2 and 3 in procedure
Split(V.P)) is the most expensive one in the recursion above.
(Actually, since there are t distinct numbers (p. p.), the
p, are O(log t) bits apiece on average, so that the exponentia
tion is proportional to t' log t'; since the Split algorithm can
recurse to a depth of logt', the overall computation complex
ity is t log t.) To reduce the amount of de-accumulation that
needs to be performed, the CA can (for example) compute
two accumulators—one for each of two halves P, and P. of
P and transmit these two accumulators to the users, thereby
allowing the users to skip the first split operation and thereby
reducing their computation. The CA can reduce their compu
tation further by transmitting even more accumulators, each
for an even Smaller Subset of the users. In computing these
multiple accumulators, it is advantageous for the CA to use its
knowledge of the current network topology to enhance the
performance of the scheme. For example, Suppose that the
users are divided into several (say, 10) topological areas.
Then, instead ofusing one product of integers P, as in (15), the
CA can compute 10 such products P 1, ..., P., o, and 10
area-specific accumulators (h/h)" is *. The CAthen trans
mits each one of these 10 area-specific accumulators to the
respective one of the 10 topological areas (along with a list of
the re-validated users in that area). Users in a given area can
compute their personal accumulators and witnesses from the
area-specific accumulators.
0106 De-accumulation is also relevant to how the per
Sonal accumulators (18)-(19) are computed. Clearly, in terms
of computation, it is non-optimal for each of the t users to
perform de-accumulation (18), (19) independently; doing it
this way would entail O(t) computation (actually, worse,
since the size of the p, must grow at least as fast as log t). In
Some embodiments, the users compute their personal accu
mulators cooperatively, as illustrated, for example, in FIG. 8
and described below.
0107 If the performance metric is minimum communica

tion, a simple broadcast by the CA of the accumulator (17) to
tusers (see FIG. 5) is a good way of accumulator distribution.
This results in overall communication of O(t). However, over

Jun. 17, 2010

all computation is at least O(t) because each oft users has to
perform t-1 exponentiations on the same accumulator.
(0108) Referring to FIG. 8, let PP, be the set of valid users
(i.e. the set of the p numbers corresponding to the valid users).
At the stage of FIG. 5 (re-validation), the CA sends the
accumulator v,(PP) (see (17) for example) and the numbers p
in the set PP, to a designated node 110 (also marked Din FIG.
8). Node D divides the set PP, into sub-groups (sub-sets). In
one example, the sub-group PP-0 includes one or more of
nodes 110.0, 110.00, 110.01; the sub-group PP-1 includes
one or more of nodes 110.1, 110.10, 110.11; the third sub
group consists of node 110 itself if this is a valid node. Node
D computes the accumulator V,(PP-0) for the sub-group
PP-0, and the accumulator v,(PP-1) for the sub-group PP
1. This computation can be performed by de-accumulating
the nodes which are not sub-group members. See e.g. equa
tion (19) and Procedure Split (V.P), steps 1 and 2. If node D is
valid (i.e. its number p is in PP.), node D also computes its
personal accumulator as in FIG. 6. Node D transmits the
accumulator V,(PP-0), and the p numbers in the set PP-0, to
node 110.0. Node D transmits the accumulatorv,(PP-1), and
the p numbers in the set PP-1, to node 110.1. The nodes
110.0, 110.1 perform the same operations as node D. In
particular, node 110.0 divides the valid users PP-0 into
sub-groups. In one example, the nodes 110.0, 110.00, 110.01
are valid; the sub-group PP-0-0 consists of node 110.00; the
sub-group PP-0-1 consists of node 110.01; the third sub
group consists of node 110.0. The sub-groups are determined
by node 110.0 from the p numbers in PP-0. Node 110.0
computes accumulators v,(PP-0-0), V,(PP-0-1) for the
respective sub-groups PP-0-0, PP-0-1, and also computes its
personal accumulator as in FIG. 6. Node 110.0 transmits the
accumulator V,(PP-0-0), and the corresponding p number, to
node 110.00. Node 110.0 transmits the accumulator v,(PP
0-1), and the corresponding p number, to node 110.01. The
accumulators v,(PP-0-0), V,(PP-0-1) are personal accumula
tors, so the nodes 110.00, 110.01 do not need to derive their
personal accumulators.
0109 Node 110.1 performs operations similar to those for
node 110.0.
0110. This procedure can be extended recursively to any
number of nodes. The procedure is not limited to the “binary
tree' type of FIG. 8. A node can split a set of users into any
number of Sub-groups in addition to itself, possibly resulting
in a non-binary-tree type operation. Also, in Some embodi
ments, the accumulators are transmitted only to valid nodes.
For example, if node 110 is invalid, then CA120 transmits the
accumulator V,(PP) to a valid node instead. For communica
tion efficiency, the Sub-groups are selected so that the com
munications are efficient within each Sub-group. For
example, in case of ad hoc networks, the Sub-groups can be
selected based on geographic proximity, with the proximate
nodes being grouped together.
0111. Now, we describe one approach for selecting the
Sub-groups, where nodes only have local topology informa
tion. Roughly speaking, the idea is as follows. To partition (a
portion of) the network, the designated node D chooses two
“group heads' in the network, such as nodes 110.0, 110.1 in
FIG. 8. (More than two group heads can also be selected.)
These group heads can be chosen randomly. Alternatively, if
the designated node has some topological information, it can
use that information to attempt to choose the two group heads
in a way that they are topologically distant preferably on
opposite sides of the network from each other. After D picks

US 2010/0153714 A1

the two group heads, the designated node tells the two group
heads to transmit different messages; for example, the desig
nated node may tell the first group head to transmit 0 and the
second to transmit 1. Then, each group head (e.g. 110.0,
110.1) "floods” the network with its particular message.
When this occurs, the other nodes in the network will either
receive a ‘O’ first or the 1 first. Nodes that receive a ‘O’ first
(e.g. nodes 110.00, 110.01) report back to the designated
node D (or to the group head 110.0) that they are a member of
the 0-group; the members of the 1-group report similarly. The
designated node D (or the respective group heads) receives
this information, and it de-accumulates the accumulator into
two halves—one accumulator for the 0-group and one for the
1-group. If the designated node performed this de-accumula
tion (as in the procedure illustrated in FIG. 8), it passes along
the appropriate accumulators to their corresponding group
heads (110.0, 110.1). Then, each group head becomes the
designated node for its corresponding Sub-network, and the
entire process described above is repeated for the sub-net
works. Now, we will provide more detail for one embodi
ment.

