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(57) ABSTRACT

Authentication of elements (e.g. digital certificates 140) as
possessing a pre-specified property (e.g. being valid) or not
possessing the property is performed by (1) assigning a dis-
tinct integer p, to each element, and (2) accumulating the
elements possessing the property or the elements not possess-
ing the property using a P-th root u' (mod n) of an integer u
modulo a predefined composite integer n, where P is the
product of the integers associated with the accumulated ele-
ments. Alternatively, authentication is performed without
such accumulators but using witnesses associated with such
accumulators. The witnesses are used to derive encryption
and/or decryption keys for encrypting the data evidencing
possession of the property for multiple periods of time. The
encrypted data are distributed in advance. For each period of
time, decryption keys are released which are associated with
that period and with the elements to be authenticated in that
period of time. Authentication can be performed by accumu-
lating elements into data which are a function of each element
but whose size does not depend on the number of elements,
and transmitting the accumulator data over a network to a
computer system which de-accumulates some elements as
needed to re-transmit only data associated with elements
needed by other computer systems. This technique is suitable
to facilitate distribution of accumulator data in networks such
as ad hoc networks.
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USE OF MODULAR ROOTS TO PERFORM
AUTHENTICATION INCLUDING, BUT NOT
LIMITED TO, AUTHENTICATION OF
VALIDITY OF DIGITAL CERTIFICATES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
patent application Ser. No. 11/454,394, filed Jun. 16, 2006,
incorporated herein by reference, which is a division of U.S.
patent application Ser. No. 11/304,200 filed on Dec. 15, 2005,
incorporated herein by reference, which claims priority under
35U.S.C. §119(e) to provisional U.S. patent application No.
60/637,177 filed Dec. 17, 2004, incorporated herein by ref-
erence.

BACKGROUND OF THE INVENTION

[0002] The present invention relates to performing authen-
tication as to whether or not an element possesses a pre-
specified property. An example is authenticating validity of a
digital revocation in a public key infrastructure, or authenti-
cating validity of an entitlement to use a resource (e.g. to sign
onto a World Wide Web site).

[0003] FIG. 1 illustrates digital certificate validation and
revocation in a public key infrastructure. Digital certificates
104 are used in public key infrastructures (PKI) to facilitate
secure use and management of public keys in a networked
computer environment. Users Ul, U2, . . . utilize their com-
puter systems 110.1, 110.2, . . . to generate respective key
pairs (PK, SK) where PK is the public key and SK is the secret
key. FIG. 1 shows a key pair (PK,,, SK,,,) for user U1. The
users register their public keys PK, over a network, with a
certification authority (CA) 120. Alternatively, the key pairs
can be generated by CA 120 and sent to the users. CA 120 is
a secure, trusted computer system. For each public key PK,
CA 120 generates a digital certificate 104. Certificate 104
contains the public key PK and the user’s name and/or email
address or addresses, may also contain the certificate’s serial
number SN (generated by the CA to simplify the certificate
management), the certificate issue date D1, the expiration
date D2, an identification of algorithms to be used with the
public and secret keys, an identification of the CA 120, and
possibly other data. The data mentioned above is shown at
104D. Certificate 104 also contains CA’s signature 104-Sig . ,
on the data 104D. The signature is generated using CA’s
secret key SK,. CA 120 sends the certificate 104 to the
user’s (key owner’s) computer system 110. Either the owner
or the CA 120 can distribute the certificate to other parties to
inform them of the user’s public key PK. Such parties can
verify the CA’s signature 104-Sig ., with the CA’s public key
PK_, to ascertain that the certificate’s public key PK does
indeed belong to the person whose name and email address
are provided in the certificate.

[0004] A certificate may have to be revoked prior to its
expiration date D2. For example, the certificate owner U may
change his affiliation or position, or the owner’s private key
SK,, may be compromised. Other parties must be prevented
from using the owner’s public key if the certificate is revoked.
[0005] One approach to prevent the use of public keys of
revoked certificates is through a certificate revocation list
(CRL).A CRL is a signed and time-stamped list issued by CA
120 and specifying the revoked certificates by their serial
numbers SN. These CRLs must be distributed periodically
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even if there are no new revoked certificates in order to pre-
vent any type of replay attack. The CRL management may be
unwieldy with respect to communication, search, and verifi-
cation costs. The CRL approach can be optimized using so-
called delta-CRLs, with the CA transmitting only the list of
certificates that have been revoked in the previous time period
(rather than for all time periods). The delta-CRL technique
still has the disadvantage that the computational complexity
of verifying that a certificate is currently valid is basically
proportional to the number of time periods, since the verifier
must confirm that the certificate is not in any of the delta-
CRLs.

[0006] Certificate revocation trees (CRTs) can be used
instead of CRLs as described in [15] (the bracketed numbers
indicate references listed at the end before the claims).
[0007] Instead of CRLs and CRTs, CA 120 could answer
queries about specific certificates. In FIG. 1, user U2 issues a
query 150 with the serial number SN of certificate 104 of user
U1. CA 120 responds with a validity status information 160
containing the serial number SN, a validity status field 160VS
(“valid”, “revoked” or “unknown”), and a time stamp “Time”.
The response is signed by CA (field 160-Sig.,). This
approach is used for Online Certificate Status Protocol
(OCSP). See [23]. Disadvantageously, the CA’s digital signa-
ture 160-Sig, can be quite long (over 1024 bits with RSA),
especially since the CA must be very secure. In addition, if
CA 120 is centralized, the CA becomes a validation bottle-
neck. If CA 120 is decentralized (replicated), the security is
weakened as the CA’s signing key SK ., is replicated.
[0008] FIG. 2 illustrates a “NOVOMODO” approach,
which allows CA 120 to provide an unsigned validity status
through untrusted directories 210 at pre-specified time inter-
vals (e.g. every day, or every hour, etc.). Directories 210 are
computer systems that do not store secret information. The
system works as follows.

[0009] Letfbe apredefined public length-preserving func-
tion
[0010] f:{0,1}"—0.1"

where {0,1}” is the set of all binary strings of a length n. Let
' denote the f-fold composition; that is, f'(x)=x for i=0, and
f(x)~t({F~'(x)) for i>0. Let f be one-way, i.e. given f(x) where
x is randomly chosen, it is hard (infeasible) to find a pre-
image 7 such that f(z)=f(x), except with negligible probabil-
ity. “Infeasible” means that given a security parameter k (e.g.
k=n), the pre-image z cannot be computed in a time equal to
apredefined polynomial in k except with negligible probabil-
ity. Let us assume moreover that f is one-way on its iterates,
i.e. for any i, given y=F'(x), it is infeasible to find z such that
f(z)=y.

[0011] We can assume, without loss of generality, that CA
is required to provide a fresh validity status every day, and the
certificates are valid for one year, i.e. 365 days (D2-D1=365
days). To create a certificate 104 (FIG. 2), CA 120 picks a
random “seed” number x and generates a “hash chain” c,, ¢,
... C3¢5 Wherein:

C365/1%), Ca362a= X)), - - - 01:]865(95), Cozfss(x)- (6]

We will sometimes denote x as x(SN) for a certificate with a
serial number SN, and similarly ¢,=c,(SN) where i=0, 1, . . ..
The value ¢, is called a “validation target”. CA 120 inserts C,
into the certificate 104 together with data 104D (FIG. 1). CA
120 also generates a random revocation seed number N,
computes the “revocation target” N,=f(N,), and inserts N,
into certificate 104. CA 120 keeps all c, secret for i>0. The
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values x and N, are also secret. Clearly, all ¢, can all be

computed from x, and the validation target c, can be com-

puted from any c,. CA 120 stores in its private storage the
values x and N, for each certificate 104, and possibly (but not
necessarily) caches the c, values.

[0012] Every dayi(i=1,2,...365), a certificate re-valida-

tion is performed for the valid certificates as follows. For each

certificate 104, CA distributes to directories 210 a validation
data structure which includes, in addition to a validity status
indication (not shown in FIG. 2, can be “valid” or “revoked™):

[0013] 1. the certificate’s “i-token” c, if the certificate is
valid on day i;

[0014] 2. the revocation seed N, if the certificate has been
revoked.

(We will call ¢, a “validity proof”, and N, a “revocation

proof”.) This information is distributed unsigned. Each direc-

tory 210 provides this information, unsigned, to a requester
system 110 in response to a validity status request 150 (FIG.

1). To verity, the requester (verifier) 110 performs the follow-

ing operations:

[0015] 1. If the validity status is “valid”, the verifier 110
checks that f'(c,)=c,,.

[0016] 2. Ifthe validity status is “revoked”, the verifier 110
checks that f(N,)=N,. Despite the validity information
being unsigned, the scheme is secure because givenc,, it is
infeasible to compute the subsequent tokens ¢, ;, C;,5, - - -

[0017] To reduce the communication between CA 120 and
directories 210, a hash chain (1) can be generated for a set of
certificates 104, and a single i-token c, can be distributed for
the set if the set is “unrevoked” (i.e. all the certificates are
unrevoked in the set). The certificate 140 will contain a sepa-
rate target ¢, for each set containing the certificate and asso-
ciated with a hash chain (see [1]).

