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(57) ABSTRACT 

Authentication of elements (e.g. digital certificates 140) as 
possessing a pre-specified property (e.g. being valid) or not 
possessing the property is performed by (1) assigning a dis 
tinct integer p, to each element, and (2) accumulating the 
elements possessing the property or the elements not possess 
ing the property using a P-th root u' (mod n) of an integeru 
modulo a predefined composite integer n, where P is the 
product of the integers associated with the accumulated ele 
ments. Alternatively, authentication is performed without 
Such accumulators but using witnesses associated with Such 
accumulators. The witnesses are used to derive encryption 
and/or decryption keys for encrypting the data evidencing 
possession of the property for multiple periods of time. The 
encrypted data are distributed in advance. For each period of 
time, decryption keys are released which are associated with 
that period and with the elements to be authenticated in that 
period of time. Authentication can be performed by accumu 
lating elements into data which are a function of each element 
but whose size does not depend on the number of elements, 
and transmitting the accumulator data over a network to a 
computer system which de-accumulates some elements as 
needed to re-transmit only data associated with elements 
needed by other computer systems. This technique is suitable 
to facilitate distribution of accumulator data in networks such 
as ad hoc networks. 
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USE OF MODULAR ROOTS TO PERFORM 
AUTHENTICATION INCLUDING, BUT NOT 

LIMITED TO, AUTHENTICATION OF 
VALIDITY OF DIGITAL CERTIFICATES 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application is a continuation of U.S. 
patent application Ser. No. 1 1/454.394, filed Jun. 16, 2006, 
incorporated herein by reference, which is a division of U.S. 
patent application Ser. No. 1 1/304.200 filed on Dec. 15, 2005, 
incorporated herein by reference, which claims priority under 
35 U.S.C. S 119(e) to provisional U.S. patent application No. 
60/637,177 filed Dec. 17, 2004, incorporated herein by ref. 
CCC. 

BACKGROUND OF THE INVENTION 

0002 The present invention relates to performing authen 
tication as to whether or not an element possesses a pre 
specified property. An example is authenticating validity of a 
digital revocation in a public key infrastructure, or authenti 
cating validity of an entitlement to use a resource (e.g. to sign 
onto a World WideWeb site). 
0003 FIG. 1 illustrates digital certificate validation and 
revocation in a public key infrastructure. Digital certificates 
104 are used in public key infrastructures (PKI) to facilitate 
secure use and management of public keys in a networked 
computer environment. Users U1, U2, ... utilize their com 
puter systems 110.1, 110.2. . . . to generate respective key 
pairs (PK, SK) where PK is the public key and SK is the secret 
key. FIG. 1 shows a key pair (PK, SK) for user U1. The 
users register their public keys PK, over a network, with a 
certification authority (CA) 120. Alternatively, the key pairs 
can be generated by CA 120 and sent to the users. CA 120 is 
a secure, trusted computer system. For each public key PK, 
CA 120 generates a digital certificate 104. Certificate 104 
contains the public key PK and the user's name and/or email 
address or addresses, may also contain the certificate's serial 
number SN (generated by the CA to simplify the certificate 
management), the certificate issue date D1, the expiration 
date D2, an identification of algorithms to be used with the 
public and secret keys, an identification of the CA120, and 
possibly other data. The data mentioned above is shown at 
104D. Certificate 104 also contains CA's signature 104-Sig 
on the data 104D. The signature is generated using CAs 
secret key SK. CA 120 sends the certificate 104 to the 
user's (key owner's) computer system 110. Either the owner 
or the CA120 can distribute the certificate to other parties to 
inform them of the user's public key PK. Such parties can 
verify the CA's signature 104-Sig with the CA's public key 
PK to ascertain that the certificate's public key PK does 
indeed belong to the person whose name and email address 
are provided in the certificate. 
0004. A certificate may have to be revoked prior to its 
expiration date D2. For example, the certificate owner Umay 
change his affiliation or position, or the owner's private key 
SK, may be compromised. Other parties must be prevented 
from using the owner's public key if the certificate is revoked. 
0005 One approach to prevent the use of public keys of 
revoked certificates is through a certificate revocation list 
(CRL). ACRL is a signed and time-stamped list issued by CA 
120 and specifying the revoked certificates by their serial 
numbers SN. These CRLs must be distributed periodically 
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even if there are no new revoked certificates in order to pre 
vent any type of replay attack. The CRL management may be 
unwieldy with respect to communication, search, and Verifi 
cation costs. The CRL approach can be optimized using so 
called delta-CRLs, with the CA transmitting only the list of 
certificates that have been revoked in the previous time period 
(rather than for all time periods). The delta-CRL technique 
still has the disadvantage that the computational complexity 
of verifying that a certificate is currently valid is basically 
proportional to the number of time periods, since the verifier 
must confirm that the certificate is not in any of the delta 
CRLS. 

0006 Certificate revocation trees (CRTs) can be used 
instead of CRLs as described in 15 (the bracketed numbers 
indicate references listed at the end before the claims). 
0007 Instead of CRLs and CRTs, CA 120 could answer 
queries about specific certificates. In FIG. 1, user U2 issues a 
query 150 with the serial number SN of certificate 104 of user 
U1. CA 120 responds with a validity status information 160 
containing the serial number SN, a validity status field 160VS 
(“valid, “revoked' or “unknown), and a time stamp “Time'. 
The response is signed by CA (field 160-Sig). This 
approach is used for Online Certificate Status Protocol 
(OCSP). See 23. Disadvantageously, the CA's digital signa 
ture 160-Sig can be quite long (over 1024 bits with RSA), 
especially since the CA must be very secure. In addition, if 
CA 120 is centralized, the CA becomes a validation bottle 
neck. If CA 120 is decentralized (replicated), the security is 
weakened as the CA's signing key SK is replicated. 
0008 FIG. 2 illustrates a “NOVOMODO approach, 
which allows CA 120 to provide an unsigned validity status 
through untrusted directories 210 at pre-specified time inter 
vals (e.g. every day, or every hour, etc.). Directories 210 are 
computer systems that do not store secret information. The 
system works as follows. 
0009 Letfbe a predefined public length-preserving func 
tion 

10010 f: {0,1}"->0,1" 
where {0,1}" is the set of all binary strings of a length n. Let 
f denote the f-fold composition; that is, f(x)=x for i=0, and 
f(x)=f(f(x)) for i>0. Letfbe one-way, i.e. given f(x) where 
X is randomly chosen, it is hard (infeasible) to find a pre 
image Z such that f(z)=f(x), except with negligible probabil 
ity. “Infeasible” means that given a security parameterk (e.g. 
kn), the pre-image Z cannot be computed in a time equal to 
a predefined polynomial ink except with negligible probabil 
ity. Let us assume moreover that f is one-way on its iterates, 
i.e. for any i, given y=f(x), it is infeasible to find Z such that 
f(z)=y. 
0011 We can assume, without loss of generality, that CA 

is required to provide a fresh validity status every day, and the 
certificates are valid for one year, i.e. 365 days (D2-D1-365 
days). To create a certificate 104 (FIG. 2), CA 120 picks a 
random 'seed number X and generates a "hash chain co, c. 
... c.36s wherein: 

We will sometimes denote x as x(SN) for a certificate with a 
serial number SN, and similarly cc.(SN) where i=0, 1,.... 
The value cois called a “validation target'. CA 120 inserts Co 
into the certificate 104 together with data 104.D (FIG. 1). CA 
120 also generates a random revocation seed number No. 
computes the “revocation target N=f(No), and inserts N 
into certificate 104. CA 120 keeps all c, secret for i>0. The 
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values X and No are also secret. Clearly, all c, can all be 
computed from X, and the validation target co can be com 
puted from any c, CA 120 stores in its private storage the 
values x and No for each certificate 104, and possibly (but not 
necessarily) caches the c, values. 
0012 Every day i (i=1,2,... 365), a certificate re-valida 
tion is performed for the valid certificates as follows. For each 
certificate 104, CA distributes to directories 210 a validation 
data structure which includes, in addition to a validity status 
indication (not shown in FIG.2, can be “valid’ or “revoked): 
0013 1. the certificate’s “i-token” c, if the certificate is 
valid on day i; 

0014 2. the revocation seed No if the certificate has been 
revoked. 

(We will call c, a “validity proof, and No a “revocation 
proof.) This information is distributed unsigned. Each direc 
tory 210 provides this information, unsigned, to a requester 
system 110 in response to a validity status request 150 (FIG. 
1). To verify, the requester (verifier) 110 performs the follow 
ing operations: 
0015 1. If the validity status is “valid', the verifier 110 
checks that f(c.) co 

0016. 2. If the validity status is “revoked, the verifier 110 
checks that f(N)=N. Despite the validity information 
being unsigned, the scheme is secure because given c., it is 
infeasible to compute the Subsequent tokens c. c. 2, . . . 