0112 At the beginning, there is only a single group PP of
users which covers the whole network. Each recursion step is
carried out in four phases as depicted in FIG. 9. The first
recursion step is started by a node which is preferably located
in the center of the network. We call this node the current
designated node D. Node D executes the following four
phases of recursion:
0113 Search Group Heads (State 910):
0114 Node D selects randomly two nodes out of its group
as group heads GH0 and GH1. (For the sake of illustration,
assume that node GHO is node 110.0 of FIG.8 or 10, and node
GH1 is node 110.1). Node D sends out a broadcast message
m with its group ID, the addresses of GHO and GH1.
and a path variable containing D's address. All receiving
nodes within the same group obtain a copy of the path and
check if they are GH0 or GH1. If not, they add their address
to the path variable in the message and forward it (broadcast
it) once. The path variable provides each node with the path to
D. FIG. 10 shows the messages m, transmitted by
nodes D, 110.01, 110.10, 110.11.
0115 Build Group (State 920):
0116. If the receiver of m is either GH0 or GH1, it
starts building a Sub-group by broadcasting a message matc.
containing its address. If a receiver of m, which belongs
to the same group hasn't already received a message from a
group head and therefore, joined its Sub-group, he joins the
Sub-group announced in m and forwards the message
once. FIG. 10 illustrates the m messages broadcast by
nodes GH0, GH1, 110.01, 110.10, 110.11, assuming that the
node 110.01 received the mbuildG message from GH0 first,
and nodes 110.10, 110.11 received the m message from
GH1 first.
0117 Report Group (State 930):
0118. After some prescribed amount of time, all members
of both Sub-groups start reporting their membership status to
D. Therefore, they include their addresses together with their
sub-group IDs 0 or 1 in the message m, and send it over
the path obtained in phase 1 to D. To make the reporting more
efficient, nodes which are more distant from D start the
reporting first. Nodes on the path of mo add their sub
group membership information to the message and forward it
according to the path to D. Nodes having forwardedam
don't initiate a report themselves.

reportG

Jun. 17, 2010

0119 Transmit Accumulator (State 940):
0.120. After D has received all reports, it looks up the paths
p0 to GH0 and p1 to GH1 included in the received reports,
exponentiates the accumulator V, for its group to obtain the
accumulators V(0) and V.(1) for the respective sub-groups,
and sends the accumulators in respective messages mo
over p0 to GH0 and m over p1 to GH1, respectively.
Additionally to the accumulators V,(0) and V.(1), these mes
sages contain a list of the corresponding Sub-group members.
After reception of m, so Orms, respectively, GH0
and GH1 become designated nodes D of their sub-groups and
enter phase 910 of the next recursion step. The recursion ends
if the Sub-group accumulator is a personal accumulator.
I0121 Considering a set of all users UU with cardinality
|UU|=2'-t, and equal distribution of each group PP into two
groups of identical size IPPI/2, the recursion will end after R
steps with a total number of t sub-groups of size 1. Here, we
mention a few aspects of the scheme's computational and
communication complexity, assuming that, at each step, the
split is into approximately equal halves.
0.122 Search Group Heads:
I0123. Within a subnetwork of size t', this step requires
O(t') messages, each of size logt (since it requires logt bits on
average to specify a single member of a group of telements).
Each message contains a path with average length C, Vt.
Therefore, communication for this subnetwork is of O(t'Vt
log t). If we assume that the partitions are always equally
sized, the total communication of the entire recursive proce
dure is also O(t'V' log t).
(0.124 Build Group:
0.125. This step involves a total of t messages, each of
constant size, for communication complexity O(t).
(0.126 Report Group:
I0127 Group membership information of the nodes is
transmitted over C*Vt hops, where C is a constant depend
ing on the network density and reflecting the number of
reports initiated: this results in communication of O(t' Vt log
t).
0.128 Transmit Accumulator:
I0129. Accumulators together with group membership
information oft nodes is transmitted over C*Vt hops, where
C is a constant depending on the network density: this results
in communication of O (t'Vt log t) and computation of O(tR
log t)=O(t logit).
I0130. Overall, the communication is O(tvt log t) and the
computation is O(t log t).
I0131) If we assume that there is an entity E of the network
with less stringent limitations in terms of computational
power and energy Such as the certification authority itself.
another interesting opportunity arises. By acquiring some
topology knowledge this entity may pre-de-accumulate the
accumulator into accumulators for constant size groups. In
detail, such a scheme works as follows: Some node C which
holds the current accumulator for all users and has connec
tivity to E initiates a distributed clustering algorithm of FIG.
9. In a second step, C provides the clustering information to E
and lets E perform the pre-de-accumulation for all clusters.
Then C distributes the accumulators to the clusters. Suitable
clustering algorithms have communication complexity of O(t
Vt log t), but perhaps with a smaller constant factor than the
approach described above.
I0132 Briefly, we mention a distributed approach that
splits a connected network into two connected Subnetworks,
where neither subnetwork is more than twice the size of the