[0018] Certificate revocation can also be performed using
accumulators. See [37]. An accumulator is a way to combine
a set of values (e.g. a set of valid certificates) into a shorter
value. A formal definition of a “secure” accumulator is given
in Appendix A at the end of this disclosure before the claims.
An accumulator example can be constructed as follows. Let
us denote all possible values that can be accumulated as p,, .
.., p,- (For example, each p, can be aunique number assigned
to a certificate, and we want to accumulate the values corre-
sponding to the valid certificates.) Suppose v, is the accumu-
lator value for the empty set. Let  be a one-way function. To
accumulate p,, we compute the accumulator as follows:

v({piH=f v, £ @

Now to accumulate p,, we set the accumulator to be v,=f(v,,
p2), and so on. More generally, the accumulator value for
some set {p, , . - . Py,

Wpip P, DTFEC - G0 i) - )05 3

The function f can be chosen such that the accumulation
order does not matter, i.e.

FEO, pi)apj):f(f(vx Pj)api) (C))

(this is the “quasi-commutative” property).

[0019] Ineach period j, CA 120 can send to the directories
210 a pair (v,, t) where v, is the accumulator value for the set
of'the valid certificates, and t is a time stamp. The directories
can respond to queries 150 with some proof that the accumu-
lator value v; accumulates the value p, corresponding to the
certificate of interest.
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[0020] A common accumulator is an RSA accumulator
defined as follows:

$(, p)=* mod » ®

where p is a positive integer, and n=q, q, is the product of large
prime numbers ¢, and q,. In this case,

v({pip - - -

[0021] The certificate validation is performed as follows.
Without loss of generality, suppose that the valuesp,,...,p,,
correspond to the valid certificates in a period j. Then the
accumulator value distributed by CA 120 to directories 210 is

oD, v EL # modn (6)

v=vl - Prmod 7

If a verifier 110 inquires a directory 210 of the status of a
certificate corresponding to the value p, which is one of p,, . .
- P the directory sends to the verifier the accumulator value
v, and a “witness” value

Si,j:vopl. - Pi-1Pitl- - - Pm modn (8)
The verifier checks that
s; f=v;mod n ()]

If this equality holds, the certificate is assumed to be valid.
[0022] The witness s, ; is hard to forge provided that it is
hard to compute the p;-th root of v,. The p,-th root computa-
tion is hard if the adversary does not know the factorization of
n and the strong RSA assumption is valid (this assumption is
defined in Appendix A). However, it is possible to keep p, and
s,, ; secret. For example, instead of providing the values s,
and p, to the verifier, the verifier can be provided with a proof
that such values exist and are known to the certificate owner.
[0023] Accumulators can be used more generally to prove
that an element satisfies some pre-specified property.

SUMMARY

[0024] This section summarizes some features of the inven-
tion. Other features are described elsewhere in this disclosure.
The invention is defined by the appended claims.

[0025] In some embodiments of the present invention,
accumulators are constructed using modular roots with expo-
nents corresponding to the accumulated values. For example,
suppose we need an accumulator to accumulate all the ele-
ments that possess some property (e.g. all the valid certifi-
cates) or all the elements that do not possess that property
(e.g. all the revoked certificates). We will associate each ele-
ment with an integer greater than 1. Let PP,.={p,, ..., p,.} be
the set of integers associated with the elements to be accu-
mulated (as in (7)), and denote the product of these integers as

me

10

°

I
=

=

(By definition herein, the product of the empty set of numbers
is 1; i.e. P, =1 if PP, is empty.) In some embodiments, the
accumulator value represents the P,,-th root of some value u,
e.g.

vj:u”P'”modn (11)

In some embodiments, the following advantages are
achieved.
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[0026] Suppose the value (11) accumulates valid digital
certificates. The value (11) can be modified by exponentiation
to de-accumulate all the values p, except for some given value
p; i.e. to compute

vjpl- - Pi-lpit] - - Pm=y Lpi 12)

This exponentiation can be performed by a directory 210 or
by the certificate owner’s system 110, without knowledge of
factorization of the modulus n. The value (12) is the accumu-
lator value as if p, were the only accumulated value. The
witness value needed for verification can also be computed as
if p, were the only accumulated value. The verification (the
authentication) can be performed using the values that do not
depend on accumulated values other than p,. Alternatively, the
verification can be performed with the accumulator and wit-
ness values that incorporate some other accumulated values
but not necessarily all the accumulated values. Therefore, if a
directory 210 or a user 110 are responsible for providing
validity proofs for less than all of the certificates, the directory
210 or the user 110 (the “validity prover”) can use an accu-
mulator that accumulates less than all of the valid certificates.
In some embodiments, this feature reduces the number of
computations needed to be performed by all of the provers.
[0027] Insome embodiments, the value u=u(j) can depend
on the time period j for which the authentication is provided
(unlike the value v, in (7)). Therefore, the time stamp t can be
omitted.

[0028] In some embodiments, the accumulator accumu-
lates the revoked certificates rather than the valid certificates.
In some embodiments, the witness values for an integer p,
depend on other p values.

[0029] In some embodiments, the witness values are used
as encryption keys for encrypting validity proofs. The validity
proofs can be constructed using a non-accumulator based
validation system, e.g. as in FIG. 2. For example, let c (1)
denote the token c; for the period j for a certificate 140.,
where c; is formed as in (1). At the set-up time, when a user
system 110 joins the certificate validation system, the CA
generates the tokens c (i) for all the periods j for the user. The
CA also generates the witness values for all the periods j. The
CA encrypts each token c (i) under a key equal to (or obtained
from) the witness value for the period j, under a symmetric
encryption system. CA 120 transmits all the encrypted values
to the user.

[0030] Ineach periodj, if the certificate 140.1 is still valid,
CA 120 transmits the decryption key (the witness value) for
the period j to the user, enabling the user to recover the token
c,(i). The user provides the token to the verifiers to proof the
certificate validity as described above in connection with FIG.
2.

[0031] Some embodiments of the invention are suitable for
limited bandwidth or low reliability networks, for example in
ad hoc networks, where the nodes 110 may have low compu-
tational and transmission power, and where the nodes may
have only incomplete information about the topology of the
network. (An ad hoc network is a self-configuring wireless
network of mobile routers.)

[0032] Someembodiments are communication and storage
efficient.
[0033] The invention is not limited to the features and

advantages described above. Other features are described
below. The invention is defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIGS. 1, 2 are block diagrams illustrating prior art
certificate revocation schemes.
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[0035] FIG. 3 illustrates a digital certificate according to
some embodiments of the present invention.

[0036] FIG. 4 is a flowchart of operations performed by a
certification authority (CA) in initial certification according
to some embodiments of the present invention.

[0037] FIG. 5 is a block diagram illustrating certificate
re-validation operations performed by a CA according to
some embodiments of the present invention.

[0038] FIG. 6 is a flowchart of witness derivation opera-
tions according to some embodiments of the present inven-
tion.

[0039] FIG. 7 is a flowchart of authentication according to
some embodiments of the present invention.

[0040] FIG. 8 is a block diagram showing data transmitted
over networks in de-accumulation operations according to
some embodiments of the present invention.

[0041] FIG. 9 is a state diagram illustrating accumulator
transmissions according to some embodiments of the present
invention.

[0042] FIG. 10 is a block diagram showing data transmis-
sions in determining the network paths according to some
embodiments of the present invention.

[0043] FIG. 11 is a flowchart of operations performed by a
certification authority (CA) in initial certification according
to some embodiments of the present invention.

[0044] FIG. 12 is a block diagram illustrating certificate
re-validation operations performed by a CA according to
some embodiments of the present invention.

[0045] FIG. 13 is a flowchart of witness derivation opera-
tions according to some embodiments of the present inven-
tion.

[0046] FIG. 14is a flowchart of authentication according to
some embodiments of the present invention.

DESCRIPTION OF PREFERRED
EMBODIMENTS

[0047] The embodiments described in this section illustrate
but do not limit the invention. The invention is defined by the
appended claims.

[0048] In the following description, numerous details are
set forth. However, the present invention may be practiced
without these details. Some portions of the detailed descrip-
tions that follow are presented in terms of algorithms and
symbolic representations of operations on data bits within a
computer memory. These algorithmic descriptions and rep-
resentations are the means used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
steps leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical or magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has
proven convenient at times, principally for reasons of com-
mon usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

[0049] It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing” or “computing” or “calculating” or “deter-
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mining” or “displaying” or the like, refer to the action and
processes of a computer system, or some computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system’s registers
and other storage into other data similarly represented as
physical quantities within the computer system storage,
transmission or display devices.

[0050] The present invention also relates to apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but is not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions, and each coupled to a computer sys-
tem.

[0051] Some of the algorithms presented herein are not
inherently related to any particular computer or other appa-
ratus. Various general-purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required operations. The required structure for a
variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. A
machine-readable medium includes any mechanism for stor-
ing or transmitting information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
medium includes read only memory (“ROM™); random
access memory (“RAM”); magnetic disk storage media; opti-
cal storage media; flash memory devices; electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.); etc.

Preliminaries
[0052] Model And Notation.
[0053] Inour model, we have a certification authority CA,

a certificate owner or holder Owner, and a certificate verifier
VV. Here Owner has a certificate issued by CA. The concept
of a certification authority may apply more generally to any
authority responsible for issuing access control privileges or
authorizations to a plurality of individuals. The concept of an
owner may be tied to a specific human being or organization
operating a computer or to the computer itself, e.g. a world
wide web server. Similarly, the verifier may be tied to a
specific human being or organization operating a computer or
to the computer itself, e.g. an access control server determin-
ing if' it should permit access to certain services.