0017. To reduce the communication between CA120 and 
directories 210, a hash chain (1) can be generated for a set of 
certificates 104, and a single i-token c, can be distributed for 
the set if the set is “unrevoked' (i.e. all the certificates are 
unrevoked in the set). The certificate 140 will contain a sepa 
rate target co for each set containing the certificate and asso 
ciated with a hash chain (see 1). 
0018 Certificate revocation can also be performed using 
accumulators. See 37. An accumulator is a way to combine 
a set of values (e.g. a set of valid certificates) into a shorter 
value. A formal definition of a “secure” accumulator is given 
in Appendix A at the end of this disclosure before the claims. 
An accumulator example can be constructed as follows. Let 
us denote all possible values that can be accumulated as p, . 
... p. (For example, each p, can be a unique number assigned 
to a certificate, and we want to accumulate the values corre 
sponding to the valid certificates.) Suppose Vo is the accumu 
lator value for the empty set. Let f be a one-way function. To 
accumulate p, we compute the accumulator as follows: 

Now to accumulate p, we set the accumulator to be v f(v. 
pa), and so on. More generally, the accumulator value for 
Some set {p, . . . . Pit. 

v(p; . . . . pl.) f(f(. . . f(vo, pi) . . . ), pi) (3) 
The function f can be chosen such that the accumulation 
order does not matter, i.e. 

f(f(1, p.), p.)-f(f(v, p.), p.) (4) 

(this is the “quasi-commutative' property). 
0019. In each period, CA 120 can send to the directories 
210 a pair (v, t) where V, is the accumulator value for the set 
of the valid certificates, and t is a time stamp. The directories 
can respond to queries 150 with some proof that the accumu 
lator value V, accumulates the value p, corresponding to the 
certificate of interest. 
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0020. A common accumulator is an RSA accumulator 
defined as follows: 

f(; p)=v mod in (5) 

where p is a positive integer, and n=qq is the product of large 
prime numbers q and q. In this case, 

v(p, . . . 
0021. The certificate validation is performed as follows. 
Without loss of generality, suppose that the values p, ..., p. 
correspond to the valid certificates in a period j. Then the 
accumulator value distributed by CA120 to directories 210 is 

,p})=vil: P. mod n (6) 

v=yof P. modin (7) 

If a verifier 110 inquires a directory 210 of the status of a 
certificate corresponding to the value p, which is one of p, .. 
., p, the directory sends to the verifier the accumulator value 
V, and a “witness” value 

s=vo ..ai-lail. . . an modin (8) 

The verifier checks that 

s, p=y, mod n (9) 

If this equality holds, the certificate is assumed to be valid. 
(0022. The witness s, , is hard to forge provided that it is 
hard to compute the p-th root of V. The p-th root computa 
tion is hard if the adversary does not know the factorization of 
in and the strong RSA assumption is valid (this assumption is 
defined in Appendix A). However, it is possible to keep p, and 
S., secret. For example, instead of providing the values s, , 
and p, to the verifier, the verifier can be provided with a proof 
that Such values exist and are known to the certificate owner. 
0023. Accumulators can be used more generally to prove 
that an element satisfies some pre-specified property. 

SUMMARY 

0024. This section summarizes some features of the inven 
tion. Other features are described elsewhere in this disclosure. 
The invention is defined by the appended claims. 
0025. In some embodiments of the present invention, 
accumulators are constructed using modular roots with expo 
nents corresponding to the accumulated values. For example, 
Suppose we need an accumulator to accumulate all the ele 
ments that possess Some property (e.g. all the valid certifi 
cates) or all the elements that do not possess that property 
(e.g. all the revoked certificates). We will associate each ele 
ment with an integer greater than 1. Let PP {p,...,p} be 
the set of integers associated with the elements to be accu 
mulated (as in (7)), and denote the product of these integers as 

(10) 

(By definition herein, the product of the empty set of numbers 
is 1: i.e. P-1 if PP is empty.) In some embodiments, the 
accumulator value represents the P-th root of some value u, 
C.2. 

=u' modn (11) 
In some embodiments, the following advantages are 
achieved. 
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0026. Suppose the value (11) accumulates valid digital 
certificates. The value (11) can be modified by exponentiation 
to de-accumulate all the values p, except for Some given value 
p, i.e. to compute 

pl. . . Pi-LPi+1 . . . Pm = 1. Fi (12) 

This exponentiation can be performed by a directory 210 or 
by the certificate owner's system 110, without knowledge of 
factorization of the modulus n. The value (12) is the accumu 
lator value as if p, were the only accumulated value. The 
witness value needed for verification can also be computed as 
if p, were the only accumulated value. The verification (the 
authentication) can be performed using the values that do not 
depend on accumulated values other than p. Alternatively, the 
verification can be performed with the accumulator and wit 
ness values that incorporate some other accumulated values 
but not necessarily all the accumulated values. Therefore, if a 
directory 210 or a user 110 are responsible for providing 
validity proofs for less than all of the certificates, the directory 
210 or the user 110 (the “validity prover) can use an accu 
mulator that accumulates less than all of the valid certificates. 
In some embodiments, this feature reduces the number of 
computations needed to be performed by all of the provers. 
0027. In some embodiments, the value u-u() can depend 
on the time period for which the authentication is provided 
(unlike the value Vo in (7)). Therefore, the time stamp t can be 
omitted. 
0028. In some embodiments, the accumulator accumu 
lates the revoked certificates rather than the valid certificates. 
In some embodiments, the witness values for an integer p, 
depend on other p values. 
0029. In some embodiments, the witness values are used 
as encryption keys for encrypting validity proofs. The validity 
proofs can be constructed using a non-accumulator based 
validation system, e.g. as in FIG. 2. For example, let c.(i) 
denote the token c, for the period j for a certificate 140i, 
where c, is formed as in (1). At the set-up time, when a user 
system 110 joins the certificate validation system, the CA 
generates the tokens c,(i) for all the periods j for the user. The 
CA also generates the witness values for all the periodsj. The 
CA encrypts each token c.(i) under a key equal to (or obtained 
from) the witness value for the period j, under a symmetric 
encryption system. CA120 transmits all the encrypted values 
to the user. 
0030. In each period, if the certificate 140.i is still valid, 
CA 120 transmits the decryption key (the witness value) for 
the period to the user, enabling the user to recover the token 
c.(i). The user provides the token to the verifiers to proof the 
certificate validity as described above in connection with FIG. 
2. 
0031. Some embodiments of the invention are suitable for 
limited bandwidth or low reliability networks, for example in 
adhoc networks, where the nodes 110 may have low compu 
tational and transmission power, and where the nodes may 
have only incomplete information about the topology of the 
network. (An ad hoc network is a self-configuring wireless 
network of mobile routers.) 
0032 Some embodiments are communication and storage 

efficient. 
0033. The invention is not limited to the features and 
advantages described above. Other features are described 
below. The invention is defined by the appended claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0034 FIGS. 1, 2 are block diagrams illustrating prior art 
certificate revocation schemes. 
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0035 FIG. 3 illustrates a digital certificate according to 
Some embodiments of the present invention. 
0036 FIG. 4 is a flowchart of operations performed by a 
certification authority (CA) in initial certification according 
to some embodiments of the present invention. 
0037 FIG. 5 is a block diagram illustrating certificate 
re-validation operations performed by a CA according to 
Some embodiments of the present invention. 
0038 FIG. 6 is a flowchart of witness derivation opera 
tions according to some embodiments of the present inven 
tion. 
0039 FIG. 7 is a flowchart of authentication according to 
Some embodiments of the present invention. 
0040 FIG. 8 is a block diagram showing data transmitted 
over networks in de-accumulation operations according to 
Some embodiments of the present invention. 
0041 FIG. 9 is a state diagram illustrating accumulator 
transmissions according to Some embodiments of the present 
invention. 
0042 FIG. 10 is a block diagram showing data transmis 
sions in determining the network paths according to some 
embodiments of the present invention. 
0043 FIG. 11 is a flowchart of operations performed by a 
certification authority (CA) in initial certification according 
to some embodiments of the present invention. 
0044 FIG. 12 is a block diagram illustrating certificate 
re-validation operations performed by a CA according to 
Some embodiments of the present invention. 
0045 FIG. 13 is a flowchart of witness derivation opera 
tions according to some embodiments of the present inven 
tion. 
0046 FIG. 14 is a flowchart of authentication according to 
Some embodiments of the present invention. 

DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0047. The embodiments described in this section illustrate 
but do not limit the invention. The invention is defined by the 
appended claims. 
0048. In the following description, numerous details are 
set forth. However, the present invention may be practiced 
without these details. Some portions of the detailed descrip 
tions that follow are presented in terms of algorithms and 
symbolic representations of operations on data bits within a 
computer memory. These algorithmic descriptions and rep 
resentations are the means used by those skilled in the data 
processing arts to most effectively convey the Substance of 
their work to others skilled in the art. An algorithm is here, 
and generally, conceived to be a self-consistent sequence of 
steps leading to a desired result. The steps are those requiring 
physical manipulations of physical quantities. Usually, 
though not necessarily, these quantities take the form of elec 
trical or magnetic signals capable of being stored, transferred, 
combined, compared, and otherwise manipulated. It has 
proven convenient at times, principally for reasons of com 
mon usage, to refer to these signals as bits, values, elements, 
symbols, characters, terms, numbers, or the like. 
0049. It should be borne in mind, however, that all of these 
and similar terms are to be associated with the appropriate 
physical quantities and are merely convenient labels applied 
to these quantities. Unless specifically stated otherwise as 
apparent from the following discussion, it is appreciated that 
throughout the description, discussions utilizing terms such 
as “processing or “computing or "calculating or “deter 
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mining or “displaying or the like, refer to the action and 
processes of a computer system, or some computing device, 
that manipulates and transforms data represented as physical 
(electronic) quantities within the computer system's registers 
and other storage into other data similarly represented as 
physical quantities within the computer system storage, 
transmission or display devices. 
0050. The present invention also relates to apparatus for 
performing the operations herein. This apparatus may be 
specially constructed for the required purposes, or it may 
comprise a general-purpose computer selectively activated or 
reconfigured by a computer program stored in the computer. 
Such a computer program may be stored in a computer read 
able storage medium, Such as, but is not limited to, any type of 
disk including floppy disks, optical disks, CD-ROMs, and 
magnetic-optical disks, read-only memories (ROMs), ran 
dom access memories (RAMs), EPROMs, EEPROMs, mag 
netic or optical cards, or any type of media Suitable for storing 
electronic instructions, and each coupled to a computer sys 
tem. 