US 2010/0153714 A1

other. As before, we begin with a sub-network that has a
designated node. We assume that the Sub-network is con
nected, and that its topology is basically constant during the
accumulator distribution (though it may change dramatically
from period to period). The first step in the preferred algo
rithm for achieving O(t log t) communication and O(t log t)
computation is that, in a distributed fashion, the nodes of the
sub-network establish an enumeration of themselves. This
can be accomplished as follows. The designated node ini
tiates the procedure by broadcasting a message. The nodes
that receive the message transmit an acknowledgement mes
sage back to the designated node, and they log the designated
node as the node from which they received the message. The
designated node logs the acknowledging nodes as the nodes
that received its message. This process recurses throughout
the network. Specifically, a node that received the message
from the designated node broadcasts the message, and nodes
that have not sent or received the message before log the
identity of the node that they received the message from and
they send back an acknowledgment, after which the sending
node logs the acknowledgers. If a node receives the message
more than once, it only logs and responds back to the first
node that sent it. In this fashion, since the subnetwork is
connected, every node in the Subnetwork (except the desig
nated node) has a unique node from which it received the
message, as well as a list of the nodes that received the
message directly from it. Each node that has a nonempty list
of acknowledgers chooses an arbitrary enumeration of those
acknowledgers. In effect, from this procedure, we have con
structed a tree (a graph with no loops) from the network, as
well as an enumeration of all of the tree nodes given by the
depth-first pre-order traversal of the tree. If the subnetwork
has t' nodes, this procedure can be accomplished with O(t')
communication and computation.
0133. The next stage of the algorithm is to use the enu
meration to approximately bisect the subnetwork. There are a
variety of different ways of doing this. One method is that
each node, beginning with the nodes with no acknowledgers,
could back-transmit (backwards according to the enumera
tion) the number of nodes in its subtree including itself; in this
fashion, each node computes the number of nodes in its
subtree. There must be exactly one node that has at least half
of the nodes in its subtree, but such that none of its children
have at least half. This node is designated to be the midpoint
of the subnetwork. Now, viewing the midpoint point as the
root of the tree, it divides its children into two groups, such
that the number of nodes that are in a subtree emanating from
one of the children in the first group is approximately equal to
the number of nodes that are in a subtree emanating from one
of the children in the second group. (This can always be
accomplished such that ratio between the two numbers is at
most two.) Thus, all of the network nodes except the midpoint
become members of one of the two groups; the midpoint is
considered to be a member of both groups. The step of com
puting how many nodes are in each Subtree requires O(t'logt')
communication, since there are t transmissions, where the
size of each transmission (which is a number between 1 and t'
representing how many nodes are in the given subtree) is log
t' bits. Viewing the midpoint node as the root node, a new
enumeration of the nodes is established with the midpoint
node as the initiator of the message, beginning with the nodes
in the first group. (This new enumeration could be computed
as before, or it could actually be derived indirectly from the

Jun. 17, 2010

previous enumeration. Either way, it does not add to the
asymptotic communication complexity of the protocol,
which is t logt overall.)

Accumulator-Based Encryption of Validity Proofs

10134) The personal accumulators v(p) and/or the witness
values s, , (see e.g. equations (17), (20), (21), (26)) can be
used to obtain symmetric keys that users can use to decrypt
validation proofs under other validation systems. An example
will now be given for the validation system obtained by
combining the systems of FIGS. 2, 4-7, but this is not limiting.
0135) Initial Certification:
I0136. When a useru, joins the system, the CA:
0.137 1. Generates the validation and revocation seeds X.
No as in FIG. 2.

(0138 2. Generates all the tokens c, for all the periodsj(see
FIG. 2 and equation (1)).

0.139. 3. Generates the certificate 140 as in FIG. 2 and
transmits the certificate to the useru.

0140 4. Performs the steps of FIG. 4, i.e. generates the
values p, m, s, , and transmits S., to the validity prover
(which can be the user u, and/or the directories 210). The
values p, m, can also be transmitted to the prover.

I0141 5. Generates all the witness values s, , (for all the
periods) for the useru. Also generates the encryption keys
K., of which is s, , or some function of s, , .

I0142) 6. Encrypts each token c, (generated at step 2 in this
procedure) with the encryption key K, under some
encryption scheme (possibly a symmetric encryption
scheme). Let us denote the encrypted c, value as E,

(0.143 7. Transmits all the values E. (for alli) to the prover
(i.e. the directories 210 and/or the certificate owner u).

0144. Re-Validation by CA:
0145 At the start of, or shortly before, each period, the
CA:

0146 1. Performs the procedure of FIG. 5, i.e. computes
and broadcasts the accumulator value V, and the list of valid
p numbers to the provers.

I0147 2. If the useru,’s certificate is invalid, the CA trans
mits the revocation seed No to the prover corresponding to
the certificate (e.g. to the useru, and/or the directories 210).

0148 Proof Derivation by the Prover:
0149. If the useru's certificate is valid (as indicated by the
transmission of number p, in the RE-VALIDATION proce
dure at step 1), the prover:
(O150 1. Performs the procedure of FIG. 6 to derive the
witness values,

(0151] 2. Obtains the decryption key K, from s,
(0152. 3. Decrypts E, to recover
0153. Authentication (Validity Proof): As in FIG. 2.
0154) Many variations are possible. For example, the
decryption keys can be some different function of s, than the
encryption keys.

Accumulation of Revoked Certificates

0.155. Above, we have described an approach in which an
accumulator accumulates the valid certificates; an alternative
approach is to accumulate revoked certificates. The valid
certificates’ owners (or validity provers) then use the
"dynamic' feature of dynamic accumulators to compute a
new accumulator for the valid nodes, and to compute their
personal accumulators with respect to this new accumulator.