[0054] In a given transaction, VV wishes to ascertain that
the certificate has not been revoked prior to its expiration date.
To do so, VV must obtain a proof of validity or a proof of
revocation that is or has been issued by the certification
authority CA. VV may obtain this proof either from the CA
directly, or through some other distribution mechanism.
[0055] We let {0,1}* denote the set of all bit strings. For a
bit string s, we denote its length by Isl. We let H denote a
cryptographic compression function that takes as input a b-bit
payload as well as a v-bit initialization vector or IV, and
produces a v-bit output. We assume b=2v, which holds for all
well-known constructions in use. For the constructions we
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describe here, we typically take b=2v. We assume these cryp-
tographic compression functions are collision resistant; that
is, finding two distinct inputs m,=m, such that H (IV, m, )=H
AV, m,) is difficult. We assume that the IV is fixed and
publicly known. For notational simplicity, we will not always
explicitly list IV as an argument in the hash function. A
practical example of such a cryptographic compression func-
tion is SHA-1[26]. SHA-1’s compression function has an
output and IV size of 20-bytes and a 64-byte payload size. In
many embodiments, we will not need to operate on data larger
than the compression function payload size; however there
are numerous standard techniques such as iterated hashing or
Merkle-trees [19] for doing so. For simplicity, we will use the
term hash function instead of compression function, where it
is understood that a hash function can take arbitrary length
strings {0,1}* and produce a fixed length output in {0,1}".
[0056] In practice, one often constructs a length preserving
function that is one way on its iterates by starting with a hash
function H and padding part of the payload to make it length
preserving.

[0057] Finally, for a real number r, we set [r]| to be the
ceiling of r, that is, the smallest integer value greater than or
equal to r. Similarly, |r] denotes the floor of r, that is, the
largest integer value less than or equal to r.

[0058] LetAbe an algorithm. By A(-) we denote that A has
one input. By A(,, . . . ,-) we denote that A has several inputs).
By A, we will denote that A is an indexed family of algo-
rithms. y<—A(x) denotes that y was obtained by running A on
input x. In case A is deterministic, then this y is unique; if A
is probabilistic, then y is a random variable. If S is a set, then
y<—S denotes that y was chosen from S uniformly at random.
Let b be a boolean function. The notation (y<—A(X):b(y))
denotes the event that b(y) is true after y was generated by
running A on input x. Finally, the expression

Pr{x =4y} 121200 ()]

denotes the probability that b(x,,) is TRUE after the value x,,
was obtained by running algorithms A, ..., A, on inputsy,,

Y,
Accumulation of Valid Certificates

[0059] Some accumulator schemes will now be described
with respect to the digital certificate validation. These
schemes can also be used for other authentication operations
as described above.

[0060] To simplify the description, we will assume that
each certificate owner Ui operates just one system 110.1 and
owns at most one certificate. This is not in fact necessary.
[0061] CA Set-Up.

[0062] The CA 120 generates a composite modulus n. In
some embodiments, n is the product of two primes, but n can
also be the product of three or more primes. In some embodi-
ments, n is public, but n is hard to factor, and the factorization
is known only to the CA 120.

[0063] Initial Certification (FIG. 4):

[0064] Suppose the i-th user u, joins the system in or after
some time period j,. At step 410, the CA assigns a positive
integer p, to u,. The numbers p, are chosen to be mutually
prime with the modulus n. Also, each p, does not divide the
LCM (lowest common multiple) of the remaining numbers p,,
1#1. For example, the numbersp, . . ., p, can be distinct prime
numbers, or pairwise relatively prime.

[0065] The CA computes a unique public value m,&(7Z/
nZ)* for the user v,. (Z/nZ is the ring of all residue classes
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modulo n, and (Z/nZ)* is the multiplicative group of the
invertible elements of Z/nZ, i.e. of the elements defined by
integers mutually prime with n.) In some embodiments,

m;=H\(u; p; jo W)E(Z/Z)* (13)

where H, is a predefined function, e.g. a one-way collision
resistant function, u, is the user identification (e.g. user name),
and w, is an optional string (which may contain u,’s public key
and/or some other information). The value m, thus binds p, to
u,’s identity. If desired, any one or more of the values j,,, p,, m,
and the identification of the function H, can be made part of
the certificate 140. See FIG. 3 showing a certificate 140
containing m,, j,, and specifying the functions H; and H, (H,
is described below).

[0066] Atstep 420, the CA computes an “initial certificate”

value
Sy 5o =M Upi (mod #) (14)

The CA keeps this value secret, and transmits it to the user u,’s
system 110 in an encrypted form.

[0067] Certificate Re-Validation by CA in Time Period j
(FIG. 5):
[0068] Atthe start of, or shortly before, the period j, the CA

performs the following operations. Let t denote the total num-
ber of users in the system (i.e. the total number of users for
whom the initial certification of FIG. 4 has been performed).
Let UU denote the set of these users: UU={u,, . ..., u,}. PP
denotes the set of the corresponding p numbers: PP={p,, . ..
, b} Let UU,= UU be the subset of users that are to be
re-validated in period j. Let PP, = PP be the corresponding set
of numbers p, and let

Pj=n,, EPPF* 1%

i.e., P, is the product of the integers in PP,. (By definition, the
product of the empty set of numbers is 1.) The CA computes

h=H(NE@MZ)* , by =Ho(j-D)E(ZnZ)* (16)

where H, is the same as H, or some other function. The CA
also computes the accumulator

= PP)=(h/hy )V (mod 7) an

Of note, in some embodiments, the root in (17) exists with a

very high probability.

[0069] The CA transmits the following data to the system

110 of each user in UU, (this data can also be broadcast to a

larger set of users if such broadcast transmission is more

efficient in terms of communication):

[0070] 1.v;

[0071] 2. the list of users in UU,, which may be just the list
of numbers p; in PP;. (Since there can be overlap among
these lists for different periods j, the CA can simply trans-
mit the information that has changed since the previous
period; in this case, the CA transmits the list of numbers in
PP, to each new user at step 430 of FIG. 4.)

[0072] Personal Accumulator and Witness Derivation by
Users (FIG. 6):
[0073] At step 610, each user u, in UU, computes its “per-

sonal accumulator” v,(p,), i.e. the accumulator which accu-
mulates only the user’s p, value:

P~y ) (mod n) as)
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This value is computed from the v; value (17) by exponentia-
tion:

(19)
prePP{pi 1

vi(pi) = v; (modn)

At step 620, the user aggregates this personal accumulator
with previous personal accumulators to obtain a witness for
the period j:

Si,j:Si,j—l"j(Pi):Si,j—l(h/hj—l)l/pi (mod n) (20)
The equations (20) and (14) imply that

85,7751, 5o/ M) 7 (mod 1) 1)
[0074] User Authentication (FIG. 7):

[0075] Auseru,canprovides, ;tothe verifier, along with (if

necessary) the values for (w, p;, jo,» W;). At step 710, the

verifier:

[0076] 1. computes m, from (13) or obtains it from the
certificate 140 (FIG. 3);

[0077] 2. computes h=H,(j) and h, =H,(j,,) (see (16)); and
[0078] 3. confirms that

sl-ff:mihj/hjo (mod ) (22)
[0079] Alternative User Authentication:
[0080] Instead of giving the witness s, ; to the verifier, the

user can use s, ; as a private key in an identity-based GQ
(Guillou-Quisquater) signature scheme. This scheme is
described in Appendix B at the end of this disclosure before
the claims. The CA performs the functions of GQ’s PKG
(private key generator); GQ’s parameters are set as follows:
B=s, ,v=p, and] =m,~* mod n. The authentication proceeds
as follows:

[0081] The verifier sends to the user a random message m.
[0082] The user generates a random number r and com-
putes:

d=H(m||#), D=rs; (23)

where H is some predefined public function (e.g. H; or H,).
The user sends the values m, r’’, and D to the verifier.
[0083] The verifier computes J=m,”* mod n and checks that
the following equations hold:

d=H(m|.¥ D7) (24)

J DP= (/) (mod r)

[0084] This scheme may reduce total bandwidth because
the verifier does not need the certificate 140. Note: for the GQ
signature scheme to be secure, it is desirable that each

p >2 1 60.
[0085] Remarks.
[0086] 1.First,s, ; canbe computed in some other way, not

necessarily as in (14).

[0087] 2. Anonymous Authentication.

[0088] If we want to allow the user nodes 110 to sign
messages anonymously—i.e., to be able to authenticate them-
selves as users that have been certified by the CA, but without
revealing their actual identities—we can handle initial certi-
fication differently. For example, instead of (13), the CA can
set m, to be independent of the user’s identity, e.g.:

m;=h; =H(jo)E(Z/nZ)* (25)

The m, value is then provided to the user. To hide the fact that
the m, value is provided to the user, the m,; value may be
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transmitted to the user via a secure channel (e.g., by encrypt-
ing this value such that only u, can decrypt it). Then, it follows
from (14) and (21) that:

siyj:hjl/pf (mod #) (26)

[0089] As mentioned below in Appendix A, there are effi-
cient zero-knowledge (ZK) proofs through which user v, can
prove, in the j* time period, that it knows a p” root of h;
modulo n for some (unrevealed) number p that is contained in
a specified interval I of integers, i.e.

PK{(a, B): aP=h; mod n ABET}

See [41], [42]. The interval I can be an interval containing all
the numbers p,. Using this scheme, the user can authenticate
itself anonymously if and only if it has obtained an initial
certificate s; ; and the subsequent personal accumulator val-
ues v(p,) (see (18), (19)).