0051. Some of the algorithms presented herein are not 
inherently related to any particular computer or other appa 
ratus. Various general-purpose systems may be used with 
programs in accordance with the teachings herein, or it may 
prove convenient to construct more specialized apparatus to 
perform the required operations. The required structure for a 
variety of these systems will appear from the description 
below. In addition, the present invention is not described with 
reference to any particular programming language. A 
machine-readable medium includes any mechanism for Stor 
ing or transmitting information in a form readable by a 
machine (e.g., a computer). For example, a machine-readable 
medium includes read only memory (“ROM); random 
access memory (RAM); magnetic disk storage media; opti 
cal storage media; flash memory devices; electrical, optical, 
acoustical or other form of propagated signals (e.g., carrier 
waves, infrared signals, digital signals, etc.); etc. 

Preliminaries 

0052 Model And Notation. 
0053. In our model, we have a certification authority CA, 
a certificate owner or holder Owner, and a certificate verifier 
VV. Here Owner has a certificate issued by CA. The concept 
of a certification authority may apply more generally to any 
authority responsible for issuing access control privileges or 
authorizations to a plurality of individuals. The concept of an 
owner may be tied to a specific human being or organization 
operating a computer or to the computer itself, e.g. a world 
wide web server. Similarly, the verifier may be tied to a 
specific human being or organization operating a computer or 
to the computer itself, e.g. an access control server determin 
ing if it should permit access to certain services. 
0054. In a given transaction, VV wishes to ascertain that 
the certificate has not been revoked prior to its expiration date. 
To do so, VV must obtain a proof of validity or a proof of 
revocation that is or has been issued by the certification 
authority CA. VV may obtain this proof either from the CA 
directly, or through some other distribution mechanism. 
0055 We let {0,1}* denote the set of all bit strings. For a 
bit strings, we denote its length by Is. We let H denote a 
cryptographic compression function that takes as inputab-bit 
payload as well as a V-bit initialization vector or IV, and 
produces a V-bit output. We assume be2v, which holds for all 
well-known constructions in use. For the constructions we 
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describe here, we typically take b-2V. We assume these cryp 
tographic compression functions are collision resistant; that 
is, finding two distinct inputs mizm. Such that H (IV, m)-H 
(IV, m) is difficult. We assume that the IV is fixed and 
publicly known. For notational simplicity, we will not always 
explicitly list IV as an argument in the hash function. A 
practical example of such a cryptographic compression func 
tion is SHA-126. SHA-1’s compression function has an 
output and IV size of 20-bytes and a 64-byte payload size. In 
many embodiments, we will not need to operate on data larger 
than the compression function payload size; however there 
are numerous standard techniques such as iterated hashing or 
Merkle-trees 19 for doing so. For simplicity, we will use the 
term hash function instead of compression function, where it 
is understood that a hash function can take arbitrary length 
strings {0,1}* and produce a fixed length output in {0,1}''. 
0056. In practice, one often constructs a length preserving 
function that is one way on its iterates by starting with a hash 
function H and padding part of the payload to make it length 
preserving. 
0057 Finally, for a real number r, we set r to be the 
ceiling of r, that is, the Smallest integer value greater than or 
equal to r. Similarly, r denotes the floor of r, that is, the 
largest integer value less than or equal to r. 
0.058 Let Abe an algorithm. By A() we denote that A has 
one input. By A(, ....) we denote that A has several inputs). 
By A we will denote that A is an indexed family of algo 
rithms. ye-A(X) denotes thaty was obtained by running A on 
input X. In case A is deterministic, then this y is unique; if A 
is probabilistic, theny is a random variable. If S is a set, then 
ye-S denotes thaty was chosen from Suniformly at random. 
Let b be a boolean function. The notation (ye-A(x):b(y)) 
denotes the event that b(y) is true after y was generated by 
running A on input X. Finally, the expression 

denotes the probability that b(x) is TRUE after the value x, 
was obtained by running algorithms A. . . . A on inputsy, 

y, 

Accumulation of Valid Certificates 

0059. Some accumulator schemes will now be described 
with respect to the digital certificate validation. These 
schemes can also be used for other authentication operations 
as described above. 
0060. To simplify the description, we will assume that 
each certificate owner Ui operates just one system 110.i and 
owns at most one certificate. This is not in fact necessary. 
0061 CA Set-Up. 
0062. The CA 120 generates a composite modulus n. In 
Some embodiments, n is the product of two primes, but in can 
also be the product of three or more primes. In some embodi 
ments, n is public, but n is hard to factor, and the factorization 
is known only to the CA120. 
0063. Initial Certification (FIG. 4): 
0064 Suppose the i-th useru, joins the system in or after 
Some time periodjo. At step 410, the CA assigns a positive 
integer p, to u. The numbers p, are chosen to be mutually 
prime with the modulus n. Also, each p, does not divide the 
LCM (lowest common multiple) of the remaining numbers p, 
1zi. For example, the numbers p, ..., p, can be distinct prime 
numbers, or pairwise relatively prime. 
0065. The CA computes a unique public value me(Z/ 
nZ) for the user u?. (Z/nZ is the ring of all residue classes 
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modulo n, and (Z/nZ)* is the multiplicative group of the 
invertible elements of Z/nZ, i.e. of the elements defined by 
integers mutually prime with n.) In some embodiments, 

where H is a predefined function, e.g. a one-way collision 
resistant function, u, is the user identification (e.g. user name), 
and w, is an optional string (which may containu,’s public key 
and/or some other information). The value m, thus binds p, to 
us identity. If desired, any one or more of the values, p, m, 
and the identification of the function H can be made part of 
the certificate 140. See FIG. 3 showing a certificate 140 
containing mi, and specifying the functions H and H. (H. 
is described below). 
0066. At step 420, the CA computes an “initial certificate' 
value 

Sim; lipi (mod n) (14) 

The CA keeps this value secret, and transmits it to the useru,’s 
system 110 in an encrypted form. 
0067. Certificate Re-Validation by CA in Time Periodj 
(FIG. 5): 
0068. At the start of, or shortly before, the period, the CA 
performs the following operations. Lett denote the total num 
ber of users in the system (i.e. the total number of users for 
whom the initial certification of FIG. 4 has been performed). 
Let UU denote the set of these users: UU={u,...., u}. PP 
denotes the set of the corresponding p numbers: PP={p, ... 
, p}. Let UUC UU be the subset of users that are to be 
re-validated in periodj. Let PPC PP be the corresponding set 
of numbers p, and let 

P=ate PPF (15) 

i.e., P, is the product of the integers in PP. (By definition, the 
product of the empty set of numbers is 1.) The CA computes 

where H is the same as H or some other function. The CA 
also computes the accumulator 

Of note, in some embodiments, the root in (17) exists with a 
very high probability. 
0069. The CA transmits the following data to the system 
110 of each user in UU (this data can also be broadcast to a 
larger set of users if Such broadcast transmission is more 
efficient in terms of communication): 
10070) 1. v. 
(0071) 2. the list of users in UU which may be just the list 
of numbers p, in PP. (Since there can be overlap among 
these lists for different periods j, the CA can simply trans 
mit the information that has changed since the previous 
period; in this case, the CA transmits the list of numbers in 
PP, to each new user at step 430 of FIG. 4.) 

0072 Personal Accumulator and Witness Derivation by 
Users (FIG. 6): 
(0073. At step 610, each useru, in UU, computes its “per 
sonal accumulator” V,(p.), i.e. the accumulator which accu 
mulates only the user's p, value: 

v, p.)=(h/h )' (mod n) (18) 
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This value is computed from the v, value (17) by exponentia 
tion: 

I (19) 

At step 620, the user aggregates this personal accumulator 
with previous personal accumulators to obtain a witness for 
the periodj: 

sis, v, p.) S-1 (h/h, )' (mod n) (20) 
The equations (20) and (14) imply that 

sis, (h/h)' (mod n) (21) 
(0074. User Authentication (FIG. 7): 
(0075) A useru, can provides, to the verifier, along with (if 
necessary) the values for (u, p, jo, w). At Step 710, the 
verifier: 
0076 1. computes m, from (13) or obtains it from the 
certificate 140 (FIG. 3): 

10077 2. computes hi-H.G) and h, H.G.) (see (16); and 
0078. 3. confirms that 

s, f=m,h/h (mod n) (22) 
0079 Alternative User Authentication: 
0080. Instead of giving the witness s, , to the verifier, the 
user can use s, , as a private key in an identity-based GQ 
(Guillou-Quisquater) signature scheme. This scheme is 
described in Appendix B at the end of this disclosure before 
the claims. The CA performs the functions of GQ's PKG 
(private key generator); GQ's parameters are set as follows: 
B-S, V p, and J=m, mod n. The authentication proceeds 
as follows: 
I0081. The verifier sends to the user a random message m. 
I0082. The user generates a random number r and com 
putes: 

where H is some predefined public function (e.g. Hor H). 
The user sends the values m, r, and D to the verifier. 
I0083. The verifier computes J-m, mod n and checks that 
the following equations hold: 

I0084. This scheme may reduce total bandwidth because 
the verifier does not need the certificate 140. Note: for the GQ 
signature scheme to be secure, it is desirable that each 
p >2 60. 
0085 Remarks. 
I0086) 1. First, scan be computed in some other way, not 
necessarily as in (14). 
I0087 2. Anonymous Authentication. 
I0088. If we want to allow the user nodes 110 to sign 
messages anonymously—i.e., to be able to authenticate them 
selves as users that have been certified by the CA, but without 
revealing their actual identities—we can handle initial certi 
fication differently. For example, instead of (13), the CA can 
set m, to be independent of the user's identity, e.g.: 

The m, value is then provided to the user. To hide the fact that 
the m, value is provided to the user, the m, value may be 



US 2010/0153714 A1 

transmitted to the user via a secure channel (e.g., by encrypt 
ing this value Such that only u, can decrypt it). Then, it follows 
from (14) and (21) that: 

s=h, "Pi (mod n) (26) 

0089. As mentioned below in Appendix A, there are effi 
cient Zero-knowledge (ZK) proofs through which useru, can 
prove, in the j" time period, that it knows a p" root of h, 
modulo n for Some (unrevealed) numberp that is contained in 
a specified interval I of integers, i.e. 