US 2010/0153714 A1

0156. As before, we will assume for the sake of illustration
that each user operates a corresponding computer system 110
and owns at most one certificate 140. This is not limiting, as
a user may own multiple certificates and/or operate multiple
systems 110. The scheme is also applicable to controlling
resource access and other kinds of authentication. We will use
the word “user” to denote both the system 110 and the sys
tem's operator where no confusion arises. As described
below, each useru, will be assigned a positive integer p, with
the same properties as in the scheme of FIGS. 4-7 (e.g. p, are
mutually prime relative to the CA's public composite modu
lus n and to each other). The symbols n, PP, p, will be as in the
scheme of FIGS. 4-7. In particular, PP is the set of the p,
numbers.
I0157 For each periodj, the symbol QQ, will denote the set
of the revoked p, numbers (i.e. the set of the p, numbers
corresponding to the certificates to be declared as revoked in
period j). Q, denotes the product of the numbers in QQ.:

Q, Jpegg, (36)
The symbol C. will denote an accumulator seed, which is an
integer mutually prime with the modulus n. The accumulator
of the values in Q, is:

y-a'ei mod in (37)

(0158) Let RR, QQ-QQ, , i.e. RR, is the set of the p
numbers corresponding to the certificates declared as revoked
in period but not in period-1; in period j-1 these certificates
were either declared as valid or were not yet part of the
validation system. Let R, denote the product of the numbers in
RR:

f

R. LeeRR, (38)
It is easy to see from (37) that if each certificate cannot be
“unrevoked' (i.e. cannot be made valid once revoked), then:

y=y's modin (39)

0159) CA Set Up:
0160 The CA generates its modulus n and the accumula
tor seed C. The CA sets the initial accumulator value v. C. for
the initial periodj.
(0161 Initial Certification (FIG. 11):
0162 Suppose a useru, wants to join the system in a period
j, to be validated Starting the next period j+1. At Step 1110.
CA 120 generates p, m, as at step 410 in FIG. 4. These
numbers can be made part of the user's certificate 140 (FIG.
3). At step 1120, the CA computes the following secret num
bers:

t=m'P (mod n) (40)

S.-vi." (mod n) (41)

Here, V, is the accumulator value for the periodj (V-C. if
QQ, is empty). At step 1130, the CA transmits the valuest, s,
, to the useru, in an encrypted form. As will be explained, the
user will be able to derive the value

s=y'P, (mod n) (42)

for each periodj> for which the certificate is valid.
(0163 Certificate Re-Validation (FIG. 12):
(0164. In period j, Suppose that VeZ/nZ is the accumu
lator value for period j-1. For validation in period, the CA:
(0165 1. Computes V, (using the equation (37) or (39) for

example);
(0166 2. Transmits the value V, together with a list of the
newly-revoked certificates (perhaps represented by the set

Jun. 17, 2010

RR) to the users. If desired, the CA may also sign the pair
(vi) and transmit the signature to the users.

(0167. Witness Derivation (FIG. 13):
(0168 Ifa useru, is valid for the periodj, then the user has
the value s, -i-V-1', (mod n). See (41), (42). At step 1310,
the user computes S, iv,' as follows:
0169. 1. The user applies the Extended Euclidian Algo
rithm to compute integers a and b such that

ap+bR-1 (43)

(this is possible because p,7RR, so p, and R, are mutually
prime).
0170

's, b mod in (44)
2. The user sets s, , to the value:

This value is indeed a p-th root of V, modulo n, because (note
equation (39)):

bp; RE 6. p; epip; epii
i-l i = y modn

0171 At step 1320, the user computes the witness
wifts; (45)

(0172. User Authentication (FIG. 14):
(0173 The user u, provides ts, , (mod n) to the verifier,
along with (if necessary) the values for (u, p, jo, w). In
addition, the user provides to the verifier the accumulator
value V, and the CA's signature on (vi). At step 1410, the
verifier checks the CA's signature and confirms that:

wf-m;', (mod n) (46)

0.174 Alternative User Authentication:
0.175. The authentication can be performed using the iden
tity-based GQ signature scheme as described above in con
nection with equations (23), (24), using w, as a private key.
The CA performs the functions of GQ's PKG (private key
generator); GQ's parameters are set as follows: B-w, v, p.
and J-m,' mod n. The authentication proceeds as follows:
0176 The verifier sends to the user a random message m.
0177. The user generates a random number r and com
putes:

d=H(mri), D=rw, . (mod n) (47)

where H is some predefined public function. The user sends
the values m, m, r, and D to the verifier.
(0178. The verifier computes J-m, mod n and checks that
the following equations hold:

J DP-pi, (mod n)

0179 This scheme may reduce total bandwidth because
the verifier does not need the certificate 140. Note: for the GQ
signature scheme to be secure, it is desirable that p-2''.
(0180. The use of accumulator V, allows a user to revoke
itself, without the CA's help. To revoke itselfin a period, user
u, simply broadcasts v. P (mod n), after which every other
useru can update the accumulator to be v.-v,'(mod n) and
can recompute its personals, and w, values as in (43)-(45).
Of note, R, can be re-computed by multiplying the previous R,
value by p,
0181. In some embodiments, this scheme allows efficient
distribution (e.g. broadcast) for the CA at the stage of FIG. 12,

US 2010/0153714 A1

since the CA transmits the same information to all the users.
This information requires only O(t) transmissions. On the
other hand, each transmission is proportional in size to the
size of RR. Clients of the CA may include many users that are
not in the particular t-member network that we are concerned
about. If the “super-network” of clients of the CA is very large
in proportion to t, this may not be a very good Solution. Even
if the CA only manages ourt-member network, the CA's size
of each transmission is still, strictly speaking, proportional to
t, since the number of revocations within the network in a
given period will tend to be a constant fraction of the total
number of users. In this sense, the communication complex
ity of certificate distribution in this scheme is analogous to the
communication complexity of a delta-CRL scheme. Recall
that in a delta-CRL scheme, the CA transmits a list of users
revoked in the given period, together with a signature on that
list, to all users. On the other hand, since a personal accumu
lator's size is independent of the number of time periods, the
scheme has better communication complexity for authentica
tion than delta-CRLs, because in the delta-CRL scheme the
verifier must separately check the delta-CRLs for all time
periods to confirm that a given user has not been revoked
during any of these periods.
0182. The invention is not limited to the embodiments
described above. The invention is not limited to secure or
dynamic accumulators. An accumulator can be any data that
accumulate some elements. Further, the invention is not lim
ited to the accumulators described above. For example, the
accumulator seed h()/h (i-1) in equation (17) can be replaced
with a value independent of the period, and the accumulator
seed C. in the accumulator (37) can be replaced with a function
of. The accumulator methods can be used to prove (authen
ticate) membership in a set or possession of Some property.
Examples include authentication of valid entitlements, or
authentication of people as being members of some organi
Zation.