The CA can revoke the user as before—i.e., by not re-vali-
dating it (not including p, in the product P, in FIG. 5).
[0090] As mentioned above, the accumulator techniques
are not limited to a user possessing a single certificate or to a
digital certificate revocation. For example, a user u, may or
may not possess one or more of entitlements e, e,, . . . e,.
During initial certification, the user u, is assigned a unique
integer p, , if the user is to be certified for an entitlement e,.
The entitlement proof proceeds as described above with
respect to equations (13)-(26), with numbers p, replaced by p;
rwiths, ;replaced bys, , , etc.

[0091] In some of these embodiments, however, a value p;,
is computed as the product of P, ;. For example, if the user is
initially certified for all the entitlements, then:

Pi=Pi1---Pi,r 27

In some embodiments, the integers p, , are mutually prime
relative to each other and to the CA’s modulus n. The user u,’s
initial certificate is s, jozmil/Pf (mod n) as in (14), and u, can
use exponentiation to de-accumulate all the values p, ; except
a selected value p, , for some k:

e 72 28)

Up:
Sidojo =M 1ri (modn) = 5; j, (modr)

The user can use this value to demonstrate that it possesses the
entitlement that corresponds to prime p, , without revealing
the user’s other entitlements. The CA can revoke a specific
entitlement e, for the user without revoking the user’s other
entitlements, simply by issuing a validation accumulator in
(17) that does not accumulate p, , (i.e. the product P, is
computed as in (15) except that p, is replaced with p,/p, , (the
number p, , is not included in the product)). If the user wants
to sign anonymously and unlinkably, then the user cannot
reveal its specific value of p, ,, but it would seem to make it
difficult for a verifier to determine what entitlement the user is
claiming (if the verifier cannot see the value of p, ;). We can
get around this problem by, for example, associating each
entitlement e, to a range of integers I,. This range will contain
all the p, , values for all the users v, initially certified to have
the entitlement e,. The ranges I, do not overlap in some
embodiments. Then the user can prove in ZK that it possesses
a modular p-th root (for some unrevealed number p in the
range I,) of the appropriate value, i.e. the user can provide the
following proof of knowledge:

PK{(a, B): af=C mod n ABEL} 29)
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where C=m/h,/h;_, or C=h, (see (21),(26)). See [41], [42]. The
user can also prove that it possesses multiple entitlements
simultaneously, e.g., by proving (in ZK if desired) its posses-
sion ofa p” root for some p that is the product of (for example)
two integers p, and p, in ranges corresponding to the claimed

entitlements:

PK{(a, B): of =C mod n AB=H, B, ABEL, Aﬁzelkz} (30)

See [41], [42].

[0092] Users Moving From Network to Network:

[0093] Suppose the CA has users (certificate owner sys-
tems) 110 in different networks, and the users move from a
network to a network (e.g. some of the networks may be ad
hoc networks). The CA can calculate a separate accumulator
(say, (17)) for each network. Each accumulator will accumu-
late only the valid users in the corresponding network based
on the CA’s knowledge of the current composition of users in
each network. Each user will compute its personal accumu-
lator value and/or witness value (e.g., as in (18), (20), (26),
and/or (28)). The user can move to another network and use
the same personal accumulator value and/or witness value in
the other network.

[0094] Aggregation of Personal Accumulators:

[0095] Multiple personal accumulators can be aggregated
into a single value, in order to save bandwidth; from this
aggregated value, a verifier can batch-verify that multiple
users are indeed certified. For example, in the scheme of
equations (17), (22), user u, (if it is still valid) possesses a
personal value s, ; that satisfies

Si,/'pi:mi(h/hjo, P(mod ) v

where m, as in (13), and j, , is the period j, for the user u,.
Denote

zi:mi(hj/hjo’ J(mod 7). (32)

Then, for multiple users in period j, their personal values can
simply be multiplied together

v (33)
S= l_[ s;, j(modn)

i=1

where t' is the number of users which take part in the aggre-
gation (or the number of certificates or entitlements belong-
ing to a user if each v, is a certificate or an entitlement). A
verifier can use the value (33) to confirm that users (or cer-
tificates or entitlements) (u,, . . ., u,) are valid by confirming

that:
4 , 34
o Lt p
stizypi = H Z5 (modn).
i=1
[0096] De-Accumulation.
[0097] We will now discuss concrete approaches to the

de-accumulation of values from the accumulator computed
by the CA; however, we note that the CA does not need to
compute a single accumulator value that accumulates all of
the values associated to all of the valid nodes 110 in the
network. Instead, the CA can use a tradeoff, which we now
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describe. De-accumulation is somewhat computationally
expensive. Procedure Split(v,P) below performs de-accumu-
lation on an accumulator v that accumulates t k-bit numbers
P={p,}; the procedure’s output is t personal accumulators; the
execution time is O(t log” t) (where we consider k to be a
constant). Let us denote the accumulator accumulating an
empty set of values as u (in equation (17), u=h(j)/h(j-1)).

Then
[0098]
u=v#< (mod n). (35)
[0099] Procedure Split(v,P):
[0100] 1.SplitthesetPinto two disjointhalves P, and P,.

[0101] 2. Compute v, =7 (mod n); this is the accu-
mulator for the set P;. )
[0102] 3.Computev,= <P (mod n); this is the accu-
mulator for the set P,.
[0103] 4. If P, has only one member, output (v, P,),
otherwise call Split (v, P)).
[0104] 5. If P, has only one member, output (v,, P,),
otherwise call Split (v,, P,).
End of Split (v,P)
[0105] As a rule of thumb, exponentiating a number
modulo n by a product of t' numbers takes time proportional
to t'; thus, the first split operation (steps 2 and 3 in procedure
Split(v,P)) is the most expensive one in the recursion above.
(Actually, since there are t distinct numbers (py, . . ., p,), the
p, are O(log t) bits apiece on average, so that the exponentia-
tion is proportional to t' log t'; since the Split algorithm can
recurse to a depth of log t', the overall computation complex-
ity is t log® t.) To reduce the amount of de-accumulation that
needs to be performed, the CA can (for example) compute
two accumulators—one for each of two halves P, and P, of
P—and transmit these two accumulators to the users, thereby
allowing the users to skip the first split operation and thereby
reducing their computation. The CA can reduce their compu-
tation further by transmitting even more accumulators, each
for an even smaller subset of the users. In computing these
multiple accumulators, it is advantageous for the CA to use its
knowledge of the current network topology to enhance the
performance of the scheme. For example, suppose that the
users are divided into several (say, 10) topological areas.
Then, instead of using one product of integers P, as in (15), the
CA can compute 10 such products P, , ..., P, ,, and 10
area-specific accumulators (hj/hj_l)l/ »* The CA then trans-
mits each one of these 10 area-specific accumulators to the
respective one of the 10 topological areas (along with a list of
the re-validated users in that area). Users in a given area can
compute their personal accumulators and witnesses from the
area-specific accumulators.
[0106] De-accumulation is also relevant to how the per-
sonal accumulators (18)-(19) are computed. Clearly, in terms
of computation, it is non-optimal for each of the t users to
perform de-accumulation (18), (19) independently; doing it
this way would entail O(t*) computation (actually, worse,
since the size of the p, must grow at least as fast as log t). In
some embodiments, the users compute their personal accu-
mulators cooperatively, as illustrated, for example, in FIG. 8
and described below.
[0107] Ifthe performance metric is minimum communica-
tion, a simple broadcast by the CA of the accumulator (17) to
tusers (see FIG. 5) is a good way of accumulator distribution.
This results in overall communication of O(t). However, over-
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all computation is at least O(t*) because each of t users has to
perform t—1 exponentiations on the same accumulator.
[0108] Referring to FIG. 8, let PP, be the set of valid users
(i.e. the set of the p numbers corresponding to the valid users).
At the stage of FIG. 5 (re-validation), the CA sends the
accumulator v(PP)) (see (17) for example) and the numbers p
in the set PP, to a designated node 110 (also marked D in FIG.
8). Node D divides the set PP, into sub-groups (sub-sets). In
one example, the sub-group PP -0 includes one or more of
nodes 110.0, 110.00, 110.01; the sub-group PP;-1 includes
one or more of nodes 110.1, 110.10, 110.11; the third sub-
group consists of node 110 itself if this is a valid node. Node
D computes the accumulator v,(PP,-0) for the sub-group
PP -0, and the accumulator v,(PP -1) for the sub-group PP~
1. This computation can be performed by de-accumulating
the nodes which are not sub-group members. See e.g. equa-
tion (19) and Procedure Split(v,P), steps 1 and 2. If node D is
valid (i.e. its number p is in PP)), node D also computes its
personal accumulator as in FIG. 6. Node D transmits the
accumulator v (PP,-0), and the p numbers in the set PP,-0, to
node 110.0. Node D transmits the accumulator v (PP ~1), and
the p numbers in the set PP,~1, to node 110.1. The nodes
110.0, 110.1 perform the same operations as node D. In
particular, node 110.0 divides the valid users PP ,~0 into
sub-groups. In one example, the nodes 110.0,110.00, 110.01
are valid; the sub-group PP -0-0 consists of node 110.00; the
sub-group PP,-0-1 consists of node 110.01; the third sub-
group consists of node 110.0. The sub-groups are determined
by node 110.0 from the p numbers in PP-0. Node 110.0
computes accumulators v,(PP-0-0), v(PP-0-1) for the
respective sub-groups PP,-0-0, PP -0-1, and also computes its
personal accumulator as in FIG. 6. Node 110.0 transmits the
accumulator v (PP -0-0), and the corresponding p number, to
node 110.00. Node 110.0 transmits the accumulator v,(PP-
0-1), and the corresponding p number, to node 110.01. The
accumulators v,(PP-0-0), v,(PP-0-1) are personal accumula-
tors, so the nodes 110.00, 110.01 do not need to derive their
personal accumulators.