See 41, 42. The interval I can be an interval containing all 
the numbers p,. Using this scheme, the user can authenticate 
itself anonymously if and only if it has obtained an initial 
certificates, and the subsequent personal accumulator val 
ues V,(p.) (see (18), (19)). 
The CA can revoke the user as before i.e., by not re-vali 
dating it (not including p, in the product P, in FIG. 5). 
0090. As mentioned above, the accumulator techniques 
are not limited to a user possessing a single certificate or to a 
digital certificate revocation. For example, a useru, may or 
may not possess one or more of entitlements e. e. . . . e. 
During initial certification, the user u, is assigned a unique 
integer p, if the user is to be certified for an entitlement e. 
The entitlement proof proceeds as described above with 
respect to equations (13)-(26), with numbers p, replaced by p, 
k with s, , replaced by s, , , etc. 
0091. In some of these embodiments, however, a value p, 

is computed as the product of P. For example, if the user is 
initially certified for all the entitlements, then: 

P; Pi, 1 . . . Pi, - (27) 

In some embodiments, the integers p, are mutually prime 
relative to each other and to the CA's modulus n. The useru's 
initial certificate is s, m,'” (mod n) as in (14), and u, can 
use exponentiation to de-accumulate all the values p, except 
a selected value p, for some k: 

4. Pit (28) lip; 
Sikio - m" i.k (modn) = s. 

The user can use this value to demonstrate that it possesses the 
entitlement that corresponds to prime p, without revealing 
the user's other entitlements. The CA can revoke a specific 
entitlement e, for the user without revoking the user's other 
entitlements, simply by issuing a validation accumulator in 
(17) that does not accumulate p, (i.e. the product P, is 
computed as in (15) except that p, is replaced with p?p, (the 
numberp, is not included in the product)). If the user wants 
to sign anonymously and unlinkably, then the user cannot 
reveal its specific value of p, but it would seem to make it 
difficult for a verifier to determine what entitlement the user is 
claiming (if the verifier cannot see the value of p, ). We can 
get around this problem by, for example, associating each 
entitlemente to a range of integers I. This range will contain 
all the p, values for all the users u, initially certified to have 
the entitlement e. The ranges I do not overlap in some 
embodiments. Then the user can prove in ZK that it possesses 
a modular p-th root (for some unrevealed number p in the 
range I) of the appropriate value, i.e. the user can provide the 
following proof of knowledge: 

PK{(C, B): CP=C mod in Ape1} (29) 
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where C-mh/h or C-h, (see (21), (26)). See 41), (42). The 
user can also prove that it possesses multiple entitlements 
simultaneously, e.g., by proving (in ZK if desired) its posses 
sion of ap"root for somep that is the product of (for example) 
two integers p and p in ranges corresponding to the claimed 
entitlements: 

See 41, 42. 

0092. Users Moving From Network to Network: 
0093 Suppose the CA has users (certificate owner sys 
tems) 110 in different networks, and the users move from a 
network to a network (e.g. Some of the networks may be ad 
hoc networks). The CA can calculate a separate accumulator 
(say, (17)) for each network. Each accumulator will accumu 
late only the valid users in the corresponding network based 
on the CA's knowledge of the current composition of users in 
each network. Each user will compute its personal accumu 
lator value and/or witness value (e.g., as in (18), (20), (26), 
and/or (28)). The user can move to another network and use 
the same personal accumulator value and/or witness value in 
the other network. 
0094 Aggregation of Personal Accumulators: 
0.095 Multiple personal accumulators can be aggregated 
into a single value, in order to save bandwidth; from this 
aggregated value, a verifier can batch-verify that multiple 
users are indeed certified. For example, in the scheme of 
equations (17), (22), user u (if it is still valid) possesses a 
personal values, that satisfies 

where m, as in (13), and j, , is the periodj for the user u, 
Denote 

zi-m;(h/h, )(mod n). (32) 
Then, for multiple users in period, their personal values can 
simply be multiplied together 

t (33) 
S = Sii (modn) 

where t' is the number of users which take part in the aggre 
gation (or the number of certificates or entitlements belong 
ing to a user if each u, is a certificate or an entitlement). A 
verifier can use the value (33) to confirm that users (or cer 
tificates or entitlements) (u,..., u) are valid by confirming 
that: 

t I , f' (34) 
t' . II: Pi Sli=1 Pi = -P (modn) 

i=1 

0096 De-Accumulation. 
0097 We will now discuss concrete approaches to the 
de-accumulation of values from the accumulator computed 
by the CA; however, we note that the CA does not need to 
compute a single accumulator value that accumulates all of 
the values associated to all of the valid nodes 110 in the 
network. Instead, the CA can use a tradeoff, which we now 
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describe. De-accumulation is somewhat computationally 
expensive. Procedure Split (V.P) below performs de-accumu 
lation on an accumulator V that accumulatest k-bit numbers 
P={p,}; the procedure's outputist personal accumulators; the 
execution time is O(t log t) (where we consider k to be a 
constant). Let us denote the accumulator accumulating an 
empty set of values as u (in equation (17), u=h()/h (i-1)). 

Then 

0098 
u=y"pi" (mod n). (35) 

0099 Procedure Split(v.P): 
0100 1. Split the set Pinto two disjoint halves P, and P. 
10101) 2. Compute v=v"p (mod n); this is the accu 
mulator for the set P. 

0102. 3. Compute v = "Pi" (mod n); this is the accu 
mulator for the set P. 

(0103 4. If P has only one member, output (v, P.), 
otherwise call Split (v, P). 

0104 5. If P has only one member, output (v. P.), 
otherwise call Split (v. P.). 

End of Split (v.P) 
0105. As a rule of thumb, exponentiating a number 
modulo n by a product oft' numbers takes time proportional 
to t'; thus, the first split operation (steps 2 and 3 in procedure 
Split(V.P)) is the most expensive one in the recursion above. 
(Actually, since there are t distinct numbers (p. . . . . p.), the 
p, are O(log t) bits apiece on average, so that the exponentia 
tion is proportional to t' log t'; since the Split algorithm can 
recurse to a depth of logt', the overall computation complex 
ity is t log t.) To reduce the amount of de-accumulation that 
needs to be performed, the CA can (for example) compute 
two accumulators—one for each of two halves P, and P. of 
P and transmit these two accumulators to the users, thereby 
allowing the users to skip the first split operation and thereby 
reducing their computation. The CA can reduce their compu 
tation further by transmitting even more accumulators, each 
for an even Smaller Subset of the users. In computing these 
multiple accumulators, it is advantageous for the CA to use its 
knowledge of the current network topology to enhance the 
performance of the scheme. For example, Suppose that the 
users are divided into several (say, 10) topological areas. 
Then, instead ofusing one product of integers P, as in (15), the 
CA can compute 10 such products P 1, ..., P., o, and 10 
area-specific accumulators (h/h)" is *. The CAthen trans 
mits each one of these 10 area-specific accumulators to the 
respective one of the 10 topological areas (along with a list of 
the re-validated users in that area). Users in a given area can 
compute their personal accumulators and witnesses from the 
area-specific accumulators. 
0106 De-accumulation is also relevant to how the per 
Sonal accumulators (18)-(19) are computed. Clearly, in terms 
of computation, it is non-optimal for each of the t users to 
perform de-accumulation (18), (19) independently; doing it 
this way would entail O(t) computation (actually, worse, 
since the size of the p, must grow at least as fast as log t). In 
Some embodiments, the users compute their personal accu 
mulators cooperatively, as illustrated, for example, in FIG. 8 
and described below. 
0107 If the performance metric is minimum communica 