0183. In some embodiments, the CA120, the directories
210, and the systems 110 are computer systems communicat
ing with each other over a network or networks. Each of these
systems may itself be a computer system having components
communicating over networks. Each computer system
includes one or more computer processors executing com
puter instructions and manipulating computer data as
described above. The term “data' includes "computer data'
and covers both computer instructions and computer data
manipulated by the instructions. The instructions and data can
be stored on a data carrier Such as a computer storage, i.e. a
computer readable medium (e.g. a magnetic or optical disk, a
semiconductor memory, and other types of media, known or
to be invented). The data carrier may include an electromag
netic carrier wave transmitted over a network, e.g. through
space, via a cable, or by Some other means. The instructions
and data are operable to cause the computer to execute appro
priate algorithms as described above.
0184 The invention is not limited to any particular hash
functions, or to cryptographic functions (which are easy to
compute but are one-way or collision resistant). In some
embodiments, it is desirable that a function for H be collision
resistant not in the sense that it is difficult to find different X
andy with the same image but in the sense that if X and y are
uniformly drawn from the function's domain, the probability
is small that they both will have the same image:

Jun. 17, 2010

where C. is a small constant (e.g. /10, or /100, or 2, or 2,
or 2, or 2', or some other value). Some or all of the
techniques used for validity proofs can also be used for inval
idity proofs and vice versa. The CA, the directories, and the
systems 110 may include Software-programmable or hard
wired computer systems interconnected via a network or
networks. Each function f or H represents an evaluation
method performed by a computer system. The invention is not
limited to the step sequences shown in the flowcharts, as the
step order is sometimes interchangeable and further different
steps may be performed in parallel. Other embodiments and
variations are within the scope of the invention, as defined by
the appended claims.

REFERENCES

0185 All of the following references are incorporated
herein by reference.
0186 1 W. Aiello, S. Lodha, and R. Ostrovsky. Fast
digital identity revocation. In Proc. of CRYPTO '98, 1998.

0187. 2 G. Ateniese, J. Camenisch, M. Joye, and G.
Tsudik. A Practical and Provably Secure Coalition-Resis
tant Group Signature Scheme. In Proceedings of CRYPTO
2000, 2000.

0188 3 M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols. In
Proc. First Annual Conference on Computer and Commu
nications Security, ACM, 1993.

(0189 (4 D. Boneh, B. Lynn, and H. Shacham. Short sig
natures from the Weil pairing. In Proceedings of Asiacrypt
'01, 2001.

(0190. 5 F. Elwailly and Z. Ramzan. Quasi Modo: More
Efficient Hash Tree-Based Certificate Revocation. Manu
script, 2003.

(0191 6 I. Gassko, P. S. Gemmell, and P. MacKenzie.
Efficient and fresh certification. In Proceedings of PKC
2000, 2000.

(0192 7 S. Goldwasser, S. Micali, and R. L. Rivest. A
Digital Signature Scheme Secure Against Adaptive Cho
sen-Message Attacks. SIAM Journal on Computing, 17(2):
281-308, 1988.

(0193 8 Y-C. Hu, A. Perrig, and D. Johnson. Efficient
security mechanisms for routing protocols. In proceedings
of the 10th Annual Network and Distributed System Secu
rity Symposium (NDSS), 2003.

0194 10 M. Jakobsson, J.-P. Hubaux, and L. Buttyan. A
micropayment scheme encouraging collaboration in multi
hop cellular networks. In Proceedings of the 7th Interna
tional Conference on Financial Cryptography, 2003.

(0195 (10 M. Jakobsson, T. Leighton, S. Micali, and M.
Szydlo. Fractal merkle tree representation and traversal. In
Proceedings of the Cryptographer's Track, RSA Confer
ence., 2003.

0196) 11 S. Jarecki and A. Odlyzko. An efficient micro
payment system based on probabilistic polling. In Pro
ceedings of the 1st International Conference on Financial
Cryptography, 1997.

0.197 12 Robert Johnson, David Molnar, Dawn Xia
odong Song, and David Wagner. Homomorphic signature
schemes. In CT-RSA, pages 244-262, 2002.

0198 (13 C. Jutla and M. Yung. PayTree: Amortized sig
natures for flexible micropayments. In Proceedings of the
second USENIX workshop on electronic commerce, 1996.

US 2010/0153714 A1

0199 (14 S. Kim and H. Oh. An atomic micropayment
system for a mobile computing environment. IEICE Trans
actions of Information and Systems, E84-D(6):709–716,
2001.

0200 15 P. Kocher. On Certificate Revocation and Vali
dation. In Proceedings of the 2nd International Conference
on Financial Cryptography, 1998.

0201 (16 Satoshi Koga and Kouichi Sakurai. A distrib
uted certificate status protocol with single public key. In
Proceedings of PKC 2004, pages 389-401, 2004.

0202 17 R. J. Lipton and R. Ostrovsky. Micro-Payments
via Efficient Coin Flipping. In Proceedings of the 2nd
International Conference on Financial Cryptography,
1998.

0203 (18 A. Malpani, R. Housely, and T. Freeman.
Simple Certificate Validation Protocol (SCVP). In IETF
Draft draft-ietfpkix-scvp-12.txt, June 2003.

0204 19 R. C. Merkle. Protocols for Public-Key Cryp
tography. In IEEE Symposium on Security and Privacy,
1980.

0205 (20 S. Micali. Efficient Certificate Revocation.
MIT/LCS/TM 542b, Massachusetts Institute of Technol
ogy, 1996.

0206 21 S. Micali. Efficient Certificate Revocation. In
Proceedings of the RSA Data Security Conference, 1997.
Also U.S. Pat. No. 5,666,416.

0207 22 S. Micali. NOVOMODO: scalable certificate
validation and simplified PKI management. In Proceed
ings of the 1st Annual PKI Research Workshop, 2002.

0208 23 M. Myers, R. Ankney, A. Malpani, S. Galperin,
and C. Adams. X.509 internet public key infrastructure
Online Certificate Status Protocol OCSP. In Internet
RFC 2560, June 1999.