[0109] Node 110.1 performs operations similar to those for
node 110.0.
[0110] This procedure can be extended recursively to any

number of nodes. The procedure is not limited to the “binary-
tree” type of FIG. 8. A node can split a set of users into any
number of sub-groups in addition to itself, possibly resulting
in a non-binary-tree type operation. Also, in some embodi-
ments, the accumulators are transmitted only to valid nodes.
For example, ifnode 110 is invalid, then CA 120 transmits the
accumulator v (PP)) to a valid node instead. For communica-
tion efficiency, the sub-groups are selected so that the com-
munications are efficient within each sub-group. For
example, in case of ad hoc networks, the sub-groups can be
selected based on geographic proximity, with the proximate
nodes being grouped together.

[0111] Now, we describe one approach for selecting the
sub-groups, where nodes only have local topology informa-
tion. Roughly speaking, the idea is as follows. To partition (a
portion of) the network, the designated node D chooses two
“group heads” in the network, such as nodes 110.0, 110.1 in
FIG. 8. (More than two group heads can also be selected.)
These group heads can be chosen randomly. Alternatively, if
the designated node has some topological information, it can
use that information to attempt to choose the two group heads
in a way that they are topologically distant—preferably on
opposite sides of the network from each other. After D picks
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the two group heads, the designated node tells the two group
heads to transmit different messages; for example, the desig-
nated node may tell the first group head to transmit ‘0’ and the
second to transmit ‘1°. Then, each group head (e.g. 110.0,
110.1) “floods” the network with its particular message.
When this occurs, the other nodes in the network will either
receive a ‘0’ first or the ‘1’ first. Nodes that receive a ‘0’ first
(e.g. nodes 110.00, 110.01) report back to the designated
node D (or to the group head 110.0) that they are a member of
the 0-group; the members of the 1-group report similarly. The
designated node D (or the respective group heads) receives
this information, and it de-accumulates the accumulator into
two halves—one accumulator for the O-group and one for the
1-group. If the designated node performed this de-accumula-
tion (as in the procedure illustrated in FIG. 8), it passes along
the appropriate accumulators to their corresponding group
heads (110.0, 110.1). Then, each group head becomes the
designated node for its corresponding sub-network, and the
entire process described above is repeated for the sub-net-
works. Now, we will provide more detail for one embodi-
ment.

[0112] At the beginning, there is only a single group PP of
users which covers the whole network. Each recursion step is
carried out in four phases as depicted in FIG. 9. The first
recursion step is started by a node which is preferably located
in the center of the network. We call this node the current
designated node D. Node D executes the following four
phases of recursion:

[0113] Search Group Heads (State 910):

[0114] Node D selects randomly two nodes out of its group
as group heads GHO and GH1. (For the sake of illustration,
assume that node GHO is node 110.0 of FIG. 8 or 10, and node
GHI1 is node 110.1). Node D sends out a broadcast message
M, ,..nce With its group 1D, the addresses of GHO and GH1,
and a path variable containing D’s address. All receiving
nodes within the same group obtain a copy of the path and
check if they are GHO or GH1. If not, they add their address
to the path variable in the message and forward it (broadcast
it) once. The path variable provides each node with the path to
D. FIG. 10 shows the messages m_,,, ;s transmitted by
nodes D, 110.01, 110.10, 110.11.

[0115] Build Group (State 920):

[0116] Ifthereceiver of m_,,, ;s 1s either GHO or GH1, it
starts building a sub-group by broadcasting a message m,,,,;;
containing its address. If a receiver of m,,,; ;. which belongs
to the same group hasn’t already received a message from a
group head and therefore, joined its sub-group, he joins the
sub-group announced in m, ;,; and forwards the message
once. FIG. 10 illustrates the m,,,;;,- messages broadcast by
nodes GHO, GH1, 110.01, 110.10, 110.11, assuming that the
node 110.01 received the m, buildG message from GHO first,
and nodes 110.10, 110.11 received the m,,,,; ;- message from
GH1 first.

[0117] Report Group (State 930):

[0118] After some prescribed amount of time, all members
of'both sub-groups start reporting their membership status to
D. Therefore, they include their addresses together with their
sub-group IDs O or 1 in the message m, .., and send it over
the path obtained in phase 1 to D. To make the reporting more
efficient, nodes which are more distant from D start the
reporting first. Nodes on the path of m,,,,,; add their sub-
group membership information to the message and forward it
according to the path to D. Nodes having forwardedam
don’t initiate a report themselves.

reportG
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[0119] Transmit Accumulator (State 940):

[0120] After D has received all reports, it looks up the paths
p0 to GHO and p1 to GH1 included in the received reports,
exponentiates the accumulator v, for its group to obtain the
accumulators v,(0) and v,(1) for the respective sub-groups,
and sends the accumulators in respective messagesm,, .. ... o
over p0 to GHO and m,,.,,,;.ira OVer pl to GH1, respectively.
Additionally to the accumulators v(0) and v,(1), these mes-
sages contain a list of the corresponding sub-group members.
Afterreceptionofm,, ,,,miz0 O My, psmina s FESpECtively, GHO
and GH1 become designated nodes D of their sub-groups and
enter phase 910 of the next recursion step. The recursion ends
if the sub-group accumulator is a personal accumulator.
[0121] Considering a set of all users UU with cardinality
IUUI=2%=t, and equal distribution of each group PP into two
groups of identical size |[PPI/2, the recursion will end after R
steps with a total number of t sub-groups of size 1. Here, we
mention a few aspects of the scheme’s computational and
communication complexity, assuming that, at each step, the
split is into approximately equal halves.

[0122] Search Group Heads:

[0123] Within a subnetwork of size t', this step requires
O(t") messages, each of size log t (since it requires log t bits on
average to specify a single member of a group of' t elements).
Each message contains a path with average length C, vt
Therefore, communication for this subnetwork is of O(t'/T
log t). If we assume that the partitions are always equally-
sized, the total communication of the entire recursive proce-
dure is also OtV log t).

[0124] Build Group:

[0125] This step involves a total of t messages, each of
constant size, for communication complexity O(t).

[0126] Report Group:

[0127] Group membership information of the nodes is
transmitted over C;*v't hops, where C, is a constant depend-
ing on the network density and reflecting the number of
reports initiated: this results in communication of O (t' vt log
1.

[0128] Transmit Accumulator:

[0129] Accumulators together with group membership
information of't nodes is transmitted over C,*y/T hops, where
C, is a constant depending on the network density: this results
in communication of O (1T log t) and computation of O(tR
log )=0(t log® 1).

[0130] Overall, the communication is O(tyt log t) and the
computation is O(t log? t).

[0131] Ifwe assume that there is an entity E of the network
with less stringent limitations in terms of computational
power and energy such as the certification authority itself,
another interesting opportunity arises. By acquiring some
topology knowledge this entity may pre-de-accumulate the
accumulator into accumulators for constant size groups. In
detail, such a scheme works as follows: Some node C which
holds the current accumulator for all users and has connec-
tivity to E initiates a distributed clustering algorithm of FIG.
9. In a second step, C provides the clustering information to E
and lets E perform the pre-de-accumulation for all clusters.
Then C distributes the accumulators to the clusters. Suitable
clustering algorithms have communication complexity of O(t
Vi log 1), but perhaps with a smaller constant factor than the
approach described above.

[0132] Briefly, we mention a distributed approach that
splits a connected network into two connected subnetworks,
where neither subnetwork is more than twice the size of the
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other. As before, we begin with a sub-network that has a
designated node. We assume that the sub-network is con-
nected, and that its topology is basically constant during the
accumulator distribution (though it may change dramatically
from period to period). The first step in the preferred algo-
rithm for achieving O(t log t) communication and O(t log t)
computation is that, in a distributed fashion, the nodes of the
sub-network establish an enumeration of themselves. This
can be accomplished as follows. The designated node ini-
tiates the procedure by broadcasting a message. The nodes
that receive the message transmit an acknowledgement mes-
sage back to the designated node, and they log the designated
node as the node from which they received the message. The
designated node logs the acknowledging nodes as the nodes
that received its message. This process recurses throughout
the network. Specifically, a node that received the message
from the designated node broadcasts the message, and nodes
that have not sent or received the message before log the
identity of the node that they received the message from and
they send back an acknowledgment, after which the sending
node logs the acknowledgers. If a node receives the message
more than once, it only logs and responds back to the first
node that sent it. In this fashion, since the subnetwork is
connected, every node in the subnetwork (except the desig-
nated node) has a unique node from which it received the
message, as well as a list of the nodes that received the
message directly from it. Each node that has a nonempty list
of'acknowledgers chooses an arbitrary enumeration of those
acknowledgers. In effect, from this procedure, we have con-
structed a tree (a graph with no loops) from the network, as
well as an enumeration of all of the tree nodes given by the
depth-first pre-order traversal of the tree. If the subnetwork
has t' nodes, this procedure can be accomplished with O(t')
communication and computation.