tion, a simple broadcast by the CA of the accumulator (17) to 
tusers (see FIG. 5) is a good way of accumulator distribution. 
This results in overall communication of O(t). However, over 
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all computation is at least O(t) because each oft users has to 
perform t-1 exponentiations on the same accumulator. 
(0108) Referring to FIG. 8, let PP, be the set of valid users 
(i.e. the set of the p numbers corresponding to the valid users). 
At the stage of FIG. 5 (re-validation), the CA sends the 
accumulator v,(PP) (see (17) for example) and the numbers p 
in the set PP, to a designated node 110 (also marked Din FIG. 
8). Node D divides the set PP, into sub-groups (sub-sets). In 
one example, the sub-group PP-0 includes one or more of 
nodes 110.0, 110.00, 110.01; the sub-group PP-1 includes 
one or more of nodes 110.1, 110.10, 110.11; the third sub 
group consists of node 110 itself if this is a valid node. Node 
D computes the accumulator V,(PP-0) for the sub-group 
PP-0, and the accumulator v,(PP-1) for the sub-group PP 
1. This computation can be performed by de-accumulating 
the nodes which are not sub-group members. See e.g. equa 
tion (19) and Procedure Split (V.P), steps 1 and 2. If node D is 
valid (i.e. its number p is in PP.), node D also computes its 
personal accumulator as in FIG. 6. Node D transmits the 
accumulator V,(PP-0), and the p numbers in the set PP-0, to 
node 110.0. Node D transmits the accumulatorv,(PP-1), and 
the p numbers in the set PP-1, to node 110.1. The nodes 
110.0, 110.1 perform the same operations as node D. In 
particular, node 110.0 divides the valid users PP-0 into 
sub-groups. In one example, the nodes 110.0, 110.00, 110.01 
are valid; the sub-group PP-0-0 consists of node 110.00; the 
sub-group PP-0-1 consists of node 110.01; the third sub 
group consists of node 110.0. The sub-groups are determined 
by node 110.0 from the p numbers in PP-0. Node 110.0 
computes accumulators v,(PP-0-0), V,(PP-0-1) for the 
respective sub-groups PP-0-0, PP-0-1, and also computes its 
personal accumulator as in FIG. 6. Node 110.0 transmits the 
accumulator V,(PP-0-0), and the corresponding p number, to 
node 110.00. Node 110.0 transmits the accumulator v,(PP 
0-1), and the corresponding p number, to node 110.01. The 
accumulators v,(PP-0-0), V,(PP-0-1) are personal accumula 
tors, so the nodes 110.00, 110.01 do not need to derive their 
personal accumulators. 
0109 Node 110.1 performs operations similar to those for 
node 110.0. 
0110. This procedure can be extended recursively to any 
number of nodes. The procedure is not limited to the “binary 
tree' type of FIG. 8. A node can split a set of users into any 
number of Sub-groups in addition to itself, possibly resulting 
in a non-binary-tree type operation. Also, in Some embodi 
ments, the accumulators are transmitted only to valid nodes. 
For example, if node 110 is invalid, then CA120 transmits the 
accumulator V,(PP) to a valid node instead. For communica 
tion efficiency, the Sub-groups are selected so that the com 
munications are efficient within each Sub-group. For 
example, in case of ad hoc networks, the Sub-groups can be 
selected based on geographic proximity, with the proximate 
nodes being grouped together. 
0111. Now, we describe one approach for selecting the 
Sub-groups, where nodes only have local topology informa 
tion. Roughly speaking, the idea is as follows. To partition (a 
portion of) the network, the designated node D chooses two 
“group heads' in the network, such as nodes 110.0, 110.1 in 
FIG. 8. (More than two group heads can also be selected.) 
These group heads can be chosen randomly. Alternatively, if 
the designated node has some topological information, it can 
use that information to attempt to choose the two group heads 
in a way that they are topologically distant preferably on 
opposite sides of the network from each other. After D picks 
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the two group heads, the designated node tells the two group 
heads to transmit different messages; for example, the desig 
nated node may tell the first group head to transmit 0 and the 
second to transmit 1. Then, each group head (e.g. 110.0, 
110.1) "floods” the network with its particular message. 
When this occurs, the other nodes in the network will either 
receive a ‘O’ first or the 1 first. Nodes that receive a ‘O’ first 
(e.g. nodes 110.00, 110.01) report back to the designated 
node D (or to the group head 110.0) that they are a member of 
the 0-group; the members of the 1-group report similarly. The 
designated node D (or the respective group heads) receives 
this information, and it de-accumulates the accumulator into 
two halves—one accumulator for the 0-group and one for the 
1-group. If the designated node performed this de-accumula 
tion (as in the procedure illustrated in FIG. 8), it passes along 
the appropriate accumulators to their corresponding group 
heads (110.0, 110.1). Then, each group head becomes the 
designated node for its corresponding Sub-network, and the 
entire process described above is repeated for the sub-net 
works. Now, we will provide more detail for one embodi 
ment. 

0112 At the beginning, there is only a single group PP of 
users which covers the whole network. Each recursion step is 
carried out in four phases as depicted in FIG. 9. The first 
recursion step is started by a node which is preferably located 
in the center of the network. We call this node the current 
designated node D. Node D executes the following four 
phases of recursion: 
0113 Search Group Heads (State 910): 
0114 Node D selects randomly two nodes out of its group 
as group heads GH0 and GH1. (For the sake of illustration, 
assume that node GHO is node 110.0 of FIG.8 or 10, and node 
GH1 is node 110.1). Node D sends out a broadcast message 
m with its group ID, the addresses of GHO and GH1. 
and a path variable containing D's address. All receiving 
nodes within the same group obtain a copy of the path and 
check if they are GH0 or GH1. If not, they add their address 
to the path variable in the message and forward it (broadcast 
it) once. The path variable provides each node with the path to 
D. FIG. 10 shows the messages m, transmitted by 
nodes D, 110.01, 110.10, 110.11. 
0115 Build Group (State 920): 
0116. If the receiver of m is either GH0 or GH1, it 
starts building a Sub-group by broadcasting a message matc. 
containing its address. If a receiver of m, which belongs 
to the same group hasn't already received a message from a 
group head and therefore, joined its Sub-group, he joins the 
Sub-group announced in m and forwards the message 
once. FIG. 10 illustrates the m messages broadcast by 
nodes GH0, GH1, 110.01, 110.10, 110.11, assuming that the 
node 110.01 received the mbuildG message from GH0 first, 
and nodes 110.10, 110.11 received the m message from 
GH1 first. 
0117 Report Group (State 930): 
0118. After some prescribed amount of time, all members 
of both Sub-groups start reporting their membership status to 
D. Therefore, they include their addresses together with their 
sub-group IDs 0 or 1 in the message m, and send it over 
the path obtained in phase 1 to D. To make the reporting more 
efficient, nodes which are more distant from D start the 
reporting first. Nodes on the path of mo add their sub 
group membership information to the message and forward it 
according to the path to D. Nodes having forwardedam 
don't initiate a report themselves. 

reportG 
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0119 Transmit Accumulator (State 940): 
0.120. After D has received all reports, it looks up the paths 
p0 to GH0 and p1 to GH1 included in the received reports, 
exponentiates the accumulator V, for its group to obtain the 
accumulators V(0) and V.(1) for the respective sub-groups, 
and sends the accumulators in respective messages mo 
over p0 to GH0 and m over p1 to GH1, respectively. 
Additionally to the accumulators V,(0) and V.(1), these mes 
sages contain a list of the corresponding Sub-group members. 
After reception of m, so Orms, respectively, GH0 
and GH1 become designated nodes D of their sub-groups and 
enter phase 910 of the next recursion step. The recursion ends 
if the Sub-group accumulator is a personal accumulator. 
I0121 Considering a set of all users UU with cardinality 
|UU|=2'-t, and equal distribution of each group PP into two 
groups of identical size IPPI/2, the recursion will end after R 
steps with a total number of t sub-groups of size 1. Here, we 
mention a few aspects of the scheme's computational and 
communication complexity, assuming that, at each step, the 
split is into approximately equal halves. 
0.122 Search Group Heads: 
I0123. Within a subnetwork of size t', this step requires 
O(t') messages, each of size logt (since it requires logt bits on 
average to specify a single member of a group of telements). 
Each message contains a path with average length C, Vt. 
Therefore, communication for this subnetwork is of O(t'Vt 
log t). If we assume that the partitions are always equally 
sized, the total communication of the entire recursive proce 
dure is also O(t'V' log t). 
(0.124 Build Group: 
0.125. This step involves a total of t messages, each of 
constant size, for communication complexity O(t). 
(0.126 Report Group: 
I0127 Group membership information of the nodes is 
transmitted over C*Vt hops, where C is a constant depend 
ing on the network density and reflecting the number of 
reports initiated: this results in communication of O(t' Vt log 
t). 
0.128 Transmit Accumulator: 
I0129. Accumulators together with group membership 
information oft nodes is transmitted over C*Vt hops, where 
C is a constant depending on the network density: this results 
in communication of O (t'Vt log t) and computation of O(tR 
log t)=O(t logit). 
I0130. Overall, the communication is O(tvt log t) and the 
computation is O(t log t). 
I0131) If we assume that there is an entity E of the network 
with less stringent limitations in terms of computational 
power and energy Such as the certification authority itself. 
another interesting opportunity arises. By acquiring some 
topology knowledge this entity may pre-de-accumulate the 
accumulator into accumulators for constant size groups. In 
detail, such a scheme works as follows: Some node C which 
holds the current accumulator for all users and has connec 
tivity to E initiates a distributed clustering algorithm of FIG. 
9. In a second step, C provides the clustering information to E 
and lets E perform the pre-de-accumulation for all clusters. 
Then C distributes the accumulators to the clusters. Suitable 
clustering algorithms have communication complexity of O(t 
Vt log t), but perhaps with a smaller constant factor than the 
approach described above. 
I0132 Briefly, we mention a distributed approach that 
splits a connected network into two connected Subnetworks, 
where neither subnetwork is more than twice the size of the 
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other. As before, we begin with a sub-network that has a 
designated node. We assume that the Sub-network is con 
nected, and that its topology is basically constant during the 
accumulator distribution (though it may change dramatically 
from period to period). The first step in the preferred algo 
rithm for achieving O(t log t) communication and O(t log t) 
computation is that, in a distributed fashion, the nodes of the 
sub-network establish an enumeration of themselves. This 
can be accomplished as follows. The designated node ini 
tiates the procedure by broadcasting a message. The nodes 
that receive the message transmit an acknowledgement mes 
sage back to the designated node, and they log the designated 
node as the node from which they received the message. The 
designated node logs the acknowledging nodes as the nodes 
that received its message. This process recurses throughout 
the network. Specifically, a node that received the message 
from the designated node broadcasts the message, and nodes 
that have not sent or received the message before log the 
identity of the node that they received the message from and 
they send back an acknowledgment, after which the sending 
node logs the acknowledgers. If a node receives the message 
more than once, it only logs and responds back to the first 
node that sent it. In this fashion, since the subnetwork is 
connected, every node in the Subnetwork (except the desig 
nated node) has a unique node from which it received the 
message, as well as a list of the nodes that received the 
message directly from it. Each node that has a nonempty list 
of acknowledgers chooses an arbitrary enumeration of those 
acknowledgers. In effect, from this procedure, we have con 
structed a tree (a graph with no loops) from the network, as 
well as an enumeration of all of the tree nodes given by the 
depth-first pre-order traversal of the tree. If the subnetwork 
has t' nodes, this procedure can be accomplished with O(t') 
communication and computation. 
0133. The next stage of the algorithm is to use the enu 
meration to approximately bisect the subnetwork. There are a 
variety of different ways of doing this. One method is that 
each node, beginning with the nodes with no acknowledgers, 
could back-transmit (backwards according to the enumera 
tion) the number of nodes in its subtree including itself; in this 
fashion, each node computes the number of nodes in its 
subtree. There must be exactly one node that has at least half 
of the nodes in its subtree, but such that none of its children 
have at least half. This node is designated to be the midpoint 
of the subnetwork. Now, viewing the midpoint point as the 
root of the tree, it divides its children into two groups, such 
that the number of nodes that are in a subtree emanating from 
one of the children in the first group is approximately equal to 
the number of nodes that are in a subtree emanating from one 
of the children in the second group. (This can always be 
accomplished such that ratio between the two numbers is at 
most two.) Thus, all of the network nodes except the midpoint 
become members of one of the two groups; the midpoint is 
considered to be a member of both groups. The step of com 
puting how many nodes are in each Subtree requires O(t'logt') 
communication, since there are t transmissions, where the 
size of each transmission (which is a number between 1 and t' 
representing how many nodes are in the given subtree) is log 
t' bits. Viewing the midpoint node as the root node, a new 
enumeration of the nodes is established with the midpoint 
node as the initiator of the message, beginning with the nodes 
in the first group. (This new enumeration could be computed 
as before, or it could actually be derived indirectly from the 
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previous enumeration. Either way, it does not add to the 
asymptotic communication complexity of the protocol, 
which is t logt overall.) 