0209 24 M. Naor and K. Nissim. Certificate Revocation
and Certificate Update. In Proceedings of USENIX Secu
rity, 1998.

0210 25 National Bureau of Standards. NBS FIPS PUB
81: DES modes of operation. 1980.

0211 (26 National Institute of Standards. FIPS 180-1:
Secure hash standard. 1995.

0212 27 M. Pierce and D. O'Mahony. Micropayments
for Mobile Networks. In Proceedings of European Wire
less, 1999. Winner of Best Paper Award.

0213 28 R. L. Rivest. The MD5 message digest algo
rithm. In Internet RFC 1321, April 1992.

0214) 29 R. L. Rivest. Electronic Lottery Tickets as
Micropayments. In Proceedings of the 2nd International
Conference on Financial Cryptography, 1997.

0215 30 R. L. Rivest and A. Shamir. PayWord and
MicroMint Two Simple Micropayment Schemes. Cryp
toBytes (RSA Laboratories), 2C1), 1996. Proceedings of
1996 International

0216 Workshop on Security Protocols.
0217 (31 R. L. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, 21:120-126,
1978.

0218 32 Ron Steinfeld, Laurence Bull, and Yuliang
Zheng. Content extraction signatures. In Proceedings of
the 4th International Conference Seoul on Information
Security and Cryptology, pages 285-304. Springer-Verlag,
2002.

Jun. 17, 2010

0219) 33 H. Tewari and D. O'Mahony. Multiparty
Micropayments for Ad-Hoc Networks. In Proceedings of
the IEEE Wireless Communications and Networking Con
ference (WCNC), 2003.

0220 34 H. Tewari and D. O'Mahony. Real-Time Pay
ments for Mobile IP. IEEE Communications, 41(2): 126
136, 2003.

0221 35. D. Wheeler. Transactions. Using Bets. In Pro
ceedings of Fourth Cambridge Workshop on Security Pro
tocols, 1996.

0222 36 J. Zhou and K-Y. Lam. Undeniable Billing in
Mobile Communication. In Proceedings of MOBICOM,
1998.

0223 37 M. Goodrich, R. Tamassia. An Efficient
Dynamic and Distributed Cryptographic Accumulator.
2001.

0224 (38. J. Benaloh and M. de Mare. One-Way Accu
mulators: A Decentralized Alternative to Digital. Signa
tures.

0225. 39. J. Camenisch and A. Lysyanskaya. Dynamic
Accumulators and Application to Efficient Revocation of
Anonymous Credentials. 2002.

0226 40 S. Gokhale and P. Dasgupta. Distributed
Authentication for Peer-to-Peer Networks. Symposium on
Applications and the Internet Workshops (SAINT 03
Workshops), 2003.

0227 .41 O. Goldreich, S. Micali, A. Wigderson. Proofs
that Yield Nothing But their

0228. Validity and a Methodology of Cryptographic Pro
tocol Design. Extended Abstract, 27th FOCS, 1986 (IEEE).
0229 42 O. Goldreich and A. Kahan. How to Construct
Constant-Round Zero-Knowledge Proof Systems for NP.
Journal of Cryptology, Volume 9, No. 3, 1996, pages
167190.

Appendix A

Accumulators and Proofs of Knowledge

0230 Definition (Secure Accumulator).
0231. A secure accumulator for a family of inputs {XX}
is a family of families of functions GG={FF} with the fol
lowing properties:
0232 Efficient generation: There is an efficient probabi

listic algorithm G that on input 1 produces a random element
fof{FF}. Galso outputs some auxiliary information aboutf.
denoted by aux,
0233. Efficient evaluation: f{FF} is a polynomial-size
circuit that, on input (u, x)eUUA XX, outputs a value
veUUA where UU, is an efficiently-samplable input domain
for the function f, and XX} is the intended input domain
whose elements are to be accumulated.
0234 Quasi-commutative: For all k, for all feFF, for all
ue UUA for all X1, X-eXX f(f(u, x), x)=f(f(u, x2), X). If
X={x1,..., X, XX, then by f(u, X) we denote f(f(... (u,
X). . . .).
0235. Witnesses: Let veUU, and xeXX. A value weUU,
is called a witness for x in V under fifv=f(w,x).
(0236) Security: Let UU, XXX" denote the domains for
which the computational procedure for function feFF is
defined (thus UUUU, XXXX"). For all probabilistic
polynomial-time adversaries A,

Prff-G(1); u-UU, (x, w, X)-A, (f, UU, u):
XeXX, weUU; xeXX, xz X; f(w,x)=f(u, X)-neg
(k).

US 2010/0153714 A1

0237 Camenisch and Lysyanskaya (39) define the
notion of a dynamic accumulator:
0238. Definition (Dynamic Accumulator).
0239 A secure accumulator is dynamic if it has the fol
lowing property:
0240 Efficient Deletion: There exist efficient algorithms
D and W such that, if v=f(u, X), x, x'eX, and f(w,x)=v, then:

0241 Zero-Knowledge Proofs. An advantage of accumu
lators (at least, RSA-based accumulators, which are
described later) is that it is possible to construct efficient
Zero-knowledge proofs (ZK proofs) that a value has been
accumulated. It has been proven that any statement that is in
NP (nondeterministic polynomial-time) can be proven in ZK.
but some statements can be proven in ZK much more effi
ciently than others. Briefly, we describe the concept of a ZK
proof, which was introduced independently by Brassard,
Chaum, and Crepeau and by Goldwasser, Micali, and Racko,
and further refined by Bellare and Goldreich.
0242 Let X be an input, and let R be a polynomially
computable relation. Roughly speaking, a Zero-knowledge
proof of knowledge of a witness w such that R(x, w)=1 is a
probabilistic polynomial-time protocol between a prover P
and a verifier V such that, after the protocol, V is convinced
that P knows such a witness w, but V does not obtain any
explicit information about w. In other words, apart from
“proving that it knows a witness w such that R(x, w)=1, P
imparts “Zero knowledge' to V.
0243 In the sequel, we may use the notation introduced by
Camenisch and Stadler for various proofs of knowledge of
discrete logarithms and proofs of the validity of statements
about discrete logarithms. For instance,