[0133] The next stage of the algorithm is to use the enu-
meration to approximately bisect the subnetwork. There are a
variety of different ways of doing this. One method is that
each node, beginning with the nodes with no acknowledgers,
could back-transmit (backwards according to the enumera-
tion) the number of nodes in its subtree including itself; in this
fashion, each node computes the number of nodes in its
subtree. There must be exactly one node that has at least half
of the nodes in its subtree, but such that none of its children
have at least half. This node is designated to be the midpoint
of the subnetwork. Now, viewing the midpoint point as the
root of the tree, it divides its children into two groups, such
that the number of nodes that are in a subtree emanating from
one of the children in the first group is approximately equal to
the number of nodes that are in a subtree emanating from one
of the children in the second group. (This can always be
accomplished such that ratio between the two numbers is at
most two.) Thus, all of the network nodes except the midpoint
become members of one of the two groups; the midpoint is
considered to be a member of both groups. The step of com-
puting how many nodes are in each subtree requires O(t'log t")
communication, since there are t transmissions, where the
size of each transmission (which is a number between 1 and t'
representing how many nodes are in the given subtree) is log
t' bits. Viewing the midpoint node as the root node, a new
enumeration of the nodes is established with the midpoint
node as the initiator of the message, beginning with the nodes
in the first group. (This new enumeration could be computed
as before, or it could actually be derived indirectly from the
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previous enumeration. Either way, it does not add to the
asymptotic communication complexity of the protocol,
which is t log t overall.)

Accumulator-Based Encryption of Validity Proofs

[0134] The personal accumulators v (p,) and/or the witness
values s, ; (see e.g. equations (17), (20), (21), (26)) can be
used to obtain symmetric keys that users can use to decrypt
validation proofs under other validation systems. An example
will now be given for the validation system obtained by
combining the systems of FIGS. 2, 4-7, but this is not limiting.

[0135] Initial Certification:
[0136] When a user u, joins the system, the CA:
[0137] 1. Generates the validation and revocation seeds X,

N as in FIG. 2.

[0138] 2. Generates all the tokens ¢, for all the periods j (see
FIG. 2 and equation (1)).

[0139] 3. Generates the certificate 140 as in FIG. 2 and
transmits the certificate to the user u,.

[0140] 4. Performs the steps of FIG. 4, i.e. generates the
values p,, m,, s, . and transmits S, ; to the validity prover
(which can be the user u, and/or the directories 210). The
values p,, m,, can also be transmitted to the prover.

[0141] 5. Generates all the witness values s, ; (for all the
periods j) for the user u,. Also generates the encryption keys
K, ;of whichis s,  or some functionof’s, ;.

[0142] 6. Encrypts each token c, (generated at step 2 in this
procedure) with the encryption key K, ; under some
encryption scheme (possibly a symmetric encryption
scheme). Let us denote the encrypted ¢, value as E, ;.

[0143] 7. Transmits all the values E, , (forallj) to the prover
(i.e. the directories 210 and/or the certificate owner u,).

[0144] Re-Validation by CA:

[0145] At the start of, or shortly before, each period j, the
CA:

[0146] 1. Performs the procedure of FIG. 5, i.e. computes

and broadcasts the accumulator value v; and the list of valid
p numbers to the provers.

[0147] 2.Iftheuser u,’s certificate is invalid, the CA trans-
mits the revocation seed N, to the prover corresponding to
the certificate (e.g. to the useru, and/or the directories 210).

[0148] Proof Derivation by the Prover:

[0149] Iftheuseru,’s certificateis valid (as indicated by the

transmission of number p, in the RE-VALIDATION proce-

dure at step 1), the prover:

[0150] 1. Performs the procedure of FIG. 6 to derive the
witness values; .

[0151] 2. Obtains the decryptionkey K,  fromss, .

[0152] 3. Decrypts E, ;to recover

[0153] Authentication (Validity Proof): As in FIG. 2.
[0154] Many variations are possible. For example, the

decryption keys can be some different function of s, ; than the
encryption keys.

Accumulation of Revoked Certificates

[0155] Above, we have described an approach in which an
accumulator accumulates the valid certificates; an alternative
approach is to accumulate revoked certificates. The valid
certificates’ owners (or validity provers) then use the
“dynamic” feature of dynamic accumulators to compute a
new accumulator for the valid nodes, and to compute their
personal accumulators with respect to this new accumulator.
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[0156] As before, we will assume for the sake ofillustration
that each user operates a corresponding computer system 110
and owns at most one certificate 140. This is not limiting, as
a user may own multiple certificates and/or operate multiple
systems 110. The scheme is also applicable to controlling
resource access and other kinds of authentication. We will use
the word “user” to denote both the system 110 and the sys-
tem’s operator where no confusion arises. As described
below, each user u, will be assigned a positive integer p, with
the same properties as in the scheme of FIGS. 4-7 (e.g. p; are
mutually prime relative to the CA’s public composite modu-
lus n and to each other). The symbols n, PP, p, will be as in the
scheme of FIGS. 4-7. In particular, PP is the set of the p,
numbers.

[0157] For each period j, the symbol QQ; will denote the set
of the revoked p, numbers (i.e. the set of the p, numbers
corresponding to the certificates to be declared as revoked in
period j). Q; denotes the product of the numbers in QQ;:

Qj:nPkEQQij (36)
The symbol a will denote an accumulator seed, which is an

integer mutually prime with the modulus n. The accumulator
of the values in Q; is:

vj:al/gf mod 37

[0158] Let RR=QQ-QQ,_,, i.e. RR; is the set of the p
numbers corresponding to the certificates declared as revoked
in periodj but not in period j—1; in period j-1 these certificates
were either declared as valid or were not yet part of the
validation system. Let R, denote the product of the numbers in

RR:

7
R=np CRRF* (3%

It is easy to see from (37) that if each certificate cannot be
“unrevoked” (i.e. cannot be made valid once revoked), then:

vj:vjill/Rf mod # (39)
[0159] CA Set Up:
[0160] The CA generates its modulus n and the accumula-

tor seed c.. The CA sets the initial accumulator value v=a. for
the initial period j.

[0161] Initial Certification (FIG. 11):

[0162] Supposeauseru, wantstojointhe systemina period
Jos 10 be validated starting the next period j,+1. At step 1110,
CA 120 generates p,, m, as at step 410 in FIG. 4. These
numbers can be made part of the user’s certificate 140 (FIG.
3). Atstep 1120, the CA computes the following secret num-
bers:

t;=m; "7 (mod ») (40)

sl.yjozvjol/l’f (mod #) 41)
Here, v, is the accumulator value for the period j, (v, =c if
QQ;, is empty). At step 1130, the CA transmits the valuest,, s,
7,to the user u, in an encrypted form. As will be explained, the
user will be able to derive the value

siyj:vjl/l’i (mod #) (42)
for each period j>j, for which the certificate is valid.
[0163] Certificate Re-Validation (FIG. 12):

[0164] In period j, suppose that v, ,EZ/nZ is the accumu-
lator value for period j-1. For validation in period j, the CA:

[0165] 1. Computes v, (using the equation (37) or (39) for
example);
[0166] 2. Transmits the value v, together with a list of the

newly-revoked certificates (perhaps represented by the set
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RR)) to the users. If desired, the CA may also sign the pair
(v,,j) and transmit the signature to the users.
[0167] Witness Derivation (FIG. 13):
[0168] Ifauseru, is valid for the period j, then the user has
the value si,j_le_ll/Pl_ (modn). See (41), (42). At step 1310,
the user computes s, jﬂ/jl/{_ as follows:
[0169] 1. The user applies the Extended Euclidian Algo-
rithm to compute integers a and b such that

ap+bR=1 (43)

(this is possible because p£RR;, so p, and R; are mutually
prime).
[0170]

Vs lb mod » (44)

2. The user sets s,  to the value:

This value is indeed a p,-th root of v, modulo n, because (note
equation (39)):

1
- bpi Rb

a pi o @pi Pt api 0P dr

Ofsii-) =vitvily =vitv = vmo

[0171] At step 1320, the user computes the witness

Wy TS (45)
[0172] User Authentication (FIG. 14):
[0173] The user u, provides t;s, ; (mod n) to the verifier,

along with (if necessary) the values for (u;, p;, jo, W,)- In
addition, the user provides to the verifier the accumulator
value v; and the CA’s signature on (v,,j). At step 1410, the
verifier checks the CA’s signature and confirms that:

w; Fi=my; (mod n) (46)

[0174] Alternative User Authentication:

[0175] The authentication can be performed using the iden-
tity-based GQ signature scheme as described above in con-
nection with equations (23), (24), using w; ; as a private key.
The CA performs the functions of GQ’s PKG (private key
generator); GQ’s parameters are set as follows: B=w, , v=p,,
and J=m,”" mod n. The authentication proceeds as follows:

[0176] The verifier sends to the user a random message m.
[0177] The user generates a random number r and com-
putes:

d=H(m|i""), D:rwiyjd (mod ») 47)

where H is some predefined public function. The user sends
the values m, m,, ', and D to the verifier.

[0178] The verifier computes J=m,”* mod n and checks that
the following equations hold:

d=H(m| D?) (48)

Jdef:rpfvj (mod #)

[0179] This scheme may reduce total bandwidth because
the verifier does not need the certificate 140. Note: for the GQ
signature scheme to be secure, it is desirable that p,>2'%.
[0180] The use of accumulator v, allows a user to revoke
itself, without the CA’s help. To revoke itselfin a period j, user
u, simply broadcasts le/P (mod n), after which every other
user u, can update the accumulator to be Vjevjl/P "(modn)and
can recompute its personal s, ;and w,  valuesasin (43)-(45).
Ofnote, R; can be re-computed by multiplying the previous R,
value by p,.