Accumulator-Based Encryption of Validity Proofs 

10134) The personal accumulators v(p) and/or the witness 
values s, , (see e.g. equations (17), (20), (21), (26)) can be 
used to obtain symmetric keys that users can use to decrypt 
validation proofs under other validation systems. An example 
will now be given for the validation system obtained by 
combining the systems of FIGS. 2, 4-7, but this is not limiting. 
0135) Initial Certification: 
I0136. When a useru, joins the system, the CA: 
0.137 1. Generates the validation and revocation seeds X. 
No as in FIG. 2. 

(0138 2. Generates all the tokens c, for all the periodsj(see 
FIG. 2 and equation (1)). 

0.139. 3. Generates the certificate 140 as in FIG. 2 and 
transmits the certificate to the useru. 

0140 4. Performs the steps of FIG. 4, i.e. generates the 
values p, m, s, , and transmits S., to the validity prover 
(which can be the user u, and/or the directories 210). The 
values p, m, can also be transmitted to the prover. 

I0141 5. Generates all the witness values s, , (for all the 
periods) for the useru. Also generates the encryption keys 
K., of which is s, , or some function of s, , . 

I0142) 6. Encrypts each token c, (generated at step 2 in this 
procedure) with the encryption key K, under some 
encryption scheme (possibly a symmetric encryption 
scheme). Let us denote the encrypted c, value as E, 

(0.143 7. Transmits all the values E. (for alli) to the prover 
(i.e. the directories 210 and/or the certificate owner u). 

0144. Re-Validation by CA: 
0145 At the start of, or shortly before, each period, the 
CA: 

0146 1. Performs the procedure of FIG. 5, i.e. computes 
and broadcasts the accumulator value V, and the list of valid 
p numbers to the provers. 

I0147 2. If the useru,’s certificate is invalid, the CA trans 
mits the revocation seed No to the prover corresponding to 
the certificate (e.g. to the useru, and/or the directories 210). 

0148 Proof Derivation by the Prover: 
0149. If the useru's certificate is valid (as indicated by the 
transmission of number p, in the RE-VALIDATION proce 
dure at step 1), the prover: 
(O150 1. Performs the procedure of FIG. 6 to derive the 
witness values, 

(0151] 2. Obtains the decryption key K, from s, 
(0152. 3. Decrypts E, to recover 
0153. Authentication (Validity Proof): As in FIG. 2. 
0154) Many variations are possible. For example, the 
decryption keys can be some different function of s, than the 
encryption keys. 

Accumulation of Revoked Certificates 

0.155. Above, we have described an approach in which an 
accumulator accumulates the valid certificates; an alternative 
approach is to accumulate revoked certificates. The valid 
certificates’ owners (or validity provers) then use the 
"dynamic' feature of dynamic accumulators to compute a 
new accumulator for the valid nodes, and to compute their 
personal accumulators with respect to this new accumulator. 
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0156. As before, we will assume for the sake of illustration 
that each user operates a corresponding computer system 110 
and owns at most one certificate 140. This is not limiting, as 
a user may own multiple certificates and/or operate multiple 
systems 110. The scheme is also applicable to controlling 
resource access and other kinds of authentication. We will use 
the word “user” to denote both the system 110 and the sys 
tem's operator where no confusion arises. As described 
below, each useru, will be assigned a positive integer p, with 
the same properties as in the scheme of FIGS. 4-7 (e.g. p, are 
mutually prime relative to the CA's public composite modu 
lus n and to each other). The symbols n, PP, p, will be as in the 
scheme of FIGS. 4-7. In particular, PP is the set of the p, 
numbers. 
I0157 For each periodj, the symbol QQ, will denote the set 
of the revoked p, numbers (i.e. the set of the p, numbers 
corresponding to the certificates to be declared as revoked in 
period j). Q, denotes the product of the numbers in QQ.: 

Q, Jpegg, (36) 
The symbol C. will denote an accumulator seed, which is an 
integer mutually prime with the modulus n. The accumulator 
of the values in Q, is: 

y-a'ei mod in (37) 

(0158) Let RR, QQ-QQ, , i.e. RR, is the set of the p 
numbers corresponding to the certificates declared as revoked 
in period but not in period-1; in period j-1 these certificates 
were either declared as valid or were not yet part of the 
validation system. Let R, denote the product of the numbers in 
RR: 

f 

R. LeeRR, (38) 
It is easy to see from (37) that if each certificate cannot be 
“unrevoked' (i.e. cannot be made valid once revoked), then: 

y=y's modin (39) 

0159) CA Set Up: 
0160 The CA generates its modulus n and the accumula 
tor seed C. The CA sets the initial accumulator value v. C. for 
the initial periodj. 
(0161 Initial Certification (FIG. 11): 
0162 Suppose a useru, wants to join the system in a period 
j, to be validated Starting the next period j+1. At Step 1110. 
CA 120 generates p, m, as at step 410 in FIG. 4. These 
numbers can be made part of the user's certificate 140 (FIG. 
3). At step 1120, the CA computes the following secret num 
bers: 

t=m'P (mod n) (40) 

S.-vi." (mod n) (41) 

Here, V, is the accumulator value for the periodj (V-C. if 
QQ, is empty). At step 1130, the CA transmits the valuest, s, 
, to the useru, in an encrypted form. As will be explained, the 
user will be able to derive the value 

s=y'P, (mod n) (42) 

for each periodj> for which the certificate is valid. 
(0163 Certificate Re-Validation (FIG. 12): 
(0164. In period j, Suppose that VeZ/nZ is the accumu 
lator value for period j-1. For validation in period, the CA: 
(0165 1. Computes V, (using the equation (37) or (39) for 

example); 
(0166 2. Transmits the value V, together with a list of the 
newly-revoked certificates (perhaps represented by the set 
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RR) to the users. If desired, the CA may also sign the pair 
(vi) and transmit the signature to the users. 

(0167. Witness Derivation (FIG. 13): 
(0168 Ifa useru, is valid for the periodj, then the user has 
the value s, -i-V-1', (mod n). See (41), (42). At step 1310, 
the user computes S, iv,' as follows: 
0169. 1. The user applies the Extended Euclidian Algo 
rithm to compute integers a and b such that 

ap+bR-1 (43) 

(this is possible because p,7RR, so p, and R, are mutually 
prime). 
0170 

's, b mod in (44) 
2. The user sets s, , to the value: 

This value is indeed a p-th root of V, modulo n, because (note 
equation (39)): 

bp; RE 6. p; epip; epii 
i-l i = y modn 

0171 At step 1320, the user computes the witness 
wifts; (45) 

(0172. User Authentication (FIG. 14): 
(0173 The user u, provides ts, , (mod n) to the verifier, 
along with (if necessary) the values for (u, p, jo, w). In 
addition, the user provides to the verifier the accumulator 
value V, and the CA's signature on (vi). At step 1410, the 
verifier checks the CA's signature and confirms that: 

wf-m;', (mod n) (46) 

0.174 Alternative User Authentication: 
0.175. The authentication can be performed using the iden 
tity-based GQ signature scheme as described above in con 
nection with equations (23), (24), using w, as a private key. 
The CA performs the functions of GQ's PKG (private key 
generator); GQ's parameters are set as follows: B-w, v, p. 
and J-m,' mod n. The authentication proceeds as follows: 
0176 The verifier sends to the user a random message m. 
0177. The user generates a random number r and com 
putes: 

d=H(mri), D=rw, . (mod n) (47) 

where H is some predefined public function. The user sends 
the values m, m, r, and D to the verifier. 
(0178. The verifier computes J-m, mod n and checks that 
the following equations hold: 

J DP-pi, (mod n) 