denotes a Zero-knowledge Proof of Knowledge of integers C.
f, and Y such that y=g' handy'-g' h", where usc.sv and
where g, g, h, h', y, and y are elements of Some groups
G=<g>=<h and G'=<g'>=<h'>. The convention is that
Greek letters denote quantities the knowledge of which is
being proved, while all other parameters are known to the
Verifier. Using this notation, a proof-protocol can be
described by just pointing out its aim while hiding all details.
0244. Often, these proofs of knowledge are instantiated by
a three-pass protocol, in which the prover first sends the
verifier a commitment to certain values, after which the veri
fier sends the prover a challenge bit-strings, and the prover
finally sends a response that incorporates both the “known
value', the committed values and the challenge value in Such
away that it convinces the verifier is convinced of the prover's
knowledge.
0245. These proofs of knowledge can be turned into sig
nature schemes via the Fiat-Shamir heuristic. That is, the
prover determines the challenge c by applying a collision
resistant hash function H to the commitment and the message
m that is being signed and then computes the response as
usual. We denote such signature proofs of knowledge by the
notation, e.g., SPK {C.y=f(C)}(m). Such SPK's can be
proven secure in the random oracle model, given the security
of the underlying proofs of knowledge.
0246 ZK proofs are often accomplished with the help of a
commitment scheme. A commitment Scheme consists of the
algorithms Commit and VerifyCommit with properties as

Jun. 17, 2010

follows. The commitment algorithm Commit takes as input a
message m, a random string r and outputs a commitment C.
i.e., C Commit(m.r). The (commitment) verification algo
rithm VerifyCommit takes as input (C. m, r) and outputs 1
(accept) if C is equal to Commit(m.r) and 0 (reject) otherwise.
The security properties of a commitment scheme are as fol
lows. The hiding property is that a commitment C=Commit
(m, r) contains no (computational) information on m. The
binding property is that given C, m, and r, where 1 =Verify
Commit(C.m.r), it is (computationally) impossible to find a
message mo and a string ro such that 1 =VerifyCommit(C. m.
ro).
0247 To prove, in ZK, knowledge of a witness w of a value
X that has been accumulated i.e., that f(w,x)=v, where v is
the accumulator value—the usual method is to choose a ran
dom string rand construct a commitment c Commit(X, r) and
then provide the following proof of knowledge:

0248. Above C. represents the (hidden) x value, while B
represents rand Y represents w.
0249 Rsa-Based Accumulators.
(0250 Here we describe a common concrete instantiation
of accumulators, which uses mathematics related to the well
known RSA public-key cryptosystem, invented by Rivest,
Shamirand Adleman in 1977. Above, our description focused
on Some RSA-based instantiation of accumulators, but this
description should not be considered limiting; our accumula
tor-based certificate revocation schemes could be used with
any type of accumulators. An accumulator structure has an
advantage that its size does not depend on the number of
accumulated elements. An RSA-based accumulator makes
use of a composite integer n, called a modulus, that should be
chosen in Such away that it is hard to factor. In some embodi
ments of the schemes defined above, the modulus is an RSA
modulus, which is defined as follows:
0251 Definition (RSA modulus). A 2k -bit number n is
called an RSA modulus if n pd, where p and q are k-bit prime
numbers.
0252) Of course, one can choose n in a different way—e.
g., as the product of three primes, or as the product of two
primes of different sizes.
0253) Definition (Euler totient function). Let n be an inte
ger. The Euler totient function p(n) is the cardinality of the
group Z, (the multiplicative group of elements having an
inverse in the ring Z, of the integers modulo n; Z, is the set
of all elements mutually prime with n).
0254. If n=pd is the product of two primes, then p(n)=(p-
1)(d-1).
0255. The security of RSA-based accumulators is based
on the following assumption.
0256 Definition (Strong RSA Assumption) The strong
RSA assumption is that it is “hard on inputan RSA modulus
in and an element ueZ, to compute values e1 and V such
that v-u(mod n). By “hard', we mean that, for all polyno
mial-time circuit families {A}, there exists a negligible func
tion neg(k) such that

where RSAmodulus(1) is an algorithm that generates an
RSA modulus as the product of two random k-bit primes, and
a negligible function neg(k) is a function Such that for all
polynomials p(k), there is a value ko Such that neg(k)<1/p(k)

US 2010/0153714 A1

for all k>ko. The tuple (n, u) generated as above, is called a
general instance of the strong RSA problem.
0257 Corollary 1. Under the strong RSA assumption, it is
hard, on input a flexible RSA instance (n, u), to compute
integers e-1 and V such that v-u(mod n).
0258. The most common concrete instantiation of accu
mulators is based on the above strong-RSA assumption.
Roughly speaking, the idea is as follows: Given a fixed base
u(mod n), one can compute an accumulator of values X and
x (for example) as v-u-2 (mod n). To prove that X (for
example) has been accumulated, one can forward the witness
w=u? (mod n) and a verifier can confirm that indeed w' (mod
n).
0259 Now, we relate the formal description of accumula
tors to the concrete RSA-based construction. A secure RSA
based accumulator for a family of inputs X is a family of
functions FF, where the particular function feFF depends
on what the modulus n is. For reasons that will become clear
later, we assume that elements of X are pairwise relatively
prime integers. Then, aux, is the (secret) factorization of n. As
alluded to above, given an initial accumulator value v', an
additional value X is added to the accumulator by computing
a new accumulator value v=v' (mod n). Notice that the com
putational complexity of this algorithm is independent of the
number of prior values that have been accumulated. The
RSA-based accumulator possesses the quasi-commutative
property; e.g., regardless of the order in which X and X are
incorporated into an initial accumulator v', the result is
v=v'(mod n). Given an accumulator V(mod n), the witness
that a valueX has been accumulated is w—v' (mod n), which
can readily be verified by confirming that v- w (modn). To
reiterate, the security of the construction is based on the
assumption that the strong RSA problem is infeasible to
solve.