[0181] In some embodiments, this scheme allows efficient
distribution (e.g. broadcast) for the CA at the stage of FIG. 12,
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since the CA transmits the same information to all the users.
This information requires only O(t) transmissions. On the
other hand, each transmission is proportional in size to the
size of RR;. Clients of the CA may include many users that are
not in the particular t-member network that we are concerned
about. Ifthe “super-network” of clients of the CA is very large
in proportion to t, this may not be a very good solution. Even
if the CA only manages our t-member network, the CA’s size
of'each transmission is still, strictly speaking, proportional to
t, since the number of revocations within the network in a
given period will tend to be a constant fraction of the total
number of users. In this sense, the communication complex-
ity of certificate distribution in this scheme is analogous to the
communication complexity of a delta-CRL scheme. Recall
that in a delta-CRL scheme, the CA transmits a list of users
revoked in the given period, together with a signature on that
list, to all users. On the other hand, since a personal accumu-
lator’s size is independent of the number of time periods, the
scheme has better communication complexity for authentica-
tion than delta-CRLs, because in the delta-CRL scheme the
verifier must separately check the delta-CRLs for all time
periods to confirm that a given user has not been revoked
during any of these periods.

[0182] The invention is not limited to the embodiments
described above. The invention is not limited to secure or
dynamic accumulators. An accumulator can be any data that
accumulate some elements. Further, the invention is not lim-
ited to the accumulators described above. For example, the
accumulator seed h(j)/h(j-1) in equation (17) can be replaced
with a value independent of the period j, and the accumulator
seed o in the accumulator (37) can be replaced with a function
of'j. The accumulator methods can be used to prove (authen-
ticate) membership in a set or possession of some property.
Examples include authentication of valid entitlements, or
authentication of people as being members of some organi-
zation.

[0183] In some embodiments, the CA 120, the directories
210, and the systems 110 are computer systems communicat-
ing with each other over a network or networks. Each of these
systems may itself be a computer system having components
communicating over networks. Each computer system
includes one or more computer processors executing com-
puter instructions and manipulating computer data as
described above. The term “data” includes “computer data”
and covers both computer instructions and computer data
manipulated by the instructions. The instructions and data can
be stored on a data carrier such as a computer storage, i.e. a
computer readable medium (e.g. a magnetic or optical disk, a
semiconductor memory, and other types of media, known or
to be invented). The data carrier may include an electromag-
netic carrier wave transmitted over a network, e.g. through
space, via a cable, or by some other means. The instructions
and data are operable to cause the computer to execute appro-
priate algorithms as described above.

[0184] The invention is not limited to any particular hash
functions, or to cryptographic functions (which are easy to
compute but are one-way or collision resistant). In some
embodiments, itis desirable that a function f or Hbe collision
resistant not in the sense that it is difficult to find different x
and y with the same image but in the sense that if x and y are
uniformly drawn from the function’s domain, the probability
is small that they both will have the same image:

P{Hx)=H()}=a
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where a.is a small constant (e.g. V1o, or Yoo, or 272, or 27%°,
or 278, or 271%°, or some other value). Some or all of the
techniques used for validity proofs can also be used for inval-
idity proofs and vice versa. The CA, the directories, and the
systems 110 may include software-programmable or hard-
wired computer systems interconnected via a network or
networks. Each function f or H represents an evaluation
method performed by a computer system. The invention is not
limited to the step sequences shown in the flowcharts, as the
step order is sometimes interchangeable and further different
steps may be performed in parallel. Other embodiments and
variations are within the scope of the invention, as defined by
the appended claims.
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Appendix A
Accumulators and Proofs of Knowledge

[0230] Definition (Secure Accumulator).

[0231] A secure accumulator for a family of inputs {XX,}
is a family of families of functions GG={FF,} with the fol-
lowing properties:

[0232] Efficient generation: There is an efficient probabi-
listic algorithm G that on input 1* produces a random element
fof {FF,}. G also outputs some auxiliary information about f,
denoted by aux,

[0233] Efficient evaluation: f={FF,} is a polynomial-size
circuit that, on input (u, x)&UUx XX, outputs a value
v&UU, where UU s an efficiently-samplable input domain
for the function f, and {XX,} is the intended input domain
whose elements are to be accumulated.

[0234] Quasi-commutative: For all k, for all fEFF,, for all
uEUU,, for all x,, x,EXX,, {(f{u, x,), X, =1{{(u, x,), x,). I

X={x,, . .., X,,} © XX, then by f(u, X) we denote f(f{. . . (u,
X)yoo. )
[0235] Witnesses: Let vEUU and XXX, A value weUU,

is called a witness for x in v under fif v=f(w, x).
[0236] Security: Let UU',x XX"; denote the domains for
which the computational procedure for function f&FF, is
defined (thus UU cUU', XX, = XX"). For all probabilistic
polynomial-time adversaries A,,

Prlf—G(1%); u==UUp, (x, w, X)—4,(f, UUp u) :

XEXX,; wEUU; xEXX,; xEX: f(w, x)=F(u, X)] -neg

K).
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[0237] Camenisch and Lysyanskaya ([39]) define the
notion of a dynamic accumulator:

[0238] Definition (Dynamic Accumulator).

[0239] A secure accumulator is dynamic if it has the fol-
lowing property:

[0240] Efficient Deletion: There exist efficient algorithms
D and W such that, if v=f(u, X), x, X'€X, and f(w, x)=v, then:

D(auxg v, x)=v' such that v'=flu, X-{x"}) and

Wi, v, v), x, x"y=w' such that £ (w’, x)=v".

[0241] Zero-Knowledge Proofs. An advantage of accumu-
lators (at least, RSA-based accumulators, which are
described later) is that it is possible to construct efficient
zero-knowledge proofs (ZK proofs) that a value has been
accumulated. It has been proven that any statement that is in
NP (nondeterministic polynomial-time) can be proven in ZK,
but some statements can be proven in ZK much more effi-
ciently than others. Briefly, we describe the concept of a ZK
proof, which was introduced independently by Brassard,
Chaum, and Crepeau and by Goldwasser, Micali, and Racko,
and further refined by Bellare and Goldreich.

[0242] Let x be an input, and let R be a polynomially
computable relation. Roughly speaking, a zero-knowledge
proof of knowledge of a witness w such that R(x, w)=1 is a
probabilistic polynomial-time protocol between a prover P
and a verifier V such that, after the protocol, V is convinced
that P knows such a witness w, but V does not obtain any
explicit information about w. In other words, apart from
“proving” that it knows a witness w such that R(x, w)=1, P
imparts “zero knowledge” to V.

[0243] Inthesequel, we may use the notation introduced by
Camenisch and Stadler for various proofs of knowledge of
discrete logarithms and proofs of the validity of statements
about discrete logarithms. For instance,

PK {(o, B, 7): y=g" bP A=g"™ k" Au=a=n)}

denotes a zero-knowledge Proof of Knowledge of integers a.,
B, and y such that y=g* hP and y'=g'® h", where u=a=v and
where g, g', h, h', y, and y' are elements of some groups
G=<g>=<h> and G'=<g'>=<h">. The convention is that
Greek letters denote quantities the knowledge of which is
being proved, while all other parameters are known to the
verifier. Using this notation, a proof-protocol can be
described by just pointing out its aim while hiding all details.
[0244] Often, these proofs of knowledge are instantiated by
a three-pass protocol, in which the prover first sends the
verifier a commitment to certain values, after which the veri-
fier sends the prover a challenge bit-strings, and the prover
finally sends a response that incorporates both the “known
value”, the committed values and the challenge value in such
away that it convinces the verifier is convinced of the prover’s
knowledge.

[0245] These proofs of knowledge can be turned into sig-
nature schemes via the Fiat-Shamir heuristic. That is, the
prover determines the challenge ¢ by applying a collision-
resistant hash function H to the commitment and the message
m that is being signed and then computes the response as
usual. We denote such signature proofs of knowledge by the
notation, e.g., SPK {c:y=f(a)}(m). Such SPK’s can be
proven secure in the random oracle model, given the security
of the underlying proofs of knowledge.

[0246] ZK proofs are often accomplished with the help of a
commitment scheme. A commitment scheme consists of the
algorithms Commit and VerifyCommit with properties as
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follows. The commitment algorithm Commit takes as input a
message m, a random string r and outputs a commitment C,
i.e., C=Commit(m,r). The (commitment) verification algo-
rithm VerifyCommit takes as input (C, m, r) and outputs 1
(accept) if C is equal to Commit(m,r) and O (reject) otherwise.
The security properties of a commitment scheme are as fol-
lows. The hiding property is that a commitment C=Commit
(m, r) contains no (computational) information on m. The
binding property is that given C, m, and r, where 1 =Verify-
Commit(C,m,r), it is (computationally) impossible to find a
message m, and a string r, such that 1 =VerifyCommit(C, my,
1o)-

[0247] Toprove,in ZK, knowledge of'a witness w of'a value
x that has been accumulated—i.e., that f(w, x)=v, where v is
the accumulator value—the usual method is to choose a ran-
dom string r and construct a commitment c=Commit(x, r) and
then provide the following proof of knowledge:

PK{(a, B, Y):c=Commit(c, ) Af(y,c)=v}.

[0248] Above a represents the (hidden) x value, while
represents r and y represents w.

[0249] Rsa-Based Accumulators.