0179 This scheme may reduce total bandwidth because 
the verifier does not need the certificate 140. Note: for the GQ 
signature scheme to be secure, it is desirable that p-2''. 
(0180. The use of accumulator V, allows a user to revoke 
itself, without the CA's help. To revoke itselfin a period, user 
u, simply broadcasts v. P (mod n), after which every other 
useru can update the accumulator to be v.-v,'(mod n) and 
can recompute its personals, and w, values as in (43)-(45). 
Of note, R, can be re-computed by multiplying the previous R, 
value by p, 
0181. In some embodiments, this scheme allows efficient 
distribution (e.g. broadcast) for the CA at the stage of FIG. 12, 
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since the CA transmits the same information to all the users. 
This information requires only O(t) transmissions. On the 
other hand, each transmission is proportional in size to the 
size of RR. Clients of the CA may include many users that are 
not in the particular t-member network that we are concerned 
about. If the “super-network” of clients of the CA is very large 
in proportion to t, this may not be a very good Solution. Even 
if the CA only manages ourt-member network, the CA's size 
of each transmission is still, strictly speaking, proportional to 
t, since the number of revocations within the network in a 
given period will tend to be a constant fraction of the total 
number of users. In this sense, the communication complex 
ity of certificate distribution in this scheme is analogous to the 
communication complexity of a delta-CRL scheme. Recall 
that in a delta-CRL scheme, the CA transmits a list of users 
revoked in the given period, together with a signature on that 
list, to all users. On the other hand, since a personal accumu 
lator's size is independent of the number of time periods, the 
scheme has better communication complexity for authentica 
tion than delta-CRLs, because in the delta-CRL scheme the 
verifier must separately check the delta-CRLs for all time 
periods to confirm that a given user has not been revoked 
during any of these periods. 
0182. The invention is not limited to the embodiments 
described above. The invention is not limited to secure or 
dynamic accumulators. An accumulator can be any data that 
accumulate some elements. Further, the invention is not lim 
ited to the accumulators described above. For example, the 
accumulator seed h()/h (i-1) in equation (17) can be replaced 
with a value independent of the period, and the accumulator 
seed C. in the accumulator (37) can be replaced with a function 
of. The accumulator methods can be used to prove (authen 
ticate) membership in a set or possession of Some property. 
Examples include authentication of valid entitlements, or 
authentication of people as being members of some organi 
Zation. 

0183. In some embodiments, the CA120, the directories 
210, and the systems 110 are computer systems communicat 
ing with each other over a network or networks. Each of these 
systems may itself be a computer system having components 
communicating over networks. Each computer system 
includes one or more computer processors executing com 
puter instructions and manipulating computer data as 
described above. The term “data' includes "computer data' 
and covers both computer instructions and computer data 
manipulated by the instructions. The instructions and data can 
be stored on a data carrier Such as a computer storage, i.e. a 
computer readable medium (e.g. a magnetic or optical disk, a 
semiconductor memory, and other types of media, known or 
to be invented). The data carrier may include an electromag 
netic carrier wave transmitted over a network, e.g. through 
space, via a cable, or by Some other means. The instructions 
and data are operable to cause the computer to execute appro 
priate algorithms as described above. 
0184 The invention is not limited to any particular hash 
functions, or to cryptographic functions (which are easy to 
compute but are one-way or collision resistant). In some 
embodiments, it is desirable that a function for H be collision 
resistant not in the sense that it is difficult to find different X 
andy with the same image but in the sense that if X and y are 
uniformly drawn from the function's domain, the probability 
is small that they both will have the same image: 
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where C. is a small constant (e.g. /10, or /100, or 2, or 2, 
or 2, or 2', or some other value). Some or all of the 
techniques used for validity proofs can also be used for inval 
idity proofs and vice versa. The CA, the directories, and the 
systems 110 may include Software-programmable or hard 
wired computer systems interconnected via a network or 
networks. Each function f or H represents an evaluation 
method performed by a computer system. The invention is not 
limited to the step sequences shown in the flowcharts, as the 
step order is sometimes interchangeable and further different 
steps may be performed in parallel. Other embodiments and 
variations are within the scope of the invention, as defined by 
the appended claims. 
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Appendix A 

Accumulators and Proofs of Knowledge 

0230 Definition (Secure Accumulator). 
0231. A secure accumulator for a family of inputs {XX} 
is a family of families of functions GG={FF} with the fol 
lowing properties: 
0232 Efficient generation: There is an efficient probabi 

listic algorithm G that on input 1 produces a random element 
fof{FF}. Galso outputs some auxiliary information aboutf. 
denoted by aux, 
0233. Efficient evaluation: f{FF} is a polynomial-size 
circuit that, on input (u, x)eUUA XX, outputs a value 
veUUA where UU, is an efficiently-samplable input domain 
for the function f, and XX} is the intended input domain 
whose elements are to be accumulated. 
0234 Quasi-commutative: For all k, for all feFF, for all 
ue UUA for all X1, X-eXX f(f(u, x), x)=f(f(u, x2), X). If 
X={x1,..., X, XX, then by f(u, X) we denote f(f(... (u, 
X). . . . ). 
0235. Witnesses: Let veUU, and xeXX. A value weUU, 
is called a witness for x in V under fifv=f(w,x). 
(0236) Security: Let UU, XXX" denote the domains for 
which the computational procedure for function feFF is 
defined (thus UUUU, XXXX"). For all probabilistic 
polynomial-time adversaries A, 

Prff-G(1); u-UU, (x, w, X)-A, (f, UU, u): 
XeXX, weUU; xeXX, xz X; f(w,x)=f(u, X)-neg 
(k). 
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0237 Camenisch and Lysyanskaya (39) define the 
notion of a dynamic accumulator: 
0238. Definition (Dynamic Accumulator). 
0239 A secure accumulator is dynamic if it has the fol 
lowing property: 
0240 Efficient Deletion: There exist efficient algorithms 
D and W such that, if v=f(u, X), x, x'eX, and f(w,x)=v, then: 

0241 Zero-Knowledge Proofs. An advantage of accumu 
lators (at least, RSA-based accumulators, which are 
described later) is that it is possible to construct efficient 
Zero-knowledge proofs (ZK proofs) that a value has been 
accumulated. It has been proven that any statement that is in 
NP (nondeterministic polynomial-time) can be proven in ZK. 
but some statements can be proven in ZK much more effi 
ciently than others. Briefly, we describe the concept of a ZK 
proof, which was introduced independently by Brassard, 
Chaum, and Crepeau and by Goldwasser, Micali, and Racko, 
and further refined by Bellare and Goldreich. 
0242 Let X be an input, and let R be a polynomially 
computable relation. Roughly speaking, a Zero-knowledge 
proof of knowledge of a witness w such that R(x, w)=1 is a 
probabilistic polynomial-time protocol between a prover P 
and a verifier V such that, after the protocol, V is convinced 
that P knows such a witness w, but V does not obtain any 
explicit information about w. In other words, apart from 
“proving that it knows a witness w such that R(x, w)=1, P 
imparts “Zero knowledge' to V. 
0243 In the sequel, we may use the notation introduced by 
Camenisch and Stadler for various proofs of knowledge of 
discrete logarithms and proofs of the validity of statements 
about discrete logarithms. For instance, 

denotes a Zero-knowledge Proof of Knowledge of integers C. 
f, and Y such that y=g' handy'-g' h", where usc.sv and 
where g, g, h, h', y, and y are elements of Some groups 
G=<g>=<h and G'=<g'>=<h'>. The convention is that 
Greek letters denote quantities the knowledge of which is 
being proved, while all other parameters are known to the 
Verifier. Using this notation, a proof-protocol can be 
described by just pointing out its aim while hiding all details. 
0244. Often, these proofs of knowledge are instantiated by 
a three-pass protocol, in which the prover first sends the 
verifier a commitment to certain values, after which the veri 
fier sends the prover a challenge bit-strings, and the prover 
finally sends a response that incorporates both the “known 
value', the committed values and the challenge value in Such 
away that it convinces the verifier is convinced of the prover's 
knowledge. 
0245. These proofs of knowledge can be turned into sig 
nature schemes via the Fiat-Shamir heuristic. That is, the 
prover determines the challenge c by applying a collision 
resistant hash function H to the commitment and the message 
m that is being signed and then computes the response as 
usual. We denote such signature proofs of knowledge by the 
notation, e.g., SPK {C.y=f(C)}(m). Such SPK's can be 
proven secure in the random oracle model, given the security 
of the underlying proofs of knowledge. 
0246 ZK proofs are often accomplished with the help of a 
commitment scheme. A commitment Scheme consists of the 
algorithms Commit and VerifyCommit with properties as 
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follows. The commitment algorithm Commit takes as input a 
message m, a random string r and outputs a commitment C. 
i.e., C Commit(m.r). The (commitment) verification algo 
rithm VerifyCommit takes as input (C. m, r) and outputs 1 
(accept) if C is equal to Commit(m.r) and 0 (reject) otherwise. 
The security properties of a commitment scheme are as fol 
lows. The hiding property is that a commitment C=Commit 
(m, r) contains no (computational) information on m. The 
binding property is that given C, m, and r, where 1 =Verify 
Commit(C.m.r), it is (computationally) impossible to find a 
message mo and a string ro such that 1 =VerifyCommit(C. m. 
ro). 
0247 To prove, in ZK, knowledge of a witness w of a value 
X that has been accumulated i.e., that f(w,x)=v, where v is 
the accumulator value—the usual method is to choose a ran 
dom string rand construct a commitment c Commit(X, r) and 
then provide the following proof of knowledge: 