0260 RSA-based accumulators can be made dynamic.
Recall that an accumulator is dynamic if, given an accumu
lator V that accumulates values of the set X and given the
secret information aux, one can "de-accumulate” a value
X'6X—i.e., compute a new accumulator v' that accumulates
the values of the set X-x}. Moreover, given a witness w that
a value X has been accumulated (with respect to accumulator
V that accumulates members of the set X) and given the
accumulator v that only accumulates members of X-x},
one can compute a new witness w' for X with respect to the
accumulator v'. Specifically, for RSA-based accumulators,
one can use the factorization of n to de-accumulate X" by
computing v' v'(mod n). And given a witness w for x with
respect to V—i.e., wV(mod n)—and given the value of v'.
one can compute a witness w' for X with respect to v' i.e.,
w'—v'—v'(mod n)-w'—v'(mod n) as follows. Assum
ing that X and X’ are relatively prime, one can compute inte
gers (a,b) such that ax+bx'=1, by using the Extended Euclid
ean Algorithm. Then wi-view b-va/v'vb/-y(v*b*)/v' vil/a-
(mod n). Notice that the computation of w is efficient, and
(after v' is computed) it doesn't require any secret knowledge
(e.g., the factorization of n).
0261) Given a witness w that a value x is accumulated
(with respect to an accumulator V(mod n)), it also well-known
in the art how to construct a ZK proof of knowledge of a pair
(w,x) that satisfies w=V(mod n) (that hides the values of both
w and X from the verifier).

Jun. 17, 2010

End of Appendix A
APPENDIX B

Guillou-Quisquater (GQ) ID-based Signature Scheme
0262 Set-Up:
0263. 1. A public key generator (PKG, a trusted party),
publishes its public key (V, n) where n=qqa (a product of two
primes) is such that its factorization is hard to find, and V is a
prime less than (p(n)-(p-1)(cq-1).
0264. 2. For a user with an identity ID (e.g., an email
address), the PKG computes the secret signing key B Such
that JB-1 mod n, where J-R(ID), where R is a predefined
public function, e.g. a redundancy function. In some embodi
ments, the function R maps ID into an element of Z. The
function R is such that the number of elements in Z, that
correspond to mappings from valid ID's is small. The PKG
sends B to the user via a secure channel (e.g. encrypted).
0265 Signing: To sign a message M, the user:
0266 1. Computes J-R(ID)
0267 2. Generates a random number r and computes

d=H(Mr.), D=rB (B-1)
where His a predefined public function (e.g. a hash function).
0268. 3. Sends the values M, r', d, D to the verifier.
0269. Verification: The verifier:
(0270) 1. Computes J-R(ID);
(0271 2. Checks that d=H(MIr');
0272. 3. Checks that JD'=r.
End of Appendix B

1. A network transmission method comprising transmit
ting, over a computer network, a computer program operable
to perform a computer-implemented authentication method
for providing authentication for a plurality of elements as
possessing a pre-specified property, wherein for each time
period of a plurality of successive time periods, the authen
tication is to be provided for each said element which pos
sesses the pre-specified property, each element being oper
able to acquire the property and/or to lose the property in each
of the Successive time periods j, each element being associ
ated with a distinct integer greater than 1, the authentication
method comprising, for at least one element El which is one
of said elements, performing a set-up operation for the
authentication, the set-up operation comprising:

a first computer system generating the distinct integer p
associated with the element E1;

the first computer system obtaining data representing a
p-th root of a base number modulo a predefined com
posite integer whose factorization is a secret of the first
computer system;

the first computer system providing said data to a second
computer system to enable the second computer system
to prove that the element E1 possesses the pre-specified
property;

wherein for each said period for which the element E1 is
to be authenticated as possessing said property, the
authentication is to be performed by operations compris
ing:

the second computer system obtaining data representing an
accumulator value which accumulates all the entities in

a set P1, which is either (i) a set of the entities certified as
possessing the pre-specified property in the period j, or
(ii) a set of the entities certified as not possessing the
pre-specified property in the period;

US 2010/0153714 A1

the second computer system combining the accumulator
value with a value dependent on said p-th root of the
base number to obtain a witness value which is a p-th
root, modulo said composite integer, of a first value
dependent on the base number and the accumulator
value, the authentication comprising verifying that the
p-th power of the witness value equals the first value.

2. The network transmission method of claim 1 wherein the
elements are either (a) digital certificates each of which cer
tifies that a cryptographic key is associated with an entity, or
(b) entitlements to use one or more resources, and said prop
erty is validity of a digital certificate or an entitlement.

3. The network transmission method of claim 1 wherein in
the authentication, the first value is made available to a veri
fier together with the witness value or aproof of knowledge of
the witness value.

4. The network transmission method of claim3 wherein the
computer program is operable to perform the authentication
operations for at least one said time period.

5. The network transmission method of claim 1 wherein the
accumulator value is a P-th root u' (mod n) of an integeru
modulo said predefined composite integer, where P, is the
product of the distinct integers associated with the members
of the set P1, where u is a constant or is a predefined function
of the period of time.

15
Jun. 17, 2010

6. The network transmission method of claim 1 wherein
said verifying, that the p-th power of the witness value
equals the first value, is performed by a verifier computer
system, and the p-th root of the base number is a secret not
provided to the verifier computer system.

7. The network transmission method of claim 2 wherein in
the authentication, the first value is made available to a veri
fier together with the witness value or aproof of knowledge of
the witness value.

8. The network transmission method of claim 7 wherein the
computer program is operable to perform the authentication
operations for at least one said time period.

9. The network transmission method of claim 2 wherein the
accumulator value is a P-th root u' (mod n) of an integeru
modulo said predefined composite integer, where P, is the
product of the distinct integers associated with the members
of the set P1, where u is a constant or is a predefined function
of the period of time.

10. The network transmission method of claim 2 wherein
said verifying, that the p-th power of the witness value
equals the first value, is performed by a verifier computer
system, and the p-th root of the base number is a secret not
provided to the verifier computer system.

c c c c c