[0250] Here we describe a common concrete instantiation
of accumulators, which uses mathematics related to the well-
known RSA public-key cryptosystem, invented by Rivest,
Shamirand Adleman in 1977. Above, our description focused
on some RSA-based instantiation of accumulators, but this
description should not be considered limiting; our accumula-
tor-based certificate revocation schemes could be used with
any type of accumulators. An accumulator structure has an
advantage that its size does not depend on the number of
accumulated elements. An RSA-based accumulator makes
use of a composite integer n, called a modulus, that should be
chosen in such a way that it is hard to factor. In some embodi-
ments of the schemes defined above, the modulus is an RSA
modulus, which is defined as follows:

[0251] Definition (RSA modulus). A 2k -bit number n is
called an RSA modulus if n=pq, where p and q are k-bit prime
numbers.

[0252] Of course, one can choose n in a different way—e.
g., as the product of three primes, or as the product of two
primes of different sizes.

[0253] Definition (Euler totient function). Let n be an inte-
ger. The Euler totient function ¢(n) is the cardinality of the
group 7, (the multiplicative group of elements having an
inverse in the ring Z,, of the integers modulo n; Z,," is the set
of all elements mutually prime with n).

[0254] Ifn=pq is the product of two primes, then ¢(n)=(p-
1)(g-1).
[0255] The security of RSA-based accumulators is based

on the following assumption.

[0256] Definition (Strong RSA Assumption) The strong
RSA assumption is that it is “hard,” on input an RSA modulus
n and an element uEZ, ", to compute values e>1 and v such
that v*=u(mod n). By “hard”, we mean that, for all polyno-
mial-time circuit families {A,}, there exists a negligible func-
tion neg(k) such that

Pr{n—RSAmodulus(1¥); u—2,"; (v, e)<A,(n, u):
v?=u(mod #)]=neg(k),

where RSAmodulus(1%) is an algorithm that generates an
RSA modulus as the product of two random k-bit primes, and

a negligible function neg(k) is a function such that for all
polynomials p(k), there is a value k,, such that neg(k)<1/p(k)
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for all k>k,. The tuple (n, u) generated as above, is called a
general instance of the strong RSA problem.

[0257] Corollary 1. Under the strong RSA assumption, it is
hard, on input a flexible RSA instance (n, u), to compute
integers e>1 and v such that v*=u(mod n).

[0258] The most common concrete instantiation of accu-
mulators is based on the above strong-RSA assumption.
Roughly speaking, the idea is as follows: Given a fixed base
u(mod n), one can compute an accumulator of values x, and
X, (for example) as v=u*"? (mod n). To prove that x; (for
example) has been accumulated, one can forward the witness
w=u"?2 (mod n) and a verifier can confirm that indeed w™ (mod
n).

[0259] Now, we relate the formal description of accumula-
tors to the concrete RSA-based construction. A secure RSA-
based accumulator for a family of inputs X, is a family of
functions FF,, where the particular function fEFF, depends
on what the modulus n is. For reasons that will become clear
later, we assume that elements of X, are pairwise relatively
prime integers. Then, aux is the (secret) factorization of n. As
alluded to above, given an initial accumulator value v', an
additional value x is added to the accumulator by computing
a new accumulator value v=v"* (mod n). Notice that the com-
putational complexity of this algorithm is independent of the
number of prior values that have been accumulated. The
RSA-based accumulator possesses the quasi-commutative
property; e.g., regardless of the order in which x; and x, are
incorporated into an initial accumulator v', the result is
v=v""?(mod n). Given an accumulator v(mod n), the witness
that a value x has been accumulated is w=v'* (mod n), which
can readily be verified by confirming that v=w"(modn). To
reiterate, the security of the construction is based on the
assumption that the strong RSA problem is infeasible to
solve.

[0260] RSA-based accumulators can be made dynamic.
Recall that an accumulator is dynamic if, given an accumu-
lator v that accumulates values of the set X and given the
secret information aux, one can “de-accumulate” a value
X'EX—i.e., compute a new accumulator v' that accumulates
the values of the set X—{x'}. Moreover, given a witness w that
a value x has been accumulated (with respect to accumulator
v that accumulates members of the set X) and given the
accumulator v' that only accumulates members of X-{x'},
one can compute a new witness w' for x with respect to the
accumulator v'. Specifically, for RSA-based accumulators,
one can use the factorization of n to de-accumulate X' by
computing v'=v'*(mod n). And given a witness w for x with
respect to v—i.e., w'=v(mod n)—and given the value of V',
one can compute a witness w' for x with respect to v'—i.e.,
wWr=v'=v'""*(mod n)«w'=v'""**(mod n) as follows. Assum-
ing that x and x' are relatively prime, one can compute inte-
gers (a, b) such that ax+bx'=1, by using the Extended Euclid-
ean Algorithm. Then Wiyt my @y By (e b e oy 1 e
(mod n). Notice that the computation of w' is efficient, and
(after v' is computed) it doesn’t require any secret knowledge
(e.g., the factorization of n).

[0261] Given a witness w that a value x is accumulated
(with respect to an accumulator v(mod n)), it also well-known
in the art how to construct a ZK proof of knowledge of a pair
(W, X) that satisfies w*=v(mod n) (that hides the values of both
w and x from the verifier).
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End of Appendix A
APPENDIX B
Guillou-Quisquater (GQ) ID-based Signature Scheme

[0262] Set-Up:

[0263] 1. A public key generator (PKG, a trusted party),
publishes its public key (v, n) where n=q, q, (a product of two
primes) is such that its factorization is hard to find, and vis a
prime less than ¢(n)=(p-1)(q-1).

[0264] 2. For a user with an identity ID (e.g., an email
address), the PKG computes the secret signing key B such
that JB*=1 mod n, where J=R(ID), where R is a predefined
public function, e.g. a redundancy function. In some embodi-
ments, the function R maps ID into an element of Z,,. The
function R is such that the number of elements in Z, that
correspond to mappings from valid ID’s is small. The PKG
sends B to the user via a secure channel (e.g. encrypted).

[0265] Signing: To sign a message M, the user:

[0266] 1. Computes J=R(ID)

[0267] 2. Generates a random number r and computes
d=H(M|r"), D=rB" (B-1)

where H is a predefined public function (e.g. a hash function).

[0268] 3. Sends the values M, r*, d, D to the verifier.
[0269] Verification: The verifier:

[0270] 1. Computes J=R(ID);

[0271] 2. Checks that d&=H(M]|[r");

[0272] 3. Checks that JD"=r".

End of Appendix B

1. A network transmission method comprising transmit-
ting, over a computer network, a computer program operable
to perform a computer-implemented authentication method
for providing authentication for a plurality of elements as
possessing a pre-specified property, wherein for each time
period j of a plurality of successive time periods, the authen-
tication is to be provided for each said element which pos-
sesses the pre-specified property, each element being oper-
able to acquire the property and/or to lose the property in each
of the successive time periods j, each element being associ-
ated with a distinct integer greater than 1, the authentication
method comprising, for at least one element El which is one
of said elements, performing a set-up operation for the
authentication, the set-up operation comprising:

a first computer system generating the distinct integer p,

associated with the element E1;

the first computer system obtaining data representing a

Pz, -th root of a base number modulo a predefined com-
posite integer whose factorization is a secret of the first
computer system,

the first computer system providing said data to a second

computer system to enable the second computer system
to prove that the element E1 possesses the pre-specified
property;

wherein for each said period j for which the element E1 is

to be authenticated as possessing said property, the
authentication is to be performed by operations compris-
ing:

the second computer system obtaining data representing an

accumulator value which accumulates all the entities in
aset P1, which is either (i) a set of the entities certified as
possessing the pre-specified property in the period j, or
(ii) a set of the entities certified as not possessing the
pre-specified property in the period j;
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the second computer system combining the accumulator
value with a value dependent on said p,-th root of the
base number to obtain a witness value which is a p,-th
root, modulo said composite integer, of a first value
dependent on the base number and the accumulator
value, the authentication comprising verifying that the
Pz -th power of the witness value equals the first value.

2. The network transmission method of claim 1 wherein the
elements are either (a) digital certificates each of which cer-
tifies that a cryptographic key is associated with an entity, or
(b) entitlements to use one or more resources, and said prop-
erty is validity of a digital certificate or an entitlement.

3. The network transmission method of claim 1 wherein in
the authentication, the first value is made available to a veri-
fier together with the witness value or a proof of knowledge of
the witness value.

4. The network transmission method of claim 3 wherein the
computer program is operable to perform the authentication
operations for at least one said time period j.

5. The network transmission method of claim 1 wherein the
accumulator value is a P;-th root u% (mod n) of an integer u
modulo said predefined composite integer, where P, is the
product of the distinct integers associated with the members
of the set P1 , where u is a constant or is a predefined function
of the period of time.
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6. The network transmission method of claim 1 wherein
said verifying, that the p,-th power of the witness value
equals the first value, is performed by a verifier computer
system, and the p, -th root of the base number is a secret not
provided to the verifier computer system.

7. The network transmission method of claim 2 wherein in
the authentication, the first value is made available to a veri-
fier together with the witness value or a proof of knowledge of
the witness value.

8. The network transmission method of claim 7 wherein the
computer program is operable to perform the authentication
operations for at least one said time period j.

9. The network transmission method of claim 2 wherein the
accumulator value is a P;-th root u"% (mod n) of an integer u
modulo said predefined composite integer, where P, is the
product of the distinct integers associated with the members
of the set P1, where uis a constant or is a predefined function
of'the period of time.

10. The network transmission method of claim 2 wherein
said verifying, that the p,-th power of the witness value
equals the first value, is performed by a verifier computer
system, and the p, -th root of the base number is a secret not
provided to the verifier computer system.
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