0248. Above C. represents the (hidden) x value, while B 
represents rand Y represents w. 
0249 Rsa-Based Accumulators. 
(0250 Here we describe a common concrete instantiation 
of accumulators, which uses mathematics related to the well 
known RSA public-key cryptosystem, invented by Rivest, 
Shamirand Adleman in 1977. Above, our description focused 
on Some RSA-based instantiation of accumulators, but this 
description should not be considered limiting; our accumula 
tor-based certificate revocation schemes could be used with 
any type of accumulators. An accumulator structure has an 
advantage that its size does not depend on the number of 
accumulated elements. An RSA-based accumulator makes 
use of a composite integer n, called a modulus, that should be 
chosen in Such away that it is hard to factor. In some embodi 
ments of the schemes defined above, the modulus is an RSA 
modulus, which is defined as follows: 
0251 Definition (RSA modulus). A 2k -bit number n is 
called an RSA modulus if n pd, where p and q are k-bit prime 
numbers. 
0252) Of course, one can choose n in a different way—e. 
g., as the product of three primes, or as the product of two 
primes of different sizes. 
0253) Definition (Euler totient function). Let n be an inte 
ger. The Euler totient function p(n) is the cardinality of the 
group Z, (the multiplicative group of elements having an 
inverse in the ring Z, of the integers modulo n; Z, is the set 
of all elements mutually prime with n). 
0254. If n=pd is the product of two primes, then p(n)=(p- 
1)(d-1). 
0255. The security of RSA-based accumulators is based 
on the following assumption. 
0256 Definition (Strong RSA Assumption) The strong 
RSA assumption is that it is “hard on inputan RSA modulus 
in and an element ueZ, to compute values e1 and V such 
that v-u(mod n). By “hard', we mean that, for all polyno 
mial-time circuit families {A}, there exists a negligible func 
tion neg(k) such that 

where RSAmodulus(1) is an algorithm that generates an 
RSA modulus as the product of two random k-bit primes, and 
a negligible function neg(k) is a function Such that for all 
polynomials p(k), there is a value ko Such that neg(k)<1/p(k) 
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for all k>ko. The tuple (n, u) generated as above, is called a 
general instance of the strong RSA problem. 
0257 Corollary 1. Under the strong RSA assumption, it is 
hard, on input a flexible RSA instance (n, u), to compute 
integers e-1 and V such that v-u(mod n). 
0258. The most common concrete instantiation of accu 
mulators is based on the above strong-RSA assumption. 
Roughly speaking, the idea is as follows: Given a fixed base 
u(mod n), one can compute an accumulator of values X and 
x (for example) as v-u-2 (mod n). To prove that X (for 
example) has been accumulated, one can forward the witness 
w=u? (mod n) and a verifier can confirm that indeed w' (mod 
n). 
0259 Now, we relate the formal description of accumula 
tors to the concrete RSA-based construction. A secure RSA 
based accumulator for a family of inputs X is a family of 
functions FF, where the particular function feFF depends 
on what the modulus n is. For reasons that will become clear 
later, we assume that elements of X are pairwise relatively 
prime integers. Then, aux, is the (secret) factorization of n. As 
alluded to above, given an initial accumulator value v', an 
additional value X is added to the accumulator by computing 
a new accumulator value v=v' (mod n). Notice that the com 
putational complexity of this algorithm is independent of the 
number of prior values that have been accumulated. The 
RSA-based accumulator possesses the quasi-commutative 
property; e.g., regardless of the order in which X and X are 
incorporated into an initial accumulator v', the result is 
v=v'(mod n). Given an accumulator V(mod n), the witness 
that a valueX has been accumulated is w—v' (mod n), which 
can readily be verified by confirming that v- w (modn). To 
reiterate, the security of the construction is based on the 
assumption that the strong RSA problem is infeasible to 
solve. 

0260 RSA-based accumulators can be made dynamic. 
Recall that an accumulator is dynamic if, given an accumu 
lator V that accumulates values of the set X and given the 
secret information aux, one can "de-accumulate” a value 
X'6X—i.e., compute a new accumulator v' that accumulates 
the values of the set X-x}. Moreover, given a witness w that 
a value X has been accumulated (with respect to accumulator 
V that accumulates members of the set X) and given the 
accumulator v that only accumulates members of X-x}, 
one can compute a new witness w' for X with respect to the 
accumulator v'. Specifically, for RSA-based accumulators, 
one can use the factorization of n to de-accumulate X" by 
computing v' v'(mod n). And given a witness w for x with 
respect to V—i.e., wV(mod n)—and given the value of v'. 
one can compute a witness w' for X with respect to v' i.e., 
w'—v'—v'(mod n)-w'—v'(mod n) as follows. Assum 
ing that X and X’ are relatively prime, one can compute inte 
gers (a,b) such that ax+bx'=1, by using the Extended Euclid 
ean Algorithm. Then wi-view b-va/v'vb/-y(v*b*)/v' vil/a- 
(mod n). Notice that the computation of w is efficient, and 
(after v' is computed) it doesn't require any secret knowledge 
(e.g., the factorization of n). 
0261) Given a witness w that a value x is accumulated 
(with respect to an accumulator V(mod n)), it also well-known 
in the art how to construct a ZK proof of knowledge of a pair 
(w,x) that satisfies w=V(mod n) (that hides the values of both 
w and X from the verifier). 
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End of Appendix A 
APPENDIX B 

Guillou-Quisquater (GQ) ID-based Signature Scheme 
0262 Set-Up: 
0263. 1. A public key generator (PKG, a trusted party), 
publishes its public key (V, n) where n=qqa (a product of two 
primes) is such that its factorization is hard to find, and V is a 
prime less than (p(n)-(p-1)(cq-1). 
0264. 2. For a user with an identity ID (e.g., an email 
address), the PKG computes the secret signing key B Such 
that JB-1 mod n, where J-R(ID), where R is a predefined 
public function, e.g. a redundancy function. In some embodi 
ments, the function R maps ID into an element of Z. The 
function R is such that the number of elements in Z, that 
correspond to mappings from valid ID's is small. The PKG 
sends B to the user via a secure channel (e.g. encrypted). 
0265 Signing: To sign a message M, the user: 
0266 1. Computes J-R(ID) 
0267 2. Generates a random number r and computes 

d=H(Mr.), D=rB (B-1) 
where His a predefined public function (e.g. a hash function). 
0268. 3. Sends the values M, r', d, D to the verifier. 
0269. Verification: The verifier: 
(0270) 1. Computes J-R(ID); 
(0271 2. Checks that d=H(MIr'); 
0272. 3. Checks that JD'=r. 
End of Appendix B 

1. A network transmission method comprising transmit 
ting, over a computer network, a computer program operable 
to perform a computer-implemented authentication method 
for providing authentication for a plurality of elements as 
possessing a pre-specified property, wherein for each time 
period of a plurality of successive time periods, the authen 
tication is to be provided for each said element which pos 
sesses the pre-specified property, each element being oper 
able to acquire the property and/or to lose the property in each 
of the Successive time periods j, each element being associ 
ated with a distinct integer greater than 1, the authentication 
method comprising, for at least one element El which is one 
of said elements, performing a set-up operation for the 
authentication, the set-up operation comprising: 

a first computer system generating the distinct integer p 
associated with the element E1; 

the first computer system obtaining data representing a 
p-th root of a base number modulo a predefined com 
posite integer whose factorization is a secret of the first 
computer system; 

the first computer system providing said data to a second 
computer system to enable the second computer system 
to prove that the element E1 possesses the pre-specified 
property; 

wherein for each said period for which the element E1 is 
to be authenticated as possessing said property, the 
authentication is to be performed by operations compris 
ing: 

the second computer system obtaining data representing an 
accumulator value which accumulates all the entities in 

a set P1, which is either (i) a set of the entities certified as 
possessing the pre-specified property in the period j, or 
(ii) a set of the entities certified as not possessing the 
pre-specified property in the period; 
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the second computer system combining the accumulator 
value with a value dependent on said p-th root of the 
base number to obtain a witness value which is a p-th 
root, modulo said composite integer, of a first value 
dependent on the base number and the accumulator 
value, the authentication comprising verifying that the 
p-th power of the witness value equals the first value. 

2. The network transmission method of claim 1 wherein the 
elements are either (a) digital certificates each of which cer 
tifies that a cryptographic key is associated with an entity, or 
(b) entitlements to use one or more resources, and said prop 
erty is validity of a digital certificate or an entitlement. 

3. The network transmission method of claim 1 wherein in 
the authentication, the first value is made available to a veri 
fier together with the witness value or aproof of knowledge of 
the witness value. 

4. The network transmission method of claim3 wherein the 
computer program is operable to perform the authentication 
operations for at least one said time period. 

5. The network transmission method of claim 1 wherein the 
accumulator value is a P-th root u' (mod n) of an integeru 
modulo said predefined composite integer, where P, is the 
product of the distinct integers associated with the members 
of the set P1, where u is a constant or is a predefined function 
of the period of time. 
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6. The network transmission method of claim 1 wherein 
said verifying, that the p-th power of the witness value 
equals the first value, is performed by a verifier computer 
system, and the p-th root of the base number is a secret not 
provided to the verifier computer system. 

7. The network transmission method of claim 2 wherein in 
the authentication, the first value is made available to a veri 
fier together with the witness value or aproof of knowledge of 
the witness value. 

8. The network transmission method of claim 7 wherein the 
computer program is operable to perform the authentication 
operations for at least one said time period. 

9. The network transmission method of claim 2 wherein the 
accumulator value is a P-th root u' (mod n) of an integeru 
modulo said predefined composite integer, where P, is the 
product of the distinct integers associated with the members 
of the set P1, where u is a constant or is a predefined function 
of the period of time. 

10. The network transmission method of claim 2 wherein 
said verifying, that the p-th power of the witness value 
equals the first value, is performed by a verifier computer 
system, and the p-th root of the base number is a secret not 
provided to the verifier computer system. 
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